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ABSTRACT 

A time series data, comprising of annual estimates of Under-five Mortality rates for 

Ghana from the year 1961 to 2012, obtained from the Worldbank website is used for the 

analysis. Three time series models; the Box-Jenkins (ARIMA), the Bayesian Dynamic 

Linear Model, and the Random walk with drift models are built for the decline of 

Ghana‟s under-five Mortality. Each model is built with data values from 1961 to year 

2000, and an in-sample forecasting is made with each model from year 2001 to 2012. The 

Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as a 

measure of accuracy are used to determine the best fit model. The Random Walk with 

drift model produced the least values for both the MSE and the MAPE and is selected the 

best fit Model, and used for an out-of-sample forecasting for the years (2013 – 2016), 

producing respectively; 69.3, 66.6, 64.0 and 61.3 deaths per 1,000 live births. The 

forecast value of 64.0 deaths per 1000 live births for year 2015 shows that Ghana may 

not be able to realize her Millennium Development Goal four (MDG 4) target of reducing 

her Under-five Mortality rate to about 42.7 deaths per 1,000 live births by the year 2015. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Under-five (Infant and Child) Mortality Rate is the probability of a child dying within the period 

of birth and his/her fifth birthday, expressed per 1,000 live births. (UNICEF, WHO, Worldbank). 

Infant and Child Mortality Rate is one of the most important measures of child health and an 

indication of the overall development level of a nation. High Rate of Under-five mortality is 

therefore undesirable as it does indicate falling living standards of a country. 

Available reports on under-five mortality rate show that in the 1990s, about twelve million 

children died annually in the world, out of which ten million were in Developing countries. 

Infant and child deaths in developing countries constitute the largest age category of mortality 

and this is because children under the age of five years are the group vulnerable to diseases 

caused by health risks and poor environmental conditions (UNICEF, 1998). High Infant and 

Child Mortality Rates are also the result of high levels of poverty and deprivation, malnutrition, 

poor access to basic education, the spread of HIV/AIDS, malaria, tuberculosis as well as 

unhealthy conditions during the time of birth (Asante and Asenso-Okyere, 2003). 

Children under five years make up to fourteen percent of the population in Africa and that 

accounts to about fifty percent of all deaths annually (Kessel, 2000). Estimates of Infant and 

Child Mortality Rates are high in developing countries and especially in the Sub-Saharan African 

Nations because basic necessities for infant survival are lacking or unevenly distributed. As a 

result, infectious and communicable diseases are very common in these countries even though 
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sound sanitary practices and proper nutrition are given. The WHO attributes seven out of ten 

childhood deaths in developing countries to five main causes: Pneumonia, Diarrhea, Measles, 

Malaria and Malnutrition. 

In response to the above concerns, the WHO and UNICEF, in the early 1990‟s led the 

development and promotion of the Integrated Management of Childhood Illness(IMCI) strategy 

(UNICEF,1999), aimed at reducing mortality and morbidity associated with the major causes of 

diseases in children under age five and to contribute to their healthy growth and development. 

One of the Eight Millennium Development Goals (MDG‟s), adopted after the Millennium 

Summit in 2000 is to reduce child mortality (MDG4). Hence, donor and Development Agencies 

and Governments around the world committed themselves to the goal of reducing under-five 

mortality rate by two-thirds between 1990 and 2015(UN Millennium Declaration).  Reports on 

Infant and Child Mortality rates have it that twelve years after the world leaders committed 

themselves to the Millennium Goal 4 (MDG4), which sets out to reduce under-five mortality rate 

by two-thirds between 1990 and 2015, the world made substantial progress by reducing the 

number of under-five deaths by forty-seven percent from1990 to 2012 (i.e. 90 deaths per 1,000 

live births in 1990 to 48 in 2012.  In 2012, an estimated 6.6 million children – 18,000 a day-died 

from mostly preventable diseases. The progress made however, has not been enough and the 

target risks being missed at the global level with only a year remaining for the 2015 deadline. 

Also, Infant and Child Mortality Rates are still very high in Sub-Saharan Africa where 1 in 9 

children dies before age five, more than 16 times the average for the developed regions 

(UNICEF, 2011).  



                         
 

3 
 

Data on under-five mortality rate for Ghana can be had from different sources. These include the 

Ghana Demographic and Health Survey data set, produced jointly by the Statistical Service of 

Ghana and the Ghana Health Service as well as the Worldbank and sister agencies such as the 

UNICEF, WHO and the UNDP.  The Worldbank and the other agencies give yearly estimates of 

the rates whereas the Ghana Demographic and Health Survey estimates are done in a five years 

interval.  

 

1.2 Background of Study Area                                                                                                                                      

Infant and Child deaths in developing countries constitute the largest age category of mortality. 

This is because children under the age of five years are the group vulnerable to diseases caused 

by health risks and poor environmental conditions (UNICEF, 1998). 

Ghana, the country whose data on under-five mortality rate is used for the study, is a lower 

middle-income country located in the West African Sub-region. She is bounded on the north by 

Burkina Faso, on the west by Cote d‟Ivoire and Togo on the east. The first Black African Nation 

to obtain her independence from British colonial rule on 6
th

 March 1957, Ghana covers a total 

area of about 238,305km squared and divided into ten regions. The Country has a tropical 

climate with temperature ranging from 21-32 degrees Celsius (70-90F). Ghana has two rainy 

seasons from March to July and from September to October, separated by a short cool dry season 

in August. With a current population of about 25 million people and Accra as its capital, Ghana 

is inhabited mostly by people from different ethnic or tribal backgrounds among which are the 

Akans, the Ga-Adangbes, Mole-Dagbane, Guans, Ewes etc. with different dialects. However, her 

official language is English. The Country is also rich in mineral resources such as Gold, 
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Diamond, Manganese, Bauxite, Iron Ore, granite deposit as well as Oil and Gas.  Ghana seeks to 

reduce by two-thirds her infant and child mortality rate between 1990 and 2015 in line with the 

MDG4. However, child mortality rate in the country remains very high although some 

improvements have been made over the years. (HDR, 2007). 

  

1.2.1   Trends in Mortality Rates in Ghana 

Referring to the Worldbank data on Ghana‟s under-five mortality rate, it is observed that Ghana 

had a gradual decline in her rates since the year 1961 to 2012 .From 1990, the rate fell from 

128.1 deaths per 1,000 live births to 72 deaths per 1,000 live births in 2012, indicating a 43.8 

percent reduction in the rates. However, many professionals have been very skeptical of Ghana‟s 

realization of her 2015 target rate of about 42.7deaths per 1,000 live births. 

The regions with significant reduction in under-five mortality rate between 1998 and 2008 were 

Upper-East Region (reduction of up to 77.6 per1,000 live births),Western, Brong Ahafo and 

Volta Regions (up to 52.7 per 1,000 live births reduction),while those that recorded the least 

improvements over the same period were Ashanti (increased by 1.8 per 1,000 live births), 

Eastern, Greater Accra and Upper West (reduced by up to 13.3 per 1,000 live births only). An 

observation of the trend showed that Upper East, Western, Brong Ahafo and Volta Regions were 

on track to achieving the MDG on under-five mortality, while the rest were off track (Ghana 

MDG report, 2010). 
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1.3    Problem statement 

 Studies conducted as well as available information and data from the Worldbank show that there 

is a decline in the Under-five Mortality Rates for many nations, attributable to realization of the 

MDG4 target by these nations. 

Ghana as a lower- middle income nation is also experiencing this decline (i.e.128.1 per 1,000 

live births in 1990 to 72.0 per 1,000 in 2012). However, the extent of the decline is not known 

and that‟s the problem this study seeks to look into. 

 

1.4    Objective of the study 

The objectives of this study are: 

 To model the Under-five Mortality Rates for Ghana using the Box - Jenkins (ARIMA), 

the Bayesian Dynamic Linear Model (DLM), and the Random walk with drift modelling 

methods.   

 

 To choose the best model based on measures of forecast accuracy, and to use the 

selected model to predict the Under-five Mortality Rates for Ghana over a period of four 

years.  
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1.5      Methodology 

As a result of unhealthy environmental conditions as well as the prevalence of some curable and 

preventable diseases, a great number of Ghanaian children do not live to see their fifth birthday,      

hence the very high rates of  Under- five Mortality in Ghana. (Ghana‟s Integrated Child Health 

Campaign, 2006) 

The Box-Jenkins (ARIMA), the Bayesian Dynamic Linear Model (DLM) and the Random Walk 

with drift methods are used for the analysis. The ARIMA procedure analyze and forecasts 

equally spaced univariate time series data, transfer function data, and intervention data using the 

Autoregressive Integrated Moving-Average (ARIMA) or autoregressive moving-average 

(ARMA) model. An ARIMA model predicts a value in a response time series as a linear 

combination of its own past values and past errors (also called shocks or innovations). 

 Dynamic linear models (DLMs) also, are a broad class of models with time varying parameters, 

useful for modelling time series data.  They are parametric models where the parameter variation 

and the available data information are described probabilistically. They are characterized by a 

pair of equations, named observational equation and parameter evolution or system equation. 

The DLM can be seen as a generalization of the regression models allowing changes in 

parameters values throughout time. The DLM follows the usual steps in Bayesian inference, 

combining two main equations; evolution to build a prior and updating, to incorporate a new 

observation arrived at time t.   

A random walk is a process where the current value of a variable is composed of the past value 

plus an error term defined as a white noise (a normal variable with zero mean and variance one). 



                         
 

7 
 

Algebraically, a random walk is represented as Yt = Yt - 1 + ϵt. The implication of a process of 

this type is that the best prediction of y for the next period is the current value. The mean of a 

random walk process is constant but its variance is not. Therefore a random walk process is 

nonstationary and its variance increases with time. 

A secondary data comprising fifty-two data points of annual estimates of Under-five mortality 

rate per 1,000 live births for Ghana from 1961 to 2012, obtained from the Worldbank website in 

the year 2013, is used for the analysis by the R statistical software. Three different procedures for 

modelling and forecasting a univariate time series data; the classical or Box - Jenkins (ARIMA), 

the Bayesian Dynamic Linear (DLM) and the Random walk with a drift methods are used to 

model the Under-five mortality rates for Ghana, from 1961 to 2000. The models are each used to 

make an in-sample forecasting for the years 2001 to 2012. The Mean squared error (MSE) and 

the Mean absolute percentage error (MAPE), as a measure of accuracy are used to determine the 

best fit amongst the three fitted models, and the best model (i.e. model with the least deviations) 

is then used to make an out of sample forecast for the years 2013 to 2016, which provide 

(statistical) evidence as to whether or not Ghana is able to realize her MDG4 goal target. 

 

1.6   Justification 

Infant and Child Mortality Rate reflects a country‟s level of socioeconomic development and 

quality of life and is used for monitoring and evaluating population and health programmes and 

policies. High rates of infant and child mortality are undesirable as they tend to reduce the 

progress a nation makes in her developmental project. 
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Most stakeholders in the Health sector, without any proof have made statements that Ghana may 

not be able to achieve her MDG 4 target. This study mainly, will provide a statistical model for 

predicting the Under-five mortality rate for Ghana at any instant and also bring to the fore, 

whether or not Ghana is able to achieve her target of reducing under-five mortality rate to about 

42.7 deaths per 1,000 live births per the Worldbank data set. The study will provide policy 

makers with the evidence and the idea of possible future values of the rates, and thus help them 

to revise their childhood death intervention strategies so as to maintain and sustain the rates, or to 

reduce further, if the 2015 rate is found to be far from the target value. All these will ensure that 

Ghanaian children are healthier and grow to realize their talents and potentials and thus help 

maintain a strong labour force for the future that will continue with the developmental program 

of the nation Ghana.  

 

1.7  Thesis organization 

This study is in five Chapters. Chapter one considers the Introduction of the study, its 

background, trends in mortality rates in Ghana, the problem Statement and the objectives of the 

study. It also considers the justification for the study, the methodology and the thesis 

organization. Chapter two covers the review of available literature that is relevant to the study. 

Chapter three is devoted for the research methodology. Chapter four focuses on the data analysis, 

which involves the estimation of the model parameters, the in-sample forecasting by each of the 

three models, the estimation of the best fit model by a comparison of the Mean square error 

(MSE) and the Mean Absolute Percentage Error (MAPE) for the in-sample forecast values by 
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each model. The chapter ends with a four years ahead forecast values by the best fitted model. 

Chapter five looks at the conclusion and recommendations of the study. 
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CHAPTER TWO 

2.0    Literature Review 

This chapter provides a review of some previous studies on infant and child Mortality, conducted 

at different places across the globe and some of which involves the modelling and prediction of 

infant and child mortality rates.  

 Sankrithi et al. (1991), developed a product form multivariate regression models (multiplicative   

exponential) with infant and child mortality as outcome, and national economic, health, nutrition, 

education, and demographic statistics as predictor variables. The models were applied to data 

from 129 countries, resulting in R-square values for the product form models of infant and child 

mortality of 0.77 and 0.80. For comparison purposes, more conventional sum form models 

(additive linear) were also estimated, and yielded R-square values (0.22, 0.29) markedly lower 

than the product form models. The product form models also a much more uniform distribution of 

residuals and provided improved model fit across the different categories of nations. An inherent 

advantage to the product form models was that they did not predict negative mortality rates, in 

contrast to the sum form models which did predict negative mortalities for some of the more 

developed nations. 

