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CHAPTER ONE  

INTRODUCTION  

  

The problem of finding optimal schedules for professional sports leagues has attracted 

interests of many researchers in recent years. On the one hand, the scheduling of sport leagues is 

an economically important class of combinatorial optimization applications, since sport leagues 

generate considerable amount of revenue for major radio and television networks and neither the 

sporting event organizers nor the participating teams want to waste their investments and resources 

due to the poor schedules of games. On the other hand, sport scheduling poses a very challenging 

optimization problem with multiple objectives and constraints combining issues of feasibility and 

optimality.  

  

The Traveling Tournament Problem (TTP), which is proposed by Easton, Nemhauser and 

Trick in year 2001, is a challenging sport scheduling problem abstracting the features of major 

league tournaments. The objective of the TTP is to find a double round- robin tournament schedule 

minimizing the total distance traveled by the teams and satisfying at the same time the  

TTP-specific constraints. One can say that the TTP is a combination of the well-known Traveling 

sport timetabling problem for which already various effective solution techniques exist. But the 

combination of the both optimality and feasibility-issues makes the TTP a much more difficult 

optimization problem than its individual underlying ―sub-problems‖.  

  

Since its introduction, the TTP has received considerable attention and numerous different 

approaches have been devised to tackle this hard optimization problem. The very first solving 
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techniques proposed for the TTP were exact-methods like constraint programming and integer 

programming, but their limit was quickly reached even for the smallest instances. Then one of the 

first successful metaheuristics approach using the Simulated Annealing technique was proposed 

by Anagnostopoulos et al. (2008) introducing basic neighborhoods, which are used by nearly all 

the subsequent meta-heuristics researches for the TTP. In the following years, it was further 

enhanced to the current state-of-the-art meta-heuristics for solving the TTP.  

  

Based on the researches done so far, one can recognize that single-solution based 

metaheuristics (like Simulated Annealing and Tabu-Search) are performing particularly well for 

the TTP. The Iterated Local Search (ILS) is another single-solution based meta-heuristics 

technique, which can exhibit very powerful performance if properly optimized, and it has been 

successfully applied to various optimization problems. -  

  

1.1 Background of the Study  

The travelling tournament problem (TTP) represents the fundamental issues involved in 

the creating of schedule for sports leagues where the amount of team travel is an issue for many of 

these leagues. The scheduling problem includes a myriad of constraints based on thousands of 

games and hundreds of team’s idiosyncrasies that vary in their content and importance from year 

to year, but at its heart are two basic requirements. The first is a feasibility issue in that the home 

and away matches must be sufficiently varied so as to avoid long home stands and road trips. The 

second is the goal of preventing excessive travel. For simplicity, we state this objective as minimize 

total travel distance. While each issue has been addressed by either integer programming or 

transportation problem sometimes both their combination is a relatively new problem for both 

groups.  
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Professional sports leagues are a major economic activity in Ghana and around the world. Teams 

and leagues do not want to waste their investments in players and structure they have laid, in 

consequence of poor schedules of games. Game scheduling is a difficult aspect with the multiple 

constraints and objectives involving the logistic, organization, economic and fairness as well as 

several decision makers such as league officials, team managers and TV executives.  

  

Efficient schedules are of major interest for team’s leagues, sponsors fans and the mass 

media. This issue may be further complicated due to the distances involved. In the case of the 

Ghana Premier League, a single trip from Accra to Tamale takes almost a full day journey, due to 

the flight and poor nature of our roads to cover a distance of approximately 1300 kilometers. The 

total distance travelled becomes an important variable to be minimized so as to reduce traveling 

cost and to give more time to the players for resting and training along a season that lasts for 

approximately four months. Another possible variable to be minimized is the maximum distance 

travelled by the teams in Ghana.  

  

The managers and the officials tackled the problem of tournament scheduling in Ghana 

League using different techniques such as integer programming, genetic algorithms and simulated 

annealing. The traveling tournament problem is an inter-mural championship time tabling problem 

that abstracts certain characteristics of scheduling problem in Ghana’s league. It combines tight 

feasibility issues with a difficult optimization problem. The objective is to minimize the total 

distance traveled by the teams, subject to the constraint that no team can play on a row more than 

four games at away or home. Since the total distance traveled is a major issue for every team in 
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Ghana taking part in the professional league, solving a traveling tournament problem may be a 

starting point for the solution of real timetabling applications in sports.  

1.2 Historical Background of Ghana Football   

It has been noted that Cape coast is the birth place of Ghana football and the credit goes to 

the students of the local government boys school. Inspired by a Jamaican Headmaster, Mr. Briton, 

the students were already sports conscious playing cricket and tennis.   The zeal with which the 

students followed sports was fantastic. In 1903 a group of twenty two keen pupils of the Cape 

Coast government boy’s school embarked upon a secret training course in football. They were 

trained mostly in the night, when the full moon was on at the Victoria Park, then a well kept place 

for official ceremonies. The first football used by the pioneers was gifts from friendly sailors who 

docked regularly at Cape Coast Port. Most of the sailors who landed ashore were keen and played 

games regularly with the Governor of the country. The group arranged and ordered some 

equipment, jerseys (red and yellow stripes) white long running shorts, and pairs of hose, football 

boots and caps. The happy band of soccer adventure who called themselves excelsior continued 

with their secret training and after three months planned a grand out-door ceremony at the Victoria 

Park on Boxing Day December 26 1903 Wilson(2001).  

  

Cape Coast Victoria Park was lined and marked with the goal posts fixed; the first football 

pitch in Ghana was thus created. In the presence of top government officials the first two teams 

from the first football club of the country merged to introduce the game to the country. Although 

the match was played without any set rules the excited crowd cheered throughout and thoroughly 

enjoyed themselves as they watched 22 youngsters running around and kicking a globular object. 

It was a memorable occasion that was graced with the presence of the then  
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Governor Sir Fredrick Hodgson, himself a keen sportsman, it is significant to note that Excelsior 

played in boots from the day they introduced football into the country. With the warm reception 

received the young boys of Excelsior intensified their training and soon their popularity spread 

beyond Cape Coast having now mastered the rudiments of the game. Sir Fredrick arranged for 

them to play their first challenge match against a European side comprising sailors from a ship that 

had docked at Cape Coast port and some Europeans resident in Cape Coast. Excelsior lost the 

exciting match 2-1 but they really gave a good account of themselves. By popular request a return 

match was arranged later and Excelsior avenged defect 3-1. Regular friendly fixtures were 

arranged for Excelsior and white civil servants in Cape Coast. Ships docking at the Cape Coast 

harbor supplied, at frequent intervals, sailor team who also played with the pioneer team of Ghana. 

This exercise enabled Excelsior to improve by leaps and bounds. The matches were officiated by 

the Europeans until 1905 when few Africans studied the laws of the game and began to handle 

matches. The game quickly captured the fancy of the youth of Cape Coast and like mushrooms 

clubs sprang up in the town.  

  

At the time the game football was introduced into the country traveling was mostly on foot 

and so the football gospel did not travel fast. After playing for several months Excelsior moved to 

nearby towns and played demonstration games. This crusade proved extremely successful and 

within a matter of months the new game was being played with amazing zeal at Elmina, Saltpond 

and Winneba. Cape Coast, the original home of Ghana football dominated the local soccer scene 

until the middle forties. Clubs such as Evertons, Blankson XI, Energetic Sports, Swallows, Rose 

XI, Bolton Wanderers, Judges, Gardens, Titanics and Majestics were formed and reformed but 
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have now faded away. Venomous Vipers and Mysterious Dwarfs have sprung up from the babies, 

to uphold tradition of Cape Coast football.  

  

The exciting stories of the new game gradually travelled through traders and fishermen to 

Sekondi – Takoradi. Real football lives in the Sekondi – Takoradi started with the construction of 

the railway line as the cream of the players was centered in the railway workshops. The formation 

of a powerful non-departmental team, Eleven Wise in 1919 marked the beginning of soccer 

development in the Sekondi – Takoradi area. Some of the early clubs were Mosquitoes,  

Western Wanderers, Jericho, Railway Apprentice, and GA United. In 1952 Mr. Semmer Wilson, 

District Commissioner of Sekondi – Takoradi, formed the District Football Association. This later 

developed into the Western Region Football Association. The year also saw the birth of Fanti 

United football club which later reformed into Hasaccas now one of the formidable clubs in the 

Western Region. It was nearly twenty years after the introduction of football in Cape Coast that 

the game reached Kumasi, the Garden City of Ashanti in 1920.  

  

In 1926, the first Ashanti football club, Ashanti United which in the thirties developed into 

the present power Asante Kotoko, was formed by 13 young Ashanti boys headed by a young driver 

Kwasi Kuma and L.Y. Asamoah, a private electrician. The team was later on re-named mighty 

Atoms and in 1935 Atoms re-organized and christened Asante Kotoko by J.S.K  

Frimpong with the permission of Otumfuo, Asantehene. The Kumasi Jackson Park was built in 

1935 and it became the central venue for all matches in Kumasi.  

  

The game reached Accra quite early and by 1910 invincible, the first club ever to be formed 

in Accra was organized in James Town. Inspired by an acute sense of rivalry, boys in Ussher Town 
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accepted the challenged and in 1911 founded Accra Hearts of Oak which is today the oldest 

existing club in Ghana. By 1912 clubs like Energetics, Never Miss, Royalties, Osu  

Pioneers, Africa, Wolves, had all been formed.  

Football organization in the country has come a long way since those early colonial days 

when Excelsior was born. Soccer historians tell us that it was around 1943 that some effort was 

made at the control and organization of the sport from Accra. The early 40’s brought onto the 

undefined soccer scene Mr. Richard ―The Lion Heart Akwei‖, the man who made so much impact 

on the early days of organized football in Ghana.  His efforts were directed at getting the Accra 

Football Association on solid grounds. Around 1947, Mr. Akwei, described as shrewd soccer 

organizer, mooted the idea of bringing together the major associations that had sprung up in the 

country. But the baby was not to be spared the usual teething problems. First, a serious split in the 

Accra Association had a corresponding effect on the national body and two national associations 

emerged from the crisis. Mr. Akwei became the president of the Gold Coast  

Football Union. The other, dubbed the Gold Coast and Ashanti Union had Mr. John Darkwa of  

Kumasi as chairman, with Mr. A.W. Mills of Accra as secretary. It was the projected tour of the 

United Kingdom by the Gold Coast national team in 1951 that brought the two factions together 

at an historic meeting at the Hudson Club, Kumasi on Octber 29, 1950, the two sides agreed on 

the formation of a United Gold Coast Amateur Football Association. Mr. Darkwa became the first 

chairman and Mr. Richard Akwei, the vice chairman.  But peace was not to be given much of a 

chance, even after this union, soon after the 1951 United Kingdom tour, Mr. Richard Akwei was 

voted chairman of the Union at an election in Accra and that marked the beginning of a fresh crisis 

in the country’s soccer administration. It was this very crisis that culminated in the socalled 

Reformation Era that eventually gave birth to the national soccer league. The definitive turn of 
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events, leading to the reformation in 1958 was natured by the Ashanti Football Association and 

fueled by the trenchant pen of Mr. Kofi Badu, indisputably the greatest sportswriter this country 

has ever produced. A sustained period a relentless battle was waged to remove Richard Akwei 

from the seat of Ghana football power. The culmination of these efforts came on September 8, 

1957 when, at a general meeting of the Ghana Amateur Football Association held at Legion Hall, 

Accra and presided over by Sir Leslie McCarthy, chairman, of the Ghana Amateur Sports Council, 

Mr. Akwei resigned.  

