

SECURING CLOUD DATA ON MULTIPLE INFRASTRUCTURE USING

ERASURE CODING, DISPERSAL TECHNIQUE AND ENCRYPTION

By

Frimpong Twum (CCNA, HND Engnr., BSc. (Hons) Engnr., MSc. Engnr., MSc. IS,)

A Thesis submitted to the Department of Computer Science, Faculty of Physical Sciences, College of

Science, KNUST, in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

December, 2017

DECLARATION

ii

“I hereby declare that this submission is my own work and that, to the best of my knowledge and

belief, it contains no material previously published or written by another person nor material

which to a substantial extent has been accepted for the award of any other degree or diploma at

Kwame Nkrumah University of Science and Technology, Kumasi or any other educational

institution except where due acknowledgement is made in the thesis.”

Frimpong Twum (PG1547413) ………………………….. ……………………….

Student Name & ID

Certified by:

 Signature Date

Dr. J. B. Hayfron-Acquah ……………………….. ……………………….

Supervisor

Certified by:

 Signature Date

Prof. William W. Oblitey ….………………………. … ………………………..

Supervisor

Certified by:

 Signature Date

Dr. Michael Asante …………………………. …………………………..

Head of Department Signature Date

ABSTRACT

Cloud computing is a technology that has come to save organisations from investing in and owning

high cost IT infrastructure including its management and maintenance. The technology enables an

organisation to outsource its IT needs to the care of a remote third party Cloud Service Provider (CSP)

while focusing on its core business processes. It enables the usage of IT resources remotely as a service

on subscription basis at a per usage fee on demand. The service models available are Infrastructure as

iii

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These service models

are deployed in one of four cloud deployment models as Public, Private,

Community or Hybrid cloud. Despite the technology’s numerous benefits, it also poses serious security

threats to vital business data assets as the subscriber has to surrender control over its management and

maintenance to a remote CSP. The threats include: the CSP using the data for their own gains, the

location of the data not known to the subscriber, the ownership of the data (for example, on contract

termination or in the event of conflict or dispute?), and also the subscriber not knowing who has

unauthorised access to their data resource. The challenge therefore, is how to create a secure and

vigorous data security solution that can mitigate these threats and alleviate the cloud subscriber fear to

freely enjoy using cloud computing services. Hence, this study proposes and implements a Six-level

Cloud Data Distribution Intermediary (CDDI) Framework that enables the cloud subscriber to

effectively secure its data against these threats. The framework employs Erasure Coding (based on

the Galois Field Theory and Reed Solomon Coding), Data Dispersion technique with a proposed

Transposition Encryption technique based on Rubiks cube transformation. In addition, it also uses this

study’s proposed Erasure Coding technique based on checksum dubbed “Checksum Data Recovery”.

The CDDI framework implemented on the cloud subscriber’s gateway system encrypts and splits the

subscriber’s data into chunks of data fragments and distributes them randomly to the subscribers

selected multiple CSP storage infrastructures. This alleviates threats of data usage, location,

ownership, and access, identified. By employing design research methodology, the CDDI framework

is developed into software following a Plan-Driven Incremental software development approach. The

system dubbed ‘SecureMyFiles (SMF)’ was developed in an experimental lab set-up using JAVA,

SQL, and PHP. The SMF system provides users a choice of selecting one of four data priority levels

(Low, Normal, Important, Critical) at the time of uploading data resources to the cloud. The priority

level selected determines the uploading and downloading process the system uses, the amount of data

that can be recovered in the event of data corruption and the performance during recovery. The security

strength of the SMF system in relation to assuring the cloud subscriber of the Confidentiality,

Integrity, and Availability of their data was found to be much stronger than the existing direct

architecture model provided by DropBox, Box, Google, Backblaze B2, or the indirect architecture

model provided by CASB/SECaaS providers. This is because with the SMF system the subscriber data

does not reside with one single provider but distributed across many providers distributed storage

infrastructure.

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT .. ii

TABLE OF CONTENTS ... iii

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

LIST OF LISTINGS .. x

iv

LIST OF EQUATIONS .. xiii

DEDICATION .. xiv

ACKNOWLEDGEMENTS ... xv

CHAPTER 1 .. 1

1. INTRODUCTION ... 1

1.0. Background of Study .. 1

1.1. Overview of Cloud Computing .. 2

1.2. Problem Statement .. 3

1.3. Aim of Research ... 6

1.4. Specific Research Objectives: .. 6

1.5. Research Questions ... 6

1.6. Justification of choice of the study ... 6

1.7. Methodology ... 7

1.8. The study organisation .. 9

CHAPTER 2 .. 9

2. LITERATURE REVIEW .. 9

2.0. The Concept of ‘Cloud’ Computing ... 9

2.1. Existing measures for securing cloud resources ... 19

2.2. Cloud computing challenges .. 22

2.3. Summary of Cloud computing security issues ... 23

2.4. Some examples of Network Attacks on Cloud Computing .. 23

2.5. An evaluation of standard counter-security measures used by CSP’s 26

2.6. Ensuring Data Security ... 27

2.7. Evaluation of Encryption Algorithms ... 29

2.8. Reed Solomon Coding .. 39

2.9. Review of Existing Related Cloud File Storage Systems ... 56

2.10. Review of Existing Cloud Storage Security Architecture .. 63

v

CHAPTER 3 .. 67

3. METHODOLOGY .. 67

3.0. Introduction .. 67

3.1. The Proposed Architecture ... 68

3.2. Cloud Data Distribution Intermediary (CDDI) .. 69

3.3. File Splitting And Erasure Protection Sub-Module .. 77

3.4. Metadata Module .. 92

CHAPTER 4 .. 93

4. IMPLEMENTATION ... 93

4.0. Introduction .. 93

4.1. SecureMyFiles System ... 93

4.2. The Login Module .. 93

4.3. File Upload Module .. 94

4.4. Implementation Of The Hashing Method ... 95

4.5. Implementation Of The Proposed Transposition Cipher Algorithm Based On Rubik’s Cube

Transformation ... 95

4.6. Implementation Of The Data Distribution Module .. 99

4.7. Reed Solomon Coding .. 99

4.8. Implementation Of File Splitting And Erasure Protection Module (FSEPM) Using Java

 .. 107

4.9. Implementation Of The Checksum Data Recovery Technique .. 116

4.10. Implementation Of The Data Dispersal Technique (The Shuffling Method)................... 125

4.11. Implementation Of SMF System’s Metadata ... 126

4.12. Shards Upload Module ... 127

4.13. File Download Module ... 128

4.14. Reed Solomon Decoding Process ... 130

4.15. Checksum Data Recovery Decoding .. 133

4.16. Web Server ... 146

vi

CHAPTER 5 .. 149

5. TESTING, RESULTS AND DISCUSSIONS ... 149

5.0. Testing and Results ... 149

5.1. Cloud Providers .. 149

5.2. File Uploading Sequence .. 150

5.3. File Downloading Sequence ... 161

5.4. The Proposed Cloud Data Distribution Intermediary (CDDI) Framework 170

5.5. Discussion of how the proposed system compares with existing related systems 170

CHAPTER 6 .. 173

6. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS ... 173

6.0. Findings .. 173

6.1. Conclusions .. 180

6.2. Recommendations .. 182

REFERENCES .. 182

APPENDIX 1 .. 191

APPENDIX 2 .. 202

APPENDIX 3 .. 213

LIST OF TABLES

Table 2.1 - Summary of the cloud deployment models .. 18

Table 2.2 - Representation of finite field GF(2^3) as powers of 2 using the prime number 11 44

Table 2.3- Representation of finite field GF(2^3) as powers of 2 using the prime number 13 45

Table 2.4 - Addition in GF(8) mod 2 ... 48

Table 2.5 - Multiplication in GF(8) mod 2 .. 49

Table 2.6 - Lookup Table Using RS Codeword of length 7 .. 53

vii

Table 5.1 - Encoding of 256-byte file with 32 data shards and 8 parity shards................................. 147

Table 6.1 - How the proposed system address issues of Confidentiality, Integrity, Ownership,

Availability and Authentication ... Error! Bookmark not

defined. Table 6.2 - How the CDDI framework addresses other cloud security issuesError!

Bookmark not defined.

Table 6.3 - Comparison of the CDDI framework with existing architecturesError! Bookmark not

defined.69

LIST OF FIGURES

Figure 2.1 – NIST visual model of cloud computing .. 12

Figure 2.2a – Private Cloud of a company with 3 business Units ... 12

Figure 2.2b – Public Cloud provider with 3 business units ... 12

Figure 2.3- Architecture of cloud service models .. 13

Figure 2.4 - Cloud services types and resource control ... 14

Figure 2.5 - Concept of encryption and decryption ... 30

Figure 2.6 - Transpositional Cipher ... 33

Figure 2.7 - Route Cipher .. 33

Figure 2.8 - Rail Fence Cipher Encryption .. 34

Figure 2.9 - Rail Fence cipher Decryption... 35

Figure 2.10 - Components of Conventional Encryption Algorithms ... 36

Figure 2.11 – GFS Architecture ... 57

Figure 2.12 – GFS Architecture ... 58

Figure 2.13 – Apache Hadoop Architecture .. 60

Figure 2.14 – Backblaze B2 System .. 62

Figure 2.15 – Backblaze B2 System Architechture ... 63

Figure 2.16 - Direct Model of Subscriber-CSP interaction ... 64

Figure 2.17 - Security Architecture of Dropbox .. 65

Figure 2.18 - Indirect Model of Subscriber-CSP Interaction Using Cloud Access Security Broker ... 67

viii

Figure 2.19 - Example Implementation of Cloud Access Security Broker via Cloud Proxy 67

Figure 3.1 - Proposed Model for Cloud Data Storage Using CDDI .. 69

Figure 3.2a - Six faces of the Rubik’s Cube .. 71

Figure 3.2b - Six faces of the Rubik’s Cube initialized with data ... 71

Figure 3.3a - Cube rotation pattern .. 74

Figure 3.3b - Cube rotation pattern with data .. 74

Figure 3.4 - Flow diagram for the algorithm ... 79

Figure 3.5 - Overall architecture of the proposed Checksum Data Recovery program 83

Figure 3.6 - Modular representation of data .. 83

Figure 3.7 - Module diagram of the proposed Checksum Data Recovery Program 84

Figure 3.8 - Architecture of the Data Module .. 85

Figure 3.9 - Architecture of the ComputeParities Module .. 86

Figure 3.10 - Architecture of the LocateError Module .. 87

Figure 3.11 - Flow diagram for the Checksum Data Recovery program... 88

Figure 3.12 - Activity diagram of the Checksum Data Recovery program ... 89

Figure 3.13 - Sequence diagram of the Checksum Data Recovery program 89

Figure 3.14 - Class diagram for the Checksum Data Recovery program .. 90

Figure 4.1 - Components of SMF System ... 92

Figure 4.2 - File Upload Module ... 94

Figure 4.3 - Splitting of file and computation of parity. .. 114

Figure 4.4 - The formation of shards from the modules of the CDR using a 512 byte file. 127

Figure 4.5 - File Download Module .. 127

Figure 4.6 - Database schema .. 1400

Figure 5.1 - User Interface for selecting and configuring file for upload .. 143

Figure 5.2 - User Interface for choosing a file for upload ... 144

Figure 5.3 - Result from hashing file name. .. 145

Figure 5.4 - Result from encrypting file content .. 146

Figure 5.5 - Encoding Polynomial Coefficients for Parity sizes from 1 up to 32 146

Figure 5.6 - Encoding Polynomial Coefficients for Parity size of 32 .. 146

Figure 5.7 - A view into a folder showing the shards of a file after splitting 149

Figure 5.8 - Result from file name shuffling ... 150

Figure 5.9 – A successful file upload choosing the Normal file priority level 150

Figure 5.10 – A successful file upload choosing the Critical file priority level 150

Figure 5.11 - Content of Dropbox account showing some of the shards from a file whose name has

ix

been obfuscated. ...

153

Figure 5.12 - Content of Box account showing some of the shards from a file whose name has been

obfuscated. ...

153 Figure 5.13 - Interface of SMF application showing a list of uploaded files

154 Figure 5.14 – successful file reconstruction during download for 24 corrupted shards with Normal

option…………………………………………………………………………………..................154

Figure 5.15 – successful file reconstruction during download for 48 corrupted shards with Normal

option……………………………………………………………………………….....................154

Figure 5.16 – failed file reconstruction during download for more than 48 corrupted shards with

Normal option……………………………………………………………………..…...................154

Figure 5.17 – successful file reconstruction during download for 72 corrupted shards with Important

option……………………………………………………………………………..…...................154

Figure 5.18 – failed file reconstruction during download for more than 72 corrupted shards with

Important option…………………………………………………………………..…...................154

Figure 5.19 – successful file reconstruction during download for 4 corrupted shards with Critical

option…………………………………………………………………..…..................................154

Figure 5.20 – successful file reconstruction during download for 8 corrupted shards with Critical

option…………………………………………………………………..…..................................154

Figure 5.21 – successful file reconstruction during download for 12 corrupted shards with Critical

option…………………………………………………………………..…..................................154

Figure 5.22 – failed file reconstruction during download for more than 12 corrupted shards with

Critical option…………………………………………………………..…..................................154

Figure 5.23 – Proposed Six-level Cloud Data Distribution Intermediary (CDDI) Framework......... 163

x

LIST OF LISTINGS

Listing 3.1 – Setting up a minimum padding cube .. 79

Listing 3.2 – Clockwise rotations in the three planes of the cube ... 79

Listing 3.3 - Algorithm to generate the coefficients of the encoding polynomial 79

Listing 3.4 - Pseudocode for polynomial addition ... 80

Listing 3.5 - Pseudocode for polynomial multiplication ... 80

Listing 3.6 - Pseudocode for polynomial division ... 81

Listing 3.7 - Pseudocode for shifting a polynomial by a number of degrees 81

Listing 4.1 - getHash method to generate the hash of a string ... 94

Listing 4.2 – Function to initialise the Rubik’s Cube .. 95

Listing 4.3 – Implementation of the rotation function in pseudocode ... 96

Listing 4.4 - Cube constructor code in Java ... 97

Listing 4.5 – Generation of Rotation Sequence ... 97

Listing 4.6 - Method to convert a key to a rotation sequence .. 97

Listing 4.7 - Method to encrypt a file using the Rubik’s cube .. 98

Listing 4.8 - Method to decrypt a file using the Rubik’s cube .. 98

Listing 4.9 - Pseudocode for generating the Galois Field elements. ... 101

Listing 4.10 - Pseudocode for performing addition and subtraction in the Galois Field 101

Listing 4.11 - Pseudocode for performing multiplication in the Galois Field 102

Listing 4.12 - Pseudocode for performing division in the Galois Field... 102

Listing 4.13 - Pseudocode for polynomial multiplication ... 105

Listing 4.14 - Pseudocode to generate the Reed Solomon Encoding Polynomial 106

Listing 4.15 - Pseudocode for encoding a polynomial using an RS Encoding Polynomial 106

Listing 4.16 - Snippet of code to show how the data and parity shard counts are set based on the priority

setting .. 108 Listing

4.17 – Generation of the Galois Field Elements in Java ... 109

Listing 4.18 - Implementation of addition in the Galois Field .. 109

Listing 4.19 - Implementation of multiplication in the Galois Field ... 109

Listing 4.20 - Implementation of division in the Galois Field ... 110

Listing 4.21 - Method for accessing the log of a field element ... 110

Listing 4.22 - Method for accessing the exponent of two in the Galois Field 110

Listing 4.23 - Polynomial class constructor ... 110

Listing 4.24 - Implementation of Polynomial Addition... 111

xi

Listing 4.25 - Implementation of Polynomial Multiplication .. 111

Listing 4.26 - Implementation of Polynomial Division ... 112

Listing 4.27 - Implementation of the Polynomial Modulus ... 112

Listing 4.28 - Code for generating the Encoding Polynomial ... 113

Listing 4.29 - Java implementation of file encoding process using Reed-Solomon Coding 115

Listing 4.30 – Function to read from a file into a three-dimensional array 116

Listing 4.31 – reading file to 3-dimensional array ... 117

Listing 4.32 – Function to compute the module’s parity ... 117

Listing 4.33 – Function to compute row and column parities ... 118

Listing 4.34 – Computation of module parity .. 119

Listing 4.35 – Computation of row parity and column parity ... 119

Listing 4.36 – Population of the parity object.. 120

Listing 4.37 – Writing parity data to file ... 121

Listing 4.38 – Function to split file into shards ... 121

Listing 4.39 – Splitting data into 16 shards ... 121

Listing 4.40 - Code for implementation of the data dispersion technique (the shuffling method) 124

Listing 4.41 - Instantiation of a metadata file object ... 125

Listing 4.42 - Method to write metadata string to file ... 125

Listing 4.43 - Snippet of code showing file upload to Dropbox and Bo ... 126

Listing 4.44 -Method to read text from a file to a string.. 128

Listing 4.45 - Snippet of code showing how the system creates a metadata object from a file and

accesses the list of destinations from the object .. 128

Listing 4.46 - Function to determine data corruption in a codeword... 128

Listing 4.47 - Function to construct the syndrome polynomial ... 129

Listing 4.48 - Function for determining error locator and error magnitude polynomials 129

Listing 4.49 - Function to determine specific error locations .. 130

Listing 4.50 - Function to implement the Forney Algorithm to determine the magnitude of an error

..

130

Listing 4.51 - Function to correct errors in a Reed Solomon codeword .. 131

Listing 4.52 – Reading file shards to form a data array ... 131

Listing 4.53 – Reading parity data from files .. 132

Listing 4.54 – Checking modules for errors .. 133

Listing 4.55 – Error location within the module .. 136

xii

Listing 4.56 – Error correction ... 139

Listing 4.57 – writing data from the three-dimensional array to file ... 139

xiii

LIST OF EQUATIONS

Equation 3.1 ...

77

Equation 3.2 ...

77 Equation 3.3

... 77

xiv

DEDICATION

This study is first dedicated to God for his mercies and guidance. Secondly, this study is dedicated to

my family and colleagues at work. Finally, the study is dedicated to all members of the ‘Club B’

fraternity.

xv

ACKNOWLEDGEMENTS

My foremost appreciation goes to God the omnipotent for giving me strength to complete this study.

Secondly, I am most thankful to my supervisors, Dr. James B. Hayfron-Acquah and Prof. William W.

Oblitey for their immense contribution and guidance to conduct this study and also steering it to the

end. I am most grateful to them.

Special appreciation goes to Dr. R. K. Boadi and Mr. Wofa Adu Gyamfi of Mathematics department,

Mr. Emmanuel Ofori Oppong, Mr. Nathaniel Frimpong, Mr. William Morgan-Darko,

Mr. Yaw Darkwa, Mr. Samuel Acheampong, Mr. Dawuda Ahmed, Mr. Daniel Anane Agbemava,

Mr. Benjamin Odoi Lartey, Mr. Benjamin Tei Partey, and Mr. Nuku Atta Kordzo Abiew, all of the

Computer Science department for their priceless contributions. This work could not have been possible

without their support.

Particular thanks also go to Prof. Kwesi Obiri Danso, Vice Chancellor of KNUST, Prof. (Mrs.) Ibok

Oduro, Provost, College of Science, KNUST, and Prof. S. K. Amponsah, Dean, Faculty of Physical

and Computational Sciences, KNUST, for their encouragements, advice and support.

Finally, I am thankful to all my colleague lecturers and Staff at KNUST, Department of Computer

Science, Prof. M. G. Addo, Head, Biology Department, and Dr. A. A. Anning of Physics Department.

1

CHAPTER 1

1. INTRODUCTION

1.0. Background of Study

The need for Information Technology (IT) in industry has never been as high as today. However,

organisations budget for IT is much stringent than ever. Businesses today invest in Information

Technology and Information Systems (IS) to achieve one or several of the following strategic

objectives: Improve decision making process; Survival; Customer and Supply Intimacy; Competitive

Advantage over rivalry; New product, services and business model; and Operational excellence

(Laudon and Laudon, 2010). To be competitive in this era, organisations ought to be strategic in their

investments in IT and IS to ensure it supports key business processes that deliver the required outcome.

This challenge has necessitated that organisations always find and adapt the most efficient and cost

effective IT and IS solution. As a result, businesses today and even individuals are increasingly moving

away from owning and managing their own IT infrastructures to using Cloud Computing technology

which provides them with the ability to outsource their IT needs for example, Infrastructure as a service

(IaaS), Platform as a Service (PaaS), or Software as a Service (SaaS) to the care of a remote third party

provider on a subscription bases at a per usage fee on-demand (Khan and Yasiri, 2016).

Using Amazon Cloud Computing Infrastructure for instance, SaaS providers avoid having to invest

heavily in IT infrastructure costs (for example, owning servers and setting up of data centres). SaaS is

a software deployment model that enables the distribution of software over the Internet for subscribers’

utilisation (Amazon Web Services, 2010). SaaS, which provides remote software solution to tenants

(individuals or organisations) on either shared or un-shared environment on demand is what is usually

referred to as cloud computing (Barry, 2000). SaaS applications offer users a centralised networked

data storage facility that is hosted, maintained and managed by the Cloud Service Provider (CSP).

Although cloud computing comes with many benefits, adopting cloud computing technology also

means relinquishing control over key business data assets to a third party, the CSP. This is a cause of

anxiety to the cloud customer and hence raises an issue of trust which is a major concern frustrating

SaaS adoption.

The challenge therefore is how to create a secure and vigorous data architecture that can deal with both

internal and external threats posed to the cloud tenant data resources and also satisfy subscribers

legitimate concern of losing control over key business data asset to a third party CSP (Chong et. al.,

2006; Rao and Selvamani 2015) - the focus of this research. SaaS incorporates IaaS and PaaS.

2

1.1. Overview of Cloud Computing

The National Institute of Standard and Technology (NIST) define cloud computing as:

“A model for enabling convenient on-demand network access to a shared pool of configurable

computing resources (e.g. Networks, servers, storage, applications, and other computing services) that

can be rapidly provisioned and released with minimal management effort or service providers

interaction” (Mell and Grance, 2011).

In other words, Cloud Computing is simply the delivery of computing services over the Internet.

Cloud Computing allows organisations or individuals to use software, hardware, and data storage

facilities that are hosted and managed by third parties at remote locations. It is a technology with the

potential to enhance collaboration, agility, scalability, availability of computing resources, and also

give organisations or individuals the added benefit of reducing their Information and Communications

Technology (ICT) cost through optimised and efficient computing (Khan and Yasiri, 2016). Examples

of existing cloud services include:

• Online file storage services such as Dropbox, Google Drive

• Social networking sites for example Facebook

• Online business applications such as online salary processing systems

Cloud computing give user’s accessibility to their data resources from any location where they have

access to the Internet and this enhances productivity and work efficiency. Cloud computing gives

individuals or organisations the ability to share resources as data storage space, networks, computing

processing power, and specialised corporate hardware and software applications. Music, video clips,

photographs that people use to keep on their own personal computers and other mobile computing

storage internal devices are now all been stored on servers owned and managed by third party CSP’s

such as Amazon, Google, Facebook.

With cloud computing, a subscriber has to sign-up for a service model (SaaS, PaaS, or IaaS) and

subscribe to one of the cloud deployment models (private cloud, public cloud, community cloud, or

hybrid cloud) on a subscription-based payment agreement with a CSP to access the storage space or

other computing resources required on-demand (Goswami and Singh, 2012).

‘Public’ cloud computing services (public SaaS) has been in use for years for example via client

webmail services such as Yahoo, Hotmail, Gmail, and also most recently via online data storage

3

services as DropBox, Google drive, OneDrive, and Box. These services have generally been offered

at no cost to the subscriber although they are paid for in disguise for instance via advertisements

presented to the subscriber online while using the services, or via the selling of subscriber’s personal

data and online surfing behaviour patterns to interested organisations (Barry, 2000).

Client webmail software is used to access electronic mails stored in a client’s email storage accounts

located on remote systems that usually belongs to other people or organisations (known or unknown)

and are also stored at remote unknown locations. The remotely known or unknown individual or

organisation (SaaS cloud provider) is entrusted with taking care of the subscriber’s software and

hardware needs, and also most importantly taking care of the subscriber’s vital data assets which may

include key business financial data, trade secrets, employee records, supplier’s contacts, product lines,

and customer’s data.

This poses serious security threats to the cloud subscriber in terms of data security as the subscriber

relinquishes control over the management and maintenance of the data to a third party CSP who might

use the data for other purposes for which the data owner permission has not been sought.

Hence, there is a challenge with the technology ability to ensure data confidentiality, data integrity,

and even data availability (Rao and Selvamani, 2015; Ali et. al., 2015). Therefore, the question of the

security of the data and other resources outsourced for cloud storage remains to be a major hindrance

to the technology widespread adoption (OpenCirrus, 2017).

1.2. Problem Statement

Cloud computing technology is an invention in the ever changing computing technology that has come

to save organisations from setting up, owning, and maintaining high cost computing equipment and

other ICT infrastructure. Benefits includes cost savings (in terms of hardware, software, personnel,

etc.), ability to access resources from anywhere at any-time provided there is an Internet enabled device

and connectivity to the Internet, and paying per usage among others. Cloud computing gives users

huge storage capacity via storage facilities hosted on the Internet that are usually owned and managed

by third party Cloud Service Providers (CSP’s). These storage facilities usually are publicly accessible

referred to as Public Cloud, or may be configured for an individual subscriber’s private use referred to

as Private Cloud, or configured explicitly for a group of organisations usage referred to as Community

Cloud, or may be a composite of two or more of the specific cloud deployment models referred to as

Hybrid Cloud. The CSP has access and control over the data whether encrypted or un-encrypted as the

4

responsibility for the data maintenance (such as data backups and data restore) is usually mandated to

them.

Although the cloud tenant outsourcing its IT functions enables them to focus on their core business

processes, they also put their vital data resources at risk in the hands of the third party provider who

may use it for their own gains. For example, selling the data to a competitor, or using it for other

purposes other than has been agreed.

Cloud computing at the onset came with security challenges as a result of its resource pooling and

multi-tenancy characteristics where multiple customers share the same resources, same application,

same databases or in some cases same tables (Youssef and Alageel, 2012; Khatri et. al, 2013). As an

example, a cloud provider computing resources may be pooled to serve multiple subscribers and this

may put data at risk of getting into unauthorised hands through accidental or intentional disclosure.

Thus, the CSP may accidentally or deliberately leak data or other vital resources to a competitor as

they serve multiple subscribers (Khan and Yasiri, 2016; Shapland, 2017). A study by

TriguerosPreciado (2013) found cloud computing security to be of a supreme concern to subscribers

and this discovery in 2017 remains unchanged as confirmed by Ahmed (2017) study. The Treacherous

12 (2017) survey identifies data security breaches such as:

• The two Yahoo! data breaches reported in September and December 2016 (affecting 3 billion

user accounts, leading to a drop of $350 million in the acquisition price of Yahoo! which was

earlier valued at $4.8 billion) (McMillan and Knutson, 2017),

• Data loss such as malicious CSPs or malicious users intentionally corrupting the user's data

inside the cloud by modifying or deleting (Chauhan, 2015; Sailaja and Usharani, 2017),

• Malicious insiders such as the theft of 1.5 million T-Mobile customers' data by an employee at

their Czech offices (thehackernews, 2016),

• Denial-of-Service (DoS) attacks such as the Australian Bureau of Statistics denial of service

(ABS, 2016) as concerns of cloud computing security.

Another issue that arises from the use of Cloud Storage as a Service is the use of customer data for

marketing and personal profiting such as leaking it to competitors (Chauhan, 2015).

Ahmed (2017) study established cloud computing poses security threats to the subscriber in terms of:

• Who has access to the data/resource (accessibility)

• What other use is the data/resource been used for (usage)

• Where the data/resource is located (location)

5

• Who has ownership over the data/resources outsourced to the cloud (ownership)

• And also ensuring accuracy of the data outsourced for cloud storage (accuracy)

 And these raise questions as follows:

• How can cloud data be secured to prevent unauthorised access?

• In what ways can a cloud subscriber prevents their data from been used for other purposes by

the cloud provider?

• In what ways can the cloud subscriber ensure that their outsourced data is not vulnerable as a

result of the data location since different countries have different data privacy laws?

• In what ways can the cloud subscriber ensure that they have sole ownership of their data

outsourced for cloud storage?

• In what ways can the integrity of data outsourced for cloud storage be maintained?

In relation to ownership there is the risk in terms of what happens to the data on contract termination

or in the event of conflict between the cloud subscriber and the cloud provider. For example, when a

CSP refuses to grant a subscriber access to their data in the event of a dispute over say the subscriber’s

subscription payments.

With the issue of location, accessibility, and usage of the data resource, cloud computing distributes

data across servers setup and managed by CSPs across the globe and this makes it difficult for the

cloud subscriber to find in which country(s) their data is been stored, who has access to the data, and

for what unauthorised use (Rao and Selvamani, 2015). Finally data outsourced for cloud storage can

be altered in transmission by man-in-the-middle attack or modified inside cloud provider’s storage

facilities by a malicious insider attack (Sailaja and Usharani, 2017).

These issues are making it unattractive for organisations and individuals to subscribe to cloud services.

Although traditional counter security measures such as using encryption techniques (for

confidentiality), using hash functions (for integrity), and using firewall, anti-virus, intrusion detection

and prevention systems (for availability) have been employed, they have been inadequate to securely

protect vital organisation data against attacks. Malicious attackers have found ways of going round

them to compromised vital business data asset using network security attacks as Dos/DDoS, U2R

attack, R2U attack, Probing attack, MITM attack, Message replay attack, and Brute-Force analysis

attack (thehackernews, 2017).

6

According to Wang (2009), cloud computing technology distributes data on multiple servers belonging

to a single CSP but the challenge as noted by Ahmed (2017) is implementing a distributed protocol

architecture that assures of a robust secured cloud data security in a defence-in-depth design.

1.3. Aim of Research

This research therefore seeks to propose a cloud data security solution framework and implement an

algorithm whereby data outsourced for cloud storage will first be sliced into chunks of data fragments

and then encrypted on the subscriber’s gateway system before being distributed to multiple different

CSP’s storage nodes (storage servers).

1.4. Specific Research Objectives:

i. To enhance security of data outsourced for cloud storage by ensuring the data is useful to only

the data owner

ii. To propose a cloud data security solution framework and an algorithm for securing cloud data

that alleviates the cloud subscriber’s fear of the data/resource’s privacy, usage, location and

ownership.

iii. To implement and test the propose cloud data security solution framework and algorithm.

1.5. Research Questions

i. How can one ensure data outsourced for cloud storage is useful only to the data owner? ii. Can a

proposed cloud data security solution framework and algorithm alleviate the cloud subscriber’s fear

of the data/resource’s privacy, usage, location and ownership?

 iii. How does the proposed algorithm compare in terms of strength and performance?

1.6. Justification of choice of the study

As outlined in the problem statement, cloud computing comes with numerous benefits but also faces

several security issues especially in terms of data privacy, data integrity, and data availability. Cloud

computing characteristics of resource pooling, multi-tenancy, on-demand self-service, broadnetwork

access, and rapid elasticity introduces new security threats in terms of data accessibility, data

ownership and data accuracy and hence demand new approaches for dealing with them.

Traditional counter security measures have been found to be inadequate for dealing with cloud security

issues, an example been that encrypting data before sending it to a single CSP does not protect the data

from been decrypted, deleted, or altered (O’Reilly, 2017).

7

A survey conducted by the Cloud Security Alliance CSA in 2016 identifies twelve security concerns

of cloud computing including data breaches, data loss, malicious insiders and Denial of Service among

others (The Treacherous 12, 2017). Other cloud security issues includes: the cloud provider profiting

from using the subscriber’s data entrusted in their care for advertising, or using the data to learn more

about the subscriber for their own interest or gains. Although research suggests that cloud security

threats from multi-tenancy architecture have been reduced by major CSPs such as Amazon and

Microsoft, the threats are still real especially for smaller CSP’s (Shapland, 2017).

In addition, although different countries have different privacy and security laws, acts, and regulations

that govern the protection of data for example, the Asia Pacific Economic Cooperation (APEC) privacy

framework, the Organisation for Economic Corporation and Development (OECD) privacy framework

and the European Economic Area (EEA) data protection laws, the actual responsibility of ensuring that

data and other resources outsourced to the cloud are secured and protected against data loss, damage,

misuse usually rest with the custodian of the data - the CSP (CSA, 2011; OpenCirrus, 2017).

However, given that data is the life blood of every serious organisation and that with cloud computing

the subscriber’s vital data asset is to be outsourced to third party organisation, it is critical the cloud

subscriber take key interest in ensuring the safety of their data been outsourced for cloud storage.

Hence, this study is of the same view with Fahmida (2016) that with cloud computing, the data owner

(cloud tenant) even bears paramount responsibility in ensuring security of its data than the custodian

of the data. Especially where critical business data such as trade secrets, financial data, employee data,

or health data are been transferred for cloud storage. This assertion is more critical because when it

comes to cloud computing service provision there is a chain of inter-dependency of services

provisioning and hence tracing data leakage(s) could be extremely difficult. This study seeks to

propose secure data security architecture and system that ensures data is useful only to the owner.

1.7. Methodology

The study will be carried out following the design research methodology and will employ a plan-

driven incremental development and delivery method in which the sub-systems and its components

specifications are planned ahead but the design and development processes are carried out as a series

of increments to deliver the system as increments. The software increments are programmed and

provision to users for their rapid feedback. The subsystems are then integrated and tested to deliver the

system. The proposed cloud security solution framework will be developed into software in an

experimental lab-setup using JAVA, SQL, and PHP.

8

The major steps involved in the development process are outlined.

i. To apply erasure coding technique to first sliced data objects outsourced for cloud storage into

chunks of data fragments (Tashi and Ponsam, 2016; Plank, 2013).

ii. To apply an encryption algorithm to encrypt the chunks of data fragment (Goswami and Singh,

2012).

iii. To apply data dispersion technique to shuffle the encrypted data fragments and distribute to

multiple CSP’s storage nodes (servers) (CSA, 2011).

iv. To ensure efficiency especially during data retrieval as different CSP’s storage nodes host the

data fragments and hence may be operating at different data rates, a buffering technique is

used to buffer the data fragments from the fast storage nodes as a waiting mechanism until the

data fragments from the delayed storage nodes are received and assembled for onward delivery

to the subscriber.

By employing above measures, this study hope to address the issues raised in the problem statement

and assure the cloud subscriber the security of their data as the encrypted data fragments will be of no

value to the CSP.

v. Finally the study foresees performance to be likely affected as security is strengthened and

hence seeks to cater for performance by employing the use of Metadata server to keep track

of the data fragments and where they are distributed so as to ensure accuracy of the cloud

subscriber’s data resources (Dell Power Solutions, 2005).

In effect, the study hopes the proposed data security solution framework and algorithm will assure

cloud subscribers of the confidentiality, integrity and availability of their data resources outsourced for

cloud storage.

9

1.8. The study organisation

The thesis is organised as follows:

Chapter 1: Introduction- gives brief introduction to the research, and then presents an overview of

cloud computing technology, the statement of problem to be address, the overall study aim, the specific

objectives, the research questions, and justification for the research.

Chapter 2: Literature Review- presents a review of related research work. The chapter reviews related

published articles on the subject and also review related materials from other sources including

Internet, Books, Journal Articles, among others.

Chapter 3: Methodology- presents the methodology employed for the study (Design Research), the

software process method, and also presents the proposed model. A description of the proposed

algorithm for securing cloud data on multiple CSP’s storage nodes using Erasure coding, Encryption,

Data Dispersion technique, Buffering technique, and Metadata works is presented.

Chapter 4: Implementation and Testing- implements the proposed data security framework and

algorithm and test the result to ascertain the algorithm performance and most importantly its ability to

assure cloud subscribers of the security of their data resource outsourced for cloud storage.

Chapter 5: Discussions and Results - present an insight into the results and compare the proposed

system to other existing related systems in terms of its security strength.

Chapter 6: Conclusions and Recommendations- throw more focus on what the results actually means

for both the cloud subscriber and the CSP especially in terms of benefits and suggest recommendations

based on the research findings for the cloud subscriber and as well as suggest recommendations for

future research work on the subject.

CHAPTER 2

2. LITERATURE REVIEW

2.0. The Concept of ‘Cloud’ Computing

The word cloud in the technology ‘cloud computing’ signifies the fact that the technology delivers

computing from somewhere (i.e. a location in space) or a distance away from the user. Cloud

computing technology disengages application and data resources away from the infrastructure and

mechanisms that makes them available to the user (CSA, 2009). Thus, cloud computing is enabling

10

organisations to move away from viewing IT as a device-centric to a view that is application, data, and

infrastructure centric.

Cloud computing is a new phenomenon that brings together many existing technologies and

approaches to computing that is different from traditional computing setting which usually requires

users to be in same location with their computing resources (Mell and Grance, 2011). The technology

enables cloud tenants (individuals or organisations) to efficiently use existing computing resources

such as software applications, software platforms, and hardware infrastructures across the world at a

shared minimal cost. It also helps to expand the capacity of exiting computing resources smartly and

cost effectively without having to re-design. It uses networked infrastructure software and hardware to

provide computing resources to users in an on-demand environment.

Cloud services are often but not always utilised in conjunction with or enabled by virtualisation

techniques. Thus, cloud computing services are to a large extent mostly based on virtualised resources

(Kharche and Chouhan, 2012).

The cloud provider may own and house both the infrastructure and software required to run a home or

business application for example as offered by Amazon Web Services – AWS. This is useful especially

to small and medium enterprises (SME’s) and even SaaS cloud providers as they often can’t afford the

up-front infrastructural capital needed to own the hardware and software required to setup their own

traditional hosting environment that can effectively serve their customers. This can help SME’s plan

and assess their IT need as they only need to subscribe to a service required and can expand on-demand

if needed without having to pay for redundant resources that will not ever be used. Thus, by subscribing

to a cloud computing service that provides both hardware and software solution, the SME will not have

to worry about forecasting its IT demands prior to actual usage which may lead to the problems of

under-forecasting if the business flourishes or over-forecasting if the business deteriorates (Amazon

Web Services, 2010).

Cloud computing service unlike traditional hosting service usually gives subscribers the opportunity

to increase or decrease their resources utilisation capacity as and when needed in what is described as

the rapid elasticity characteristic of cloud computing. All a tenant needs to have to use a cloud service

is to setup an Internet enabled device such as computing devices (laptop, desktop, palmtop, and tablet)

or a mobile device (PDAs, Smartphones, iPad, kindles) and an Internet connection via wired, wireless

(WIFI), or mobile broadband.

11

Cloud computing gives end-users the benefits of accessing their computing resources from any location

they may find themselves in the world provided they have a device with Internet connectivity, and the

required resource providers systems are up and running. In addition, cloud computing can also help

business to be more efficient and profitable as their staff can work 24/7 from anywhere (Huth and

Cebula, 2011).

 Characteristics of Cloud Computing

Cloud computing technology according to NIST has five (5) characteristics that distinguish it from

traditional computing hosting as follows (Mell and Grance, 2011).

i. On-demand Self-Service:- Cloud tenants or clients automatically request for and manage their

own computing resources that suites their needs from a remote CSP without seeking any

assistance from the provider.

ii. Broad Network Access: - Means the service(s) is/are available over a network (whether private

or public) and can be accessed via use of an Internet enabled device with Internet connectivity.

iii. Resource Pooling:- Means cloud tenants or clients usually accesses resources (for e.g. storage

facilities) that are pooled from different providers remote data centres and networks (virtual

and physical) in a distributed computing model that are dynamically assigned and reassigned

based on demands.

iv. Rapid Elasticity: - Service providers can scale their services small or large rapidly (in some

instances automatically) depending on resource availability or user demand. The cloud

subscriber on the other hand presumes service availability to be abundant and hence can scale

their resource utilisation capacities at any moment required.

v. Measured Service: - Service usage is measured and controlled for the purpose of optimising

usage of the available resources and also ensure fairness in usage. In some cases usage is

metered and the consumer is billed according to their use (i.e. the pay-per usage model).