Having the objectives of developing and evaluating a model that predicts mortality risk based on 

admission data for infants weighing 501 to 1500 grams at birth, and to use  the model to identify 

neonatal ICUs where the observed mortality rate differs significantly from the predicted rate, 

Horbar et al.(1993), undertook a validation cohort study involving a sample of 3,603 infants with 

birth weight 501 to 1500 grams who were born at seven National Institute of Child Health and 

Human Development (NICHHD) Neonatal Research Network Centers, over a 2-yr period of time. 
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Based on logistic regression analysis, admission factors associated with mortality risk for inborn 

infants were: decreasing birth weight, appropriate size for gestational age, male gender, non-black 

race, and 1- min Apgar score < or = 3. The mortality prediction model based on those models had 

a sensitivity of 0.50, a specificity of 0.92, a correct classification rate of 0.82, and an area under the 

receiver operating characteristic curve of 0.82 when applied to a validation sample. Goodness-of-

fit test showed that there was a marginal of fit between the observations and model predictions (chi 

2 =15.4, p=.06). There were no statistically significant differences between observed and predicted 

mortality rates at any of the centers.  In their conclusion, the researchers noted that mortality risk 

for infants weighing 501 to 1500 grams could be predicted base on admission factors but until 

more accurate predictive models are developed and validated and the relationships between care 

practices and outcomes are better understood, such models should not be relied on for evaluating 

the quality of care provided in different neonatal ICUs 

Hussein (1993), used two models, one with the natural logarithmic transformation of infant 

mortality time series and the other with successive differences to provide infant mortality 

projections for the period 1983 – 2000 in Egypt. Data were obtained from CAPMAS and UNICEF 

on the Egyptian infant mortality rate for the period 1947 – 82.The best model was determined by 

successive steps of model specification, estimation, and comparison. Plots of the data were 

provided for the original data for 1947 – 82, the degree of non-seasonal differencing, and a natural 

log transformation of the data. Plots were also provided of the sample autocorrelation function and 

the sample partial autocorrelation function for the original data, the degree of differences, and the 

natural logarithmic transformations. The preferred model was an autoregressive integrated moving 

average one for a first difference model (model 1) and a natural logarithmic model (model 2). 

Parameter estimates in model 2 were more significant and therefore preferred. Goodness of fit 
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comparisons and comparisons of plots of sample autocorrelation functions for the errors with their 

probability limits showed both models to be adequate. The two models were used to forecast infant 

mortality between 1983 and 2000. Model 1 showed a faster decline in mortality than model 2: a 

decline of 44.4% compared to 25.9%. Model 2 results were preferred because of the known 

inaccuracies in infant mortality data and the initially sharp decline between 1984 and 1985, which 

was due to implementation of government health programs. 

For the prediction of subsequent mortality among very low birth weight infants (< 1500grams) on 

days of life 3 and 14 using the Score for Neonatal Acute Physiology (SNAP) and traditional risk 

factors, Ellington Jr. et al. (1997), prospectively abstracted clinical and demographic data on a 

cohort of 1670 infants (< 1500grams) at seven regional NICUs from October 1994 to July 1996 

and identified all NICU deaths. The researchers measured severity of illness using the Score for 

Neonatal Acute Physiology (SNAP) at day 3 and 14. The risk of subsequent mortality at day 3 and 

14 was determined using sequential logistic models of the traditional risk factors – male sex, white 

race, SGA status, birth weight and low 5 – minute Apgar – as well as SNAP at days 1,3 and 14 

(SNAP1, SNAP3,SNAP14). Receiver Operator curves (ROC) for the competing models were 

constructed and the differences in area under the ROC curves were compared. The results were 

that; of the 198 deaths in the cohort, ninety-three occurred after day of life 3 and 43 after day of 

life 14. On both days only birth weight and SNAP improved mortality prediction. Sequential 

addition of increasingly proximate SNAP improved the predictive power of the models at both 

days 3 and 14. ROC- areas of day 3 were significantly less for the traditional model (0.82±.02) 

than for the traditional model plus SNAP1 and SNAP3 (.88±.02) with p-value <.02. ROC- areas at 

day 14 were .80±.02 for the traditional model and .84±.03 for the traditional model plus SNAP1, 

SNAP3 and SNAP 14(p-value=NS). The conclusions were that SNAP does improve the prediction 
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of subsequent mortality at day 3 over traditional risk factors and that serial measurement severity 

of illness yields additional information about evolving mortality risk among infant < 1500grams. 

With the view to investigate the feasibility of developing an objective tool for predicting death 

and severe disability using routinely available data, including an objective measure of illness 

severity, in very low birthweight babies, Fowlie et al. (1997), used a cohort study of 297 

premature babies surviving the first three days of life. Predictive variables considered included 

birthweight, gestation, 3 day cranial ultrasound appearances and 3 day CRIB (clinical risk index 

for babies) score. Models were developed using regression techniques and positive predictive 

values (PPV) and likelihood ratios (LR) were calculated. Among the results were that; on 

univariate analysis, birthweight, gestation, 3 day CRIB score and 3 day cranial ultrasound 

appearances were each associated with death. On multivariate analysis, 3 day CRIB score and 3 

day cranial ultrasound appearances remained independently associated. A 3 day CRIB score > 4 

along with intraventricular haemorrhage (IVH) grade 3 or 4 was associated with a PPV of 64% 

and an LR of 9.8 (95% confidence limits 3.5,27.9). In conclusion, the researchers observed that, 

incorporating objective measures of illness severity may improve current prediction of death and 

disability in premature infants. 

In a study that describes the time trends for infant mortality in Hong Kong and aims to develop 

statistical models that could be used to predict changes in infant mortality in places already 

having low levels of infant mortality, Wong et al. (1997), annually analyzed data on births and 

deaths of infants in Hong Kong during the years 1956 – 90 as well as aggregating the data into 

seven consecutive quinquennia. To assess the contribution of preventable infant deaths, causes 

for infant deaths were classified into two broad categories: (i) congenital anomalies; and (ii) 

preventable diseases. A simple linear regression model was used to analyze the time trend of the 
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of the mortality rate of the preventable diseases (PIMR) over the seven quinquennia. Their 

findings were that; during the period 1956 – 90, the infant mortality rate fell from 60.9 in 1956 – 

5.9 per 1000 in 1990 and the neonatal mortality rate fell from 24.2 – 3.8 per 1000. There was no 

clear time trend observed for infant mortality of congenital anomalies. However, the time trend 

for PIMR (log scale) was very close to a straight line and simple linear regression modeling 

showed a R
2
 of 0.9970. The conclusions were that; as the infant mortality rate (IMR) falls to 

below 30 per 1000, the further rate of decrease becomes less predictable from the regression 

model of the IMR and by removing the portion of deaths attributable to congenital anomalies, the 

further decrease in infant mortality became more predictable down to very low levels of IMR 

In order to predict the individual neonatal mortality risk of preterm infants using an artificial 

neural network“ trained” on admission data, Zernikow et al. (1998), enrolled a total of 890 

preterm neonates ( < 32 weeks gestational age and/ or 1500g birthweight ) in their retrospective 

study. The neural network trained on infants born between 1990 and 1993. The predictive value 

was tested on infants born in the successive three years. The results were that; the artificial 

neural network performed better than the logistic regression model (area under the receiver 

operator curve 0.95 vs. 0.92). Survival was associated with high morbidity if the predicted 

mortality risk was greater than 0.50. There were no preterm infants with a predicted mortality 

risk of greater than 0.80. The mortality risk of two non-survivors with birthweight > 2000g and 

severe congenital disease had largely been underestimated. The researchers concluded that an 

artificial neural network trained on admission data can accurately predict the mortality risk for 

most preterm infants. However, the significant number of prediction failures renders it unsuitable 

for individual treatment decisions. 
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In order to determine the interrelationships between potential predictors of infant mortality, Terra 

de Souza et al. (1999), undertook an ecological study across 140 municipalities in the state of 

Ceara, Brazil. The researchers classified 11 variables into proximate determinants (adequate 

weight gain and exclusively breastfeeding), health services variables (prenatal care up-to-date, 

participation in growth monitoring, immunization up-to-date, and decentralization of health 

services), and socioeconomic factors (female literacy rate, house income, adequate water supply, 

adequate sanitation, and per capita gross municipality product), and included the variables in 

each group simultaneously in linear regression models. Included in their findings were that; only 

one of the proximate determinants (exclusively breastfeeding (inversely), R
2
 =9.3) and one of the 

health services variables (prenatal care up-to-date (inversely), R
2
=22.8) remained significantly 

associated with infant mortality. In their conclusion, the researchers stated that their results 

suggested that promotion of exclusive breastfeeding and increased prenatal care utilization, as 

well as investments in female education would have substantial positive effect in further 

reducing infant mortality rates in the state of Ceara. 

With a goal to generate a preoperative risk-of-death prediction model in selected neonates with 

congenital heart disease undergoing surgery with deep hypothermic circulatory arrest, Clancy et 

al.(2000), completed a single-centre, prospective, randomized, double-blind, placebo-controlled 

neuroprotection trial in selected neonates with congenital heart disease requiring operations for 

which deep hypothermic circulatory arrest was used. An extensive database was generated that 

included preoperative, intraoperative, and postoperative variables (delivery, maternal, and infant 

related) were evaluated to produce a preoperative risk-of-death prediction model by means of 

logistic regression. An operative risk-of-death prediction model including duration of deep 

hypothermic circulatory arrest was also generated. Among the results were that; between July 
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1992 and September 1997, 350(74%) of 473 eligible infants were enrolled with 318 undergoing 

deep hypothermic circulatory arrest. The mortality was 52 of 318(16.4%), unaffected by 

investigational drug. The resulting preoperative risk model contained 4 variables: (1) cardiac 

anatomy (two-ventricle vs. single ventricle surgery, with/ without arch obstruction), (2)1-minute 

Apgar score (< / =5 vs. > 5), (3) presence of genetic syndrome, and (4) age at hospital admission 

for surgery (< / = 5 or 5 days). Mortality for two-ventricle repair was 3.2% (4/130). Mortality for 

single ventricle palliation was 25.5% (48/188) and was significantly influenced by Apgar score, 

genetic diagnosis and admission. The preoperative risk model had a prediction accuracy of 

80%.The operative risk model included duration of deep hypothermic circulatory arrest, which 

significantly (p=.03) increased risk of death, with a prediction accuracy of 82%. Among the 

conclusions made was that; postoperative mortality risk was significantly affected by 

preoperative conditions. 

To test and compare published neonatal mortality prediction models, including Clinical Risk 

Index for Babies (CRIB), Score for Neonatal Acute Physiology (SNAP), SNAP-Perinatal 

Extension (SNAP-PE), the National Institute of Child Health and Human Development (NICHD) 

network model, and individual admission factors such as birth weight, low Apgar score ( < 7 at 5 

minutes), Pollack et al. (2000), collected data on 476 VLBW infants admitted to 8 neonatal 

intensive care units between October 1994 and February 1997. The calibration (closeness of total 

observed deaths to the predicted total) of models with published coefficients (SNAP-PE, CRIB, 

and NICHD) was assessed using the standardized mortality ratio. Discrimination was quantified 

as the area under the curves. Calibrated models were derived for the current database using 

logistic regression techniques. Goodness-of-fit of predicted to observed probabilities of death 

was assessed with the Hosmer-Lemeshow goodness-of-fit test. Among the observations made by 
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the researchers was that; the calibration of published algorithms applied to the data was poor. 

The standardized mortality ratios for the NICHD, CRIB, and SNAP-PE models were .65, .56, .82 

respectively. Discrimination of all the models was excellent (range: .863 - .930). The conclusions 

made were that; published models for the severity illness over predicted hospital mortality in the 

set of VLBW infants, indicating a need for frequent recalibration. Discrimination for the severity 

of illness score remained excellent. Included in the conclusion was that birth variables should be 

reevaluated as a method to control for severity of illness in predicting mortality. 

In order to compare the prediction of mortality in individual extremely low birth weight (ELBM) 

neonates by regression analysis and by artificial neural networks, Ambalavanan et al.(2001), 

used a database of 23 variables on 810 ELBW neonates admitted to a tertiary care center and 

which was divided into training, validation, and test sets. Logistic regression and neural network 

models were developed on the training set, validated, and outcome (mortality) predicted on the 

test set. Stepwise regression identified significant variables in the full set. Regression models and 

neural networks were then tested using data sets with only the identified significant variables, 

and then with variables excluded one at a time. The results were that; the area under the curve 

(AUC) of receiver operating characteristics (ROC) curves for neural networks and regression 

were similar (AUC 0.87+/- 0.03; p= 0.31). Birthweight or gestational age and the 5-min Apgar 

score contributed most to AUC. Their conclusions were that both neural networks and regression   

analysis predicted mortality with reasonable accuracy and that for both models, analyzing 

selected variables was superior to full data set analysis. They speculated that neural networks 

may not be superior to regression when no clear non-linear relationships exist.  
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To test a paediatric intensive care mortality prediction model for UK use, Pearson et al. (2001), 

analyzed a total of 7253 admissions using tests of the discrimination and calibration of the 

logistic regression equation from a prospective collection of data from consecutive admissions to 

five UK paediatric intensive care units (PICUs), representing a broad cross section of paediatric 

intensive care activity. It was observed that the model discriminated and calibrated well, and the 

area under the ROC plot was 0.84 (95% CI 0.819 to 0.853). The standardized mortality ratio was 

0.87 (95% CI 0.81 to 0.94). There was remarkable concordance in the performance of the 

paediatric index mortality (PIM) within each PICU, and in the performance of the PICUs as 

assessed by PIM. In conclusion, the researchers recommended that UK PICUs use PIM for their 

routine audit needs and that PIM was not affected by the standard of therapy after admission to 

PICU. 

