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Chapter 1 

Introduction 

1.1 Background information 

When considering transportation, various considerations are apparent. This consideration 

includes port selection, inland movement, port to port carrier selection and delivery movement. 

In addition to these transportation concerns, distribution-related considerations must also be 

given attention to such as packing/packaging, transit insurance, terms of sale, import duties, 

handling/loading and method of financing. Nevertheless, even freight companies projecting large 

volume movements can encounter serious transportation problem in organizing for distribution. 

Understanding these transportation problems especially that affects shipping costs is critical. 

Volume discount, more specifically, targets shipping costs and in minimizing the latter, volume 

discount must be acquired.  

Network models and integer programs are well known variety of decision problems.  

A very useful and widespread area of application is the management and efficient use of scarce 

resources to increase productivity.  

These applications include operation operational problems such as the distributions of goods, 

production scheduling production and machine sequencing and planning problems such as 

capital budgeting facility allocation, portfolio selection, and design problems such as 

telecommunication and transportation network design. 

The transportation problem which, is one of network integer programming problems is a problem 

that deals with distributing any commodity from any group of ‘sources’ to any group of 

destinations or ‘sinks’ in the most cost effective way with a given ‘supply’ and ‘demand’ 

constraints . Depending on the nature of the cost function, the transportation problem can be 

categorized into linear and nonlinear transportation problem. 
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In the linear transportation problem (ordinary transportation problem) the cost per unit 

commodity shipped from a given source to a given destination is constant, regardless of the 

amount shipped. 

It is always supposed that the mileage (distance) from every source to every destination is fixed.  

To solve such transportation problem we have the streamlined simplex algorithm which is very 

efficient. However, in actuality we can see at least two cases that the transportation problem fails 

to be linear. 

First, the cost per unit commodity transported may not be fixed for volume discounts sometimes 

are available for large shipments. This would make the cost function either piecewise linear or 

just separable concave function. In this case the problem may be formulated as piecewise linear 

or concave programming problem with linear constraints. 

Second, in special conditions such as transporting emergency materials when natural calamity 

occurs or transporting military during war time, where carrying network may be destroyed, 

mileage from some sources to some destination are no longer definite.  So the choice of different 

measures of distance leads to nonlinear (quadratic, convex …) objective function. 

In both the above cases solving the transportation problem is not as simple as that of the linear 

one. 

In this work, solution procedures to the generalized transportation problem taking nonlinear cost 

function are investigated.  In particular, the nonlinear transportation problem considered in this 

thesis is stated as follows;  

We are given a set of n sources of commodity with known supply capacity and a set of m 

destinations with known demands. 

The function of transportation cost, nonlinear, and differentiable for a unit of product from each 

source to each destination. 

We are required to find the amount of product to be supplied from each source (may be market) 

to meet the demand of each destination in such a way as to minimize the total transportation cost. 
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Our approach to solve this problem is applying the existing general nonlinear programming 

algorithms to it making a suitable modification in order to use the special structure of the 

problem. 

1.2 Problem Statement 

The prices of commodities are determined by a number of factors; the prices of raw materials, 

labour, and transport. When price of raw materials increase, so does the price of the commodity. 

Transportation cost also affects the pricing system. 

 It is assumed that the cost of goods per unit shipped from a given source to a given destination is 

fixed regardless of the amount shipped. 

 But in actuality the cost may not be fixed. Volume discounts are sometimes available for large 

shipments so that the marginal cost of shipping one unit might follow a particular pattern.  

This project therefore seeks to develop a mathematical model using optimization techniques to 

bridge the gap between demand and supply by discounting so as to minimize total transportation 

cost. The problem that will be addressed in this study centers on the transportation problems 

experienced by freight companies. Volumes of goods to be shipped incur costs hence acquiring 

volume discounts could effectively lead to reduced shipping costs. However, there are 

transportation problems that hinder the materialization of improved total output through reduced 

costs of shipping.  

The key question to be answered is: How freight companies could improve their total output 

through effectively reducing shipping costs through volume discounts.   

We will also provide algorithms and different solution procedures to the different cases that 

might arise. 
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1.3 Study Objectives 

The main aim of this study is to design mathematical programme that would improve the total 

output of freight companies especially since they deal with shipping of goods by volume. 

Whether maximum profit will be realized with discounts on large volumes means to determine 

the best transportation route that would lead to low transportation cost and the effective 

transportation of these goods. In lieu of this, other study objectives are as follows: 

(i) Develop a mathematical model using optimization techniques to bridge the gap between 

demand and supply. 

(ii) Use the model developed to minimize cost and thereby maximize profit to enhance effective 

management. 

(iii)   Determine how freight companies could improve total output through addressing the        

transportation problems encountered 

(iv)  Determine how volume discount could advent the operation of freight companies 

(v) Evaluate how freight companies could maximize their total output through limiting shipping 

cost.     

1.4 Methodology 

The research strategy that the study will utilize is the descriptive method. A descriptive research 

intends to present facts concerning the nature and status of a situation, as it exists at the time of 

the study (Creswell, 1994). It is also concerned with relationships and practices that exist, beliefs 

and processes that are ongoing, effects that are being felt, or trends that are developing (Best, 

1970). In addition, such approach tries to describe present conditions, events or systems based on 

the impressions or reactions of the respondents of the research (Creswell, 1994). 

In this study, primary and secondary research will be both incorporated. The reason for this is to 

be able to provide adequate discussion for the readers that will help them understand more about 

the issue and the different variables that involve with it. The primary data for the study will be 

represented by the survey results that will be acquired from the respondents. The secondary 

sources of data will come from published articles from books, journals and theses and related 

studies. 
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1.5 Justification 

Until recently, heavy trucks could load up to any capacity without limit. These trucks normally 

exceed the average loading capacity of the truck. This was partially due to high transportation 

cost. Drivers and transport owners together with transport users had to find a way of 

compensating for the high cost of transport by increasing the truck load so as to maximize profit.  

This had ripple effect on the state as a whole: increased road accidents, destruction of roads and 

longer time being spent on the road before getting destination. There is also the effect of 

increased cost of goods thereby increasing inflation. This drove the attention of the government 

to find a lasting solution to the problems. The government therefore went into agreement with 

transport owners to determine maximum loading capacity of trucks.  

The purpose of this thesis is to find out whether giving discounts on transportation charges could 

minimize total transportation cost thereby increasing total revenue of both producers and 

retailers; and some of the problems aforementioned. 
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1.6 Transport Costs 

1.6.1 Transport Costs and Rates 

Transport systems face requirements to increase their capacity and to reduce the costs of 

movements. All users (e.g. individuals, enterprises, institutions, governments.) have to negotiate 

or bid for the transfer of goods, people, information and capital because supplies, distribution 

systems, tariffs, salaries, locations, marketing techniques as well as fuel costs are changing 

constantly. There are also costs involved in gathering information, negotiating, and enforcing 

contracts and transactions, which are often referred as the cost of doing business. Trade involves 

transactions costs that all agents attempt to reduce since transaction costs account for a growing 

share of the resources consumed by the economy. 