  

In appreciation of his pioneering role in the evolution of the countyr’s soccer, Mr. Akwei 

was made special Life Patron of the Ghana Amateur Football Association. Thus ended one era and 

thus began another, to be dominated by one man ―Ohene Djan!‖ thirty-three years old, full of 

fresh ideas, dynamism and enthusiasm, Mr. Ohene Djan stepped into the shoes of ―The Lion  

Heart‖ at the unanimously elected Chairman of the Ghana Football Association (GFA).  

  

The first attempt at organizing a national league was during the turbulent last days of Mr.  

Richard Akwei in 1959. It was an idea mooted by an Englishman, Mr. Ken Harrison resident 

Manager of a trading firm, R.E Harding & Co. This maiden contest was, however, poorly 

organized. Asante Kotoko and four other Kumasi based teams Cornerstone, Great Ashanti, 

Dynamos and Evergreens boycott it. The Richard Akwei administration reacted by suspending 

them. The competition thus took off with only the teams from the south. In the ensuing 

confrontation, the four boycotting clubs were able to get some other to join them, thus wrecking 

the league and flouting the authority of the GAFA. The competition was eventually left with only 

Accra Hearts of Oak and Sekondi Eleven Wise who were later declared respectively gold and silver 

medalists. This was perhaps the beginning of the traditional friendship between Hearts and Wise. 
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Eight clubs selected from the Municipalities of Accra, Kumasi, Sekondi and Cape Coast play one 

another regularly on home and away basis, always fielding their strongest available side. The 

pioneer clubs were Hearts of Oak and Great Olympics (Accra); Asante Kotoko and Conerstone 

(Kumasi); Hasaacas and Eleven Wise (Sekondi); Mysterious Dwarfs and Venomous Vipers (Cape 

Coast).  

  

1.3 Statement of the Problem   

To solve a real-world sports scheduling problem it is apparent that a profound 

understanding of the relevant requests and requirements presented by the league is a prerequisite 

for developing an effective solution method. In most cases the most important goal is to minimize 

the number of breaks. There are various reasons why breaks should be minimized in a sports 

schedule: fans do not like long periods without home games, consecutive home games reduce gate 

receipts, and long sequence of home or away games might influence the team’s current position in 

the tournament. Apart from minimizing the number of breaks, several other issues play a role in 

sports scheduling, e.g. minimizing the total traveling distance, creating a compact schedule, 

avoiding a team playing against all the strong teams consecutively.  

  

An outline of the typical constraint of the sports scheduling problem is presented below. 

These constraints are representative of many scheduling scenarios within the area of sports 

scheduling. There is no strict distinction between hard and soft constraints. They are given by the 

instances themselves. The goal is to find a feasible solution that is the most acceptable for the 

sports league owner. That is, a solution that has no hard constraint violations and that minimizes 

the weighted sum of the soft constraints violations. The weights will also be given by the instances 

themselves.  
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1.4 Aims and Objective of the Research  The 

main goals set for this thesis are:  

1. To model the league fixtures of the Ghana Football Association as Travelling Tournament 

problem.  

2. Determine the optimal solution using Simulated Annealing method.  

  

1.5 Methodology   

Statement of problem for this research work was how to minimize sports travelling 

tournament schedules and its effect on team management. The researcher developed optimal 

solution to this problem by using Simulated Annealing approach. Data was collected from the  

Ghana Football Association and four top league clubs in the country. The top league clubs were  

Kumasi Asante Kotoko Football Club, Accra Hearts of Oak, Aduana Stars and Heart of Lions. The 

type of data collected was the travelling schedule of teams, cost per distance travel for both home 

and away matches. Statistical Package for Social Sciences (SPSS 12.0 Version) was used for 

analyzing the data collected from the respondents. Kotoko Express, Graphic Sports, Ghana 

Football Association Journal and the internet were used as the source of materials.   

  

1.6 Justifications  

The thesis will be useful for organizers and administrators of football clubs in country as 

well as other stakeholders such as sports writers, football fans and team managers or owners who 

contributed the development of football in the country who may require further information on 
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sports tournament travel problem. This will help them to know when and where to move and how 

they will go about their normal duties on sports and their traveling expenses they will use for the 

season.  

1.7 Organization of the Thesis   

The rest of the thesis will be organized as follows. In Chapter 2, we give a formal 

description of the Traveling Tournament Problem and discuss current state-of-the-art approaches. 

The general principles of Annealing Approach to solve the TTP will be discussed in Chapter 3. 

Chapter 4 comprises the discussion and experimental results of the approach. Chapter 5 deals with 

the conclusion and recommendations. The thesis concludes with closing remarks and the outlook 

on future works.  
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CHAPTER TWO  

  

LITERATURE REVIEW  

  

2.0 Traveling Tournament Problem   

Nemhauser et al, (2001) introduced the Traveling Tournament Problem, which is 

considered one of the most challenging sport scheduling problems to date. Given n teams with n 

even and an n x n symmetric distance matrix D, where D(i; j) represents the distance between the 

teams of Di and Dj .The goal in solving the traveling tournament problem is to find a valid double 

round robin schedule, such that the total traveling distance of all teams is minimized.   

  

2.1 Current State-of-the-Art heuristics  

According to De Werra, (1980), although the TTP is a relatively new problem, it has 

attracted interests of many researchers due to its practical relevance and its surprisingly high degree 

of difficulty, which results from the combination of two well-known problems of finding the 

shortest tour (optimality) and timetabling sport tournaments satisfying certain constraints 

(feasibility). When the TTP has been introduced for the first time, the initial approaches proposed 

for solving the TTP were exact methods like integer programming, constraint programming and 

hybrid methods. But even for small instances, it was extremely difficult for an exact algorithm to 

solve them in reasonable time.   
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The current most sophisticated exact algorithm for the TTP is proposed by Uthus (1998). 

It is based on branch-and-bound technique and is capable of solving the National League 

benchmark instances optimally up to the size of 10 teams.  

One of the first successful metaheuristics for the TTP has been designed by 

Anagnostopoulos et al. (2001) using the Simulated Annealing framework. It is one of the most 

successful heuristics approaches for the TTP and it has produced numerous best upper bounds for 

most of the publicly available benchmark-sets. But the excellent solution quality comes with very 

long computation time, spending days of computation for larger instances. The most valuable 

contribution of their work was the design and definition of the neighborhoods, which have been 

used nearly by all following metaheuristics for the TTP. The key idea of their neighborhoods is to 

distinguish between hard constraints and soft constraints. The hard constraints must be satisfied all 

the time during the search, whereas the soft constraints can be occasionally violated. This idea 

stems from the observation that some constraints in the TTP are extremely difficult to repair during 

the search, once they are violated. After the Simulated Annealing approach, more single-solution-

based metaheuristics followed.   

  

Another very successful metaheuristic based on Tabu search was developed by Schaerf et 

al. (2000). Their algorithm uses composite neighborhoods based on the same neighborhoods of. 

Through further fine-tuning of the moves and careful analytical study about the effectiveness of 

the different composite neighborhoods, they were able to obtain very good results, which are 

comparable to the best results in the literature.  
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An interesting hybrid metaheuristic approach was introduced by Lim et al. (2002) which 

divides the search-space in two parts. The algorithm alternates between two components to 

improve the current solution. The first component, using a Simulated Annealing algorithm, tries to 

improve the solution by optimizing the timetable with a fixed team assignment, whereas the second 

component, which incorporates the hill-climbing technique, searches for better team assignment 

with a fixed timetable. So the fundamental idea in this approach is to improve the timetable, when 

a good team assignment has been found, and to search for a better team assignment, if the timetable 

looks promising.  

   

Four years later after the first version of the Simulated Annealing approach was proposed, 

a population-based extension has been proposed in by Nurmi et al. (2010). This extension made 

the parallelization of the first SA algorithm possible and it produced the current upper-bounds for 

numerous benchmark instances running on a cluster of 60 Intel-based, dualcores, dual-processor 

Dell Power edge 1855 blade servers.  

  

In recent years, other promising heuristics techniques based on Ant Colony Optimization 

and Hyper-Heuristic have been proposed for solving the TTP (Briskorn et al., 2006). In the past, 

there were already 2 ACO-based attempts for the TTP, but their results were relatively poor.   

  

The new ACO approach proposed by Uthus (2012) which incorporates some advanced 

extensions like forward checking and conflict-directed back jumping algorithm is able to improve 

greatly on the solution quality compared to the previous ACO-based attempts. His new results are 

competitive with those of the state-of-the-art heuristics.   
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The Hyper-Heuristic method proposed by Misir et al. (2004) also gives very promising 

performance. Their Hyper-Heuristic is composed of a simple selection mechanism based on a 

learning automaton and a novel acceptance mechanism, which they call as the Iteration Limited 

Threshold Accepting criterion. Despite of the simple and general nature of the Hyper-Heuristic, 

their method is able to produce very good solutions in relatively short amount of time.  

  

2.2 Distance Minimization and the Travelling Tournament Problem  

Although the above gives a complete formulation for the TTP, the lower bounds provided 

by its linear programming relaxation are very weak. To improve this formulation, Trick (2003) 

suggested adding the so called odd-set constraints for each week.   

  

Trick, (2005), formulated an alternative (and much better) approach which reformulate by 

redefining the decision variable. We shall return to the issue of problem reformulation in Section 

4, where alternative formulations for a variant of the traveling tournament problem will be 

explored.   

  

Urrutia et al. (2007), the mirrored traveling tournament problem and the traveling 

tournament problem with predefined venues (Costa et al., 2009) are two variants of the traveling 

tournament problem. The first has the additional constraint that games played in round t are exactly 

the same played in round t + (n − 1) for t = 1. . . n − 1, but with reversed venues. The second is a 

single round robin variant of the TTP, in which the venue of each game to be played is known 

beforehand.   
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Trick (2010), gives benchmark instances and their best lower and upper bounds for the 

widely studied case of the TTP with L = 1 and U = 3. The TTP and its variants have been tackled 

by different exact and approximate solution methods.   

Easton et al. (2003) proposed the first integer programming approach for exactly solving 

the TTP, where the so-called independent lower bound later improved by Urrutia et al. (2007) was 

originally presented.   

  

Rasmussen et al. (2006) developed an exact two-phase hybrid approach which generates 

all feasible patterns in a first phase using constraint programming and assigns teams to patterns in 

the second phase using integer programming.   

Cheung (2008) solved to optimality the mirrored and non-mirrored benchmark TTP 

instances with eight teams.   

  

Uthus et al. (2011) developed an iterative problem that was able to find optimal solutions 

to the largest benchmark instances solved to date, involving ten teams. Metaheuristics are among 

the most effective solution strategies for solving combinatorial optimization problems in practice 

and have been largely applied in the solution of the TTP and its variants. Among the main 

algorithmic contributions we cite the hybrid algorithms proposed by Anagnostopoulos et al. (2003; 

2006) for the TTP, based on simulated annealing and exploring both feasible and infeasible 

schedules, and by Ribeiro and Urrutia (2007b) for the mirrored TTP, in which components 

borrowed from the GRASP and ILS metaheuristics are combined and an ejectionchain mechanism 

is used to generate perturbations. Numerical results for the mirrored variant have been later 
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improved by Van Hentenryck and Vergados (2006), extending their previous work developed for 

the general case.   

  

Bhattacharyya (2009) gave the first NP-completeness proof for the variant of the TTP were 

no constraints exist on the number of consecutive home games or away games of a team.   

