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Onchocerciasis is one of the neglected tropical diseases caused by Onchocerca volvu-
lus. Ivermectin is known to be effective in the treatment of onchocerciasis because it
suppresses the production of microfilariae by the adult female worms for a few months
following treatment thus reducing transmission. In this study, a deterministic model is
developed to assess the effect of mass treatment of onchocerciasis with ivermectin. The
basic reproduction number, R0, of the model system is determined and it is observed
that the model exhibits backward bifurcation for some parameters implying the exis-
tence of multiple endemic equilibria when R0 < 1. The existence of multiple equilibria
emphasizes the fact that R0 < 1 is not sufficient to eradicate the disease and the need is
to lower R0 much below one to make the disease-free equilibrium globally stable. Numer-
ical simulations are done and conclusions drawn with respect to the known treatment
protocols in endemic areas. The study results suggest that the mass treatment of the
disease with ivermectin should cover a higher proportion of the population to control
the disease and eventually eliminate it from the population.

Keywords: Onchocerciasis; Ivermectin; Microfilariae; Mathematical model; Simulations.

1. Introduction

Onchorcerciasis is a chronic vector-borne parasitic disease caused by Onchocerca
volvulus.1 The disease is transmitted by blood sucking black flies that belong to the

‖Corresponding author.
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genus Simulium. This disease is responsible for a skin disease with depigmentation
and severe unrelenting itching.2 It is prevalent in Africa, with more than 90% of
the reported cases found in 31 Sub-Saharan countries that include Nigeria, Ghana,
Sudan, Kenya, Cameroon amongst others. Cases of onchorcerciasis are also reported
in South and Central America, for instance, in Brazil and Yemen in the Middle
East.3 The Ministry of Health in Ghana, for instance, estimated that 3.4 million of
its population live in 66 endemic districts with an exclusion of the greater Accra
region.4 The highest rates of infections are found in communities living near fast
flowing rivers thus the name river blindness.5 Though not lethal, river blindness
contributes to high economic loss in Sub-Saharan Africa.6,7

According to WHO, in 1995, it was estimated that 18 million people were
affected by onchocerciasis. An estimated 270,000 were blind and 500, 000 were
severely visually impaired.8 In 2004, African Programme for Onchorcerciasis
Control (APOC) carried out Rapid Epidemiological Mapping of Onchocerciasis
(REMO) in 19 endemic nations in Africa. It was estimated that 87 million people
were at high risk of infection with onchercerciasis. These results also indicated that
the mean infection rate was 38.2%. In order to curb the spread of onchocerciasis
and its eradication from the population, APOC devised a strategy of elimination
of infection by 15–17 years of annual mass distribution of ivermectin in the dis-
ease endemic areas. The WHO has also set the time frame for the elimination of
onchocerciasis and other neglected tropical diseases by 2020–2025.9 Since the incep-
tion of APOC in 1995, in 2013 about 26 endemic countries reported more than 100
million people on ivermectin treatment. Today, the strategy for the eradication of
onchocerciasis in Africa is based on the community directed treatment with iver-
mectin. The success of this initiative has been seen in Mali and Nigeria. APOC has
now shifted its attention from the elimination of onchocerciasis as a public health
burden to entire elimination of infection in Africa by 2025.9

Ivermectin is an antimicrofilarial agent that acts as the secondary and primary
form of prevention for individuals infected with onchocerciasis. It reduces the num-
ber of microfilariae picked up by the black fly during blood feeding.10 However, new
evidence suggests that it has no effect on oocyte production but the microfilariae
inside the worm which are yet to be released are affected.11 Ivermectin degenerates
intrauterine microfilariae and thus suppresses the release of new microfilariae for
up to 3–4 months after which it is still possible to continue producing microfilariae
until it dies naturally.11 More than 525 million tablets of ivermectin have been dis-
tributed since the establishment of the MectizanTM Donation Program (MDP) by
Merck and Co., Inc. The drugs are mainly distributed through Community Directed
Treatment with Ivermectin (CDTI).12 Ivermectin shows no or, if any, little macrofi-
laricidal effects in the killing of the adult worm.13 This is an indicator that the drug
does not kill adult worms to eliminate infections. Therefore, repeated mass treat-
ment with ivermectin has to be administered in order to interrupt the transmission
of the disease. For maximum success to be realized, ivermectin treatment should be
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done for many years that correspond to the lifespan of an adult worm spanning 10–
15 years. Quantitative estimates of onchocerciasis treatment with ivermectin have
ranged from irreversible decline in microfilariae production of 30% after five-yearly
treatments, a decline in the productivity index by 90% or more after 10 six-monthly
treatments for six years and to containment of development at a single cell stage
after four or five six-monthly treatment.14 According to the report of the conference
on the eradicability of onchocerciasis, the mass administration of ivermectin at six-
month intervals in Gautemala can maintain the levels of microfilariae in the skin so
low as to interrupt the transmission with a sufficient coverage of about 80% of the
eligible individuals.15 The report also indicates that in Ecuador, the transmission
of O. volvulus was interrupted after five years of semi-annual ivermectin treatment.

The study of mass administration of ivermectin in the treatment of onchocerci-
asis is of great epidemiological importance. However, little mathematical modeling
has been done on the potential long-term dynamics of the disease in the presence of
treatment. Omade,16 for instance, used SIR model with demography in modeling
onchocerciasis. His work focused on the impact of vaccination on the disease and
uses Euler method in providing numerical solutions to the model. Other models,
pertinent to this work have also been proposed and analyzed, see for instance.9,10

Turner et al.17 used a previously developed EPIONCHO model to investigate the
effect of vaccination and ivermectin. The model incorporated age and sex struc-
ture of the host population. Turner et al. then performed sensitivity analysis by
varying the rate of decay (mean duration between 5 and 50 years) according to the
range considered previously in the modeling of the Schistosomiasis vaccine as well
as choosing a more modest 60% coverage of the vaccine. Turner et al.18 explored
the uncertainty in modeling projections of the long-term impact of ivermectin on
O. volvulus. They established that biannual ivermectin treatment has a large addi-
tional benefit in both reducing microfilarial prevalence and intensity as compared
to annual treatment. However, areas with high baseline endemicity and perennial
transmission, 15 years of annual or biannual treatment with ivermectin may not be
sufficient to bring infection levels below potential elimination thresholds.

In the current study, we develop a deterministic model to investigate the poten-
tial impact of mass administration of the drug ivermectin, that creates a class of
individuals who are temporarily protected from infection in the first half of the
year with the protection assumed to have completely waned in the second half of
the year. This is done through the determination of the basic reproduction num-
ber that is used to assess the effect of treatment and analysis of stability of the
steady state solutions of the deterministic model. Our work is innovative in that it
creates temporary vaccinated classes that allows for the modeling of mass admin-
istration of a drug for all compartments. We use numerical simulations to predict
the infection dynamics of the disease and draw more insightful epidemiological per-
spectives that result in recommendations aimed at disease eradication. We also
compare our numerical results to previous work done on onchocerciasis treatment,
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see for instance.7 In order to gain more insight on the dynamics of onchocerciasis,
we investigate the potential of increasing treatment frequency on the dynamics of
the disease.

In this paper, our work has been organised as follows: in Sec. 2, a dynamic
model is formulated and a brief discussion of the model properties is given and in
Sec. 3, model analysis is carried out. In Sec. 4, we give the numerical simulations to
support our project objectives as stated in Sec. 1. The paper is concluded in Sec. 5
with relevant discussions and recommendations.

2. Mathematical Model

In this section, we formulate a deterministic model that explores the infection
dynamics of onchocerciasis and its treatment. Mass administration of ivermectin is
the most common form of treatment for onchocerciasis. Initially, the strategy was
to administer ivermectin annually. A change of strategy to six-monthly was imple-
mented to increase the probability of eliminating the parasite.18–20 The treatment
in this model occurs in such a way that there is mass administration of ivermectin
at the beginning of the first half of year and nothing in the second half of the year.