With the aim of developing a mortality prediction score for retrieved neonates based on the 

information given at the first telephone contact with a retrieval services, Broughton et al. (2004), 

examined data from the New South Wales Newborn and Pediatric Emergency Transport Service 

database. Analysis was performed with the results for 2504 infants and whose outcome (neonatal 

death or survival) was known. The study population was divided randomly into 2 halves, the 

derivation and validation cohorts. Univariate analysis was performed to identify variables in the 

derivation cohort related to neonatal death. The variables were entered into a multivariate logistic 

regression analysis with neonatal death as the outcome. Receiver operator characteristics (ROC) 

curves were constructed with the regression model and data from the derivation cohort and then 

the validation cohort. The results were used to generate an inter-based score, the Mortality Index 

for Neonatal Transport (MINT) score. ROC curves constructed to assess the ability of the MINT 

score to predict perinatal and neonatal death. A 7 – variable (Apgar score at 1 minute, birth 
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weight, presence of a congenital anomaly, and infants age, pH, arterial partial pressure of 

oxygen, and heart rate at the times of the call) model was constructed that generated areas under 

ROC curves of 0.82 and 0.83 for the derivation and validation cohorts respectively. The seven 

variables were then used to generate the MINT score, which gave areas under ROC curves of 

0.80 for both neonatal and perinatal death. Their conclusion was that; data collected at the first 

telephone contact by the referring hospital with a regionalized transport service could identify 

neonates at the greatest risk of dying. 

Slater et al. (2004), conducted a two-phase prospective observational study to compare the 

performance of the Pediatric Index of Mortality (PIM), PIM2, the Pediatric Risk of Mortality 

(PRISM), and PRISM III in Australia and New Zealand. The study involved two phases where 

phase 1 assessed the performance of PIM, PRISM, and PRISM III between 1997 and 1999 and 

phase 2 assessed PIM 2 in 2000 and 2001. Discrimination between death and survival was 

assessed by calculating the area under the receiver operating characteristic plot for each model. 

The areas (95% confidence interval) for PIM, PIM2, PRISM, and PRISM III were 0.89(0.88-

0.90), 0.90(0.88-0.91), 0.90(0.89-0.91) and 0.93(0.92-0.94). The calibration of the models was 

assessed by comparing number of observed to predicted deaths in different diagnostic and risk 

groups. Prediction was best using PIM2 with no difference between observed and expected 

mortality (standardized mortality ratio [95% confidence interval] 0.97 [0.86 – 1.05]). PIM, 

PRISM III and PRISM all over predicted death, predicting 116%, 130 % and 189% of observed 

deaths, respectively. The performance of individual units was compared during phase 1, using 

PIM, PRISM, and PRISM III. There was agreement between the models in the identification of 

outlying units; two units performed better than expected and one unit worse than expected for 

each model. The conclusions were that; of the models tested, PIM 2, was the most accurate and 
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had the best fit in different diagnostic and risk groups; therefore, it is the most suitable mortality 

prediction model to use for monitoring the quality of pediatric intensive care in Australia and 

New Zealand. However, more information about the performance of the models in other regions 

is required before those results could be generalized. 

In their bid to compare multiple logistic regression and neural network models in predicting 

death for extremely low birth weight neonates at 5 time points with cumulative data sets: 

scenario A, limited parental data, scenario B, scenario A plus additional parental data, scenario 

C, scenario B plus data from the first 5 minutes after birth, scenario D, scenario C plus data from 

the first 24 hours after birth; scenario E, scenario D plus data from the first 1 week after birth, 

Ambalavanan et al.(2005) , used data for all infants with birth weights of 401 to 1000g who were 

born between January 1998 and April 2003 in 19 National Institute of Child Health and Human 

Development Neonatal Research Network centers. Twenty-eight variables were selected for 

analysis, and logistic regression and neural network models for predicting subsequent death were 

created with training data sets and evaluated with test data sets. The predictive abilities of the 

models were evaluated with the area under the curve of the receiver operating characteristic 

curves. The data sets for scenarios A, B and C were similar, and prediction was best with 

scenario C (area under the curve: 0.85 for regression; 0.84 for neural networks), compared with 

scenarios A and B. The logistic regression and neural network models performed similarly well 

for scenarios A, B, D and E, but the regression model was superior for scenario C. Included in 

the conclusions was that; prediction of death is limited even with sophisticated statistical 

methods such as logistic regression and nonlinear modeling techniques such as neural networks.  
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To compare two models (The Pediatric Risk of Mortality III score and Pediatric Index of 

Mortality) for prediction of mortality in a pediatric intensive care in Hong Kong, Choi et al. 

(2005), used a prospective case series design for their study in a five-bed pediatric intensive care 

unit in a general hospital in Hong Kong. All patients were consecutively admitted to the unit 

between April 2001 and March 2003 and the scores for both models compared with observed 

mortality. The results showed that; a total of 303 patients were admitted to the pediatric intensive 

care unit during the study period. The median age was 2 years, with a interquartile range of 7 

months to 7 years. The male to female ratio was 169:134 (55.8%: 44.2%). The median length of 

hospital stay was 3 days. The overall predicted number of deaths using The Pediatric Risk of 

Mortality III score was 10.2 patients whereas that by Pediatric Index of Mortality was 13.2 

patients. The observed mortality was eight patients. The area under the receiver operating 

characteristics curve for the two models was 0.910 and 0.912 respectively. The researchers 

concluded that the predicted mortality using both prediction models correlated well with the 

observed mortality. 

To develop and validate a model for very low birth weight (VLBW) neonatal mortality 

prediction, based on commonly available data at birth, in 16 neonatal intensive care units (NICU) 

from five South American countries, Marshall et al. (2005), prospectively collected bio -

demographic data from the Neonatal del Cono Sur (NEOCOSUR) network between October 

2000 and May 2003 on infants with birth weight 500 to 1500g. A testing sample and cross 

validation techniques were used to validate a statistical model for risk of in-hospital mortality. 

The new risk score was compared with two existing scores by using area under the receiver 

operating characteristic curve (AUC). The findings were that, the new NEOCOSUR score was 

highly predictive for in hospital mortality (AUC= 0.85) and performed better than the Clinical 
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Risk Index for babies (CRIB) and the NICHD risk models when used in the NEOCOSUR 

network. The new score was also well calibrated; it had a good predictive capability for in-

hospital mortality at all levels of risk (HL test= 11.9, p=0.85). The new score also performed 

well when used to predict in hospital neurological and respiratory complications. Among their 

conclusions was that the new and relatively simple VLBW mortality risk score had a good 

prediction performance in South American network population and the score may prove to be a 

better model for application in developing countries.   

To use the Canadian Neonatal Network (CNN) database to validate the Score for Neonatal Acute 

Physiology, Version II (SNAP-II) for prediction of mortality among CDH infants admitted to a 

neonatal intensive care unit (NICU), and to compare that to the predictive equation developed by 

the Congenital Diaphragmatic Hernia Study Group (CDHSG), Skarsgard et al. (2005) identified 

infants with CDH in the CNN database. Bivariate and multivariable logistic regression models 

were used to identify risk factors predictive of mortality. Model predictive performance and 

calibration were assessed using the area under the receiver operator characteristic curve and the 

technique of the Hosmer-Lemeshow, respectively, and compared with the CDHSG predictive 

equation. Among the 19,507 admissions to CNN hospitals, there were 88 patients with CDH. 

The mortality rate among the CDH patients surviving to NICU admission was 17 %, and 12.5% 

received extracorporeal membrane oxygenated therapy. Gestational age and admission SNAP-II 

Score predicted mortality. Model predictive performance and calibration were optimized with 

those variables combined. The CDHSG equation was equally predictive of mortality, but was 

only marginally calibrated. The conclusion was that SNAP-II was highly predictive of mortality 

among patients with CDH, and could be used to risk-adjust those patients. 
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Bitwe et al. (2006), in their bid to find a simple mortality prediction model based on nutritional 

and infection indicators for the assessment of the care of children admitted to hospital in central 

Africa, conducted a cohort study of 414 children admitted at Goma Hospital between 1.4.2003 

and 31.3.2004. The researchers did a univariate analysis and logistic regression, computed 

adjusted odds ratios and constructed a prognostic score from the coefficients of logistic 

regression. The performance of logistic model and score were evaluated by the calculation of 

areas under the ROC curves. The intrahospital mortality rate reached 15.9%. In the univariate 

analysis, age, WAZ, arm circumference, neurological status (Blatyre coma score), stiff neck, 

subcostal indrawning, and infection were significantly associated with mortality. Logistic 

regression model analysis and adjusted odds ratios (AOR) confirmed higher risks of death for 

young (AOR 3.4(1.4-8.8) and underweight children (WAZ - 2 - > - 3 and WAZ < or = - 3, AOR 

3.2 (1.4-7.6) and AOR 4.4(1.7-11.2)), for children with arm circumference under 115mm (AOR 

3.4(1.5-7.3)); impaired consciousness (AOR 9.6(3.1-29.9)) and bloodstream infections( AOR 

6.6(2.1-21.1)). The area under the ROC curve of the prognostic model was 0.83(0.78-0.88), and 

that of the prognostic score, 0.80(0.75-0.86). In conclusion, the researchers noted that the study 

provided a simple mortality prediction model for hospitalized children in central Africa and that, 

the model and scoring system could be used to evaluate programs set up to reduce intrahospital 

mortality in that region. 

In a document that presents a Bayesian approach to forecasting mortality rates, an approach that 

formalizes the Lee- Carter method as a statistical model for all sources of variability, Pedroza 

(2006), used Markov chain Monte Carlo methods to fit the model and to sample from the 

posterior predictive distribution. The document shows how multiple imputations could be readily 

incorporated into the model to handle missing data and presented some possible extensions to the 
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model. The methodology was applied to U.S. male mortality data. Mortality rate forecast were 

formed for the period 1990 – 1999 based on data from 1959 – 1989. Those forecasts were 

compared to the actual observed values. Results from the forecasts showed the Bayesian 

prediction intervals to be appropriate wider than those obtained from the Lee-Carter method, 

correctly incorporating all known sources of variability. An extension to the model was also 

presented and the resulting forecast variability appeared better suited to the observed data. 

In a study that aimed at providing estimates of diarrhea mortality at country, regional and global 

level by employing the Child Health Epidemiology Reference Group (CHERG) standard, 

Boschi-Pinto et al. (2008), undertook a systematic and comprehensive literature review of all 

studies published since 1980 reporting under-5 diarrhea mortality. Information was collected on 

characteristic of each study and its population. A regression model was used to relate these 

characteristics to proportional mortality from diarrhea and to predict its distribution in national 

populations. Among the findings were that; global deaths from diarrhea of children aged less 

than 5 years were estimated at 1.87 million (95% confidence Interval, CI:1.56-2.19). In their 

conclusion, the researchers noted that planning and evaluation of interventions to control 

diarrhea deaths and to reduce under-5 mortality was obstructed by the lack of a system that 

regularly generates cause-of death information. 

Blot et al. (2009), with the objective to develop a user-friendly model to predict the probability 

of death from acute burns soon after injury based on burned surface area, age and presence of 

inhalation injury, conducted a population- based cohort study which included all burned patients 

admitted to one of the six Belgian burn centres. Data from 1999 to 2003 (5246 patients) were 

used to develop a mortality prediction model, and data from 2004 (981 patients) were used for 

validation. The results were that mortality in the derivation cohort was 4.6 per cent. A mortality 
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score (0 – 10 points) was devised: 0 – 4 points according to the percentage of burned surface area 

( less than 20, 20 – 39, 40 – 59, 60 – 79 or at least 80 per cent), 0 – 3points according to age 

(under 50, 50 – 64, 65 – 79 or at least 80 years) and 3 points for the presence of an inhalation 

injury. Mortality in the validation cohort was 4.3 per cent. The model predicted 40 deaths, and 42 

deaths were observed (p=0.950). Receiver – operator characteristic curve analysis of the model 

for prediction of mortality demonstrated an area under the curve of 0.94 (95 per cent confidence 

interval 0.90 to 0.97). The conclusion by the researchers was that an accurate model was 

developed to predict the probability of death from acute burn injury based on simple and 

objective clinical criteria. 

For the validation of Clinical Risk Index for Babies (CRIB II) score in predicting the neonatal 

mortality in preterm neonates ≤ 32 weeks gestational age, Rastogi et al. (2009), used a 

prospective cohort study. The five variables related to CRIB II were recorded within the first 

hour of admission for data analysis. The receiver operating characteristics (ROC) curve was used 

to check the accuracy of the mortality prediction. H-L Goodness of fit test was used to see the 

discrepancy between observed and expected outcomes. Among the 69 neonates completing the 

study, 24(34.8%) had adverse outcome during hospital stay and 45(65.2%) had favorable 

outcome.  CRIB II correctly predicted adverse in 90.3% (Hosmer-Lemeshow) goodness – of – fit 

test p=0.6). Area under curve (AUC) for CRIB II was 0.9032. The conclusion made by the 

researchers was that; CRIB II score was found to be a good predictive instrument for mortality in 

preterm infants ≤ 32 weeks gestation.     