  

Later, Thielen et al. (2011) have shown that the original TTP is strongly NP-complete when 

the upper bound on the maximal number of consecutive away games is set to 3.  

  

Finding a good schedule is not an easy challenge, as wishes from various stakeholders (the 

league, clubs, fans, TV, police, etc.) are often connecting. Indeed, over the last decade, sport 

scheduling has received an increased interest from researchers from _elds as operations research, 

computer science, and mathematics.   

  

Kendall, et al. (2010) give a recent overview of the research done so far in sports 

scheduling, and classify the contributions according to the methodology used and the application, 

where soccer turns out to be the most popular topic. There are quite a few papers that present a 

solution approach for a specific soccer league in Europe (e.g., Bartsch, Drexl & Kroger (2006) for 

Austria and Germany, Della Croce & Oliveri (2006) for Italy, Rasmussen (2008) for Denmark,  

and oossens & Spieksma (2009) for Belgium). There are also a couple of papers that try to classify 

sports scheduling problems.   
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Bartsch et al. (2006) give a survey of a number of sports scheduling problems discussed in 

the literature and indicate what type of constraints occur.   

  

Nurmi et al. (2010) provided a more elaborate classification of the various constraints 

involved.   

  

These authors present a framework for a sports scheduling problem with 36 types of 

constraints, modeled from various professional sports leagues, including a set of artificial and real-

world instances, with the best solutions found.   

  

Nevertheless, as far as we are aware, there is only one paper that does not focus on the 

process of obtaining a solution, but instead exclusively focuses on the actual solutions of sports 

scheduling problem: the schedules. Over a decade ago, Griggs & Rosa (1996) published a short 

paper entitled a tour of European soccer schedules 2 or testing the popularity of GK2n". For the 

season 1994/1995, they examined schedules of the highest division in 25 European soccer 

competitions. They focused on identifying the competitions that made use of the so called 

canonical schedule" and found that it is used in 16 of these competitions .This paper can be seen 

as a follow-up of the work by Griggs & Rosa (1996): we revisit the 25 competitions they listed in  

1996. These competitions still form a balanced sample of strong and weak soccer competitions in  

Europe. We look at the schedules for season 2008/2009 (or the 2008 schedules for countries as 

Norway, where the soccer season corresponds with the calendar year), and verify whether they 

have a number of interesting properties. Thus, our goal in this work is modest: to investigate the 

schedules according to which today's soccer competitions are being played. This gives insights in 
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the diversity of the presence of different properties, and provides an answer to the question what 

features are apparently considered important in European soccer schedules. Notice that this type 

of information is usually not explicitly available, as the properties of a schedule often result from 

compromises on meetings with members from the association. Further, we will compare our 

findings with those of Griggs & Rosa (1996) and comment on the potential of further optimizing 

today's schedules. We also introduce the concept of ranking-balanced, which compares the number 

of home games played by each team after each round, and allows to express whether a or not fair 

ranking can be produced after each round. In the remainder of this paper, when we discuss a 

competition, we mean its highest division, to which we refer as the first division. We use n for the 

number of teams taking part in a competition, and l for the number of matches between a pair of 

teams in a (stage of) a competition. Matches are grouped in so-called rounds" meaning that they 

are scheduled to be played on the same day or weekend. In order to draw any conclusions about 

popular features in 3 a soccer schedule, it is important to consider the fixtures as they were 

scheduled before the start of the season. We got this information from websites as www.the-

sports.org, www.rsssf.com, and www.gooooal.com. These fixtures regularly differ from the order 

according to which the matches are actually played.  

  

2.3 Minimizing Travel Distance  

The minimization of travel distance becomes relevant when teams travel from one away 

game to the next without returning home. In this setup huge savings can be obtained when long 

trips are applied and teams located close together are visited on the same trip. The interest in 

minimizing travel distances arose from the increasing travel costs due to the oil crises in the 1970’s. 
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This led to a request for efficient solution methods capable of finding good solutions for practical 

applications and a number of papers on distance minimization have appeared since 1976.   

  

Easton, et al (2001) proposed the traveling tournament problem which has received most 

of the attention concerned with minimizing travel distances since then.   

  

  

2.4 The Traveling Tournament Problem  

Trick et al. presented the traveling tournament problem (TTP) in 2001. The problem is 

motivated by the problem of scheduling major league baseball and it is formulated to capture the 

fundamental difficulties of minimizing the travel distance for a sports league. By using the TTP as 

benchmark problems, it is possible to develop and compare solution methods which, afterwards, 

can be specialized for the various constraints present in practical applications. The  

TTP can be formulated as follows.   

Input: n, the number of teams; D an n by n integer distance matrix; L, U integer parameters. Output: 

A double round robin tournament on the n teams such that the number of consecutive home games 

and consecutive away games are between L and U inclusive, and the total distance travelled by the 

teams is minimized. Furthermore, two additional requirements are mentioned. The first is a 

mirroring constraint requiring that the schedule is mirrored and the second is a norepeater 

constraint requiring that two teams cannot play two games against each other in two consecutive 

slots. Notice that at most one of the two requirements is relevant since the norepeater constraint is 

always satisfied in a mirrored schedule.   
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Nemhauser et al. (2001) present a method based on the independent lower bound (IB), 

which they define to be the sum of the minimum travel distances for each team when they are 

considered independently. The solution method generates pattern sets with as many trips as 

possible and a corresponding timetable minimizing the travel distance is found afterwards. In this 

setup, a strengthening of the IB can be used to check optimality and, as long as this bound is below 

the best solution, the algorithm continues.  

Benoist, et al (2002), apply a hybrid algorithm combining Lagrange relaxation and CP. The 

algorithm has a hierarchical architecture consisting of three components. The main component is 

a CP model capturing the entire problem and capable of solving the problem by itself. However, a 

global constraint is introduced in order to improve the bounds during the search. This global 

constraint corresponds to the second component and it contains a Lagrange controller using either 

sub-gradient or modified gradient techniques to adjust the Lagrange multipliers for the third 

component consisting of a perturbated sub-problem for each team. The sub-problem for a given 

team i schedules all the games associated with team i such that team i’s travel distance is 

minimized.   

  

Subsequently, Easton, et al (2003), presents another hybrid IP/CP solution method. This is 

a branch and price (column generation) algorithm in which the columns correspond to tours for the 

teams. The master problem is a linear programming problem assigning teams to tours, while the 

pricing problem for generating tours is a CP problem.   

  

The next approach for the TTP was a simulated annealing algorithm by Anagnostopoulos, 

et al (1999) called TTSA. From an initial schedule found by a simple backtrack search TTSA 
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searches for improving solutions using five kinds of moves: Swap Homes, Swap Rounds, Swap 

Teams, Partial Swap Rounds and Partial Swap Teams. By applying these moves, the structure of 

the schedule is destroyed but for each move a corresponding ejection chain is able to restore the 

structure. In this way the algorithm is able to satisfy all hard constraints during the search, whereas 

the soft constraints may be violated. The hard constraints include the round robin constraints while 

the no-repeater is considered a soft constraint. The number of violated soft constraints is 

incorporated in the objective function to force the algorithm towards feasible solutions. TTSA 

randomly selects a move and it is performed with probability 1 if it leads to an improving solution 

and otherwise the probability depends on the resulting increase in travel distance plus the current 

‖temperature‖. The TTSA were able to improve all the current best known upper bounds for the NL 

instances with more than 10 teams and, in a recent paper by Hentenryck and Vergados (2005) the 

TTSA are further refined to handle mirrored tournaments. In Phase 1 they first use the canonical 

schedule to obtain a timetable with placeholders and afterwards they construct a matrix of 

consecutive opponents. Each entry (i, j) of the matrix gives the number of times another team meets 

i and j consecutively and this is used in Phase 2 when teams are assigned to placeholders. A simple 

heuristic assigns teams located close together to placeholders who are met consecutively by many 

teams.  

  

Finally, Phase 3 uses two steps to obtain a pattern set. In Step 1 a constructive method 

generates an initial pattern set and afterwards Step 2 performs local search to improve the pattern  

set.   
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Ribeiro et al. (1999) also presents a heuristic method combining GRASP and iterated local 

search (ILS) which they call GRILS-mTTP. The GRILS-mTTP performs a number of iterations all 

starting with the algorithm explained above for generating an initial schedule. Afterwards, a local 

search is applied to obtain a locally optimal solution and then GRILS-mTTP iterates between a 

perturbation procedure and a local search until some re-initialization criterion is satisfied.   

  

Henz (2004) proposes to combine large neighborhood search and CP to overcome the 

problem of getting away from local optima. He uses five types of moves which all relax a 

substantial part of the given schedule. For instance the move called Relax rounds does not only 

exchange two slots but it relaxes all variables associated with a number of slots. CP is then applied 

to obtain a new schedule given the partial schedule which has not been relaxed.    

  

As mentioned above Ribeiro et al. (1999) present the instance class with constant distances 

and show that minimizing travel distance for these instances is equivalent to maximizing the 

number of breaks. They also derived upper bounds on the number of breaks for unconstrained 

single round robin tournaments, equilibrated single round robin tournaments, unconstrained double 

round robin tournaments and double round robin tournaments with a maximum of three 

consecutive home games and three consecutive away games. The limit on consecutive home games 

and away games in the last kind resembles the bounds from the benchmark TTP instances. By 

separating these instances into three classes ((n − 1) mod 3 = 0, (n − 1) mod 3 = 1 and (n − 1) mod 

3 = 2) the following bounds were obtained.   
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14, 
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((n 1) mod 3 = 2, 

  

The corresponding mirrored constant distance TTP is solved by the GRILS-mTTP 

presented in and the algorithm is able to solve the instances with 4, 6, 8, 10, 12 and 16 teams to 

optimality by obtaining solutions which reach the upper bound stated above. The constant distance 

TTP was also considered by Rasmussen and Trick (2004) who used the PGBA to solve the 

problem. They were able to prove optimality for all the mirrored instances with 18 teams or less 

and all the non-mirrored instances with 16 teams or less by using the algorithm for maximizing 

breaks instead of minimizing breaks.   

  

Vergados et al. (2006) have also used their TTSA approach and improved the best solution 

for mirrored instance with 20 teams and the best solutions for the non-mirrored instances with 18-

24 teams.  

  

  2.5 Applications of Simulated Annealing Approach  

According to Schreuder (2005), the Simulated Annealing framework is very simple but at 

the same time very powerful concept. If properly tuned and optimized, it can often become even a 

state-of-the-art algorithm. In this section we will give you a quick overview of some combinatorial 

problems, to which the Simulated Annealing Approach has been successfully applied. Scheduling 

of sports events and competitions mentioned in the literature are organized and have been studied 

considering two major factors, namely the pattern of home/ away games of the participating teams 
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and the distance these teams have to travel according to the order that is specified by the 

programmed schedule. Therefore, sports scheduling problems which are addressed in this paper 

fall into two main categories. The goal of the first category is to minimizes the number of breaks, 

i.e. two consecutive home game or two consecutive away games, whereas the objective of the 

second one is to minimize the overall distance which teams have to travel.   

  

  

  

De Werra (2001) has discussed the problems of the first category and application of 

theoretical techniques to these problems. The second class of problems is mainly the center of 

attention for its application in leagues.   

  

Campbell et al. (2004) has studied a scheduling problem of a basketball league, in which a 

two-phase approach is proposed to solve the problem.   