Figure 2.1 illustrates the overall concept of cloud computing.

12

Figure 2.1 – NIST visual model of cloud computing (Mell and Grance, 2011)

The Cloud Security Alliance (CSA), in addition to the above five cloud computing characteristics from

NIST also identified Multi-Tenancy as an important cloud feature. The CSA define multitenancy as

“use of same resources or application by multiple consumers that may belong to the same organisation

or different organisation”. Multi-tenancy enables virtualised resources to be pooled from systems

belonging to same organisation or different organisations to serve multiple consumers as shown in

Figure 2.2a and Figure 2.2b.

To understand cloud security issues and other risks implications of outsourcing our data resources to

the cloud, it is important we first analyse the various cloud computing service models and deployment

models.

Figure 2 .2 a – Private Cloud of a
company with 3 business Units (CSA,
2011)

Figure 2 . 2 b – Public Cloud provider
with 3 business units (CSA, 2011)

13

 Cloud Service models

Cloud computing offers subscribers the option to subscribe to one of three service models referred to

as ‘SPI models’ where the ‘S’ stand for Software-as-a-Service (SaaS), the ‘P’ for Platform-as-aService

(PaaS), and the ‘I’ stand for Infrastructure-as-a-Service (IaaS). Each of the cloud service models is

described with each serving a specific function that gives subscribers specific control. They differ in

the levels of control and their service offering to the subscriber. Figure 2.3 illustrates the architecture

of cloud computing service models.

Figure 2.3- Architecture of cloud service models (CSA, 2011)

The IaaS model also known as Infrastructure Cloud is the foundation of all cloud services and provides

subscribers access to IT infrastructures such as the networking infrastructures, storage system, servers,

and the virtualised environment they need to run their software applications – Figure 2.4. Thus, an IaaS

provider such as SAVVIS, Amazon, and Google respectively provides the hardware infrastructure,

14

virtualised software platform and network infrastructure needed to run the cloud subscribers

application. The IaaS model enables IT infrastructures to be setup and used via remote access and

made available to subscribers on an elastic basis.

Figure 2.4 - Cloud services types and resource control (Satyanarayana, 2012)

The IaaS model require that operating systems, applications, and other contents as middleware,

runtime, and data outsourced to the cloud are control and secure by the cloud tenant (the client

subscriber or the client provider) whiles the IaaS provider only takes charge of controlling and securing

their cloud Infrastructures. When a subscriber sign-up to an IaaS agreement they completely outsource

their IT infrastructure needs to total control and security of a third party IaaS cloud provider

(Satyanarayana, 2012).

2.0.2.1. The Platform-as-a-Service (PaaS) Cloud Service model

The PaaS model also known as Development Cloud builds upon the IaaS model and gives the PaaS

subscriber more control over the IaaS infrastructure. A PaaS cloud provider gives tenants (client

subscribers or client providers) access to IaaS infrastructure plus software development toolkit and a

number of supporting tools they need to develop and operate their own customised SaaS software

15

application for which they have full control over – Figure 2.4. Thus, the PaaS Cloud provider provides,

control, and secure the operating system, hardware, and network infrastructure needed by the PaaS

subscriber and offer the subscriber the development tools to develop, operate, and manage their own

customised software application(s) they have control over. In other words a client subscribed PaaS

runs over its subscribed IaaS platform.

PaaS is aimed at giving subscribers opportunity to build their own controlled applications on top of a

given platform. The PaaS model offers a balance between the IaaS and SaaS models where control and

security provision is respectively left with the IaaS cloud provider and SaaS cloud provider. Thus, the

PaaS cloud provider solely provides security and control for the infrastructure and development

platforms whiles the subscriber is responsible for controlling and ensuring security of the applications

developed on the platform. Examples of PaaS include YouTube, Google Apps, and Facebook

(Satyanarayana 2012; Sailaja and Usharani, 2017).

2.0.2.2. The Software-as-a-Service (SaaS) Cloud Service model

The SaaS model also known as Application or Information Cloud is built upon an IaaS model and a

PaaS models to give subscribers access to a SaaS cloud providers pre-built application and other

resources needed to run it. A SaaS subscriber is an end-user of a SaaS cloud providers completely

packaged application along with the platform (networking infrastructures, storage system, servers,

virtualisation system, operating system, middleware, and runtime environment). The SaaS application

is made available for the subscriber usage via a web browser online on the SaaS providers cloud

infrastructures on demand under the provider’s control (Mell and Grance, 2011).

Although some SaaS cloud providers offer their clients the option to download, install, and run a copy

of their packaged applications on their computing devices locally over which the client has control,

these applications are typically run directly from the Internet via a web browser as a service and are

controlled by the provider. SaaS also makes it easy to run the same software concurrently on all

connected client devices at the same time on the cloud.

The SaaS model offers the least control over the cloud to subscribers in comparison with the IaaS and

PaaS models (Huth and Cebula, 2011). Like the IaaS model, the SaaS cloud provider is responsible for

the management, control, and security of the packaged application deployed for the SaaS clients usage.

16

The control, management, and security of the infrastructures though is left to the IaaS provider in

situations where the SaaS cloud providers application is hosted on another third party IaaS cloud

providers infrastructure such as provided by Amazon.

In a cloud architectural stack of figure 2.4, control of cloud resources by the provider is higher up the

stack where the provider has maximum control over the infrastructure, platform, application, and client

data and lower down the stack where the provider has minimum control over the infrastructure,

platform, application, and client data . Thus, the lower down the stack the CSP stops, the more security

the subscriber is tactically responsible for implementing and managing. In a SaaS model, security

controls including service levels, privacy compliance and their limits are negotiated into an agreement

signed between a SaaS cloud provider and the SaaS subscriber. The SaaS cloud provider is not only

responsible for the underlying infrastructure security as in the case of IaaS cloud but also responsible

for the security of applications and other clients’ resources as data hosted (Sailaja and Usharani, 2017).

 Cloud Deployment Models

The three cloud service models; IaaS, PaaS, and SaaS are deployed under four cloud deployment

models that are also used to describe a cloud provider’s service offering to a cloud subscriber. The

deployment models are Public cloud, Private cloud, Community cloud, and Hybrid cloud (Figure 2.1).

Regardless of which cloud service model a subscriber chooses at least one of the deployment models

discussed below must be chosen.

2.0.3.1. Public Cloud Deployment Model

This cloud deployment model is deployed over the publicly accessed Internet. Public cloud can be

accessed by anybody with an Internet enabled device and an Internet connection who chooses to sign-

up and use the service. The entire infrastructure and sometimes software used to build and run this

deployment model is owned and operated by the CSP.

Public cloud service providers usually run and provide support for software from different cloud

computing tenants such as banks, educational institutions, insurance companies and the CSP’s costs of

setting up and running the infrastructure is shared by the service utilisation companies according to

their respective resource usage (Kharche and Chouhan, 2012). Public cloud deployment model are

usually targeted at the general public or large industry groups. For instance e-mail services such as

yahoo mail, g-mail, hotmail, online data storage services such as dropbox, google drive, social

17

networking services such as Facebook, Twitter, LinkedIn, and many more including services from

enterprise applications as some online banking services, are publicly deployed cloud services. Public

cloud deployment model is almost always set-up away from users’ premises. Security implications of

this deployment model include:

i. The CSP using subscriber’s data for other purposes than has been agreed such as for advertising

and marketing purposes

ii. The CSP claiming ownership of the data. For example holding the data on contract termination

such as noted in problem statement with Facebook

2.0.3.2. Private Cloud Deployment Model

Unlike public cloud that is owned and operated by the cloud provider, a private cloud is set-up by a

service provider for the sole ownership, usage, and control of a contracted organisation. Although the

CSP may own the infrastructure, its entire operation, management and control is left to the subscriber

third party organisation. Private cloud is usually set-up for a specific group or organisation use. Access

is limited only to that specific organisation or group (Huth and Cebula, 2011). Services offered on

private cloud may vary depending on the contracted organisation need(s) for setting up the private

cloud hosting environment. Private clouds just as public clouds pool resources between different

systems within one organisation or pool resources from systems belonging to different organisations

to serve a specific purpose. Private cloud may be set-up on or off a contracted organisations premises.

Some security issues of this deployment model include:

 i. A malicious insider leaking subscribers data to competitors such as the theft of 1.5 million T-

Mobile customers' data by an employee at their Czech offices (Wei, 2016) ii. Data loss such as

malicious CSPs or malicious users intentionally corrupting the user's data inside the cloud by

modifying or deleting (Chauhan, 2015; Sailaja and Usharani, 2017)

iii. The CSP services not been available when users need the service. For example in the event the

CSP been hit by a DoS/DDoS attack as Australian Bureau of Statistics denial of service

(ABS, 2016)

2.0.3.3. Community Cloud Deployment Model

Community Cloud services are usually shared by several organisations with similar requirements.

Access is limited only to those organisations and they may choose to control, manage, and support the

cloud resources themselves or leave to the community CSP to do so. The infrastructure may be owned

by the community CSP or the collaborative organisations may choose to pool resources together

18

physically or virtually to set-up and own the infrastructure which may be sited at a location chosen by

the concerted organisations (OPC, 2011). Security vulnerabilities of both the Public and Private Cloud

Deployment models are all applicable to the Community Cloud model. Except that the threat level is

lower in comparison to the Public Cloud model but higher in comparison to the Private Cloud.

2.0.3.4. Hybrid cloud deployment model

This is a combination of at least two of the already discussed cloud deployment models that

respectively maintain their unique characteristics but are bounded together by standardized

technologies that permits data and application portability e.g. combining private cloud and public cloud

(Kharche and Chouhan, 2012). This model is susceptible to the security challenges of both the Public

and Private Cloud Deployment models.

Table 2.1 below gives a summary of the cloud deployment models discussed.

Table 2.1 - Summary of the cloud deployment models (CSA, 2011)

The respective differences existing between the various cloud service models, cloud deployment

models, for example infrastructural locations, infrastructural ownership, infrastructural accessibility,

and cloud control among others means the cloud subscriber is faced with a challenge when making a

decision to migrate resources to the cloud. This implies the subscriber is faced with an enormous

responsibility when choosing a CSP. The cloud subscriber therefore ought to undertake thorough risks

assessment and due diligence of resources been moved to the cloud and the cloud service provider.

Unless a cloud provider is willing to disclose their security controls and extent to which they are

implemented (which in our view is unlikely), the uncertainty surrounding security of resources

entrusted to the care of CSP’s by subscribers will remain. In other words until such a time that the

cloud subscriber get to be acquainted with the security control mechanisms employed by

19

CSP’s for securing resources entrusted in their care, the subscriber will continuously be faced with a

dilemma when making a decision to migrate resources to the cloud (Khan and Yasiri, 2016).

2.1. Existing measures for securing cloud resources

Various techniques and solutions have been proposed for secure data on the cloud. The techniques all

seek to address one or all of the CIA traid models. For a cloud tenant to sign-up to a cloud computing

agreement there is a need for the tenant to evaluate its business practices to ascertain the security risks

posed to the resource (Shapland, 2017).

 Assessing risks and deciding on resources to outsource to the cloud

With cloud computing a subscriber chooses the resources they want to outsource to a service provider.

The subscriber may choose to move only part of their resource; either data or application to the cloud

or move all resources to the cloud. As an example, a cloud subscriber may outsource their application

and data to the care of a chosen CSP but may retain control over some functions and services of its

system. Alternatively the cloud subscriber may choose to host its application and data on its own

facility and outsource only some functions or services to the cloud. The interdependencies of service

offering from different parties that make cloud computing possible makes it very difficult for

subscribers to know exactly where to assign blame when problem occur. This impasse results in less

consumer confidence in cloud computing (CSA, 2009). Cloud subscribers therefore ought to be

mindful of the risks of outsourcing a resource to a third party CSP. Subscribers must evaluate the

intended resource for security risks using the Confidentiality, Integrity, and Availability (CIA) security

traid model before subscribing to cloud service. All information security solutions according to

TechTarget (2017) seek to address at least one of the CIA traid model.

2.1.1.1. Confidentiality

The confidentiality as a security attribute is primarily intended to assure that no unauthorised access to

information is permitted and that accidental disclosure of sensitive information is not possible.

Confidentiality guards against both internal and external unauthorised access and seeks to render

information intelligible only to authorised person. Confidentiality ensures secrecy of data and assures

users of their data privacy (Tayseer and Amin, 2015). Confidentiality is achieved traditionally through

using encryption techniques. Some other common standard traditional measures for ensuring

confidentiality have included use of User IDs and Passwords, Smart cards, and Biometric data.

20

Computer network attacks such as User to Remote attack (U2R), Remote to User attack (R2U), manin-

the-middle (MITM) attack, or insider attack usually makes it difficult to deal with this security issue

using traditional counter security approaches as listed (Higashi, 2014). Traditional techniques for

achieving confidentiality have been found to be inadequate for dealing with cloud security issues (Ukil

et. al. 2013; Khandelwal, 2017). And as a consequence resulted with data security breaches such as the

two Yahoo! data breaches reported in September and December 2016 (affecting 3 billion user accounts,

leading to a drop of $350 million in the acquisition price of Yahoo! which was earlier valued at $4.8

billion) (McMillan and Knutson, 2017). This study therefore seeks to propose using data dispersion

technique also known as data split techniques which breaks data into fragments, encrypt them, and

distribute them to storage nodes belonging to different CSP to achieve Confidentiality.

2.1.1.2. Integrity

The integrity as a security attribute ensures that data is clean and trustworthy by protecting systems

data whether at time of entry, in transit, or in storage, against intentional or accidental alterations.

Ensuring integrity has three goals as follows:

• Prevent unauthorised users from making modifications to data

• Prevent authorised users from making unauthorised modifications to data

• Maintain internal and external consistency of data

Integrity generally has been achieved through use of a hash function algorithm as MD5 or SHA1, and

checksum however these standard measures have not sufficiently guard against tempering with

integrity of data especially with the cloud (Tayseer and Amin, 2015; Khandelwal, 2017). Issues of data

loss such as malicious CSPs or malicious users intentionally corrupting the user's data inside the cloud

by modifying or deleting it have been reported (Chauhan, 2015). Also, malicious insider attack such

as the theft of 1.5 million T-Mobile customers' data by an employee at their Czech offices is another

data integrity issue of recent time (Wei, 2016). Message replay attack is mostly employed by attackers

to achieve their intended purpose of altering the integrity of messages in transit. This study proposes

to use data dispersion technique (aka data split techniques) to protect data integrity.

2.1.1.3. Availability

This promotes the accessibility of data for authorised use. In other words the availability as a security

attribute seeks to make data and other resources outsourced to the cloud accessible to legitimately

authorised subscribers. This security model traditionally has been achieved through use of

countersecurity technologies as firewall, access control, file permission, system updates, redundancy

21

systems such as RAID, and etc. Perpetrators commits attacks such as Denial-of-Service (DoS) or

Distributed Denial-of-Service (DDoS) to deny legitimate cloud subscribers access to resources hosted

on their chosen CSP cloud infrastructures (Shapland, 2017). Other challenges faced by this model

includes

i. Loss of information system capabilities as a result of an occurrence of a natural disaster as

(fire, flood, storm, earthquake, and etc) (Shearer, 2017), or human actions as industrial strikes,

intermittent power failures, system maintenance, system upgrade, and etc.

ii. Equipment malfunction or failure during normal use for example a server breakdown,

internetwork device such as switches, routers, hubs, etc. malfunctioning.

Attack such as that of the Australian Bureau of Statistics (ABS) denial of service is a recent example

of a DDos attack. The attack led to a shutdown of the ABS website (Lui, 2017). This study aims to

thwart this security model using distributed parity technique and buffering technique.

Although cloud computing provides users with the advantage of Scalability (ability of offering

unlimited processing and storage capacity, Reliability (ability of enabling user access to applications

and documents anywhere at any-time where there is Internet enabled device and Internet connectivity,

Efficiency (advantage of freeing-up organisations to focus on their core mandate to innovate and come

out with new products, It also opens doors to serious risks to the Confidentiality, Integrity, and

Availability of data as realised by the example security breaches above.

Cloud providers therefore ought to implement security mechanisms in overlapping layers to prevent,

detect, and respond to unauthorised intrusion or unauthorised usage of resources to enhance subscriber

confidence in cloud services. In the same manner, it is also vital cloud subscribers knows the security

measures employed by their chosen CSP in combating the CIA security traits (Shah and Anandane,

2013). Cloud subscribers should undertake risk assessment of their chosen cloud provider by critically

analysing their Incident management policies, Business continuity policies, Disaster recovery policies,

Business processes and procedures, Location, Back-up facilities (Krishna et. al., 2016).

After assessments of the risks have been carried out, the cloud subscriber ought to determine their

preferred cloud deployment model bearing the risks in mind. The subscriber must then select the cloud

service model offering required and hence the type of CSP. The cloud service model required

ultimately determines the level of control a subscriber relinquishes to a CSP. The subscribers focus

22

must be on negotiating for the level of control required from the CSP so that counter measures can be

put in place to deal with the potential risks identified. These counter measures may include putting in

place specific risk response strategies such as: Avoidance (meaning, moving away from activities that

result with risks), Reduction (meaning, taking steps to minimise the risk or setting up mechanisms to

reduce the risks), Share or Insure (meaning, insure against the risks or put in place strategy to share the

risks), Accept (meaning, take no action against the risks due to cost involve or benefits to gain) (OPC,

2011).

As the cloud subscriber/tenant usually have no physical control over cloud infrastructure in most cloud

setup, contract agreements, service level agreements (SLA’s) and providers documentation become

vital in managing risks than in a traditional enterprise owned hosting environment (Hussain et. al.,

2017).

2.2. Cloud computing challenges

OpenCirrus (2017) identifies four major challenges of cloud computing as follows: Data Security and

Privacy, Data Ownership, Lack of Standardisation, and Lack of resources and expertise. Out for the

four, ensuring data security and privacy is noted as the biggest challenge today. This challenge was

attributed to the fact that some CSP’s may behave un-ethically by make money through using personal

information of subscribers entrusted with them for advertisements and other purposes for which the

data owner’s permission has not be sought. Or the CSP may use the information to learn more about

their subscribers for their own interest. In addition given that personal information may be transferred

by the cloud subscribers CSP to another third party organisation (say a data centre) probably located

in another country un-knowingly to the cloud subscriber, it is paramount to ensure that the information

transferred is useful only to authorised persons. There is however the risk of the information falling

into the hands of un-authorised persons or risks of the information being kept by the CSP or its allied

partners for other purposes even when an agreement has been ended or annulled (Sailaja and Usharani,

2017).

Data ownership is seen as another major challenge of cloud computing. Different countries have

privacy and security laws, acts, and regulations that govern the protection of data, for example, the

Asia Pacific Economic Cooperation (APEC) privacy framework, the Organisation for Economic

Corporation and Development (OECD) privacy framework, the European Economic Area (EEA) data

protection laws, and etc., each of these laws according to a CSA (2011) report places on the custodian

23

of the data the burden of ensuring the protection and security of personal data. In cloud computing the

data custodian is the cloud provider and most cloud contracts have clauses that make the custodian of

the data the owner (OpenCirrus, 2017). This security challenge is a concern to subscribers and hence

preventing widespread adoption of cloud computing.

Cloud computing technology presents new challenges to securing data and other resources usage than

traditional IT hosting service. Cloud computing characteristics of multi-tenancy, resource pooling,

rapid elasticity, on-demand self-service, and broad network access, require new data security approach.

Although cloud computing comes with significant concerns about security, privacy, data integrity,

intellectual properties, research suggest that cloud based service models provides better security to

clients data and other resources than traditional IT models (OPC, 2011). This though is not as a result

of use of superior counter security measures but because privacy and security laws as well as

government acts and regulations compels cloud providers to put in place privacy protection and also

use security mechanisms to secure subscribers data.

2.3. Summary of Cloud computing security issues

• CSP’s who serve multiple tenants (individuals or organisation) may accidentally or deliberately

leak data and other vital resources.

• Use of cloud data by CSP’s to serve their own peculiar interest or for purposes other than that

for which subscribers use their service(s) without seeking their consent.

• Privacy invasion by spoofing or spying on customers’ data and other resources entrusted in

their care.

• Data ownership on contract termination or abrogation of contract

• Distributed Denial-of-Service (DDoS) to deny legitimate cloud subscribers access to resources

hosted on their chosen CSP cloud infrastructures

• Issues of data loss such as a malicious CSP or malicious insider intentionally corrupting the

user's data inside the cloud by modifying or deleting

2.4. Some examples of Network Attacks on Cloud Computing

Network attacks come in many forms some common examples of attacks on cloud computing includes

the following (Shah and Anandane, 2013; Alani, 2016):

24

 DoS/DDoS Attacks

In this attack, the attacker (e.g. hacker) continually flood a network with false requests that keeps a

server too busy and prevent it from responding to legitimate requests from authorised system users

(e.g. clients) thereby denying them access to their needed service(s). Denial-of-Service (DoS) attack

may be launched from a single computer or from a group of computers distributed on the Internet. The

later attack is referred to as Distributed Denial-of-Service (DDoS). DoS attacks may occur as a result

of undiscovered flaws in system implementation or other system vulnerabilities. For example a

program developed by a developer who is unaware of a bug in the software that could crash the

program if it encounter an exception such as unexpected user input or a program developed by a

developer for which the developer intentionally insert a bug in the developed software to serve as a

backdoor for later attacks of the system. Examples of DoS attacks include: Ping of death, Mail bomb,

UDP storm, TCP SYN Flooding, and smurf. DoS attack remains the same in cloud computing just as

in the traditional IT hosting model. However in Cloud Computing model DoS attacks get nasty as

Cloud providers serves several multi-tenant customers and hence the impact of a DoS attack is far

greater than in a traditional IT hosting model where a provider serves few clients. This is because with

cloud computing, providers keep expanding their infrastructure resources with much faster and

computational efficient systems to serve as many subscribers as possible. This makes the impact of

DoS attack in the cloud environment enormous when it occurs because the cloud model makes

available more computational power to the DoS attack. The impact of DoS attack on the cloud is even

gargantuan when a DDoS attack is committed as more machines are compromised in the attack

(InfoSec, 2017).

 User to Remote Attacks (U2R), Remote to User attacks (R2U), and Probing

attacks

In the U2R attack, the attacker log on to a system as a legitimate user with an authorised system user

account and begin to exploit the systems vulnerabilities with the intent of gaining super user privileges

to cause harm. This could be an insider e.g. an employee of the organisation. Examples of U2R attacks

include: perl, xterm.

In the R2U attack, the attacker exploit a network by sending packets to a network system that he/she

does not have legitimate access in order to access or expose its vulnerabilities. The attacker then

exploits the privileges of authorised system users. Examples of these attacks include: xlock, guest,

xnsnoop, phf, and sendmail dictionary.

25

With Probing attacks, the attacker continually scans a machine or a network to ascertain or expose its

vulnerabilities so he/she can subsequently exploit it. This attack is used mostly in data mining.

Examples of these attacks include: saint, portsweep, mscan, nmap.

These attacks may lead to a malicious insider (for example former employee, a contractor, or business

partner) taking revenge by stealing data, modifying data, or deleting data (Higashi, 2014). Cloud

subscribers who rely on one provider for service provision are at risk of this attack (Ahmed and

Hossian, 2014; Fahmida, 2016).

 Man-in-the-Middle attack (MITM), Message Replay attack, and Malware

Injection attack

With MITM attack the attacker tries to comprise an existing network device (e.g. Router) or install his

own router between two or more user devices. Using his installed device or the compromised device,

the attacker can intercepts, modify, or fabricate data transmitted between user devices. The attacker

then forwards the data intercepted as if they have not been tempered with. The attacker for example

may

i. intercept an IP Packet sent by USER ‘A’

ii. modifies its PAYLOAD, and

iii. send the modified IP Packet to USER ‘B’ as if it comes from USER ‘A’

By the attacker acting this way, both USER ‘A’ and USER ‘B’ believe they are directly talking to each

other without realising the confidentiality and integrity of the IP Packets they receive have been

compromised. For cloud computing model, if attacker succeeds in placing themselves between the

cloud subscriber and the cloud provider then the MITM attacks will be possible and may lead to various

forms of data security breaches such as data modifications, deletions, and may also lead the attacker

to committing a message replay attack (Higashi, 2014).

In a message replay attack, the attacker first intercepts a legitimate message (for example as in MITM

attack) keeps it intact, and then retransmits it at a later time to the original receiver.

With Malware Injection attack, the attacker focuses on injecting a service implementation (or an evil

virtual machine) to a CSP’s cloud environment with the main goal of taking full control of the

subscriber’s data hosted on the cloud (Chou, 2013; InfoSec, 2017).

26

2.5. An evaluation of standard counter-security measures used by CSP’s

Examining available counter security measures employed by CSP’s for dealing with computer network

attacks such as those discussed above is one of the objectives of this study.

In other to properly secure data required that we take a look at the processes involve in the creation of

data. Hence this study briefly outlines the data lifecycle.

 Overview of the Data Lifecycle

Data today is accessed via different devices such as smartphones, laptops, PC’s, ipads. The data

generation process is a lifecycle that involve six stages or phases as follows (CSA, 2011):

i. Create: - this stage is where a new digital data is generated or an existing digital data is

modified, updated, or altered.

ii. Store: - this is where the data created is put into storage for future use or reference. iii.

 Use: - the data created or data in storage is viewed or processed by the user.

iv. Share: - the data is made available for sharing with other interested parties.

v. Achieve: - the data is retrieved from active use and put into some sort of redundant permanent

storage for future use. vi. Destroy: - the data is removed or deleted permanently from the system

through use of physical or digital technique.

 Although the above data lifecycle presents the stages involve in data generation, the CSA study did

not touch on

• Where data is located (i.e. the place the data is stored)

• How data is accessed (i.e. who has access to the data), and

• Who has ownership of data

These issues are very crucial when dealing with the subject of data security especially with respect to

cloud computing.

 CSP’s LOCATION as a data security issue

With respect to cloud data security, it is extremely important the cloud tenant (client subscriber or

client provider) (e.g. a SaaS cloud provider hosting its application on IaaS cloud providers

infrastructure) knows where their data resource(s) in cloud storage is located (Mahmood, 2011; Raisian

and Yahaya, 2015). By getting to know the location, a subscriber for example may be able to check

27

the privacy and security laws, acts, and regulations that governs the protection of data in that country

and know the extent of their enforcement (Sailaja and Usharani, 2017).

 ACCESS as a data security issue

In addition to knowing the location of data in the cloud, it is important that the cloud subscriber knows

who has access to the data and how the data is accessed in other to be assured of the data security (Rao

and Selvamani, 2015; Ahmed, 2017).

 OWNERSHIP as data security issues

After knowing the location of the data and also who has access, cloud subscribers must take keen

interest in determining ownership of data outsourced for cloud storage. According to Gray (2014),

ownership of cloud data depends on where the data was created. Thus, whether the data is created on

the cloud provider’s infrastructure or created on the cloud subscriber’s system before upload. Service

providers usually prevent access to their clients’ data. For example, LinkedIn does not permit other

services to access all of its user personal data such as the email address through their API. Also,

Facebook’s end-user-agreement states that the company stores data for as long as it is necessary and

not as long as users want to keep their data. This implies users lose control and ownership of their data

(FileCloud, 2016).

In summary, with cloud computing, data is distributes across servers setup and manged by CSPs across

the globe and hence are subjected to different privacy and security laws, acts, and regulations. This

distribution of servers across many countries makes it difficult for the cloud subscriber to find out the

location of their data, or determine who has access to their data, for what unauthorised usage, and

ultimately determine the data ownership.

2.6. Ensuring Data Security

Data security involves the use of specific measures, mechanisms, controls, and technologies to

i. Protect unauthorised usage of data for example via using encryption techniques or through

using Intrusion Prevention Systems - IPS

ii. Detect unauthorised access to data for example through using Intrusion Detection System –

IDS iii. Provide a Response to data security breaches as i and ii when it occur. For example

in the case of i, by using a much stronger encryption algorithm with bigger key size or by applying

28

other data security measures as the data dispersion technique that does not require encryption

but instead distributes the data to multiple storage nodes of a provider. In respect of responding

to ii, network firewall hardware or software may be installed.

In cloud computing, ensuring data security may involve the following three activities (CSA, 2011):

 i. Detection and Prevention of data migration to the cloud through using tools as

DAM – Data Activity Monitoring

FAM – File Activity Monitoring

URL filters – Universal Resource Locator filters, and

DLP – Data Loss Prevention

There are several instances of individuals in business units breaking corporate data policies and moving

sensitive data to public cloud storage facilities as dropbox, google drive, box, etc., without the

organisations approval (BBC, 2016). These tools help in detecting and preventing against these

security breaches.

The operations and functionalities of each of these tools are outside the scope of this study. These tools

are usually used in conjunction with other traditional data security techniques as encryption techniques

and access control mechanisms to detect and prevent unauthorised migration of data to cloud storage

facilities.

ii. Protecting data in transit from a cloud subscriber to a cloud provider’s infrastructures and also

protecting data in transit between different cloud provider’s infrastructures. This is

traditionally achieved through encryption techniques however this study hope to address this

issue with data split techniques based on erasure coding with encryption.

iii. Protecting data once it is in the cloud provider’s infrastructures. This is traditionally achieved

through using access control mechanism as firewall, passwords, DMZ, and etc., but this study

seeks to address this issue with data split techniques based on erasure coding with encryption.

 Some current existing solutions for ensuring cloud data security

Rao and Selvamani (2015) propose that encrypting the data using the RSA cryptographic algorithm is

the best solution to secure cloud resources. This claim is arguable as research shows encrypted files

can be decrypted using a brute-force analysis attack. Also, O’Reilly (2017) note that hard drive based

encryption are not safe and hence cloud subscribers ought to be mindful of how their CSP encrypt their

29

data. The CSP encrypting data on their server using software is much secure and recommended than

using a drive-based encryption where the provider installs hard drives that automatically encrypt the

cloud subscriber’s data. Security researchers in 2015 for example uncovered flaws in a particular hard

drive product line that enabled viewing encrypted data.

Another solution employed by CSP’s has been to split data into pieces, encrypt the pieces and then

distribute them to their distributed servers. Though this approach secures the data to some extent it did

not protect data from been decrypted, deleted, or altered by a malicious insider. Hence a clientside

encryption approach that gives access, management, and control of the encryption keys only to the

cloud subscriber is employed to prevent data breaches caused by malicious insiders insider (Shah and

Anandane, 2013; Chou, 2013). Client-Side encryption encrypts data at the subscriber’s premises before

the data is sent to the CSP. This solution although gives subscribers some level of assurance of their

data security, O’Reilly, (2017) noted that encrypting data slices and sending them to a single CSP’s

storage facilities still poses a threat as the data slices can be re-assembled and decrypted, deleted, or

modified by the CSP. Most CSP’s including Google, Dropbox, BackBlaze B2, Box, Apache Hadoop,

however uses this approach of splitting, encrypting and distributing data slices on their own storage

facilities. This study therefore proposes a solution that distributes slices of encrypted data to multiple

CSP’s storage nodes and prevents a single CSP from having access to all of the data pieces.

CONCEPTUAL FRAMEWORK OF THE PROPOSED MODEL

The proposed system is designed to use encryption, Hashing, and Erasure Coding Technique based on

Reed Solomon Coding and the Galois Theory. Hence, this section presents a discussion on them and

how they are applied in this study.

2.7. Evaluation of Encryption Algorithms

For a perceptive operational critical data such as military or business financial data to be transmitted

over an un-trusted public network such as the Internet, a system ought to be able to guarantee users of

their privacy. Privacy also called confidentiality or secrecy has to do with making sure nosy people

cannot read and make sense of a message intended for another recipient. Thus, the transmitted message

should make sense to only the intended receiver. Privacy also means keeping the message out of the

hands of unauthorised persons. In other words, privacy means ensuring an unauthorised person (an

intruder) do not have access to the transmitted message in the first place.

https://www.theregister.co.uk/2015/10/20/western_digital_bad_hard_drive_encryption/
https://www.theregister.co.uk/2015/10/20/western_digital_bad_hard_drive_encryption/
https://www.theregister.co.uk/2015/10/20/western_digital_bad_hard_drive_encryption/

30

Signals from microwave, satellite, and other wireless transmission cannot be protected from

unauthorised reception. Even cable systems cannot always prevent unauthorised access because cables

may be routed through out of the way areas such as basements or roof of buildings that may provide

opportunities for malicious access and illegal interception of data.

Although it is unlikely any system can completely prevent unauthorised interception to transmission

signal hence a more practical method that is traditionally employed for achieving privacy is to alter the

message so only an authorised receiver can understand it. The method used to do this is termed

encryption and decryption of information. By encrypting the massage before it is transmitted the

message is unintelligible to everyone that receives it except the rightful recipient. Thus, encryption

means the sender of a message transforms the original message (called plaintext) to another

unintelligible form (called ciphertext) and send the transformed unintelligible message out over the

network such as the Internet to the intended receiver. On receiving the ciphertext the rightful receiver

apply a reverse process of the encryption method used to re-transform the ciphertext back to its original

form (the plaintext) in a process called decryption. The encryption/decryption methods process a

message using an algorithm and a key. Thus, the sender uses an encryption algorithm and a key to

encrypt and the receiver also uses a decryption algorithm (usually the reverse) of the encryption

algorithm and a key to decrypt. Figure 2.5 illustrates the concept.

Figure 2.5 - Concept of encryption and decryption (Tanenbaum, 2003)

Encryption and Decryption methods fall into two broad categories as Conventional methods also

known as Secret key methods or Symmetric methods and Public key methods also known as

Asymmetric methods

31

 Encryption and Decryption Methods

Many encryption methods exist and are usually classified according to the number of keys and the

algorithm. In conventional methods, the encryption key and the decryption key are the same and the

security of the method can only be assured if the shared key is kept secret between the communication

parties. Also in conventional methods, the decryption algorithm is always the inverse of the encryption

algorithm. For instance if an encryption algorithm is developed based on combination of addition and

multiplication, the decryption algorithm will be developed based on a combination of subtraction and

division. Hence anyone who knows the encryption algorithm and the key can deduce the decryption

algorithm and therefore can decrypt an intercepted data whether in transmission or in storage. For this

reason, security of conventional encryption methods can only be guaranteed only the

encryption/decryption algorithm together with the key is kept secret.

Conventional encryption algorithms are broadly grouped into two, character-level ciphers or bitlevel

ciphers. A cipher is a character-for-character or bit-for-bit transformation without regard to the

linguistic structure of the message (Tanenbaum, 2003).

 Character-level encryption methods

Encryption under character-level method is achieved via two techniques, Substitution ciphers or

Transposition ciphers.

2.7.2.1. Substitution Ciphers

With Substitution Ciphers, each character in the plaintext is mapped to another character using an

encryption key (k) value that indicates the corresponding ciphertext character that replaces it

(Forouzan, 2001). This approach is referred to as monoalphabetic substitution encryption algorithm.

As an example, suppose a sender is transmitting the word ‘hello hello’ with k = 3. This will imply that

each character of the plaintext would be replaced by a character located 3 positions ahead of it in the

English alphabet (as is the case with Caesar cipher which shifts each character along by a number of

places determined by value of k (Maiwald, 2003), resulting with ‘khoor khoor’ as the ciphertext.

Monoalphabetic substitution method is easily broken by snoopers as the alphabetic characters E, T, O,

and A, frequent mostly in English words and hence a snooper can study the most frequent characters

in a cipertext and be able to determine the key. The algorithm maintains the order of the plaintext

characters in the resulting ciphertext and hence an immature snooper can decrypt easily.

32

Polyalphabetic encryption algorithm is another type of substitution cipher. In this approach, the

position of a character in the plaintext and also the character position in the English alphabet determine

the corresponding ciphertext. Thus, the ciphertext is determined by shifting along the English alphabets

according to the position value of the character in the plaintext. For example, the ciphertext ‘igopt

nltuy’ is transmitted for the plaintext ‘hello hello’ when the polyalphabetic substitution encryption

algorithm is used. Thus, character ‘h’ in position one of the plaintext is shifted by one position along

the English alphabet to ‘i’, character ‘e’ in position two of the plaintext is shifted along by two positions

to ‘g’, and so on. Though the polyalphabetic substitution algorithm is much difficult to decode, it does

not also disguise the order of the character and hence it is still not secure. A skillful snooper will find

it easy to undertake frequency analysis of the ciphertext in an attempt to decipher it as was the case

with using the monoalphabetic substitution algorithm (Maiwald, 2003). Vigenere cipher is an example

of polyalphabetic substitution encryption algorithm. In this cipher a keyword is used as the key to

determine the character shifts in the plaintext to obtain the ciphertext. For e.g. using ‘kafh’ as the key

on the plaintext ‘hello hello’ gives the ciphertext as ‘reqsy hjqsy’ which also can easily be broken.

2.7.2.2. Transposition Ciphers

With Transposition Ciphers, the characters in the plaintext are shuffled around instead of been

substituted with other characters as in the case of substitution ciphers. Like substitution cipher,

transposition cipher is another example of character-level encryption however in this technique; the

plaintext characters keep their original form while their positions are altered to generate the ciphertext.

The technique arranges the plaintext in a 2-dimensional table.

For example, the ciphertext ‘PETHELTLDTSPLOEOOTEIRANUETGXSOCVAAX’ is

transmitted for the plaintext ‘Please do not touch Steve pet Alligator’. The ciphertext is obtained

through entering the characters of the plaintext into a table in row order where the table size determined

by the number of columns is the encryption/decryption key and must be known to both the sender and

the receiver (five in this example). The ciphertext is recorded vertically down the table from the first

column while the plaintext is entered horizontally into the table - Figure 2.6 and Figure 2.7 (Tanenbaum,

2003).

33

A transposition cipher is made more complex by specifying the key to determine the order of recording

the columns for the ciphertext. For example the keyword ‘KWAME’ could be used to transform the

plaintext above as entered into figure 2.6 to this ciphertext,

‘EOOTEIRSOCVAAXPETHELTANUETGXLDTSPLO’. The position of a character in the key

and the order it appear in the English alphabet determines the order in which the columns are recorded

to obtain the ciphertext. To decrypt, the key is used by the receiver to determine the number of table

columns whiles the number of rows is determined by a count of the number of characters in the received

ciphertext divided by the number of characters in the key. For instance, in the example above 35

ciphertext characters / 5 key characters = 7 rows. The ciphertext are then entered into the table

following the order they appear in the English alphabet with their position in the key used in

determining the column they are entered into. For example character ‘A’ in the key is considered first

and as it is at position 3 in the key, the first seven characters of the ciphertext are entered into column

3. Likewise ‘E’ at position 5 of the key is treated next and hence the next 7 ciphertext characters are

also entered into column 5 and so on. The plaintext is finally obtained by reading the characters from

the rows. Using a key this way for a transposition cipher although makes it much harder for a snooper

to decrypt, the approach is not that secure as the substitution cipher because the character frequencies

are maintained and hence a more experienced snooper can decode through a trial and error attack or a

frequency analysis attack although could be much difficult or a brute-force attack (Forouzan, 2001).

Some other well-known examples of transposition cipher include Route Cipher, which when used to

encrypt the example message as entered into figure 2.7 would result with the ciphertext

XXROTAGPCOPLEASEDUVILLATEHNOTTOVETS assuming the sender and the receiver

Figure 2 .6 - Transpositional Cipher
Figure 2 .7 - Route Cipher

34

agree a key start point to be bottom right while routing up inward in anti-clockwise direction. This

ciphertext can be decoded easily by choosing a route around the grid. Thus, the ciphertext is decrypted

by entering the characters back into the grid using the key (comprising of the table size and the key

start point). The plaintext is obtained by recording the text from the columns beginning from the first

column.