Frequently, enterprises and individuals must take decisions about how to route passengers or 

freight through the transport system. This choice has been considerably expanded in the context 

of the production of lighter and high value consuming goods, such as electronics, and less bulky 

production techniques. It is not uncommon for transport costs to account for 10% of the total cost 

of a product. Thus, the choice of a transportation mode to route people and freight within origins 

and destinations becomes important and depends on a number of factors such as the nature of the 

goods, the available infrastructures, origins and destinations, technology, and particularly their 

respective distances. Jointly, they define transportation costs. 

Transport costs are a monetary measure of what the transport provider must pay to produce 

transportation services. They come as fixed (infrastructure) and variable (operating) costs, 

depending on a variety of conditions related to geography, infrastructure, administrative 

barriers, energy, and on how passengers and freight are carried. 

 Three major components, related to transactions, shipments and the friction of distance, 

impact on transport costs. 

Transport costs have significant impacts on the structure of economic activities as well as on 

international trade. Empirical evidence underlines that raising transport costs by 10% reduces 

trade volumes by more than 20%. In a competitive environment where transportation is a service 

that can be bided on, transport costs are influenced by the respective rates of transport 

companies, the portion of the transport costs charged to users. 
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Rates are the price of transportation services paid by their users. They are the negotiated 

monetary cost of moving a passenger or a unit of freight between a specific origin and 

destination. Rates are often visible to the consumers since transport providers must provide 

this information to secure transactions. They may not necessarily express the real transport 

costs. 

The difference between costs and rates results in either a loss or a profit from the service 

provider. Considering the components of transport costs previously discussed, rate setting is a 

complex undertaking subject to constant change. For public transit, rates are often fixed and the 

result of a political decision where a share of the total costs is subsidized by the society. The goal 

is to provide an affordable mobility to the largest possible segment of the population even if this 

implies a recurring deficit, (public transit systems rarely make any profit). It is thus common for 

public transit systems to have rates that are lower than costs. For freight transportation and many 

forms of passenger transportation (e.g. air transportation) rates are subject to a competitive 

pressure. This means that the rate will be adjusted according to the demand and the supply. They 

either reflect costs directly involved with shipping (cost-of-service) or are determined by the 

value of the commodity (value-of-service). Since many actors involved in freight transportation 

are private, rates tend to vary, often significantly, but profitability is paramount. 

1.6.2 Costs and Time Components 

Among the most significant conditions affecting transport costs and thus transport rates are: 

(i). Geography. Its impacts mainly involve distance and accessibility. Distance is commonly the 

most basic condition affecting transport costs.  

The more it is difficult to trade space for a cost, the more the friction of distance is important. 

The friction of distance can be expressed in terms of length, time, economic costs or the amount 

of energy used. It varies greatly according to the type of transportation mode involved and the 

efficiency of specific transport routes. Landlocked countries tend to have higher transport costs, 

often twice as much, as they do not have direct access to maritime transportation. 

(ii). Type of product. Many products require packaging, special handling, are bulky or 

perishable. Coal is obviously a commodity that is easier to transport than fruits or fresh flowers 

as it requires rudimentary storage facilities and can be transshipped using rudimentary 

equipment. 
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 Insurance costs are also to be considered and are commonly a function of the value to weight 

ratio and the risk associated with the movement. As such, different economic sectors incur 

different transport costs as they each have their own transport intensity. For passengers, comfort 

and amenities must be provided, especially if long distance travel is involved. 

(iii) Economies of scale. Another condition affecting transport costs is related to economies of 

scale or the possibilities to apply them as the larger the quantities transported, the lower the unit 

cost. Bulk commodities such as energy (coal, oil), minerals and grains are highly suitable to 

obtain lower unit transport costs if they are transported in large quantities. 

(iv). Energy. Transport activities are large consumers of energy, especially oil. About 60% of all 

the global oil consumption is attributed to transport activities. Transport typically account for 

about 25% of all the energy consumption of an economy. 

 The costs of several energy intensive transport modes, such as air transport, are particularly 

susceptible to fluctuations in energy prices. 

(v). Trade imbalances. Imbalances between imports and exports have impacts on transport 

costs. This is especially the case for container transportation since trade imbalances imply the 

repositioning of empty containers that have to be taken into account in the total transport costs. 

Consequently, if a trade balance is strongly negative (more imports than exports), transport costs 

for imports tend to be higher than for exports. Significant transport rate imbalances have 

emerged along major trade routes. The same condition applies at the national and local levels 

where freight flows are often unidirectional, implying empty movements. 

(vi). Infrastructures. The efficiency and capacity of transport modes and terminals has a direct 

impact on transport costs. Poor infrastructures imply higher transport costs, delays and negative 

economic consequences. More developed transport systems tend to have lower transport costs 

since they are more reliable and can handle more movements. 

(vii). Mode. Different modes are characterized by different transport costs, since each has its 

own capacity limitations and operational conditions. When two or more modes are directly 

competing for the same market, the outcome often results in lower transport costs. Containerized 

transportation permitted a significant reduction in freight transport rates around the world. 
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(viii). Competition and regulation: Concerns the complex competitive and regulatory 

environment in which transportation takes place. Transport services taking place over highly 

competitive segments tend to be of lower cost than on segments with limited competition 

(oligopoly or monopoly). International competition has favored concentration in many segments 

of the transport industry, namely maritime and air modes. Regulations, such as tariffs, cabotage 

laws, labor, security and safety impose additional transport costs. 

The transport time component is also an important consideration as it is associated with the 

service factor of transportation. They include the transport time, the order time, the timing, the 

punctuality and the frequency. For instance, a maritime shipper may offer a container transport 

service between a number of North American and Pacific Asian ports. It may take 12 days to 

service two ports across the Pacific (transport time) and a port call is done every two days 

(frequency). In order to secure a slot on a ship, a freight forwarder must call at least five days in 

advance (order time). For a specific port terminal, a ship arrives at 8AM and leaves at 5PM 

(timing) with the average delay being two hours (punctuality). 

1.6.3 Types of Transport Costs 

Mobility tends to be influenced by transport costs. Empirical evidence for passenger vehicle use 

underlines the relationship between annual vehicle mileage and fuel costs, implying the higher 

fuel costs are, the lower the mileage. At the international level, doubling of transport costs can 

reduce trade flows by more than 80%. The more affordable mobility is, the more frequent the 

movements and the more likely they will take place over longer distances. A wide variety of 

transport costs can be considered. 

(i). Freight on board (FOB). Is a transport rate where the price of a good is the combination 

of the factory costs and the shipping costs from the factory to the consumer. In the case of 

FOB, the consumer pays for the freight transport costs. Consequently, the price of a 

commodity will vary according to transportation costs and distance. 

(ii). Costs-Insurance-Freight (CIF). Is a transport rate that considers the price of the good, 

insurance costs and transport costs. 

 It implies a uniform delivered price for all customers everywhere, with no spatially variable 

shipping price.  
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The average shipping price is built into the price of a good. The CIF cost structure can be 

expanded to include several rate zones, such as one for local, another for the nation and 

another for exports. 