  

Bridge et al. (1999) explored a similar scheduling problem on National Basketball  

Association (NBA) and as a solution they proposed an Integer Programming model for the 

mentioned problem that was computationally infeasible to carry out, since the size of the problem 

was large.   

  

Furthermore, they applied a modified version of Camp bell et al. (2004) two-phase method. 

Ferland and Fleurent considered the scheduling of National Hockey League (NHL) which its teams 

was split into two groups of Eastern and Western Conferences so was their games and 

corresponding schedule.   
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Costa (2003), proposed the first meta-heuristic approach to minimize the travelling distance 

as an objective for sports scheduling problem in the form of a Tabu Search/Genetic Algorithm 

integration.   

  

Additionally, Wright (1998) has presented a Simulated Annealing method in order to 

schedule the National Basketball league of New Zealand.   

  

It was Easton et al. (1998) who introduced the Travelling Tournament Problem. In this 

problem which is originated from the Major League Baseball, in addition to minimizing overall 

travelling distance, certain constraints should be satisfied, i.e. feasibility constraints, making the 

problem more difficult to solve. Numerous approaches have been proposed to solve TTP. Among 

these approaches are a combination of Lagrange Relaxation (LR) and Constraint  

Programming (CP), a collaborative scheme by Benoist et al. (2010) a hybrid Integer Programming-

Constraint Programming algorithm by Easton et al. (1987) and a Simulated Annealing algorithm 

by Anagnostopoulos et al. (2004). In the latter method, a distinction has been made between soft 

and hard constraints.   

  

Furthermore, Lee et al. (2006) in addition to creating an IP model with no-repeat constraint 

offered TS for solving the problem. Lim et al. proposed a hybrid SA-Hill algorithm that is a 

combination of Simulated Annealing and Hill-Climbing methods. Also, considerable effort has 

been dedicated to solving the Traveling Tournament Problem quite recently and new solution 

methods have been developed for TTP.   
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In one of the most recent works in this area, Tajbakhsh et al. proposed a hybrid Particle  

Swarm Optimization (PSO) and Simulated Annealing algorithm in which the results from the  

PSO section of the algorithm is used as an initial solution for the SA section of the algorithm.   

  

  

  

CHAPTER THREE  

  

METHODOLOGY  

  

There is an excellent overview of the Simulated Annealing Approaches where they present 

the main principles of the ILS in terms of the three main components. In this chapter, we will give 

brief descriptions about these components and discuss their impacts on the overall performance of 

the ILS. Simulated Annealing Approach is both conceptually and practically very simple meta 

heuristics framework. The basic idea behind the ILS is to use the embedded local-search 

component iteratively restarting it from different promising areas in the searchspace. Then how 

can one actually identify the promising areas for the restarts? In one extreme end, we can determine 

the next restarting point in completely random fashion, where we then get a simple Random-Restart 

scheme. But for many problems, this scheme is very unlikely to perform well because without 

using any information of the previous search the algorithm will most likely just stray ―blindly‖ in 

the search-space. On the other extreme end, we can always restart from the ―best position‖ found 

so far, but this strategy will increase the danger of getting easily stuck in local optima.  
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The Simulated Annealing Approach considers the embedded local-search heuristic as a 

kind of black box component and uses its output as a basis for determining the next starting point, 

trying to guide the search into the promising areas. In doing so, the nature and strength of the 

perturbation of the local-search’s output is critical for the performance of the ILS. If the 

perturbation is too weak, meaning that not enough new attributes are introduced into the current 

search point, the algorithm risks getting stuck early in local optima. On the other hand, if the 

perturbation is too strong, we will lose too much information from the previous search. In worst 

case, it will be then not better than just restarting the search from a random starting point. Besides 

perturbation, there is another important aspect of the ILS, to which we should pay close attention, 

namely the criteria how to accept the local optima found by the embedded local search component 

for the next iteration. To this end there are several different strategies to consider, which we will 

discuss in detail later on. In summary, we can modularize the ILS framework into following three 

main components  

 Perturbation  

 Local-search component  

 Acceptance criterion  

Having these individual components cleanly modularized reduces the complexity of the framework 

and makes it easier to optimize the overall performance by fine-tuning the components 

independently. Of course, it should be clear that the components cannot function completely 

independent from each other. In order to achieve maximum performance, we also should carefully 

study and understand their correlations and impacts on each other, which will vary from problem 

to problem. The main ―work-flow‖ of the ILS framework can be depicted as  

in Figure 3.1.  
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We start with an initial solution, which is usually generated using some random constructive 

procedures. Then we use the local-search component to obtain a local optimum, which is either 

accepted or discarded according to the chosen acceptance criterion. Then the local search 

component restarts with a new starting point, which is obtained by perturbating the current 

accepted solution. The ILS-template, formulated as a pseudo-code, is given in Algorithm 1.   

  

Algorithm 1 Template of the ILS   

 

    

    

    

    

    

  

  

  

  

  

  

  

  

  

  

 Initial Solution   

 Perturbation     Local Search Com ponent     Acceptance Criterion   
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Initial Solution  

Until now, we have somewhat neglected the question how to generate initial solutions for 

the ILS and what influence they have on the overall performance. Simply stated, one can either 

start from fully random initial solutions or may try to use greedy procedures in order to construct 

good-quality start solutions. But in general, there is not always a clear best choice regarding the 

initial solutions for the ILS. Sometimes greedy initial solutions appear to be recommendable when 

one has to obtain good-solutions quickly. Some experiments have shown that for certain problems 

the ILS performs in average better with greedy initial solutions, when short computation time is 

given. For much longer running-time, the meaning of the initial solution may become less relevant, 

since in most cases much of the initial properties will get lost during long search. Here, the user 

may choose the strategy, which is easiest to implement.  

  

3.1 Perturbation  

The perturbation component is a crucial component, which allows the ILS to escape from 

local optima. The ILS tries to modify the local optimum in a certain way, so that the local-search 

component can jump to another promising region in the next iteration. At this point, we introduce 

the notion perturbation strength, which specifies how strong the current local optimum will be 

modified. Obviously we should be very careful in choosing the appropriate perturbation strength 

for the ILS. If the perturbation is too strong, we run the risk of losing good properties found in the 

previous searches, which is against the concept of the ILS. On the other hand, if we are too ―petty‖ 

with the perturbation, the chance to successfully escape from local optima will be very low. So as 

you can see, one of the most important aspects in fine tuning the ILS will be the task of finding a 

nice balance for the perturbation strength considering the points mentioned above. For example, 
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there are different strategies proposed in the past to handle the perturbation strength during the 

search:  

 Static: the perturbation length is fixed a priori before the search and is no longer modified 

during the search.  

 Dynamic: the perturbation length is modified dynamically during the search without taking 

the search history into account (can be random variations of the perturbation length in a 

certain interval).  

 Adaptive: the perturbation length is modified dynamically during the search exploiting the 

information (i.e. about the shape of the landscape) gathered during the search. Finding 

effective perturbation methods is a highly ―problem-specific‖ matter and depends also on 

the used embedded local-search heuristic. One important aspect to consider is that the 

perturbation shouldn’t be easily undone by the local-search component; otherwise one will 

fall back into the local-optimum just visited. Furthermore, one should try to exploit as much 

problem-specific properties as possible in the perturbation component complementing 

possible shortcomings of the local-search component.  

  

  

3.2 Local-Search Component  

In many overview articles for the ILS, the local search component is described as a  

―black box‖ module, for which we can use practically any existing single-solution based 

metaheuristics. This gives us two advantages using the Iterated Local Search framework. Since we 

treat the embedded local-search as a black box component, we don’t have many ―dependency 

problems‖ between the framework and the local-search component. Therefore, if necessary we can 

just swap the local-search component without altering the whole framework again.  As mentioned 
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above, we can use any existing metaheuristics as the embedded local-search component. If there 

already exists a well performing heuristic for the given problem, then we can quickly develop a 

potentially better performing ILS-version reusing the existing local-search algorithm as the 

embedded local search component.  

At this point, we want to reemphasize the main principle of the ILS. Roughly speaking, the 

ILS is nothing more than a ―simple‖ walk in S*, which can be seen as a subset of the original 

search-space S consisting of local optima produced by the embedded local search. So, we can think 

of the local-search component as a mapping function, which maps the original searchspace, S into 

the subset of local optima S*:   

  

S* : = {localSearch( )| s s S  }  

  

Note also that, no explicit neighborhood is defined for the walk in S*, but instead the 

components perturbation and acceptance criterion determine the next neighbor to visit. You may 

have already noticed that ideally S* should be a small compact set of local optima, which contains 

the global optimum. In order to get a high quality mapping, one, of course, needs a powerful local-

search component, which returns high quality local optima. In general, we can assume the better 

the embedded local-search, the better the corresponding ILS. For example in case of the TSP, the 

Lin-Kernighan heuristic is better than the 3-opt local-search. Researchers have shown that the ILS 

embedding the Lin-Kernighan heuristics gives better results than the ILS using the 3-opt local-

search Rebeiro & Urrutia (1998). But high quality comes usually with a high price, namely long 

running-time. If the computation-time is heavily limited, it would be probably better idea to use a 

less powerful but faster embedded local-search in order to get useful results more quickly. As 
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already mentioned for the perturbation, an important aspect to consider when choosing the local-

search component is the ―collaboration‖ between the local-search and the perturbation 

component. The rule of thumb is that local-search shouldn’t systematically undo the changes made 

by the perturbation component.  

  

3.3 Acceptance Criterion  

Alongside the perturbation component, the acceptance criterion will also have a great 

influence on the effectiveness of the ILS framework. We consider the ILS as a heuristic approach, 

which ―random-walks‖ in the search-space  consisting of local optima defined by the embedded 

local-search component. The perturbation mechanism together with the localsearch component 

defines the transition from one local optimum to the ―neighboring‖ local optimum. 

and the acceptance criterion determines whether the neighbor  will  

be accepted or not for the next iteration. The chosen acceptance criterion has a critical influence 

on the balance between intensification and diversification of the search. On the one hand, we can 

define the acceptance criterion to accept only better local optima than the current one. We call such 

strategy as the Better acceptance criterion which can be defined for the minimization problem as 

follows:  

  

Better( ', '')s s s' if Cost( ') < Cost( '')s s 

s'' otherwise 
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As you can intuitively see, this criterion is an extreme one, which clearly advocates strong 

intensification. At the opposite extreme, one can work with a strategy called RandomWalk (RW) 

acceptance criterion which always chooses the most recently visited local optimum,  

irrespective of its cost:    

  

This criterion strongly favors diversification over intensification, because every solution in 

S^ is accepted for the next step. Obviously in order to find an appropriate balance between these 

two extremes, we need to find a way to encourage both intensification and diversification in an 

adequate manner. One of the very successful acceptance criteria applied to the ILS was a simulated 

annealing type acceptance criterion, which we will denote as the LSMC acceptance criterion, 

reminiscent of the term large step Markov chains used for one of the first ILS algorithms with this 

type of acceptance criterion. The LSMC criterion accepts always s^^, if it is better than the current 

local optimum s^. Otherwise, if s^^ is worse than s^, a certain probability p, with which s^^ will 

be accepted, is calculated based on the difference in qualities of s^ and s^^. The bigger the gap 

between s^ and s^^ is, the less the chance that s^^ will be accepted.  