We define two functions that allow (i) movement through mass administration
of ivermectin at the beginning of the first half of year and movement in the second
half of the year after the drug wanes and (ii) infection only occurs in the second
half of the year following waning of the drug. We model such a scenario using the
following step functions:

p =




0 if i− 1 ≤ t ≤ 2i− 1
2

1 if
2i− 1

2
< t ≤ i

and q =




1 if i− 1 ≤ t ≤ 2i− 1
2

0 if
2i− 1

2
< t ≤ i

(2.1)

for i = 1, 2, 3, . . . . It is important to note that these are not the only functions that
can be used to model such a scenario. It would be plausible to use an exponentially
declining function or the Hill function over the defined intervals.

In order to investigate the possibility of increasing treatment frequency in our
numerical simulations, we consider a case when the mass administration of iver-
mectin is done quarterly using the following function

p =




0 if i− 1 ≤ t ≤ 1 + 4(i− 1)
4

1 if
1 + 4(i− 1)

4
< t ≤ 1 + 2(i− 1)

2

0 if
1 + 2(i− 1)

2
< t ≤ 3 + 4(i− 1)

4

1 if
3 + 4(i− 1)

4
< t ≤ i

and
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q =




1 if i− 1 ≤ t ≤ 1 + 4(i− 1)
4

0 if
1 + 4(i− 1)

4
< t ≤ 1 + 2(i− 1)

2

1 if
1 + 2(i− 1)

2
< t ≤ 3 + 4(i− 1)

4

0 if
3 + 4(i− 1)

4
< t ≤ i

,

(2.2)

where i = 1, 2, 3, . . . . We also investigate the case, where the mass administration
of ivermectin is done continuously.

We consider a habitat with two interacting populations, humans (hosts) and
the black flies (vectors). The human population NH(t) at time t is divided into
eight compartments; susceptible human population SH(t), asymptomatic humans
with onchocerciasis EH(t), symptomatic infectious humans IH(t), individuals with
onchocerciasis in acute phase AH(t), susceptible individuals protected by ivermectin
ST (t), asymptomatic humans with onchocerciasis on ivermectin ET (t), symp-
tomatic infectious humans on ivermectin IT (t) and individuals with onchocerciasis
in acute phase on ivermectin AT (t). The assumption is that every year, irrespec-
tive of one’s infection status, every individual takes ivermectin. The vector pop-
ulation, Nv is divided into three compartments; susceptible vector Sv(t), exposed
vector Ev(t) and infected vector Iv(t). We consider a stage structured model that
describes the stages of vector development. These include embryonic (E), larvae
(L) and pupae (P ) stages. The number of laid eggs is assumed to be proportional
to the number of female black flies. The following differential equations describe
the stage structured model of the aquatic phase in the vector development.

Ė = r

(
1 − E

Ke

)
(Sv + Ev + Iv) − (η1 + µe)E,

L̇ = η1E

(
1 − L

Kl

)
− (η2 + µl)L,

Ṗ = η2L− (b + µp)P.




(2.3)

Black flies breed exclusively in running water.5 Large black fly populations indicate
clean, healthy streams since most species do not tolerate organic pollution. Females
lay their eggs on vegetation in streams. The eggs hatch in water and larvae attach to
rocks, leaves, grass or any submerged objects.21 The larvae feed by filtering water for
tiny bits of organic matter. Mature larvae pupate underwater and emerging adults
ride bubbles of air to the surface and are able to fly away. The adult black flies mate
near the breeding site and females, that need a blood-meal to lay eggs, begin their
search for blood. Once they have fed and digested, they lay eggs in a suitable stream
habitat and the life cycle continues.21 Since the eggs are laid in a contaminated free
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habitat, it is reasonable to express the laying of eggs with a mathematical model
which incorporates carrying capacity of the resources. This takes into account the
availability of nutrients and the occupation of the available breeder sites by eggs
or larvae. Thus, in the per capita recruitment term, we have r

(
1 − E

Ke

)
, where

Ke represents the availability of nutrients and space and r represents the rate at
which the population would grow if they were unencumbered by environmental
contamination. On the other hand, the transition rate from E to class L is η1.
However, when availability of food is not sufficient for class L, then the larvae
can eat the young larvae to complete its development and we suppose that the
death rate due to lack of food is proportional to the young larvae η1E and to
the coefficient L

Kl
that represents the availability of food for each larvae. Thus,

the number of eggs that hatch and survive is given by η1E
(
1− L

Kl

)
. The transition

rate from larvae to pupae is assumed to be η2. It is assumed that the embryonic
(E), larvae (L) and pupae (P ) leave the dynamics through natural death rates µe,
µl and µp, respectively. The pupae become female adults at the rate b.

The total human and vector populations at any given time, t, are, respectively,
given by

NH = SH(t) + EH(t) + IH(t) +AH(t) + ST (t) + ET (t) + IT (t) +AT (t) and

Nv = Sv(t) + Ev(t) + Iv(t).

People are recruited to susceptible human class through birth at a constant rate Π.
Susceptible individuals may become infected through contacts with infectious black
flies. Here, it is assumed that only infectious black-flies can transmit infection to
susceptible individuals during blood-meal. Infected individuals go through latent
period during which they do not transmit infection. They progress from latent
stage to the infectious stage at the rate γ. The infectious individuals progress to
the individuals with acute infections at the rate δ. The constants θ and f rep-
resent ivermectin treatment and the efficacy of the treatment, respectively. It is
assumed that during mass treatment with ivermectin, the susceptible individuals
SH , individuals in the latent stage EH , infectious individuals IH and individuals
in acute phase AH progress to susceptible individuals protected with ivermectin
ST , individuals in the latent stage protected with ivermectin ET , infectious indi-
viduals protected with ivermectin IT and individuals in acute phase protected with
ivermectin AT , respectively. It is further assumed that individuals protected with
ivermectin relapse to their respective classes following the waning of the vaccine at
the rate ω. In addition, we assume that individuals protected with ivermectin may
acquire infection depending on the drug efficacy and progress to the subsequent
protected classes with ivermectin. It is important to note that the progression of
individuals in the latent stage protected with ivermectin to infectious individuals
protected with ivermectin, and progression of infectious individuals protected with
ivermectin to individuals in acute phase protected with ivermectin is reduced by
factors α2 ∈ [0, 1] and α3 ∈ [0, 1], respectively.
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The black flies are recruited into susceptible class from pupa stage at a rate b. It
is assumed that the parasite enters the black fly through biting an infectious human.
It is further assumed that only infectious humans in the classes IH , AH , IT and AT

can transmit infections to the susceptible black flies through bites. Infected black
flies go through a latent period during which they do not transmit infection. The
infected black flies progress from latent stage to the infectious stage at the rate τ .
We assume that the black flies leave the population through natural death. The
movement of the host and vector populations is shown in the schematic diagram,
Fig. 1.

Assuming that β be the black fly biting rate, that is, the average number of bites
per black fly per unit time and ξ1 be the probability that a bite by an infectious
black fly on susceptible human leads to infection of the human. Thus, the rate of
infection per susceptible human is given by

λh =
ξ1pβIv
NH

. (2.4)

Individuals on ivermectin treatment in class ST acquire infection at the rate α1λh.
Here, α1 ∈ [0, 1], defines the reduced effect of infection of the susceptible individuals
on ivermectin as a result of treatment. Similarly, assuming that ξ2 is the transmis-
sion probability from infectious human to black flies, then the rate of infection per
susceptible black fly is given by

λv =
ξ2β(IH + κ1AH + κ2IT + κ3AT )

NH
, (2.5)

Fig. 1. A schematic diagram for the model.
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where κi ∈ [0, 1] for i = 1, 2, 3, refers to the modification parameters that measures
the reduced effect of infection relative to the infectious class IH . We introduce
βh = ξ1β and βv = ξ2β parameters to simplify the incidence terms.