(iii). Terminal costs. Costs that is related to the loading, transshipment and unloading. Two 

major terminal costs can be considered; loading and unloading at the origin and destination, 

which are unavoidable, and intermediate (transshipment) costs that can be avoided. 

(iv). Line-haul costs. Costs that are a function of the distance over which a unit of freight or 

passenger is carried. Weight is also a cost function when freight is involved. They include 

labor and fuel and commonly exclude transshipment costs. 

(v). Capital costs. Costs applying to the physical assets of transportation mainly 

infrastructures, terminals and vehicles. They include the purchase or major enhancement of 

fixed assets, which can often be a one-time event. Since physical assets tend to depreciate 

over time, capital investments are required on a regular basis for maintenance. 

Transport providers make a variety of decisions based on their cost structure, a function of all the 

above types of transport costs. The role of transport companies has sensibly increased in the 

general context of the global commercial geography. However, the nature of this role is changing 

as a result of a general reduction of transport costs but growing infrastructure costs, mainly due 

to greater flows and competition for land. Each transport sector must consider variations in the 

importance of different transport costs. While operating costs are high for air transport, terminal 

costs are significant for maritime transport. Several indexes, such as the Baltic Dry Index, have 

been developed to convey a pricing mechanism useful for planning and decision-making. 

Technological changes and their associated decline in transport costs have weakened the links 

transport modes and their terminals. There is less emphasis on heavy industries and more 

importance given to manufacturing and transport services (e.g. warehousing and distribution). 

Indeed, new functions are being grafted to transport activities that are henceforward facilitating 

logistics and manufacturing processes. Relations between terminal operators and carriers have 

thus become crucial notably in containerized traffic. 

 They are needed to overcome the physical and time constraints of transshipment, notably at 

ports. 
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1.6.4 TRANSPORTATION COST ANALYSIS 

A typical application of the transportation problem is to determine an optimal plan for shipping 

goods from various sources to various destinations given supply and demand constraints in order 

to minimize total shipping cost. It is assumed that the cost of goods per unit shipped from a given 

source to a given destination is fixed regardless of the amount shipped. However, in actuality the 

cost may not be fixed. Volume discounts are sometimes available for large shipments so that the 

marginal cost of shipping one unit might follow a particular pattern.  

A transportation service incurs a number of costs: labor, fuel, maintenance etc. this cost can be 

divided into two: those cost that vary with services or volumes called variable cost and those that 

do not vary with services called fixed cost.  

If a long enough period of time and greater volumes are considered then the cost is said to be 

variable. For the purposes of transportation pricing, it is useful to consider costs that are constant 

over the normal operating volume of the carrier as fixed and all other costs are treated as 

variables. 

1.6.5 Cost characteristics by mode 
(i) Rail:  the rail road has the characteristics of high fixed cost and relatively low 

variable cost. Loading unloading billing etc. all contribute to high variable cost.   

Increased per shipment volume and its effect on reducing fixed cost result in some substantial 

economies. I.e. lower per unit cost for increased per shipment volume. Variable costs vary 

proportionally by distance and volume. 
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Cost/tone mile 

 

 

 

                                                   Shipment size 

                 Generalized railed road cost structure based on shipment size. 

 

(i) High way: Motor carriers show contrasting cost characteristics with rail. Their fixed costs are 

the lowest compared with variable cost. Variable cost tend to be high because highway 

construction and maintenance cost are charged to the users in the form of fuel taxes, tolls and 

weight-mile taxes. 

(ii). Water: the major capital investment that a water carrier makes is in transport equipment and 

to some extent terminal facility. Water ways and harbors are publicly owned and operated. Little 

of their costs are charged back to water carriers. The predominantly fixed costs in a water 

carrier’s budget are associated with terminal operations.  

Fixed costs include the harbor fees as the carrier enters the seaport, and the cost for loading and 

unloading cargo. These typically high fixed costs are somewhat offset by very low variable costs. 

Variable costs include costs associated with operating the transport equipment. 

(iii) Air: air terminals and their air spaces are generally not owned by the airline companies. 

Airlines purchase airport services as needed in the form of fuel, storage, space rental and landing 

fees. if we include ground handling, and pickup and delivery in the case of air freight operations, 

these costs are the terminal  costs for the air transportation. 
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Airlines own their own equipment which when depreciated over its economic life becomes an 

annual fixed expense. In the short run airline variable expenses are influenced more by distance 

than by shipment size. 

 Volume has indirectly influenced variable cost as greater demand for air transportation services 

has brought larger aircraft that have lower operating cost per available ton-mile.  

1.6.6 Volume Related Rate 

The economies of the transportation industry indicate that costs of services are related to size of 

the shipment. Rate structures in general reflect these economies as shipments in constantly high 

volumes are transported at lower rates than smaller shipments. Volume is reflected in the rate 

structure in several ways. 

First, rates may be quoted directly on the quantity shipped. If the shipment is small, and results in 

very low revenue for the carrier, the shipment will be assessed either a minimum charge or an 

any–quantity rate.  

Larger shipments that result in charges greater than the minimum charge but which is less than a 

full vehicle load quantity are charge at a less than-vehicle load rate that varies with the particular 

volume. Larger shipment sizes that equal or exceed the designated vehicle load quantity are 

charged the vehicle-load rate.  

The system of freight classification permits some allowance for volume. High volumes can be 

considered justifications for quoting a shipper special rates on particular commodities. These 

special rates are considered deviations from the regular rate that apply to products shipped in 

lesser volumes.   

The thesis is organized as follows:  In the first chapter, we give a brief introduction to the 

transportation problem as well as other works that have been carried out in this respect and in the 

second chapter; the linear transportation problem will be looked at. 

In the third chapter, where the main objective of the thesis lies, we discuss different algorithms to 

the nonlinear transportation problem. 
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Finally, in the fourth chapter, application to real life situation and some practical matters 

associated with solving the problem are discussed. Discussion and conclusion are also given 

under this chapter.  
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Chapter 2 

Literature Review 

2.1. Linear and nonlinear transportation review 

The transportation problem was formalized by the French mathematician Gaspard Monge in 

(1781). Major advances were made in the field during World War II by the Soviet/Russian 

mathematician and economist Leonid Kantorovich. Consequently, the problem as it is now stated 

is sometimes known as the Monge-Kantorovich transportation problem as reported by 

www.historyofmathematics.com.  

     Many scientific disciplines have contributed toward analyzing problems associated with the 

transportation problem, including operation research, economics, engineering, Geographic 

information science and geography. It is explored extensively in the mathematical programming 

and engineering literatures. 

        Sometimes referred to as the facility location and allocation problem, the transportation 

optimization problem can be modeled as a large-scale mixed integer linear programming 

problem.  

      The problem with the production capacity of each source fixed with constant unit 

transportation cost was originally formulated by Hitchcock (1941) and was subsequently dealt 

with independently by Koopmans during Second World War  

Analytical solution to this problem has been given by several authors. Stringer and Haley have 

developed a method of solution using mathematical analogue. 