Sergio et al. (2009), analyzed the annual mortality rates from infectious diarrheic diseases in 

children under 5 years of age in Brazilian municipalities. The rates from 1990 to 2000 were 

analyzed using multilevel model, with years as first level units nested in municipalities as second 
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level units. The dependent variable was the yearly mortality rate by municipality, on the log 

scale. Polynomial time trends and indicator variables to account for differences in geographic 

regions were used in the modeling. Time trends were centered on 1995, so they could be 

modeled differently before and after 1995. From 1990 to 1995 there was a sharp decrease in 

mortality rates by diarrheic diseases in most Brazilian municipalities, while from 1995 to 2000 

the decrease was more heterogeneous. In 1995 the North and Northeast of Brazil of Brazil had 

higher mortality rates than the Southeast, and the differences were statistically significant. Most 

importantly, the study concludes that there was an important difference in the pattern of 

mortality rate decrease over time, comparing the country‟s five geographic regions.  

As mortality improvement has become an increasingly significant source of financial risk, it has 

become important to measure the uncertainty in the forecasts. Probabilistic confidence intervals 

provided by the widely accepted Lee- Carter model are known to be excessively narrow, due 

primarily to the rigid structure of the model. In their study, Siu-Hang Li et al. (2009), relaxed the 

model structure by considering individual differences (heterogeneity) in each age-period cell. 

The proposed extension not only provided a better goodness-of-fit based on standard model 

selection criteria, but also ensured more conservative interval forecasts of central death rates and 

hence could better reflect the uncertainty entailed. The researchers illustrated the results using 

the US and Canadian mortality data. 

Amouzou et al. (2010), used the Lives Saved Tool (LiST) to model neonatal and under-5 

mortality levels among the highest and lowest wealth quintiles in Bangladesh based on national 

and wealth- quintile-specific coverage of child survival interventions. The cause-of-death 

structure among children under-5 was modeled using coverage levels. Modeled rates were 

compared to the rates measured directly from the 2004 Bangladesh Demographic and Health 
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Survey and associated verbal autopsies. Modeled estimates of mortality within wealth quintiles 

fell within the 95% confidence intervals of measured mortality for both neonatal and post-

neonatal mortality. LiST also performed well in predicting the cause-of-death structure for those 

two age groups for the poorest quintile of the population, but less well for the richest quintile. 

The conclusion was that, LiST holds promise as a useful tool for assessing socio-economic 

inequities in child survival in low-income countries.     

Fry-Johnson et al. (2010), used zero-corrected, negative binomial multivariable modeling to 

predict Black infant mortality (1999-2003) in all US counties with reliable rates. Independent 

variables included county population size, racial composition, educational attainment, poverty, 

income and geographic origin. Resilient counties were defined as those whose Black infant 

mortality rate residual score was < 2.0. Mortality data was accessed from the Compressed 

Mortality File compiled by the National Center for Health Statistics and found on the CDC 

WONDER website. Demographic information was obtained from the US Census. Among the 

results were that; the final model included the percentage of Blacks, age 18 to 64 years, speaking 

little or no English (p<.008), a socioeconomic index comprising educational attainment, poverty, 

and per capita income (p<.001) and household income in 1990 (p<.001). In their conclusion, the 

researchers stated that models for reduction/elimination of racial disparities in US infant 

mortality, independent from county-level contextual measures of socioeconomic status, may 

already exist. 

In a work that aimed at comparing the performances of ARIMA, Neural Network and Linear 

Regression models for the prediction of Infant Mortality Rate, Purwanto et al. (2010), compared 

the models using performance measures such as Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE), using the Infant Mortality Rate 
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data collected in Indonesia during the years 1995-2008. The results showed that the Neural 

Network Model with 6 input neurons, 10 hidden layer neurons and using hyperbolic tangent 

activation functions for the hidden and output layers was the best among the different models 

considered. 

In a study that presents a predictive cause of death model for under-five mortality based on 

historical vital statistics and discusses the utility of the model in generating information that 

could accelerate progress towards MDG4, Rao et al. (2010), analyzed over 1400 country years of 

vital statistics from 34 countries collected over a period of nearly a century , to develop 

relationships between levels of under-five mortality, related mortality ratios, and proportionate 

mortality from four cause groups: perinatal conditions, diarrhea and lower respiratory infections; 

congenital anomalies; and all other causes of death. A system of multiple equations with cross-

equation parameter restrictions and correlated error terms was developed to predict proportionate 

mortality by cause based on given measures of under-five mortality. The strength of the 

predictive model was tested through internal and external cross-validation techniques. Modeled 

cause-specific mortality estimates for major regions in Africa, Asia, Central America, and South 

America were presented to illustrate its application across a range of under-five mortality rates. 

Consistent and plausible trends and relationships were observed from historical data. High 

mortality rates were associated with increased proportions of deaths from diarrhea and lower 

respiratory infections. Internal and external validation confirmed strength and consistency of the 

predictive model. Among the conclusions made were that; the predictive model could help set 

broad priorities for interventions at the local level based on periodic under-five mortality 

measurement. 
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Although there has been substantial reduction in infant and child mortality rates in most 

developing countries in the recent past, infant mortality remains a major public health issue in 

developing countries where it is estimated that over 10 million preventable child deaths occur 

yearly. With special reference to Nigeria, available statistics suggested that infant mortality 

levels continue to be high and exhibit wide geographic disparities. In a study that attempted to 

estimate infant mortality rate in Nigeria using linear regression model, Mojweku et al. (2011), 

selected crude death rate (CDR) as the minimum relevant parameter (independent variable) 

needed for estimating Infant Mortality Rate (IMR) which was the dependent variable, because it 

represented the „end result‟ of development. The IMR derived model was checked for adequacy 

by comparing the estimates of the present study with the estimates from other sources. The 

diagnostic test showed that the regression derived, was quite adequate and reflected the true 

picture of Nigerian Infant Mortality Rate pattern. 

Nakwan et al. (2011), used a prospective cohort study of 41 infants with persistent pulmonary 

hypertension of the newborn (PPHN) admitted to a neonatal intensive care unit between June 

2008 and March 2010, and underwent a SNAP-II test within 12h of admission, with a view to 

evaluate the ability of the Score for Neonatal Acute Physiology- Version II (SNAP-II) to predict 

mortality in infants with PPHN. Of the 41 infants, 14 died (34.1%) and 27 survived (65.9%). The 

SNAP-II Scores were significantly higher in infants who died (50.1±18.5 vs. 35.7±16.8, P=0.02). 

Each point increase in the SNAP Score increased the odds of mortality by 1.04 [95% confidence 

Interval (CI) 1.01 – 1.07, P < 0.01]. Infants who had a SNAP-II Score of ≥ 43 had the greatest 

mortality risk with an odds ratio (OR) of 10.00 (95% CI 1.03 – 97.50). The SNAP-II model 

showed moderate discrimination in predicting mortality with a result of 0.72(95% CI 0.56 – 
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0.88) under the receiver operating characteristic curve. Among the conclusions were that; the 

SNAP-II scoring system significantly predicted mortality. 

With an objective to develop a predictive model and identify maternal, child, family and other 

risk factors associated with U5M in Nigeria, Kayode et al. (2012), used a population- based 

cross-sectional study which explored the 2008 demographic and health survey of Nigeria 

(NDHS) with multivariable logistic regression, Likelihood Ratio test, Hosmer-Lemeshow 

Goodness-of-Fit and variance Inflation Factor were used to check the fit of the model and its 

predictive power was assessed with the Receiver Operating Curve (ROC curve). The study 

yielded an excellent predictive model which revealed that the likelihood of U5M among the 

children of mothers that had their first marriage at age 20-24 years and greater or equal to 25 

years declined by 20% and 30% respectively compared to children of those that married before 

the age 15 years, Also, the following factors reduced odds of U5M: health seeking behavior, 

breastfeeding children for > 18 months, use of contraception, small family size, having one wife, 

low birth order, normal birth weight, child spacing, living in urban areas, and good sanitation. In 

their conclusion, the researchers indicated that, the study revealed that maternal, child, family 

and other factors were important risk factors of U5M in Nigeria. 

In a latest estimates of the causes of child mortality in 2010 with time trends since 2000, Liu et 

al. (2012), used vital registration data for countries with an adequate vital registration system. A 

multinomial logistic regression model was applied to vital registration data for low-mortality 

countries without adequate vital registration. A similar multinomial logistic regression with 

verbal autopsy data for high mortality countries was used. For India and China, national models 

were developed and country results were aggregated to generate regional and global estimates. 

Among the findings were that; out of 7.6 million deaths in children younger than 5 years in 2010, 
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64.0% (4.879 million) were attributable to infectious causes and 40.3% (3.072 million) occurred 

in neonates. Preterm birth complications (14.1%; 1.078 million, uncertainty range [UR] 0.916 – 

1.325), intrapartum-related complications (9.4%; 0.717 million, 0.610 – 0.876), and sepsis or 

meningitis (5.2%; 0.393 million, 0.252 – 0.552) were the leading causes of neonatal deaths. In 

their conclusion, the researchers advocated that child survival strategies should direct resources 

toward the leading causes of child mortality, with attention focusing on infectious and neonatal 

causes. 

The WHO has released prescriptive child growth standards for, among others, BMI- for-age 

(BMI-FA), mid-upper arm circumference-for-age, and weight velocity. In a study that aimed,  

firstly, to assess in children under 2, the independent and combined ability of those indices and 

of stunting to predict all cause mortality within 3 mo, or secondly the comparative abilities of 

weight-for-length (WFL) and BMI-FA to predict short term (< 3 mo) mortality, O‟neil et al. 

(2012), used anthropometry and survival data from 2402 children aged between 0 and 24 mo in 

rural area of the Democratic  Republic of Congo with high malnutrition and mortality rates and 

limited nutritional rehabilitation. Analysis used Cox proportional hazard models and receiver 

operating characteristic curves. Univariate analysis and age-adjusted analysis showed predictive 

ability of all indices. Multivariate analysis without age adjustment showed that only very low 

weight velocity [HR= 3.82(95% CI=1.91, 7.63); P <0.001] was independently predictive. With 

age adjustment, very low weight velocity [HR=3.61(95% CI=1.80, 7.25); P <0.001] was again 

solely retained as an independent predictor. There was no evidence for a difference in predictive 

ability between WFL and BMI-FA. 
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To predict neonatal mortality and length of stay (LOS) from readily available perinatal data for 

neonatal intensive care unit (NICU) admission in Southern African private hospitals, Pepler et al. 

(2012), did a retrospective observational study using perinatal data from a large multicentre 

sample. The researchers used 2376 infants born between 1 January – 31 December 2008 to build 

regression models, and a further 1578 infants born between 1 January – 31December 2007 to test 

the models. Outcome measures were mortality and length of hospital stay for NICU admissions. 

Included in the results were that; of the infants included in the 2008 dataset,(3.8%) died after 

being admitted to NICU centres. An analysis of the structural peculiarities of the data showed 

high correlations between groups of the perinatal variables pertaining to the size and apgar scores 

of the newborn infants, respectively. The logistic regression model to predict neonatal mortality 

had a good fit (AUC: 0.8507, misclassification rate = 13.6%), but the low positive predictive 

value of the model reduces its usefulness. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This section examines some basic definitions and concepts of time series analysis and the 

processes involved in the building and application of autoregressive integrated moving average 

(ARIMA) models, the Bayesian Dynamic Linear Models (DLM) as well as the random walk 

with drift models for forecasting future values of an investigated variable. 

  

3.1 SOME BASIC CONCEPTS AND DEFINITIONS OF TIME SERIES 

3.1.1 Time-Series 

A time series is a set of observations measured sequentially through time. (Chatfield, 2001), 

 

3.1.2   A Time Series Plot 

A time series plot is a graph with a dependent variable plotted as ordinates against an 

independent variable (time) as abscissa. There is usually a single value of the dependent variable 

for each value of the independent variable and those values are typically equally spaced. The 

time series plot could be done in various ways, and it‟s used to evaluate patterns and behaviors in 

the data over time. 
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 3.1.3 Time-Series Model 

A time series model establishes a relationship between the present value of a time series and its 

past values so that forecasts can be made on the basis of the past values alone. A time series 

model uses a model for explanation that is based on theoretical foundations and mathematical 

representations. Time series data could be modelled by several different approaches or methods, 

among which are:  

 Autoregressive (AR) models 

 Moving Average (MA) models 

 Autoregressive Moving Average (ARMA) models 

 Autoregressive Integrated Moving Average (ARIMA) models 

 The Bayesian Dynamic Linear (DLM) Models 

 The Random Walk with or without drift  

 

       3.1.4 Stationary Time Series 

A time series is said to be stationary if the mean, variance and autocovariance (correlation) 

structure do not change over time. This basically means, the series has a constant mean and 

has no trend overtime. A common theoretical example of a weak stationary process is the 

white-noise process, (εt)tϵT, which has a an expected value of zero, E(εt) = 0, a constant 

variance Var (εt) = ζ
2
 and a covariance of zero, Cov (εt , εs) = 0 for all tϵT. If the time series 

to be modelled is not stationary, it is often possible to transform it to stationarity with one of 

the following techniques:                                      
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  Differencing the data in the following way, Yt = Xt – Xt – 1 to give a new series Yt. 