Rail Fence cipher is another transposition cipher example. In this algorithm, the plaintext is written in

a diagonal form into a grid of row of size determined by a key known to the sender and the receiver

only. As an example, using the Rail Fence cipher to encrypt our example message with a key size of 5

indicating the number of rows in the grid as shown by Figure 2.8 gives the ciphertext below. The

number of characters in the plaintext (35) determines the number of columns of the grid. The ciphertext

is obtained by writing the text from a row at a time starting from the top row as follows:

PNSARLOOHTTLOEDTCEELTAETUVPIASOEG.

P N S A R

 L O O H T T L O

 E D T C E E L T

 A E T U V P I A

 S O E G

Figure 2.8 - Rail Fence Cipher Encryption

The decryption process for Rail Fence cipher is carried out by first inserting the first character of the

ciphertext into the upper left corner of the grid and then placing dashes (-) downwards this character

diagonally. The dashes are then replaced with the other remaining characters of the ciphertext starting

from the top row (Figure 2.9). Finally the ciphertext is decrypted by recording the characters starting

from the top upper left corner of the grid diagonally in a zigzag manner to obtain back the transmitted

plaintext.

35

P _ _ _ _

 _ _ _ _ _ _ _ _

 _ _ _ _ _ _ _ _

 _ _ _ _ _ _ _ _

 _ _ _ _

Figure 2.9 - Rail Fence cipher Decryption

In encryption and decryption processes, the algorithm must be reversible whether employing

substitution cipher, or transposition cipher, no information must be lost. The spaces in the ciphertext

are usually removed or repositioned to make it difficult for a snooper to guess the key and decipher.

Other characters are used as buffers to fill-up empty spaces on the table.

In summary, for the two character-level algorithms, the substitution cipher algorithms maintains the

order in which the plaintext characters are arranged while simply disguising them and the

Transposition cipher algorithms simply rearrange the letters but do not disguise them (Tanenbam,

2003).

 Bit-level encryption methods

Bit-level encryption unlike character-level encryption put data such as text, images, audio, video into

blocks of bits and then uses methods as permutation, substitution, XOR, and rotation to encrypt them.

They are usually combined with character-level encryption to produce an encryption software product.

 Product System

A combination of the two respective ciphers (character-level ciphers and bit-level ciphers) in various

stages of encrypting a message form what is referred to as product system which is categorized as

either Secret key algorithms or Public Key algorithms (Stallings, 2011).

36

2.7.4.1. Secret key encryption methods

Secret Key Algorithms also known as Conventional Encryption Algorithms or Symmetric

Encryption Algorithms have five components as shown by figure 2.10

Figure 2.10 - Components of Conventional Encryption Algorithms (Stallings, 2003)

• Plaintext: This is the original message or data that is fed into the algorithm as input

• Encryption algorithm: This performs various substitutions and transformations on the plaintext

• Secret key: Also an input to the algorithm. The exact substitutions and transformations

performed by the algorithm depend on the key

• Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and

the secret key. For a given message, two different keys will produce two different ciphertexts

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the

ciphertext and the same shared secret key and produces the original plaintext

There are two requirements for secure use of symmetric encryption:

i. Both the sender and the receiver must ensure the secrecy of the shared secret key. The problem

with meeting this requirement is that one of the communication parties generate the key and

send to the other. The distribution of the key is a problem. If an attacker intercepts the key

(MITM attacker) and gets to know of the algorithm, all communication using this key is

readable.

37

ii. For efficiency, there is a need for a strong algorithm. At a minimum, the algorithm ought to be

such that an opponent who knows the algorithm and has access to one or more ciphertexts

would be unable to decipher the ciphertext or figure out the key.

Conventional encryption methods are in wide spread use because the encryption and decryption

algorithms are usually made public. The principal problem with Conventional Encryption methods is

maintaining the secrecy of the key (Stallings, 2011).

There are numerous symmetric key encryption algorithms as follows: DES, 3DES, AES, IDEA,

Blowfish, Twofish, Camellia, SAFER, KASUMI, SEED, Skipjack and RC5. These algorithms are

generally categorized as being either stream ciphers or block ciphers (Kessler, 2017).

Stream cipher operate on a single bit, byte or computer word at a time and implement some form of

feedback mechanism so that the key is constantly changing. A Block cipher is so-called because the

scheme encrypts one block of data at a time using the same key on each block. In general, the same

plaintext block will always encrypt to the same ciphertext when using the same key in a block cipher

whereas the same plaintext will encrypt to different ciphertext in a stream cipher.

2.7.4.2. Public Key Encryption Methods

A significant development in the world of cryptography came in the 1970s by way of Public Key

Cryptography (PKC). PKC allows two parties to engage in secure communication even when the

channel is insecure, without having to share a secret key first. First described by Martin Hellman and

Whitfield Diffie in 1976, PKC owes its strength to one-way functions - a mathematical function in

which the inverses are significantly difficult to calculate although the functions themselves are quite

easy to compute (Kessler, 2017).

By way of example, the multiplication of two integers such as 13 and 29 is a very easy computation

and the result 377 can be obtained in a few milliseconds. However, factoring the result 377 of a

multiplication to obtain the two factors 13 and 29 which produced it, takes a significantly longer time.

Another example is the exponentiation operation, which takes a relatively little amount of time to

process while taking the logarithm of the result in order to determine what two integers produced it, is

a rather time-consuming operation. Such functions form the basis of Public Key Cryptography. The

trick, though, is to discovery a “trap door” in the one-way function so that the computation of its inverse

becomes significantly easier when some item of information about the key is known.

38

Generic PKC makes use of two keys which are mathematically correlated. By knowing one key does

not permit one to simply uncover its pair. Encryption of data is performed using one key while the

other is used for decryption. It does not matter which key is used first, the second key is always able

to decrypt whatever data the first key has encrypted. Due to the use of two distinct keys, PKC is referred

to as Asymmetric Cryptography.

In Asymmetric Cryptography, each party in a communication has a private key which is known only

to that party. Also, each party has a public key which is available for everyone in the communication.

Any message that is transmitted during the communication can be encrypted using either the sender’s

private key (for Digital Signature) or the recipient’s public key (for the purpose of achieving privacy).

If data is sent using the sender’s private key, the recipient decrypts it using the sender’s public key.

The ability of the sender’s public key to successfully decrypt the data gives authenticity to the message

as the recipient is assured that the message was originally encrypted with the sender’s secret key (thus,

authenticating the sender). Similarly, it denies the sender the ability to deny having sent the message;

since their public key was able to decrypt the message, it follows that the data was encrypted using the

sender’s private key. This is known as non-repudiation (Hansche et. al., 2013).

A number of Public Key Cryptography implementations have been developed since the concept was

first described. Notable among them is RSA algorithm (named after Ronald Rivest, Adi Shamir and

Leonard Adleman, who developed it). RSA is very widely used for key exchange, encryption of small

blocks of data and digital signatures. The algorithm relies on the difficulty in factoring very large

numbers and works by deriving a pair of keys from a very large number which is the product of two

very large prime factors. The prime factors could be 100 or more digits long, giving rise to a product

which is roughly twice the length of the prime factors. The significantly long number takes a very long

time to factorize. A test in 2005 to factor a 200-digit number took 1.5 years and over 50 years of

compute time (Kessler, 2017).

Other implementations of PKC are the Diffie-Hellman algorithm, Digital Signature Algorithm,

ElGamal, Elliptic Curve Cryptography, Public Key Cryptography Standards, Cramer-Shoup

cryptosystem, Key Exchange Algorithm, LUC and McEliece (Tanenbaum, 2003).

39

2.7.4.3. Hash Functions

Hash functions known also as Message Digests or One-way Encryption require no key. Instead a

computation is carried out on the plaintext in such a manner that renders it difficult to recover either

the contents or information about its length (Maiwald, 2003).

The values produced by hash functions can be used to provide a digital fingerprint of a file’s contents

so that when an alteration is made, the corruption of the file will be easily determined by the mismatch

of newly computed hash and the previous one. Thus, one can verify that the copy of a file in their

possession is authentic by simply computing its hash value and matching it against the one provided

by the originator of the file. Hash functions prove very effective when detecting the activities of

intruders and viruses (Stallings, 2011). Hash functions are also widely used to encrypt passwords.

There are several hash algorithms in common use presently. Among them are the Message Digest

(MD) algorithms such as MD2, MD4 and MD5, and the Secure Hash Algorithms such as SHA-1,

SHA-2 (comprising SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512) and currently SHA-3.

MD5 has been implemented in a large number of products even though several weaknesses in the

algorithm were demonstrated by German cryptographer Hans Dobbertin in 1996 (Kessler, 2017).

SHA-2, on the other hand has successfully withstood attacks.

Message Digest algorithms produce a 128-bit hash value from an arbitrary-length message. On the

other hand, SHA-2 recommends using SHA-1, SHA-224 and SHA-256 for messages less than 264 bits

in length and SHA-384 and SHA-512 for messages less than 2128 bits in length (Kessler, 2017)..

Other known hash algorithms are RIPEMD, HAVAL (HAsh of VAriable Length), Whirlpool, Tiger

and eD2k.

2.8. Reed Solomon Coding

In 1960, Irving Reed and Gastowe Solomon proposed a system for encoding and decoding data that is

quite versatile and efficient (Plank, 2013). Reed Solomon encoding works by adding special extra

(parity) data (t) to the original data (k) being stored or transmitted. The extra data becomes handy when

a portion of the transmitted or stored data (n) gets corrupted or lost and needs to be corrected or

40

regenerated (n = k + t). Reed Solomon recognizes two types of data corruption as follows (Plank,

2013):

Errors: With an error (data bits altering), the location of the corrupted or modified data is not known

and must be computed as the roots of a polynomial refer to as error locator polynomial.

Reed Solomon coding can detect any number of corrupt data up to half the number of parity data.

Erasures: With erasures (data loss as a result of deletion), the location of the loss data is known. Hence

there is no need to compute the locations. Reed Solomon coding can correct any number of erasures

up to the number of parity data.

Reed Solomon (RS) limits the numbers it uses to a finite field (also called Galois Field) (cs.cmu.edu,

1998). A finite field is a set of numbers with rules such that all additions, subtractions, multiplications

and divisions have results within the set. Hence powers, modulus and logarithms also have their results

within the finite field. For use in programming, the preferred finite fields have a size that is a power of

two (Benvenuto, 2012). This introduces some interesting properties for the finite field arithmetic. The

denotation for such fields is GF(2m).

 What is a Field?

A set of numbers is a field if it satisfies the following properties.

The real number system is primarily a set, for e.g. {a, b, c, …}, on which the operations of addition

and multiplication are defined in such a way that for all pair of real numbers there exist a unique sum

and product that are also real numbers and thus exhibit properties as follows (Trench, 2003):

2.8.1.1. Commutative Laws

 a + b = b + a -------------------- addition. E.g. 1 + 2 = 2 + 1.

ab = ba --------------------- multiplication. E.g. 1 * 2 = 2 * 1.

2.8.1.2. Associative Laws

 (a + b) + c = a + (b + c) ---------------- addition. E.g. (1 + 2) + 3 = 1 + (2 + 3).

 (ab) c = a (bc)----------------------multiplication. E.g. (1 * 2) * 3 = 1 * (2 * 3).

41

2.8.1.3. Distributive Laws

 a (b + c) = ab + ac -------------------.E.g. 1 (2 + 3) = (1*2) + (1*3)

There are distinct real numbers 0 and 1 such that

 a + 0 = a and

NB: For addition, the identity is ‘0’. Whereas multiplication identity is 1

For each ‘a’ there is a real number ‘ -a ‘ such that a

+ (-a) = 0

and if a ≠ 0 there is a real number

) such that a (
𝑎 𝑎

a + b R, and a*b R (closure laws),

Example

For a given set to be a field it should satisfy all the field properties.

An example of a field is the set of rational numbers.

i.e. a + b ∈ Q and a*b ∈ Q .

 e.g. if a = 2 a +

(-a) = 0 and a (1) = 1

𝑎

 What is a Finite Field?

 a * 1 = a

42

A finite field also known as Galois Field – GF is a field with finitely defined elements where upon

performing the arithmetic operations of addition, subtraction, division, or multiplication of f(p)

mod p on any two of the field elements, the result is always an element in the set.

Fp = {0, 1, 2, …, p-1}

•, +: integer addition and multiplication in modulo p

This property of a finite field enables its usage for error detection and data recovery in data

communication and data storage (Wang, 2009).

A finite field is constructed using a prime number base or powers of a prime number. This is to

ensure a unique value is obtained when addition and multiplication operations are performed on any

two of the field elements. The elements of the finite field are the integers 0 through2𝑚 − 1. Aside from

0, all the other field elements can be represented as a power of 2.

For example, finite field elements for GF(2) is constructed as {0, 1}, GF(3) as {0, 1, 2}, and GF(7) as

{0, 1, 2, 3, 4, 5, 6} (Wikiversity, 2016).

In the case of the powers of prime, a finite field for GF(2n), where 2 is the prime base and ‘n’ is the

exponent determines the number of elements in the field.

As an example GF(23) which is the same as GF(8) has field elements as {0, 1, 2, 3, 4, 5, 6, 7}, and

GF(16) represented in prime powers of 2 as GF(24) has elements as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15}. It follows therefore that GF(N) = GF(2n) has field elements as {0, 1, 2, …, n-1).

Hence GF(28) = GF(256) has 256 field elements as {0, 1, 2, 3, …, 255}. This is an example of a

modulus 256 field and hence 255 is the maximum value (Benvenuto, 2012).

For computer computational operations, a base 2 prime base is used for representing the field elements

as prime powers (Wikiversity, 2016).

The elements of a finite field are usually represented as polynomials that take their coefficients from a

particular field Fp. For example, for a polynomial, Fp(x) = a0 + a1x + a2x
2 + … + anx

n where ai ϵ F. A

deg.1 polynomial of F2(x) = a0 + a1x, has field elements represented using alpha powers as

{α, 1+α} which are already in their irreducible form. Elements of deg.2 polynomials in Fp(x)

= a0 + a1x + a2x
2 are obtained as {α2, α2+ α, α2+1, α2+ α+1} (Wikiversity, 2016).

Similarly for deg.3 polynomials in Fp(x) = a0 + a1x + a2x
2 + a3x

3 the elements are as follows {α3,

α3+ α2, α3 +α2+ α, α3+ 1, α3 +α2+ 1 , α3+ α+1, α3+ α, α3+ α2 +α+1}.

43

The application of Galois Field over the last few decades has been enormous especially in the areas of

data communication and storage (Plank, 2013). Other applications have been as follows: encryption,

and data compression.

Reed Solomon (RS) codes which operates over Galois Fields has been used extensively for the

detection and correction of errors that occurs during data transmission and data storage (cs.cmu.edu,

1998). The study by Cox (2012) outline other application areas for RS codes as Voyager spacecraft,

detecting and correcting data losses in wireless transmission, dealing with scratches on CD’s,

correcting scanning errors in QR codes among others .

 Galois field elements construction

Galois field represented in binary form is very convenient for detecting and correcting errors in

transmission and as well as for ciphering computer data. This is because it is a finite field and adheres

to properties of a field. The elements of Galois field, GF(Pm) is defined as Fp
m = {a0 + a1x + a2x

2 +

… + am-1x
m-1} where ai ϵ Fp.

+ : addition in Fp(x) mod p , • : multiplication in Fp(x) mod π(x)

Where π(x):= deg.m irreducible polynomial in Fp(x).

Irreducible polynomials (polynomial that cannot be factored) for example x2+1 has no roots and are

used to construct the elements of GF(2n). Reducible polynomials for example, x2-1, has roots as -1 and

+1 and hence are not used when generating the elements of GF(2n). As an example, given Fp =

F4 = F2
2, the elements of polynomials of deg ≤ m-1 with coefficients from Fp are given as Fp

m = F2
2 =

{0, 1, α, 1+ α}, p=2, and m=2 (Lynson, No Date; Hill, 2013). For F2
3 the field elements in powers of

alpha are obtained as follows:

deg. 0 deg.1 deg. 2

a0 a0 + a1α a0 + a1α + a2α
 2

Fp
m = F2

3 = {0, 1, α, α+1, α2, α2 + α, α2+1, α2+α+1}, where p=2, and m=3.

A prime number is used to correct repetitions when the power of 2 exceeds the field size and needs to

be wrapped to fit back within the field. An example is shown in Table 2.2 of the representation of the

finite field 𝐺𝐹(23) as powers of 2, using the prime number 11 to handle or avoid repetitions.

Table 2.2 - Representation of finite field GF(2^3) as powers of 2 using the prime number 11

44

Powers of 2 Expansion

Field

element

2⁰ 2⁰ 1

2¹ 2⁰ x 2 = 1 x 2 2

2² 2¹ x 2 = 2 x 2 4

2³ 2² x 2 = 4 x 2 = 8 ≡ 8 XOR 11 3

2⁴ 2³ x 2 = 3 x 2 6

2⁵ 2⁴ x 2 = 6 x 2 = 12 ≡ 12 XOR 11 7

2⁶ 2⁵ x 2 = 7 x 2 = 14 ≡ 14 XOR 11 5

2⁷ 2⁶ x 2 = 5 x 2 = 10 ≡ 10 XOR 11 1

For every field size, there is a set of prime numbers which can be used to uniquely identify the powers

of 2 when they fall outside the field range (REDTITAN, 2011). The prime numbers used are usually

found between 2𝑚 and 2𝑚+1. In the case of the example above where the finite field is 𝐺𝐹(23), prime

numbers within the range 23 to 24 can be used. The prime numbers that qualify are 11 and 13. Another

example is shown in Table 2.3 using 13 to handle or avoid repetitions.

Table 2.3- Representation of finite field GF(2^3) as powers of 2 using the prime number 13

Powers of 2 Expansion Field element

2⁰ 2⁰ 1

2¹ 2⁰ x 2 = 1 x 2 2

2² 2¹ x 2 = 2 x 2 4

2³ 2² x 2 = 4 x 2 = 8 ≡ 8 XOR 13 5

45

2⁴ 2³ x 2 = 5 x 2 = 10 ≡ 10 XOR 13 7

2⁵ 2⁴ x 2 = 7 x 2 = 14 ≡ 14 XOR 13 3

2⁶ 2⁵ x 2 = 3 x 2 = 6 6

2⁷ 2⁶ x 2 = 6 x 2 = 12 ≡ 12 XOR 11 1

As can be seen, using different prime numbers results in different assignments of powers of 2 to the

field elements. However, all the elements are accounted for. Expressing the field elements as powers

of 2 allows us to determine the logarithms of the field elements easily. For instance, if 25 = 3, it follows

that log(3) = 5.

 Galois Field (GF) Arithmetic

Arithmetic in GF or finite field is different from standard arithmetic. Unlike standard arithmetic, which

has an infinite number of elements, there is limited number of elements in a finite field. Thus,

arithmetic in finite field is basically carried out on a set of elements in which when the arithmetic

operations of addition multiplication subtraction, or division is performed on the set the results is

always found in the same set (Plank, 1997; Hill, 2013).

Recall, a finite field of elements Pn is basically represented in Galois field as GF(Pn), where P is a

prime base and n is the exponent of P, modulus P. For example, GF(8) = GF(23) modulus 8 and the

elements in the field are {0, 1, 2, 3, 4, 5, 6, 7}.

2.8.4.1. Addition and Subtraction in GF

Addition and subtraction in 𝐺𝐹(2) can be summed up as follows

+ 0 1 − 0 1 𝑋𝑂𝑅 0 1

0 0 1 0 0 1 0 0 1

1 1 0 1 1 0 1 1 0

Comparing with the XOR operation on bits, it is easy to see that both addition and subtraction boil

down to an XOR operation on the field elements

46

The steps to performing addition and subtraction in GF(8) or GF(23) are as follows:

• the polynomials of deg ≤ m-1 with coefficients from F2
3, where m=3 and p=2 is defined to obtain

the field elements for F2
3as in section 2.8.3 above as:

Elements of F2
3 = {0, 1, α, α+1, α2, α2+ α, α2+1, α2+ α+1}

• the addition table is constructed using the resulting elements of F2
3 in modulus 2 as follows:

The GF addition table of Table 2.4 also has the entries for the GF subtraction operation as subtraction

is performed as addition in computer systems using the additive inverse of the subtrahend. An

element’s additive inverse is the element that results with zero when added to the minuend. Rule: a +

(-a) = 0

2.8.4.2. Multiplication and Division in GF

Multiplication in the finite field is easily performed using the logarithms. From the logarithm rule that

log(𝑎 × 𝑏) = log(𝑎) + log(𝑏)

A change of subject takes us to

𝑎 × 𝑏 = 2log(𝑎)+log (𝑏)

The multiplication table for GF(8) mod 2 is constructed using the elements of F2
3 and a deg.3

irreducible primitive polynomial in F2
3 obtained as α3+α+1 or α3+ α2+1. This result with the field

elements for F2
3 as shown in powers of alpha and is used for the construction of the multiplication

table, Table A1 (See Appendix 1).

F2
3 = {0, 1, α, α2, α3, α4, α5, α6}, mod 2

Using the irreducible polynomial α3+α+1 α3 = α + 1α4= α (α3) = α (α + 1) = α2 + α α5

= α(α4)= α(α2 + α)= α3 + α2, Now Substituting for α3 = α + 1 gives α5 = α2 + α + 1

α6=α(α5)= α(α2 + α + 1)= α3 + α2 +α, Now Substituting for α3 gives (α + 1 +α2 +α) mod 2 ∴

α6 = α2 + 1 α7= α (α6) = α(α2 + 1)= α3+ α Substituting for α3 gives (α +1+α) mod 2 = 1 α8 = α (α7)=

α(1)= α, α9 = α2, α10 = α3, α11 = α4, α12 = α5, α13 = α6

47

As can be seen, the element values for alpha repeats from α7 indicating GF(8) is a field.

Table A1 (See Appendix 1) also present entry values for division in GF(8) which is performed using

multiplicative inverse of the elements in the set. Rule: a * (a-1) = 1

As an example dividing α5 by α3 or (7/3) imply multiplying α5 by the multiplication inverse of α3 as

follows: From Table A1, the multiplication inverse of α3 is the corresponding element in the matrix

that when multiplied by α3 gives 1 as the result (i.e. Rule: a * (a-1) = 1).

Hence the inverse of α3 is α4 = 6. Therefore α5/

 α3 is obtained (α5*α4=α2). Thus: 7/3 implies 7 * 6 = 4 [where 6 is

the inverse of 3].

Division in the finite field uses a similar logarithm rule as multiplication:

log(𝑎 ÷ 𝑏) = log(𝑎) − log(𝑏)

Changing the subject gives

𝑎 ÷ 𝑏 = 2log(𝑎)−log(𝑏)

It can be seen from the Table 2.4 and Table 2.5 there are no identical entry in any of the rows or

columns and there are also no repeating or negative entries in any row or column. These characteristics

of the field element set makes the use of Galois field ideal for data recovery or error detection in data

communication or data storage. Any of the elements in the set can be regenerated from the rest of the

elements in the event of loss or damage. This is useful particularly in distributed data storage as cloud

computing as in the event of a system breakdown or disk drives failures, the system can recover missing

data and prevent any data loss. This system of data recovery is much efficient and cost effective than

those of RAID technology (Plank, 1997).

Table 2.4 - Addition in GF(8) mod 2

+ 0 1 α

=2

α3 α +

1=3

α2

=4

α4 α2 + α

=6

α6 α2 +

1=5

α5 α2 + α +

1=7

0 0 1 2 3 4 6 5 7

1 1 0 3 2 5 7 4 6

48

α

=2

2 3 0 1 6 4 7 5

α3 α +

1=3

3 2 1 0 7 5 6 4

α2

=4

4 3 6 7 0 2 1 3

α4 α2 +

α=6

6 7 4 5 2 0 3 1

α6 α2 +

1=5

5 4 7 6 1 3 0 2

α5

α2 + α +

1=7

7 6 5 4 3 1 2 0

Table 2.5 - Multiplication in GF(8) mod 2

* 0 α7

= 1

α

=2

α2

=4

α3

= α +

1 =3

α4

=α2 + α

=6

α5

= α2 + α + 1

=7

α6

= α2 + 1

=5

0 0 0 0 0 0 0 0 0

α7

= 1

0 α7 = 1 α=2 α2=4 α3=3 α4=6 α5=7 α6=5

α

=2

0 α=2 α2=4 α3=3 α4=6 α5=7 α6=5 α7 = 1

49

α2

=4

0 α2=4 α3=3 α4=6 α5=7 α6=5 α7 = 1 α=2

α3

= α + 1

=3

0 α3=3 α4=6 α5=7 α6=5 α7 = 1 α=2 α2=4

α4

=α2 + α

=6

0 α4=6 α5=7 α6=5 α7 = 1 α=2 α2=4 α3=3

α5

= α2 + α +

1 =7

0 α5=7 α6=5 α7 =

1

α=2 α2=4 α3=3 α4=6

α6

= α2 + 1

=5

0 α6=5 α7 = 1 α=2 α2=4 α3=3 α4=6 α5=7

 The RS Codeword

The ability to detect and correct data loss is of crucial importance to securing and recovering data

stored on any storage facility (most importantly, the cloud). Reed-Solomon (RS) codeword is the most

used for achieving this purpose. RS codeword is widely used for detecting and recovering data

transmission errors. The following section illustrates how the RS codewords are generated and used

for the detection and correction of errors in data transmission. According to Hill (2013) the RS

codeword is generated using three (3) polynomials namely:

The “Irreducible Polynomial” (i.e. the polynomial equivalent of a prime number) is used as the

generating polynomial for the Galois field elements generation. For the GF (8) elements generation,

the irreducible polynomial (α3+α+1) or 11 (i.e. 1011) is used.

50

The “Generator Polynomial” – This polynomial is required for generating the encoding polynomial

(which is the 3rd polynomial needed for the generation of the RS codeword). The generator polynomial

is a generic polynomial of the form;

𝑮(𝒙) = (𝒙 − 𝜶) (𝒙 − 𝜶𝟐) (𝒙 − 𝜶𝟑) … (𝒙 − 𝜶𝟐𝒕),

where α1, α2, α3, etc. are the field elements and the value 2t determines the number of the Forward

Error Correction (FEC) require. For example, assuming an RS codeword of RS [7,5] s=3, t=2 where

‘s’ is the number of bits making a symbol size (in this case 3-Bit symbols), ‘t’ is the number of the

3Bits symbols used for error correction (in this case 2 (3-Bits) symbols), and 5 is the number of 3-Bits

symbols used for representing the actual data chunks, whiles 7 is the total number of RS codewords

for a GF (8). The generic expression (a.k.a. Maximum Distance Separable-MDS) for RS codeword is

given as RS [n, k] s, t, where n is the number of codewords given as 2s – 1 and k is the number of data

chunks.

Encoding Polynomial – The encoding polynomial which is the product of the polynomials of the form

(𝑥 − 2𝑖) for 𝑖 values from 1 to the number of parity data is needed for the generation of the Reed

Solomon (RS) codeword. For the RS[7,5]3,2 specification codeword example, 2 symbols are needed

for FEC and hence only 2 of the Generator Polynomials are required as follows:

G(x) = (x-α1) (x-α2). Since addition and subtraction operations give the same result in GF,

G(x) = (x+α1) (x+α2). From Table 2.4, α = 2, and α2 = 4 therefore G(x) = (x+2)(x+4). Hence, G(x)

= x2 + 4x + 2x + 8 = x2 + 6x + 8. 8 in binary is 1000 which is bigger than the largest field elements of

7 therefore the Generating polynomial of 1011 is XOR.

 1000

XOR 1011

 0011 = 3.

Therefore, G(x) = x2 + 6x + 3 is the encoding polynomial which is expressed also as 163 and is used

for the RS codeword generation.

 Reed Solomon Encoding

Reed Solomon coding treats data as polynomials and manipulates them as such. At the heart of this

encoding technique is the production of a message polynomial M(x) that is perfectly divisible by

another predetermined polynomial (the encoding polynomial) g(x) (Hill, 2013).

51

RS coding enables data errors and erasures to be detected and corrected by appending to the

transmitting data, a redundant data in the form of parity information obtained through a long division

process by using the coefficients of the encoding polynomial to divide the bytes of the transmitting

data to obtain a remainder which is appended to the original data to generate the RS codeword that is

used for detection and correction of data corruption. As an example, suppose transmitting a text file

with content as “1 2 3 4 5 6” which has respective ASCII representation as “49 50 51 52 53 54.” By

using an encoding polynomial in GF (256) with parity of 2 given as x2 + 6x + 8 or 168, we obtain the

RS encoded output file as 49 50 51 52 53 54 186 244 through the following process (Lynson, No Date):

The original transmitting message is given as

𝑴(𝒙) = 𝟒𝟗𝒙𝟓 + 𝟓𝟎𝒙𝟒 + 𝟓𝟏𝒙𝟑 + 𝟓𝟐𝒙𝟐 + 𝟓𝟑𝒙 + 𝟓𝟒

The first step in generating the RS codeword for above message is to multiply the message by x2 to

create memory spaces for storing 2 Forward Error Correction (FEC) codes RS[255, 6] 8, 2 as follows

(cs.cmu.edu, 1998):

𝑴(𝒙) = 𝟒𝟗𝒙𝟕 + 𝟓𝟎𝒙𝟔 + 𝟓𝟏𝒙𝟓 + 𝟓𝟐𝒙𝟒 + 𝟓𝟑𝒙𝟑 + 𝟓𝟒𝒙𝟐 + 𝟎𝒙 + 𝟎

The encoding polynomial of 1𝑥2 + 6𝑥 + 8 is used to divide into 𝑀(𝑥) above through polynomial long

division and Galois Field arithmetic as follows:

The RS codeword is finally generated by replacing the values in 𝑀(𝑥) where the 2 FEC symbols are

with the remainder values obtained from the long division as follows:

52

𝑴(𝒙) = 𝟒𝟗𝒙𝟕 + 𝟓𝟎𝒙𝟔 + 𝟓𝟏𝒙𝟓 + 𝟓𝟐𝒙𝟒 + 𝟓𝟑𝒙𝟑 + 𝟓𝟒𝒙𝟐 + 𝟏𝟖𝟔𝒙 + 𝟐𝟒𝟒 The

remainders are used for error detection and recovery.

 Reed Solomon Decoding

Data transmitted is susceptible to corruption in various ways such as alteration or deletion. When an

RS codeword is corrupted, there are a number of procedures that should be followed to recover the

original data. For example, on receiving the codeword, the encoding polynomial is used to perform a

polynomial division on it. RS codewords are designed to be perfectly divisible by an encoding

polynomial (Plank, 2013; Twum et. al, 2016a). Thus, upon dividing a codeword by the encoding

polynomial, a remainder of zero indicates that the data has not suffered corruption while any other

remainder value means that the original codeword has been altered.

The detection of an error is invariably followed by an attempt to rectify it. It is possible to use remainder

data as a means of determining the polynomial that represents the error so that it can be subtracted

from the codeword to rectify the error. Some methods that have been used for correcting a corrupted

codeword include:

2.8.7.1. Lookup Table

It is possible to use a lookup table (REDTITAN, 2011), to determine the error polynomial. This

involves finding the remainders when all the possible errors are divided by the encoding polynomial.

The remainders are recorded in a table that can be referenced when an error is detected. An example

is shown by Table 2.6 using the encoding polynomial

𝑥2 + 6𝑥 + 3

on RS codeword of length 7.

Table 2.6 - Lookup Table Using RS Codeword of length 7

Index

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

Value

1 1 1𝑥 6𝑥 +3 1𝑥 +1 7𝑥 +3 7𝑥 +2 6𝑥 +2

53

2 2 2𝑥 7𝑥 +6 2𝑥 +2 5𝑥 +6 5𝑥 +4 7𝑥 +4

3 3 3𝑥 1𝑥 +5 3𝑥 +3 2𝑥 +5 2𝑥 +6 1𝑥 +6

4 4 4𝑥 5𝑥 +7 4𝑥 +4 1𝑥 +7 1𝑥 +3 5𝑥 +3

5 5 5𝑥 3𝑥 +4 5𝑥 +5 6𝑥 +4 6𝑥 +1 3𝑥 +1

6 6 6𝑥 2𝑥 +1 6𝑥 +6 4𝑥 +1 4𝑥 +7 2𝑥 +7

7 7 7𝑥 4𝑥 +2 7𝑥 +7 3𝑥 +2 3𝑥 +5 4𝑥 +5

From Table 2.6, should a division of the codeword by the encoding polynomial yield a remainder of

6x + 4, it can be surmised that the error has a value of 5 and an index of 4 (thus, 5x4). Similarly, a

remainder of 4x + 4 indicates the presence of an error with value of 4 at index of 3 (i.e. 4x3).

2.8.7.2. Advanced Error Correction

The lookup table works well when the RS codeword is short and the size of the finite field that the

codeword uses is relatively small. Longer codewords, however, require much larger and more complex

lookup tables. For longer codewords, a more advanced procedure is recommended for quickly and

efficiently acquiring the error polynomial. The steps involved in the advanced error detection are as

follows (cs.cmu.edu, 1998):

i. Creation of a syndrome polynomial

ii. Solving the key equation to obtain the error locator and magnitude polynomials

iii. Searching for the values of the error locations

iv. Determining the magnitudes of the errors

The Key Equation and the Syndrome Polynomial - The positions of the errors in the received

codeword can be thought of as the roots of a polynomial that is called the locator polynomial. From

this perspective, it is necessary to find the polynomial which describes the locations of the errors in the

54

received codeword. Aside the locations of the errors, it is also necessary to know the value (or

magnitude) of the error at that particular location. Another polynomial, called the magnitude

polynomial, needs to be found which will evaluate at a specified location to give the magnitude of the

error at that particular location.

Any error that is introduced into the Reed-Solomon codeword can be thought of as being comprised

of specific additions of value at particular locations in the original codeword. As such, determining the

error-locator and error-magnitude polynomials is key to discovering the errors in the codeword and

fixing the errors.

If C(x) denotes the original codeword, R(x) denotes the received codeword and E(x) denotes the error

that was introduced into the codeword, then the following relations describe the relationship between

the original codeword, received codeword and the error. The R(x) and C(x) will be given by eq. 01

and eq. 02 respectively as:

𝑅(𝑥) = 𝐶(𝑥) + 𝐸(𝑥) … … … … … … … 𝑒𝑞. 01

𝐶(𝑥) = 𝑅(𝑥) − 𝐸(𝑥) … … … … … … … 𝑒𝑞. 02

Since the codeword was created to be a perfect multiple of the encoding polynomial (Plank, 2013;

Twum et. al, 2016a), evaluating the received codeword at the roots of the encoding polynomial will

cause C(x) in eq. 01 to become 0. As such evaluations that led to the production of the syndrome

polynomial that are non-zero are in fact, evaluations of E(x) at the roots of the encoding polynomial

(Trench, 2003). In other words, the syndrome polynomial quantifies the error (REDTITAN, 2011).

Attempts to solving the key equation to extract the error-locator and error-magnitude polynomials have

the syndrome polynomial as the starting point. After the syndrome polynomial is generated, the next

step is to determine the error locator polynomial and the error magnitude polynomial for that specific

syndrome. Numerous algorithms have been proposed for achieving this. Some of which are the

Peterson-Gorenstein-Zierler, the Berlekamp-Massey, and Sugiyama (Cox, 2012). However, two most

widely used methods are the

i. Berlekamp-Massey Algorithm

ii. Euclid-Sugiyama Algorithm (or Extended Euclidean Algorithm)

Berlekamp-Massey algorithm - The Berlekamp-Massey algorithm, which locates the Linear

Feedback Shift Register for a given binary output sequence, works by initializing the locator

55

polynomial to 1 then testing to see if the assumed locator polynomial is able to generate a portion of

the syndrome (Cox, 2012). If it is able to generate the required portion, the next iteration checks to see

if it is able to generate a larger portion of the syndrome. If it is unable to generate the required portion

of the syndrome, the assumed polynomial is modified to generate the required portion and another

iteration of the algorithm is ran. The iterations run till a locator polynomial is found which is able to

generate the entire syndrome.

Euclid-Sugiyama Algorithm (or Extended Euclidean Algorithm) - The Euclidean algorithm is an

algorithm that finds the Greatest Common Divisor (GCD) of two numbers. The same algorithm can be

used to find the GCD of two polynomials (REDTITAN, 2011; Cox, 2012). The Extended Euclidean

Algorithm was adapted by Sugiyama to solve the key equation, giving the error-locator and error-

magnitude polynomials. The Euclid-Sugiyama algorithm works by first dividing xn by the syndrome

polynomial, then dividing the syndrome polynomial by the remainder from the first division, and then

repeating the division-by-remainder process until a remainder is found whose degree is less than n ,

where n is the degree of the field polynomial. 2

The Berlekamp-Massey Algorithm is reported to have better and more efficient hardware

implementation but the Euclid-Sugiyama Algorithm is adopted by this study as it is easy to implement

in software (Cox, 2012).

Locating the error position using Chein Search Algorithm - Algorithm as Chein Search algorithm

replaces the value of ‘x’ in the error locator polynomial (obtained from the utilisation of a Reed

Solomon decoding algorithm such as Euclidean algorithm or Berlekamp Messey algorithm), with the

inverse values of the Galois Field (GF) elements and evaluating using GF arithmetic (Wang, 2009;

Twum et. al, 2016b). A computed value of zero (0) points to the location of the error (REDTITAN,

2011).

Correcting the error using Forney algorithm - The Forney algorithm which is of the form ei

= xi [Ω(X-1)/ ᴧ(X-1)]

Where ei is the value of the errored bit, xi is the value of the GF element that pointed to the location of

the error by the Chein search algorithm, Ω(x-1) is the magnitude polynomial, and ᴧ(x-1) is the locator

polynomial (REDTITAN, 2011).

56

2.9. Review of Existing Related Cloud File Storage Systems

 Google File Systems (GFS)

Google is a major player in the world-wide web, generating exabytes of data from all the services they

render such as the Google Search Engine, Gmail, Google Drive, Google+, Hangouts, Android etc.

(Carson, 2016).

Instead of the traditional data centre, Google opts for a Distributed Computing System using large

clusters of relatively inexpensive machines running on Linux operating systems. “Cheap” machines

have a higher tendency to fail but Google’s ingenious use of their proprietary data storage system,

Google File System (GFS), ensures that data is always available and none goes missing. According to

Strickland (2017) in an official GFS report, Google revealed the specifications of the equipment it used

to run some benchmarking tests on GFS performance. The test equipment included one master server,

two master replicas, 16 clients and 16 chunk servers. All of them used the same hardware with the

same specifications, and they all ran on Linux operating systems. Each had dual 1.4 gigahertz Pentium

III processors, 2 GB of memory and two 80 GB hard drives. In comparison, several vendors currently

offer consumer PCs that are more than twice as powerful as the servers Google used in its tests. Google

developers proved that the GFS could work efficiently using modest equipment.

The GFS is designed to organize and manipulate huge files and to allow application developers the

research and development resources they require. While some of the features of the GFS have been

kept secret by Google, enough information has been released by the internet giant on how the GFS is

structured as well as how it operates.

Being proprietary, GFS is optimized for the operations of Google and their clients. One such peculiarity

is the optimization for appending data instead of overwriting it. This is because Google rarely needs

to overwrite files; instead they add data to the end of files.

Much of the administrative duties required to keep the system running are automated, following after

the principle of autonomic computing, a concept in which computers are able to diagnose problems

and solve them in real time without the need for human intervention. In order to support autonomic

computing on a large network of computers, the developers of the GFS designed it to be very simple.

Users were given access to some very basic file commands such as open, create, read, write and close,

with the addition of ‘append’ and ‘snapshot’ to meet Google’s special needs. ‘Append’ allows client

computers to add information to an existing file without overwriting the previously written data while

‘snapshot’ creates a copy of the computer’s contents.

57

2.9.1.1. File Storage

Files on the Google File System are often very large – several gigabytes large. Moving files that large

in a network uses up a lot of bandwidth. GFS resolves that issue by splitting each file into chunks of

64 megabytes (MB) each (Techopedia, 2017).