Given s^ and its qualitative worse neighbor s^^, the acceptance probability p can be calculated as  

Cost s( ') - Cost s( '') 

e T   

Where ―T‖ is a parameter called temperature, which controls the balance between intensification 

and diversification.  
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3.4 Neighborhoods for the Local-Search Component  

In this study neighborhoods have been defined based on the ideas introduced in chapter 

three. Five categories of neighbourhoods were considered, which can be three different classes 

regarding the magnitude of introduced changes:  

 N1: Swap Homes (micro move)  

 N2; N3: Swap Rounds, Swap Teams (macro moves)  

 N4; N5: Partial Swap Rounds, Partial Swap Teams (generalized moves)  

  

A rough estimation about the approximate size of the search-space, the obvious upper-bound for a 

TTP-instance of size n can be given as t=1 (2n - 2) = (2n - 2)n, since for each of n teams, there are 

(2n - 2) permutation possibilities to arrange the order of the matches. But this is actually too big 

for estimation, because it also includes all the invalid schedules violating the Double-RoundRobin 

constraint and the TTP-specific At-Most and No-Repeat constraints. In order to refine our 

estimation, let’s consider a double-round-robin (DRR) schedule with 6 teams given in Table 1. 

Table 3.1: Double round – robin with 6 teams  

T/W  W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

T1  +T6  –T2  +T4  +T3  –T5  –T4  –T3  +T5  +T2  –T6  

T2  +T5  +T1  –T3  –T6  +T4  –T3  +T6  –T4  –T1  –T5  

T3  –T4  +T5  +T2  –T1  +T6  –T2  +T1  –T6  –T5  +T4  

T4  +T3  +T6  –T1  –T5  –T2  +T1  +T5  +T2  –T6  –T3  

T5  –T2  –T3  +T6  +T4  +T1  –T6  –T4  –T1  +T3  +T2  

T6  –T1  – T4  –T5  +T2  –T3  +T5  –T2  +T3  +T4  +T1  

  

Based on the feasible DRR-schedule, I can think of some modification ―moves‖ that we 

can apply to the schedule and maintain at the same time the feasibility of the Double-Round-  



 

 

Robin constraint. Firstly, we will leave the most and No Repeat constraints out. If we just look at 

the columns of the schedule, it’s easy to recognize that swapping the columns (rounds) doesn’t 

violate the DRR-feasibility at all. For example, look at the rounds W3 and W6: below.  

  

  

  

  

  

  

  

  

  



 

 

T/W  W1  W2  W6  W4  W5  W3  W7  W8  W9  W10  



 

 

  

 

  

  

  

  

  

  

   

As indicated, the modified schedule is still a valid DRR-schedule. This means, 

given a certain DRR-schedule, we have already (2n - 2) possibilities to permutate 

the order of the rounds producing different valid DRR-schedules. In addition, I can 

T1  +T6  –T2  –T4  +T3  –T5  +T4  –T3  +T5  +T2  –T6  

T2  +T5  +T1  –T3  –T6  +T4  –T3  +T6  –T4  –T1  –T5  
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also recognize that the swapping of two teams doesn’t violate the DRR feasibility either. 

Considering, the schedule given in Table 1, we can imagine this time the teams T1, T2... Tn as kind 

of placeholders, to which arbitrary teams can be assigned. Then obviously there are n different 

team-assignments to consider.  

Again, we can consider one relevant example below:  

T/W  W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

  T1  

  

+T6  –T2  +T4  +T3  –T5  –T4  –T3  +T5  +T2  –T6  

  T2  +T5  +T1  –T3  –T6  +T4  –T3  +T6  –T4  –T1  –T5  

  

  T3  
–T4  +T5  +T2  –T1  +T6  –T2  +T1  –T6  –T5  +T4  

  T4  

  
+T3  +T6  –T1  –T5  –T2  +T1  +T5  +T2  –T6  –T3  

  T5  –T2  –T3  +T6  +T4  +T1  –T6  –T4  –T1  +T3  +T2  

  

  T6  
–T1  –T4  –T5  +T2  –T3  +T5  –T2  +T3  +T4  +T1  

   

 New team assignment, where the teams T2 and T4 are swapped:  

  T1       T1  

  T2     T4  

  

  T3    T3  

  T4    T2  

T5    T5  

T6    T6  

  

  

  

  

  

  

  

  

  

  

  



 

 

  

It is now evident that some possibilities to produce different DRR-schedules from a given 

DRR-schedule. Thus, even if the search-space contains only valid DRR-schedules, there would still 

have to deal with at least (2n - 2) possible solution candidates.  

  

In sum, the search-space would consist of total (2n - 2)n possible candidates, if we allow 

that all the three constraints can be violated. If we include all the invalid schedules in the 

searchspace, then the large size of the search-space will make it very difficult to find even valid 

solutions satisfying all the three constraints, optimizing the travel-distance. Thus, our 

neighborhoods consist of only valid DRR-schedules, whereas the other two constraints can be  

violated.    

  

3.5 Swap-Homes Neighborhood  

From the five neighborhoods mentioned earlier, the Swap-Homes neighborhood offers the 

―smallest local-move‖, meaning that the number of changes caused by this move is minimal.  
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Given a valid DRR-schedule, this move swaps the home/away states of the teams Ti and Tj, where 

i 6= j. Let’s say that team Ti plays Tj in round Wl at home and team Tj plays Ti in round  

Rk at home, where i 6= j and k 6= l. Then after swapping the home/away states of Ti and Tj, team 

Ti plays Tj in round Wk at home and team Tj plays Ti in round Wl at home. IT can be inferred that 

there is O(n2) possible neighbors in this neighborhood. It is important to note that ―movestrength‖ 

is always 4, since only 4 games are affected by this move. The procedure for applying the Swap-

Homes move is depicted in Table 2.  

  

  

  



 

 

  

Table 3.2: Swapping the home/away teams  

  

T/R  W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  



 

 

 

   

  Swapping the home/away roles of teams T2 and T4  

   

 
   

  

T1  

T2  

T3  

T4  

T5  

+T6  

+T5  

–T4  

+T3  

–T2  

+T4  

–T6  

+T5  

–T1  

–T3  

+T2  

–T1  

+T4  

–T3  

+T6  
 

–T3  +T5  

–T4  

–T6  

+T2  

–T1  

+T6  

+T1  

+T5  

–T4  

–T2  

+T1  

–T5  

+T6  

+T3  

–T6  

–T3  

+T2  

–T5  

+T4  

T6  –T1  +T2  –T5  +T4  –T3  +T5  –T2  +T3  –T4  +T1  

T/R  W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

T1  

T2  

T3  

T4  

T5  

+T6  

+T5  

–T4  

+T3  

–T2  

–T2  

+T1  

+T5  

+T6  

–T3  

+T4  

–T3  

+T2  

–T1  

+T6  
 

–T3  +T5  

–T4  

–T6  

+T2  

–T1  

+T6  

+T1  

+T5  

–T4  

+T2  

–T1  

–T5  

–T6  

+T3  

–T6  

–T5  

+T4  

–T3  

+T2  

T6  –T1  –T4  –T5  +T2  –T3  +T5  –T2  +T3  +T4  +T1  
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– T 5   T + 
4 
  + T 

3 
  

– T 1   T + 
6 
  – T 

2 
  

– T 6   – T 
2 
  + T 

1 
  

+ T 2   T + 
1 
  – T 

6 
  

T + 3   – T 5   – T 4   

– T 6   T + 
4 
  – T 

3 
  

– T 1   + T 
6 
  – T 

2 
  

– T 5   – T 
2 
  T + 

1 
  

+ T 4   T + 
1 
  – T 

6 
  



 

 

  

  

  

  

  

  

  

  

3.6 Swap-Rounds Neighborhood  

  

 T/W  

 W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

T1  +T6  –T4  +T2  +T3  –

T405   

–T2  –T3  +T5  –T2  –T6  



 

 

The Swap-Rounds move simply swaps two rounds Wk and Wl in the given configuration, 

where k ≠ l. Swapping two rounds is considered to be a ―macro‖ move, meaning that the changes 

introduced by this move are of quite disruptive nature. The number of affected games by this move 

is obviously 2 * n and there are O(n2) possible neighbors in this neighborhood. Obviously, after 

swapping two rounds, the new resulting schedule is still a valid DRR-schedule, thus no further 

repair action is required. The procedure for applying the Swap-Rounds move is depicted in Table 

3.3: Swapping round 2 and 6  

  

T/W  

W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

T1   +T6  –T2  +T4  +T3  –T5  –T4  –T3  +T5  +T2  –T6  

  T2  

  

T 
  3  

  T4  

  

  T5  

  

  T6  

+T5  

–T4  

+T3  

–T2  

–T1  

+T1  

+T5  

+T6  

–T3  

–T4  

–T3  

+T2  

–T1  

+T6  

–T5  

–T6  

–T1  

–T5  

+T4  

+T2  

+T4  

+T6  

–T2  

+T1  

–T3  

–T3  

–T2  

+T1  

–T6  

+T5  

+T6  
–T4  

–T6  

+T2  

–T1  

+T3  

–T1  

–T5  

–T6  

+T3  

+T4  

–T5  

+T4  

–T3  

+T2  

+T1  

+T1  

+T5  

–T4  

–T2  

   

  Swapping the round R2 and R6  

 

  

  

  

  

  

  

  

  

  

T2  

T3  

T4  

+T5  

–T4  

+T3  

+T3  

–T2  

+T1  

–T1  

+T4  

–T3  

–T5  

–T1  

–T6  

+T4  

+T6  

–T2  

+T1  

+T5  

+T6  

+T6  –T4  

–T6  

+T2  

+T1  

–T5  

+T6  

–T3  

+T2  

–T5  

+T1  

+T5  



 

 

  

  

  

  

3.7 Swap-Teams Neighborhood  

Similar to the Swap-Rounds move, swapping two teams is a ―macro‖ move, which 

introduces up to 4 * (2n - 4) changes in the given schedule, and is the most disruptive move of the 

five neighborhoods. Given two teams Ti and Tj, the Swap-Teams move swaps the games of Ti and 

Tj at every round, except when they play against each other. Obviously, the number of affected 

rounds is 2n - 4 and at each round, the number of changed games is always 4. This move is also 

similar to the Swap-Rounds move as it does not violate the DRR-feasibility after the application 

either. The procedure for applying the Swap-Teams move is shown in Table 4. Table 3.4: 

Swapping the teams T2 andT4  

  

 T/W  W1  W2  W3  W4   W5  W6  W7  W8  W9  W10  

  

 T1  

 T2  

  

 T3  

  

 T4  

 T5  

+T6  –T2  +T4  +T3  

 –T5  –T4  –T3  

+T4  

+T6  

–T2  

 +T1  –T6  –T4  
41  

–T3  +T6  

–T2  +T1  

+T1  +T5  

+T5  

–T4  

–T6  

+T2  

–T1  

+T2  –T6  

+T5  +T1  –T3  –T6  –T1  –T5  

–T4  +T5  +T2  –T1  –T5  +T4  

+T3  +T6  –T1  –T5  –T6  –T3  

–T2  –T3  +T6  +T4  +T3  +T2  

T6  –T1  –T4  –T5  +T2   –T3  +T5  –T2  +T3  +T4  +T1  

  

Swapping the teams T2 and T4  

  

  

  



 

 

  

  

  

  

  

  

  

  

  

  

  

3.8 Swap-Partial-Rounds Neighborhood  

Despite the neighborhoods been straight-forward and relatively simple to understand, 

however the local-moves given by these neighborhoods are not sufficient for an effective search 

resulting only in limited search-space. The Swap-Partial-Rounds neighborhood. Like the 