In (1988)  Denardo, Eric, Rothblum, Uriel, Swersey, Arthur J. developed a problem which uses 

supplied item travel time averages to determine the 'cost' of satisfying the demand at a particular 

location. Items that arrive first receive the greatest weight, and decreasing weights are given to 

each succeeding item. An equivalent transportation problem is used for problems with a known 

demand.  

http://www.historyofmathematics/�
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If the demand is stochastic a transportation problem whose aim is to minimize the sum of a linear 

function is used. The function is linearized by substituting the product and a linear term for the 

convex function. 

       May be the first algorithm to find an optimal solution for the uncapacitated transportation 

problem was that of Efroymson and Ray (1964). They assumed that each of the unit production 

cost functions has a fixed charge form.  

But they remark that their branch-and – bound method can be extended to the case in which each 

of these functions is concave and consists of several linear segments. And each unit 

transportation cost function is linear.  

George Dantzig (1951) adapted the simplex method to solve the transportation problem 

formulated earlier by Hitchcock and Koopmans.  

Abraham Charnes and William Cooper (1954) derived an intuitive presentation of Dantzig’s 

procedure called the stepping-stone method which follows the basic logic of the simplex method 

but avoids the use of the tableau and the pivot operations required to get the inverse of the basis.   

     Algorithms for the capacitated case have been presented by Davis  Ray, Ellwein, Gray and 

Marks (1966). In all of these the cost functions are assumed to be linear and the production cost 

is linear where ever the production is and zero where not. Ellwein’s technique allows the easy 

incorporation of configuration constraints that restrict the allowable combinations of open plants 

and generalization of the production. 

      Vidal has given a graphical solution based on successive approximations when the 

production costs vary with the volume of resource produced. 

Two dynamic programming algorithms are developed for a problem involving the minimization 

of the number of needed workstations for an assembly line when processing times are normally 

distributed, independent random variables.  

The algorithms are based on the works of Held (1963) and Kao (1976), and results indicate that 

they are more efficient than the alternative dynamic programming approach suggested by Henig 

(1986). 
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A study was conducted to develop a model based on the initial solution and Goal Programming 

to obtain the values of the decision variables. Findings by Parra, M. Arenas, Terol, A. Bilbao, 

Uria, M.V. Rodriguez (1999) revealed the development of a decision vector which allows the 

approximation of the goal functions with fuzzy coefficients  to the fuzzy solutions specifically 

obtained for such programs. It was also revealed that the new fuzzy solution in the set of 

objectives verifies that each component is a triangular fuzzy number. 

Frank Sharp.et.al developed an algorithm for reaching an optimal solution to the production-

transportation problem for the convex case.  

The algorithm utilizes the decomposition approach it iterates between a linear programming 

transportation problem which allocates previously set plant production quantities to various 

markets and a routine which optimally sets plant production quantities to equate total marginal 

production cost, including a shadow price representing a relative location cost determined from 

the transportation problem. 

 The TRIMAP linear programming package for solving three-objective transportation problems 

was evaluated by Climaco, Joao, Antunes, Henggeler, Alves, and Maria. TRIMAP was designed 

(1993) to help in decision making by removing non dominated solutions through the use of 

weight space decomposition, introduction of constraints on the objective function space and 

constraints on the weight space. The package also supports objective function value constraints 

for automatic translation into the weight space. 

Williams (1964) applied the decomposition principle of Dantzing and Wolf to the solution of the 

Hitchcock transportation problem and to several generalization of it. In this generalizations, the 

case in which the costs are piecewise linear convex functions is included.  

He decomposed the problem and reduced to a strictly linear program. In addition, he argued that 

the two problems are the same by a theorem that he called the reduction theorem. 

The algorithm given by him, to solve the problem, is a variation of the simplex method with 

“generalized pricing operation”.  
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It ignores the integer solution property of the transportation problem so that some problems of 

not strictly transportation type, and for which the integer solution property may not hold be 

solved. 

Shetty (1959) also formulated an algorithm to solve transportation problems taking nonlinear 

costs. He considered the case when a convex production cost is included at each supply center 

besides the linear transportation cost. 

Feldman (1983) assessed, the concavity of the cost curve brought about by economics of scale 

leads to multiple-optima, and thus problems like these are not susceptible to conventional 

mathematical techniques. The power of the simplex method in solving linear programs is based 

on the general theorem which states that the number of variables – including slack variables, 

whose values are positive in an optimal solution, is at most equal to the number of constraints in 

the problem.  

For this reason, nearsighted computational techniques are used to examine the corners of the 

feasible region (basic solution). Unfortunately, these myopic computational and optimality 

testing techniques can be employed only when the problem involves a convex feasible region 

and increasing marginal cost (the case on which we are also will be focusing). 

Martins, Lucia, Craveirinha (2005) presented a study of a bi-dimensional dynamic routing model 

for telecommunications network. The model uses heuristic methods to solve instability problems. 

The routing methods through heuristics are compared with the discrete-event simulation in the 

dynamic routing system. 

The branch and bound algorithm approach is based on using a convex approximation to the 

concave cost functions. It is equivalent to the solution of a finite sequence of transportation 

problems.  

The algorithm was developed as a particular case of the simplified algorithm for minimizing 

separable concave functions over linear polyhedral as Falk and Soland.  

Piece-wise linear over approximation is also the other approach to solve the nonlinear concave 

transportation problem. 
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Richard Soland (1971) presented a branch and bound algorithm to solve concave separable 

transportation problem which is called it “the simplified algorithm” in comparison with similar 

algorithm given by Falk and himself in 1969. 

The algorithm reduces the problem to a sequence of linear transportation problem with the same 

constraint set as the original problem. 

Gay (1989) presented two algorithms to solve mixed integer second-order cone programming 

problems: a branch-and-cut method and an outer approximation based branch-and-bound 

approach. 

 Different techniques were presented for the generation of linear and convex quadratic cuts and 

investigate their impact on the branch-and-cut procedure. The presented outer approximation 

based branch-and-bound algorithm is an extension of the well-known outer approximation based 

branch-and-bound approach for continuous differentiable problems to sub-differentiable 

constraint functions. 

Convergence can be guaranteed, since the sub-gradients, that satisfy the KKT conditions, can be 

identified using the dual solution of the occurring second order cone problems. Computational 

results for test problems and real world applications are given. 

The optimal design of a Water Distribution Network (WDN) is a real-world optimization 

problem known and studied since the 1970s. Several approaches have been proposed, for 

example, heuristics, metaheuristics, Mixed Integer Linear Programming models and global 

optimization methods. Despite this interest, it is still an open problem, since it is very hard to 

find good solutions for even medium sized instances. Work on non-convex Mixed Integer Non-

Linear Programming (MINLP) model that was presented by Bragalli, Lee, Lodi and Toth which 

accurately approximates the problem, and was solved with an ad-hoc modified branch-and-

bound for minimization linear programming problems.  

For the general class of minimization linear programming problems where relaxing the 

integrality on integer variables yields a non-convex problem, a commonly used solution method 

is Branch-and-Bound (BB). Two crucial components of a BB algorithm are: a convex relaxation, 
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often an LP relaxation, to obtain lower bounds; and branching rules for partitioning the solution 

set.  