Consequently, the new data set contains one less point than the original. Although one 

can difference the data more than once, the first difference is in most cases sufficient.   

 

  Fitting some type of curve (line) to the data, if there is a trend in the data and then by 

modelling the residuals obtained from that fit. Since the purpose of making a time series 

stationary is to remove its long-term trend, a simple fit such as a straight line is typically 

used.  

 

 Taking the logarithm or square root, if the series has no constant variance- this may 

stabilize the variance  

 

3.1.5   Autocorrelation Function (ACF)        

 A time-series is assumed a realization of a stochastic process.  In the context of time series 

analysis, the relationships between observations in different time periods play a very 

important role. These relationships across time can be captured by the time series correlation 

respectively (resp.) covariance, known as autocorrelations resp. -covariances. 

The autocovariance function (γk) of a time-series is defined as: 

γk= E{[Xt – E(Xt)][Xt-k – E(Xt-k)]} , 

       Where Xt stands for the time-series. The autocorrelation function (ρk) is defined as: 
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                             ρ(k)  =  
  

  
  ………...…… (1) 

 The graph of this function is called correlogram. The correlogram has an essential 

importance for the analysis, because it comprised time dependence of the observed series. 

Since 𝛾k and ρk only differ in the constant factor 𝛾o i.e. the autovariance of the time-series, it 

is sufficient to plot just one of these two functions. One application of autocorrelation plots 

is for checking the randomness in the data set. The idea is, that if these autocorrelations are 

near zero for any and all time lags then the data set is random. Another application of this 

correlogram is for identifying the order of an AR and an MA process. Technically, these 

described plots are formed by displaying on the vertical axis the autocorrelation coefficients 

(𝛾k) and on the horizontal axis, the time lag. 

 

3.1.5.1 Partial Autocorrelation function (PAFC) 

The partial autocorrelation function (πK), where k ≥ 2 , is defined as the partial correlation 

between  Xt and  Xt - k  under holding the random variables in between  Xu , where t − k < u > t , 

constant. It seems to be obvious, that the PACF is only defined for lags equal to two or greater, 

because considering the following example: if one calculates π2 of Xt and Xt-2 under holding Xt-1 

constant then the correlation of Xt-1 disappears. But if one wants to calculate the 𝜋1 of Xt and Xt-1 

it is the same as computing the ACF at lag one, i.e. ρ1. The partial autocorrelation plot or partial 

correlogram is also commonly used for model identification in Box and Jenkins models. On the 

y-axis they display the partial autocorrelations coefficients at lag k and on the x-axis the time lag 

k . 
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 3.1.5.2 Autoregressive (AR) Models 

A common approach for modelling a univariate time series is the AR model. The intuition 

behind this model is that, the observed time series Xt depends on weighted linear sum of the past 

values, p, of Xt and a random shock εt. Thus, the name “autoregressive” derives from this idea. 

Technically, one can therefore formulate the AR(p) model as follows: 

Xt = ϕ1Xt – 1 + ϕ2Xt – 2 +…+ ϕpXt – p + εt ....................(2) 

Where Xt denotes the time series and εt indicates a white-noise process. The value of p is called 

the order of the AR model. If p = ∞, then the process is called an infinite AR process. An 

autoregressive model corresponds simply to a linear regression of the current value of the series 

against one or more prior values of the series. Often, a formulation of the AR(p) model is made 

by using the lag operator L, which is defined as LXt = Xt – 1. 

Consequently, L(LXt) = L
2
Xt = Xt – 2 and in general, L

s
Xt = Xt – s and L

0
Xt = Xt. This means 

operating L on a constant leaves the constant unaffected. Using the lag operator, one can rewrite 

an AR(1) model, Xt  =  ϕXt – 1 + εt  in the following way: 

Xt  =  ϕLXt  +  εt  ⟺  Xt (1 – ΦL)  =  εt 

Similarly, using the lag operator we can write the general AR(p) model in equation (2) above as: 

Xt  =  ϕ1LXt  +  ϕ2L
2
Xt  + …+  ϕpL

p
Xt  + εt 

Xt  =  Xt(ϕ1L + ϕ2L
2
 +...+ ϕpL

p 
 ) +  εt 

    Xt(1 - ϕ1L - ϕ2L
2
- … ϕpL

p
) =  εt 



                         
 

38 
 

In the brief form; Xtϕ(L) = εt, where ϕ(L) is a polynomial of order p in the lag operator 

Φ(L) = 1 – ϕ1L –  ϕ2L  - … –  ϕpL
p
. 

3.1.5.3  Moving Average (MA) Models 

Another common approach for modelling a univariate time-series is the MA model. The intuition 

behind this model is that, the observed time series Xt depends on a weighted linear sum of past, 

q, random shocks. This means that at period t, a random shock εt is activated and this random 

shock is independent of random shocks of other periods. The observed time–series Xt is then 

generated by a weighted average of current and past shocks – this explains the name “moving 

average”. 

Technically, one can therefore formulate the MA(q) model as follows: 

Xt  =  εt  +  θ1εt – 1  + …….. + θqεt – q…………..……(3) 

Where, Xt denotes the time-series and εt – q indicates a white – noise process. The value of q is 

called the order of the MA model. If q = ∞, then the process is called an infinite MA process. An 

MA model corresponds simply to a linear regression of the current value of the series against the 

random shocks of one or more prior values of the series. But fitting a moving average is more 

complicated than fitting an autoregressive model, because it depends on the error terms that are 

not observable. Therefore in opposite to an AR model, one has to use an iterative non-linear 

fitting procedure and the resulting estimation of the parameter has less obvious interpretation 

than in the case of AR models. As before, one can rewrite an MA model in brief by using the 

described lag operator in the following way: 
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Xt  =  θ(L)εt 

Where θ(L) is a polynomial of order q in the lag operator 

Θ(L) = 1 + θ1L + θ2L
2
 +…………+  θqL

q. 

       
  

 3.1.5.4 Autoregressive Moving (ARMA) Model
 

An ARMA model consists according to its name of two components: the weighted sum of past 

values (autoregressive component) and the weighted sum of past errors (moving average 

component). Formally, an ARMA model of order (p, q) can be formulated as: 

Xt = ϕ1Xt – 1 + ϕ2Xt – 2 + … + ϕpXt – p + εt + θ1εt – 1 + … + θqεt – q ………….(4) 

An important assumption of the ARMA (p, q) model is that the time-series is stationary and so if 

the series is not stationary, Box and Jenkins recommend differencing the time series to achieve 

stationarity. Doing so produces a so-called ARIMA model, where “ I ” stands for integrated.  

 

 3.2  Akaike’s Information Criterion (AIC) 

Akaike‟s Information Criterion (AIC) provides a means of selecting a best fit model from a set of 

candidate models. The (AIC) offers a relative estimate of the information lost when a given 

model is used to represent the process that generates the data. The chosen model is the one that 

minimizes the Kullback - Leibler distance between the model and the truth. It is based on 
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information theory and it‟s a criterion that seeks a model that has a good fit to the truth but few 

parameters. It is defined as: 

AIC = -2 (ln (Maximum likelihood)) + 2r …………(5) 

≈ n ln(ζa
 2
) + 2r 

where n is the number of observations, r the number of parameters estimated in the model 

including a possible constant term and ζa
2
 is the maximum likelihood estimate of residual 

variance. The best model has the least AIC value. 

  

3.2.1  Akaike’s  Bias Corrected Information Criterion (AICC) 

This is AIC with a correction for finite samples sizes. 

AICC = -2ln (Maximised Likelihood) + 
   

     
 ………(6) 

 ≈ n ln(ζa
 2
) + 

   

     
 

Where r is the number of parameters and n, the sample size. Thus, AICC is AIC with a greater 

penalty for extra parameters. 

 

3.2.2  Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC) proposed by Schwarz (1978) is yet another criterion, 

which attempts to correct for AIC‟s tendency to overfit. This criterion is given as 
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BIC = -2 ln(maximized likelihood) + r ln(n) ……....(7) 

≈ n ln(ζa
 2
) + r ln(n) 

One could rewrite this as BIC ≈ n ln(ζa
 2

) + PBIC where PBIC = r ln(n) is a penalty function. As 

for all the criteria, the preferred model is the one with a minimum BIC. 

 

3.2.3  Ljung- Box Test 

The Ljung – Box test, is applied to the residuals after an ARIMA model has been fitted to test for 

randomness in the residuals. The Ljung – Box test is based on the autocorrelation plot. However, 

instead of testing randomness at each distinct lag, it tests the “overall” randomness based on a 

number of lags. For this reason, it is often referred to as a “portmanteau” test 

The Ljung – Box test can be defined as follows: 

H0 :  The data are Random 

      Ha : The data are not Random 

The test statistic is: 

QLB = ( n (n + 2)∑
     

   

 
    

Where n is the sample size, ρ(j) is the autocorrelation at lag j, and h is the number of lags being 

tested  

Significance level: α 
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Critical Region:    The hypothesis of randomness is rejected if QLB > χ
2

α,(h-p-q) 

Where α is taken to be 5% (0.05), h is the maximum lag being considered and p and q are 

respectively the order of the AR and MA processes.  

 

3.2.4  The Augmented Dickey-Fuller Test (ADF) 

Stationarity test of a differenced time series utilizes the Augmented Dickey-Fuller (ADF) 

technique (Dickey and Fuller (1981), which is a generalized auto-regression model formulated in 

the following regression equation  

∆ X i ,t = KX i, t – 1 + ∑      
    k

∆xi
 ,t – k + ε k, t 

The Model hypothesis of interest are: The series is: 

        H0 : Non-stationary 

HA : Stationary 

ADF Statistics is compared to critical values to draw conclusions about stationarity. 

3.2.5   Mean Squared Error (MSE)  

The Mean squared Error (MSE) measures the quality of an estimator of a parameter. It thus, 

measures of how close a fitted line is to data points. For an observed time series data               

(Y1, Y2 , …..….YN) and a vector of N predictions ( ̂1 ,  ̂2,    ……  ̂N), The Mean Squared Error 

is given by: 



                         
 

43 
 

MSE = 
 

 
∑   ̂ 

   i  - Yi )
2
…………………………….(8) 

The smaller the Mean squared Error, the closer the fit is to the data. The MSE has the units 

squared of whatever is plotted on the vertical axis. 

 

3.2.6 Mean Absolute Percentage Error (MAPE) 

The Mean Absolute Percentage Error (MAPE), is a measure of accuracy of a method for 

constructing fitted time series values. MAPE measures the size of the error in percentage terms. 

It is calculated by the formula: 

MAPE =  (
 

 
∑

                 

        
)      ……………….....(9) 

The value of MAPE is zero when there is a perfect fit. 
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3.3 THE BOX-JENKINS (ARIMA) PROCEDURE 

The first requirement for a univariate Box-Jenkins modelling is that the time series data are 

either stationary or can be transformed into one. The Box-Jenkins modelling of a stationary time 

series involves the following four steps: 

I. Model Identification 

II. Model Estimation 

III. Diagnostic checking 

IV. Forecasting 

 

3.3.1 Model Identification 

The first step in the Box-Jenkins model identification is the time plot of the series. This is a  

visual inspection of the time series to ascertain the stationarity (if there is a seasonality or trends) 

in the series. If the visual inspection indicates non stationarity in the time series, a confirmation 

is sought by examining the autocorrelation Function (ACF) and partial autocorrelation Function 

(PACF) plots, known as the correlogram. A more formal approach of detecting stationarity such 

as the Augmented Dickey-Fuller test which has a null hypothesis that the data under 

consideration has a unit root and hence non stationary against an alternative that the series is 

stationary, could be used for an enhanced confirmation. 
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Box and Jenkins recommends the differencing approach to achieve stationarity. However, a 

curve could be fitted and the residuals from the fit modelled. The next step involves the 

identification of the time lags (p, q), for the AR and the MA processes and that is done by 

comparing the ACF and the PACF plots to a theoretical behaviour of these plots when the order 

is known.  

 

3.3.2   Order of an autoregressive process (p) 

In the modelling process, if the (ACF) shows a sinusoidal pattern or an exponential decay to 

zero, and the (PACF) has one large spike, we will choose an AR(1) model for the data. The “1” 

in parenthesis indicates that the AR model needs only one autoregressive term, and the model is 

an AR of order 1. For an AR(p) process, the (ACF) shows exponential or oscillating decay  and 

the (PACF) become zero at lag p+1 and higher lags. 

    

3.3.3 Order of a Moving average process (q) 

If the PACF depicts an oscillating decay with the ACF displaying one large spike at lag one, we 

will choose an MA(1) model for the series. For an MA(q) process, the PACF  shows an 

exponential or oscillating decay and the ACF cuts off after time lag q.  An infinite damped 

exponentials and or damped sine waves that tails off, in both the ACF and the PACF portray an 

ARMA process. 
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However, for ARMA models picking the right orders for MA and AR components are not that 

straightforward and ACF and PACF offer little help except for potentially revealing that the 

model we should entertain is not a pure MA or AR model. There are other tools besides ACF and 

PACF such as extended sample autocorrelation function (ESACF), generalized sample partial 

autocorrelation function (GPACF), and inverse autocorrelation function (IACF) that can be of 

help in determining the order of the ARMA model. 

 

3.4 Model Estimation 

Once a tentative model has been identified, the next is the estimation of the model parameters. 