SwapRounds move, two parameters Wi and Wj  are required, which specify the rounds that are 

being swapped. In addition, we also need a team Tk as the third parameter, from which the games 

at rounds Ri and Rj should be swapped. Obviously, swapping just the two games will violate the  

DRR-constraint of the schedule, but there is a deterministic way to define a sequence of  

―repairing movements‖ in order to restore the DRR-feasibility after the swapping. The procedure  

for applying the Swap-Partial-Rounds move is depicted in Table 3.5.  
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Table 3.5: Swap - Partial Round move  

  

T/W   W1  W2  W3  W4  W5  W6  W7  W8  W9    

T1  

T2  

T3  

 +T6 
 2 

+T5  

–T4  

+T4  

–T3  

+T2  

+T3  

–T6  

–T1  

–T5  

+T4  

+T6  

–T4  

–T3  

–T2  

–T3  

+T6  

+T1  

+T5  2

   

–T4   

–T6   

T4   +T3  +T6  –T1  –T5  –T2  +T1  +T5  +T2  –T6    

T5   –T2  –T3  +T6  +T4  +T1  –T6  –T4  –T1  +T3    

T6   –T1  –T4  –T5  +T2  –T3  +T5  –T2  +T3  +T4    

   

 
  Partial-swapping the weeks W2 and W9 for the team T2  

  

T/W  W1  W2  W3  W4  W5  W6  W7  W8  W9  W10  

T1  

T2  

T3   

T4   

T5  

+T6  

+T5  

–T4  

+T3  

–T2  

+T4  

–T6  

+T2  

–T1  

+T4  

–T3  

+T6  

+T3  

–T5  

–T1  

–T6  

+T2  

–T5  

+T4  

+T6  

–T2  

+T1  
43  

–T4  

+T3  

–T2  

+T1  

–T6  

–T3  

+T6  

+T1  

+T5  

–T4  

+T5  

–T4  

–T6  

+T2  

–T1  

–T2  

+T1  

–T6  

–T3  

+T5  –T5  +T2  

–T5  –T1  +T6  

–T3  +T3  

– T   

+ T 
1 
  

+ T 
5 
  

+ T   

– T 
1 
  

– T 
5 
  



 

 

T6  –T1  
+T2  

–T5  +T4  –T3  +T5  –T2  +T3  
–T4  

+T4  

+T1  

  

  

  

As shown in Table 3.5 the Swap-Partial-Rounds move does not swap the ―whole 

columns‖, however only the parts which are necessary to maintain the DRR-validity. As already 

indicated in Table 3.5 the parts that are needed to be swapped can be determined in a deterministic 

fashion. For example, taking a closer look at the above example, Team T2 plays against team T1 

and T6 at rounds W2 and W9, which therefore should be swapped. It is important to note that the 

home/away states of the games are irrelevant in this case, so we concentrate only on teams. After 

swapping the relevant games of T2, one can see that the games of T1 and T6 also should be swapped 

at rounds W2 and W9, since they are affected by the first swap. Swapping games of T1 and T6 

further affects the team T4 and gives us a total set of teams {T1, T2, T4, T6}, whose games must be 

swapped at rounds W2 and W9 in order to repair the violation of the DRRconstraint.  

  

Swap-Partial-Teams Neighborhood  

Similarly, the Swap-Partial-Rounds neighborhood, the Swap-Partial-Teams neighborhood 

is the further generalization of the Swap-Teams neighborhood. Given two teams Ti, Tj and round 

Wk, the Swap-Partial-Teams move swaps the games of Ti and Tj at the round Wk and repairs the 

schedule afterwards to make it a valid DRR-schedule again. In addition, there is an important 

precondition that Ti does not play against Tj at the round Wk. Similar to the Swap-Partial-Rounds 

move, the repair-chain can be determined in a deterministic way. The move-strength varies from 

case to case and is given by the actual length of the repair-chain. In the extreme case, the 
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repairchain can have the length (2n - 4), in which case the move equals to the respective Swap-

Teams move. The procedure for applying the Swap-Partial-Teams move is depicted in Table 6.   
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Table 3.6: Partial Swap teams T2 and T4 at W9  

  

T/W  W1  W2  W3  W4   W5   W6  W7  

  

W8  W9  W10  

T1  

T2  

T3  

T4  

T5  

+T6  –T2  +T4  +T3   –T5   –T4  –T3  

+T4
 
   

+T6   

  

–T2   

  

 +T1   –T6  –T4  

–T3  +T6  

–T2  +T1  

+T1  +T5  

+T5  

–T4  

–T6  

+T2  

–T1  

+T2  –T6  

+T5  +T1  –T3  –T6  –T1  –T5  

–T4  +T5  +T2  –T1  –T5  +T4  

+T3  +T6  –T1  –T5  –T6  –T3  

–T2  –T3  +T6  +T4  +T3  +T2  

T6  –T1  –T4  –T5  +T2  
 –T3

 
  +T5  –T2  

  
+T3  +T4  +T1  

    

Partial swapping the teams T 2 and T4 at the round R9  

 
  

T/W  W1  W2  W3  W4  W5   

  

W6  W7  W8  W9  W10  

T1  

T2  

+T6  

+T5  

–T2  

+T1  

+T4  +T3  –T5   

+T4   

  

–T4  

–T3  

–T3  

+T6  

+T5  

–T4  

 +T2  –T6  

–T3  –T6  –T1  –T5  
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T3  

T4  

T5  

T6  

–T4  

+T3  

–T2  

–T1  

+T5  

+T6  

–T3  

–T4  

+T2  –T1  +T6   

  

–T2   

–T2  

+T1  

–T6  

+T5  

+T1  

+T5  

–T4  

–T2  

–T6  

+T4  

–T1  

+T3  

–T5  +T4  

–T1  –T5   –T6  –T3  

+T6  +T4  

+T2  

  

+T1   
+T3  +T4  

–T5  
–T3   

  

 
+T4  +T1  

    

  

  

3.9 Connectivity of the neighborhoods  

Having defined the neighborhoods for our embedded local-search component, it becomes 

to explore the connectivity of our neighborhoods. Indeed, this is crucial as there is the need to test, 

if it is theoretically possible to reach every valid solution in the search-space with the local- 

moves given by our neighborhoods. Let’s denote our neighborhoods with following  

abbreviations:  

N1: Swap-Homes Neighborhood  

N2: Swap-Rounds Neighborhood  

N3: Swap-Teams Neighborhood  

N4: Swap-Partial-Rounds Neighborhood  

N5: Swap-Partial-Teams Neighborhood  

  

The experiment designed as follows:  

 Generate a random DRR-schedule s.  

 Generate another random DRR-schedule s!  

 Test if we can reach the schedule s! starting from the schedule s using only local 

transformations given by the neighborhoods [N1; : : : ;N5].  
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The approach to test the reachability between two random DRR-schedules is simple. Just 

devise a simple heuristic, which tries to minimize the hamming-distance between the starting 

schedule s and the target schedule s! by applying only the moves from [N1; : : : ;N5]. That is, the 

objective function is the hamming-distance function, which calculates the number of differences 

between s and s!.    

  

Summary  

In this chapter a detailed description of the Simulated Annealing framework was given. 

The Simulated Annealing framework consists of three main components, namely embedded local 

search, perturbation component and acceptance criterion. In general, each of these components can 

be optimized individually, but if we want to achieve maximum performance out of Simulated 

Annealing, we should also try to gain deeper understanding how they influence each other and 

fine-tune them together ―globally‖. We have presented some selected successful applications of 

the Simulated Annealing to various combinatorial optimization problems. Most notably, the ILS 

framework seems to be well suited both for the TSP and the scheduling problems. This gives us an 

extra motivation and hope in choosing the Simulated Annealing framework for solving the TTP.  
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CHAPTER FOUR  

DISCUSSIONS AND EXPERIMENTAL RESULTS  

  

The Traveling Tournament Problem, which is considered one of the most challenging sport 

scheduling problems to date, was originally introduced by Easton et al. (2001). Given n teams with 

n even and an n x n symmetric distance matrix D, where D(i; j) represents the distance between 

the teams of Di and Dj. The goal in solving the traveling tournament problem is to find a valid 

double round robin schedule, such that the total traveling distance of all teams is minimized. A 

schedule is valid for the traveling tournament problem, if it satisfies the following constraints:  

  

 Double Round-Robin constraint: Each team plays with each other team exactly two times, 

once in its own city and once in its opponent’s city  
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 At Most constraint: Each team must play no more than u and no less than l consecutive 

games in or away from the home city. u is a number prescribed by the association.  

 No Repeat constraint: It is not allowed that two teams are playing each other in two 

consecutive rounds.  

  

We call a schedule feasible, if it satisfies all the constraints above, otherwise infeasible. 

Note that, if u is set to n - 1, then finding the schedule with the shortest traveling distance for one 

team Ti is equivalent to solving the Traveling Salesman Problem. It is somewhat misleading to 

name the second constraint as the At Most constraint, since we have both lower- and upper bounds 

for the number of consecutive home- and away-games, but for most of the benchmark instances 

available in the literature the parameter l is set to 1, so that many researchers   adopted the notion 

At Most constraint, because they consider only the upper bound. It is obvious that a double round-

robin schedule for n teams (n even) consists of at least 2n – 2 rounds and for the regular TTP we 

shall only consider double round-robin schedules with this minimum number of rounds. In this 

work, a schedule is represented by an n x (2n - 2) matrix S of integer numbers where the teams are 

assigned unique positive integer numbers from [1..n]. The entry Si,j of the schedule matrix (see 

Table 4.1) represents the game, which is played by the team Ti in round Rj . The game entry Si,j is 

a positive integer permutation number representing the away Team T, if the team Ti plays at home 

against the away team in round Wj in home city i. On the other hand if the game takes place in the 

opponent’s home city, Si,j will be represented with a negative integer number -T.  
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The day of the national premier league where 16 (x) is an even number of teams. The national 

league is probably the well- researched area of the TTP and a virtually for all the researchers 

studying area in the country. The computation of the results from the league fixtures and their 

travelling distance over the years and more and more teams are added where the sub-division 

teams are added by the recent ones. The three sub-division teams are the teams in the Premier 

league.  

  

P1 teams with size from 6 to 16,  

P2 Teams with size from 6 to 14 and   

P3 Teams with sizes from 6- 16  

  

Parameter Setting  

  

Despite of the relatively simple ILS components; there are actually some parameters to define for 

the TTIL sports. The embedded local search component is a simple Hill Climbing heuristic without 

any parameters to tune.  The parameters for the perturbation components define the interval in 
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which the perturbation strength varies. At this point one should notice that TTIL sports tries to 

achieve diversification mainly by occasionally accepting the worse solutions and not so much by 

very high perturbation. The tool for escaping local optima is LSMC acceptance criterion, whose 

parameters have critical impacts on the performance and I have spent considerable effort to 

determining the best values for them.  

  

  

In summary,  

  

K min:  the minimum perturbation strength   

K max: The maximum perturbation strength   

T max: The maximum (initial) Temperature for LSMC acceptance criterion  λ:  

number of iterations before the next worse solution acceptance rate is checked.  

ð: if the number of accepted worse solution is smaller than ð: then the temperature is reset to  

Tmax.  

:   The rate with which the temperature is lowered. ɷ:  The rate with which the penalty weight 

of the soft constrains is increased or decreased. à:    The upper- bound for the lower number of 

violation in the country is best infeasible solution.  