 Caputo et al (1991) presented a methodology for optimally planning long-haul road transport 

activities through proper aggregation of customer orders in separate full-truckload or less-than-

truckload shipment in order to minimize total transportation cost. They have demonstrated that 

evolutionary computation technique may be effective in tactical planning of transportation 

activities. The model shows that substantial savings on overall transportation cost may be 

achieved adopting the methodology in a real life scenario. 

2.2. Economic optimum size order and price discount (EOQ) review 

Based on the simple EOQ model, a model for determining the optimal stock replenishment 

strategy for temporary price reduction can be derived. Barman and Tersine (1995) extended the 

logic to a composite EOQ model that can be segmented into a family of hybrid models with 

broader operational flexibility. The composite EOQ provides malleability and flexibility to 

changing operational requirements by desegregating complexity. The resourcefulness of an 

expert system with its attendant economics is approached.  

Lu and Qui (1994) derived the worst-case performance of a power-of-two policy in an all-unit 

quantity discount model with one price break point, which extends the sensitivity analysis for the 

classical EOQ model. The model showed that the worst-case performance will depend on the 

discount rate α and is within 7.66 % of optimality when α < 7.51 % and approximately within 

100 α % of optimality when α ≥ 7.51 %.  

Bastian (1992) developed a dynamic lot-size problem under discounting which allows a 

speculative motive for holding inventory. He derived a procedure that determined the first lot-

size decision in a rolling horizon environment, using forecast data of the minimum possible 

number of future periods.  

Chao (1992) generalized Bather’s EOQ model with discounting. The model considers two cases: 

one with demand backlogging and the other, without backlogging. Important implications of 

discounting are investigated useful insights and formulas are provided.  
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Martin (1993) provides an alternative perspective on the quantity discount-pricing problem. He 

considered the multiple price breaks excluding the buyer’s operating parameter from 

consideration, with the exception of price dependent demand.  

Johnson (1975) described a graphical approach to price-break analysis. He argued that in any 

stock control situation the main problem is how many units of an item should be procured at any 

one time, the "economic batch quantity; (EBQ)" and having determined EBQ, the problem of 

quantity discount arises. 

Would it be profitable to order in quantities other (usually more) than the EBQ in order to take 

advantage of price discount. This approach provided:  

(a). a rationale foundation for a very many real life purchasing decisions; 

(b) a tool which is readily understood by the clever man in the business.  

It suggested "Given a discount structure for a product group, find the most economical purchase 

quantities for all members of that group".  

Fitzpatric and Roy (1997) incorporated quantity and freight discounts in inventory decision 

making when demand is considered to be dependent upon price (rather being constant). An 

algorithm was developed to determine the optimal lot-size and selling price for a class of demand 

functions, including constant price-elasticity and linear demand. A numerical example was 

illustrated to develop the model and computer program to implement the model.  

Followill (1990) studied managerial decision to accept a quantity discount, if total, per period 

inventory and acquisition costs are reduced. They developed an EOQ model within wealth 

maximization framework, when volume discounts were available. They established that the 

traditional method of analyzing volume discount opportunities may invoke wealth decreasing 

decisions.  

Wang (1993), in this article, investigated the managerial insights related in using the all- unit 

quantity discount policies under various conditions.  
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The models developed here were general treatments that deal with four major issues:  

a. One or multiple buyers;  

b. Constant or price elastic demand;  

c. The relationship between the supplier’s production schedule or ordering policy and buyer’s 

ordering sizes;  

d. The supplier either purchasing or manufacturing the item.  

The two main objectives of the developed models were the supplier’s profit improvement or the 

supplier’s increased profit share analysis. Algorithms were developed to find optimal decision 

policies.  

The present analysis provided the supplier with both optimal all-unit quantity discount policy 

and the optimal production or ordering strategy. The concept was illustrated with numerical 

examples. 

Benton (1991) considered quantity discount procedures under conditions of multiple items, 

resource limitations and multiple suppliers.  

He offered an efficient heuristic programming procedure for evaluating alternative discount 

schedules. The article provided encouraging findings for the managers. Gaither and Park (1991) 

developed optimal ordering policies for a group of inventory items when a supplier offers a one 

time discount for the group by minimizing total inventory costs within a firm's ware house space 

or funds availability constraints.  

Carlson and Miltenburg (1993) examined order quantities for families of items when regular and 

special discount schedules are available, and the objective is to minimize the present value of the 

relevant cash flows. Order quantities can be large when special discounts are available, 

traditional cost minimization models which ignore the effects of the timing of cash flows are less 

accurate than the discounted cash flow models. They extended the earlier research work on 

families of items, special quantity discounts and discounted cash flows. Order cost, invoice cost, 

physical inventory carrying cost and financial carrying cost were identified. The amount and the 

timing of the cash out flow for each cost were described. Regular as well as two special types of 
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discounts was also considered. Regular discounts were schedules of discounts and break point 

order quantities that were always available. The special discounts are an opportunity to order 

before a price increase and a ‘sale’ or special one-time price reduction.  

Sorger (1994) derived a condition that must be satisfied by a cost function h: X → X in order to 

be the optimal function of a strictly concave deterministic dynamic programming problem which 

defined on the state space X and which has a given discount factor ζ. This condition was used to 

show that there was no such DPP on a one-dimensional state space that generates optimal 

solutions that are periodic with minimal period three unless the discount rate exceeds 82%. This 

bound held uniformly for all strictly concave problems and all period three cycles.  

In many practical situations, co-ordination between replenishment orders for a family of items 

can be cost saving. A well-known class of strategies for the case where cost savings are due to 

reduced joint ordering costs is the class of can-order strategies.  

However, these strategies, which are simple to implement do not take price discount possibilities 

into consideration. Duyn, Van and Heuts (1994) proposed a method to incorporate discounts in 

the framework of can-order strategies. A continuous review multi-item inventory system was 

considered with independent compound Poisson demand processes for each of the individual 

items.  

The supplier as a percentage of the total dollar value offers discounts whenever this value 

exceeds a given threshold. They developed a simple heuristic to evaluate these discount 

opportunities taking the can-order strategy as a basic rule. The performance of the can-order 

strategy with discount evaluation was compared with that of another class of discount evaluation 

rules as proposed by Miltenburg and Silver.  

Crainic and Laporte (1997) extensively review the optimization models for freight transportation. 

A main distinction can be established between strategic-tactical and operational models that 

respectively consider a national or an international multimodal network, such as in the Service 

Network Design Problem (SNDP) (see Crainic (2000)), and the unimodal distribution 

management models that are variants of the Vehicle Routing Problem (VRP) (see Toth and Vigo 

(2002)). 



29 
 

Macharis and Bontekoning (2004) present a freight logistics literature review focused on 

intermodal transportation. They propose a classification based on two criteria: the type of 

operator and the length of the problem’s time horizon. Four types of operators are distinguished: 

drayage operators, terminal managers, network planners, and intermodal operators. The time 

horizon criterion results in the classical differentiation of strategic, tactical, and operational 

levels. In this classification matrix of twelve categories, the M++TP would correspond to 

operational problems faced by an intermodal operator, since the problem can be stated as the 

selection of routes and of services in a multimodal network. This problem category, according to 

Macharis and Bontekoning (2004) and to our own updated survey (see Section 2.3), is one of the 

least studied. 