Some simple AR models are linear and can be estimated with Ordinary Least Squares (OLS) 

procedure. However, for models with MA components, an iterative method is used. This 

involves starting with a preliminary estimate, and refining the estimates iteratively until the sum 

of squared errors is minimized. Another method of estimating the parameters is the Maximum 

Likelihood procedure which is usually favored because it has some desired statistical properties. 

However, the availability of statistical software packages currently, has made the estimation of 

model parameters and fitting of time series models require only few seconds, making it very easy 

to consider various models at once.  

There may be more than one plausible model identified and the need to determine which of them 

is preferred. Here, the Akaike‟s Information Criterion (AIC) test is used, and the model with 

least AIC value is selected as the best fit model. However, occasionally it might be necessary to 

adopt a model with not quite the smallest AIC value but with better behaved residuals. 
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3.5 Diagnostic checking 

Before using the model for forecasting, it must checked for adequacy, and the Ljung –Box test 

could be applied to the residuals. A model is adequate if the residuals left over after fitting the 

model is simply white noise. In other words, the residuals should be uncorrelated with constant 

variance. The pattern of ACF and the PACF are helpful in detecting any misspecification which 

will result in identifying a different and a better model. 

The R
2 

could be used to measure the degree of correlation between the dependent variables and 

the independent variables; the t-statistics to test the significance of the coefficients and the 

standard error to measure how closely the model fits the data.  

 

3.6 Forecasting 

The ARIMA model obtained from the differenced series Wt is given by: 

Wt = ϕ1Wt – 1 + ϕ2Wt – 2 + … +ϕpWt – p + θ1εt – 1 + θ2εt -2 + … + θqεt – q + μ + εt 

Since the model will be used to forecast the observed series Yt, there is the need for a 

transformation from Wt to the Yt form using the substitutions:  

Wt = (1 - B)
d
 Yt 

Where Wt = (1 – B)Yt ,  Wt – 1 = (1- B)Yt – 1 and Wt – p = (1 – B)Yt – p   
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3.7 THE BAYESIAN ANALYSIS 

Bayesian analysis quantifies information about an unknown parameter vector of interest, θ, for a 

given data set, y, through the joint posterior probability density function (pdf), p(θ|y), which is 

defined such that p(θ|y) ∝ p(y|θ) × p(θ), where p(y|θ) denotes the pdf of y given θ and p(θ) is the 

prior pdf for θ.  

 

3.7.1   The Bayesian Dynamic Linear Models 

The Dynamic Linear Models (DLM) or the State Space modelling has been used mainly in time 

series data analysis. It has found its application in many areas, such as economics, engineering, 

biology etc. The phrase „state space‟ derives from a class of models developed by control 

engineers for systems that vary through time. When a scientist or engineer tries to measure a 

signal, it will typically be contaminated by noise so that; 

Observation  =  signal + noise   …………………(10) 

In state-space models, the signal at time t is taken to be a linear combination of a set of variables, 

called state variables, which constitute what is called the state vector at time t. Denoting the  

number of state variables by m, and the (m × 1) state vector by θt,. (10) may be written as: 

               Yt  =  Ftθt  +  vt    ………….……… (11) 

Where, Ft is assumed to be a known (m × 1) vector, and vt denotes the observation error, 

assumed to have zero mean. The set of state variables may be defined as the minimum set of 

information from present and past data such that the future behaviour of the system is completely 
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determined by the present values of the state variables (and of any future inputs in the    

multivariate  case). Thus the future is independent of past values. This means that the state vector 

has a property called the Markov property, in that the latest value is all that is needed to make 

predictions. It may not be possible to observe all (or even any of) the elements of the state vector, 

θt, directly, but it may be reasonable to make assumptions about how the state vector changes 

through time. A key assumption of linear state-space models is that the state vector evolves 

according to the equation:  

θt  =  Gtθt-1 +  wt  …………………………….(12) 

where the (m×m) matrix Gt is assumed known and wt denotes an m-vector of disturbances 

having zero means. The two equations (11) and (12) constitute the general form of a univariate 

state-space model. The equation modelling the observed variable in (11) is called the observation 

(or measurement) equation, while (12) is called the transition (system /evolution) equation.  The 

„error‟ terms in the observation and transition equations are generally assumed to be uncorrelated 

with each other at all time periods and also to be serially uncorrelated through time. It may also 

be assumed that vt is N(0, ζ
2
) while wt is multivariate normal with zero mean vector and known 

variance-covariance matrix Wt. If the latter is the zero matrix, then the model reduces to time 

varying regression. 

A Dynamic Linear Model (State Space Model), is characterized by an initial Normal prior 

distribution for the parameter vector, θ0 ~ N(m0 ; C0) ,where m0 and C0 are the mean and 

variance, respectively, and the dynamic set of four matrices  {Ft; Gt; Vt; Wt}, that for each time 

t ≥ 1 are known matrices of appropriate dimensions. The set {Ft; Gt; Vt; Wt} defines the model 

relating the observation vector Yt to the state vector θt at time t, and the θt sequence through time 
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by satisfying the equations (11) and (12) above. Furthermore, it is assumed that θt is independent 

of both (Vt) and (Wt), the independent noise sequences. From equation (12) it is easy to see that, 

given the known matrices Gt and Wt , θt depends only on the previous state θt-1 and not on earlier 

information. From equation (11) it is clear that, conditionally on (θt), the Yt‟s are independent 

and Yt depends on θt only.  The DLM is completely specified by the conditional densities Yt|θt ~ 

N (Ftθt; Vt) and θt|θt-1~ N (Gtθt-1; Wt) combined with an initial prior distribution. The state space 

model provides rich covariance structures for the observations Yt. It indeed covers the 

covariance structure of the ARMA (Autoregressive Moving Average) model as the latter can be 

written in the state space form. Another interesting aspect of the state space model is its 

flexibility in modelling the underline mechanism (state equation) and the observations 

(observation equation) separately. 

Having expressed a model in state-space form, an updating procedure can readily be invoked 

every time a new observation becomes available, to compute estimates of the current state vector 

and produce forecasts. This procedure, called the Kalman filter, only requires knowledge of the 

most recent state vector and the value of the latest observation. If the matrices Ft and Gt are 

constant for all t, the model is referred to as time series DLM (TSDLM). A TSDLM with 

constant variance matrices Vt and Wt for all t is called a constant DLM. A constant DLM is 

characterized by a single set of matrices {F; G; V; W} for all times t, and this special case of 

DLMs includes essentially all classical linear time series models.  

One interesting example of constant DLMs, such as the random walk plus noise, and also known 

as local level or steady model, arises when θt is a scalar, μt, denoting the current level of the 

process, while Ft and Gt are constant scalars taking the value one. Then the local level, μt, follows 
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a random walk model and depends on two parameters which are the two error variances, namely 

Vt and Var(wt) = Wt. This model is used effectively in numerous applications, particularly in 

short-term forecasting for production planning and stock control. 

 

3.7.2 A Parameter Prior Distribution 

A prior, as in the Bayesian Inference is one‟s initial probability statement about the parameter 

under study. Thus, prior subject-matter knowledge about a parameter is an important aspect of 

the inference process since the Bayesian models are typically concerned with inferences on the 

parameter set θ = (θ1, ………..θd) of dimension d , that includes uncertain quantities, whether 

fixed and random effects, hierarchical parameters, unobserved indicator variables and missing 

data. Thus, it represents all the available relevant starting information that is used to form initial 

views about the future, including history and all defining model quantities. In the Bayesian 

inference, a prior amounts to a form of modelling assumption or hypothesis about the nature of 

the parameters and it‟s often summarised by the density p(θ). 

In many situations, existing knowledge may be difficult to summarize or elicit in the form of an 

„informative prior‟, and to reflect such essentially prior ignorance, resort is made to non- 

informative priors. How to choose the prior density or information is an important issue in 

Bayesian inference, together with the sensitivity or robustness of the inferences to the choice of 

prior, and the possibility of conflict between a prior and data. In some situations it may be 

possible to base the prior density for θ on cumulative evidence using a formal or informal meta-

analysis of existing studies. A range of other methods exist to determine or elicit subjective 

priors. A simple technique known as the histogram method, divides the range of θ into a set of 
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intervals (or „bins‟) and elicits prior probabilities that θ is located in each interval; from this set 

of probabilities, p(θ) may be represented as a discrete prior or converted to a smooth density. 

Another technique uses prior estimates of moments along with symmetry assumptions to derive a 

normal N(m, V) prior density including estimates m and V of the mean and variance. 

 

3.7.3   Role of the Bayesian Priors 

The role of the prior is to capture knowledge about a parameter θ, denoted D0, which existed 

prior, in time order, to consideration of a new empirical data D1. This can be acknowledged by 

denoting the prior as p(θ |D0) instead of p(θ) and thus, the posterior of a study depends on both 

D0 and D1. Suppose a researcher conducts a further study and obtains a new empirical data D2, 

then the information about θ prior to that study is shown in the previous posterior p(θ |D0 , D1 ). 

Hence this defines a sequence of posterior analyses, each informing the next: 

p(θ|D1,D0) ∝  Lik(D1|θ)p(θ|D0) 

and p(θ|D1,D2,D0) ∝  Lik(D2|θ)p(θ|D1,D0).  This embodies the Bayesian cycle of learning, where 

the researcher‟s understanding of parameters p(θ|・) is continually updated, and we explicitly 

state that inference is predicated on specific sets of data D0, D1, etc. Hence the formulation of 

priors within this Bayesian cycle of learning provides a flexible basis for accumulating learning 

across several sources of information. 
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 3.7.4   A Posterior Distribution 

To estimate the quantity θ, from a set of measurements of the quantity, y, Bayesian estimation 

starts by defining the conditional density of the variable to be estimated given the measurements, 

p(θ | y), which is called the posterior. The posterior is a density function that describes the 

behavior of the quantity, θ, after observing the measurements. Using Bayes rule, the posterior 

can be written as follows: 

P(θ|y) =  
          

    
 ………………………………(13) 

The first term in the numerator of Equation (13) denotes the likelihood function, which is the 

conditional density of the observations given the true value of θ. According to the likelihood 

principle (LP), the likelihood function contains all information brought by the observations, yt 

about the quantity, θ. The second term in the numerator is the prior, which is the density function 

of the quantity θ. It is called a prior since it quantifies our belief or knowledge about θ, before 

observing the measurements. Through the prior, external knowledge about the quantity θ can be 

incorporated into the estimation problem. Finally, the denominator term is the density function of 

the observation, which can be assumed constant after observing the data. 

The posterior density can be written as, 

p(θ|y) ∝ p(y|θ)p(θ),    or 

Posterior ∝ Likelihood × Prior, 

which is sometimes referred to as the unnormalized posterior. Thus, the posterior combines the 

data information and any external information. Having constructed the posterior, a sample from 
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it is selected as the final Bayesian estimate of the quantity θ. In contrast to non-Bayesian or 

frequentist approaches, which rely only on the data for inference, Bayesian approaches combine 

the information brought by the data and any external knowledge represented by the prior to 

provide improved estimates. 

 

 3.7.5   Inference in Dynamic Linear Modelling                                             

The inference in DLMs follows the usual steps in Bayesian inference. It explores the sequential 

aspects of Bayesian inference, combining two main operations: evolution, to build up a prior and 

updating, to incorporate a new observation arrived at time t. Let Dt = {Dt-1, yt } denote the 

information until time t , including the values of θt and Gt , for every t , which are supposed to be 

known, with D0 representing the prior information. Then for each time t, the prior, predictive and 

posterior distribution are respectively given by: 

P(θt |Dt−1) = ∫P(θt |θt−1)P(θt−1|Dt−1) dθt−1, 

P(yt |Dt−1) = ∫P(yt |θt )P(θt |Dt−1) dθt ,   and 

p(θt |Dt ) ∝ p(θt |Dt−1)p(yt |Dt−1), 

where the last one is obtained via Bayes theorem. The constant of integration in the above 

specification is sometimes easily obtained. This is just the case when (F, G, V, W)t are all known 

and normality is assumed.   

Suppose interest lies in a scalar series Yt (which could be multivariate) and that at time t−1 the 

current information set is Dt−1. The first step in the Bayesian approach is to examine the 
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forecasting context and to select a meaningful parametrisation, θt−1, such that all the historical 

information relevant to predicting future observations is contained in the information about θt−1. 

In particular the modeller represents this relevant information in terms of the probability 

distribution (θt−1 | Dt−1). The parameter together with this probability distribution defines how the 

modeller views the context at time t − 1. The next modelling step is that of relating the current 

information to the future so that predictive distributions such as (Yt+k | Dt.-1) can be derived. This 

is accomplished by specifying a sequential parametric relation (θt | θt-1, Dt-1) together with an 

observation relation (Yt | θt, Dt-1). In combination with (θt-1 | Dt-1) these distributions enable the 

derivation of full joint forecast distribution. 

If the posterior for θt−1, given data observed to time t − 1, is 

θt−1|Dt−1 ∼ N(mt−1,Ct−1). 

Then the prior for the next state θt given Dt−1 operates via θt = Gtθt−1 + wt and includes extra 

uncertainty from the state errors wt , namely, 

θt |Dt−1 ∼ N(Gtmt−1, GtCt−1G′t + Wt ). 