With the above descriptions, the dynamics of onchocerciasis in the two inter-
acting populations are described by the systems of nonlinear first order differential
equations in (2.6).

˙SH = Π + ωST − λhSH −Q1SH ,

ĖH = λhSH + ωET −Q2EH ,

˙IH = γEH + ωIT −Q3IH ,

ȦH = δIH + ωAT −Q1AH ,

ṠT = qfθSH − α1λhST −Q4ST ,

ĖT = qfθEH + α1λhST −Q5ET ,

˙IT = qfθIH + α2γET −Q6IT ,

ȦT = qfθAH + α3δIT −Q4AT ,

Ṡv = bP − λvSv − µvSv,

Ėv = λvSv −Q7Ev,

İv = τEv − µvIv,

Ė = r

(
1 − E

Ke

)
(Sv + Ev + Iv) −Q8E,

L̇ = η1E

(
1 − L

Kl

)
−Q9L,

Ṗ = η2L−Q10P,




(2.6)

where

Q1 = µh + qfθ, Q2 = µh + γ + qfθ, Q3 = µh + δ + qfθ, Q4 = µh + ω,

Q5 = α2γ + µh + ω, Q6 = α3δ + µh + ω, Q7 = τ + µv, Q8 = η1 + µe,

Q9 = η2 + µl and Q10 = b+ µp.

with initial conditions

SH(0), EH(0), IH(0), AH(0), ST (0), ET (0), IT (0), AT (0), Sv(0), Ev(0), Iv(0)

E(0), L(0) and P (0).
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2.1. Basic properties

We present the general properties of our model system (2.6) with positive initial
conditions. The model describes human (host) and black fly vector populations
and thus, it is important to prove that all variables describing the dynamics of the
populations are positive.

Theorem 2.1. Suppose the initial conditions satisfy SH(0) > 0, EH(0) ≥ 0, IH(0) ≥
0, AH(0) ≥ 0, ST (0) > 0, ET (0) ≥ 0, IT (0) ≥ 0, AT (0) ≥ 0, Sv(0) > 0, Ev(0) > 0,
Iv(0) ≥ 0, E(0) ≥ 0, L(0) ≥ 0 and P (0) ≥ 0 and that the solutions to the system
(2.6) exists on the interval [0, t0] for some t0 > 0, then the functions SH(t), EH(t),
IH(t), AH(t), ST (t), ET (t), IT (t), AT (t), Sv(t), Ev(t) Iv(t), E(t), L(t) and P (t)
remain positive for all t ∈ [0, t0].

The proof of this theorem follows the works in.22

Theorem 2.2. The solutions of the model system in (2.6) with initial conditions
given in (2.6) are bounded.

Proof. The human and the vector populations evolve according to the following
equations, respectively.

dNH(t)
dt

≤ Π − µhNH ,
dNv

dt
≤ bP − µvNv,

so that

lim
t→∞ sup(NH(t)) ≤ Π

µh
, lim

t→∞ sup(Nv(t)) ≤ bη2Kl

µvQ10
since P ≤ η2Kl

Q10
.

Thus, all feasible solutions of our model system (2.6) are positive and bounded and
thus enter the invariant attracting region

Ω =
{

(SH , EH , IH , AH , ST , ET , IT , AT , Sv, Ev, Iv, E, L, P ) : NH(t) ≤ Π
µh

;E ≤ Ke;

L ≤ Kl;P ≤ η2Kl

Q10
;Nv(t) ≤ bη2Kl

µvQ10

}
.

The set Ω is positively invariant and attracting. It is, therefore, sufficient to consider
solutions of our model system (2.6) in Ω. The existence, uniqueness and subsequent
results for our model system (2.6) hold in this region and all the solutions starting
in Ω remain there for t ≥ 0. Thus, the model system (2.6) is mathematically and
epidemiologically well-posed, and it is, thus, sufficient to consider the dynamics
generated by the model system in Ω.

3. Model Analysis

3.1. Basic reproduction number, R0

In the absence of disease in both the population, the model system (2.6) has
two equilibria without disease; the trivial equilibrium (equilibrium without vector
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and disease), E0 = (SH , 0, 0, 0, ST , 0, 0, 0, 0, 0, 0, 0, 0, 0) and disease-free equilibrium
(equilibrium with vector and without disease) given by E1 = (SH , 0, 0, 0, ST , 0, 0,
0, Sv, 0, 0, E, L, P ) with

SH =
Π

Q1(1 − Φ1)
, ST =

Πqfθ
Q1Q4(1 − Φ1)

, Sv =
KeKlQ8Q9(N − 1)
r(Keη1 +KlQ9)

,

E =
KeKlQ8Q9Q10µv(N − 1)
η1(KeQ8Q10µv +Klbrη2)

, L =
KeKlQ8Q9Q10µv(N − 1)
brη2(Keη1 +KlQ9)

,

P =
KeKlQ8Q9µv(N − 1)
br(Keη1 +KlQ9)

, Φ1 =
ωqfθ

Q1Q4
, N =

brη1η2
Q8Q9Q10µv

.

It is important to note thatN is the net reproductive number.21,23,24 We employ the
next generation matrix method described in25 to compute the basic reproduction
number R0 of the system (2.6). This is given by

R0 =
√
R0 =

√
pγτKeKlβhβv(Φ4 + Φ5 + Φ6)Q8Q9(N − 1)

Q2Q3Q5Q6Q7(Q4 + fqθ)2(1 − Φ2)(1 − Φ3)(Keη1 +KlQ9)rΠµv
.

(3.1)

The computation of the basic reproduction number is given in Appendix A. The
square-root arises due to the fact that it takes two generations for infected hosts to
produce new infected hosts.26 In this paper, R0 determines whether onchocerciasis
dies out or persists in the population. The following results are established.

Theorem 3.1. If

(i) N ≤ 1, the trivial equilibrium E0 is locally asymptotically stable in Ω.
(ii) N > 1, the trivial equilibrium E0 is unstable and the disease-free equilibrium E1

is locally asymptotically stable in Ω whenever R0 < 1.

Proof. The proof of Theorem 3.1 is given in Appendix B.

The quantity R0 is defined as the expected number of human/vector onchocerci-
asis infections generated by a single infected human/vector during the entire period
of infectiousness when introduced in a completely susceptible human/vector pop-
ulation. The epidemiological implication of Theorem 3.1 is that, in general, when
the basic reproduction number R0, is less than unity, on average each infected
individual infects fewer than one individual and the disease dies out in time.25

3.2. Endemic equilibrium, (E1)

We define the nonzero steady state to be S∗
H , E

∗
H , I

∗
H , A

∗
H , S

∗
T , E

∗
T , I

∗
T , A

∗
T ,

S∗
V , E

∗
V , I

∗
V be nontrivial solutions to the endemic equilibrium points, see
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Appendix C for computations. The theorem below summarizes the existence of the
endemic equilibrium of the system (2.6).

Theorem 3.2. When N > 1 then

(i) in the absence of infection in the treated human population, the system (2.6)
has

• a unique endemic equilibrium whenever R0 > 1.
• no endemic equilibrium otherwise.

(ii) in the presence of infection in the treated human population, the system
(2.6) has

• no endemic equilibrium if R0 < Rc
0, where Rc

0 is a threshold value of R0.
• has at least one endemic equilibrium in Ω, if R0 > 1.
• has two endemic equilibria for some parameter values of R0 within the range
Rc

0 < R0 < 1 within this range, one endemic equilibrium and the disease-free
equilibrium are locally stable.

• has no endemic equilibrium otherwise.

Proposition 3.1. The system (2.6) exhibits backward bifurcation for R0 < 1.