Bontekoning et al. (2004) reviewed the intermodal literature related to the rail-truck 

combination. This paper, like the previous one, highlights the need for more research on 

operational problems faced by intermodal operators, like the optimal route selection. Container 

based transportation is the key enabler of intermodalism because of various advantages like 

higher productivity during the transfers, less product damage, etc.  

Consequently, Crainic and Kim (2006) focused their recent intermodal logistics literature review 

on the container related aspects of the transportation industry. 

 In particular, empty container repositioning and container terminal management problems are 

thoroughly discussed. 

Kim and Pardalos (1999) introduced a dynamic slope scaling algorithm to heuristically solve the 

Fixed Charge Network Flow Problem (FCNFP). Kim and Pardalos (2000) applied similar 

algorithms to the Concave Piecewise Linear Network flow Problem (CPLNFP). 

 In fact, through an arc separation procedure, the CPLNFP can be transformed into an FCNFP on 

an extended graph. A more refined algorithm variant, which employs a trust interval technique, 

was also presented in the same paper. The dynamic slope scaling concept was exploited by 

Crainic et al. (2004) to solve the multicommodity version of the FCNFP. The authors propose a 

heuristic algorithm that combines slope scaling, Lagrangean relaxation, intensification and 

diversification mechanisms as in metaheuristics. 
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 Croxton (2003a) prove that three textbook mixed-integer linear programming formulations of a 

generic minimization problem with separable non-convex piecewise linear costs are equivalent. 

Their LP relaxations approximate the piecewise linear cost function with its lower convex 

envelope. 

 Independently, Keha (2004, 2006) derived a similar result. Croxton (2007) present valid 

inequalities based upon variable disaggregation for network flow problems with piecewise linear 

costs. Croxton (2003) study an application, the merge-in-transit problem, where the above 

mentioned technique shows its efficacy. 

Crowther (1964) established the relationship between the prices on orders of different sizes after 

the seller has achieved a few fundamental decisions regarding the manner in which he wants a 

smooth and efficient business.  

There are two general types of quantity discount schedules offered by supplies: the all-units 

discounts and the incremental discount. Purchasing large quantity in all-units discount schedule 

results in a lower unit price for the entire lot; whereas, in incremental discount schedule, lower 

unit facility is available only to units purchased above a specified quantity. The quantity at which 

price change is called price-break quantity. Gorham ((1970) calculated break-even demand 

volumes to determine quantity discount desirability. 
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CHAPTER 3 

Methodology 

Introduction 

A typical application of the transportation problem is to determine an optimal plan for shipping 

goods from various sources to various destinations given supply and demand constraints in order 

to minimize total shipping cost. It is assumed that the cost of goods per unit shipped from a given 

source to a given destination is fixed regardless of the amount shipped. But in actuality the cost 

may not be fixed. Volume discounts are sometimes available for large shipments so that the 

marginal cost of shipping one unit might follow a particular pattern. When volume discounts are 

offered, the objective function or the constraint functions assume a nonlinear form. We therefore 

use the nonlinear method of solution to solve such a problem.   

LINEAR TRANSPORTATION PROBLEM 

3.1.1. Transportation Model Problem  

Transportation is an example of network optimization problem. It deals with the efficient 

distribution (transportation) of product (goods) and services from several supply locations 

(sources) with limited supply, to several demand locations (destinations) with a specified 

demand with the objective of minimizing total distribution cost; a typical example of which this 

project represents (in analogy). 

This objective is achieved under the following constraints; 

1. Each demand point receives its requirement.  

2. Distributions from supply points do not exceed its available capacity. This goal is 

achieved contingent on availability and requirements constraints. 
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3.1.2 Model Formulation  

The formulation of the transportation model employs double – subscripted variables of the form 

𝑥𝑥Rij

i= index for origins (supply points),  i = 1, 2, 3. . . .m. 

. Thus, the general formulation of the transportation problem with m sources and n 

destinations, with the following defined notations; 

j= index for destinations (demand point),     j = 1, 2, 3 … n. 

𝑥𝑥Rij

C

 = number of units transported from origin i to destination  j. 

ij 

S

= per unit cost of transporting from origin i to destination j. 

i

d

 = supply or capacity in units at origin i.  

j 

is given by                                                                     

= demand in units at destination j. 

                                    Minimize  

�.
𝑛𝑛

𝑗𝑗=1

�𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

𝑚𝑚

𝑖𝑖=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡            �𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

=  𝑆𝑆              𝑖𝑖 = 1,2,3 … … .. 

�𝑑𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1

= 𝑑𝑑      𝑗𝑗 = 1,2,3 … … 

At instances where total supply from all the sources equals total demand at all destinations, the 

transportation model is expressed as 

�𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

=  �𝑑𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1
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Under such circumstances, the transportation problem is said to be balanced

3.1.3 Problem Variation  

. 

Variation of the basic transportation problem may involve one or more of the following 

situations 

I. Total supply not equal to total demand. 

II. Maximization of objective function rather than minimization  

III. Unacceptable routes. 

These situations can be easily accommodated with some modifications in the linear 

programming model. Modifications to the above situations are shown next.  

(i). Total Supply Not Equal To Total Demand  

These conditions arise in most realistic cases when total supply is less than or exceeds total 

demand. Either of these situations occasions an unbalanced transportation problem.  

�𝑆𝑆𝑖𝑖 <
𝑛𝑛

𝑖𝑖=1

�𝑑𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

a. Total demand exceeds total supply  

�𝑑𝑑𝑗𝑗 >
𝑚𝑚

𝑗𝑗=1

�𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Under this situation the linear programming model of the transportation problem will not have a 

feasible solution. The modification of this situation for a feasible solution requires an addition of 

a dummy origin with a supply equal to the difference between the total demand and the total 

supply to the network representation to modify it. To reflect this modification in the 

transportation tableau, a dummy row is added to all the units’ demands for which supply is not 

available.  

Thus an imaginary (fictitious) supply point with an amount available = total demand – total 

supply is added to balance supply and demand. A zero per-unit cost is, however, assigned to each 

cell of the dummy row.  
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The dummy cells in the transportation tableau are analogous to slack variable, which have zero 

Cij

b. Total Supply Exceeds Total Demand 

 values in the objective function and so does not affect the initial solution.  

 

𝑖𝑖𝑠𝑠.        �𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

> �𝑑𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 

When total supply exceeds total demand, the excess will appear as a slack in the linear 

programming solution. Slack for any origin is the unused supply or the amount not transported 

from the origin to demand points. 

 To construct a balanced model, we create a “fictitious” demand point with an amount equal to 

the excess supply. Thus a dummy column is added to the tableau.  

(ii). Maximization Objective 

The objective function in some transportation problem is maximized rather than minimized. This 

is done when the objective is to find a solution that maximizes profit or revenue.  