Each chunk is given a unique 64-bit identification number called a chunk handle. Keeping the chunks

small helps with the bandwidth as well as making it easier to port chunks from one machine to another

in order to balance workload across the system.

2.9.1.2. System Architecture

Figure 2.11 and Figure 2.12 shows the GFS architecture.

Figure 2.11 – GFS Architecture (Roshoan, 2017)

Figure 2.12 – GFS Architecture (Jain, 2013)

58

The GFS is organized into clusters of computers. Each cluster is a network consisting of hundreds or

even thousands of machines. Each cluster comprises of a single master server and several chunk servers

and clients - Figure 2.12.

Clients are any computers or computer applications which make a file request from the cluster. A client

may make one of several requests including retrieving and manipulating existing files to creating new

files on the system.

The master server coordinates activities and processes within the cluster. It maintains an operation log

which tracks all the activities in the cluster. The master server also keeps track of metadata on all the

chunks residing in the cluster. The metadata contains information on where the chunks reside in the

cluster as well as how the chunks come together to form the full file. At start-up, the master receives

data from all the chunk servers, telling the master the contents of their inventories. Every cluster has

exactly one master server active at any point in time. However, there are secondary masters which

keep copies of the master’s contents. In the event where a master server goes down and fails to reboot,

a secondary master server assumes the job of master server in that cluster.

Chunk servers do most of the work in a GFS cluster. The 64-MB file chunks are stored within the

chunk servers. The GFS makes copies or replicas of the chunks and stores them on chunk servers in

different locations or racks. This protects against data loss when a chunk server or rack of servers

become inaccessible. The replicas are also identified as primary and secondary, with one primary and

a backup of one or more secondary replicas. Chunk servers do not relay their file chunks through the

master server when a client requests it. Instead, the chunk server connects directly to the client server

and delivers directly to the client. This prevents a bottle-neck at the master server.

2.9.1.3. Read Requests (Download)

Read requests are handled simply. A client makes a request to the master server for the location of a

particular file in the cluster. The master responds with the location of the primary replica of the

specified chunk. After that the client contacts the chunk server directly, which in turn sends the replica

to the client.

2.9.1.4. Write Request (Update)

Again, the client sends a request to the master server which replies with the locations of the primary

and secondary replicas. The client sends the write data to all the chunk servers, starting the chunk

server that’s closest then continuing to the furthest chunk server. Upon receiving the data, the chunk

59

server with the primary replica assigns serial numbers to the changes to the file. The changes are called

mutations. The order of the serial numbers instructs each chunk server how to apply the mutations.

After assigning the serial numbers, the chunk server with the primary replica begins to apply the

mutations to its own data, after which it sends a write request to the secondary replicas for them to

imitate the action. When all the chunk servers have successfully updated their replicas, the primary

chunk server notifies the client of the update success. In the event where a secondary server is unable

to apply its updates, the primary replica instructs the secondary one to start the process from the

beginning.

2.9.1.5. Erasure Protection

Google File System guards against data loss by making copies of the data chunks and storing the copies

on different nodes within the cluster.

2.9.1.6. Data Access

The Google File System is proprietary and used by Google to manage their large data sets. In this case,

the data is accessed solely by the owner since the data owner is also the owner of the storage units.

2.9.1.7. Use of the data/resource

The data stored in the Google File System is used solely by Google to cater for their application’s data

and processing needs. All uses of the data are therefore known and sanctioned by the owner.

2.9.1.8. Data/Resource Location

The data is stored in Google’s clusters of commodity hardware. The equipment is owned by the data

owners. As such the data is located in a known place.

2.9.1.9. Ownership

There is no contention as to the ownership of the data in the Google File System since the data owner

is also the storage service provider.

 Apache Hadoop

According to Apache Hadoop (2013), Hadoop is a collection of open source libraries for processing

large data sets across thousands of computers in clusters. Hadoop consists of multiple libraries which

together perform massive data storage and processing. Two of the core libraries in Apache Hadoop are

Hadoop Distributed File System (HDFS) and Hadoop MapReduce.

60

By default, Hadoop uses a java-based data processing framework called MapReduce to work with the

data itself. MapReduce runs a series of jobs which fetch data from the file system as needed.

The default file system employed by Hadoop is the HDFS, although it can use other file systems as

well. HDFS works by splitting files into large chunks and distributing them to worker nodes in a

cluster. Each cluster consists of multiple worker nodes and a single master node. The worker nodes

house both the chunks of data and the portions of the application software which make use of the data

chunk. This combination maximizes the computational speed and efficiency of the HDFS (Hadoop,

2013).

2.9.2.1. HDFS Architecture

Figure 2.13 – Apache Hadoop Architecture (Hadoop, 2013)

Figure 2.13 shows the Hadoop architecture. A small Hadoop cluster consists of a single master for Job

Tracking, Task Tracking, NameNode and DataNode, and multiple worker nodes for Data and Task

Tracking. For larger clusters, the nodes in an HDFS are managed by a dedicated NameNode server.

Hadoop operates by splitting files into large chunks and distributing them to the worker nodes in the

cluster. It then transfers packaged code to the worker nodes to process the data in parallel. The

combination of both data and code on the same node makes computations faster and more efficient

than in the alternative supercomputer architecture that relies on a parallel file system (Natarajan,

2012).

2.9.2.2. Erasure Protection

To guard against data loss, Hadoop creates copies of each data chunk and stores the copies in different

nodes. This significantly increases the amount of disk space required to store data.

61

2.9.2.3. Data Encryption

Hadoop permits the use of encryption but recommends plain/raw formats for the files stored in the file

system in order for applications to work easily with the file.

2.9.2.4. Data/Resource Location

Hadoop can be deployed in a company’s data center or on the cloud. Deploying on the cloud eliminates

costs of hardware and specific setup expertise. Vendors such as Microsoft, Amazon, Google, Oracle

and IBM currently offer cloud services running Apache Hadoop. In either case, whether using the

onsite data center or deploying on the cloud, all the data chunks can be found in one company’s servers

site (DeZyre, 2016).

2.9.2.5. Data Access

In the case of onsite deployment, the data can be accessed only by the owner of the data. For cloud

deployment however, both the data owner and the service provider have access to all the chunks of the

data as well as the metadata required to put all the chunks together to reconstruct the full file.

2.9.2.6. Ownership

The ability of the cloud service provider to piece together all the chunks of the data without the express

permission of the data owner raises questions as to the actual ownership of the data since the service

provider has just as much privileges with the data as does the uploader.

2.9.2.7. Use of the data/resource

With full access comes the ability to use the data for whatever purposes they deem fit. In this regard,

the service providers are able to put the data/resource to use for their own benefit without even

notifying the uploader.

 Backblaze B2

According to BackBlaze (2017), Backblaze is an online data storage service that offers two services; a

reliable and affordable object storage service and a computer backup service. The computer backup

service allows users of the service to upload all the files on their computers to the cloud. The upload

can be scheduled or continuous.

62

2.9.3.1. Architecture

According to BackBlaze (2015a), all data that is uploaded to Backblaze’s servers is first split to 16

shards and 8 parity shards are created using the Reed-Solomon erasure correction algorithm (Figure

2.14). The 24 shards are then stored in separate storage pods, each pod being in a separate cabinet to

increase resilience in case of power loss to a cabinet. Backblaze runs only one data centre (Figure 2.15)

which is where all data uploaded to the Backblaze cloud is stored.

Figure 2.14 – Backblaze B2 System (BackBlaze, 2015a)

Figure 2.15 – Backblaze B2 System Architechture (BackBlaze, 2015b)

2.9.3.2. Data Encryption

Backblaze uses a combination of AES (Advanced Encryption Standard) and SSL (Secure Socket

Layer) to secure client data.

63

2.9.3.3. Data/Resource Location

All data uploaded to Backblaze is stored in their data center. All the shards are in the same location,

accessible by Backblaze.

2.9.3.4. Data Access

The data is fully accessible by the service provider since all the data shards are located in the service

provider’s data center.

2.9.3.5. Ownership

The full access that the service provider has to the file can create a confusion with regards to the

ownership of the file since the service provider can do all the things that the uploader can do with the

file.

2.9.3.6. Use of the data/resource

The cloud service provider has all it takes to reconstruct the file and use them to the benefit of the

service providers.

2.10. Review of Existing Cloud Storage Security Architecture

 Subscriber → Provider (Direct) Model

The prevalent model among users of cloud storage is the direct link to the CSP via the web interface

or the desktop/mobile client as shown in figure 2.16. CSPs such as Google Drive, Dropbox and Box

all provide an interface through which the client can upload or download files, and in the case of

desktop or mobile interfaces, synchronize files and folders on their desktop or mobile device. In the

direct model, data security while the file is being transferred and while it is residing in the cloud storage

space, is the responsibility of the CSP. Different CSPs implement security in a different ways but the

most common approach is to split the file into chunks on the subscriber’s end, encrypt the chunks, then

transfer the chunks individually to the provider’s infrastructure over the internet. The following section

reviews how some of the most well-known CSPs implement data security.

64

Figure 2.16 - Direct Model of Subscriber-CSP interaction

2.10.1.1. Dropbox Business

Figure 2.17 - Security Architecture of Dropbox (Dropbox, No Date)

The Dropbox architecture comprises of four services. The four services work together to facilitate the

security and ensure the integrity of files sent to Dropbox for safekeeping. The four services are the

Processing Service, Storage Service, Metadata Service and the Notification Service (Figure 2.17).

65

The Processing Service operates between the client side application and the storage service. It works

by breaking the file to be synchronized into blocks. The service proceeds to encrypt each block after

which the modified blocks are then synced.

The Storage Service operates on the server side. This service works by fetching each file that was

uploaded to the server. The files are retrieved based on their hash value and an additional layer of

encryption is provided for all the blocks of the file.

The Metadata Service is responsible for storing additional information such as file name and type, in

a discrete storage location separate from the file blocks. The metadata provides a record of the files

associated with a client’s account.

In addition, regular testing and auditing are done on the application and network by teams of internal

security specialists as well as third-party specialists to ensure the security of the back-end network.

2.10.1.2. Google Drive

According to TipTopSecurity (2016), the Google Drive client side application first encrypts the data

to transfer using Transport Layer Security (TLS) before uploading the data to Google servers. This

provides security for the data while it is in transit using the same standard that browsers use to access

secure (Hypertext Transmission Protocol Secure – HTTPS) websites.

After the data reaches Google servers, it is decrypted and re-encrypted using 128-bit AES keys. The

encryption keys are themselves encrypted with a rotating set of master keys, adding an additional layer

of security to the data.

Furthermore, all metadata associated with the uploaded data are encrypted as well.

However, Google operates a privacy policy that allows them to effectively view and use all data

uploaded to their servers, as they see fit. In effect, uploading files to Google Drive is comparable to

transferring ownership of the file to Google.

 Subscriber -> Cloud Access Security Broker -> Cloud Storage Provider

(Indirect) Model

In this model, the subscriber adds to data security by involving a Security-As-A-Service (SECaaS)

system in the cloud storage setup (Figure 2.18). Cloud Access Security Broker (CASB) systems are

SECaaS implementations that function as a software guard for the data that moves around within and

66

out of an organization. A CASB acts as an independent intermediary between a cloud subscriber and

cloud provider. CASB’s are on-premises or cloud-hosted software that sits between cloud subscribers

and CSP’s to enforce security, compliance, and governance policies for cloud usage (SkyHigh, 2017).

By employing a CASB introduces an extra layer of security in the cloud environment which gives the

subscriber security assurance and install some level of trust (DoubleHorn, 2017). CASB systems

enforce the regulations on what data can be transferred in and out of the organization, especially to

Cloud Servers (Rubens, 2017).

CASBs support a varying set of functions including, but not limited to, visibility into cloud usage

within the organization, enforcement of compliance with the organization’s regulations for cloud

interaction, protection from external malware and a way to ensure that data is stored in the cloud

securely. Notable CASBs are Forcepoint CASB, Skyhigh Networks, Cisco Cloudlock and Microsoft

Cloud App Security. By way of securing data sent to the cloud, CASBs often encrypt the organization’s

data before upload. In cases where the data in the file is marked as too important to risk its contents

being disclosed, the CASB protects the organization by preventing the upload of the file to the Cloud

Storage Provider. Figure 2.19 is an example implementation of CASB via Cloud Proxy.

Figure 2.18 - Indirect Model of Subscriber-CSP Interaction Using Cloud Access Security Broker

https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html

67

Figure 2.19 - Example Implementation of Cloud Access Security Broker via Cloud Proxy (Forcepont, 2017)

CHAPTER 3

3. METHODOLOGY

3.0. Introduction

In this chapter the methodology for the proposed system for securing files outsourced for cloud storage

is presented.

The study employs the design research methodology which enables the development and delivery of

new solutions that help to understand human needs and meet them thereby improving livelihoods.

Design research enables researchers to understand and incorporate behaviour pattern and define a

problem in a context that focuses on achieving a set result (Lee, 2012). This research methodology is

adopted as it gives designers and client’s clearer understanding of the problem and provides better

insight into the problem at hand while providing answers to the most fundamental questions faced

throughout the process. It provides answers to questions as:

• What is the correct product or service to design?

• What characteristics should it have?

• Is it the solution working as intended?

https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx
https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx
https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx

68

Design research doesn’t necessarily have to lead to a solution but should generate some good and

feasible ideas (Freach, 2011).

The study proposes a framework for securing files outsourced for cloud storage dubbed Cloud Data

Distribution Intermediary (CDDI) that is implemented at the cloud subscriber gateway. The

CDDI framework uses erasure coding, data dispersal, and encryption to secure files. The framework

has a client side (CDDI Client) which is implemented on the cloud subscriber’s gateway system to

encrypt and split the subscriber’s data into chunks of data fragments and distribute them randomly to

the subscribers selected multiple CSP storage infrastructures. There is also a server side (CDDI

Metadata Server) that holds metadata information for all the files that the subscriber uploads to the

cloud. The CDDI framework seeks to secure subscribers data from threats such as CSP using

subscriber’s data, the subscriber not knowing where (which countries) their data is located, the CSP

claiming ownership of the subscriber’s data, and also not knowing who has unauthorised access to

their data. The CDDI is developed into a software system by following a Plan-Driven Incremental

software development approach in which system increments are identified and planned well in advance

before development. This process method is adopted for the system development because it enables

rapid development of the system due to its feature of permitting the software process activities of

specification, development and validation to run concurrently. In addition the approach enables the

development and delivery of versions of the system prototypes that are introduced to end-users for

their rapid feedback (Sommerville, 2011). An Experimental Lab set-up using a very high-spec PC

(64-bit Intel Core-i7 CPU running at 3.60GHz, 12.0GB RAM) and Laptop (64-bit Intel Core-i7 CPU

running at 2.20GHz, 8.0GB RAM) and requiring a stable computer network infrastructure is employed

for the study. The JAVA, SQL, and PHP, software development tools are used to develop the

proposed CDDI framework into a software system dubbed ‘SecureMyFiles (SMF)’ that is

installed on the cloud subscriber gateway system. The implementation details for the SMF system

are presented later in Chapter 4 of this thesis.

3.1. The Proposed Architecture

Figure 3.1 is the overall architecture of the proposed solution for securing data outsourced for cloud

storage.

69

Subscriber → Cloud Data Distribution Intermediary (CDDI) → Cloud Storage Provider

Figure 3.1 - Proposed Model for Cloud Data Storage Using CDDI

3.2. Cloud Data Distribution Intermediary (CDDI)

The study proposes a new indirect model of interaction between the subscriber of a cloud storage

service and the Cloud Storage Provider. The study proposes that a software framework intermediary

should be introduced into the data transfer transaction to inject a high degree of security into the data

storage transaction. The intermediary would be responsible for ensuring that the subscriber’s data is

protected at various levels from the diverse threats outlined in the problem statement of this study.

Based on the manner in which the intermediary operates, the study refers to the intermediary as a Cloud

Data Distribution Intermediary (CDDI). The operation of the CDDI would involve the following

processes:

• Receive data from the user for storage in the cloud

• Obfuscate the name of the file to hide its purpose from malicious persons snooping on the

network and hackers who may have gained access to the file information in the subscriber’s

cloud storage account

• Encrypt the subscriber’s data to hide its content from unauthorized persons who may obtain it.

• Distribute the encrypted content of the file in unique pieces to a number of Cloud Storage

Providers to prevent the problem of one CSP having access to the entire data.

• Save metadata on each file uploaded in order to retrieve the file when required by the cloud

subscriber

70

 Components Of The Cloud Data Distribution Intermediary

An effective CDDI framework should comprise of a number of modules, each performing such tasks

as would help to secure the file being stored on the cloud.

3.2.1.1. File Name Obfuscation Module

The file name is hashed using a hashing algorithm as the first layer of system security, to obscure the

identity of the file being uploaded. This step makes it difficult for people or software that are sniffing

on the network from discovering the true purpose of the file while it is in transit. Similarly, any intruder

to the subscriber’s cloud account would likewise be confounded by the irregular file name.

3.2.1.2. Data Obfuscation Module

As a second layer of security, the contents of the file are transposed using the encryption function of

this study’s proposed transposition cipher algorithm which is based on the rotations of the Rubik’s

cube to generate the cipher text.

Initialization - The first activity to perform in using Rubik’s Cube as a transposition model is to

prepare the six faces of the cube to receive the cleartext (Figure 3.2a and Figure 3.2b).

71

 y- Plane

Figure 3.2a - Six faces of the Rubik’s Cube

The sizes of the square grid on the faces of the cube are computed so that all the data can be

accommodated, with minimum padding. This can be achieved by following the algorithm in Listing

3.1

1. Take the integer ceiling from the division of the length of the data by 6.

2. Take the integer ceiling of the square root of the result from (1).

3. Define 6 two-dimensional arrays to function as the faces of cube using the result from (2) as

both dimensions of the array.

Listing 3.1 – Setting up a minimum padding cube Initialisation

of the Cube with TEXT

 • Assuming the message to be transported (the plaintext) is:

z - Plane x - Plane

72

“As a second layer of security, the content of the fil”

Algorithm

1. Number of Characters = 54

Take 54 ÷ 6 = 9

2. Take √9 = 3

3. Create array with dimensions = 6 X 3

X 3 (i.e.) array [6][3][3]

 Face 4 (left side) Face 5 (Top) Face 6 (Bottom)

Figure 3.3b - Six faces of the Rubik’s Cube initialized with data

After the cube has been created the cleartext are copied onto the faces of the cube sequentially as shown

above, from the first face to the sixth. The remaining cells on the face of the cube are filled with the

null character or zero.

Generation of Rotation Sequence from the Key - The key for encrypting the data is transformed into

a sequence of rotations in order for the encryption to be performed. Two things are needed to perform

one rotation – the plane in which to perform the rotation and the index of the row or column on which

 Face 1 (Front) Face 2 (right side) Face 3 (back)

73

the rotation is to be done. Any algorithm which can translate the key into a sequence of rotations is

useful at this stage of the transposition process. The algorithm used is as below.

1. Take the Key = “hippopotamus”

2. Take the SHA1 of the key

 = a1219e634d04b405d90f13505c4d36578dc97241

3. Take the ASCII value of each character in the SHA1

a) Determine the plane (x, y, or z) for the rotation = char % 3

b) Determine the index for the rotation (𝒄𝒉𝒂𝒓𝟒 + 𝒄𝒉𝒂𝒓𝟑 +

𝒄𝒉𝒂𝒓𝟐) % 𝒄𝒖𝒃𝒆 𝒔𝒊𝒛𝒆 (𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝟑 𝒇𝒐𝒓 𝒂𝒃𝒐𝒗𝒆 𝒆𝒙𝒂𝒎𝒑𝒍𝒆)

4. Save the result from 3(a) as the plane for the rotation and the result from 3(b) as the index on

the plane at which the rotation should be done.

Rotation of the Cube - To mimic the rotation of the cube, strips of data is copied from one face onto

another in a set pattern (Figure 3.3a and Figure 3.3b). The pattern in Listing 3.2 is one of several

patterns that can be used to implement the rotation activity. This pattern visualizes faces 1, 2, 3, 4, 5

and 6 as the front, right side, back, left side, top and bottom faces respectively. 𝑛 is the number of row

(and columns) of each face of the cube.

To rotate a strip in row 𝑖 clockwise in the 𝑦-axis (Plane 0)

1. Copy the data in row 𝑖 of face 1 to a temporary location.

2. Replace the data in row 𝑖 of face 1 with the data in row 𝑖 of face 2.

3. Replace the data in row 𝑖 of face 2 with the data in row 𝑖 of face 3.

4. Replace the data in row 𝑖 of face 3 with the data in row 𝑖 of face 4.

5. Replace the data in row 𝑖 of face 4 with the data being held in the temporary location.

To rotate a strip in column 𝑖 clockwise in the 𝑥-axis (Plane 1)

1. Copy the data in column 𝑖 of face 1 to a temporary location.

2. Replace the data in column 𝑖 of face 1 with the data from column 𝑖 of face 6.

3. Replace the data in column 𝑖 of face 6 with the data from column (𝑛 − 𝑖) of face 3, in reverse order.

74

4. Replace the data in column (𝑛 − 𝑖) of face 3 with the data from column 𝑖 of face 5, in reverse order.

5. Replace the data in column 𝑖 of face 5 with the data being held in the temporary location.

To rotate a strip in column 𝑖 clockwise in the 𝑧-axis (Plane 2)

1. Copy the data in column 𝑖 of face 2 to a temporary location.

2. Replace the data in column 𝑖 of face 2 with the data from row 𝑖 of face 6, in reverse order.

3. Replace the data in row 𝑖 of face 6 with the data from column (𝑛 − 𝑖) of face 4.

4. Replace the data in column (𝑛 − 𝑖) of face 4 with the data from row (𝑛 − 𝑖) of face 5, in reverse order.

5. Replace the data in row (𝑛 − 𝑖) of face 5 with the data being held in the temporary location.

Listing 3.2 – Clockwise rotations in the three planes of the cube

Anticlockwise rotations in the three axes can be achieved by reversing the direction of copying of the

clockwise rotations shown in Listing 3.2.

75

Figure 3.4a - Cube rotation pattern

76

Figure 3.5b - Cube rotation pattern with data

77

3.2.1.3. Data Distribution Module

The greatest strength of the Cloud Data Distribution Intermediary comes from its use of resilient

techniques to distribute the contents of the subscriber’s file to multiple Cloud Storage Providers. By

so doing, the CDDI is able to mitigate the issue of data ownership on the cloud, as no one CSP has

sufficient data to rebuild the file and therefore any claim of data ownership on the part of the CSPs are

rendered null by their inability to make any use of the portions of the file in their custody.

The data distribution module comprises of two sub-modules, namely:

1. File Splitting and Erasure Protection Module (FSEPM): This module would be responsible for

breaking the encrypted file into a pre-determined number of pieces or shards for subsequent

upload to the cloud. To guard against data loss, data corruption as well as Cloud Storage Service

down-time, this module makes use of two very resilient techniques to ensure that in most cases,

the full file is available to the subscriber when the file is requested. The techniques that the

CDDI makes use of, are Reed-Solomon Coding and the newly developed Checksum data

recovery technique.

2. Shards Dispersal Module (SDM): This module would be responsible for ensuring that there

isn’t an observable pattern in how the file shards are sent to the cloud, by scrambling the

original order of the shards.

The sections that follow discuss the sub-modules of the Data Distribution Module in more detail.

3.3. File Splitting And Erasure Protection Sub-Module

The proposed system uses one of two Erasure Protection techniques when a file is being uploaded to

the cloud. The two techniques are Reed Solomon Coding and Checksum Data Recovery Technique.

 Reed Solomon Coding

To enforce Reed Solomon Coding, three polynomials are required, namely:

i. The irreducible polynomial (also referred to as the generating polynomial)

ii. The generator polynomial

iii. The encoding polynomial

As noted in the case of GF(8) earlier in the literature review, for GF(256) or GF(28) (the focus of this

study), the number of RS codewords generated is obtained as n = 28-1 = 255. Hence for the 32 (8-bits

78

Symbols) parity shards or (32 Forward Error Correction (FEC) codes) require by this study imply

splitting files into 223 (8-bits symbols) data shards. To achieve this, the following are undertaken.

Step-1: A degree 8 irreducible polynomial (a polynomial equivalent of a prime number) in F2
8 obtained

as P(x) = α8+ α4+ α3+ α2+1 = 285 [2], (Mathematics Stack Exchange, 2011), is used to generate the

GF(256) field elements of (0-255).

Step-2: The generator polynomial which is needed for the generation of the encoding polynomial is

defined for the creation of 32 (8-bits Symbols) parity shards or (32 Forward Error Correction (FEC)

codes) as follows:

𝐺(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼2)(𝑥 − 𝛼3)(𝑥 − 𝛼4)(𝑥 − 𝛼5)(𝑥 − 𝛼6)(𝑥 − 𝛼7)(𝑥 − 𝛼8)(𝑥 − 𝛼9) (𝑥

− 𝛼10)(𝑥 − 𝛼11)(𝑥 − 𝛼12)(𝑥 − 𝛼13)(𝑥 − 𝛼14)(𝑥 − 𝛼15)(𝑥 − 𝛼16)(𝑥 − 𝛼17)(𝑥

− 𝛼18)(𝑥 − 𝛼19)(𝑥 − 𝛼20)(𝑥 − 𝛼21)(𝑥 − 𝛼22)(𝑥 − 𝛼23)(𝑥 − 𝛼24)(𝑥 − 𝛼25)

 (𝑥 − 𝛼26)(𝑥 − 𝛼27)(𝑥 − 𝛼28)(𝑥 − 𝛼29)(𝑥 − 𝛼30)(𝑥 − 𝛼31)(𝑥 − 𝛼32)

Equation 3.1

Now substituting values of ‘α’ in Step-1 with their decimal equivalent from the GF(256) elements

(Table A1 – Appendix 1) result with:

𝐺(𝑥) = (𝑥 + 2)(𝑥 + 4)(𝑥 + 8)(𝑥 + 16)(𝑥 + 32)(𝑥 + 64)(𝑥 + 128)(𝑥 + 29)(𝑥 + 58)(𝑥

+ 116)(𝑥 + 232)(𝑥 + 205)(𝑥 + 135)(𝑥 + 19)(𝑥 + 38)(𝑥 + 76) (𝑥 + 152)(𝑥

+ 45)(𝑥 + 90)(𝑥 + 180)(𝑥 + 117)(𝑥 + 234)(𝑥 + 201)(𝑥 + 143)

(𝑥 + 3) (𝑥 + 6) (𝑥 + 12) (𝑥 + 24) (𝑥 + 48) (𝑥 + 96) (𝑥 + 192) (𝑥 + 157)

Equation 3.2

Since the addition and subtraction arithmetic operations in GF give the same results, the subtraction

operator in [equation 3.1] is replaced with addition in [equation 3.2].

Step-3: The generator polynomial of [equation 3.2] is then expressed in the form

𝐺(𝑥) = 𝑎32𝑥32 + 𝑎31𝑥31 + 𝑎30𝑥30 + 𝑎29𝑥29 + 𝑎28𝑥28 + 𝑎27𝑥27 + 𝑎26𝑥26 + 𝑎25𝑥25 +

 𝑎24𝑥24 + 𝑎23𝑥23 + 𝑎22𝑥22 + 𝑎21𝑥21 + 𝑎20𝑥20 + 𝑎19𝑥19 + 𝑎18𝑥18 + 𝑎17𝑥17 + 𝑎16𝑥16 +

 𝑎15𝑥15 + 𝑎14𝑥14 + 𝑎13𝑥13 + 𝑎12𝑥12 + 𝑎11𝑥11 + 𝑎10𝑥10 + 𝑎9𝑥9 + 𝑎8𝑥8 + 𝑎7𝑥7 + 𝑎6𝑥6 +

 𝑎5𝑥5 + 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥1

Equation 3.3

Where the coefficient values

(𝑎32, 𝑎31, 𝑎30, 𝑎29, 𝑎28, 𝑎27, 𝑎26, 𝑎25, 𝑎24, 𝑎23, 𝑎22, 𝑎21, 𝑎20, 𝑎19, 𝑎18, 𝑎17, 𝑎16, 𝑎15, 𝑎14,

79

𝑎13, 𝑎12, 𝑎11, 𝑎10, 𝑎9, 𝑎8, 𝑎7, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1) are used for the generation of the encoding polynomial

which is used for the generation of the RS codeword for error detection and recovery in the event of

data loss, damage, or alteration in transmission or in storage. The algorithm proposed by this study for

the generation of the coefficient values is as presented below.

Algorithm for generating the encoding polynomial coefficients - The Generator polynomial is of the

form

𝑔(𝑥) = (𝑥 + 𝛼1)(𝑥 + 𝛼2)(𝑥 + 𝛼3) … (𝑥 + 𝛼𝑛)

where 𝑛 is the number of parity data being added.

The coefficients of 𝑥 in the expansion of 𝑔(𝑥) are found using the algorithm below:

𝑓𝑜𝑟 𝒑𝒐𝒘 = 0 𝑡𝑜 𝑛

→ 𝑠𝑢𝑚 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑡 {𝛼1, 𝛼2, 𝛼3 … 𝛼𝑛} 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝒑𝒐𝒘 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

For example, to find the coefficients for 𝑛 = 4, assuming the Galois Field elements are

𝛼1 = 𝑎

𝛼2 = 𝑏

𝛼3 = 𝑐

𝛼4 = 𝑑

Then the looping process performs the following action

𝑝𝑜𝑤 = 0: {}

𝑝𝑜𝑤 = 1: 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑝𝑜𝑤 = 2: 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 + 𝑐𝑑

𝑝𝑜𝑤 = 3: 𝑎𝑏𝑐 + 𝑎𝑏𝑑 + 𝑎𝑐𝑑 + 𝑏𝑐𝑑

Thus

80

𝐿𝑜𝑜𝑝 𝑛 + 1 𝑡𝑖𝑚𝑒𝑠 (𝑖 → 0 𝑡𝑜 𝑛)

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑙𝑙 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑠𝑒𝑡, 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑛 − 𝑖)

 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠

 𝐴𝑑𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

 𝑆𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑖𝑛 𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑎𝑟𝑟𝑎𝑦

Listing 3.3 - Algorithm to generate the coefficients of the encoding polynomial

Figure 3.6 - Flow diagram for the algorithm

3.3.1.1. Polynomial arithmetic

As noted in literature under finite field arithmetic, addition and subtraction amount to the same thing

in 𝐺𝐹(2). Hence, the procedure for adding one polynomial to another involves simply performing an

𝑋𝑂𝑅 operation on the array elements that have the same index. Therefore the algorithm for adding two

polynomials is as follows:

Start

set limit to (pow(2, n) - 1)

input number of parity as n

for i = 1 to limit

count the bits that are on in i
as count

multiply the powers of alpha
that correspond to the bits

that are on in i
as product

add product to the coefficient
value at position count

Stop

end for

81

∷ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑎[], 𝑏[])

∷ 𝑙𝑜𝑛𝑔𝑒𝑟 [] = 𝑙𝑜𝑛𝑔𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑎𝑟𝑟𝑎𝑦𝑠(𝑎, 𝑏)

∷ 𝑠ℎ𝑜𝑟𝑡𝑒𝑟[] = 𝑠ℎ𝑜𝑟𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑎𝑟𝑟𝑎𝑦𝑠(𝑎, 𝑏)

∷ 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑟

∷ 𝑙𝑜𝑛𝑔𝑒𝑟[𝑖] = 𝑠ℎ𝑜𝑟𝑡𝑒𝑟[𝑖] 𝑋𝑂𝑅 𝑙𝑜𝑛𝑔𝑒𝑟[𝑖]

∷ 𝑒𝑛𝑑 𝑓𝑜𝑟

∷ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑛𝑔𝑒𝑟

∷ 𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Listing 3.4 - Pseudocode for polynomial addition

Multiplication is based on the simple principle that

𝑎𝑥𝑛 × 𝑏𝑥𝑚 = 𝑎𝑏𝑥𝑛+𝑚

The pseudocode below describes a function to multiply two polynomials:

∷ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑎[], 𝑏[])

∷ 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎

∷ 𝑓𝑜𝑟 𝑗 = 0 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏

∷ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡[𝑖 + 𝑗] = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡[𝑖 + 𝑗] 𝑋𝑂𝑅 𝑔𝑎𝑙𝑜𝑖𝑠_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝑎[𝑖], 𝑏[𝑗])

∷ 𝑒𝑛𝑑 𝑓𝑜𝑟

∷ 𝑒𝑛𝑑 𝑓𝑜𝑟

∷ 𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Listing 3.5 - Pseudocode for polynomial multiplication

Division is based on polynomial long division. The pseudocode below describes a function to perform

polynomial long division.

∷ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛(𝑎[], 𝑏[])

82

∷ 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 − 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏)

∷ 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡[𝑖] = 𝑔𝑎𝑙𝑜𝑖𝑠_𝑑𝑖𝑣𝑖𝑑𝑒(𝑏[0], 𝑎[𝑖])

∷ 𝑓𝑜𝑟 𝑗 = 0 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏

∷ 𝑎[𝑖 + 𝑗] = 𝑎[𝑖 + 𝑗] 𝑋𝑂𝑅 𝑔𝑎𝑙𝑜𝑖𝑠_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡[𝑖], 𝑏[𝑗])

∷ 𝑒𝑛𝑑 𝑓𝑜𝑟

∷ 𝑒𝑛𝑑 𝑓𝑜𝑟

∷ 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟[] = 𝑠𝑢𝑏𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑎 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 (𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 − 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏)

∷ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

∷ 𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Listing 3.6 - Pseudocode for polynomial division

The Reed Solomon encoding process requires that the polynomial be shifted a number of degrees up.

The pseudocode below describes a function to shift the polynomial a number of degrees up.

∷function polynomial_shift(a[], n)

∷ for i=0 to n-1

∷ result[i]=0

∷ end for

∷ for i=n to (length of a+n-1)

∷ result[i]=a[length of a-i]

∷ end for

∷end function

Listing 3.7 - Pseudocode for shifting a polynomial by a number of degrees

Reed Solomon Encoding Process - The underlying principle of Reed Solomon Encoding is to adjust

the original data so it becomes a perfect multiple of another predefined polynomial called the encoding

polynomial. The process is summed in an Algorithm as follows:

 i. Generate an encoding polynomial

83

ii. Shift original data polynomial to make space for the parity data (NB. The shift depends on the

number of error correction bits required)

iii. Take the remainder from dividing the modified data polynomial by the encoding polynomial. iv.

 Subtract the remainder from the modified data to generate a perfect multiple of the encoding

polynomial.

The resulting modified data polynomial, called the Reed Solomon Codeword, can be tested later for

corruption by checking if it leaves a remainder upon being divided by the encoding polynomial. If

there is a remainder, the data is corrupt. An implementation of the algorithm is presented later in

Chapter 4.

3.3.1.2. Reed Solomon Decoding

The study uses the Reed-Solomon Decoding process as described in Section 2.8.7. The Syndrome

Polynomial (Trench, 2003) which quantifies the error location and magnitude is computed using the

equation:

𝑆𝑖 𝑌𝑣𝑎𝑖𝑒𝑣

 𝑖 𝑖 𝑖

 𝑌𝑣𝑋𝑣

Where 𝑒1, 𝑒2, … 𝑒𝑣 represents where the error(s) is/are located and the 𝑌1, 𝑌2, … 𝑌𝑣 corresponds to

the error magnitude.

The key equation is of the form ᴧ(𝒙)𝑺(𝒙) = 𝑸(𝒙)𝒙𝒏 + Ω(𝒙)

Where ᴧ(𝑥) represents the locator polynomial, 𝑆(𝑥) is the syndrome polynomial, 𝑄(𝑥) is the quotient,

𝑥𝑛 is the field polynomial, and Ω(𝑥) the magnitude polynomial

This study adopts the Euclid-Sugiyama Algorithm (or Extended Euclidean Algorithm) for

obtaining the locator and error magnitude polynomials needed for solving the key equation. The choice

of the Euclid-Sugiyama Algorithm is as a result of its easiness of implementation in software.

84

 Checksum Data Recovery

The study developed a data recovery technique based on checksums, making use of the unique property

of the bitwise XOR operator. The technique uses a thorough computation of checksums on sections of

the file that is being uploaded. The checksum data can then be used later to recover deleted portions of

the file as well as detect and correct errors in the file.

3.3.2.1. Overall architecture of the proposed Checksum Data Recovery Technique

The overall architecture of the proposed Checksum Data Recovery Technique is as shown by Figure

3.5. The system has 3 main modules as Data, Compute Parities, and LocateError.

Figure 3.7 - Overall architecture of the proposed Checksum Data Recovery program

The proposed system for protecting data outsourced for cloud storage divides data into several modules

(data shards) [Figure 3.6], and parity information (checksum) for each module is computed and stored

(Figure 3.7). Section 3.3.2.3 gives further details of how this is achieved. The implementation is

presented in chapter 4.

Data corruption is detected and corrected by re-computing the checksum values and comparing with

the previously stored value.

3.3.2.2. Modular Representation Of Data

85

Figure 3.8 - Modular representation of data

 Module Row Parities

 Column Parities

Figure 3.9 - Module diagram of the proposed Checksum Data Recovery Program

3.3.2.3. Definition of Terms

Data and Module - A given file of size ‘X’ (which can be in KB, MB, GB, TB etc.) is computed into

a 3-dimensional (3D) array and each entry of the 3D array is a 2-dimensional (2D) array of size 4x4

matrix called a module or data shard (Figure 3.7).

Thus, a module is a 4x4 matrix that has a byte of the data in each entry. This implies a module has a

size of 16 bytes.

Therefore to obtain a module, the file of size ‘X’ is first converted into bytes of data (say ‘Y’ bytes)

and then divided by 16. As the file size may not exactly be a perfect multiple of 16 byte, this may result

with Y/16 modules remaining Y mod 16 bytes of the data. The remainder (i.e. the Y mod 16) is padded

with zeros to make up a module (16 bytes).

86

Each module within the data has its own metadata (Row and Column Parity information) which is

independent of other modules (Figure 3.7). Therefore a corrupted module does not depend on other

modules for recovery.

Thus, the metadata for each module are independent, implying that a corrupted metadata does not affect

other module metadata.

The above data representation depicted by Figure 3.6 shows that data can be grouped into modules up

to ‘n’.

Row Parities are the parities of each row of a module. It is computed by performing the XOR of a

value in a row with the values succeeding it in the same row as depicted by figure 3.7.

Column Parities are the parities of each column in a module. It is computed by performing the XOR

of a value with the values succeeding it in the same column as depicted by figure 3.7.

3.3.2.4. Architecture of the Data Module

Figure 3.10 - Architecture of the Data Module

The Data module has only two methods: Its constructor method and the getData method.

The Constructor method converts a file passed into it as an argument into a three-dimensional array

and stores it in the array. The getData method returns the data to the ComputeParities Module as a

three dimensional byte array.

3.3.2.5. Architecture of the ComputeParities Module

The ComputeParities Module has two sub modules: Computation and get. The sub modules each have

three methods.

Data

Data

(Constructor)
getData

87

Figure 3.11 - Architecture of the ComputeParities Module

3.3.2.6. Computation Sub Module

The Computation sub module which is a sub-module of ComputeParities as illustrated by figure 3.9

has the following three methods:

ComputeModuleSum: This method computes the sum of a module (XOR of all elements in a module

as shown by Figure 3.6) and stores it in an array.

ComputeSum: This method computes the parities of the rows and columns (Figure 3.6) of the data that

is passed to the Module constructor method.

ComputeParities(Constructor): This method initializes the Module variables that are declared.

3.3.2.7. get Sub Module

The get sub module has the following three methods:

getRowsParity: This method obtains the computed Rows parity values of a module (Figure 3.7).

getColsParity: This method obtains the computed Columns parity values of a module

(Figure 3.7). getModulesParity: This method obtains the computed Modules parity values

(Figure 3.7).