From the results in Sec. 3.2, we have established that the system (2.6) has a
backward bifurcation at R0 = 1 if and only if Γ1 < 0 and ∆ > 0. The existence
of backward bifurcation phenomenon indicates that the classical requirement for
R0 < 1 is no longer sufficient for disease eradication.27 In order to achieve a epi-
demiological goal of disease eradication, R0 must be brought below the critical value
Rc

0. To obtain the critical value Rc
0, we set the discriminant ∆ of the polynomial

(C.5) to zero and make R0 the subject of the relation. Thus, we have

Rc
0 = 1 − Γ2

1

4Γ2[rΠQ2
1Q2Q3Q2

4Q5Q6Q7Q10µ2
v(KlQ9 +Keη1)]

. (3.2)

We carry out bifurcation analysis to study the behavior of the system (2.6) using
Centre Manifold Theorem (CMT) as described in.28 A direct use CMT in,28 can
assist in determining the stability of the endemic equilibrium and the direction of
bifurcation R0 = 1. We avoid duplicating the theorem and compute the values
of a and b. Following the simplification made in Appendix C, we have the basic
reproduction number given by

R0 =
Q8Q9τβhµ

2
hKlKeβvγ(N − 1)(δκ1 +Q1)

ΠQ2
1Q2Q3Q7rµv(Q9Kl + η1Ke)

. (3.3)

Suppose we let βh = β∗ as the bifurcation parameter, so that at R0 = 1, we have

β∗ =
ΠQ2

1Q2Q3Q7rµv(Q9Kl + η1Ke)
Q8Q9τµ2

hKlKeβvγ(N − 1)(δκ1 +Q1)
. (3.4)
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Let xi, for i = 1, . . . , 14, represent SH , EH , IH , AH , ST , ET , IT , AT , Sv, Ev, IvE,L

and P , respectively. So that our model system in (2.6) becomes

ẋ1 = Π + ωx5 − x1

(
pβhx11

NH

)
−Q1x1,

ẋ2 = x1

(
pβhx11

NH

)
+ ωx6 −Q2x2,

ẋ3 = γx2 + ωx7 −Q3x3,

ẋ4 = δx3 + ωx8 −Q1x4,

ẋ5 = qfθx1 − α1x5

(
pβhx11

NH

)
−Q4x5,

ẋ6 = qfθx2 + α1x5

(
pβhx11

NH

)
−Q5x6,

ẋ7 = qfθx3 + α2γx6 −Q6x7,

ẋ8 = qfθx4 + α3δx7 −Q4x8,

ẋ9 = bx14 − βvx9

(
x3 + κ1x4κ2x7 + κ3x8

NH

)
− µvx9,

˙x10 = βvx9

(
x3 + κ1x4κ2x7 + κ3x8

NH

)
−Q7x10,

˙x11 = τx10 − µvx11,

˙x12 = r

(
1 − x12

Ke

)
(x9 + x10 + x11) −Q8x12,

˙x13 = η1x12

(
1 − x13

Kl

)
−Q9x13,

˙x14 = η2x13 −Q10x14.




(3.5)

The linearisation matrix of system (3.5) around the disease-free equilibrium has
a zero, simple eigenvalue. Therefore, a right eigenvector w associated with zero
eigenvalue has components

w1 = −Πrµv(γ + µh)(δ + µh)(τ + µv)(η1Ke +Kl(η2 + µl))
γ(N − 1)τKeµhKlβv(µe + η1)(η2 + µl)(δκ1 + µh)

,

w2 =
Πrµv(γ + µh)(δ + µh)(τ + µv)(η1Ke +Kl(η2 + µl))

γ(N − 1)τKeKlβv(µe + η1)(γ + µh)(η2 + µl)(δκ1 + µh)
,

w3 =
Πrµv(τ + µv)(η1Ke +Kl(η2 + µl))

(N − 1)τKeKlβv(µe + η1)(η2 + µl)(δκ1 + µh)
,
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w4 =
δΠrµv(τ + µv)(η1Ke +Kl(η2 + µl))

(N − 1)τKeµhKlβv(µe + η1)(η2 + µl)(δκ1 + µh)
,

w5 = w6 = w7 = w8 = w12 = w13 = w14 = 0,

w9 = −τ + µv

τ
, w10 =

µv

τ
, w11 = 1.

The left eigenvector v is given by

v1 = v5 = v9 = v12 = v13 = v14 = 0, v2 = 1, v3 =
γ + µh

γ
,

v4 =
κ1(γ + µh)(δ + µh)

γ(δκ1 + µh)
,

v6 =
δκ1ω(α2(γ + µh)(α3µh +Q6) +Q4Q6) + φ1

Q4Q5Q6(δκ1 + µh)
,

v7 =
(γ + µh)(µh(α3δ(κ3(δ + µh) + κ1ω) +Q4(κ2(δ + µh) + ω)) + δκ1Q6ω)

γQ4Q6(δκ1 + µh)
,

v8 =
(γ + µh)(δ + µh)(κ3µh + κ1ω)

γQ4(δκ1 + µh)
,

v10 =
Πr(γ + µh)(δ + µh)(η1Ke +Kl(η2 + µl))

γ(N − 1)KeKlβv(µe + η1)(η2 + µl)(δκ1 + µh)
,

v11 =
Πr(γ + µh)(δ + µh)(τ + µv)(η1Ke +Kl(η2 + µl))
γ(N − 1)τKeKlβv(µe + η1)(η2 + µl)(δκ1 + µh)

,

where

φ1 = µh(α2(γ + µh)(α3δκ3(δ + µh) +Q4(κ2(δ + µh) + ω)) +Q4Q6ω).

We then obtain the following nonzero second partial derivatives for the system in
(3.5),

∂2f2
∂x1∂x11

=
β∗µh

Π
,

∂2f6
∂x5∂x11

=
α1β

∗µh

Π
,

∂2f11
∂x3∂x9

=
βvµh

Π
,

∂2f11
∂x4∂x9

=
κ1βvµh

Π
,

∂2f11
∂x7∂x9

=
κ2βvµh

Π
,

∂2f11
∂x8∂x9

=
κ3βvµh

Π
,

∂2f2
∂x11∂β∗ = 1.

It, therefore, follows that the sign of a and b are given by

a = v2w1w11
∂2f2

∂x1∂x11
+ v11w3w9

∂2f11
∂x9∂x3

+ v11w4w9
∂2f11
∂x9∂x4

< 0,

b = v2w11
∂2f2

∂x11∂β∗ = 1 > 0.

We have a less than zero and b greater than zero, using the forth item of CMT
in,28 we conclude that when β∗ changes from negative to positive, E1 changes its
stability from stable to unstable. Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable.
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From Theorem 3.2 item (ii), we have established that the infection in the treated
human compartments may be the cause of the occurrence of the backward bifurca-
tion phenomenon. Thus, it is important to show that backward bifurcation is caused
by infection occurring along the treated human compartments. To achieve this, we
consider the corresponding model without occurrence of infection in the treated
human compartments. If there is no infection in the treated human compartments,
it implies that (α1 = α2 = α3 = 0). The expressions for the endemic equilibrium of
the resulting system in terms of λ∗h and λ∗v, are given by

S∗
H =

Π
Q1(1 − Φ1) + λ∗h

, E∗
H =

Πλ∗h
Q2(1 − Φ7)(Q1(1 − Φ1) + λ∗h)

,

I∗H =
Πγλ∗h

Q2Q3(1 − Φ7)(1 − Φ8)(Q1(1 − Φ1) + λ∗h)
,

A∗
H =

Πγδλ∗h
Q1Q2Q3(1 − Φ1)(1 − Φ7)(1 − Φ8)(Q1(1 − Φ1) + λ∗h)

,

S∗
T =

qfθ

Q4
S∗

H , E∗
T =

qfθ

Q4
E∗

H , I∗T =
qfθ

Q4
I∗H , A∗

T =
qfθ

Q4
A∗

H ,

S∗
v =

bP ∗

λ∗v + µv
, E∗

v =
bP ∗λ∗v

Q7(λ∗v + µv)
, I∗v =

bτP ∗λ∗v
Q7µv(λ∗v + µv)

,

E∗ =
bKerP

∗

brP ∗ +KeQ8µv
, L∗ =

KeKlbrη1P
∗

Kebrη∗1P ∗ +KlQ9(bP ∗r +KeQ8µv)
,

P ∗ =
KeKlQ8Q9µv(N − 1)
br(Keη1 +KlQ9)

.