The profit or revenue per-unit values are used as coefficients in the objective function under this 

circumstance, and maximization rather than a minimization linear programming model is got, 

while the constraints remain unaffected by this change.  

(iii). Unacceptable Routes 

Special situations do arise in transportation problems where it may not be possible to establish a 

route from every origin to every destination.  

This solution makes some routes unacceptable. This is handled by dropping the corresponding 

arc from the network and removing the corresponding variable from the linear programming 

formulation. 
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3.1.4 FINDING INITIAL FEASIBLE SOLUTION TO TRASPORTATION PROBLEM 

The general formulation of the transportation problem reveals that m supply constraints and n 

demand constraints translate into m + n total constraints. In the transportation problem however, 

one of the constraints is redundant resulting in the fact that if, in a balance condition, 

�𝑆𝑆𝑖𝑖 ≥
𝑛𝑛

𝑖𝑖=1

�𝑑𝑑𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

m + n constraints are met then m + n equations will also be met. Only m + n – 1 independent 

equations, thus, exist and so the initial solution will have only m+ n -1 basic variables. 

The flow chart below illustrates the various phases leading to the optional solution of a 

transportation problem  

fig. 3.1 

 

 

 

 

 

 

 

 

3.15 Transportation Tableau  

The transportation tableau is a unique tabular representation of the transportation problem. The 

tableau has m x n cells, where m is the number of supplies (sources) and n the number of 

destinations (demand). The demand at each destination is entered in the bottom row, while the 

supply from each source is listed in the right-hand column.  

 

  

 

Determine an initial basic 
feasible solution  

Test the current solution for 
optimality  

Find a better feasible solution   

Phase 1   

Transportation 
Algorithm    Optimal stop     

Stepping stone 
method      

Phase 2   
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The lower right hand corner represents the quantity of total demand and total supply.  

The 𝑥𝑥Rij variable gives the number of units transported from source i to destination j (which is to 

be solved for) while the unit cost for the transportation from i to j, denoted by Cij

 

, is recorded in 

a small box in the upper – right – hand corner of each cell. Below is the form of the general 

transportation tableau. 
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Table 2.1   Transportation Tableau 
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3.1.6 Methods for Finding Initial Basic Feasible Solutions  

The first phase of the solving a transportation problem for optimal solution involves finding the 

initial basic feasible solution. An initial feasible solution is a set of arc flows that satisfies each 

demand requirement without supplying more from any origin node than the supply available. 

Heuristic, a common – sense procedure for quickly finding a solution to a problem is a producer 

most employed to find an initial feasible solution to a transportation problem. This project 

examines three of the more popular heuristics for developing an initial solution to transportation 

problem. 

i. The Northwest corner method  

ii. The Least Cost Method  

iii. The Vogel’s Approximation Method  

 

(i). The Northwest Corner Method  

This method is the simplest of the three methods used to develop an initial basic feasible 

solution. This notwithstanding, it is the least likely to give a good “low cost” initial solution 

because it ignores the relative magnitude of the costs Cij

1. Start at the northwest corner (upper-left-hand corner) cell of the tableau and allocate as 

much as possible to𝑥𝑥R11

 in making allocations The procedure of 

this method is as follows. 

 without violating the supply or demand constraints (i.e. 𝑥𝑥R11 is 

equal to the minimum of the values of Si or d

 
j .) 

2.  This will exhaust the supply at source i and or the demand for destination j. As a result, 

no more units can be allocated to the exhausted row or column, and it is eliminated. 

Next, allocate as much as possible to the adjacent cell in the row or column that has not 

been eliminated. If both row and column are exhausted move diagonally to the next cell. 
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3. Continue the process in the same manner until all supply has been exhausted and 

demand requirements have been met. Following is an example to illustrate the use of the 

Northwest Corner Method of finding an initial basic feasible solution to transportation 

problems.  

 

(ii). Least – Cost Method  

The Least– Cost Method tries to reflect the objective of cost minimization by systematically 

allocating to cells according to the magnitude of their unit costs. 

Following is the general procedure for the Least –Cost Method. 

1. Select the𝑥𝑥Rijvariable (cell) with the minimum Cij unit transportation cost Cij and allocate as 

much as possible thus, for minimum C

𝑥𝑥Rij

ij. 

 = minimum (Si,,dj

2. From the remaining cells that are feasible (i.e. have not been filled or their row or column 

eliminated), select the minimum C

). This wills exhaust either row i or column j. 

ij

3. Continue the process until all supply and demand requirements are satisfied  

 value and allocate as much a possible  

4. In case of ties between the min Cij

(iii). VOGEL’S APPROXIMATION METHOD 

 values select between the tied cells arbitrarily and apply the 

procedure. 

The Vogel’s Approximation Method (VAM) is by far the best method (better than the Northwest 

Corner Method and the Last-Cost Method) of developing an initial basic feasible solution to 

transportation problems. In many cases the initial solution obtained by the VAM will be optimal. 

 It consists of making allocations in a manner that will minimize the penalty (regret or 

opportunity cost) for selecting the wrong cell for an allocation. The procedure for the use of the 

VAM is as follows; 
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1. Calculate the penalty cost for each row and column. The penalty costs for each row i are 

computed by subtracting the smallest Cij values in the row from the next smallest Cij

2. Column penalty costs are similarly obtained, by subtracting the smallest c

 

values in the same row.  

ij value in each 

column from the next smallest column Cij

 

 value. These costs are the penalty for mot 

selecting the minimum cell cost. 

3. Select the row or column with the greatest penalty cost (breaking any ties arbitrarily) and 

allocate as much as possible to the cell with the minimum Cij value in the selected row or 

column,  that is for minimum Cij, 𝑥𝑥Rij = minimum   (Si, dj

4. Adjust the supply and demand requirements to reflect the allocations already made. 

Eliminate any rows and columns in which supply and demand have been exhausted. 

). This will avoid the greatest 

penalties.   

5. If all supply and demand requirements have not been satisfied, go to the first step and 

recalculate new penalty costs. If all row and column values have been satisfied the initial 

solution has been obtained. 

3.1.7 Optimality-Test Algorithm for Transportation Problems  

These are methods of determining the optimal solutions for transportation problems following 

the determination of the initial basic feasible solution. Two methods, 

(1) The stepping stone method   

(2)  The Modified Distribution Method shall be the focus of this project. 

(1). The Stepping Stone Method: This optimality test begins, once an initial basic feasible 

solution is obtained for the transportation problem, by determining if the total transportation cost 

can be further reduced by entering a nonbasic variable (i.e. allocating units to an empty cell) into 

the solution. Thus each empty cell is evaluated to determine if the cost of shifting a unit to that 

cell from a cell containing a positive unit will decrease. A closed loop of occupied cells is used 

to evaluate each nonbasic valuable. An initial basic feasible solution is considered optimal if the 

total transportation cost cannot be lowered/ decreased by reallocating units between cells.  
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The following three steps are involved in the stepping-stone method  

1. Determine an initial feasible solution by using any of the afore-discussed initial feasible 

solution determination methods  

2. Compute a cell evaluator for each empty cell, determined by computing the next cost of 

shifting one unit from a cell containing a positive unit to the empty cells. The sign of cell 

evaluators are then checked for optimality 

3. If a cell evaluator fails the sign test, if the solution is not optimal, determine a new lower 

total cost solution, accomplished by shifting the maximum amount to that empty cell so 

that the supply or demand constraints are not violated.  