A prediction for the next value of yt given Dt−1 can then be made, operating via yt = Ft θt + vt, 

namely  

ynew,t |Dt−1 ∼ N(FtGtmt−1, Ft Rt F′t+ Vt ), 

where Rt = GtCt−1G′t+ Wt. The posterior for θt, given an extra observation to form Dt = (yt, Dt−1), 

includes forecast error et = yt − FtGtmt−1. Writing Qt = Ft Rt F′t + Vt,   one obtains                                    

θt |Dt ∼ N(mt ,Ct ) 
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where 

mt = mt−1 + At et 

Ct = RtVtQt
−1

, 

At = Ft Rt Qt
−1

 

This posterior is then used to provide the next prior (θt+1|Dt), and so the cycle repeats; at any 

stage one can subjectively interact with the prior to produce alterations in the one step-ahead 

forecast for Yt, in the light of any relevant information that may have arisen. The only 

prerequisite of the system is that, it is started by defining initial priors m0 and C0 such that 

(θ0|D0) ~ N(m0,C0). These are chosen purely on the basis of the initial available information D0 

which may or may not include some data already, and will - almost by definition - usually 

include the subjective opinions of the practitioner on the nature of the data evolution. 

 

3.8   The constant DLM Model 

The observation equation is expressed as: 

Yt  =  μt  +  νt    ,     νt  ~ N (0 , V)  ……..……. (14) 

And the system equation is expressed as: 

μt  =  μt-1  +  ωt     ,       ωt ~ N (0 , W) ………..…....(15) 

Initial information:                                  
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(μ0 |D0) ∼ N [m0, C0], 

 3.8.1   The State Space Model Initial Information   

The Initial information (μ0|D0) is the probabilistic representation of the forecaster‟s beliefs about 

the level μ0 at time t = 0. The mean m0 is a point estimate of this level, and the variance C0 

measures the associated uncertainty. Each information set Dv comprises all the information 

available at time v, including D0, the values of the variances {Vt, Wt : t > 0}, and the values of 

the observations Yv, Yv−1, . . . , Y1. Thus, the only new information becoming available at any 

time t is the observed value Yt, so that Dt = {Yt, Dt−1}. 

 

3.8.2 UPDATING OF A PRIOR TO A POSTERIOR AND THE ONE STEP AHEAD 

FORECAST DISTRIBUTION IN THE CONSTANT DLM MODEL 

The updating of a prior to a posterior distribution and the one-step-ahead forecast distribution is 

illustrated in the following. 

  Observation Equation:                                                     

             Yt  = μt  + νt    ,         νt  ~ N (0 , V)  .…. (14) 

and the system equation:  

             μt   = μt-1 + ωt     ,                  ωt ~ N (0 , W) .....(15) 
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Let the posterior distribution for μt-1 at time step (t - 1) be P(μt-1 / Dt-1) ~  N[mt-1,Ct-1] with some 

mean mt-1 and variance Ct-1. From Equation (15), it is seen that μt is the summation of two 

normally distributed random variables: N[mt-1,Ct-1] and N[0,W]. Assuming that the error term is 

independent of the level of the process, the summation will be another normally distributed 

random variable with mean mt-1 and variance (Ct-1 + W). Thus, the prior distribution of μt for the 

time step t is P(μt/Dt-1) ~ N[mt-1, Rt], where, Rt =  Ct-1 + W.  In a similar way, from equation (14), 

Yt is the summation of N[mt-1, Rt] and N[0,V], which is also normally distributed with mean mt-1 

and variance (Rt + V). Thus, the one-step- ahead forecast distribution is P(Yt/Dt-1) ~ N[ft-1,Qt], 

where ft = mt-1 and    Qt = Rt + V. It can be noted that, until now, information up to time step  

(t -1) is available, which is denoted Dt-1. At the end of the time step t, the observed value of Yt 

(denoted as yt), for this time step, is available. Thus, the available information is improved, and 

becomes Dt (consisting of Dt-1 and yt).  Thus finally, P(μt/Dt ) ~ N[mt , Ct], where mt = mt – 1 + Atet  

and Ct = AtV 

 

3.9 THE GENERAL RANDOM WALK MODELS 

A random walk is a special case of an AR (1) model with ϕ=1, and a classic example of a non- 

stationary stochastic process.   The random walk implies that the value of Y at time t is equal to 

its value at time (t – 1) plus a random shock μt. The sequence {μt} is white noise error terms with 

mean zero and variance ζ
2
.  Yt is the value of the series at time t.  Asset prices such as stock 

prices or exchange rates follow a random walk and thus are non- stationary (Gujarati, 2004). 

There are mainly two types of random walk models namely; random walk with a drift (i.e. a 

constant term is present) and random walk without a drift (i.e. no constant or intercept term)                
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3.9.1   RANDOM WALK MODEL WITH DRIFT (CONSTANT) 

Random walk with a drift is a special form of an AR (1) model: 

Yt = α + ϕYt – 1 + εt, , where α ≠ 0 and ϕ = 1 

This can be written as: 

Yt = α +   Yt – 1 + εt  ……………………..….  (16) 

where α is the drift parameter. 

Equation (16) can be written as: 

   Yt – Yt – 1 = ∆Yt = α + εt ……………....……. (17) 

It shows that Yt drifts upwards or downwards, depending on α being positive or negative. The 

expected value of the series at time t is: 

E(Yt) =  tα  + Y0 …………………………… (18) 

 

It‟s variance at time t is: 

Var(Yt)  =  tζ
2
 ……………………………. (19) 

Thus the mean and variance of the random walk with a drift increases with time t, again violating 

the conditions of weak stationarity. In short a random walk model with or without drift parameter 

is a non- stationary process. 
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1.9.2   RANDOM WALK MODEL WITH NO DRIFT PARAMETER 

A time series (Yt) is a random walk with no drift if it satisfies the following equation  

Yt  =  Yt – 1 +  εt …………………………….……… ( 20 ) 

A random walk model with no drift is also an AR (1) model with α = 0 and ϕ = 1. It is easy to 

see that  Yt = Y0 + Σεt  and  E(Yt)  =  E(Y0 + Σεt) =  Y0 ,  Var (Yt) = tζ
2
. 

The mean of Yt is constant for a random walk without drift but the variance increases with time t. 

The increasing variance violates a condition of weak stationarity. Thus, the random walk model 

without drift is a non- stationary stochastic process. A random walk model remembers the shocks 

δ (random errors) forever and is said to have an infinite memory (Gujarati, 2004). 

Equation (20) can be written as: 

(Yt – Yt -1)  =  ∆Yt  =  εt …………………………… (21) 

Thus, while Yt is non-stationary, its first difference is stationary since εt is a stationary white 

noise process i.e. εt ~ N(0, ζ
2
). In other words, the first difference of a random walk time series is 

stationary. 
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND RESULTS 

4.0 INTRODUCTION 

This Chapter deals with the analysis of the time series data of annual under-five mortality rates 

for Ghana from 1961 to 2012, which was obtained from the website of the World Bank. It also 

contains the procedures the researcher used in the analysis of the data.    

 

4.1   Time Series Plot of the Data 

This is a plot of the annual estimates of under-five mortality rates for Ghana, otherwise known as 

observations and displayed as ordinates against equally spaced time intervals as abscissa, which 

is used to evaluate the pattern and behavior in the data over time. A visual inspection of the plot 

shows a downward trend, which may be indicating non-stationarity in the series data.  

 

 

 

 

 

Figure 4.1: A time plot of the series (Under-five Mortality Rates for Ghana) 1961 to 2000 

years

un
de

r-fi
ve

 m
ort

ali
ty 

pe
r 1

00
0 l

ive
 bi

rth
s

1960 1970 1980 1990 2000

10
0

12
0

14
0

16
0

18
0

20
0



                         
 

62 
 

A confirmation is sought by plotting the correlogram for the time series and shown in the figure 

below. 

 

 

 

 

 

 

Figure4.2  Correlogram for the Under-Five Mortality Rates for Ghana 

The figure 4.2 above (correlogram) displays graphically and numerically the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) for the time series. The figure 

shows large significant ACF for the time lags which gradually decreases in size, but do not decay 

to zero (slow decay). The ACF thus shows a pattern typical of a non-stationary time series. 

In the PACF plot, the partial autocorrelation at time lag 1 is close to one and the partial 

autocorrelations for the time lag 2 through 10 are close to zero which is also typical of non-

stationary series. Researcher transforms the series by Wt = ∆yt = yt – yt , in order to stabilize the 

variance before proceeding with the model building. The ACF plot for the first differenced 

series, fig 4.3 (see appendix) dies out relatively quickly which may be indicating a stationary 

process.   
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In addition to the observed flat level of the first differenced series fig 4.4 (appendix), its 

stationarity is confirmed by the KPSS and ADF tests. The KPSS test statistic with a p-value of 

0.351 which is greater than the 5% level of significance does not reject null hypothesis that the 

first differenced series is level stationary. The ADF test also produced a p-value of 0.02625 

which is less than the 5% significance level and thus rejects the null hypothesis that the first 

differenced series is non stationary, hence confirming the stationarity of the first differenced 

series of the Under-five Mortality Rates for Ghana.  

 

4.2 Model Identification 

The autocorrelation function (ACF) for the differenced data (see appendix) diminishes quickly 

indicating an autoregressive (AR) model. Tentatively, researcher fits different possible models 

and uses equations (5), (6) and (7), the Akaike Information Criterion (AIC), the Akaike bias 

corrected Information Criterion with a correction (AICC) and the Bayesian Information Criterion 

(BIC) to select the best fit model. 

Table 4.1: Possible fitted Models 

MODELS AIC AICC BIC 

ARIMA(1,1,1) 58.47 59.15 63.46 

ARIMA(2,1,1) 46.89 48.06 53.54 

ARIMA(2,1,2) 39.04 40.86 47.36 

ARIMA(3,1,0) 46.21 47.38 52.86 

ARIMA(3,1,1) 44.28 46.1 52.6 

ARIMA(3,1,2) 38.91 41.53 48.89 
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A comparison of the AIC, AICC and the BIC values for the possible models shows that ARIMA 

(3, 1, 2) has the least AIC value. However, the ARIMA (2, 1, 2) produced least values for both 

the AICC and the BIC and is therefore selected as the best fit model for the data.  

Table 4.2: Estimation Summary for the ARIMA (2,1,2) Model 

Model Term/Coefficient Estimate Standard Error 

AR 1:  ̂1 1.5614 0.2422 

AR 2:  ̂2 -0.5950 0.2394 

MA1:  ̂1 0.0550 0.3355 

MA2:  ̂2 0.4829 0.1483 

 

4.2.1   The ARIMA Model 

The ARIMA (2, 1, 2) Model for the Series is: 

Yt = 2.5614Yt – 1 – 2.1564Yt – 2 + 0.5950Yt – 3 – 0.0550εt – 1 – 0.4829εt - 2 

The model adequacy is further checked to draw empirical conclusions regarding the model as a 

good fit and for its use for forecasting the time series. These tests are performed using the Ljung-

Box test in addition to the ACF plots of the residuals 
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4.2.2 Residual Diagnostics of the ARIMA (2, 1, 2) Model                                    

A diagnostics of the residuals by the ACF shows that the ACF values are all within the 5% zero-

bound - indicating that there is no correlation amongst the residuals. This plot is used as an 

indicator of the independence of the residual terms. 

 

 

 

 

 

 

 

 

  

Figure 4.5: Residual Diagnostic plot for ARIMA (2, 1, 2) Model 
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Figure 4.6: Plot of the observed series (1961 – 2000) and the in-sample forecast values 

Figure 4.6 above shows the plot of the (observed) time series data from 1961 to 2000, which was 

used for the modelling. From the figure, it can be observed that Under-five mortality rates in 

Ghana were high in 1961 (i.e. 208.7 deaths per 1,000 live births), which decreased gradually 

over time to about 103.4 per 1,000 live births in 2000. The portion of the figure from the year 

2001 to 2012 shows the in - sample forecast values by the ARIMA (2,1,2) Model produced from 

the data with the 95% Confidence Interval for each of the forecast value, depicted by the two 

opening lines. 
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Table 4.3: A 95% Confidence Interval for the In- Sample forecast Values by the ARIMA 

(2,1,2)  Model 

Year Observed Value Forecast Value Confidence Interval 

2001 100.6 100.6 100 – 101.3 

2002 97.5 97.7 95.9 – 99.5 

2003 94.3 94.8 91.1 – 98.5 

2004 91.3 92 85.8 – 98.2 

2005 88.4 89.4 80.1 – 98.6 

2006 85.7 86.9 74.1 – 99.7 

2007 83.2 84.6 68.1 – 101.2 

2008 80.7 82.5 61.9 – 103.2 

2009 78.8 80.6 55.8 – 105.5 

2010 76.4 78.9 49.8 – 108.1 

2011 74.2 77.4 43.8 – 110.9 

2012 72 75.9 37.9 – 114 

 

4.3 Analysis of the Constant DLM Model 

In the constant (DLM) model, the model parameters are updated by utilizing the observed values, 

at each time step. However, the assumption of normality is the basic assumption of this 

procedure. With a first data (observed) value of 208.7, a mean value m0 = 205 which is closer to 

the first data value is chosen. However, as the precision of this value is not known, a high value 

of initial variance C0 = 10000 is chosen. Considering these points, at time step 0 (1961) m0 is 
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assumed to be 205 and variance C0 as 10000. Thus, the initial information on model parameter 

(μ0/D0) also known as the forecasters initial beliefs is (μ0 /D0) ~ N(205, 10000). 