Substituting the expressions for I∗v into λ∗h and I∗H , A
∗
H , I

∗
T and A∗

T into λ∗v, we get

λ∗h(V1λ
∗
h + V0) = 0,

for

V1 = −rΠQ7(KlQ9 +Keη1)(γδβvµh(Q4κ1 + fqθκ3) +Q1(1 − Φ1)

(fqγθβvκ2µh −Q4(1 −Rα))),

V0 = ΠQ2
1Q2Q3Q4Q7rµv(1 − Φ1)2(1 − Φ7)(1 − Φ8)(η1Ke +Q9Kl)(R0α − 1),

where

R0α =
√
R0α =

√
γ(N − 1)pQ8Q9τβhµ2

hKlKeβv(Φ9(1 − Φ1))
ΠQ2

1Q2Q3Q4Q7rµv(1 − Φ1)2(1 − Φ7)(1 − Φ8)(Q9Kl + η1Ke)
,

and

Φ7 =
ωqfθ

Q2Q4
, Φ8 =

ωqfθ

Q3Q4
, Φ9 = δ(Q4κ1 + fqθκ3) +Q1(Q4 + fqθκ2),

Rα =
γβvµh

Q3Q4µv(1 − Φ7)(1 − Φ8)
.
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Note that the case λ∗h = 0 corresponds to the disease-free equilibrium. Thus, the
solution to the endemic equilibrium is obtained from the expression V1λ

∗
h +V0 = 0.

Here, λ∗h = V0
−V1

such that the existence of endemic equilibrium is subject to R0α > 1.
Therefore, there exists a unique endemic equilibrium whenever R0α > 1.

4. Numerical Simulation

4.1. Parameter estimation

In this section, we estimate the parameter values of the system (2.6). The parameter
values presented in Table 1 are estimated from literature or randomly assumed to
illustrate the theoretical results. Below are the explanations on how some parame-
ters have been estimated.

(1) Human population recruitment rate Π is estimated based on the birth rate of
between 30.5/1000 people to 40/1000 people per year in Sub-Sahara Africa.29

For the purposes of illustration, a reasonable range of (30–40)per 1000 people
is considered.

(2) The average life expectancy in Sub-Sahara Africa is estimated based on average
life of 50–70 years.29 The average life expectancy of black-fly is estimated based

Table 1. Estimated parameter values. The rates are given per month.

Parameter Range Point value Source

Π 15–30 25 Estimated
µh 0.00118–0.0017 0.0014 Ref. 29
γ 0.0417–0.111 0.0982 Refs. 32 and 33
τ 2.172–5.071 2.21 Refs. 32 and 33
µv 0.3589–2.172 1.354 Refs. 32 and 33
f 0–1.0 0.85 Ref. 17
θ 0–1.0 0.65 Ref. 17
ω 0–1.0 0.08910 Ref. 17
α1 0–1.0 0.025 Estimated
α2 0–1.0 0.045 Estimated
α3 0–1.0 0.065 Estimated
κ1 0–1.0 0.085 Estimated
κ2 0–1.0 0.055 Estimated
κ3 0–1.0 0.025 Estimated
δ 0.000137–0.1874 0.0299 Estimated
r 2.51–5.62 4.72 Estimated
Ke 1000–100000 60000 Estimated
Ke 500–10000 6000 Estimated
η1 1.014–7.605 3.41 Ref. 31
η2 0.1667–1.014 0.8442 Ref. 31
b 4.346–7.605 7.241 Ref. 31
µe 1.014–7.605 1.04 Ref. 31
µl 0.1667–1.014 0.171 Ref. 31
µp 4.346–7.605 4.2 Ref. 31
βh 0.0–0.1 0.08354 Estimated
βv 0.0–0.1 0.07258 Estimated
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on the average life span lasting for 2–3 weeks and sometimes can last up to 85
days.30

(3) The rate of laying of eggs r has been estimated to be between 2.5 and 5.6.
The carrying charges Ke and Kl are estimated from the range 1000–100000
and 500–10000, respectively.

(4) The progression rates from eggs to larvae η1 and from larvae to pupae η2 as
well as their mortality rates µe and µl have been estimated based on the 4–30
days and 1–6 months, respectively.31

(5) The rate at which the adults emerge from the pupae b has been estimated to
be between 4–7 days.31 The mortality rate of the pupae µp has been estimated
to be between 4–7 days.

(6) The progression rate from latent class (infected individuals) to infectious class
is estimated based on the duration 3

4–2 years when the worm matures to release
enough microfilariae that can be detectable in the skin.32,33 On the other hand,
the average incubation period in the black-fly is 1–2 weeks.32,33

(7) The progression rate from infectious individuals to individuals in acute phase
is estimated based on the duration 1–3 years.33

(8) The mass administration rate θ, waning rate of the drug ω and drug efficacy f
are estimated to be between 0% and 100%.17

For the purposes of illustration, the following initial conditions have been used.

SH(0) = 5000, EH(0) = 300, IH(0) = 300, AH(0) = 100, ST (0) = 1000,

ET (0) = 100, IT (0) = 100, AT (0) = 100, SV (0) = 3000, EV (0) = 400,

IV (0) = 120, E(0) = 10000, L(0) = 5000, P (0) = 3000.

4.2. Sensitivity analysis

In this section, we perform sensitivity analysis to ascertain the uncertainty of the
parameters to the onchocerciasis model output. This is critical in enabling us iden-
tify the key input parameters that should be the center of focus for the disease to
be contained. Sensitivity and uncertainty analysis are performed using the Latin
hypercube sampling (LHS) scheme, a Monte-Carlo stratified sampling method that
allows us to obtain an unbiased estimate of the model output for a given set of
input parameter values.34,35 The parameter space is simultaneously sampled with-
out replacement as well as assuming statistical independence between the parame-
ters. The selected sample is used to compute unbiased estimates of output values
for disease threshold of the model. The computed partial rank correlation coeffi-
cients of the specific output threshold values are graphically presented in tornado
plots, see Fig. 2. Parameters with positive PRCCs will increase R0 when they are
increased, whereas parameters with negative PRCCs will decrease R0 when they
are increased. The results in Fig. 2 show that βh and βv are the parameters with
the greatest potential to worsen the onchocerciasis epidemics. This suggests that
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Fig. 2. Tornado plot showing PRCCs of the parameter values and the model reproduction
number.

reducing contact rates between humans and the black flies may potentially be the
most effective strategy to reduce R0, thus, controlling the spread of onchocerciasis.
Other parameters with important effect on R0 are µv, r, κ1,Kl.

4.3. Numerical simulation results

We now give the numerical results for the model system (2.6) starting with the both
the case when R0 < 1, that is, Fig. 3 and then for R0 > 1, Fig. 4. The figures show
how the various populations evolve. These results are comparable to the ones in7,18

when one looks at the behavior of the solutions. We observe in Fig. 3 that whenR0 <

1, all trajectories initiating inside the region of attraction are approaching towards
the disease-free state. We observe that the population of the infected individuals
rises first and then declines and finally oscillates towards disease-free state. This
behavior is also seen in both the infectious treated compartment. This indicates
that the results of the simulations support the fact that the disease can be cleared
from the population by ensuring that the basic reproduction number is kept at a
level lower than one. It is, therefore, possible to eliminate the disease given the
treatment with ivermectin for half of the year.