ComputeParities

et g utation Comp

getModulesParity getRowsParity getColsPari ty
ComputeParities

(Constructor)
ComputeSum ComputeModuleSum

88

3.3.2.8. Architecture of the LocateError Module

Figure 3.12 - Architecture of the LocateError Module

The LocateError Module has three sub modules, Check, Locate and Resolution. The sub modules

each have three methods as shown by figure 3.10.

Check Sub Module: This sub module checks the integrity of the data. It has three methods as follows:

ComputeModuleSum: This method computes the sum of the module.

checkSum: This method checks the computed Module sum against a value that is passed to the method.

rowCheck: This method checks the row been worked on for the starting and ending values needed for

the resolution.

Locate Sub Module: This sub module has three methods that are used to check for the errors in the

module.

LocateError: This is the constructor for the module. It initializes the variables of the module with the

arguments that are passed to it.

LocateDeffectedModule: This method checks to see where the error(s) is/are in the data.

LocateErrorInModule: This method checks to see what the errored data in the module is and corrects

it.

Resolution Sub Module: The sub module has three methods that are used to restore the data to its

original form. countErrors: This method is used to check the number of errors that are in a module.

resolve: This method corrects the errors for the module.

LocateErr

or

lutio

n
Res

o
cat

e
L

o
C

h
ec

k

rowChe

ck
checkSu

m
ModuleSu

m
Compu

te
LocateDeffectedMo

dule
LocateErrorInMo

dule

LocateErr

or (Construct

or
)

ResolveCorrupt

ion
resolv

e
countErro

rs

89

ResolveCorruption: This method corrects the errors for the last columns of each module.

3.3.2.9. Flow diagram of the system

Figure 3.13 - Flow diagram for the Checksum Data Recovery program

90

3.3.2.10. Activity diagram for the system

Figure 3.14 - Activity diagram of the Checksum Data Recovery program

3.3.2.11. Sequence diagram for the system

Figure 3.15 - Sequence diagram of the Checksum Data Recovery program

91

3.3.2.12. Class diagram for the system

Figure 3.16 - Class diagram for the Checksum Data Recovery program

 Shard dispersal module

To improve security and avoid prediction of the destination of the shards, the derived shards after

splitting are scrambled before they are forwarded to the various cloud storages. In other words, the

transmission of the shards is obscured so that the shards will not be uploaded orderly but rather shuffled

among the users chosen cloud storage infrastructure. This is achieved by following the underlying

algorithm.

3.3.3.1. Algorithm

• Create an array list containing integer numbers that correspond to the number of the derived

shards after file splitting.

• Shuffle the integer numbers in the new list.

• Append these numbers from the shuffled list to the name of the file and use the new name to

get the individual shards to be ready for upload.

Implementation of the algorithm is presented in Chapter 4.

92

3.4. Metadata Module

The proposed system makes use of metadata in the Cloud Data Distribution Intermediary to save data

concerning each file uploaded by a user. Two different types of metadata are used. One keeps record

of the App user’s uploaded files (user metadata), and the other keeps track of the uploaded shards to

the multiple cloud providers (file metadata).

The user metadata has the names of all files that a user has uploaded using the application. It also has

the user’s hash value which is used for encrypting each file the user intends to encrypt and upload.

With the user metadata, the list of files that a user has uploaded can be retrieved and rendered in a view

to the user in the application. It thus, relieves the user the burden of keeping track of uploaded files.

The other metadata, dubbed ‘file metadata’, contains data relating to each of the files. It stores details

for each data shard belonging to a file. From the file metadata, a shard’s position in the sequence of

the shard chunks can be determined. The destination cloud account is also saved in the file metadata.

Again, it has other details such as date of upload, and the number of columns which is essential for the

Reed-Solomon algorithm. Implementation of the metadata is presented in Chapter 4.

93

CHAPTER 4

4. IMPLEMENTATION

4.0. Introduction

The proposed Cloud Data Distribution Intermediary (CDDI) framework is implemented into software

using the Java, SQL and PHP programming languages. The software is named SecureMyFiles (SMF)

System.

4.1. SecureMyFiles System

The SecureMyFiles (SMF) system has three components as shown by figure 4.1.

Figure 4.1 - Components of SMF System

4.2. The Login Module

The login module, a sub-component of the SMF System, is composed of the registration stage for a

new user of the system, a login stage for an already-registered system user, and a password request

stage. The user makes use of the login module to either log into the system or sign up to use the

SecureMyFiles system. The interfaces of the login module components are shown in figure 2 and figure

3 in Appendix 2.

94

4.3. File Upload Module

The file upload module depicted by Figure 4.2 is one of the main sub-components of the proposed

system, the SMF System. The user first selects the file to upload regardless of the format or type—

e.g. video, audio, text, etc.; whether zipped or unzipped.

The file name is hashed using SHA-1 as the first layer of system security to obscure the identity of the

file being uploaded. Refer to Section 3.3.1.1 of the methodology and section 4.4 for the implementation

in code for the hashing module.

As a second layer of security, the contents of the file are transposed using the encryption function of

this study’s proposed transposition cipher algorithm based on Rubik’s cube (explained in detail in

Chapter 3 section 3.2.1.2) to generate a cipher text (an encrypted output). Code implementation of the

algorithm is presented in Section 4.5.

As a third layer of security, the encrypted output file is split into shards using the Reed-Solomon

coding technique or this study’s proposed new Checksum Data Recovery technique presented in

Section 3.3 of Chapter 3. The detailed implementation in code is presented at Section 4.8 and Section

4.9.

As a fourth layer of security, the shards upload to a particular cloud account is not done in the order

which the splits are produced. Instead, the splits are distributed in a non-deterministic manner to the

user’s subscribed selected multi-cloud providers’ storage facilities using a shuffling method. Refer to

Section 4.10 for the implementation process and code.

A file’s metadata file is used to keep record of which split chunks are sent to which cloud provider’s

facility for storage. Finally, the SMF System user metadata is updated to keep track of user’s uploaded

files and to help in retrieval of uploaded files from the various cloud accounts. Section 4.11 presents

the implementation of the metadata in code and an explanation of how it works.

95

Figure 4.2 - File Upload Module

4.4. Implementation Of The Hashing Method

The system uses the hashing methods in the java.security.MessageDigest package to hash the file name.

The input to the system’s hashing method is a string (the file name). The method returns the digest of

the file name as a string. Listing 4.1 is a code snippet of the implementation of the hashing method.

public static String getHash(String txt){

 java.security..MessageDigest md =

 MessageDigest.getInstance("SHA1");

 byte[] array = md.digest(txt.getBytes());

StringBuilder sb = new StringBuilder();

for (byte anArray : array)
 sb.append(Integer.toHexString((anArray & 0xFF) |

0x100).substring(1, 3)); return sb.toString();

}

Listing 4.1 - getHash method to generate the hash of a string

4.5. Implementation Of The Proposed Transposition Cipher Algorithm Based On

Rubik’s Cube Transformation

An encryption module that mimics the motions of the Rubik’s Cube is designed (Refer to Chapter 3

Section 3.2.1.2) and used to obfuscate the data within the file to generate an encrypted output file (the

cipherText) as follows:

96

 Initialization

The cube is initialized using the size of the data to be transposed. In order to achieve minimumpadding,

some computations need to be performed to minimize the size of the cube while still being able to

accommodate all the data. The algorithm in Listing 4.2 shows one way of achieving the minimum-

padding cube.

function initializeCube (data[])

dataLength=data→length

initSquare=ceil(dataLength/6)

dimension=ceil(sqrt(initSquare)) cube[]=new

array[6][dimension][dimension] return cube[]

end function

Listing 4.2 – Function to initialise the Rubik’s Cube

 Rotation of the Cube

The rotation of the cube requires three arguments – the plane in which the rotation is to be done, the

direction of the rotation and the index of the strip that is to be rotated. The algorithm in Listing 4.3

shows an example of the rotation function.

function rotate (plane, direction, index)

if (direction = "clockwise") if

(plane = "Y")
 temp = cube.fetchRow(1, index)

 cube.setRow(1, index, cube.fetchRow(2,

index)) cube.setRow(2, index,

cube.fetchRow(3, index)) cube.setRow(3,

index, cube.fetchRow(4, index))

cube.setRow(4, index, temp) else if (plane =

"X")

 temp = cube.fetchColumn(1, index)

 cube.setColumn(1, index, cube.fetchColumn(6, index))

cube.setColumnInReverse(6, index, cube.fetchColumn(3, n - index))

 cubesetColumnInReverse(3, n - index, cube.fetchColumn(5,

index))
 cube.setColumn(5, index, temp)

else if (plane = "Z")
 temp = cube.fetchColumn(2, index)

 cube.setColumnInReverse(2, index, cube.fetchRow(6, index))

cube.setRow(6, index, cube.fetchColumn(4, n - index))

cube.setColumnInReverse(4, n - index, cube.fetchRow(5, n - index))

 cube.setRow(5, n - index, temp)

end if

97

 else if (direction = "anti-clockwise")

if (plane = "Y")
 temp = cube.fetchRow(1, index)

 cube.setRow(1, index, cube.fetchRow(4,

index)) cube.setRow(4, index,

cube.fetchRow(3, index)) cube.setRow(3,

index, cube.fetchRow(2, index))

cube.setRow(2, index, temp) else if (plane =

"X")
 temp = cube.fetchColumn(1, index)

 cube.setColumn(1, index, cube.fetchColumn(5, index))

cube.setColumnInReverse(5, index, cube.fetchColumn(3, n - index))

 cube.setColumnInReverse(3, n - index, cube.fetchColumn(6,

index))
 cube.setColumn(6, index, temp)

else if (plane = "Z")

 temp = cube.fetchColumn(2, index)

 cube.setColumnInReverse(2, index, cube.fetchRow(6, index))

cube.setRow(6, index, cube.fetchColumn(4, n - index))

cube.setColumnInReverse(4, n - index, cube.fetchRow(5, n - index))

 cube.setRow(5, n - index, temp)

end if end if end function

Listing 4.3 – Implementation of the rotation function in pseudocode

 Preparation of Data for encryption

The system writes the file’s byte data onto the face of a virtual customized Rubik’s Cube and uses a

custom algorithm (Listing 4.3) to create a sequence of rotations to obfuscate the data. Listing 4.4 shows

a snippet of code from the method that creates the cube and writes the file data onto its faces.

Cube(String fileName){

byte [] data = new byte[0];

try {
 data = FileUtils.readFileToByteArray(new File(fileName));

 } catch (IOException e) {

 System.err.println("Could not read file");

 e.printStackTrace();

}
 int ceiling = (int) Math.ceil(data.length /

6.0); size = (int)

Math.ceil(Math.sqrt(ceiling)); int square = size

* size;
 int totalNumberOfCells = 6 * square;

 data = Arrays.copyOf(data, totalNumberOfCells);

 one = new Face(size, Arrays.copyOfRange(data, 0, square));

two = new Face(size, Arrays.copyOfRange(data, square,

2*square));

 three = new Face(size, Arrays.copyOfRange(data, 2*square,

98

3*square));

 four = new Face(size, Arrays.copyOfRange(data, 3*square,

4*square));

 five = new Face(size, Arrays.copyOfRange(data, 4*square,

5*square));

 six = new Face(size, Arrays.copyOfRange(data, 5*square,

6*square));

}

Listing 4.4 - Cube constructor code in Java

 Encryption Key

The system uses a hash value based on the user’s credentials as the encryption key. The system applies

a custom algorithm (Listing 4.5) to transform a key string into a sequence of rotations.

1. Take the 128-character hash of the key string.

2. Iterate through all 128 characters.

3. In each iteration, take the integer value of the character.

4. Set the value of the integer from step (3) modulo 3 as the plane in which to perform the rotation.

5. Set [(𝑥4 + 𝑥3 + 𝑥2 + 𝑥) 𝑚𝑜𝑑 𝑠𝑖𝑧𝑒] as the index of the row or column to rotate.

Listing 4.5 – Generation of Rotation Sequence

Listing 4.6 shows a snippet of code from the program which implements the generation of a rotation

sequence.

private int [][] keyToSequence(String key, int size){

char [] list;
 list = Hash.getHash(key, "SHA1").toCharArray();

 int [][] sequence = new

int[list.length][2]; int i = 0; int

plane = 0; int index = 1; for (char a :

list){
 sequence[i][plane] = a % 3;

 sequence[i][index] = (a * a * a * a + a * a * a + a * a) %

size; i++;

 }
 return sequence;

}

Listing 4.6 - Method to convert a key to a rotation sequence

99

 Encryption Function

During an encryption, the rotation sequence is followed forwards and each rotation is carried out in the

clockwise direction. Listing 4.7 shows the method which performed the encryption.

public void encrypt(String key, String fileName){

Cube rubik = new Cube(fileName);
 int sequence [][] = keyToSequence(key, rubik.getSize());

 for (int [] rotation : sequence)

 rubik.rotate(rotation[0], rotation[1]);

}

Listing 4.7 - Method to encrypt a file using the Rubik’s cube

 Decryption Function

During a decryption, the rotation sequence is read from the last to the first and each rotation is carried

out in the counter-clockwise direction. This undoes the clockwise rotations done during the encryption.

Listing 4.8 shows the method which performed the decryption.

public void decrypt(String key, String fileName){

Cube rubik = new Cube(fileName);
 int sequence [][] = keyToSequence(key, rubik.getSize());

 for (int i = sequence.length - 1; i >= 0; i--)

rubik.reverse(sequence[i][0], sequence[i][1]); }

Listing 4.8 - Method to decrypt a file using the Rubik’s cube

4.6. Implementation Of The Data Distribution Module

As stated in Section 3.3 of the methodology, the data distribution module consist of two

submodules as File Splitting and Erasure Protection Module (FSEPM), and Shards Dispersal Module

(SDM). The FSEPM is implemented using Reed-Solomon coding technique and a proposed new

Checksum Data Recovery technique by this study.

4.7. Reed Solomon Coding

Reed Solomon coding relies on the use of finite field elements known as the Galois Field (GF) to

operate. Therefore, in order to make use of Reed Solomon coding for file protection the Galois Field

elements, and the Galois Field Arithmetic must be implemented into software so that they can be used

for the generation of the Reed Solomon Codeword. The Reed Solomon Codeword is used for the

detection and correction of data corruption. Refer to section 2.8 of the literature review for detailed

description of the Reed Solomon Coding process. Section 3.3.1 of the methodology presents a

100

description of how this study uses Reed Solomon Coding. The implementation processes of the GF

elements generation, GF arithmetic, and the Reed Solomon Coding are presented in Section 4.7.1 The

SMF system’s implementation of the GF and the Reed Solomon Coding in JAVA is presented at

Section 4.8.

 Generating The GF(256) Field Elements

The process of representing a finite field in a computer, especially for arithmetic purposes has been

refined. Representing the elements of GF(8) like this {0, 1, 2, 3, 4, 5, 6, 7} for example is more difficult

to implement than like this {0, 1, 2, 4, 3, 6, 7, 5}. Doing arithmetic in GF by hand is not much of a

problem. However by using a computer the elements of the field are best represented as exponents of

2. An irreducible polynomial is used as a modulus to ensure the exponents of 2 do not repeat.

This example demonstrates the use of the irreducible polynomial 29(i.e. 285-256) to keep the powers

of 2 within the range 0 - 255

Since 256 is outside the range 0 − 255, we subtract 256 from it to put it back within range, then XOR

with the irreducible polynomial (29) to get a unique start value.

Hence 𝑎

101

Once again, 464 is outside the range 0 − 255, so we subtract 256 to put it back within range, then add

29 to get a unique number form what we have previously generated. Hence the calculation continues

as:

 𝑎

 464

 −256

 208 = 11010000

 11001101 = 205

As can be seen, by repeatedly subtracting 256 from any product value that falls outside of the range of

0 − 255 and 𝑋𝑂𝑅 with the irreducible polynomial of 29 the process keeps generating unique numbers

within the 0 -255 range resulting with the GF(256) table (See Appendix A1).

The pseudocode below describes how to populate two arrays, one to hold the field elements in an order

that shows the power of two that they correspond to, and the other to hold the logarithms of the field

elements.

102

function generate_exponent_and_logarithm_arrays()

element=1 for i=0 to m-2

exponent[i]=element log[element]=i

element=element×2 if element≥field_size

 element=element XOR prime_number

 end if end for end function

Listing 4.9 - Pseudocode for generating the Galois Field elements.

 Implementing Arithmetic Operations in GF

Processes involved in the implementation of arithmetic operations in GF as well as pseudocodes are

presented below. Java implementations are presented later on in this chapter.

 Addition and Subtraction in GF

Additions and subtractions in a Galois Field both come down to the bitwise XOR operation because in

GF(2)

 𝑎. 1 + 1 = 0 → 0 − 1 = 1

 𝑏. 1 + 0 = 1 → 1 − 1 = 0 𝐴𝑁𝐷 1 − 0 = 1

 𝑐. 0 + 0 = 0 → 0 − 0 = 0

Per the definition of the 𝑋𝑂𝑅 operation, the result is 0 when the operands are alike and 1 when the

operands are different. That definition is satisfied by both addition and subtraction in GF(2).

Thus the implementation of the addition and subtraction functions in Java code is simply to 𝑋𝑂𝑅 the

arguments. The pseudocode below describes the function to add field elements. The same function

works for subtraction.

function galois_add(x, y)

 return (x XOR y)

end function

Listing 4.10 - Pseudocode for performing addition and subtraction in the Galois Field

103

 Multiplication and Division in GF

Multiplication contains an element of addition in it (in fact, multiplication is simply repeated addition)

but since addition is implemented as an XOR operation in GF(2), repeated addition will always result

in an answer of 0.

An alternative is to use this addition feature of logarithms

 𝐴 𝑎𝑛𝑡𝑖𝑙𝑜𝑔(𝑙𝑜𝑔(𝐴) + 𝑙𝑜𝑔(𝐵));

The pseudocode below describes the function to multiply two field elements:

function galois_multiply(a, b) if a=0 OR b=0

return 0 else return exponent[〖(log〗

(a)+log(b))mod (m-1)] end if end function

Listing 4.11 - Pseudocode for performing multiplication in the Galois Field

Division in the Galois Field is also implemented in Java using logarithms

 𝐴 ÷ 𝐵 = 𝑎𝑛𝑡𝑖𝑙𝑜𝑔(𝑙𝑜𝑔(𝐴) − 𝑙𝑜𝑔(𝐵));

The pseudocode below describes the function to perform division in the finite field.

function galois_divide(a, b) if b=0

return null else if a=0

return 0 else return

exponent[log(a)-log〖(b)]〗 end function

Listing 4.12 - Pseudocode for performing division in the Galois Field

 Logarithms and Exponents in GF

The precondition for using the addition and subtraction features of logarithms in the multiplication and

division in Galois Fields is that the log values for all the elements of the field must be known.

Fortunately the method used to generate the elements of the Galois Field uses exponents of 2.

104

Thus the log of any element in the field is the exponent of 2 (or exponent of α as in Table 2.2, Chapter

2) indexed to the position corresponding to its generated exponent value. For example, 23 generated 8,

so 𝑙𝑜𝑔(8) = 3, and 27 generated 128, and hence 𝑙𝑜𝑔(128) = 7, in GF(256).

 Implementing the algorithm for the generation of coefficients of the encoding

polynomial

Both the encoding and decoding processes of the Reed-Solomon algorithm make use of a generator

polynomial of the form:

𝑛

𝑔(𝑥) = ∏(𝑥 − 𝛼𝑖)
𝑖=1

where 𝑛 is the number of parity shards.

As noted with Galois Field arithmetic, addition and subtraction both result in the same 𝑋𝑂𝑅 operation.

As such, the algorithmic representation of the above formula used the Galois Addition method.

It was determined that the coefficients resulting from the expansion of the encoding polynomial

formula

𝑛

𝑔(𝑥) = ∑ 𝑐𝑖𝑥𝑛−𝑖

𝑖=0

followed this pattern

2𝑡
 ()

𝑗

𝑐𝑖 = ∑ ∏ 𝑘
𝑗=1

where 𝑘 is a member of one subset of the Galois Field’s elements that has 𝑖 members

1. The algorithm focused on determining the coefficients only. This involved finding all the

possible combinations of the first 2t Galois Field Elements and performing the appropriate

multiplication and addition operations on them. The process used is described in detail below:

2. Obtain the first 2𝑡 values in the Galois field and save them in an array

3. Determine the highest integer (upper limit) that has 2𝑡 bits using the formula below

105

4. 𝑙𝑖𝑚𝑖𝑡 = 22𝑡 − 1

5. Create 2𝑡 masks for determining which bits are on in any given integer that is within the range

[0, 𝑙𝑖𝑚𝑖𝑡].The masks are simply integer values whose bit representations have only one bit on

and all other bits off. In other words, the masks are the powers of 2 from 20 to 22𝑡. When a

bitwise 𝐴𝑁𝐷 operation is performed with a number and any of the masks, a result of zero means

that the particular bit which the mask has on is off in the number. However, a result greater

than zero indicates that that particular bit is on. Using this approach, it is possible both to

determine which particular bits are on in the number and also count them.

6. Create 2𝑡 accumulators, initialized to 0. These accumulators will hold the values of the

coefficients when the program runs to a completion.

7. The combinations of the first 2t Galois Field elements are generated as integer values from 1

to 𝑙𝑖𝑚𝑖𝑡. Thus, a loop is used which runs from 1 to 𝑙𝑖𝑚𝑖𝑡. For each integer in the range a. The

masks are applied to the integer to determine which bits are on.

b. The Galois Field elements, whose positions correspond to the bits that are on in the integer,

are multiplied to get the product of all the elements in that particular combination.

c. Concurrently, the number of bits that are on are counted. The product from multiplying the

bits that are on is added to the accumulator at the position of the count. This ensures that

all the products derived from multiplying combinations of a particular length are

accumulated in a single accumulator.

The task of generating the encoding polynomial can be quickly and efficiently carried out using a loop

that continually multiplies the next monomial in the 𝑔(𝑥) sequence by the previously obtained

polynomial. Two functions are required to generate the encoding polynomial.

1. Polynomial Multiplication Function: this function implements polynomial multiplication in

code.

2. Encoding Polynomial Function: this function makes use of polynomial multiplication to

generate the encoding polynomial using iteration.

 Polynomial Multiplication

Polynomial multiplication is based on the distributive property of multiplication over addition, and the

multiplicative law of indices. An example is shown below, showing the steps in finding the product of

5𝑥2 + 8𝑥 + 3 and 3𝑥 + 8.

(5𝑥2 + 8𝑥 + 3) × (3𝑥 + 8)

106

Distribute the elements of the first polynomial over the second one

= 5𝑥2(3𝑥 + 8) + 8𝑥(3𝑥 + 8) + 3(3𝑥 + 8)

Multiply each element of the first polynomial by each element of the second

= (5𝑥2 × 3𝑥) + (5𝑥2 × 8) + (8𝑥 × 3𝑥) + (8𝑥 × 8) + (3 × 3𝑥) + (3 × 8)

= 15𝑥3 + 8𝑥2 + 24𝑥2

Sum the terms of the generated polynomial which have the same degree of 𝑥

= 15𝑥3 + 32𝑥2 + 73𝑥 + 24

The following pseudocode describes a function to multiply two polynomials. The coefficients of the

polynomials are stored in an array with the array index describing the degree of that term in the

polynomial.

∷function polynomialMultiplication(a[], b[])

∷ for i=0 to length of a

∷ for j=0 to length of b

∷ product[i+j]=product[i+j]+(a[i]×b[j])

∷ end for

∷ end for

∷end function

Listing 4.13 - Pseudocode for polynomial multiplication

 The Encoding Polynomial Function

The encoding polynomial is the product of the polynomials of the form (𝑥 − 2𝑖) for 𝑖 values from 1 to

the number of parity data.

The pseudocode below describes a function used to generate the encoding polynomial for 𝑛 number of

parity. The encoding polynomial function simply loops 𝑛 times, generating a new monomial and

multiplying it by the previously obtained encoding polynomial. The encoding polynomial is initialized

to {1}.

∷function generate_encoding_polynomial(n)

∷ polynomial[]={1}

107

∷ for i=1 to n

∷ polynomial=polynomial_multiplication(polynomial, {2^i, 1})

∷ end for

∷ return polynomial

∷end function

Listing 4.14 - Pseudocode to generate the Reed Solomon Encoding Polynomial

 Reed Solomon Codeword

One simple way to treat a message as a polynomial is to read the message into an array. The index of

the array at which an element is found, is used as the power of 𝑥 that the element multiplies in the

polynomial. For instance, the array

𝑀 = {2, 3, 4, 6, 5, 1}

Could easily represent the polynomial

𝑀(𝑥) = 𝑥5 + 5𝑥4 + 6𝑥3 + 4𝑥2 + 3𝑥 + 2

The pseudocode below describes a function for generating the Reed Solomon Codeword from a given

message polynomial 𝑀(𝑥), using parity value of 𝑛.

∷function encode_polynomial(M[], n)

∷ encoding_polynomial[]=generate_encoding_polynomial(n)

∷ M=polynomial_shift(M, n)

∷ quotient, remainder=polynomialDivision(M, encoding_polynomial)

∷ codeword=polynomialAddition(M, remainder)

∷ return codeword

∷end function

Listing 4.15 - Pseudocode for encoding a polynomial using an RS Encoding Polynomial

4.8. Implementation Of File Splitting And Erasure Protection Module (FSEPM) Using

Java

For the SMF system to guard against data loss or corruption, it makes use of Reed Solomon coding or

the checksum data recovery technique to create parity data with which the file can be reconstructed in

the event of data loss or corruption. The SMF system user is given the choice of choosing a file priority

at the time of uploading a file to the cloud. The selected file priority determines the parameters for

108

creating the parity data. The system provides four file priority levels as follows; “Low”, “Normal”,

“Important” and “Critical.”

 Implementation of the Erasure Protection via Reed Solomon Coding

Reed Solomon Coding refers to a method of error detection and correction that computes recovery

information before the file is transmitted. The recovery information, called “parity”, is transmitted

together with the file data. The presence of an “error” can be detected by examining the parity

information while an “erasure” is the complete absence of a portion of the data. To perform a Reed

Solomon Encoding, the system needs the number of data shards as well as the number of parity shards.

These numbers are passed to the encoding method which breaks the file into “data” number of shards

and computes “parity” number of metadata information which can be used to recover lost or corrupt

data shards.

The system receives a file priority setting from the user at the time of selecting a file for upload. Based

on the file priority setting, the system determines the number of data and parity shards to use.

The system can recover up to “parity” number of shard loss and can correct up to half “parity” number

of shard corruption. This means that the larger the number of parity data, the more likely it is that the

file can be reconstructed in case there is some loss of data. Hence, files with a higher priority are given

a larger number of parity. This makes recovering them more likely than recovering files with a lower

priority. However, the higher the number of parity shards, the more the computation that goes into

checking for errors and recovering missing or corrupt files. As such, files with higher priority take a

longer time to reconstruct and also require more memory for the reconstruction operation. They also

require more disk space locally and on the cloud.

The priority levels that use Reed Solomon coding and their associated data and parity shard counts are

specified below. In all cases, SecureMyFiles breaks the file into a number of data shards and computes

the parity shards so that the total number of shards is 144. Any number from 2 to 256 can be used for

the process, but 144 is an optimal value because it balances the computation time and strength of the

Reed Solomon Encoding/Decoding process. In other words, using a total shard count of 256 would

have been the most secure implementation of Reed Solomon encoding/decoding but that would likely

make heavy use of the device’s CPU and memory. Further, SMF prefers that the minimum number of

CSPs connected to the SMF client is 6. Listing 4.16 presents a snippet of code that shows how the data

and parity shard counts are set based on the user’s choice of a priority setting (i.e. Low, Normal, or

Important).

109

if

(filePriority.equalsIgnoreCase("low")){

dataShards = 120; parityShards = 24;
}

else if

(filePriority.equalsIgnoreCase("normal")){

dataShards = 96; parityShards = 48;
}

else if

(filePriority.equalsIgnoreCase("important")){

dataShards = 72; parityShards = 72;
}

Listing 4.16 - Snippet of code to show how the data and parity shard counts are set based on the priority

setting

Low - Files with “low” priority are split into 120 data shards and 24 parity shards, regardless of the

size of the file. In other words, the splitting has no bearing on the size of the file. Each of the 6 Cloud

Service Providers receives 24 shards for storage. This offers the least protection since this

configuration allows for 12 error correction and 24 erasure recovery, meaning that the subscriber can

recover data if one of the service providers is not available. However, the computation is fastest and

uses less memory.

Normal - Files with “normal” priority are split into 96 data shards sand 48 parity shards. Therefore,

24 errors can be corrected and 48 erasures can be recovered. This means that the data can be recovered

even if two of the subscriber’s Cloud Service Provider are unavailable. However, the encoding

operation is slower than with the “low” priority files and it requires more memory.

Important - Files with “important” priority are split into 72 data shards and 72 parity shards, allowing

36 errors to be corrected and 72 erasure recoveries. In this configuration, the data can be recovered

even if three CSPs are unavailable. This uses the most computational power as well as memory.

 Implentation of the Reed Solomon Encoding Process

The Reed Solomon Encoding processes outlined in section 4.7 are implemented using JAVA as

follows:

110

Generation of the Galois Field Elements - The Reed Solomon encoding process represents data as

integers in a Galois Field. The SMF system employs a field of size 256 and an irreducible polynomial

of 285 (i.e. 256 plus the prime number 29). The Galois Field comprised of the values for exponents of

two, computed from the power 0 to the power 255, and zero. Any time a power of two exceeds the

field size the value is “added” to the irreducible polynomial to produce a number that is within the field

(Refer to section 2.8.3). All the powers of two are stored in an array for easy access when they are

needed for multiplication and division operations. Also, the exponents that yield a power value are also

stored in a separate array for easy access in multiplication and division operations as shown in Listing

4.17.

private void generateGaloisField(){ byte alpha = 1; log =

new byte[size]; exp = new byte[size * 2 - 2]; for (int i =

0; i < size - 1; i++) { exp[i] = exp[i + size - 1] = alpha;

log[alpha] = (byte) i; alpha = (byte) (alpha << 1);

if ((alpha & 0xFF) >= size) alpha ^= polynomial;

 }

 log[0] = -1;

}

Listing 4.17 – Generation of the Galois Field Elements in Java

 Galois Field Arithmetic

Addition – Addition in the Galois Field is implemented as a bitwise XOR operation (Listing

4.18).

public short add(byte a, byte b){ return (byte) (a

^ b);

}

Listing 4.18 - Implementation of addition in the Galois Field

Multiplication – Multiplication is carried out by taking the antilog of the sum of the logarithms of

operands (Listing 4.19).

Public short multiply(byte a, byte b){ if (a == 0

|| b == 0) return 0; return exp[log[a] + log[b]];

}

Listing 4.19 - Implementation of multiplication in the Galois Field

Division – Division is carried out by multiplying the dividend by the inverse of the divisor (Listing

4.20).

111

short divide(byte a, byte b){

if (b == 0)
 throw new IllegalArgumentException("Division by zero is not

allowed");

 return multiply(a, inverse(b)); }

Listing 4.20 - Implementation of division in the Galois Field

Logarithm – Logarithms are taken from the array created when the Galois Field is generated. They

are the exponents of two that generates the field values (Listing 4.21).

public short getLog(int i) { return log[i]; }

Listing 4.21 - Method for accessing the log of a field element

Antilog(Exponents) – Exponents are taken from the array created when the Galois Field is generated

(Listing 4.22).

public short getExp(int i) { return exp[i]; }

Listing 4.22 - Method for accessing the exponent of two in the Galois Field

 Polynomial Arithmetic

The Reed Solomon encoding process treats strands of data as polynomials. The system uses an array

to represent a polynomial with the index of the array element corresponding to its degree (Listing

4.23).

Polynomial(byte [] data){ this.data = data;

}

Listing 4.23 - Polynomial class constructor

Four methods are used to implement the addition, multiplication, division and modulus operations.

Addition – Addition is carried out by summing the values of the operand arrays which have the same

index (Listing 4.24).

112

private Polynomial plus(Polynomial poly){ short [] a

= (this.getDegree() >= poly.getDegree()) ?
this.getData() : poly.getData(); short [] b =

(this.getDegree() < poly.getDegree()) ?
this.getData() : poly.getData();

 for (int i = 0; i < b.length; i++)

a[i] ^= b[i];

 return new Polynomial(a); }

Listing 4.24 - Implementation of Polynomial Addition

Multiplication – The polynomial multiplication method makes use of the distributive property of

multiplication over addition, returning a polynomial whose length is the sum of the lengths of the two

operands (Listing 4.25).

Polynomial times(Polynomial poly, Galois

g){ short [] a = this.getData();

short [] b = poly.getData();

 short [] product = new short[this.getDegree() +

poly.getDegree() + 1];
 Arrays.fill(product, (short) 0);

 for(int i = 0; i < a.length; i++)

for (int j = 0; j < b.length; j++)
 product[i + j] ^= g.multiply(a[i], b[j]);

 return new Polynomial(product).trim();

}

Listing 4.25 - Implementation of Polynomial Multiplication

Division – The polynomial division method followed the principles of polynomial division in algebra.

The method returns the quotient of the division (Listing 4.26).

113

Polynomial dividedBy(Polynomial poly, Galois g){ if

(this.getDegree() < poly.trim().getDegree() ||

this.isZero())
 return new Polynomial(new short[]{0});

 short [] a = reverseOf(this.getData());

short [] b = reverseOf(poly.getData());

 short [] q = new short[this.getDegree() - poly.getDegree()+ 1];

for (int i = 0; i < q.length; i++) { q[i] = g.divide(a[i],

b[0]); for (int j = 0; j < b.length; j++) a[j +

i] ^= g.multiply(q[i], b[j]);

 }
 return new Polynomial(reverseOf(q)).trim();

}

Listing 4.26 - Implementation of Polynomial Division

Modulus – The polynomial modulus method uses the same approach as the polynomial division but

returns the remainder instead of the quotient (Listing 4.27).

Polynomial mod(Polynomial poly, Galois g){

 if (this.getDegree() < poly.getDegree() || this.isZero())

return new Polynomial(this.getData());

 short [] a = reverseOf(this.getData());

short [] b = reverseOf(poly.getData());

 int l = this.getDegree() - poly.getDegree() + 1;

short q;
 for (int i = 0; i < l; i++) { q

= g.divide(a[i], b[0]); for (int j

= 0; j < b.length; j++) a[j +

i] ^= g.multiply(q, b[j]);

 }
 short [] remainder = new short[a.length - l];

 System.arraycopy(a, l, remainder, 0, remainder.length);

return new Polynomial(reverseOf(remainder)); }

Listing 4.27 - Implementation of the Polynomial Modulus

 Generator Polynomial

Reed Solomon encoding and decoding both make use of a special polynomial called the Generator

Polynomial. The generator polynomial is generated by performing a polynomial multiplication of a

114

series of monomials whose constant terms are the sequence of powers of two from 1 to two to the

power of “parity”, and the first-degree terms all have the coefficient 1 (Listing 4.28).

encodingPolynomial = new Polynomial(new short[]{1}); for (int i = 1;

i <= paritySize; i++){

 encodingPolynomial = encodingPolynomial.times(new Polynomial(new

short[]{galois.getExp(i), 1}), galois);

}

Listing 4.28 - Code for generating the Encoding Polynomial

 File Encoding

The selected file is first read into a two-dimensional byte array. The number of rows in the array

corresponded with the number of data shards that is set according to the file priority. The system

iterates through the columns of the array and extracts each column’s data into a polynomial. The system

then computes the parity data as the remainder when the data polynomial is divided by the generator

polynomial. The parity data from all the columns are joined into their own twodimensional array to

form the parity data for the entire file. Finally, each row from the data array and the parity array are

read into separate files, thus creating shards (pieces) of the file and parity (Figure 4.3). Listing 4.29

is the code snippet of the file encoding process using Reed-Solomon Coding.

115

Figure 4.3 - Splitting of file and computation of parity.

public int encode(String fileName,

int dataSize, int

paritySize){

 ReedSolomon rs = new ReedSolomon(256, 29, dataSize,

paritySize);
 FileUtility fileUtility = new FileUtility();

 short [][] file = fileUtility.fileToShort(fileName,

dataSize); if (file == null) return -1;

 short [][] output = new short[dataSize +

 paritySize][file[0].length];

for (int i = 0; i< output.length; i++){

116

 Arrays.fill(output[i], (short) 0);

 }
 for (int i = 0; i < file[0].length; i++){

 Polynomial column = new

 Polynomial(fileUtility.extractColumn(file, i));

column = rs.encode(column);
 fileUtility.attachColumn(output, column.getData(), i);

 }
 fileUtility.shortToFile(output, fileName);

 return output[0].length; }

Listing 4.29 - Java implementation of file encoding process using Reed-Solomon Coding

4.9. Implementation Of The Checksum Data Recovery Technique

Unlike the other file priority options, the fourth priority level of the SMF system dubbed “critical”

does not use Reed Solomon coding to protect the data. Instead it employs this study proposed

Checksum Data Recovery technique (Refer to Chapter 3, Section 3.3.2) that computes checksums for

a file by taken bytes from several different sets of data bytes. The checksum information is stored in a

metadata server for future reference in order to ascertain whether the user’s data has been corrupted.

Furthermore, the checksum data is used to correct errors within the file.

 Encoding

The processes involved in using the proposed Checksum Data Recovery technique are presented

below.

 Internal Data Representation

 The system first reads data into a three-dimensional array. The array has a special property that

the cross section is 4 × 4 array that represents a single module (a data shard). The pseudocode

in Listing 4.30 represents a method to perform the conversion of the file data into a three-

dimensional array. Figure 4.4 illustrate the Operations of the Checksum Data Recovery (CDR).

It depicts the formation of shards from the modules of the CDR, using a 512 byte file.

117

Figure 4.4: The formation of shards from the modules of the CDR using a 512 byte file.

function readFileToArray(file) oneDimensionalArray =

readFileToByteArray(file) breadth =

ceiling(oneDimensionalArray.length / 16.0)

 threeDimensionalArray = new array[breadth][4][4]

 a = 0

 for i=0 to breadth

 for j=0 to 4

 for k=0 to 4

 threeDimensionalArray[i][j][k] =

 oneDimensionalArray[a]

 a++

 endfor

 endfor

 endfor

endfunction

Listing 4.30 – Function to read from a file into a three-dimensional array

118

To implement above algorithm, the system read data from a file into a one-dimensional array using a

method from the Apache Commons IO library. The system then writes the data into a threedimensional

array in order to get modules for the computation of parity information. Listing 4.31 shows a snippet

of the code used to perform the data reading and conversion.

public Data(String fileName) throws Exception {

this.filename = fileName;
 byte [] fileAsByteArray = FileUtils.readFileToByteArray(new

File(fileName));

int i=0; int

four = 4;

 int breadth = (int) Math.ceil(fileAsByteArray.length / 16.0);

 array = new byte[breadth][four][four];

for (int j=0; j<breadth; j++){ for (int

k = 0; k < four; k++){ for(int l=0;

l < four; l++){ if (i <

fileAsByteArray.length){
 array[j][k][l] = fileAsByteArray[i++];

 }

else {
 array[j][k][l] = 1;

i++;
 }

 }

 }

 }

}

Listing 4.31 – reading file to 3-dimensional array

 Parity Data Computation

Module Parity Computation - After reading data into a three-dimensional array, the system computes

the parity value for each 4 × 4 module of the three-dimensional array. The pseudocode in Listing 4.32

represents a function to compute the module parity.

function computeModuleParity()

 sum = 0 for row = 0 to 4 for

column = 0 to 4 sum = sum XOR

module[row][column]

 endfor

 endfor

 return sum

endfunction

Listing 4.32 – Function to compute the module’s parity

119

Row and Column Parity - The system proceeds to compute the parity values for each row and each

column, but instead of simply summing all the values in each row and column, the system sums all the

different combinations of the row data as well as the different combinations of the column data as

depicted by Figure 3.7 - Charter 3. The code snippet of Listing 4.33 represents a function that computes

the row and column parities.

for(int module = 0; module < this.data.length; module++){

 this.moduleParity[module] =

ComputeModuleSum(this.data[module]);

 int x =0, b = 0;

 for(int i =0; i < this.data[module].length; i++){

 for(int j =0; j < this.data[module][i].length; j++){

 this.rowsParity[module][i][6] ^=

this.data[module][i][j];

 for(int k = j+1; k < this.data[module][i].length;

k++){

 this.colsParity[module][x][i] =

(byte)(this.data[module][j][i] ^ this.data[module][k][i]);

 x++;

 }

 for(int l = j+1; l < this.data[module][i].length;

l++){

 this.rowsParity[module][i][b] =

(byte)(this.data[module][i][j] ^ data[module][i][l]);

 b++;

 }

 }

 x = 0;

 b = 0;

 }

 this.colsParity[module][6] = this.data[module][3];

}

Listing 4.33 – Function to compute row and column parities

The system computes the parity data for each module as well as the rows and columns in the modules.