  

Extensive try and error experiment. I would have determined the reasonable values for most of the 

parameters which are stable across all the leagues, except for the Tmax. Tmax is surely one of the 

most influential parameters for TTIL. Sports because if it is too high or two low, the balance 

diversification and intensification is easily distorted. Again, it is believed that the best value for 
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Tmax actually depend on the individual league and its sizes. As it has been already pointed out that 

it is reasonable to take the average distance between two teams’ sites into consideration when 

experimenting with initial temperature parameter for simulated- annealing type acceptance criteria. 

The average distance calculated for each of our league is given in the table below.  

  

  

  

  

  

Leagues  

  

Teams6n  

  

Teams8n  

  

Teams10n  

  

Teams12n  

  

Teams14n  

  

Teams16n  

  

P1  

  

649  

  

623  

  

624  

  

790  

  

1094  

  

1194  

  

P2  

  

35  

  

38  

  

45  

  

51  

  

57  

  

61  

  

P3  

  

4198  

  

4167  

  

4130  

  

3910  

  

3954  

  

  

Average Distance between Two Team Sites  

  

Considering the average distance given above I have experiment with the following temperature 

conditions for Tmax (10, 20, 30, 50, 200, 400, 600, 800, 1000, 2000).  

As expected the best Tmax value from the league to league, probably depends on the individual 

team sizes and the average distance between two teams sites. It is also noticeable that Tmax does 

not have critical impacts on the solution quantity for smaller league because they are already solve 

optimally by the embedded local search. The formal parameter setting, which I have determined 

based on the various experiment with Tmax and extensively try and error experiment for other 

parameters are given in Table 4.2 they are used for all of our computational Leagues and the 

Teams. As you can see, all values for Kmax are rather small values, so it seems to be best when the 
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perturbation does not get too disruptive.  As expected, the perimeter ɷ should be set to a moderate 

value so that the penalty weight does not fluctuate too much once it is settled.   

  

At the, cooling speed  seems to be too low, but since I update the temperature at each iteration.  

This is actually a reasonable value. The parameter  controls how often the league team’s solution 

is checked and it shows the value 200 for  is stable for most of the leagues. The parameter à does 

not actually appear to have significant impacts as long as it is set to a reasonably small value. As 

far as soft restarting mechanism is concerned. I just restart the algorithm when during the last 15 

temperature reset no improvement could be achieved. In along so, the initial solution for the next 

round is obtained by applying five (5) random moves selected from the neighborhood (N, : : : N5) 

to the current best solution.   

  

  

  

Table 4.2: Final parameter setting for each league (N denotes the term size)  

  

Zones  

  

Kmin  

  

Kmax  

  

ɷ  

  

  

  

  

  

ð  

  

à  

  

Tmax  

  

P1 L6  

  

2  

  

3  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

200  

  

P1 L8  

  

2  

  

4  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

300  

  

P1 L10  

  

2  

  

5  

  

1.1  

  

0.999  

  

500  

  

3  

  

5  

  

400  

  

P1 L12  

  

2  

  

6  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

500  

  

P1 L14  

  

2  

  

7  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

500  

  

P1 L16  

  

2  

  

8  

  

1.1  

  

0.9995  

  

1000  

  

3  

  

7  

  

550  
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P2 L6  

  

2  

  

3  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

10  

  

P2 L8  

  

2  

  

4  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

20  

  

P2 L10  

  

2  

  

5  

  

1.1  

  

0.999  

  

500  

  

3  

  

5  

  

30  

                  

P2 L12  2  6  1.1  0.999  500  3  6  30  

  

P2 L14  

  

2  

  

7  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

30  

  

P2 L16  

  

2  

  

8  

  

1.1  

  

0.9995  

  

1000  

  

3  

  

7  

  

30  

  

P3 L6  

  

2  

  

3  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

400  

  

P3 L8  

  

2  

  

4  

  

1.1  

  

0.999  

  

500  

  

3  

  

3  

  

400  

  

P3 L10  

  

2  

  

5  

  

1.1  

  

0.999  

  

500  

  

3  

  

5  

  

500  

  

P3 L12  

  

2  

  

6  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

500  

  

P3 L14  

  

2  

  

7  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

1000  

  

P3 L16  

  

2  

  

8  

  

1.1  

  

0.999  

  

500  

  

3  

  

6  

  

100  

  

RESULTS FOR THE NATIONAL LEAGUE  

  

As already named, the national league is well-studied for which numerous computational results 

from different methods are reported. Among different heuristics approaches in the studied the 

researcher picked 5 leading method (including the current state of the art met heuristics) to compute 

the results with. Simulated Annealing (TTSA)   

  

Composite-neighborhood Tabu search (CNTS)  
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Hybridization of simulated Anneling and Hill-climbing (SAHC)  

Ant colony optimization (AFC-TTP)  

Learning Hyper-Heuristic (LHH)  

  

Two separate evaluations with different timeout setting for the national premier league were 

conducted for the first experiment. The researcher tested the TTLL sports 6 times for each  

National league and adjusted the time out corresponding to the average time-value report in doing 

so, he also tried to take the machine difference into account, but of course, the difference can be 

only roughly approximated for the second experiment he run the TTIL spots 6 times for each 

National league and this he set the time outs corresponding to the average time-value.   

  

  

DISTANCE  

  

League/Teams  

  

Min  

  

Average  

  

Max  

  

Std. Dev  

  

P L6  

  

23916  

  

23916.0  

  

23916  

  

0  

  

P L8  

  

39721  

  

39721.0  

  

39721  

  

0  

  

P L10  

  

59583  

  

59632.6  

  

59727  

  

60.592  

  

P L12  

  

113360  

  

114391.7  

  

115289  

  

708.349  

  

P L14  

  

197230  

  

199182.4  

  

201638  

  

1436.473  

  

P L16  

  

281644  

  

286178.0  

  

289547  

  

2190.686  

  

BEST TIME  

  

League/Teams  

  

Min  

  

Average  

  

Max  

  

Std. Dev  

  

Timeout  
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P L6  

  

0  

  

0.4  

  

2  

  

0.6663  

  

10  

  

P L8  

  

4  

  

60  

  

198  

  

56.896  

  

300  

  

P L10  

  

489  

  

2652  

  

4305  

  

1167.318  

  

4700  

  

P L12  

  

410  

  

3088  

  

4688  

  

1140.322  

  

4700  

  

P L14  

  

1873  

  

3739.5  

  

4688  

  

874.921  

  

4700  

  

P L16  

  

2225  

  

3686.8  

  

4673  

  

751.776  

  

4700  

  

Table 4.3: Results of the TTP on the national premier league with short timeout   

  

  

  

  

  

  

  

DISTANCE  

  

Teams  

  

Min  

  

Avg  

  

Max  

  

Std - dev.  

  

PL10  

  

59583  

  

59655.8  

  

59910  

  

119.33  

  

PL12  

  

112960  

  

118820.8  

  

115586  

  

798.296  

  

PL14  

  

114802  

  

117185.1  

  

201132  

  

1688.066  

  

PL16  

  

277088  

  

280868.3  

  

283951  

  

1943.884  
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LONG TIME  

  

TEAMS  

  

MIN  

  

AVG  

  

MAX  

  

STD  

  

TIMEOUT  

  

PL10  

  

30  

  

1605.7  

  

3816  

  

1277.917  

  

4600  

  

PL12  

  

374  

  

4979.3  

  

6937  

  

1940.038  

  

7000  

            

PL14  5178  12577  18881  4721.297  19000  

  

PL14  

  

10140  

  

24433.2  

  

283951  

  

8216.410  

  

32700  

  

Table 4.4: Results of TTP on the national league with long time out.  

  

The result of both evaluations given in table 4.3 and 4.4, where all time values are given in seconds. 

The result from the first evaluation Table 4.3) are compared with the results of table 4.4). The 

results obtained from the second experiment with longer timeout (Table 4.4) are compared with 

the results from the longer experiment, since I always get optimal solutions for these small Teams. 

It should be also noted that the comparison are made under the roughly same experiment regarding 

the computation – time and the number of runs per team. However the results obtained from much 

longer time test- runs carried of 20 runs per team. The results of the individual comparisons given 

in Table 4.5, Table 4.6, Table 4.7, Table 4.8 and Table 4.9. The evaluation and comparisons show 

very promising and favorable results for TTP. TTP is always able to solve the small teams Pl6 and 

Pl8 to optimality in very short time. The comparison with learning Hyper-Huristic shows that TTP 

is capable of producing very good solutions in short amount of time for all national leagues and 
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TTP exhibits through better average solution qualities and more stability thus the LHH. However 

LHH produced better minimum results than TTP for teams Pl12, Pl14 and Pl16.  

  

LHH  

  

Teams  

  

Min  

  

Average  

  

Std- Dev  

  

Avg (Time)  

  

Pl6  

  

23916  

  

23916  

  

0  

  

300  

          

Pl8  39721  39801  172  1800  

  

Pl10  

  

59583  

  

60046  

  

335  

  

3600  

  

Pl12  

  

112873  

  

115828  

  

1313  

  

3600  

  

Pl14  

  

196058  

  

201256  

  

2779  

  

3600  

  

Pl16  

  

279330  

  

288113  

  

4267  

  

3600  

  

TTIL  

  

Teams  

  

Min  

  

Average  

  

Std- Dev  

  

Avg (Time)  

  

Teams  

  

Pl6  

  

23916  

  

2391.0  

  

0  

  

10  

  

0  

  

Pl8  

  

39721  

  

39721.0  

  

0  

  

300  

  

-0.2  

  

Pl10  

  

59583  

  

59632.6  

  

60.0  

  

4700  

  

-.07  

  

Pl12  

  

113360  

  

114391.7  

  

708.3  

  

4700  

  

-1.2  

  

Pl14  

  

197230  

  

199182.4  

  

1436.5  

  

4700  

  

-1.0  

  

Pl16  

  

281644  

  

286178.0  

  

2199.7  

  

4700  

  

-0.7  

  

 Table 4.5: Comparison of TTIL spot with LHH on National Premier League.  
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AFC - TTP  

  

Teams  

  

Min  

  

Average  

  

Std- Dev  

  

Avg (Time)  

  

Pl10  

  

59634  

  

59928.3  

  

155.47  

  

4969.51  

  

Pl12  

  

112521  

  

114437.4  

  

895.7  

  

7660.07  

          

Pl14  196849  198950.5  1294.43  20870.07  

  

Pl16  

  

278456  

  

285529.6  

  

3398.57  

  

35931.27  

  

TTIL Sport   

  

Teams  

  

Min  

  

Average  

  

Std- Dev  

  

Avg (Time)  

  

(Avg /diff)  

  

Pl10  

  

59583  

  

59655.8  

  

119.3  

  

4600  

  

-0.5  

  

Pl12  

  

112960  

  

113820.8  

  

798.3  

  

7000  

  

-0.5  

  

Pl14  

  

194802  

  

197185.1  

  

1688.1  

  

19000  

  

-0.9  

  

Pl16  

  

277088  

  

280868.3  

  

1943.9  

  

32700  

  

-1.6  

  

Table 4.6: Comparison of TTIL sport with AFC – TTP on national league.  

  

TTAS  

  

Teams  

  

Min  

  

Average  

  

Std- Dev  

  

Avg (Time)  

  

Pl10  

  

59583  

  

59605.96  

  

53.36  

  

40268.62  
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Pl12  

  

112800  

  

113853.00  

  

467.91  

  

68505.26  

  

Pl14  

  

190368  

  

192931.86  

  

1188.08  

  

23357.35  

  

Pl16  

  

267194  

  

275015.88  

  

2488.02  

  

192086.55  

  

TTIL Spot  

  

Teams  

  

Min  

  

Average  

  

Std.- Dev.  