The simulation results of the population in Fig. 4 show the convergence of the
disease epidemics to endemic equilibrium. We observe from the trajectories that the
disease persistent state solutions predict a population that contains a larger number
of individuals with acute phase infection of onchocerciasis. This prediction is as a
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a), (c) and (e) show the human population dynamics of asymptomatic human (exposed
individuals), symptomatic human (Infectious individuals) and individuals in the acute phase not
on ivermectin while (b), (d) and (f) show the dynamics of the same individuals on ivermectin.
The numerical solutions of model (2.6) when R0 = 0.5645.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a), (c) and (e) show the human population dynamics of asymptomatic human (exposed
individuals), symptomatic human (Infectious individuals) and individuals in the acute phase not on
ivermectin while figures (b), (d) and (f) show the dynamics of the same individuals on ivermectin.
The numerical solutions of model (2.6) when R0 = 1.8662 with βh = 0.88354, βv = 0.0.09458, δ =
0.0847 and all other parameters as given in Table 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison on average the six-monthly, three-monthly and continuous treatment with
ivermectin for the same parameters as used in Fig. 4.
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result of the model design in which every infected individual ends up in the acute
phase. For this to be avoided, there is a need to refine the model by introducing
delays into the progression of individuals in the acute phase or reducing the rate of
movement into the acute phase. This is consistent with the corresponding negative
sensitivity index presented in Fig. 2 in which increasing in the progression rate of
individuals from infectious class to acute phase decreases the basic reproduction
number.

In order to gain more insight into eliminating the disease from the population,
we ask the question; what is the potential impact of increasing the frequency of
mass administration of ivermectin? In Fig. 5, we give comparative scenarios for
the cases, where we have six-monthly mass administration of ivermectin, quarterly
mass administration of ivermectin and continuous treatment. The functions used
here are (2.1), (2.2) and then p = q = 1 for the continuous mass administration
of ivermectin. The smooth continuous curves drawn here for comparisons sake are
basically the yearly averages of the peaks of the oscillations. The study results
in Fig. 5 show that the disease can easily be contained if continuous treatment
with ivermectin is adopted. The figures show that continuous treatment is a better
treatment strategy as compared to mass administration at regular intervals.

5. Discussion

In this study, we formulated a deterministic model that endeavors to capture the
infection dynamics of onchorcerciasis and the mass treatment strategy that is cur-
rently in use. The model is used to show the likely outcomes if this treatment
strategy is changed. We then look at the possibility of increasing the frequency to
a quarterly treatment and a continuous treatment strategy. It is known that iver-
mectin treatment suppresses the production of microfilariae by the adult female
worms for a few months following treatment, thus, reduces transmission. It, how-
ever, does not eliminate the infection but through a continuous treatment pressure,
the disease will be eventually controlled. This study, therefore, provides a basic
framework for assessing the impact of mass administration of ivermectin on the
prevalence of onchocerciasis.

The basic reproduction number was determined using the next generation
matrix method. The steady states of the model were determined and stability
analysis was carried out. It is observed the system may exhibit backward bifur-
cation under some restrictions on parameters. This is demonstrated numerically. It
is established that the death rate of the vector plays an important role in the occur-
rence of backward bifurcation. Increase in the vector death rate pushes Rc

0 towards
1 leading to the disappearance of backward bifurcation. When there is no backward
bifurcation, the system exhibits only forward bifurcation and in this case reducing
R0 below 1 becomes sufficient to eliminate the disease from the population.

Based on the numerical results and sensitivity analysis, onchocerciasis can be
controlled and eventually eliminated by reducing the contact rates between human
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and the black-flies, and increasing the removal of the black-flies. The numerical
results reveal that an increase in the frequency of mass administration of iver-
mectin has a higher impact on reducing the infection dynamics of onchocerciasis.
We observed that the continuous mass administration of ivermectin yields much
better results as compared to the periodic mass administration of ivermectin. It
suffices to deduce that a continuous mass administration of ivermectin can help
achieve the WHO goal of onchocerciasis elimination much faster than the periodic
treatments.

The model presented in this paper is by no means the best representation of
onchocerciasis infection dynamics in which mass treatment is used as a control mea-
sure. First, the use of step functions to measure the waning of a ivermectin is an
over estimation of the duration of protection by the treatment. Smoother functions,
such as the Hill function or exponentially decaying functions, could probably be a
better representation. The inclusion of the drug resistance and drug noncompliance
to the model can aid predictions of treatment outcomes. Despite these short com-
ings, the model presents some interesting results that are comparable to research
done by others. Also, the results of the mathematical model are useful in assist-
ing in the design of better treatment strategies that can lead to the eradication of
onchocerciasis from the population.
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Appendix A. Computation of the Basic Reproduction
Number, R0

To compute the basic reproduction number, we assume that the net reproductive
number N > 1. We use the next generation approach method to compute the basic
reproduction number of the system (2.6). Thus, adopting the matrix notations
in,25 the matrices for new infections and transfers at disease-free equilibrium are
given by

F =




0 0 0 0 0 0 0
pβhSH

NH

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
pα1βhST

NH

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
βvSv

NH

κ1βvSv

NH
0

κ2βvSv

NH

κ3βvSv

NH
0 0

0 0 0 0 0 0 0 0




,
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V =




Q2 0 0 −ω 0 0 0 0

−γ Q3 0 0 −ω 0 0 0

0 −δ Q1 0 0 −ω 0 0

−fqθ 0 0 Q5 0 0 0 0

0 −fqθ 0 −γα2 Q6 0 0 0

0 0 −fqθ 0 −δα3 Q4 0 0

0 0 0 0 0 0 Q7 0

0 0 0 0 0 0 −τ µv




.

The spectral radius of FV −1 (dominant eigenvalue) gives the basic reproduction
number

R0 =
√
R0

=

√
pγτKeKlβhβvµ2

h(Φ4 + Φ5 + Φ6)Q8Q9(N − 1)
Q2

1Q2Q3Q2
4Q5Q6Q7(1 − Φ1)2(1 − Φ2)(1 − Φ3)(Keη1 +KlQ9)rΠµv

,

(A.1)

where

Φ2 =
qfθω

Q2Q5
, Φ3 =

qfθω

Q3Q6
,

Φ4 = Q2
4((δκ1 +Q1)(α2fθqω +Q5Q6) + fθκ2qQ1(α2Q3 +Q5)),

Φ5 = fθqQ4(Q1(α1(fθκ2qω + α2Q2(κ2Q3 + ω) +Q6ω) + α2α3δκ3Q3)

+Q5(−fθκ2qω + α3δ(κ1ω + κ3Q1) −Q6(ω − δκ3)) + ω(α2(−fθq(ω − δκ3)

−Q3(fθκ2q − α3δκ1) + α1δκ1Q2) + α1δκ1Q6)),

Φ6 = α1fθq(fθqω(α3δ(κ1ω + κ3Q1)

− fθκ2qω) + α2Q2(Q3(α3δ(κ1ω + κ3Q1) − fθκ2qω) − fθqω(ω − δκ3))

+ fθqQ6ω(δκ3 − ω)).

Appendix B. Local Stability of the Trivial Equilibrium, E0

Proof. E0 is said to be locally asymptotically stable if all the eigenvalues of
the Jacobian matrix at E0 have negative real parts. The Jacobian matrix evalu-
ated at the trivial equilibrium steady state

(
SH , 0, 0, 0, ST , 0, 0, 0, 0, 0, 0, 0, 0, 0

)
=(

Π
Q1(1−Φ1)

, 0, 0, 0, Πqfθ
Q1Q4(1−Φ1) , 0, 0, 0, 0, 0, 0, 0, 0, 0

)
is given by

J(E0) =

(
A11 A12

A21 A22

)
, (B.1)
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where

A11 =




−Q1 0 0 0 ω 0 0 0 0

0 −Q2 0 0 0 ω 0 0 0

0 γ −Q3 0 0 0 ω 0 0

0 0 δ −Q1 0 0 0 ω 0

qfθ 0 0 0 −Q4 0 0 0 0

0 qfθ 0 0 0 −Q5 0 0 0

0 0 qfθ 0 0 α2γ −Q6 0 0

0 0 0 qfθ 0 0 α3δ −Q4 0

0 0 0 0 0 0 0 0 −µv




,

A12 =




0 − Π
Q1(1 − Φ1)