The parity for a module is computed as the XOR sum of all the elements in the 4 × 4 grid that made

up the module and is stored in a single-dimensional array.

The code snippet in Listing 4.34 shows the implementation of the module parity computation.

120

private byte ComputeModuleSum(byte[][] data){

byte sum = 0;
 for(int row = 0; row < data.length; row++){

 for(int col = 0; col < data[row].length; col++){

 sum ^= data[row][col];

 }

 }

 return sum;

}

Listing 4.34 – Computation of module parity

The row parities are computed as the XOR sums of all the combinations of the elements in the module

row. Each row’s parity data is stored in a row of a two-dimensional array that holds the rows’ parity

information for that module. The system also computes the columns parity data as the XOR sums of

all the combinations of the column elements for any single column in the module.

Each column’s parity data is stored in a column of a two-dimensional array that holds the columns’

parity information for that module.

Listing 4.35 shows a snippet of code which implements the computations of the row’s parity and

column’s parity data.

121

 for(int module = 0; module < this.data.length; module++){

 this.moduleParity[module] =

ComputeModuleSum(this.data[module]);

 int x =0, b = 0;

 for(int i =0; i < this.data[module].length; i++){

 for(int j =0; j < this.data[module][i].length; j++){

 this.rowsParity[module][i][6] ^=

this.data[module][i][j];

 for(int k = j+1; k <

this.data[module][i].length; k++){

 this.colsParity[module][x][i] =

(byte)(this.data[module][j][i] ^ this.data[module][k][i]);

 x++;

 }

 for(int l = j+1; l <

this.data[module][i].length; l++){

 this.rowsParity[module][i][b] =

(byte)(this.data[module][i][j] ^ data[module][i][l]);

 b++;

 }

 }

 x = 0;

 b = 0;

 }

 this.colsParity[module][6] = this.data[module][3]; }

Listing 4.35 – Computation of row parity and column parity

 Writing Parity Data to File

The system creates a parity object from the computed parity information and writes the data to three

files for the module parity, row parity and column parity. The code snippets in Listing 4.36 and Listing

4.37 respectively shows implementations of how the parity objects are populated and written to file.

 Parity p = new Parity(); p.setColumn(colsParity);

 p.setRow(rowsParity);

 p.setModule(moduleParity);

Listing 4.36 – Population of the parity object

122

public void writeToFile(String fileName) throws IOException

{ int length = row.length * 28; byte[] array = new

byte[length];

 File dir = new File(DIR);

if (!dir.exists()) dir.mkdir();

 fileName = DIR + "/" + fileName;

 FileUtils.writeByteArrayToFile(new File(fileName + ".module"),

module);

 int i = 0;

 for (byte[][] a : row){

for (byte[] b : a){

for (byte c : b){

array[i++] = c;
 }

 }

 }

 FileUtils.writeByteArrayToFile(new File(fileName +

".row"), array); i = 0;
 for (byte[][] a : column){

for (byte[] b : a){

for (byte c : b){

array[i++] = c;
 }

 }

 }

 FileUtils.writeByteArrayToFile(new File(fileName + ".col"),

array);

}

Listing 4.37 – Writing parity data to file

 Data Splitting

After the parity data has been computed for the file data, the system splits the file into 16 shards. Each

shard comprises of all the module elements of a particular location in the 4 × 4 grid. That is, every

first element in the 4 × 4 grid is collected into one shard. The algorithm in Listing 4.38 represents a

function to split the data into shards for uploading to the cloud.

123

function splitData() splits = new

array[16][threeDimentionalArray.length] for i = 0

to 4 for j = 0 to 4 current =

(4 * i) + j

 for k = 0 to threeDimensionalArray.length

 splits[current][k] =

threeDimensionalArray[k][i][j]

 endfor

 writeByteArrayToFile(splits[current])

 end

for end

for end function

Listing 4.38 – Function to split file into shards

The algorithm is implemented using the Apache Commons IO Java library (Listing 4.39).

public void split(Data data){

 String dir = "temp/split";

 File directory = new File(dir);

 if (!directory.exists()) directory.mkdirs();

 byte [][] splits = new

byte[16][data.length]; for (int i = 0; i < 4;

i++){ for (int j = 0; j < 4; j++){

 int a = 4 * i + j;

 for (int k = 0; k < data.length; j++){

 splits[a][k] = data[k][i][j];

 }

 FileUtils.writeByteArrayToFile(splits[a], new

File(dir + "/" + data.fileName + "." + a));

 }

 }

}

Listing 4.39 – Splitting data into 16 shards

 Checksum Data Recovery Technique Metadata

There are three types of metadata, the rows parities metadata, columns parities metadata, and module

sum parity.

Module sum parity is a single dimensional array of length similar to the length of the 3D data array.

The entry values are computed from the XOR of all entries of a module and stored in the array.

The module sum parity array has two main benefits:

124

• It ensures no module is dependent on another module (i.e. module abstraction).

• It reduces unnecessary iterations. Thus, the program checks for corrupted entries in a module

only when the sum of entries in the module is not equal to the value of module sum parity entry

at that index.

Each of rows parities and columns parities metadata is a 3D array of size similar to the 3D data array

computed from the data file. Each entry in the metadata array is a 2D array. Which implies the 3D

metadata arrays also contains modules in its entries.

A module in the rows parities array is a 4 x 4C2+1 matrix and the columns parities array is a 4C2+1 x

4 matrix, where C is combination. Thus, for a byte of data to be uniquely recovered in the event of an

error, each byte in a module must have relationships with entries on the same row and also entries on

the same column. For example, for a module of size 4x4 matrix, entry a(0,0) is related to entries a(0,1),

a(0,2) and a(0,3) as these are entries are on the same row. These relationships are stored as row parities

metadata. Similarly, entry a(0,0) is also related to entries a(1,0), a(2,0) and a(3,0) as these are entries

on the same column. These relationships are also stored as columns parities metadata.

Clearly there is a relationship between any two entries on the same row or column as there are four

entries on each row and four on each column of a module. The parity metadata for a given file is

obtained by computing the relationships on each row as 4 combination 2 (i.e. taking 2 entries at a time).

The combination (not permutation) used here is important because the order of combining is not

important since the relationship is computed as the XOR of each pair of entry and this minimises the

size of the metadata arrays.

The additional column on the row parities array holds the XOR of all entries in a row. This column is

very important because the algorithm uses the value held in the column to recover corrupted entries on

the row when the sum of the row does not equate to the value held.

The additional row in a column parities array module contains the AND of the last row and itself. This

is important because the whole error detection algorithm will use the last row as its base or reference

point.

The possible pairing is illustrated in Chapter 3, Figure 3.8.

125

 How A Module Locates Its Metadata In The Proposed Checksum Data Recovery

Technique

Given a module M [4] [4] at index [x] [4] [4] in the 3D data array,

• Its corresponding module sum parity is at index [x] within the module sum parity metadata

array (a single dimensional).

• Its rows parity module is at index [x] of the rows parity metadata array.

• Its columns parity module is at index [x] of the columns parity metadata array.

4.10. Implementation Of The Data Dispersal Technique (The Shuffling Method)

The shuffling is implemented using the Java Collection class in the Utility package. An array list is

created to contain integer numbers that correspond to the number of the derived shards after splitting

of file. The shuffling of the integer numbers in the array list is achieved by passing the array list as a

parameter to the static Shuffle method called from the Collections class. Appending the numbers from

the newly shuffled list to the original file name, a new name is formed

(filename.extension.number) which is used to get the individual shards from the source (temporary

storage where the shards are kept after splitting) to be ready for upload. Now the data shards are

distributed depending on the SMF user’s selected number of cloud providers. For instance, if two cloud

storage providers are selected (i.e. Dropbox and Box), then half of the appended list are distributed to

the Dropbox and the other half to the Box.

Below is the snippet code of the implementation of the data dispersion technique (Listing 4.40).

126

Listing 4.40 - Code for implementation of the data dispersion technique (the shuffling method)

4.11. Implementation Of SMF System’s Metadata

In order to keep track of file information, the system uses a metadata file (dubbed, file metadata) to

record information about the file and its shards. The information the system captures includes:

1. File Name

2. File Size

3. File Priority

4. Date of File Upload

5. Number of Data Shards

6. Number of Parity Shards

7. Cloud Service Destinations for the Shards

The system hosts the file metadata on SMF servers for easy access from multiple devices and locations.

A plain text file is used to hold the metadata information. The data is encoded in JavaScript Object

Notation (JSON). The Google Gson library is used for encoding and decoding the metadata.

127

After a file is selected for upload and the file priority is set, a metadata object is created and the fields

in the object are set with the file name, size, priority, number of data and parity shards. After the shards

are shuffled and assigned cloud accounts, the destination information is also captured into the metadata

object (Listing 4.41).

The system uses the Gson library to create a JSON string from the metadata object. The string is then

written to a file with the hash of the original file name as the name of the metadata file (Listing 4.42).

The extension for metadata files is “.meta”. When the system is done creating and updating the contents

of the metadata file, the file is uploaded to the SMF Metadata Server for safekeeping.

metadata.File metadata =

 new metadata.File(tempFile.getName(),

Date.from(Instant.now()), filePriority,

dataShards, parityShards, cols,

 size);

Listing 4.41 - Instantiation of a metadata file object

public static void writeFile(String content, File file) {

 FileWriter writer = new

FileWriter(file); writer.write(content);

writer.close();

}

Listing 4.42 - Method to write metadata string to file

4.12. Shards Upload Module

After the shards have been prepared for upload, SMF makes use of the Application Programmer

Interface (API) of the Cloud Service Provider to send the file over the internet to the CSP. Listing

4.43 shows a snippet of code from the SMF that does the file upload to Dropbox and Box.

if (cloud.equalsIgnoreCase("dropbox"))

 try {

 dbx.uploadFile(f);

 } catch (IOException | DbxException e) {

 e.printStackTrace();

128

 }

else if (cloud.equalsIgnoreCase("box"))

 try {

 box.uploadFile(f);

 } catch (IOException e) {

 e.printStackTrace();

 }

Listing 4.43 - Snippet of code showing file upload to Dropbox and Bo

4.13. File Download Module

The download module is composed of seven (7) activities as shown by Figure 4.4.

The user selects the file to download from their profile by clicking on the appropriate file name which

is actually kept in the user metadata.

The selected file name is hashed by applying the same hash function as that of the upload module to

obtain the same hashed value if the file integrity has not been tempered with; the resulting hashed value

is used with the file metadata file to obtain the required split chunks or shards from the user’s cloud

accounts storing them to a temporary storage (a buffer area).

The downloaded shards are then decoded or joined through using the Reed-Solomon decoding method.

The resultant file is re-transposed by applying the decryption function of the proposed Rubik’s Cube

transposition cipher used in the upload module.

The decrypted file output is renamed to the selected file name and delivered to the SMF user.

129

Figure 4.5 - File Download Module

 File Downloading Process

When the user selects a file to download, the system downloads the metadata file from SecureMyFiles

servers. The system then read the text from the metadata file as a string (Listing 4.44) and then uses a

method from the Gson library to create a metadata object that contains all the information in the file

(Listing 4.45). The selected file name is hashed by applying the same hash function as that of the

upload module to obtain the same hashed value if the file integrity has not been tempered with; the

resulting hashed value is used with the file metadata file to obtain the required split chunks or shards

from the user’s cloud accounts storing them. The downloaded shards are then decoded or joined

through using the Reed-Solomon decoding method. The resultant file is re-transposed by applying the

decryption function of the proposed Rubik’s Cube transposition cipher used in the upload module. The

decrypted file output is renamed to the selected file name and delivered to the SMF user.

public static String readFile(String fileName){

 String fileContent = "";

 try {

 Scanner scan = new Scanner(new java.io.File(fileName));

while (scan.hasNextLine())
 fileContent += scan.nextLine();

} catch (FileNotFoundException e) {
 e.printStackTrace();

 }

 return fileContent;

}

Listing 4.44 -Method to read text from a file to a string

String metadata = FileHandler.readFile("metadata/" + hash +

130

".meta");

metadata.File meta = new Gson().fromJson(metadata,

metadata.File.class);

List<Destination> destinations = meta.getDestinations();

Listing 4.45 - Snippet of code showing how the system creates a metadata object from a file and accesses the

list of destinations from the object

4.14. Reed Solomon Decoding Process

 The Error Detection Process

The pseudocode below describes a function to determine whether or not a codeword has been altered

(Twum et. al, 2017).

∷function checkForError(codeword[], encodingPolynomial[])

∷ quotient[], remainder[]=polynomialDivision(codeword,
encodingPolynomial)

∷ if (isZero(remainder))

∷ return false

∷ else

∷ return true

∷end function

Listing 4.46 - Function to determine data corruption in a codeword

4.14.1.1. Generating the Syndrome Polynomial

A syndrome polynomial is created using values in the finite field which should evaluate to 0 had the

codeword retained its integrity. The specific values to use are the same values used to construct the

encoding polynomial. The corrupt codeword polynomial is evaluated at the predetermined values and

the results from those evaluations are used as the coefficients in the syndrome polynomial. Thus, the

degree of the syndrome polynomial is one less than the number of parity values added to the data

during encoding. The pseudocode below describes a function to construct the syndrome polynomial

for a RS codeword which was encoded using 𝑛 parity and the values used in creating the encoding

polynomial begin with 21 (Twum et. al, 2017).

131

function makeSyndrome(codeword[], n) for i=1 to n

syndrome[i-1]=evaluate(codeword).at(exponent[i]) end for

 return syndrome end function

Listing 4.47 - Function to construct the syndrome polynomial

4.14.1.2. Solving the Key Equation

After the syndrome polynomial is generated, the next step is to determine the error locator polynomial

and the error magnitude polynomial for that specific syndrome i.e. for solving the key equation.

Various methods have been devised. This study presents a pseudocode for determining the error locator

and the error magnitude polynomials based on the Euclid-Sugiyama Algorithm (also known as the

Extended Euclidean Algorithm).

function extendedEuclideanAlgorithm(syndrome[], n)

initialise rLast[] to x^n initialise rCurrent[] to

syndrome initialise aLast[] and bCurrent[]to 1

initialise aCurrent[] and bLast[]to 0 while (degree of

rCurrent≥n/2) q[], rNext[

]=polynomialDivision(rLast, rCurrent)

aNext=polynomialAddition(aLast,

polynomialMultiplication(aCurrent, q)

bNext=polynomialAddition(bLast,

polynomialMultiplication(bCurrent, q)

 rLast, rCurrent=rCurrent, rNext

aLast, aCurrent=aCurrent, aNext bLast,

bCurrent=bCurrent, bNext end while

return bCurrent as locatorPolynomial, rCurrent as
magnitudePolynomial

end function

Listing 4.48 - Function for determining error locator and error magnitude polynomials

4.14.1.3. Searching for the Values of the Error Locations

There are two cases when it comes to locating errors using Reed Solomon decoding.

Case 1: Errors (When the locations of the errors are not known before-hand) :- The inverses of

the roots of the error locator polynomials are the locations of the errored coefficients in the corrupt

codeword. There are a number of algorithms which are able to find the roots of the locator polynomial.

One of the most widely used is the Chien Search (REDTITAN, 2011; Cox, 2012).

132

However, since the possible roots of the polynomial are finite, an extensive search using the elements

of the finite field is also a quick and easy-to-program approach to finding the error locations. The

pseudocode below describes a function to determine the inverses of the roots of the error locator

polynomial.

function findLocations(locatorPolynomial[]) for i=0 to

(number of data values+number ofparity values-1)

result=evaluate(locatorPolynomial).at(1/exponent[i])

if result=0 locations[].include(i)

end if end for return locations end function

Listing 4.49 - Function to determine specific error locations

Case 2: Erasures (When the locations of the errors are known before-hand) :- In the case where

the locations of the corruptions are known before-hand, it is unnecessary to perform a search for the

error locations. The locations data is simply constituted from the external source that informs of the

corruption.

4.14.1.4. Determining the magnitudes of the errors

The last step in generating the error polynomial is to find the magnitudes of the errors at the previously

determined locations. The Forney Algorithm (REDTITAN, 2011; Cox, 2012), is an efficient way of

doing so. The pseudocode below describes a function to implement the Forney algorithm to find the

magnitudes of the errors.

function forneyAlgorithm(locator[], magnitude[], locations[])

 derivative[]=formalDerivativeOf(locator) for i=0 to

length of locations-1 location=locations[i]

inverse=1/location error[location] = evaluate(magnitude)
 .at(inverse)/evaluate(derivative)

.at(inverse) end for

return error end function

Listing 4.50 - Function to implement the Forney Algorithm to determine the magnitude of an error

4.14.1.5. Error Correction Procedure using Lookup Table or the Advanced Method

Once the error polynomial has been determined, either using the lookup table or the advanced method,

correcting the error in the codeword is done by subtracting the error polynomial from the codeword

133

polynomial. The result is the corrected codeword which should be perfectly divisible by the encoding

polynomial. The pseudocode below describes a function to correct the errors in a corrupt codeword

using an error polynomial (Twum et. al, 2017).

function correctError(codeword[], errorPolynomial[])

return polynomialAddition(codeword, errorPolynomial) end

function

Listing 4.51 - Function to correct errors in a Reed Solomon codeword

4.15. Checksum Data Recovery Decoding

 Reconstruction of the file from file shards

The system read the shards that are downloaded from the cloud and write them into a threedimensional

array representing the data. Listing 4.52 shows a code snippet of the function that joins the file shards

to form a three-dimensional array.

public byte[][][] join(String fileName){ String dir =

"temp/split"; File directory = new File(dir); if

(!directory.exists()) throw new FileNotFoundException("No

'split' directory");

 byte[] bytes = null;

 int length = FileUtils.readFileToByteArray(new File(dir + "/"

+ fileName + "." + 1)).length;

 byte[][][] data = new

byte[length][4][4]; for (int i = 0; i <

4; i++){ for (int j = 0; j < 4;

j++){

 int a = 4 * i + j;

 bytes = FileUtils.readFileToByteArray(new File(dir +

"/" + fileName + "." + a));

 for (int k = 0; k < bytes.length; k++){

 data[k][i][j] = bytes[k];

 }

 }

 }

}

Listing 4.52 – Reading file shards to form a data array

 Reading Parity Data from Files

The system read the parity data from three files, one for the row parity, one for the column parity and

a last one for the module parity. The data from the files are used to populate a parity object. Listing

134

4.53 shows a code snippet used for the reading of files into the parity object.

public void readFromFiles(String fileName) throws IOException {

fileName = DIR + "/" + fileName;

 byte[] rowArray = FileUtils.readFileToByteArray(new

File(fileName + ".row"));

 byte[] colArray = FileUtils.readFileToByteArray(new

File(fileName + ".col"));
 module = FileUtils.readFileToByteArray(new File(fileName +

".module"));

 int length = rowArray.length / 28;

row = new byte[length][7][4]; column

= new byte[length][4][7];

 int a = 0;

 for (int i = 0; i < row.length; i++) { for

(int j = 0; j < row[i].length; j++) { for

(int k = 0; k < row[i][j].length; k++) {

row[i][j][k] = rowArray[a++];

 }

 }

 }

a = 0;
 for (int i = 0; i < column.length; i++) { for

(int j = 0; j < column[i].length; j++) { for

(int k = 0; k < column[i][j].length; k++) {

column[i][j][k] = colArray[a++];
 }

 }

}
 del(fileName);

}

Listing 4.53 – Reading parity data from files

 Error Location

The system re-computes the module parity for the three-dimensional data array and compare the

computed parities with the module parity data that was read form the file. The two parity information

are compared for equality. Where there is inconsistency, the data is flagged as corrupt and the system

proceeds to check the rows and columns for the offending array element

(Listing 4.54 and Listing 4.55).

void LocateDefectedModule(){

135

}

boolean errorExist = false;

for(int i =0; i < data.length; i++){

 if(ComputeModuleSum(data[i]) != moduleParity[i]){

 System.out.println("module "+(i+1)+" has error");

 LocateErrorInModule(this.data[i],i);

 errorExist = true;

 }

}

if(!errorExist)

 System.out.println("no error exist");

Listing 4.54 – Checking modules for errors

 private void LocateErrorInModule(byte[][] d,int x){ int

m,n,p; //declaration of variables boolean noError = true;

//assigning the error checker a value for(int row = 0;row <

d.length; row++){ //looping through the rows of the data

 if(!checkSum(d[row] , this.rowsParity[x][row][6])){

//if the value computed is not true

 noError = false; //assign noError to false to show

that an error exists in the data

 for(int col = 0; col < d[0].length;col++){ //looping

through the columns of the data

 switch(row){ //checking the row we are working

with

 case 0: //if its row 1

 m = d[row][col] ^ d[row+1][col]; //parity

of the value in the row is computed with the value on the next row

 n = d[row][col] ^ d[row+2][col]; //parity

of the value in the row is computed with the value two rows below it

 p = d[row][col] ^ d[row+3][col]; //parity

of the value in the row is computed with the value three rows below

it

 if(m != this.colsParity[x][row][col])

//checking if the value computed is equal to the value stored in the

colsParity array

 if(n !=

this.colsParity[x][row+1][col]) //checking if the value computed is

equal to the value stored in the colsParity array

 if(p !=

this.colsParity[x][row+2][col]) { //checking if the value computed

is equal to the value stored in the colsParity array

 boolean isNotCorrupt =

136

rowCheck(d,row,col,x); //checking if there is a corruption in the

data

 if(!isNotCorrupt){

137

 d[row][col]

= 0;

//data that is corrupt is set to zero

System.out.println("\tcell

("+row+" , "+col+")"); //displaying the cell that has an error

 }

 }

 else continue; //moves to the next value if they are the same

 else continue; //moves to the next value if they are the same
 else continue; //moves to the next value if they are the same

 break;

 case 1: //if its row 2

m = d[row][col] ^ d[row-1][col]; //parity

of the value in the row is computed with the value on the row

before it

n = d[row][col] ^ d[row+1][col]; //parity

of the value in the row is computed with the value on the row below

it

 p = d[row][col] ^

d[row+2][col]; //parity

of the value in the row is computed with the value two rows below

it

 if(m !=

this.colsParity[x][row-1][col])

//checking if the value computed is equal to the value stored in

the colsParity array

 if(n !=

this.colsParity[x][row+2][col]) //checking if the value computed is

equal to the value stored in the colsParity array

 if(p !=

this.colsParity[x][row+3][col]){ //checking if the value computed

is equal to the value stored in the colsParity array

 boolean

isNotCorrupt =

rowCheck(d,row,col,x); //checking if there is a corruption in the

data

if(!isNotCorrupt){

 d[row][col]

= 0;

//data that is corrupt is turned to zero

System.out.println("\tcell

("+row+" , "+col+")"); //displaying the cell with an error

 }

138

 }

 else continue; //moves to the next value if they are the same

 else continue; //moves to the next value if they are the same
 else continue; //moves to the next value if they are the same

 break;

 case 2: //if it's row 3

139

140

m = d[row][col] ^ d[row-2][col]; //parity

of the value in the row is computed with the value two rows above

it

n = d[row][col] ^ d[row-1][col]; //parity

of the value in the row is computed with the value one row above it

 p = d[row][col] ^

d[row+1][col]; //parity

of the value in the row is computed with the value one row below it

 if(m !=

this.colsParity[x][row-1][col])

//checking if the value computed is equal to the value stored in

the colsParity array

 if(n !=

this.colsParity[x][row+1][col]) //checking if the value computed is

equal to the value stored in the colsParity array

 if(p !=

this.colsParity[x][row+3][col]){ //checking if the value computed

is equal to the value stored in the colsParity array

 boolean

isNotCorrupt =

rowCheck(d,row,col,x); //checking if there is a corruption in the

data

if(!isNotCorrupt){

 d[row][col] =

0;

//data that is corrupt is turned to zero

System.out.println("\tcell

("+row+" , "+col+")"); //displaying the cell with an error

 }

 }

 else continue; //moves to the next value if they are the same
 else continue; //moves to the next value if they are the same

 else continue; //moves to the next value if they are the same

 break;

 case 3: //if it's row 4

m = d[row][col] ^ d[row-3][col]; //parity

of the value in the row is computed with the value three rows above

it

n = d[row][col] ^ d[row-2][col]; //parity

of the value in the row is computed with the value two rows above it

 p = d[row][col] ^

d[row-1][col]; //parity

of the value in the row is computed with the value one row above it

141

 if(m !=

this.colsParity[x][row-2][col])

//checking if the value computed is equal to the value stored in

the colsParity array

 if(n !=

this.colsParity[x][row+1][col]) //checking if the value computed is

equal to the value stored in the colsParity array

 if(p !=

this.colsParity[x][row+2][col]){ //checking if the value computed

is equal to the value stored in the colsParity array

142

 boolean isNotCorrupt =

rowCheck(d,row,col,x); //checking if there is a corruption in the

data

 if(!isNotCorrupt){

 d[row][col] = 0;

//data that is corrupt is turned zero

 System.out.println("\tcell

("+row+" , "+col+")");

 }

 }

 else continue; //moves to the next value if they are the same

 else continue; //moves to the next value if they are the same
 else continue; //moves to the next value if they are the same

 break;

 default:

 }

 }

 }

 }

 for(int i = d.length-1; i >= 0; i--){

 for(int j = 0; j < d[i].length; j++){

 if(d[i][j] == 0){

 d[i][j] = this.colsParity[x][6][j];

 }

 }

 break;

 }

 while(countErrors(d) > 0){ //checking if the number of errors

in the module are more than zero

 ResolveCorruption(d, x); //the ResolveCorruption method is

called on the module and its coordinates

 }

}

Listing 4.55 – Error location within the module

 Error Correction

The system resolves the data corruption by looking through the rows parity and columns parity that is

read from file and performs an XOR sum at the appropriate locations to correct the error (Listing

4.56).

143

private void ResolveCorruption(byte[][] d, int x){

 for(int row = 0;row < d.length; row++){ //looping through

the data

 for(int col = 0; col < d[row].length;col++){ //looping

through the row of the data

 if(d[row][col] == 0){ //checks if the value in the

position we are on in the iteration is zero

 resolve(d,row,col, x); //the resolve method is

called

 }

 }

 }

 for(int row = 0;row<d.length;row++){ //looping through

the data

 if(d[row][d[row].length-1] == 0){ //checking the value in

the last column of the data

 switch(row){ //checking the row

 case 0: //if it's row 1

 d[row][3] = (byte)((d[row][2] !=

0)?d[row][2]^this.rowsParity[x][row][5]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the rowsParity array and the value

in the column before it else it is maintained

 d[row][3] = (byte)((d[row+1][3] !=

0)?d[row+1][3]^this.colsParity[x][row][3]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the colsParity array and the value

in the row below it else it is maintained

 break;

 case 1: //if it's row 2

144

 d[row][3] =

(byte)((d[row][2] !=

0)?d[row][2]^this.rowsParity[x][row][5]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the rowsParity array and the value

in the column before it

 d[row][3] =

(byte)((d[row-1][3] != 0)?d[row-

1][3]^this.colsParity[x][row-1][3]:d[row][3]); //the data in the

last column is checked and if it is zero, the value is computed

with its corresponding value in the colsParity array and the value

in the row above it else it is maintained

 d[row][3] =

(byte)((d[row+1][3] !=

0)?d[row+1][3]^this.colsParity[x][3][3]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the colsParity array and the value

in the row below it else it is maintained

 break;

 case 2: //if it's row 3

 d[row][3] =

(byte)((d[row][2] !=

0)?d[row][2]^this.rowsParity[x][row][5]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the rowsParity array and the value

in the column before it

 d[row][3] =

(byte)((d[row-1][3] != 0)?d[row-

1][3]^this.colsParity[x][3][3]:d[row][3]); //the data in the last

column is checked and if it is zero, the value is computed with its

corresponding value in the colsParity array and the value in the

row above it else it is maintained

 d[row][3] =

(byte)((d[row+1][3] !=

0)?d[row+1][3]^this.colsParity[x][5][3]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the colsParity array and the value

in the row below it else it is maintained

 break;

 case 3: //if it's row 4

145

 d[row][3] =

(byte)((d[row][2] !=

0)?d[row][2]^this.rowsParity[x][row][5]:d[row][3]); //the data in

the last column is checked and if it is zero, the value is computed

with its corresponding value in the rowsParity array and the value

in the column before it

 d[row][3] =

(byte)((d[row-1][3] != 0)?d[row-

1][3]^this.colsParity[x][5][3]:d[row][3]); //the data in the last

146

column is checked and if it is zero, the value is computed with its

corresponding value in the colsParity array and the value in the

row above it else it is maintained

 break;

 default:

 }

 }

 }

 display(d);

}

Listing 4.56 – Error correction

 Writing Corrected Data to File

The system finally writes the corrected data to file. Listing 4.57 shows the function that writes the data

to file.

public void writeToFile() throws IOException

{ int length = array.length * 16; int

a = 0;

 byte[] bytes = new

byte[length]; for (byte[][] b :

array){ for (byte[] c : b){

for (byte d : c)

bytes[a++] = d;

 }

 }
 a = length - 1;

while (bytes[a] != 1)

a--;

 FileUtils.writeByteArrayToFile(new File(filename),

Arrays.copyOf(bytes, a + 1)); }

Listing 4.57 – writing data from the three-dimensional array to file

4.16. Web Server

Before one can get access to the core functionalities of SecureMyFiles System, a user account needs

to be created. The user account details are stored in a database stored on a web server to make the

application portable. The SMF System can be used on any computer that is connected to the Internet.

147

Essential to the SMF System is its metadata which stores pieces of information pertaining to the user,

and the uploaded files. The user metadata and the files metadata are also stored on the web server for

authenticating users to the application from any computer and also fetch files from the users subscribed

cloud accounts.

 Database

The SecureMyFiles software makes use of a two-table database which is hosted on a web server. The

database is purposefully meant for user authentication to the application. There is a user_account table

which has data associated with each account. The other table is the user table which keeps details for

each user of the system. There exists a relationship between the tables; the user field in the

user_account table is a foreign key to the user_id field in the user table. The database schema is as

shown in Figure 4.5.

The log-in details requires a username, which is the user’s primary email, and a password. These are

bundled together for authentication. If any of the detail is wrong, authentication fails. As an extra layer

of security, the user’s password is salted before the resulting string is converted into a 256-bit long

string using the SHA-256 hashing algorithm.

Java provides a layer of abstraction for relational databases by the use of the Java Persistence

Architecture (JPA). JPA is an example of an object-relational (O/R) mapper. This mapper juggles

between the entities in the database and the business logic. The O/R mapper is basically a collection

of classes called entity classes, with each representing a particular entity in the database. The

application thus does not communicate with the database directly but rather, does so through the entity

classes. For this to happen, an object of the entity class(es) are created first.

148

Figure 4.6 - Database schema

A Java class is an entity class when it meets the following criteria:

• The class must be annotated with @Entity.

• The class must have a public or protected, no-argument constructor. The class may have other

constructors.

• The class, methods, or instance variables must not be declared final.

• If an entity instance is passed by value as a detached object, such as through a session bean’s

remote business interface, the class must implement the Serializable interface.

• Entities may extend entity classes and non-entity classes, and non-entity classes may extend

entity classes.

• Persistent instance variable must be declared private, protected, or package-private and can be

accessed directly by only the entity class’ methods. Clients must access the entity’s state

through accessor or business methods.

There can be other annotations aside these two. With the annotations, constraints in the actual database

can be foregone. For instance, the annotation, @JoinColumn, indicates a field corresponding to a field

in an entity being a foreign key. With such an annotation in place, even if this constraint is not enforced

in the actual database, JPA will ensure the data meets this requirement before it goes into the database.

Actual database transaction occurs by means of the EntityManager API. With the entity manager, an

entity object, which corresponds to a row in a database table, can be created, updated, removed, and

deleted. An object-oriented query language called Java Persistence Query Language (JPQL), which is

similar to SQL, is issued by the entity manager. The entity manager however, converts the JPQL

queries to SQL queries so that the JPA can actually interact with the database.

The Java Persistence consists of the: Java Persistence API, Java Persistence Query Language, O/R

mapping metadata.

149

CHAPTER 5

5. TESTING, RESULTS AND DISCUSSIONS

This chapter presents the results from the testing of the various sub-systems that were implemented

and integrated to create the SMF system. The system was passed through various testing stages

including component testing, integration testing, and system testing. The beta version of the SMF

system has been deployed on various end-user client nodes for the acceptance testing. The chapter also

presents a discussion of the results and how it addresses the study objectives.

5.0. Testing and Results

The sections that follow disclose the process used to test the proposed system and the results obtained

from the tests. The testing was carried out in an experimental lab set-up using JAVA, SQL, and PHP

software development tools installed on a very high-spec PC (64-bit Intel Core-i7 CPU running at

3.60GHz, 12.0GB RAM) and Laptop (64-bit Intel Core-i7 CPU running at 2.20GHz, 8.0GB RAM). In

addition the experimental setup required a stable computer network infrastructure.

Various testing scenarios were set-up for experimentations to evaluate the SMF system capability of

recovering a file in an event of corruption (whether shards modifications or shards deletion). Results

from the experiments conducted using the Reed Solomon Erasure protection and also this studies

newly developed Checksum Data Recovery (CDR) Erasure protection under different testing scenarios

are presented later in this chapter.

5.1. Cloud Providers

There are a number of cloud service providers that provide premium and free services. Those that are

available for use with the SMF App are Dropbox, Google Drive, and Box. Each of these cloud accounts

is connected to the SMF App via their respective Java APIs. These APIs provide safe and secure

connections to the cloud accounts just as it is when accessing an account on the cloud provider’s

website.

A user needs to sign up to a minimum of two cloud accounts—Dropbox, Google Drive, and Box—

before using the SMF App. For testing the proposed system, three cloud accounts were used. Due to

security, and file recovery constraints, the user should have three cloud accounts registered with the

application in the worse-case scenario. However, six is highly recommended for a good balance

between performance and security.

150

5.2. File Uploading Sequence

1. File Selection

2. File Name Obfuscation

3. Data Encryption

4. Erasure Protection

5. Data Dispersal

6. File Upload

 File selection

Figure 5.1 - User Interface for selecting and configuring file for upload

The system uses Java’s JavaFX FileChooser UI to present the user with an interface with which a file

can be selected to be used.

151

Figure 5.2 - User Interface for choosing a file for upload

5.2.1.1. Constraints

File type constraints: The selection module accepts all file types.

File size constraints: The selection module does not enforce any file size constraints. It should be

noted though that the Java Virtual Machine (JVM) allocates memory for the program based on the

hardware Random Access Memory (RAM). The implication here is that files with a substantially large

size can cause an OutOfMemory Exception during runtime.

 File name obfuscation

The first line of security that the system provides is a hashing of the file name. All subsequent

operations on the file are done with the hashed name instead of the original file name. This helps to

hide the purpose of the file from any intruder who manages to break into the user’s cloud account and

access the file’s pieces online.

The system uses Secure Hash Algorithm 1 (SHA1) from Java’s inbuilt Security package. Though the

Message Digest 5 (MD5) was considered as an alternative hashing method but the MD5 algorithm is

now widely regarded as cryptographically broken (Kessler, 2017). This means that the hash from an

MD5 function can be reversed to obtain the original data which was hashed. As such, the MD5

algorithm was discarded in favour of SHA1 which is still a one-way hashing scheme. Further, SHA1

produces a longer string than MD5. This is useful in that it is more difficult to break a longer string

than a shorter one.

152

The result from implementation of the hashing activity is shown in figure 5.3.

Figure 5.3 - Result from hashing file name.

 Data encryption

The second line of security that the system provides is an encryption module to obfuscate the data

within the file. The system makes use of a proposed transposition cipher that mimics the motions of

the Rubik’s Cube. The system writes the file’s byte data onto the face of a virtual customized Rubik’s

Cube and uses a custom algorithm described in Chapter 3 Section 3.2.1.2 to create a sequence of

rotations to obfuscate the data.

5.2.3.1. Encryption Key

The system uses a hash value based on the user’s credentials as the encryption key. The system applies

a custom algorithm to transform the hash value into a sequence of rotations.

5.2.3.2. Encryption

During an encryption, the rotation sequence is followed forwards and each rotation is carried out in the

clockwise direction.

5.2.3.3. Decryption

During a decryption, the rotation sequence is read from the last to the first and each rotation is carried

out in the counter-clockwise direction. This undoes the clockwise rotations done during the encryption.

Following the process outlined in Section 4.5, the content of the file was encrypted using this study’s

proposed transposition cipher which is the Rubik’s Cube algorithm and the results obtained are shown

in figure 5.4.

153

Figure 5.4 - Result from encrypting file content

 File splitting with erasure protection

Every file is split into a predetermined number of shards before upload. Reed Solomon Coding and the

Checksum Data Recovery were used to enforce erasure protection. To make use of Reed Solomon

Coding, first an encoding polynomial was generated after which it was used to encode the data in a

file. Figure 5.5 shows a list of encoding polynomial coefficients from parity size 1 to parity size 32.

Figure 5.6 shows the encoding polynomial coefficients for parity size 32 which may be useful for data

shards up to 223. Table 5.1 shows the results from encoding a 256-byte file into 32 data shards and 8

parity shards.

Figure 5.5 - Encoding Polynomial Coefficients for Parity sizes from 1 up to 32

Figure 5.6 - Encoding Polynomial Coefficients for Parity size of 32

154

Table 5.1 - Encoding of 256-byte file with 32 data shards and 8 parity shards

140 13 247 189 11 50 88 9

18 72 99 140 82 27 12 64

191 156 249 137 226 253 200 156

98 254 122 97 215 28 84 128

116

104

94

247

59

86

74

47

126

73

60

158

135

116

138

254

133

49

98

144

34

243

54

199

52

171

178

20

161

36

32

74

78

43

108

105

84

115

111

32

101

116

97

32

116

73

114

32

107

111

101

110

32

120

101

110

112

115

51

56

32

101

97

116

50

54

116

32

100

97

45

58

104

105

43

108

98

32

105

102

32 121 111 117 32 104 97 118

101 32 110 111 32 105 100 101

97 32 119 104 105 99 104 32

111 110 101 32 121 111 117 32

115 104 111 117 108 100 32 116

97 107 101 46 13 10 78 111

116 101 112 97 100 43 43 32

122 105 112 32 112 97 99 107

155

97 103 101 32 51 50 45 98

105 116 32 120 56 54 58 32

68 111 110 39 116 32 119 97

110 116 32 116 111 32 117 115

101 32 105 110 115 116 97 108

108 101 114 63 32 67 104 101

99 107 32 116 104 105 115 32

111 110 101 32 40 122 105 112

32 102 111 114 109 97 116 41

46 13 10 78 111 116 101 112

97 100 43 43 32 55 122 32

112

51

56

116

97

50

54

32

99

45

58

119

107

98

32

97

97

105

68

110

103

116

111

116

101

32

110

32

32

120

39

116

111 32 117 115 101 32 105 110

115 116 97 108 108 101 114 63

32 55 122 32 102 111 114 109

After the erasure protection techniques have been applied, the shards are saved as individual files on

the disk. Figure 5.7 shows the results of splitting one file.