 To specify the observational and evolution variances, the performance of the model was 

observed by some trial values (Kumar, 2008), where 2000 for the observation and 5000 for the 

evolution were found suitable, i.e. V= 2000 and W=5000. 

 

4.4 THE SEQUENTIAL UPDATING OF THE TIME SERIES BY THE CONSTANT 

DLM MODEL   WITH V = 2000 AND W = 5000 

At time t = 1 (i.e. 1961),          

(a) Posterior for μ0 :                                  

 (μ0 / D0) ~ N(205 , 10000) 

(b) Prior for μ1: 

 (μ1 / D0) ~ N(205 + 0 , 10000 + 5000) 

             ⇒                              (μ1 / D0) ~ N(205 , 15000)  

(c) 1-step forecast: 

(Y1 / D0) ~ N(205 +0 , 15000 + 2000) 

           ⇒                              (Y1 / D0) ~ N(205 , 17000) 
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(d) Posterior for μ1: 

(Y1 / D1) ~ N(208.3 , 1760) 

At time t = 2 (i.e. 1962) 

    Prior for μ2: 

(μ2/ D1) ~ N(208.3 + 0 , 1760 + 5000) 

⇒                                               (μ2 / D1) ~ N(208.3 , 6760) 

1-step forecast:                           

 (Y2 / D1) ~ N(208.3 + 0 , 6760 + 2000) 

⇒                                                      (Y2 / D1) ~ N(208.3 , 8760) 

Posterior for μ2: 

(Y2 / D2) ~N(207.4 , 1540) 

At time t= 3 (i.e. 1963) 

   Prior for μ3: 

(μ3 / D2) ~N(207.4 + 0 , 1540 + 5000) 

⇒                                                       (μ3 / D2) ~N(207.4 , 6540) 

1- step forecast: 
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 (Y3 / D2) ~N(207.4 + 0 , 6540 + 2000) 

⇒                                                 (Y3 / D2) ~N(207.4 , 8540) 

Posterior for μ3: 

                                             (Y3 / D3) ~N(206.2 , 1540) 

At time t=4 (i.e. 1964) 

Prior for μ4: 

(μ4 / D3) ~N(206.2 + 0 , 1540 + 5000) 

⇒                                                 (μ4 / D3) ~N(206.2 , 6540) 

1- step forecast: 

(Y4 / D3) ~N(206.2 + 0 , 6540 + 2000) 

⇒                                                 (Y4 / D3) ~N(206.2 , 8540) 

Posterior for μ4: 

P(Y4 / D4) ~N(205.5 , 1540)                

Figure 4.5 (appendix) shows the combined plot of the data and the performance of the DLM 

model.  A suitable DLM model for the series (Under-five Mortality Rates for Ghana) is:              

{1, 1, 2000, 5000} 
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The in-sample forecast values by the DLM Model was a constant value of 104.1 deaths per 1,000 

live births for the years 2001 to 2012. The constant in-sample forecast value (104.1 deaths per 

1,000 live births), which is different from the observed values of the data for that specified 

period, disqualifies the DLM as a suitable model for the four years ahead forecast of the Under-

five Mortality rates for Ghana.  

 

4.5 The Random Walk with Drift Model Analysis 

Due to the non-stationarity in the time series data (Under-five Mortality Rates for Ghana), it is 

just as good to predict the change that occurs from one period to the next i.e. the quantity          

Yt – Yt – 1, as to directly predict the level Yt of the series at each period. This is because the 

predicted change can always be added to the current level to yield a predicted level.  

⟹                                          1
st
 difference series:  Yt – Yt – 1 = α ,                                                          

Where α is the mean of the first differences known as the drift parameter. 

⟹                                                             Yt  = α + Yt – 1 

The R statistical software was used for the analysis of this simple model, and below is the output 

from the analysis. 

The drift parameter α = -2.7 with Standard Error (se) = 1.514839 

Thus, the Random Walk with drift model is: 

Yt = -2.7 + Yt – 1 
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Table 4.5: A 95% Confidence Interval for the In- Sample forecast Values by the      

Random Walk with Drift Model 

Year Observed value Forecast Value Confidence Interval 

2001 100.6 100.7 100.2 – 101.2 

2002 97.5 98.0 97.5 – 98.5 

2003 94.3 95.3 94.8 – 95.8 

2004 91.3 92.6 92.1 – 93.1  

2005 88.4 89.9 89.4 – 90.4 

2006 85.7 87.2 86.7 – 87.7 

2007 83.2 84.5 84.0 – 85.0 

2008 80.7 81.8 81.3 -82.3 

2009 78.8 79.1 78.6 -79.6 

2010 76.4 76.4 75.9 – 76.9 

2011 74.2 73.7 73.2 – 74.2 

2012 72 71.0 70.5 – 71.5 
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4.6   Forecast Assessment of the Random Walk and the ARIMA (2, 1, 2) Model     

 

 

 

 

 

 

 

 

Figure 4.8: A combined plot of the time series and performance of each of the model 

Figure 4.8 shows a combined plot of the observed time series and the three models; the ARIMA 

(2,1,2), the Dynamic Linear (DLM) and the Random Walk with drift Models. The performance 

of each model with respect to the decline in the Under-five Mortality rates from 1961 to year 

2000 is shown in the figure. The portion of the plots from year 2001 to 2012, shows the in-

sample forecast values by each of the models displayed on tables 4.3 and 4.5, which was used to 

select the best among the three models. The horizontal line shown from 2001 to 2012 in the fig 

4.8 above, depicts the constant in-sample forecast value of 104.1 deaths per 1,000 live births by 

the DLM Model, also shown in table 4.4 (appendix).  
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4.7 DISCUSSION OF RESULTS  

After the in-sample forecast by each of the models, a forecast assessment was made to determine 

the best fit model among the three models. From fig 4.8, it is observed that the constant DLM 

model which mainly produces a short term forecast produced constant forecast values of 104.1 

deaths per 1,000 live births for the in-sample forecast period of 2001 to 2012. This constant 

value of (104.1 deaths per 1,000 live births) is very different from the (observed) data values for 

that period. Hence, that disqualifies the constant DLM as a candidate model for the out-of 

sample forecast. Also, the visual inspection of each of the models shows that the in-sample 

forecast values of the Random Walk with drift model lie very close to those of the observed data 

values. A determination was therefore made between the ARIMA (2,1,2) and the Random Walk 

with drift model, using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error 

(MAPE) statistics, the results shown on table 4.6 below. 

Table 4.6: Results of the In - Sample Forecast Analysis. 

Statistic Arima (2,1,2) Random Walk 

MSE 3.6478 0.9742 

MAPE 0.0915 0.0099 

 

The results of the forecast assessment for the two models on table 4.6 show that, the Random 

walk with drift model produced comparatively lower values for both the MSE and the MAPE 

statistic. These indicate that the in-sample forecast values by the Random Walk with drift model 

has lower deviations from the data values for that specified period. As a result, the Random Walk 
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with drift model is selected the best fit model for the under – five mortality rates for Ghana, and 

it‟s used to make a four years out-of sample forecasting for the 2013 to 2016, producing 

respectively 69.3, 66.6, 64.0 and 61.3 deaths per 1,000 live births, shown on table 4.7 below. 

Table 4.7: 95% Confidence interval for the four year out-of sample forecast values 

Year Forecast Confidence Interval 

2013 69.3 69.0 – 69.7 

2014 66.6 66.3 – 67.0 

2015 64.0 63.6 – 64.3 

2016 61.3 60.9 – 61.6 

 

A forecast value of 64 deaths per 1,000 live births for 2015 with a 95% confidence interval 

(63.6– 64.3) is an evidence that Ghana may not be able to realize her MDG4 target of reducing 

her under-five mortality rates to about 42.7 deaths per 1,000 live births by 2015. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.0 INTRODUCTION 

This final chapter of the study is based on findings from the analysis of the data by the various 

modelling procedures. It thus, deals with the conclusions drawn from the study and the 

recommendations made. 

 

5.1 CONCLUSIONS 

Based on the objectives and the analysis of the times series data, one can draw the following 

conclusions: 

In sections 4.2.1, 4.4 and 4.5, the ARIMA (2,1,2), the Bayesian Dynamic Linear (DLM) and the 

Random Walk with drift models have been specified after the analysis of the time series by each 

procedure. In view of this, researcher concludes that the first objective of modeling the under-

five mortality rates for Ghana by the stated methods has been achieved. 

Secondly, among the three models, the Random Walk with drift model is selected the best fit 

model for the Under-five mortality Rates for Ghana and the four years out-of-sample forecast 

values for the Under-five mortality rates for Ghana; 69.3, 66.6, 64.0 and 61.3 deaths per 1,000 

live births, respectively for the years 2013 – 2016 also shows a decline.  
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Finally, researcher concludes that the forecast value of 64.0 deaths per 1,000 live births with a 

95% confidence interval of (63.3 – 64.3) for year 2015, shows that Ghana may not realize her 

MDG4 target of attaining an Under-five mortality rate of about 42.7 deaths per 1,000 live births 

per the Worldbank data. 

 

5.2 RECOMMENDATIONS 

Based on the analysis and conclusions drawn from the study, the following recommendations are 

worth considering: 

The decline in the forecasted values of the Under-five Mortality Rates for Ghana by the Random 

Walk Model, shows that the government‟s policies and strategies towards the realization of the 

MDG4 goal are actually working positively towards the goal and would recommend that the 

government continues with those policies and strategies. However, the extent of the decline 

based on the model, may not be able to achieve the MDG4 target value at the specified time and 

would recommend also, that the government of Ghana puts in more efforts and resources to 

facilitate the realization of the MDG4 target value. 
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Appendix 

 

 

 

 

 

Figure 4.3: ACF of the first differenced series of Under-five Mortality Rates for Ghana 

 

 

 

 

 

 

 

 

Figure 4.4: Plot of the first & second differenced series of the Under-five Mortality Rate  
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Figure 4.7: A time plot of the observed series and the updated (DLM) Model Values 

Table 4.4:  Updated values for the time series (Under – Five Mortality Rates for Ghana 

from (1961-2013) by the Dynamic Linear (DLM) Model 

Time Forecast 

Distribution 

Adaptive 

Coefficient 

Observations Error Posterior 

Information 

Year ft Qt At  Yt et mt Ct 

1960      205 10000 

1961 205 17000 0.88 208.7 3.7 208.3 1760 

1962 208.3 8760 0.77 207.1 -1.2 207.4 1540 

1963 207.4 8540 0.77 205.9 -1.5 206.2 1540 

1964 206.2 8540 0.77 205.3 -0.9 205.5 1540 

1965 205.5 8540 0.77 204.9 -0.6  205 1540 
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1966 205 8540 0.77 204.4 -0.6 204.5 1540 

1967 204.5 8540 0.77 204 -0.5 204.1 1540 

1968 204.1 8540 0.77 203.2 -0.9 203.4 1540 

1969 203.4 8540 0.77 202 -1.4 202.3 1540 

1970 202.3 8540 0.77 200.4 -1.9 200.8 1540 

1971 200.8 8540 0.77 198.3 -2.5 198.8 1540 

1972 198.8 8540 0.77 195.8 -3 196.5 1540 

1973 196.5 8540 0.77 192.9 -3.6 193.7 1540 

1974 193.7 8540 0.77 189.3 -4.4 190.3 1540 

1975 190.3 8540 0.77 185.5 -4.8 186.6 1540 

1976 186.6 8540 0.77 180.9 -5.7 182.2 1540 

1977 182.2 8540 0.77 176.6 -5.6 177.9 1540 

1978 177.9 8540 0.77 172.7 -5.2 173.9 1540 

1979 173.9 8540 0.77 169.8 -4.1 170.7 1540 

1980 170.7 8540 0.77 167.5 -3.2 168.2 1540 

1981 168.2 8540 0.77 165.5 -2.7 166.1 1540 

1982 166.1 8540 0.77 163.7 -2.4 164.3 1540 

1983 164.3 8540 0.77 161.7 -2.6 162.3 1540 

1984 162.3 8540 0.77 158.8 -3.5 159.6 1540 

1985 159.6 8540 0.77 154.7 -4.9 155.8 1540 

1986 155.8 8540 0.77 149.9 -5.9 151.3 1540 

1987 151.3 8540 0.77 144.4 -6.9 145.9 1540 

1988 145.9 8540 0.77 138.8 -7.1 140.4 1540 

1989 140.4 8540 0.77 133.3 -7.1 134.9 1540 
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1990 134.9 8540 .0.77 128.1 -6.8 129.7 1540 

1991 129.7 8540 0.77 123.8 -5.9 125.5 1540 

1992 125.5 8540 0.77 120.1 -5.1 121.3 1540 

1993 121.3 8540 0.77 117.3 -4 118.2 1540 

1994 118.2 8540 0.77 115 -3.2 115.7 1540 

1995 115.7 8540 0.77 113.3 -2.4 113.9 1540 

1996 113.9 8540 0.77 111.6 -2.3 112.1 1540 

1997 112.1 8540 0.77 110.1 -2 110.6 1540 

1998 110.6 8540 0.77 108.1 -2.5 108.7 1540 

1999 108.7 8540 0.77 106 -2.7 106.6 1540 

2000 106.6 8540 0.77 103.4 -3.2 104.1 1540 

2001 104.1       
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