0 0 0

0
Π

Q1(1 − Φ1)
0 0 0

0 0 0 0 0

0 0 0 0 0

0 − α1Πqfθ
Q1Q4(1 − Φ1)

0 0 0

0
α1Πqfθ

Q1Q4(1 − Φ1)
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 b




,

A21 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 r

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



,

A22 =




−Q7 0 0 0 0

τ −µv 0 0 0

r r −Q8 0 0

0 0 η1 −Q9 0

0 0 0 η2 −Q10



.
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The characteristic polynomial of J(E0) is given by

p(λ) = (λ+Q7)(λ+ µv)y1(λ)y2(λ)y3(λ)y4(λ), (B.2)

where

y1(λ) = (λ2 + λ(Q1 +Q4) +Q1Q4(1 − Φ1))2,

y2(λ) = (λ2 + λ(Q2 +Q5) +Q2Q5(1 − Φ2)),

y3(λ) = (λ2 + λ(Q3 +Q6) +Q3Q6(1 − Φ3)),

y4(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,

a1 = Q8 +Q9 +Q10 + µv,

a2 = (Q10µv +Q9(Q10 + µv) +Q8(Q9 +Q10 + µv)),

a3 = (Q8Q9Q10 + µv(Q8Q9 + (Q10(Q8 +Q9)),

a4 = Q8Q9Q10µv(1 −N).

We can directly obtain λ1 = −Q7 and λ2 = −µv as some of the roots of the
polynomial (B.2). Other roots are the roots of y1(λ), y2(λ), y3(λ) and y4(λ). The
roots of y1(λ), y2(λ) and y3(λ) have negative real parts. It can easily be seen that
all the coefficients of y4(λ) are positive since N < 1. We then use Routh–Hurwitz
criterion to establish the necessary and sufficient conditions for all the roots of y4(λ)
to have negative real parts. The Routh–Hurwitz criterion of stability of the trivial
equilibrium E0 is given by 



H1 > 0

H2 > 0

H3 > 0

H4 > 0

⇔




H1 > 0

H2 > 0

H3 > 0

H4 > 0

,

where

H1 = a1, H2 =

∣∣∣∣∣a1 1

a3 a2

∣∣∣∣∣ , H3 =

∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 a4 a3

∣∣∣∣∣∣∣ , H4 =

∣∣∣∣∣∣∣∣∣∣

a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣∣∣
.

We then have

H1 = a1 = Q8 +Q9 +Q10 + µv > 0,

H2 = a1a2 − a3 = Q2
8(Q9 +Q10 + µv) +Q8(Q9 +Q10 + µv)2 + (Q9 +Q10)

(Q9 + µv)(Q10 + µv) > 0,
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H3 = a1a2a3 − a2
1a4 − a2

3

Q2
8(bη1η2r + (Q9 +Q10)(Q9 + µv)(Q10 + µv)(Q9 +Q10 + µv))

+Q8(2Q9(bη1η2r +Q10µv(Q10 + µv)2) + (Q10 + µv)(2bη1η2r +Q2
10µ

2
v)

+Q3
9(Q10 + µv)2 +Q2

9(Q10 + µv)(3Q10µv +Q2
10 + µ2

v)) + bη1η2r(Q10 + µv)2

+Q9(Q10 + µv)(2bη1η2r +Q2
10µ

2
v) +Q2

9(bη1η2r +Q10µv(Q10 + µv)2)

+ (Q9 +Q10)Q3
8(Q9 + µv)(Q10 + µv) +Q3

9Q10µv(Q10 + µv) > 0,

H4 = a4H3.

The above result shows that we always have H1 > 0, H2 > 0, H3 > 0 and H4 > 0 if
and only if N < 1. Therefore, we conclude that the trivial equilibrium E0 is locally
asymptotically stable whenever N < 1.

Appendix C. Existence of Endemic Equilibrium

From (2.4) and (2.5), we have

λ∗h =
pβhI

∗
v

N∗
H

, λ∗v =
βv(I∗H + κ1A

∗
H + κ2I

∗
T + κ3A

∗
T )

N∗
H

, (C.1)

where N∗
H = N0

H = Π
µh

. Setting all the equations of the system (2.6) to zero and
solving the state variables in terms of the forces of infections in (C.1), we have

S∗
H =

Π(α1λ
∗
h +Q4)

Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h))
,

E∗
H =

Πλ∗h(Q5(α1λ
∗
h +Q4) + α1ωqfθ)

Q2Q5(1 − Φ2)(Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h)))
,

I∗H =
γΠλ∗h(α1(α2ωqfθ(λ∗h +Q2) +Q6(Q5λ

∗
h + ωqfθ)) +Q4(α2ωqfθ +Q5Q6))

Q2Q3Q5Q6(1 − Φ2)(1 − Φ3)(Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h)))
,

A∗
H =

λ∗hΠγδ(Q2
4(Q5Q6 + ωqfθα2) + ψ1 + ψ2)

Q1Q2Q3Q4Q5Q6(1 − Φ1)(1 − Φ2)(1 − Φ3)(Q1Q4(1 − Φ1)

+λ∗h(Q4 + α1(Q1 + λ∗h)))

,

S∗
T =

Πqfθ
Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h))

,

E∗
T =

Πλ∗hqfθ(α1(λ∗h +Q2) +Q4)
Q2Q5(1 − Φ2)(Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h)))

,

I∗T =
γωqfθΠλ∗h(α1((λ∗h(α2Q3 +Q5) + ωqfθ) + α2Q2Q3) +Q4(α2Q3 +Q5))
Q2Q3Q5Q6(1 − Φ2)(1 − Φ3)(Q1Q4(1 − Φ1) + λ∗h(Q4 + α1(Q1 + λ∗h)))

,

J.
 B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 Y
O

R
K

 @
 B

IN
G

H
A

M
T

O
N

 o
n 

04
/1

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

April 3, 2017 14:18 WSPC/S0218-3390 129-JBS 1750013

Modeling the Infection Dynamics of Onchocerciasis 29

A∗
T =

Πλ∗hγδfqθ(Q4(α2fθqω + α3Q1(α2Q3 +Q5) +Q5Q6) + ψ3)
Q1Q2Q3Q4Q5Q6(1 − Φ1)(1 − Φ2)(1 − Φ3)(Q1Q4(1 − Φ1)

+λ∗h(Q4 + α1(Q1 + λ∗h)))

,

S∗
v =

bP ∗

λ∗v + µv
, E∗

v =
bP ∗λ∗v

Q7(λ∗v + µv)
, I∗v =

bτP ∗λ∗v
Q7µv(λ∗v + µv)

,

E∗ =
bKerP

∗

brP ∗ +KeQ8µv
, L∗ =

KeKlbrη1P
∗

Kebrη∗1P ∗ +KlQ9(bP ∗r +KeQ8µv)
,

(C.2)

where

ψ1 = Q4(α1λ
∗
h(α2fθqω +Q5Q6) + θω(α3fq(α2Q3 +Q5) + α1qf(α2Q2 +Q6))),

ψ2 = α1α3θω(fq(λ∗h(α2Q3 +Q5) + θqfω) + α2Q2Q3qf),

ψ3 = α1(λ∗h(α2fθqω + α3Q1(α2Q3 +Q5) +Q5Q6) + α3Q1(fθqω + α2Q2Q3)

+ θqfω(α2Q2 +Q6)).