156

Figure 5.7 - A view into a folder showing the shards of a file after splitting

 Data dispersal

The third security measure employed by the system is to scramble the file shards before uploading

them to the cloud. The system uses a shuffle function found in Java’s Collections package. The function

reorders the file shards and assigns the scrambled shards to the user’s cloud accounts.

Since the data is uploaded in no particular order, it is difficult to determine the total number of shards

from the content of one drive. That total number of shards is very necessary if an intruder wants to

reconstruct the files from its shards.

The shuffling method implemented by following the processes outlined in Chapter 4 Section 4.10 gave

the results in figure 5.8.

157

Figure 5.8 - Result from file name shuffling

 File upload

The final phase of the upload process is to connect to the cloud service through the service provider’s

API and send the file over secure HTTP into the user’s cloud account.

Depending on the SMF user choice of a file priority level (Low, Normal, important, or critical) as

depicted by figure 5.1 of Section 5.2.1, the system distributes shards to the user’s cloud accounts in

accordance to the data and parity computation as set out in Chapter 4 Section 4.8.1.

Testing and results from the selection of the ‘Normal’ and ‘Important’ file priority levels which

employs the Reed Solomon Erasure protection for file recovery under different scenarios are presented

(See Scenarios 1 and 2).

The test results from the critical priority level which uses this study’s proposed Checksum Data

Recovery (CDR) described in Chapter 3 Section 3.3.2 and implemented in Chapter 4 Section 4.9 is

also presented (See Scenario 3). By choosing the critical file priority option, the SMF user may lose

158

up to 12 shards out of the 16 total shards for any file size uploaded (Refer to figure 4.4 in Chapter 4,

Section 4.9.2) and still be able to recover the corrupted file.

Scenario 1: Uploading a file by choosing the ‘Normal’ file priority level.

The ‘Normal’ priority level splits a file into 96 data shards and 48 parity shards that are used for file

recovery in the event of corruption. This result with a total of 144 shards that are uploaded using the

data dispersal method to the six CSP’s each receiving 24 shards.

Case 1

Figure 5.9 depicts a successful file upload operation where the SMF user selected the ‘Normal’ priority

level. The figure indicates none of the distributed shards are corrupted.

Figure 5.9 – A successful file upload choosing the Normal file priority level

Scenario 2: Uploading a file by choosing the ‘Critical’ file priority level.

As noted in Chapter 2 Section 2.8, Reed Solomon coding can recover any number of data errors up to

half the number of parity data stored and can correct any number of erasures up to the number of parity

data stored. This feature of Reed Solomon coding places some limitation on the number of data that

159

can be successfully recovered in the event of data corruption. The proposed Checksum Data Recovery

(CDR) which although cannot recover data in the event of total deletion without relying on backup can

in most cases recover a file to some extent if at least four of the data shards exist. The ‘Critical’ file

priority option uses the CDR for erasure protection. Case 1 depicts a successful file uploading

operation where the SMF user selected the ‘Critical’ priority level.

Case 1

Figure 5.10 depicts a successful file upload operation where the SMF user selected the ‘Critical’

priority level. The figure indicates none of the distributed shards are corrupted.

Figure 5.10 – A successful file upload choosing the Critical file priority level

The results from the implementation of the data dispersal method described in Chapter 4, Section

4.10 are shown by figure 5.11 and figure 5.12.

160

Figure 5.11 - Content of Dropbox account showing some of the shards from a file whose name has been

obfuscated.

Figure 5.12 - Content of Box account showing some of the shards from a file whose name has been obfuscated.

161

5.3. File Downloading Sequence

The file downloading sequence follows the process outlined and implemented by the file download

module presented in Chapter 4, Section 4.13 as follows:

1. File Selection

2. Data Gathering

3. Erasure Protection

4. Data Decryption

5. File Name Restoration

 File Selection

The system displays a list of file names for the files which have been uploaded to the cloud by the user.

From the list, the user can select a file for download by clicking on it. After selecting the file, the user

then clicks a download icon from the interface icon bar to initiate the download.

Figure 5.13 - Interface of SMF application showing a list of uploaded files

162

 Data gathering

After the file download has been initiated, the system produces the SHA1 hash of the selected file

name and consults the file’s metadata to fetch a list of destinations to which the file’s shards were

dispersed during the file upload. The system then connects to the cloud and downloads the file shards

from their respective destinations into a temporary directory (buffer area). The downloaded shards

include both the original file data as well as the computed parity data. The cloud download requests

use the hash value of the file’s name instead of the original file name since the file shards were renamed

to the hash value before they were uploaded.

 Erasure recovery

The system proceeds to verify the integrity of the downloaded file by making use of the erasure

protection method that the user selected when uploading the file. The file priorities “low”, “normal”

and “important” make use of Reed Solomon coding whereas the “critical” file priority makes use of

the Checksum Data Recovery (discussed in section 4.6).

5.3.3.1. Reed Solomon Decoding

The system reads the file shards into a two-dimensional array with each row in the array containing

the data from one file shard. The data shards are read first into the array before the parity data. The

system then iterates through the columns of the two-dimensional array and extracts each column data

into a polynomial. The system then takes the remainder when the polynomial is divided by the

encoding polynomial. A remainder of zero indicates that the column data is not corrupt. Any other

remainder indicates a corruption of the column data. In the case where the data is not corrupt, the

system simply proceeds to the next column to test the integrity of that column; otherwise the system

takes measures to correct the corruption. The Reed Solomon Error Correction process that the system

uses comprises the following steps:

5.3.3.2. Syndrome Polynomial

The system creates a syndrome polynomial by evaluating the column polynomial at the first “parity”

values of the Galois Field. Since the syndrome is computed with an erroneous column data, the

syndrome is able to quantify the error in the column polynomial.

5.3.3.3. Extended Euclidean Algorithm

The system passes the syndrome polynomial into a method which performs the Extended Euclidean

Algorithm using the syndrome as its initial value. The method solves the Reed Solomon key equation

163

using the Sugiyama-Euclidean Algorithm and return two objects, representing the error locator and

error magnitude polynomials.

5.3.3.4. Extensive Search

After having computed the error locator polynomial, the system evaluates the polynomial at the

inverses of all the values of Galois Field. The system locates the positions of the errors as the exponents

whose values’ inverses evaluate to zero.

5.3.3.5. Forney Algorithm

The system then computes the magnitude of error at each of the locations found in the extensive search.

The system passes the error locator polynomial, error magnitude polynomial and the locations of the

errors as arguments to a method which implements the Forney algorithm to generate an error

polynomial representing the alterations to the original file and parity column.

5.3.3.6. Error Correction

The system corrects the alteration in the file and parity column by performing a polynomial addition

of the error polynomial and the column polynomial. The resulting polynomial is the original

polynomial before the file shards were uploaded. The data from the corrected column is used to replace

the data from the corrupt column in the two-dimensional array that holds the file data.

5.3.3.7. File Reconstruction

After the downloaded shards have been verified and corrected, the system reads the byte data from the

first “data” rows of the two-dimensional array into a single byte array which is subsequently written

to a temporary file.

 Data decryption

The system writes the byte data from the temporary file onto the face of a virtual customized Rubik’s

Cube. The system recreates the sequence of rotations that was used to encrypt the original file, then

iterates through the sequence from the last rotation to the first, performing each rotation in the counter-

clockwise direction. The process restores the file’s data to the right order, making it readable once

again.

164

 File name restoration

The system finally moves the temporary file into the system’s download directory and renames it to

the original file’s name.

Scenario 1: Downloading a file uploaded using the ‘Normal’ file priority level.

Case 1

Figure 5.14 depicts file reconstruction during download for a scenario where 24 of the distributed

shards are corrupted or an event where one of the six CSP’s refuses to grant a subscriber access to

shards stored on their storage servers in the event of a dispute over say subscription payments or for

any other reason.

Figure 5.14 – successful file reconstruction during download for 24 corrupted shards with Normal option

Case 2

Figure 5.15 depicts a situation where 48 shards are corrupted or where two of the CSP’s systems are

down but the SMF system is able to recover the full file and present to the owner.

165

Figure 5.15 – successful file reconstruction during download for 48 corrupted shards with Normal option

Case 3

Unlike Case 1 and Case 2, Case 3 presents a scenario that depicts a situation where more than 48 shards

are corrupted i.e. when more than two CSP’s systems are inaccessible. As described above, the

‘Normal’ file priority level stores 48 parity information and hence cannot be able to recover data

corruption of more than 48 shards. Hence as depicted in figure 5.16 the file recovery process failed for

files uploaded using the ‘Normal’ priority level with more than 48 corrupted shards.

166

Figure 5.16 – failed file reconstruction during download for more than 48 corrupted shards with Normal

option

Scenario 2: Downloading a file by choosing the ‘Important’ file priority level.

Case 1

The ‘Important’ priority level when selected splits a file into 72 data shards and 72 parity shards that

are used for file recovery in the event of corruption making a total of 144 shards that are uploaded to

the six CSP’s using the data dispersal technique. Although slower in recovering a file than the ‘Normal’

priority level, the ‘Important’ priority level enables a file to be recovered even if 72 shards are

corrupted or when three CSP’s servers are inaccessible.

Figure 5.17 depicts a scenario where 72 of the distributed shards are corrupted or a situation where

three of the six CSP’s servers are unreachable but the SMF system still recovered the full file during

download.

167

Figure 5.17 – successful file reconstruction during download for 72 corrupted shards with Important option

Case 2

Case 2 presents a scenario that depicts a situation where more than 72 shards are corrupted i.e. when

more than three of the CSP’s systems are inaccessible. As stated above, the ‘Important’ file priority

level stores 72 parity information and hence cannot recover data corruption of more than 72 shards.

Therefore, as depicted in figure 5.18 the file recovery process failed.

Figure 5.18 – failed file reconstruction during download for more than 72 corrupted shards with Important

option

168

Scenario 3: Downloading a file by choosing the ‘Critical’ file priority level.

Case 1

Figures 5.19, 5.20, and 5.21 respectively depict a scenario where 4, 8 and 12 of the distributed shards

are corrupted during download and the SMF system reconstructs the file successfully with Critical

option.

Figure 5.19 – successful file reconstruction during download for 4 corrupted shards with Critical option

Figure 5.20 – successful file reconstruction during download for 8 corrupted shards with Critical option

169

Figure 5.21 – successful file reconstruction during download for 12 corrupted shards with Critical option

Case 2

It was realised during testing as shown by Figure 5.22 that the ‘Critical’ priority option cannot recover

a file when more than 12 of the shards are corrupted.

Figure 5.22 – failed file reconstruction during download for more than 12 corrupted shards with Critical

option

170

5.4. The Proposed Cloud Data Distribution Intermediary (CDDI) Framework

The study proposes a Six-level Cloud Data Distribution Intermediary (CDDI) Framework that

addresses the study objectives as shown in Figure 5.12

Figure 5.23 – Proposed Six-level Cloud Data Distribution Intermediary (CDDI) Framework

5.5. Discussion of how the proposed system compares with existing related systems

Below is a summary of how the proposed system compares with other existing related systems in terms

of architecture, ensuring confidentiality, providing integrity, and controlling access to data and other

resources outsourced for cloud storage.

171

 Architecture

The Google File System (GFS) and Apache Hadoop are distributed file storage systems whereas

Backblaze offers cloud storage and backup service (Refer to Section 2.9). The proposed system is a

distributed cloud backup service. GFS is Google’s proprietary distributed file storage system upon

which the Google Drive cloud storage is built.

GFS and Apache Hadoop make use of clusters of commodity machines for data storage and

computations (Hadoop 2013; Roshan 2014). Backblaze utilizes a single data centre to hold all of the

backed-up data (Backblaze, 2017). However, the proposed system makes use of multiple existing cloud

storage service providers such as Google Drive, Dropbox and Box, to store pieces or shards of a single

file.

 Confidentiality

Google File System and Apache Hadoop are designed to support constant data access by applications

that perform computations with the stored data. As such the recommendation is for the data to be plain

or raw (Hadoop, 2013; Roshan, 2014). Any external party that accesses the data is able to get the data

in its plain format. While this is not a strict requirement, it is the recommended design. Confidentiality

is traded off for computational ease in these systems.

Backblaze uses a combination of Advanced Encryption Standard (AES) and Secure Socket Layer

(SSL) to secure the data that is transmitted to and saved on their servers, thus ensuring confidentiality

(Backblaze, 2017).

The proposed system uses a custom-made encryption algorithm based on the motions of a Rubik’s

Cube to obfuscate the data. In addition, the filename is also hashed to obscure the purpose of the file.

The combination of the data encryption and filename hashing greatly enhances the confidentiality of

the system.

 Access Control

Google File System, Apache Hadoop and Backblaze all store data shards in a location where the service

provider has access to all the pieces of the file data. As such, while it may be possible that the data

owner may be unaware of the storage location of their file shards, the service providers have all that

information available to them (Chima, 2016). On the other hand, the proposed system distributes the

data shards to multiple service providers without storing the credentials required to access them.

172

This means that no one service provider knows the location of all the file shards, ensuring that only the

data owner has full access to the data.

To access file shards on Apache Hadoop and Backblaze, the data owner must supply a single set of

login credentials. The service providers require no login credentials to access the files saved on their

servers and since all the file shards are hosted on their storage servers, they have full access to the files

that are uploaded to their servers.

In contrast, with the proposed system requires a separate set of login credentials for each of the cloud

storage service providers that the user subscribes to. Any user or service provider that wishes to access

files from the proposed system will need to know at least all but one of the login credentials.

This greatly increases the confidentiality factor of the storage framework.

 Integrity

The GFS and HDFS file systems are designed for appending to files but not altering the file contents.

This helps to prevent altering the content of the files which are saved on the file system, thus securing

the integrity of the data.

On the other hand, Backblaze uses Reed-Solomon erasure coding via Vandermonde matrix to guard

against data loss. While this algorithm protects against data loss when a storage cabinet goes offline,

it does nothing to prevent alteration of the data in a shard. As long as the shard is present, it is included

in the downloaded file. This means that the data in the shard can be altered without detection by the

data owner. This observation was noted through compiling and running the Backblaze open source

Reed Solomon Erasure Coding Source Code (Backblaze, 2015b)

The proposed SMF system employs Reed-Solomon, and the proposed checksum data recovery method

that are implemented at the client side for error detection and correction. The SMF client application

ensures that any alterations to the data can be detected and corrected.

 Ownership

The SMF system ensures that only the owner of the data (cloud subscriber) has sole ownership of their

data resource stored on the cloud. This is in contrast to existing architectures (direct or indirect models)

implemented by storage CSP’s such as Google Drive, Dropbox, or Box where ownership of the data

becomes a contentious issue but in most cases the CSP claim ownership (Gray, 2014;

FileCloud, 2016).

173

CHAPTER 6

6. FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

6.0. Findings

The finding from the study on how it addresses issues of cloud data confidentiality, integrity,

ownership, availability and authentication is presented by Tables 6.1. In addition Table 6.2 presents

how the CDDI framework addresses other cloud security issues as Multi-Tenancy, Data Loss, Data

Location and other computer network attacks such as Dos/DDos, Malicious Insider, Malware Injection,

Man-in- the-middle (MITM), Message Replay and U2R and R2U.

Table 6.1 - How the proposed system address issues of Confidentiality, Integrity, Ownership, Availability and
Authentication

Confidentiality From figure 5.3 and figure 5.4 the CDDI framework provides

confidentiality of the subscriber’s data at the second level

(through obfuscation of the purpose of the file by hashing the

file name) and third level (through obfuscation of the file

content by encrypting the file content)

Integrity The CDDI provides protection from data loss or corruption

using the Reed Solomon Coding or the Checksum Data

Recovery depending on the subscribers file priority level

selected. Data integrity is achieved at the fourth level of the

CDDI framework

Ownership and Availability The CDDI ensures that the cloud subscriber has sole

ownership of their data outsourced for cloud storage at levels

five and six of the framework. In addition, the same levels of

the framework together with the use of the metadata ensure

that unavailability of a CSP that may be as a result of a

DoS/DDoS attack does not prevent the subscriber from having

access to their data. Thereby assuring subscribers the

availability of their data.

Authentication The CDDI uses multiple non-persistent logins to access the

client interface as well as the subscriber’s cloud accounts. The

use of non-persistent logins means that even if a

174

 malicious person gains knowledge of one of the credentials,

the person’s ignorance of the remaining credentials will serve

as a check to prevent access to the subscriber’s data. Level one

of the framework ensures this security feature.

Table 6.2 - How the CDDI framework addresses other cloud security issues

Multi-Tenancy The CDDI framework addresses the issue of multi-tenancy threat

by the use of the different CSP’s storage facilities. The framework

by breaking and distributing shards to multiple

CSP’s means that, the cloud security challenge of multi-tenancy

which poses threat of a CSP maliciously leaking subscriber’s data

to a competitor deliberately or accidentally is eliminated.

The CSP has no access to the subscriber’s complete data as only a

portion of the data is stored with them.

Data Loss The CDDI framework prevents Data Loss (Erasure) through

using the parity information stored on the metadata server and the

use of the File Decoding Process via Reed Solomon Decoding

method or the Checksum Data Recovery method, depending on

the user’s choice of a priority level during the File Upload. The

proposed framework compared to the existing cloud file

architectures (google GFS, Apache Hadoop, and Backblaze B2 –

Refer to Section 2.9 of the literature review) can recover the most

data. Also the CDDI framework unlike the Backblaze B2 system

is able to detect if an attacker alters the content of a shard and

maintains the shard size.

Data Location The current direct or indirect cloud architectures gives the

provider access to the subscribers data as they know the locations

of their storage facilities and can have access to them to retrieve

the data even if encrypted (Chima, 2016). The CDDI framework

distributing shards to multiple CSP’s (with storage facilities

located in different countries) prevents a single CSP from

knowing the location of the subscriber’s data and thereby

175

 addressing the issue of different privacy laws of different

countries.

DoS/DDoS Attack The CDDI framework distributing the data to different multiple

CSP’s storage facilities means that no single CSP has the

subscriber’s complete data. Hence a DoS/DDoS attack on one or

more CSP’s does not prevent the subscriber from accessing their

outsourced data. The parity information stored on the CDDI

metadata server together with the File downloading process can

be used to recover the data even if several CSP’s are attacked.

Malicious Insider Attack By splitting subscribers data into shards and distributing to

different multiple CSP’s storage infrastructures, the CDDI

framework protects subscribers data against an insider attack as

an employee of a CSP only have access to scrambled portions of

the subscribers data. The CDDI framework ensures that only the

rightful owner of the data can make use of the data.

Malware Injection Attack The CDDI framework addresses the threat of cloud malware

injection attack where the attacker plant an evil virtual cloud

machine in a CSP’s cloud environment with the goal of

intercepting subscribers data and taking full control. The

framework using its metadata information about location of

shards stored on the metadata server and the File downloading

process can track and restore corrupted shards that may have been

altered by the Malware Injection attacker. Also as the data

received by the attacker is incomplete the attacker cannot make

use of the data. In the event of this attack occurring, the CDDI

framework treats the data sent to the evil cloud virtual machine as

lost and recover using the metadata and either the Reed Solomon

Decoding method or the Checksum Data Recovery method

depending on the priority selected for the upload.

MITM Attack and Message

Replay Attack

The CDDI framework distributing the split shards to different

CSP’s infrastructures minimises the threat of MITM attack in the

sense that the attacker will have to intercept all of the

176

 distributed file splits for the MITM attack to be effective. Since

the shards are distributed to different multiple CSP’s the

intercepted data will be incomplete and un-useful to the attacker.

Even if the attacker commits a Message Replay attack by

changing the content of the intercepted shards, the CDDI

framework metadata server can be used with the File Download

Process to reconstruct the file to its original form.

U2R and R2U attacks The U2R attack enables attacker to maliciously log into a system

as a legitimate user using authorised system credentials and R2U

attack enables an attacker to exploit a system vulnerabilities

though sending probing packets to the system. The CDDI

framework addresses threats from these attacks through the use of

different multiple cloud storage facilities to store the distributed

fragments of the subscriber’s data. No single CSP has the

subscriber’s complete data and hence a successful U2R or R2U

attacker only sees a portion of the subscribers data which will be

scrambled and un-useful.

The study also compared the proposed architecture with existing architectures and the

findings are as presented in Table 6.3

Table 6.3 – Comparison of the CDDI framework with existing architectures

 Direct Model Indirect (CASB) Model Indirect (CDDI)

Model

Architecture The subscriber places a file

into the CSP’s interface for

onward processing and

uploads to the Cloud.

The CASB monitors all

data transfers within the

organization as well as the

transfer of files out of (and

into) the organization. All

transfers are therefore

filtered by the CASB.

(Rubens, 2017)

The CDDI handles

interactions with the

CSPs on behalf of the

subscriber. The

subscriber is required to

have a minimum of 6

Cloud Storage

accounts. The CDDI

177

 performs data

obfuscation on behalf

of the subscriber.

Data Privacy The CSP is responsible for

ensuring the privacy of the

subscriber’s data. The

method used to encrypt the

file is known to the CSP, as

well as the key or manner in

which the key is generated.

As such, if the CSP so

desires, they may decrypt the

file for their personal

purposes (TipTopSecurity,

2016).

The CASB prevents

unauthorized access to the

organization’s confidential

data by preventing the

confidential data from ever

being transferred to the

cloud. The CASB uses

machine learning to

determine data transfers

that infringe the

organization’s regulations,

and then halts the transfer.

In the proposed model,

the CDDI allows all

transfers of data to the

cloud, but first encrypts

the data locally (outside

the CSPs reach) then

splits the data into a

number of shards, and

randomly distributes

the shards to multiple

CSPs. The number of

shards received by each

CSP is insufficient to

reconstruct the original

file. This way, the file

remains confidential

and useful to only the

owner.

Unauthorized Data

Use

The CSP has access to the

entire data and how to

decrypt it. As such the CSP

can use the data for any

purpose without notifying

the owner or requiring the

owner’s permission (Chima,

2016).

The CSP has access to the

organization’s non-critical

data (data not captured in

the organization’s privacy

regulations). The CSP is

able to decrypt this data to

use as they please.

The CSP has access

only to incomplete and

encrypted portions of

the data. Without the

other portions of the

data, it is very difficult

to decrypt as a result of

the encryption

algorithm used. Thus

the CSP is prevented

from accessing the data

178

 for their own purposes.

Unauthorized Data

Access

One set of credentials are

required to gain access to the

data. Anyone with this single

set of credentials can access

the entire data.

The CASB serves as a

proxy that also filters the

traffic moving into and out

of the organization. Thus

the only credentials

needed to access the data

on the cloud, is the login

credentials for the cloud

account. Any individual

with the login credentials,

therefore, has access to the

organization’s data.

The CDDI is designed

to demand login

credentials of the

system (SMF). Further,

to access the data stored

on the cloud, each

cloud account must be

signed into

individually. Thus

requiring multiple

authentications before

access and usage.

Data Ownership Unless the client applies

encryption before sending

the data to the Cloud Service

Provider, the provider can

claim full ownership of the

data as they have full access

and control over it

(FileCloud, 2016).

The CASB may encrypt

the data before forwarding

to the Cloud Service

Provider, to ensure that the

data is safe on the cloud.

The CDDI encrypts the

data at the SMF client

side and splits the data

before distribution to

the CSPs. Since the

data is sent to multiple

CSPs, no individual

CSP can claim

ownership of the

complete data, except

the data owner.

Data Integrity The CSP is responsible for

ensuring the integrity of the

data. Most CSPs provide

version control services

which allow the subscriber to

revert to a previous version

of the file if the current

version is damaged or

The CASB turn over

responsibility of ensuring

data integrity to the CSP

upon the upload of the

data. As such the

subscriber has access to

previous versions of the

file but also suffers in the

The CDDI uses

ReedSolomon Coding

as well as the proposed

Checksum Error

Detection and

Correction Program to

verify the integrity of

data and perform error

179

 otherwise modified.

However, a malicious insider

within the CSP may delete all

traces of the file, making it

irrecoverable

(TipTopSecurity, 2016).

event of a malicious insider

attack.

corrections in the event

that portions of the data

get corrupted. The

subscriber however does

not get access to

previous versions of the

file but is protected from

malicious insider attacks

that happen in one or

more CSPs.

Data Availability The data is available anytime

the CSP is in operation.

However, in the event of a

DoS/DDoS attack on the

CSP, the subscriber has no

access to the data.

The CASB relies on the

CSP to ensure availability

of the subscriber’s data.

(Rubens, 2017)

In the event of

DoS/DDoS attack on

any of the CSPs, the

remaining data that is

stored on the other CSPs

can be used to

reconstruct the original

file. Hence the

subscriber is insured and

assured of data

availability even when

some of the CSPs are

offline.

 Novelty of the Findings

The SMF system with its characteristics provides solutions to the cloud data security challenges

outlined by this study. The system is unique as no single product of its kind was found in the market.

All the existing cloud security solution systems either secures subscribers data on a single CSP’s

infrastructures (Direct model) or employ the service of SECaaS provider through setting up regulations

and policies via a CASB.

 Contributions to knowledge

The following are the studies major contributions to knowledge:

180

The proposed advanced detection and correction solution can recover any number of data errors or

deletions as compared to the existing implementations based on the Reed Solomon coding that are

capable of recovering up to the number of parity bits for deletions and up to only half the number of

parity bits for errors.

The approach proposed for the generation of the encoding polynomial coefficients is much efficient

than the existing.

The proposed transposition cipher algorithm based on Rubiks cube transformation is much stronger

and difficult to decipher making the proposed cloud data security solution very secure. This together

with the other techniques used as data dispersal, and data shuffling, will eliminate the subscriber fear

of using cloud computing and enjoying its numerous benefits stated in this thesis.

Three articles have been published from the study in peer reviewed journals (See Appendix 3 for the

articles and also the reviewer’s comments).

6.1. Conclusions

This study’s main purpose was to address the security challenges in relation to outsourcing data and

other resources for third party Cloud Service Providers storage particularly in terms of preventing the

CSP from making use of the data. The study purpose has been achieved as the proposed system (See

Appendix 2) is able to assure of the confidentiality, integrity, and as well able to effectively control

and manage who has access to the data and can make use of it.

This section discusses how the proposed system addresses the problem statement and the objectives of

the study as outlined below.

 How can we ensure data outsourced for cloud storage is only useful to only the

data owner?

In computer security, the CIA trade notes three security dimensions as Confidentiality, Integrity and

Availability. The proposed system uses a combination of hashing, encryption, scrambling, erasure

coding and data dispersal (Refer to Chapter 4 Section 4.3) to address these security dimensions and

also addresses cloud subscribers concerns of data Ownership, data Usage, data Location, and other

security issues that poses threats to data outsourced for cloud storage.

181

 The proposed Cloud Data Security Solution Framework

The proposed CDDI framework (Figure 5.23 in Chapter 5) achieves the study’s purpose of alleviating

the cloud subscriber fear of their data privacy, unauthorized usage of their data, the unknown location

of their data and ownership of the data outsource for cloud storage

6.1.2.1. How can cloud data be secured to prevent unauthorized access?

The CDDI framework when implemented distributed shards to multiple CSPs. The slices of data which

each CSP receives from the data dispersal technique of the file uploading sequence (Refer to Section

5.2.5) are both incomplete and encrypted. This means that the CSP doesn’t have access to the

subscriber’s full data. Only the cloud subscriber has access to the full data through applying the CDDI

file download sequence described in Section 5.3.

6.1.2.2. In what ways can a cloud service subscriber prevent their data from being

used for other purposes by the cloud provider?

The CSP’s are unable to make use of the data entrusted in their care as they receive incomplete and

encrypted slices of the data when the CDDI framework is employed. They can only store the data but

cannot use it for any other purpose (See Figure 5.9 - Content of Dropbox and Figure 5.10 - Content of

Box).

6.1.2.3. In what ways can the cloud subscriber ensure that their outsourced data is

not vulnerable as a result of the data location since different countries have

different data privacy laws?

Unlike the current cloud data storage where the subscriber’s data is vulnerable as it resides with only

one provider (Chima, 2016), the CDDI framework randomly disperses slices of the resource to multiple

CSPs. This prevents the CSPs from having access to all the files as well as guessing the locations of

the slices which they do not have. Hence in countries where the data privacy laws are liberal or not

strictly enforced, the CSP is still unable make use of the portions of the data entrusted with them.

6.1.2.4. In what ways can the cloud subscriber ensure that they have sole

ownership of their data outsourced for cloud storage?

The scrambling and data dispersal features of the CDDI framework enforce single-ownership of the

data. The system ensures that the file is never whole and useful anywhere except on the original user’s

computer.

182

 Comparison of Proposed Architecture with Existing Architectures

The proposed CDDI framework was compared with existing architectures (i.e. the direct model and

the indirect (CASB) model) in relation to how it secures subscribers data against Data Privacy,

Unauthorized Data Use, Unauthorized Data Access, Data Ownership, Data Integrity, and the

Architecture itself.

In relation to Data Privacy, the framework encrypts data locally on the subscribers’ system and split

the data into shards and randomly distributes them to different CSP storage facilities. Since a CSP has

access to only a portion of the subscribers’ data, this also enforces issues of Data Ownership,

unauthorized Data Access and Unauthorized Data Usage.

In addition, the framework uses the Reed-Solomon Coding and the Proposed Checksum Error

Detection to check for Data Integrity.

Finally, in relation to architecture, the CDDI framework takes care of interactions with the CSPs

thereby interfacing between the subscriber system and the CSP and hence providing security.

6.2. Recommendations

It is recommended the system is commercialised and be used by individuals or organisations

considering migrating their resources for cloud storage but are sceptical of security of the resource.

The proposed cloud data security solution is especially useful for environment where the security of

these resources is vital and cannot be compromised such as Financial Industry, Health Data, and

Insurance Policy Documents.

Based on the results that will be obtained from the commercial usage of the system, further research

will be conducted on the system’s implementation resource requirements, performance and security.

REFERENCES

ABS (2016). ABS Update – 2016 Online Census Form. [Online]. Available from:

http://www.abs.gov.au/ausstats/abs@.nsf/mediareleasesbyReleaseDate/617D51FA32D27BF9CA258

00A0077B7BD?OpenDocument [Accessed: 23rd October 2017].

Ahmed, N. (2017), “Cloud Computing: Technology, Security Issues and Solutions”, IEEE, [Online].

Available from: http://ieeexplore.ieee.org/document/7905258/ [Accessed: 20th October 2017].

Ahmed, M., Hossian, M. A., (2014), "Cloud Computing and Security Issus in the Cloud", International

Journal of Network Secuity and its Applications. Vol. 6, No. 1, pp. 25-36.

http://www.abs.gov.au/ausstats/abs@.nsf/mediareleasesbyReleaseDate/617D51FA32D27BF9CA25800A0077B7BD?OpenDocument
http://www.abs.gov.au/ausstats/abs@.nsf/mediareleasesbyReleaseDate/617D51FA32D27BF9CA25800A0077B7BD?OpenDocument
http://www.abs.gov.au/ausstats/abs@.nsf/mediareleasesbyReleaseDate/617D51FA32D27BF9CA25800A0077B7BD?OpenDocument
http://www.abs.gov.au/ausstats/abs@.nsf/mediareleasesbyReleaseDate/617D51FA32D27BF9CA25800A0077B7BD?OpenDocument
http://ieeexplore.ieee.org/document/7905258/
http://ieeexplore.ieee.org/document/7905258/

183

Alani, M. M. (2016), “Security Attacks in Cloud Computing”, Elements of Cloud Computing, Springer

Brief in Computer Science, pp. 41-50 https://link.springer.com/chapter/10.1007/978-3-31941411-9_4

Ali, M., Khan, S. U., Vasilakos, A. V. (2015), "Security in cloud computing: opportunities and

challenges", Information Sciences, Vol. 305, No. 1, pp. 357-383.

Amazon Web Services, (2010). Software-as-a-Service (SaaS) on AWS. [Online]. Available from:

https://d36cz9buwru1tt.cloudfront.net/SaaS_whitepaper.pdf [Accessed: 10th February 2014].

Apache Hadoop, (2014). What is Apache Hadoop? [Online]. Available from:

http://hadoop.apache.org/ [Accessed: 15th June, 2014]

BackBlaze, (2015a). Backblaze Open Sources Reed-Solomon Erasure Coding Source Code.

[Online]. Available from: https://www.backblaze.com/blog/reed-solomon/ [Accessed: 11th

January, 2016]

BackBlaze, (2015b). Backblaze Open Sources Reed-Solomon Erasure Coding Source Code.

[Online]. Available from: https://www.backblaze.com/blog/vault-cloud-storage-architecture/

[Accessed: 11th January, 2016]

BackBlaze, (2017). Cloud Storage that’s astonishingly easy and low-cost. [Online]. Available from:

https://www.backblaze.com/ [Accessed: 20th March, 2017]

Barry, D. K. (2000). Service Architcture (SaaS). [Online]. Available from:

http://www.servicearchitecture.com/articles/cloud-computing/software_as_a_service_saas.html

[Accessed: 14th July 2016]

Benvenuto, C. J. (2012). Galois Field in Cryptography. [Online]. Available from:

https://www.math.washington.edu/~morrow/336_12/papers/juan.pdf [Accessed: 14th May 2016]

Carson, C. (2016). How much data does Google store? [Online]. Available from:

https://www.cirrusinsight.com/blog/much-data-google-store [Accessed: 20th February, 2016]

Chauhan, K. (2015). “Ensuing Data Storage Security in Cloud Computing”, International Journal of

Computer Science and Information Technology Research, Vol. 3, No. 2, pp. 283-287

Chima, R. (2016). Cloud Security – Who owns the data? [Online]. Available from:

https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data [Accessed: 20th February,

2016]

Chong, F., Carraro, G., and Wolter, R. (2006). Multi-Tenant Data Architecture. [Online]. Available

from: https://msdn.microsoft.com/en-us/library/aa479086.aspx [Accessed: 12th July, 2016]

Chou, Te-Shun (2013), "Security Threats on Cloud Computing Vulnerabilities", International Journal

of Computer Science and Information Technology, Vol. 5, No. 3, pp. 79-88.

Cox, R. (2012). Finite Field Arithmetic and Reed-Solomon Coding. Available from:

http://research.swtch.com/field [Accessed: 14th May 2016]

https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://link.springer.com/chapter/10.1007/978-3-319-41411-9_4
https://d36cz9buwru1tt.cloudfront.net/SaaS_whitepaper.pdf
https://d36cz9buwru1tt.cloudfront.net/SaaS_whitepaper.pdf
http://hadoop.apache.org/
http://hadoop.apache.org/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/blog/vault-cloud-storage-architecture/
https://www.backblaze.com/
https://www.backblaze.com/
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
http://www.service-architecture.com/articles/cloud-computing/software_as_a_service_saas.html
https://www.math.washington.edu/~morrow/336_12/papers/juan.pdf
https://www.math.washington.edu/~morrow/336_12/papers/juan.pdf
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.cirrusinsight.com/blog/much-data-google-store
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://www.bbconsult.co.uk/blog/cloud-security-who-owns-the-data
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
http://research.swtch.com/field
http://research.swtch.com/field

184

cs.cmu.edu (1998). Reed-Solomon Codes. An introduction to Reed-Solomon codes: principles,

architecture and implementation. Available from:

https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html

[Accessed: 14th May 2016]

CSA (2011). Security guidance for critical areas of focus in cloud computing V3.0. [Online]

Available from: https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf [Accessed: 10th May,

2015]

CSA (2009). Security guidance for critical areas of focus in cloud computing V2.1. [Online] Available

from: https://cloudsecurityalliance.org/csaguide.pdf [Accessed: 10th May, 2015]

Czynszak, S., (2011). Decoding algorithms of Reed-Solomon Code. Available from: http://www.diva-

portal.org/smash/get/diva2:833161/FULLTEXT01.pdf [Accessed: 10th May, 2015]

Dell Power Solutions, (2005). Enhancing High-Performance Computing Clusters with Parallel File

Systems. [Online]. Available from: http://www.dell.com/downloads/global/power/ps2q05-

20040179Saify-OE.pdf [Accessed: 14th May 2014]

DeZyre, (2016). Hadoop Architecture Explained – What it is and why it matters. [Online]. Available

from:https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-

itmatters/317 [Accessed: 15th March, 2017]

DoubleHorn,(2017). Cloud Services Brokers: The future of SaaS and IaaS Consumption [Online].

Available from: https://doublehorn.com/cloud-services-brokers-the-future/ [Accessed: 15th October,

2017]

Dropbox, (No Date). Under the hood: Architecture Overview. [Online]. Available from:

https://www.dropbox.com/business/trust/security/architecture [Accessed: 1st Nov., 2017]

Educause, (2009). 7 Things you should know about cloud computing. [Online]. Available from:

https://library.educause.edu/~/media/files/library/2009/8/est0902-pdf.pdf [Accessed: 14th May 2014]

Fahmida Y. R. (2016). The dirty dozen: 12 cloud security threats. [Online]. Available from:

https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html

[Accessed: 15th March, 2017]

FileCloud, (2016). Data Ownership in the Cloud – How does it affect you? [Online]. Available from:

https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-

affectyou/#.WgG7_I-0Pct [Accessed: 15th March, 2017]

Forcepoint, (2017). How Forcepoint Web Security Cloud Works. [Online]. Available from:

https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx

[Accessed: 15th Oct., 2017]

https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
https://cloudsecurityalliance.org/csaguide.pdf
https://cloudsecurityalliance.org/csaguide.pdf
http://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:833161/FULLTEXT01.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
http://www.dell.com/downloads/global/power/ps2q05-20040179-Saify-OE.pdf
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://www.dezyre.com/article/hadoop-architecture-explained-what-it-is-and-why-it-matters/317
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://doublehorn.com/cloud-services-brokers-the-future/
https://www.dropbox.com/business/trust/security/architecture
https://www.dropbox.com/business/trust/security/architecture
https://library.educause.edu/~/media/files/library/2009/8/est0902-pdf.pdf
https://library.educause.edu/~/media/files/library/2009/8/est0902-pdf.pdf
https://library.educause.edu/~/media/files/library/2009/8/est0902-pdf.pdf
https://library.educause.edu/~/media/files/library/2009/8/est0902-pdf.pdf
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.infoworld.com/article/3041078/security/the-dirty-dozen-12-cloud-security-threats.html
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.getfilecloud.com/blog/2016/11/data-ownership-in-the-cloud-how-does-it-affect-you/#.WgG7_I-0Pct
https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx
https://www.websense.com/content/support/library/web/hosted/getting_started/cws_explain.aspx

185

Forouzan, B. A. (2001). Data Communications and Networking. (2th edn). McGraw-Hill. ISBN:

0072822945

Freach, J. (2011). The art of design research (and why it matters). [Online]. Available from:

https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-

itmatters/239561/ [Accessed: 25th Oct., 2017]

Goswami, B. and Singh, S. N. (2012), "Enhancing security in Cloud Computing using Public Key

Crytography with Matrices", International Journal of engineering Research and Applications, Vol. 2,

No. 4, pp. 339- 344.