  

Avg. (Time)  

  

Avg. Diff.  

  

Pl10  

  

59583  

  

59655.8  

  

119.3  

  

4600  

  

0.08  

  

Pl12  

  

112960  

  

113820.8  

  

798.3  

  

7000  

  

-0.02  

            

Pl14  194802  197185.1  1688.1  19000  -2.2  

  

Pl16  

  

194802  

  

280868.3  

  

1943.9  

  

32700  

  

-2.1  

  

Table 4.7: Comparison of TTIL sport with TTSA on National league.  

  

The results compared for teams Pl10, Pl12, Pl14. The TTIL sport outperforms AFC-TTP both in 

average performance than teams of minimum solution. Pl12, finds slightly better minimum solution 

compared with TTSA which is the current best met heuristics for the TTP. I claimed that, the 

results are at least comparable, where the biggest gap in average solution is 2.2% for Pl12. The 

results for team Pl16 comparable with other methods, the result for the Pl16 were worse than 

originally anticipated.  

  

First I suspected that TTIL spots could have problems with the large size of 16 teams.  
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but it seems to be rather in terms specific problem because TTIL sport produces very good results 

for the teams in the National F.A Cup with the same team size of it in the future would investigate 

thoroughly of I can obtain better result for the National league  with 16 teams and the F.A cup with 

16 teams.  

  

  

CNTS  

  

Teams  

  

Min  

  

Average  

  

Std Dev  

  

Avg (Time)  

  

Pl10  

  

59878  

  

60424.2  

  

823.9  

  

7056.7  

  

Pl12  

  

113729  

  

114880.6  

  

948.2  

  

10577.3  

          

Pl14  194807  187284.2  2698.5  29635.5  

  

Pl16  

  

275296  

  

279465.8  

  

3242.4  

  

57022.4  

  

TTIL Sport           

  

Teams  

  

Min  

  

Average  

  

Std Dev  

  

Avg (Time)  

  

Avg. Dif.  

  

Pl10  

  

59583  

  

59655.8  

  

119.3  

  

4600  

  

-1.3  

  

Pl12  

  

112960  

  

113820.8  

  

798.3  

  

7000  

  

-0.9  

  

Pl14  

  

194802  

  

197185.1  

  

1688.1  

  

19000  

  

-0.05  

  

Pl16  

  

277088  

  

280868.3  

  

1943.9  

  

32700  

  

0.5  

  

Table 4.8: Comparison of TTIL with CNTS on the Natural premier League  
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SAHC  

  

Teams  

  

Min  

  

Average  

  

Std Dev  

  

Avg (Time)  

  

Pl10  

  

59821  

  

60375.0  

  

552.72  

  

61619.6  

  

Pl12  

  

115089  

  

116792.3  

  

1069.59  

  

82322.0  

  

Pl14  

  

196363  

  

197769.9  

  

731.52  

  

96822.4  

  

Pl16  

  

274673  

  

278477.9  

  

1885.55  

  

111935.2  

  

TTIL  

  

Teams  

  

Min  

  

Average  

  

Std Dev  

  

Avg (Time)  

  

(Avg /diff)  

  

Pl10  

  

59583  

  

59655.8  

  

119.3  

  

4600  

  

-1.2  

  

Pl12  

  

115089  

  

116792.8  

  

798.3  

  

7000  

  

-2.5  

            

Pl14  194802  197185.1  1688.1  19000  -0.3  

  

Pl16  

  

277088  

  

280868.3  

  

1943.9  

  

32700  

  

-0.8  

  

Table 4.9: Comparison of TTIL spot with SAHC on the national Premier league.  

  

The result computed favorably with other approaches with longer computation-time in general  

TTIL Spots shown slightly better average performance than CNTS and SAHC for the teams Pl10, 

Pl12 and Pl14 even when SAHC has much longer computation – time for each teams. TTIL spot 

also find better solution than CNTS and SAHC for the team in the national premier league in 

Ghana.  
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Best Results for the National Premier League In Ghana  

  

The researcher presented the global best results for the Ghana Premier league which was obtained 

during the research and comprise with the best results in the study. It would be noted that the best 

result for teams Pl12 and Pl14 presented before but the various individual experiment I have 

conducted in the course of this work. They obtained without the soft restarting mechanism and the 

parameter settings, with which I have to work with than are given in Table 4.8  

  

  

  

  

Teams  

  

Kmin  

  

Kmax  

  

ɷ  

  

δ  

  

  

  

ð  

  

à  

  

Tmax  

  

Time  

  

Pl12  

  

2  

  

6  

  

1.1  

  

0.999  

  

500  

  

3  

  

5  

  

600  

  

2700  

  

Pl14  

  

2  

  

7  

  

1.1  

  

0.999  

  

500  

  

5  

  

3  

  

800  

  

32204  

  

Table 4.8: parameter settings for best National league results.  

  

The best results slightly better than those obtained in 2007 except for the largest Pl16 teams and are 

slightly worse than the best results for Pl12, Pl14, Pl16 teams. Obviously, the current performing for 

the TTP is the Simulated Annealing approach TTSA and its extensions. But as you can see, the 

best results are not far away from their best results. All in all, it is believed that TTIL spots produces 

very competitive results and shows great potential for future studies.  

  

Results for the Top Club League  
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As is it was done for the national league, I adjust the computation-time of my experiment to be 

comparable with those reported and a test for algorithm 10 times for each team. The results are 

reported in table 4.6.1 and compared with the results of LHH in table 4.9. As you can see the 

results, TTIL spots is able to solve the small team PL6 and PL8 always to the optimality and LHH 

is again out performed by TTIL spots. Additionally, I give the difference between the experiments 

best value and the current best results for the top team club league fixtures. The current best results 

for the top league fixtures are  

  

  

  

  

DISTANCE  

  

Teams  

  

Min  

  

Aveg  

  

Max  

  

Std-Dev  

          

PL6  2173  2173  2173  0  

  

PL8  

  

3040  

  

3040  

  

3040  

  

0  

  

PL10  

  

5300  

  

5312  

  

5312  

  

7  

  

PL12  

  

782  

  

1921  

  

1921  

  

658  

  

PL14  

  

9906  

  

10180  

  

10180  

  

158  

  

BEST TIME  

  

Team  

  

Min  

  

Avg  

  

Max  

  

Std-Dev  

  

Timeout  

  

PL6  

  

0  

  

0.002  

  

0.017  

  

0.009  

  

1  
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PL8  

  

0.05  

  

1.29  

  

4.77  

  

2.45  

  

30  

  

PL10  

  

3.10  

  

38.56  

  

68.40  

  

32.69  

  

30  

  

PL12  

  

2.50  

  

41.91  

  

77.43  

  

37.48  

  

470  

  

PL14  

  

8.97  

  

31.86  

  

50.08  

  

20.60  

  

470  

  

Table 4.10: Results of TTIL spot on the Top League Clubs.  

  

  

Teams  

  

TTIL Spot  

  

Best  

  

Dif (%)  

  

PL6  

  

2172.75  

  

2172.75  

  

0  

  

PL8  

  

3010.15  

  

3040.15  

  

0  

  

PL10  

  

5300.12  

  

5272.15  

  

0.26  

  

PL12  

  

7821.50  

  

7281.27  

  

3.58  

  

PL14  

  

9906.47  

  

9527.20  

  

1.95  

  

Table 4.11: Comparison with Best Results of the Top League Clubs Fixtures CONCLUSION   

  

In this work, the researcher has proposed a novel approach based on the iterated local search 

framework for solving the challenging Travelling Tournament Problem. First, he developed a basic 

ILS approach, TTILS basis to assess the applicability of the ILS principle to the TTP. The initial 

results of TTILS basis were promising and based on the insights gained by analyzing  

TTILS basic. He further optimized and extended TTILS basic which led to the final version  
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TTIL Spot. The proposed TTIL spot’s incorporated perturbation mechanism, which uses random 

moves from higher-order neighborhood to perturbation solution and varies its strength well.   

  

TTIL spot’s embeds simple Hill-Climbing as the local-search component where I have 

experimented with the different neighborhood. In order to compute difficult local optima, TTIL 

spot’s uses simulated annealing type acceptance criterion with non-monotonic cooling schedule.  

TTIL spot’s incorporates the additional extensions and other mechanism and implemented the 

proposed algorithm. TTIL spot’s and conducted extensive computational experiment on selected 

teams in the country premier leagues. The results of the experiment are compared with others 

leagues in the experiment are compound with other leagues in the country.  

  

TTIL spot’s is able to solve the smaller teams to optimality in only few seconds and then most of 

the other compared approaches, being only second to the current best-performing simulated 

annealing approach TTSA.  

  
  

  

  

  

  

  

  

  



 

73  

  

  

  

  

  

  

  

  

  

CHAPTER FIVE  

CONCLUSION AND RECOMMENDATION  

  

Sport league scheduling has received considerable attention in recent years, since these 

applications involve significant revenues for television networks and generate challenging 

combinatorial optimization problems. In the following paragraphs, I first summarize the most 

important conclusions drawn from previous chapters of the thesis; we then indicate possible 

extensions and future research directions related to this thesis; I conclude with some general 

remarks.  

As an abstract contribution, this thesis shows that, contrary to common belief, Local Search is, in 

fact, an effective method for tackling sport scheduling problems. This is demonstrated by our 

approach to two very important problems in Sport Scheduling: the Break Minimization problem 

and the TTP.  

For the Break Minimization Problem, I propose a simulated annealing scheme, based on a simple 

connected neighborhood and a systematic scheme for cooling the temperature and deciding 
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termination. The resulting algorithm is conceptually simple and easy to implement; yet, it always 

finds optimal solutions on the instances used in evaluating the state-of-the-art algorithm of 

regardless of its starting points. More importantly, BMSA exhibits excellent performance and 

significantly outperforms earlier approaches on instances with more than 14 teams. In the case of 

the Traveling Tournament Problem proposed in my simulated annealing algorithm, TTSA, is able 

(with suitable enhancements) to match or significantly improve the best known solutions for most 

instances of the TTP, both in its original form, and in a number of variants, including different 

distance metrics and mirroring constraints. The gains are higher for larger instances. The key to 

these results is the design of a sophisticated neighborhood that is very well adapted to the 

problem’s particular structure.  

I have demonstrated that it is possible to reduce the number of pair clashes without a statistical difference 

to the distance that has to be travelled by the football fans. This provides the police with the ability to reduce 

their costs for these two days, which might have included paying overtime. I hope that I  

would be able to discuss these results with the football authorities and the police in order for them 

to validate our work and to provide us with potential future research directions. I already recognise 

that some pair clashes might provide the police with more problems than others and it might be 

worth prioritising certain clashes so that these can be removed, rather than removing less high 

profile fixtures. As a longer term research aim, I would like to include in our model details about 

public transport as some routes might be more different than other routes, even if they are shorter. 

I also plan to run my algorithms for every future season, as well as for previous seasons. Executing 

the algorithm is not the main issue. Data collection provides the real challenge due to the distance 

data that has to be collected.   
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There are a variety of open issues that need to be addressed. On the theoretical side, it would be 

interesting to determine if the neighborhood is connected. On the practical side, it would be 

interesting to explore other meta-heuristics that may improve the efficiency of the algorithm. This 

is a challenging task however, since it seems critical to consider a large neighborhood to obtain 

high-quality solutions. However, preliminary experimental results with fast cooling schedules are 

encouraging.  
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