The solution P ∗ takes the following form

f(P ) = P [−brQ10(KlQ9 +Keη1)P +KeKlQ8Q9Q10µv(N − 1)] = 0. (C.3)

Direct solution to (C.3) gives P = 0 or P ∗ = KeKlQ8Q9µv(N−1)
br(Keη1+KlQ9) . Note that the case

P = 0 corresponds to the Note that the case P = 0 corresponds to the trivial
equilibrium E0. We then consider the case P > 0, that is, N > 1. Substituting
the values of I∗v into the first expression in (C.1) and I∗H , A

∗
H , I

∗
T and A∗

T into the
second expression in (C.1) and simplifying, we obtain the following polynomial

g(λ∗h) = λ∗h(λ∗2h Γ2 + λ∗hΓ1 + Γ0) = 0, (C.4)

where

Γ2 = −α1ΠQ7Q10rµv(η1Ke +Q9Kl)(Q1(Q4(Q5(Φ1 − 1)(γfθκ2qµhβv

+Q6(γµhβv +Q2Q3(Φ2 − 1)(Φ3 − 1)µv)) − α2γfθqµhβv(κ2Q3 + ω))

−α3γδfθκ3qµh(α2Q3 +Q5)βv) + γµhβv(α2fθqω(fθq(ω − δκ3)

+Q3(fθκ2q − α3δκ1) − δκ1Q4) − δQ5(fθq(α3κ1ω + κ3Q6) + κ1Q4Q6))),

Γ1 = Q10µv((N − 1)pγτKeKlQ8Q9α1βhβv(−δQ4Q5Q6κ1 + fqθ(ω(α2(fqθω

− δ(Q4 +Q3α3)κ1 + fqθQ3κ2) − δα3κ1) − δ(Q5 + fqθωα2)κ3)

+Q1(Q4(Q5Q6(Φ1 − 1) − fqθ(−Φ1κ2 + κ2 + α2(ω +Q3κ2)))

− fqδθ(Q3α2 + 1)α3κ3))µ2
h + rΠKlQ7Q9((γβv((Q5Q6 + fqθωα2)(Q1 + δκ1)
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+ fqθQ1(Q5 +Q3α2)κ2)µh +Q1Q2Q3Q5Q6µv(Φ2 − 1)(Φ3 − 1))Q2
4

+ (γθQ1βv(qfα1(ωQ6 + fqθωκ2 +Q2α2(ω +Q3κ2)) + fqδQ3α2α3κ3)µh

+ fqγθQ5βv(δ(Q6 +Q1α3)κ3 − ω(Q6 − δα3κ1 + fqθκ2))µh

+ γθωβv(qfδQ6α1κ1 + α2(qfδQ2α1κ1 + fq(Q3(δα3κ1 − fqθκ2)

+ fqθ(δκ3 − ω))))µh −Q2Q3Q5Q6(fqθω −Q2
1α1)µv(Φ2 − 1)(Φ3 − 1))Q4

+ θα1(−f2q2θQ1Q2Q5µv(Φ2 − 1)ω2 + fqQ6(qfγθβv(δκ3 − ω)µh

+Q1Q2Q3Q5µv(Φ2 − 1))ω + qfγβv(fqθω(δα3(ωκ1 +Q1κ3) − fqθωκ2)

+Q2α2(fqθω(δκ3 − ω) +Q3(δα3(ωκ1 +Q1κ3) − fqθωκ2)))µh))

+ rΠQ7η1((γβv((Q5Q6 + fqθωα2)(Q1 + δκ1) + fqθQ1(Q5 +Q3α2)κ2)µh

+Q1Q2Q3Q5Q6µv(Φ2 − 1)(Φ3 − 1))Q2
4 + (γθQ1βv(qfα1(ωQ6 + fqθωκ2

+Q2α2(ω +Q3κ2)) + fqδQ3α2α3κ3)µh + fqγθQ5βv(δ(Q6 +Q1α3)κ3

−ω(Q6 − δα3κ1 + fqθκ2))µh + γθωβv(qfδQ6α1κ1 + α2(qfδQ2α1κ1

+ fq(Q3(δα3κ1 − fqθκ2) + fqθ(δκ3 − ω))))µh −Q2Q3Q5Q6(fqθω −Q2
1α1)

×µv(Φ2 − 1)(Φ3 − 1))Q4 + θα1(−f2q2θQ1Q2Q5µv(Φ2 − 1)ω2

+ fqQ6(qfγθβv(δκ3 − ω)µh +Q1Q2Q3Q5µv(Φ2 − 1))ω

+ qfγβv(fqθω(δα3(ωκ1 +Q1κ3) − fqθωκ2) +Q2α2(fqθω(δκ3 − ω)

+Q3(δα3(ωκ1 +Q1κ3) − fqθωκ2)))µh))),

Γ0 = Q10µv(Ke(γ(N − 1)pQ8Q9τβhµ
2
hKlβv(Q2

4((δκ1 +Q1)(−(α2fθqω +Q5Q6))

− fθκ2qQ1(α2Q3 +Q5)) + θQ4(fqQ5(fθκ2qω − α3δ(κ1ω + κ3Q1)

+Q6(ω − δκ3)) −Q1(α2α3δfκ3qQ3 + α1qf(fθκ2qω + α2Q2(κ2Q3 + ω)

+Q6ω)) + ω(α2(fq(fθq(ω − δκ3) +Q3(fθκ2q − α3δκ1)) − α1δκ1Q2qf)

−α1δκ1Q6qf)) + α1θqf(fθqω(fθκ2qω − α3δ(κ1ω + κ3Q1))

+α2Q2(fθqω(ω − δκ3) −Q3(α3δ(κ1ω + κ3Q1) − fθκ2qω))

+ fθqQ6ω(ω − δκ3))) + η1ΠQ2Q3Q5Q6Q7r(Φ1 − 1)2(Φ2 − 1)(Φ3 − 1)µv)

+ ΠQ2Q3Q5Q6Q7Q9r(Φ2 − 1)(Φ3 − 1)(Φ1 − 1)2Klµv).

Note that the case when λ∗h = 0, refers to the disease-free state treated earlier. The
existence and the number of endemic equilibria for the system (2.6) is determined
by the existence of, and the number of positive roots of the following quadratic
equation

λ∗2h Γ2 + λ∗hΓ1 + Γ0 = 0. (C.5)

J.
 B

io
l. 

Sy
st

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

 Y
O

R
K

 @
 B

IN
G

H
A

M
T

O
N

 o
n 

04
/1

2/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

April 3, 2017 14:18 WSPC/S0218-3390 129-JBS 1750013

Modeling the Infection Dynamics of Onchocerciasis 31

In order to reduce the complexity of the coefficients of Eq. (C.5), we consider the
case p = 1, q = 0. Thus, the following coefficients are obtained.

Γ2 = α1ΠQ4Q5Q6Q7Q10rµv(η1Ke +Q9Kl)(γµhβv(δκ1 +Q1) +Q1Q2Q3µv),

Γ1 = Q4Q5Q6(−α1bγη1η2rτKeβhµ
2
hKlβv(δκ1 +Q1) + γQ10µhβvµv(δκ1 +Q1)

× (α1Q8Q9τKeβhµhKl + ΠQ4Q7r(η1Ke +Q9Kl)) + ΠQ1Q2Q3Q7Q10r

× (α1Q1 +Q4)µ2
v(η1Ke +Q9Kl)),

Γ0 = rΠQ2
1Q2Q3Q

2
4Q5Q6Q7Q10µ

2
v(KlQ9 +Keη1)(1 −R0).

R0 =
Q8Q9τβhµ

2
hKlKeβvγ(N − 1)(δκ1 +Q1)

ΠQ2
1Q2Q3Q7rµv(Q9Kl + η1Ke)

.

The roots of the quadratic equation in (C.5) are given by

λ∗h =
−Γ1 ±

√
Γ2

1 − 4Γ2Γ0

2Γ2

We notice that when R0 > 1 then Γ0 < 0 which implies that the ∆ = Γ2
1−4Γ2Γ0 > 0

and Eq. (C.5) has a unique positive solution thus the system (2.6) has a unique
endemic equilibrium. If R0 < 1 then Γ0 > 0 and by adding the conditions Γ1 < 0
and ∆ > 0, we get two positive real equilibria. If R0 = 1, then Γ0 = 0 and there is a
unique nonzero solution of (C.5) which is positive if and only if Γ1 < 0. The model
system (2.6) in the absence of infection in the treated human population (α1 = 0),
admits only one endemic equilibrium whenever R0 > 1.
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