Gray, D. (2014). Data ownership in the cloud. [Online]. Available from:

http://dataconomy.com/2014/03/data-ownership-in-the-cloud/ [Accessed: 13th October, 2017]

Hadoop, (2013). HDFS Architecture Guide [Online]. Available from:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html [Accessed: 15th June, 2014]

Haiman, M. (Date). Notes on Reed Solomon. Available from:

https://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf [Accessed: 13th December, 2014]

Hansche, S., Berti, J., and Hare, C. (2013). Chapter 6: Cryptography. [Online]. Available from:

http://www.crcnetbase.com/doi/abs/10.1201/9780203507872.ch6 [Accessed: 13th December,

2014]

Higashi, M. (2014). 3 Threats to Cloud Data, and How to address them. [Online]. Available

from:https://ciphercloud.com/3-threats-cloud-data-security-address/ [Accessed: 13th

October, 2017]

Hill, T. (2013). Reed Solomon Codes Explained. [Online]. Available from:

https://www.tonyhill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf [Accessed: 13th

December, 2014]

Hussain, S. A., Fatima, M., Atif, S., Imran, R., Raja, K. S., (2017). “Multilevel classification of security

concerns in Cloud Computing”, Applied Computing and Informatics, Vol. 13, pp. 57-65

Huth, A. and Cebula, J. (2011). The basics of cloud computing. [Online] Available from:

https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf [Accessed:

28th Aug., 2015]

InfoSec, (2017). Cloud Computing Attack Vectors and Counter Measures. [Online]. Available from:

http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref

[Accessed: 1st May, 2017]

Jain, R. (2013). Hadoop and HDFS for Beginners. [Online]. Available from:

https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners [Accessed: 15th June, 2014]

Kessler, G. C. (2017). An overview of Cryptography. [Online]. Available from:

http://www.garykessler.net/library/crypto.html [Accessed: 1st May, 2017]

https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
https://www.theatlantic.com/entertainment/archive/2011/05/the-art-of-design-research-and-why-it-matters/239561/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
http://dataconomy.com/2014/03/data-ownership-in-the-cloud/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf
https://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf
https://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf
https://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf
http://www.crcnetbase.com/doi/abs/10.1201/9780203507872.ch6
http://www.crcnetbase.com/doi/abs/10.1201/9780203507872.ch6
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://ciphercloud.com/3-threats-cloud-data-security-address/
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.tony-hill.info/app/download/.../Reed+Solomon+Explained+V1-0.pdf
https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
https://www.us-cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
http://resources.infosecinstitute.com/cloud-computing-attacks-vectors-and-counter-measures/#gref
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
https://www.slideshare.net/rahuldausa/hadoop-hdfs-for-beginners
http://www.garykessler.net/library/crypto.html
http://www.garykessler.net/library/crypto.html

186

Khan, N., Yasiri, A. (2016), "Identifying Cloud Security Threats to Strengthen Cloud Computing

Adoption Framework ", Procedia Computer Science, ScienceDirect, Vol. 94, pp. 485-490.

Khandelwal, S. (2017). It’s 3 Billion! Yes, Every Single Yahoo Account Was Hacked In 2013 Data

Breach. Available from: https://thehackernews.com/2017/10/yahoo-email-hacked.html [Accessed:

1st May, 2017]

Kharche, H., and Chouhan, D. S. (2012), "Building Trust in Cloud Using Public Key Infrastructure",

International Journal of Advanced Computer Science and Applications, Vol. 3, No.3, pp. 26-31.

Khatri, S. K., Singhal, H., Bahri, K. (2013), “Multi-Tenancy Engineering Architecture in SaaS”,

International Journal of Computer Applications. [Online]. Available From:

http://research.ijcaonline.org/icrito/number1/icrito1309.pdf [Accessed: 10th October, 2016]

Krishna, B. H., Kiran, S., Murali, G., Reddy, R., (2016). “Security Issues in Service Model Of Cloud

Computing Environment”, Procedia Computer Science, Vol. 87, pp. 246-251

Laudon, K. C. and Laudon, J. P. (2010). Management Information System. (11th edn). New Jersey:

Pearson Edition, Inc.

Lee, P. (2012). Design Research: What is it? Why do it? [Online]. Available from:

https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/ [Accessed: 25th October,

2017]

Lynson, B. Tutorial on Reed-Solomon Error Correction Coding. NASA Tech Brief MSC-21834.

Available from: http://jeffareid.net/misc/msc-21834.pdf [Accessed: 1st May, 2017]

Lui, S. (2017). #CensusFail 2016: ABA Fluffed Off Concerns About DDoS Attacks. Available from:

https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/

[Accessed: 10th October, 2017]

Mahmood, Z. (2011), “Data Location and Security Issues in Cloud Computing” International

Conference on Emerging Intelligent Data and Web Technologies, IEEE. Available from:

http://ieeexplore.ieee.org/document/6076420/ [Accessed: 10th October, 2016]

Maiwald, E. (2003). Network Security: A Beginner’s Guide. (2nd edn). McGraw-Hill/Osborne. New

York. ISBN: 0072229578

Mathematics Stack Exchange, (2011). Addition and Multiplication in a Galois Field Available at:

http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field McMillan,

R., Knutson, R. (2017). Yahoo Triples Estimate of Breached Accounts to 3 Billion. [Online]. Available

from: https://www.wsj.com/articles/yahoo-triples-estimate-of-breachedaccounts-to-3-billion-

1507062804 [Accessed: 11th Oct., 2017]

Mell, P., Grance, T. (2011). The NIST Definition of cloud computing. [Online] Available

from:http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf [Accessed: 1st Sept., 2015]

Merkow, M. and Breithaupt, J. (2006). Information Security Principles and Practices. Pearson Prentice

Hall. ISBN: 0131547291

https://thehackernews.com/2017/10/yahoo-email-hacked.html
https://thehackernews.com/2017/10/yahoo-email-hacked.html
https://thehackernews.com/2017/10/yahoo-email-hacked.html
https://thehackernews.com/2017/10/yahoo-email-hacked.html
https://thehackernews.com/2017/10/yahoo-email-hacked.html
https://thehackernews.com/2017/10/yahoo-email-hacked.html
http://research.ijcaonline.org/icrito/number1/icrito1309.pdf
http://research.ijcaonline.org/icrito/number1/icrito1309.pdf
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
https://reboot.org/2012/02/19/design-research-what-is-it-and-why-do-it/
http://jeffareid.net/misc/msc-21834.pdf
http://jeffareid.net/misc/msc-21834.pdf
http://jeffareid.net/misc/msc-21834.pdf
http://jeffareid.net/misc/msc-21834.pdf
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
https://www.gizmodo.com.au/2017/03/censusfail-2016-abs-fluffed-off-concerns-about-ddos-attacks/
http://ieeexplore.ieee.org/document/6076420/
http://ieeexplore.ieee.org/document/6076420/
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
http://math.stackexchange.com/questions/89805/addition-and-multiplication-in-a-galois-field
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

187

Natarajan, R. (2012). Apache Hadoop Fundamentals – HDFS and MapReduce Explained with a

Diagram. [Online]. Available from: http://www.thegeekstuff.com/2012/01/hadoop-hdfs-

mapreduceintro/comment-page-1/ [Accessed: 15th June, 2014]

O’Reilly, J. (2017). 7 Ways to Secure Cloud Storage. [Online] Available from:

https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128

[Accessed: 15th Oct., 2017]

OPC (2011). Fact Sheet: Introduction to Cloud Computing. [Online] Available from:

https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf [Accessed: 4th Sept., 2015]

OpenCirrus (2017). Cloud Computing Challenges In 2017. [Online] Available from:

http://www.opencirrus.org/cloud-computing-challenges-2017/ [Accessed: 4th Sept., 2015]

Perumal, S. and Kritzinger, P. (2004). A tutorial on RAID storage systems.

[Online]Available from:

http://23.pubs.cs.uct.ac.za/archive/00000131/01/perumal2004_RAIDTutorial.pdf [Accessed: 1st

Feb., 2015]

Plank, J. S. (2013). Erasure Codes for Storage Systems. Available from:

https://www.usenix.org/system/files/login/articles/10_plank-online.pdf [Accessed: 10th May, 2015]

Plank, J. S. (1997). A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems.

Software-Practice and Experience. Vol.27, No.9, 995–1012. Available from:

http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf [Accessed: 10th May, 2015]

Raisian, K. and Yahaya, J. (2015), "Security Issues Model on Cloud Computing: A Case of Malaysia",

International Journal of Advanced Computer Science and Applications, Vol. 6, No. 8, pp.216-223.

Rao, R. V. and Selvamani, K. (2015), "Data security challenges and its solutions in cloud computing",

Procedia Computer Science, Vol. 48, pp. 204-209.

REDTITAN, (2011). Error detection and correction. Available from:

http://www.pclviewer.com/rs2/galois.html [Accessed: 10th May, 2015]

Roshan, B. (2014). General Architecture of the Google File System. [Online]. Available from:

http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html

[Accessed: 13th March, 2015]

Rubens, P. (2017). Six Top CASB Vendos. [Online]. Available from:

https://www.esecurityplanet.com/products/top-casb-vendors.html [Accessed: 5th Nov., 2017]

Sailaja, K. and Usharani, M. (2017), "Cloud Computing Security Issues, Challenges and its Solutions

in Financial Sectors", International Journal of Advanced Scientific Technologies, Engineering and

Managemnt, Vol. 3, No.1, pp. 190-196.

Satyanarayana, S. (2012), “Cloud Computing: SAAS”, GESJ: Computer Science and

Telecommunications, Vol. 36, No. 4, pp. 76-79

Sebastian, A., Bonna, K. (Date). Reed-Solomon Encoder and Decoder. Available from:

http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
http://www.thegeekstuff.com/2012/01/hadoop-hdfs-mapreduce-intro/comment-page-1/
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.networkcomputing.com/data-centers/7-ways-secure-cloud-storage/866645128
https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
https://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
http://23.pubs.cs.uct.ac.za/archive/00000131/01/perumal2004_RAIDTutorial.pdf
http://23.pubs.cs.uct.ac.za/archive/00000131/01/perumal2004_RAIDTutorial.pdf
https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
https://www.usenix.org/system/files/login/articles/10_plank-online.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://cgi.di.uoa.gr/~ad/M155/Papers/RS-Tutorial.pdf
http://www.pclviewer.com/rs2/galois.html
http://www.pclviewer.com/rs2/galois.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
http://programming-project.blogspot.com/2014/04/general-architecture-of-google-file.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html
https://www.esecurityplanet.com/products/top-casb-vendors.html

188

https://content.sakai.rutgers.edu/access/content/user/ak892/Reed-SolomonProjectReport.pdf

[Accessed: 10th May, 2015]

Shah, H., Anandane, S. S., (2013), “Security Issues on Cloud Computing” International Journal of

Computer Science and Information Security, Vol. 11, No. 8, pp. 25-33

Shapland, R. (2017). Multi-Tenancy Cloud Security Requires Enterprise Awareness. Available from:

http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-

environmentsthrough-awareness [Accessed: 10th October, 2017]

Shearer, D. (2017). Natural Disasters put the ‘A’ in the CIA Traid to test. Available from:

http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html

[Accessed: 10th October, 2017]

SkyHigh (2017). What is CASB? Available from: https://www.skyhighnetworks.com/cloud-

securityuniversity/what-is-cloud-access-security-broker/ [Accessed: 10th October, 2017]

Sommerville, I. (2001). Software Engineering. (9th edn). Addison-Wesley publications. ISBN-13:

978-0-13-703515-1

Stallings, W. (2011). Network Security Essentials: Applications and Standards. (4th edn). Pearson

Education, Inc., Prentice Hall. Chapter 2. ISBN: 9780136108054

Stallings, W. (2003). Network Security Essentials: Applications and Standards. (2nd International edn).

Upper Saddle River, NJ: Pearson Education. Chapter 2. ISBN: 0131202715

Strickland, J. (2017). How the Google File System Works. [Online]. Available from:

http://computer.howstuffworks.com/internet/basics/google-file-system5.htm [Accessed: 15th

March, 2017]

Tanenbaum, A. S. (2003). Computer Ntworks. (4th edn). Upper Saddle River, N.J.: Prentice Hall.

Chapter 8, pgs. 724-750. ISBN: 0130384887

Tashi, J. and Ponsam, J. G. (2016), “Two tier Security Scheme for Storing and Retrieval of personal

data in Cloud Storage”, International Journal of Applied Engineering Research, Vol. 11, No. 6, pp.

4354-4357

Tayseer, T. A. O., Amin, B. A. N. M, (2015). Internal and External Attacks in Cloud Computing

Environment from Confidentiality, Integrity, and Availability points of view. Journal of Computer

Engineering, Vol. 17, No. 2, pp. 93-96

Techopedia, (2017). Google File System (GFS). [Online]. Available from:

https://www.techopedia.com/definition/26906/google-file-system-gfs [Accessed: 15th March, 2017]

The Treacherous 12, (2017). The Treacherous 12: Cloud Computing Top Threats in 2016 [Online].

Avalable from: http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-

computingtop-threats-in-2016/ [Accessed: 25th October, 2017]

TipTopSecurity,(2016).Is Google Drive Safe to Use? How Google Secures Your Files Online

https://content.sakai.rutgers.edu/access/content/user/ak892/Reed-SolomonProjectReport.pdf
https://content.sakai.rutgers.edu/access/content/user/ak892/Reed-SolomonProjectReport.pdf
https://content.sakai.rutgers.edu/access/content/user/ak892/Reed-SolomonProjectReport.pdf
https://content.sakai.rutgers.edu/access/content/user/ak892/Reed-SolomonProjectReport.pdf
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://searchcloudsecurity.techtarget.com/tip/Avoid-the-risks-of-multi-tenant-cloud-environments-through-awareness
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
http://blog.isc2.org/isc2_blog/2017/09/natural-disasters-put-the-a-in-the-cia-triad-to-test.html
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
https://www.skyhighnetworks.com/cloud-security-university/what-is-cloud-access-security-broker/
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
http://computer.howstuffworks.com/internet/basics/google-file-system5.htm
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
https://www.techopedia.com/definition/26906/google-file-system-gfs
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/
http://www.storm-clouds.eu/services/2017/04/the-treacherous-12-cloud-computing-top-threats-in-2016/

189

[Online]. Available from: https://tiptopsecurity.com/is-google-drive-safe-to-use/ [Accessed: 1st Nov.,

2017]

Trench W. F., (2003). Introduction to Real Analysis. Library of Congress Cataloging-in-Publication

Data. Available from:

http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF [Accessed:

10th May, 2015]

Trigueros-Preciado S., Perez-Gonzalez D., Solana-Gonzalez P., (2013). “Cloud computing in

industrial SMEs: identification of the barriers to its adoption and effects of its application” Electronic

Mark, Vol. 23, No. 2, pp. 105-114

Twum F, Hayfron-Acquah, J. B., Oblitey, W. W., Morgan-Darko, W., (2016a). Reed Solomon

Encoding: Simplified explanation for Programmers. International Journal of Computer Science and

Information Security (IJCSIS), Vol. 14, No. 12

Twum F, Hayfron-Acquah, J. B., Oblitey, W. W., Boadi, R. K., (2016b). A proposed algorithm for

generating the Reed-Solomon Encoding Polynomial Coefficients over GF(256) for RS[255,223]8,32.

International Journal of Computer Applications (IJCA), Vol. 156, No. 1, pgs. 24-39

Twum F, Hayfron-Acquah, J. B., Oblitey, W. W., Morgan-Darko, W., (2017). Reed Solomon

Decoding Simplified for Programmers. International Journal of Computer Science and Information

Security (IJCSIS), Vol. 15, No. 1

Ukil A., Jana D., Sarkar A., (2013). A security framework in cloud computing infrastructure.

International Journal of Network Security and its Applications (IJNSA), Vol. 5, No.5

VMware (2009). Securing the cloud. [Online] Available from:

https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf [Accessed:

7th Sept., 2015]

Wall, M. (2017). Can we trust Cloud Providers to keep our data safe? [Online]. Available from:

http://www.bbc.com/news/business-36151754 [Accessed: 7th Sept., 2017]

Wang, J. (2009). Computer Network Security Theory and Practice. Springer

Wellenzohn, K. (2015). Erasure coding in distributed storage systems. Available from:

http://webserver.inf.unibz.it/dis/teaching/SDB/reports/report_wellenzohn.pdf [Accessed:

7th Sept., 2015]

Wikiversity, (2016). Reed-Solomon Codes for Coders. Available from:

https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders [Accessed: 7th Sept.,

2015]

Wei, W. (2016). Insider Breach: T-Mobile Czech Employee Steals and Sells 1.5 Million Users Data.

Available from: https://thehackernews.com/2016/06/t-mobile-hacked.html [Accessed: 15th Oct.,

2017]

Youssef, A. E., Alageel, M., (2012), "A Framework for Securing Cloud Computing", International

Journal of Computer Science Issues, Vol. 9, No. 4, pp. 487-500.

https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
https://tiptopsecurity.com/is-google-drive-safe-to-use/
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
https://www.vmware.com/files/pdf/cloud/VMware-Savvis-Cloud-WP-en.pdf
http://www.bbc.com/news/business-36151754
http://www.bbc.com/news/business-36151754
http://www.bbc.com/news/business-36151754
http://www.bbc.com/news/business-36151754
http://webserver.inf.unibz.it/dis/teaching/SDB/reports/report_wellenzohn.pdf
http://webserver.inf.unibz.it/dis/teaching/SDB/reports/report_wellenzohn.pdf
https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders
https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders
https://thehackernews.com/2016/06/t-mobile-hacked.html
https://thehackernews.com/2016/06/t-mobile-hacked.html
https://thehackernews.com/2016/06/t-mobile-hacked.html
https://thehackernews.com/2016/06/t-mobile-hacked.html
https://thehackernews.com/2016/06/t-mobile-hacked.html
https://thehackernews.com/2016/06/t-mobile-hacked.html

190

191

APPENDIX 1

Table A1 below presents the elements of GF(256)

Field

Element

Alpha

Exponent Element Polynomial

Exponent Values

Log of

Element

Binary

Representation

Decimal

Representation

0 (undefined) 0 00000000 0 (undefined)

1 α0 α0 00000001 1 0

2
α1 1

α 00000010 2 1

3
α2 2

α 00000100 4 25

4
α3 3

α 00001000 8 2

5
α4 4

α 00010000 16 50

6
α5 5

α 00100000 32 26

7
α6 6

α 01000000 64 198

8
α7 7

α 10000000 128 3

9
α8 4 3 2 0

α + α + α + α 00011101 29 223

10
α9 5 4 3 1

α + α + α + α 00111010 58 51

11
α10 6 5 4 2

α + α + α + α 01110100 116 238

12
α11 7 6 5 3

α + α + α + α 11101000 232 27

13
α12 7 6 3 2 0

α + α + α + α + α 11001101 205 104

14
α13 7 2 1 0

α + α + α + α 10000111 135 199

15
α14 4 1 0

α + α + α 00010011 19 75

16
α15 5 2 1

α + α + α 00100110 38 4

17
α16 6 3 2

α + α + α 01001100 76 100

18
α17 7 4 3

α + α + α 10011000 152 224

192

19
α18 5 3 2 0

α + α + α + α 00101101 45 14

20
α19 6 4 3 1

α + α + α + α 01011010 90 52

21
α20 7 5 4 2

α + α + α + α 10110100 180 141

22
α21 6 5 4 2 0

α + α + α + α + α 01110101 117 239

23
α22 7 6 5 3 1

α + α + α + α + α 11101010 234 129

24
α23 7 6 3 0

α + α + α + α 11001001 201 28

25
α24 7 3 2 1 0

α + α + α + α + α 10001111 143 193

26
α25 1 0

α + α 00000011 3 105

27
α26 2 1

α + α 00000110 6 248

28
α27 3 2

α + α 00001100 12 200

29
α28 4 3

α + α 00011000 24 8

30
α29 5 4

α + α 00110000 48 76

31
α30 6 5

α + α 01100000 96 113

32
α31 7 6

α + α 11000000 192 5

33
α32 7 4 3 2 0

α + α + α + α + α 10011101 157 138

34
α33 5 2 1 0

α + α + α + α 00100111 39 101

35
α34 6 3 2 1

α + α + α + α 01001110 78 47

36
α35 7 4 3 2

α + α + α + α 10011100 156 225

37
α36 5 2 0

α + α + α 00100101 37 36

38
α37 6 3 1

α + α + α 01001010 74 15

39
α38 7 4 2

α + α + α 10010100 148 33

40
α39 5 4 2 0

α + α + α + α 00110101 53 53

41
α40 6 5 3 1

α + α + α + α 01101010 106 147

193

42
α41 7 6 4 2

α + α + α + α 11010100 212 142

43
α42 7 5 4 2 0

α + α + α + α + α 10110101 181 218

44
α43 6 5 4 2 1 0

α + α + α + α + α + α 01110111 119 240

45
α44 7 6 5 3 2 1

α + α + α + α + α + α 11101110 238 18

46
α45 7 6 0

α + α + α 11000001 193 130

47
α46 7 4 3 2 1 0

α + α + α + α + α + α 10011111 159 69

48
α47 5 1 0

α + α + α 00100011 35 29

49
α48 6 2 1

α + α + α 01000110 70 181

50
α49 7 3 2

α + α + α 10001100 140 194

51
α50 2 0

α + α 00000101 5 125

52
α51 3 1

α + α 00001010 10 106

53
α52 4 2

α + α 00010100 20 39

54
α53 5 3

α + α 00101000 40 249

55
α54 6 4

α + α 01010000 80 185

56
α55 7 5

α + α 10100000 160 201

57
α56 6 4 3 2 0

α + α + α + α + α 01011101 93 154

58
α57 7 5 4 3 1

α + α + α + α + α 10111010 186 9

59
α58 6 5 3 0

α + α + α + α 01101001 105 120

60
α59 7 6 4 1

α + α + α + α 11010010 210 77

61
α60 7 5 4 3 0

α + α + α + α + α 10111001 185 228

62
α61

 6 5 3 2 1 0

α + α + α + α + α + α
01101111 111 114

63
α62

 7 6 4 3 2 1

α + α + α + α + α + α
11011110 222 166

64
α63

 7 5 0

α + α + α
10100001 161 6

65
α64

 6 4 3 2 1 0

α + α + α + α + α + α
01011111 95 191

194

66
α65

 7 5 4 3 2 1

α + α + α + α + α + α
10111110 190 139

67 α66 6 5 0

α + α + α
01100001 97 98

68 α67 7 6 1

α + α + α
11000010 194 102

69 α68 7 4 3 0

α + α + α + α
10011001 153 221

70
α69

 5 3 2 1 0

α + α + α + α + α
00101111 47 48

71
α70

 6 4 3 2 1

α + α + α + α + α
01011110 94 253

72
α71

 7 5 4 3 2

α + α + α + α + α
10111100 188 226

73
α72

 6 5 2 0

α + α + α + α
01100101 101 152

74
α73

 7 6 3 1

α + α + α + α
11001010 202 37

75
α74

 7 3 0

α + α + α
10001001 137 179

76
α75

 3 2 1 0

α + α + α + α
00001111 15 16

77
α76

 4 3 2 1

α + α + α + α
00011110 30 145

78
α77

 5 4 3 2

α + α + α + α
00111100 60 34

79
α78

 6 5 4 3

α + α + α + α
01111000 120 136

80
α79

 7 6 5 4

α + α + α + α
11110000 240 54

81
α80

 7 6 5 4 3 2 0

α + α + α + α + α + α + α
11111101 253 208

82
α81

 7 6 5 2 1 0

α + α + α + α + α + α
11100111 231 148

83 α82 7 6 4 1 0

α + α + α + α + α
11010011 211 206

84 α83 7 5 4 3 1 0

α + α + α + α + α + α
10111011 187 143

85 α84 6 5 3 1 0

α + α + α + α + α
01101011 107 150

86
α85

 7 6 4 2 1

α + α + α + α + α
11010110 214 219

87
α86

 7 5 4 0

α + α + α + α
10110001 177 189

88
α87

 6 5 4 3 2 1 0

α + α + α + α + α + α + α
01111111 127 241

89
α88

 7 6 5 4 3 2 1

α + α + α + α + α + α + α
11111110 254 210

195

90
α89

 7 6 5 0

α + α + α + α
11100001 225 19

91
α90

 7 6 4 3 2 1 0

α + α + α + α + α + α + α
11011111 223 92

92
α91

 7 5 1 0

α + α + α + α
10100011 163 131

93
α92 6 4 3 1 0

α + α + α + α + α 01011011 91 56

94
α93

 7 5 4 2 1

α + α + α + α + α
10110110 182 70

95
α94

 6 5 4 0

α + α + α + α
01110001 113 64

96
α95

 7 6 5 1

α + α + α + α
11100010 226 30

97
α96

 7 6 4 3 0

α + α + α + α + α
11011001 217 66

98
α97

 7 5 3 2 1 0

α + α + α + α + α + α
10101111 175 182

99 α98 6 1 0

α + α + α
01000011 67 163

100 α99 7 2 1

α + α + α
10000110 134 195

101 α100 4 0

α + α
00010001 17 72

102 α101 5 1

α + α
00100010 34 126

103 α102 6 2

α + α
01000100 68 110

104 α103 7 3

α + α
10001000 136 107

105 α104 3 2 0

α + α + α
00001101 13 58

106 α105 4 3 1

α + α + α
00011010 26 40

107 α106 5 4 2

α + α + α
00110100 52 84

108 α107 6 5 3

α + α + α
01101000 104 250

109 α108 7 6 4

α + α + α
11010000 208 133

110 α109 7 5 4 3 2 0

α + α + α + α + α + α
10111101 189 186

111 α110 6 5 2 1 0

α + α + α + α + α
01100111 103 61

112 α111 7 6 3 2 1

α + α + α + α + α
11001110 206 202

113 α112 7 0

α + α
10000001 129 94

196

114 α113 4 3 2 1 0

α + α + α + α + α
00011111 31 155

115 α114 5 4 3 2 1

α + α + α + α + α
00111110 62 159

116 α115 6 5 4 3 2

α + α + α + α + α
01111100 124 10

117 α116 7 6 5 4 3

α + α + α + α + α
11111000 248 21

118 α117 7 6 5 3 2 0

α + α + α + α + α + α
11101101 237 121

119 α118 7 6 2 1 0

α + α + α + α + α
11000111 199 43

120 α119 7 4 1 0

α + α + α + α
10010011 147 78

121 α120 5 4 3 1 0

α + α + α + α + α
00111011 59 212

122 α121 6 5 4 2 1

α + α + α + α + α
01110110 118 229

123 α122 7 6 5 3 2

α + α + α + α + α
11101100 236 172

124 α123 7 6 2 0

α + α + α + α
11000101 197 115

125
α124 7 4 2 1 0

α + α + α + α + α 10010111 151 243

126 α125 5 4 1 0

α + α + α + α
00110011 51 167

127 α126 6 5 2 1

α + α + α + α
01100110 102 87

128 α127 7 6 3 2

α + α + α + α
11001100 204 7

129 α128 7 2 0

α + α + α
10000101 133 112

130 α129 4 2 1 0

α + α + α + α
00010111 23 192

131 α130 5 3 2 1

α + α + α + α
00101110 46 247

132 α131 6 4 3 2

α + α + α + α
01011100 92 140

133 α132 7 5 4 3

α + α + α + α
10111000 184 128

134 α133 6 5 3 2 0

α + α + α + α + α
01101101 109 99

135 α134 7 6 4 3 1

α + α + α + α + α
11011010 218 13

136 α135 7 5 3 0

α + α + α + α
10101001 169 103

137 α136 6 3 2 1 0

α + α + α + α + α
01001111 79 74

197

138 α137 7 4 3 2 1

α + α + α + α + α
10011110 158 222

139 α138 5 0

α + α
00100001 33 237

140 α139 6 1

α + α
01000010 66 49

141 α140 7 2

α + α
10000100 132 197

142 α141 4 2 0

α + α + α
00010101 21 254

143 α142 5 3 1

α + α + α
00101010 42 24

144 α143 6 4 2

α + α + α
01010100 84 227

145 α144 7 5 3

α + α + α
10101000 168 165

146 α145 6 3 2 0

α + α + α + α
01001101 77 153

147 α146 7 4 3 1

α + α + α + α
10011010 154 119

148 α147 5 3 0

α + α + α
00101001 41 38

149 α148 6 4 1

α + α + α
01010010 82 184

150 α149 7 5 2

α + α + α
10100100 164 180

151 α150 6 4 2 0

α + α + α + α
01010101 85 124

152 α151 7 5 3 1

α + α + α + α
10101010 170 17

153 α152 6 3 0

α + α + α
01001001 73 68

154 α153 7 4 1

α + α + α
10010010 146 146

155 α154 5 4 3 0

α + α + α + α
00111001 57 217

156 α155 6 5 4 1

α + α + α + α
01110010 114 35

157
α156 7 6 5 2

α + α + α + α 11100100 228 32

158 α157 7 6 4 2 0

α + α + α + α + α
11010101 213 137

159 α158 7 5 4 2 1 0

α + α + α + α + α + α
10110111 183 46

160 α159 6 5 4 1 0

α + α + α + α + α
01110011 115 55

161 α160 7 6 5 2 1

α + α + α + α + α
11100110 230 63

198

162 α161 7 6 4 0

α + α + α + α
11010001 209 209

163 α162 7 5 4 3 2 1 0

α + α + α + α + α + α + α
10111111 191 91

164 α163 6 5 1 0

α + α + α + α
01100011 99 149

165 α164 7 6 2 1

α + α + α + α
11000110 198 188

166 α165 7 4 0

α + α + α
10010001 145 207

167 α166 5 4 3 2 1 0

α + α + α + α + α + α
00111111 63 205

168 α167 6 5 4 3 2 1

α + α + α + α + α + α
01111110 126 144

169 α168 7 6 5 4 3 2

α + α + α + α + α + α
11111100 252 135

170 α169 7 6 5 2 0

α + α + α + α + α
11100101 229 151

171 α170 7 6 4 2 1 0

α + α + α + α + α + α
11010111 215 178

172 α171 7 5 4 1 0

α + α + α + α + α
10110011 179 220

173 α172 6 5 4 3 1 0

α + α + α + α + α + α
01111011 123 252

174 α173 7 6 5 4 2 1

α + α + α + α + α + α
11110110 246 190

175 α174 7 6 5 4 0

α + α + α + α + α
11110001 241 97

176 α175 7 6 5 4 3 2 1 0

α + α + α + α + α + α + α + α
11111111 255 242

177 α176 7 6 5 1 0

α + α + α + α + α
11100011 227 86

178 α177 7 6 4 3 1 0

α + α + α + α + α + α
11011011 219 211

179 α178 7 5 3 1 0

α + α + α + α + α
10101011 171 171

180 α179 6 3 1 0

α + α + α + α
01001011 75 20

181 α180 7 4 2 1

α + α + α + α
10010110 150 42

182 α181 5 4 0

α + α + α
00110001 49 93

183 α182 6 5 1

α + α + α
01100010 98 158

184 α183 7 6 2

α + α + α
11000100 196 132

185 α184 7 4 2 0

α + α + α + α
10010101 149 60

186 α185 5 4 2 1 0

α + α + α + α + α
00110111 55 57

199

187 α186 6 5 3 2 1

α + α + α + α + α
01101110 110 83

188 α187 7 6 4 3 2

α + α + α + α + α
11011100 220 71

189
α188 7 5 2 0

α + α + α + α 10100101 165 109

190
α189

 6 4 2 1 0

α + α + α + α + α
01010111 87 65

191
α190

 7 5 3 2 1

α + α + α + α + α
10101110 174 162

192
α191

 6 0

α + α
01000001 65 31

193
α192

 7 1

α + α
10000010 130 45

194 α193 4 3 0

α + α + α
00011001 25 67

195
α194

 5 4 1

α + α + α
00110010 50 216

196 α195 6 5 2

α + α + α
01100100 100 183

197
α196

 7 6 3

α + α + α
11001000 200 123

198 α197 7 3 2 0

α + α + α + α
10001101 141 164

199
α198

 2 1 0

α + α + α
00000111 7 118

200 α199 3 2 1

α + α + α
00001110 14 196

201
α200

 4 3 2

α + α + α
00011100 28 23

202 α201 5 4 3

α + α + α
00111000 56 73

203
α202

 6 5 4

α + α + α
01110000 112 236

204 α203 7 6 5

α + α + α
11100000 224 127

205 α204 7 6 4 3 2 0

α + α + α + α + α + α
11011101 221 12

206 α205 7 5 2 1 0

α + α + α + α + α
10100111 167 111

207 α206 6 4 1 0

α + α + α + α
01010011 83 246

208 α207 7 5 2 1

α + α + α + α
10100110 166 108

209 α208 6 4 0

α + α + α
01010001 81 161

200

210 α209 7 5 1

α + α + α
10100010 162 59

211 α210 6 4 3 0

α + α + α + α
01011001 89 82

212 α211 7 5 4 1

α + α + α + α
10110010 178 41

213 α212 6 5 4 3 0

α + α + α + α + α
01111001 121 157

214
α213

 7 6 5 4 1

α + α + α + α + α
11110010 242 85

215
α214

 7 6 5 4 3 0

α + α + α + α + α + α
11111001 249 170

216
α215

 7 6 5 3 2 1 0

α + α + α + α + α + α + α
11101111 239 251

217
α216

 7 6 1 0

α + α + α + α
11000011 195 96

218
α217

 7 4 3 1 0

α + α + α + α + α
10011011 155 134

219
α218

 5 3 1 0

α + α + α + α
00101011 43 177

220
α219 6 4 2 1

α + α + α + α 01010110 86 187

221
α220

 7 5 3 2

α + α + α + α
10101100 172 204

222
α221

 6 2 0

α + α + α
01000101 69 62

223
α222

 7 3 1

α + α + α
10001010 138 90

224
α223

 3 0

α + α
00001001 9 203

225
α224

 4 1

α + α

00010010 18 89

226
α225

 5 2

α + α
00100100 36 95

227
α226

 6 3

α + α
01001000 72 176

228
α227

 7 4

α + α

10010000 144 156

229
α228

 5 4 3 2 0

α + α + α + α + α
00111101 61 169

230
α229

 6 5 4 3 1

α + α + α + α + α
01111010 122 160

231
α230

 7 6 5 4 2

α + α + α + α + α

11110100 244 81

232
α231

 7 6 5 4 2 0

α + α + α + α + α + α
11110101 245 11

201

233
α232

 7 6 5 4 2 1 0

α + α + α + α + α + α + α
11110111 247 245

234
α233

 7 6 5 4 1 0

α + α + α + α + α + α

11110011 243 22

235
α234

 7 6 5 4 3 1 0

α + α + α + α + α + α + α
11111011 251 235

236
α235

 7 6 5 3 1 0

α + α + α + α + α + α
11101011 235 122

237
α236

 7 6 3 1 0

α + α + α + α + α

11001011 203 117

238
α237

 7 3 1 0

α + α + α + α
10001011 139 44

239
α238

 3 1 0

α + α + α
00001011 11 215

240
α239

 4 2 1

α + α + α

00010110 22 79

241
α240

 5 3 2

α + α + α
00101100 44 174

242
α241

 6 4 3

α + α + α
01011000 88 213

243
α242

 7 5 4

α + α + α

10110000 176 233

244
α243

 6 5 4 3 2 0

α + α + α + α + α + α
01111101 125 230

245
α244

 7 6 5 4 3 1

α + α + α + α + α + α
11111010 250 231

246
α245

 7 6 5 3 0

α + α + α + α + α
11101001 233 173

247
α246

 7 6 3 2 1 0

α + α + α + α + α + α
11001111 207 232

248
α247

 7 1 0

α + α + α
10000011 131 116

249
α248 4 3 1 0

α + α + α + α 00011011 27 214

250
α249

 5 4 2 1

α + α + α + α

00110110 54 244

251
α250

 6 5 3 2

α + α + α + α
01101100 108 234

252
α251

 7 6 4 3

α + α + α + α
11011000 216 168

202

253
α252

 7 5 3 2 0

α + α + α + α + α

10101101 173 80

254
α253

 6 2 1 0

α + α + α + α
01000111 71 88

255
α254

 7 3 2 1

α + α + α + α
10001110 142 175

 α255 α0 00000001 1

APPENDIX 2

Proposed ‘Secure My Files’ System

Application Usage

203

Initial Steps

To make use of the application’s upload and download functions, the system user has to perform a

number of operations to prepare the application for interacting with the cloud. The initial activities are

Launch the application software:

The Secure My Files application provides an executable java archive which the user can launch by

double-clicking or clicking once then pressing the “return” or “enter” key on the keyboard.

Figure 1: Executable java archive for Secure My Files, named “SMF 2.0.jar”

Log into the user’s Secure My Files account

Upon startup, the user is presented with a login page to enter the following details:

Username: This is the username with which the user registered for the service, i.e. Secure My Files.

Password: This is the password which the user used when registering for Secure My Files.

After entering the details, the user clicks the “Login” button to access the main page of the application.

204

Figure 2: Login page

If the user is not registered, the user may click the “Sign Up” button to open the registration page. On

the registration page, the user is provided with input fields to enter the following information:

Full Name: This is the full name of the system user.

Secure My Files Username: This is the username (email address) that will be used to log into the

service at a later period.

Password: This is the password that will be used to log into the Secure My Files application at a later

period.

Confirm Password: This field asks the user to re-enter the password to ensure that the user is familiar

with what was typed in the “Password” field.

205

Figure 3: Registration page

Upon completing the registration form, the user then clicks the “Register button to register for the

service. The user may also select the “Quit” button to exit the application.

If the user is already registered but has forgotten the password associated with the account, the user

may click the “Forgot Password?” hyperlink on the login page to initiate the “Password Recovery”

process. The user is presented with the “Forgot Password” page that asks for the username associated

with the user’s account. An email is sent to the user’s account with a secret code with which the user

can change the associated password. After retrieving the secret code from the email sent by the

application, the user enters the secret code into the field supplied in the “Password Recovery” page for

that purpose.

206

Figure 4: Password Recovery initial page

After selecting the “Submit Secret Code” button, the application verifies the secret code and presents

the user with the “New Password” page to enter and confirm a new password.

On the “New Password” page, the user is provided with a field to input a new password and another

field to confirm the password. On entering the requisite data, the user may proceed to click the

“Submit” button to complete the Password Change, or click the “Cancel” button to cancel the process.

207

Figure 5: New Password page

Main Functionality

The main page of Secure My Files provides access to its functions by means of buttons and a menu

bar. All the functions performed by the buttons can also be found in the menu bar.

208

Figure 6: Secure My Files main page

The functions available to the user of the system are:

Upload a file

The system user can initiate a file upload by simply clicking on the upload button.

Figure 7: Upload button

The user is then presented with the “New Upload” page with options to:

Select a file

The user first clicks the “Select a file” button which opens a “Select file” dialogue from which the user

can navigate to the desired file and choose it.

209

Specify the priority of the file

The user selects one of four radio buttons, for “Low”, “Normal”, “Important” and “Critical” priorities.

Figure 8: File Upload page showing the upload of a file named “33447.png”

The user proceeds to click the “Upload file to cloud” button to trigger the processes which hash the

file name, encrypt the file, split the file into multiple shards, scramble the order of the file shards and

finally upload the file to the user’s cloud accounts.

It should be noted that the user must first log into at least one cloud account for the upload to begin.

If the user hasn’t yet signed into any cloud account, the system reacts to the upload button’s click event

by displaying the cloud login page.

Sign into cloud accounts

System users must sign into their cloud accounts before an upload or download can be performed. To

initiate signing into cloud accounts, the user simply clicks the “Cloud” button. The system then

displays the “Cloud” page for logging into and out of the cloud services.

210

Figure 9: Cloud button

Figure 11: Cloud page

Secure My Files requires OAuth 2.0 authentication from the cloud storage service providers. To sign

into a cloud account, the user first selects the radio button of the service provider, then click the

“Begin” button to trigger the default web browser to open and load the authentication page for the

selected cloud storage service provider. The user proceeds to grant authorization to the application.

211

Figure 10: Authorization for Dropbox Cloud Storage service provider

The service provider presents an authorization code which the user must then copy and paste into the

Secure My Files application.

Figure 11: Sample Authorization code from Dropbox

212

Figure 12: Cloud page with authorization code from Dropbox

The user completes the signing in process by clicking the “Complete” button.

Download a file

The user initiates a file download by first selecting one of the uploaded files from the list of file names

on the main page. Then the user clicks the download button to trigger the processes which download

the file shard, join them into a single file, decrypt them and rename the file from its hash value to the

original file name.

Figure 13: Download button

213

Figure 10: Download page showing the download of a file named “33447.png”

APPENDIX 3

Published articles from the study and reviewers comments.