(2). The Modified Distribution Method (MODI) 

The modified distribution method of solution is a variation of the steeping-stone method based 

on the dual formulation. The difference between the two is that with the MODI, unlike the 

stepping-stone method, it is not necessary to determine all closed paths for nonbasic variable. 

The C*
ij values are instead determined simultaneously and the closed path is identified only for 

the entering nonbasic variable. In the MODI method, a value 𝑠𝑠Ri is defined for each row (i) and a 

value 𝑣𝑣Rj is defined for each column (j) in the transportation tableau. For each basic variable, 

(occupied cell), 𝑥𝑥Rij

C

 the following relationship exists. 

ij = 𝑠𝑠Ri + 𝑣𝑣Rj, where Cij

The steps employed in the MODI method are;  

 is the unit cost of transportation.  

1. Determine 𝑠𝑠Ri values for each row and 𝑣𝑣Rj value for each column by using the relationship 

Cij = 𝑠𝑠Ri +𝑣𝑣Rj for all basic variables beginning with an assignment of zero to 𝑠𝑠R1

2. Compute the net cost change C*

. 

ij, for each nonbasic variable using the formula C*ij = Cij 

– 𝑠𝑠Ri

3. If a negative C*

 -𝑣𝑣Rj. 

ij value exists, the solutions is not optimal. Select the 𝑥𝑥Rij variable with the 

greatest negative C*ij

 

 value as the entering nonbasic variable.  
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4. Allocate units to the entering C*ij value as the entering nonbasic variable, 𝑥𝑥Rij

 

, according 

to the stepping-stone procedure. Return to step 1. 

The Non Linear programming problem 

Preliminaries 

3.2. CONVEX SETS 

Definition: a line segment joining the points x1 and  x2 in Rn is the set [x1,x2] = {x Є Rn: x = λ𝑥𝑥R1 

+ (1 – λ)𝑥𝑥R2

A point on the line segment for which 0 <λ<1, is called an interior point of the line segment. 

}, 0 ≤ λ ≤ 1. 

Definition 3.1.1: A subset S of Rn is said to be convex if for any two elements  x1, x2in S  the line 

segment [ x1, x2]is contained in S . Thus x1 and  x2 in S imply λ𝑥𝑥R1 + (1 – λ)𝑥𝑥R2

1. Extreme Points. 

}Є S for all               

0 ≤ λ ≤ 1 if S is convex. 

Definition 3.2.2 Let P be non-empty convex set in En. A vector 𝑥𝑥 Є P is called an extreme point 

of P if x = λ𝑥𝑥R1 + (1 – λ)𝑥𝑥R2 with 𝑥𝑥R1 and 𝑥𝑥R2 elements of P and λ Є (0,1) then 𝑥𝑥 = 𝑥𝑥R1 

The following are basic theorems concerning extreme points; and for their proofs one can refer 

to any analysis book. 

= 𝑥𝑥R2. 

Theorem 3.2.1 Let P = {𝑥𝑥: A𝑥𝑥 = b, 𝑥𝑥 ≥ 0}, where A is mXn matrix of rank m, and b is an m 

vector. A point 𝑥𝑥 is an extreme point of P if and only if A can be decomposed in to [B, N] such 

that 𝒙𝒙 = �𝑿𝑿𝑿𝑿𝑿𝑿𝑿𝑿� = �𝑿𝑿𝟎𝟎�;  where B, is an mXm invertible matrix satisfying B-ib 

Corollary: The number of extreme points of P is finite. 

≥ 0. Any such solution 

is called a basic feasible solution (BFS) for P. 

Theorem 3.2.2 (Existence of extreme points) 

Let P = {𝑥𝑥: A𝑥𝑥 = b, 𝑥𝑥 ≥ 0} be non empty: where A is an mXn matrix of rank m and b is an m – 

vector. Then P has at least one extreme point.  
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2. Extreme Direction 

Definition 3.2.3 Let P be a non empty polyhedral set in En. A non zero vector d in En

It follows that; d is a direction of P if and only if 

 is called 

direction or a recession direction of P if 𝑥𝑥 + λd Є P for each x Є P and all        λ ≥ 0. 

Ad = 0,  d ≥ 0 

Theorem 3.2.3 Characterizations of Extreme Directions 

Let p = {𝑥𝑥 : A𝑥𝑥 =b, 𝑥𝑥 ≥ 0} ≠ ∅ , where A is an mXn matrix of rank m, and b is an m vector. A 

vector D is an extreme direction of P if and only if A can be decomposed into [B,N] such that  B-

1 aj  ≤ 0 for some column aj of N and D is a positive multiple of D =�−𝐵𝐵𝐵𝐵𝑗𝑗𝑠𝑠𝑗𝑗 � where ej is an n-m 

vector of zeros except for position j which is 1.  

In this section, we consider a transportation problem with nonlinear cost function. We try to find 

different solution procedures depending on the nature of the objective function. 

Solution procedures to the Nonlinear Transportation problem (NTP) 

Before going to the different special cases, let’s formulate the KKT condition and general 

algorithm for the problem. 

Given a differentiable function  

C :    ℝ nm                     

We consider a nonlinear transportation problem (NTP), 

 ℝ 

 Min   𝑠𝑠(𝑥𝑥) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡   𝐴𝐴𝑥𝑥 = 0,   

𝑥𝑥 ≥ 0 
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Where 

𝑥𝑥 =  

⎝

⎜
⎜
⎜
⎛

𝑥𝑥11
.
.
𝑥𝑥𝑖𝑖𝑗𝑗

.

.
𝑥𝑥𝑛𝑛𝑚𝑚⎠

⎟
⎟
⎟
⎞

                𝑠𝑠 =

⎝

⎜
⎜
⎜
⎛

𝑠𝑠1
.
𝑠𝑠𝑛𝑛
.
𝑑𝑑1
.
𝑑𝑑𝑚𝑚⎠

⎟
⎟
⎟
⎞

               𝐴𝐴 =

⎝

⎜
⎜
⎜
⎛

1  1  1  1 … … … … . .
 … 1  1  1 … … … … …
… … … … … … … … . .
… … … … 1  1  1 … …
… … … … … … … … . .
… … … 1  1  1  1 …  .
1  1  1 … … … … 1  1⎠

⎟
⎟
⎟
⎞

 

 

The KKT Optimality Condition for the NTP 

The transportation table is given as:- 

Table 2.2 

 

 

where 𝑥𝑥 is the current basic solution. 

The Lagrange function for the NTP is formulated as 

∂𝑥𝑥R11 

∂c(𝑥𝑥) 
.  .  . .  .  . .  .  . 

∂𝑥𝑥R1m 

∂c(𝑥𝑥) 
𝑆𝑆1 𝑠𝑠1 

.  .  . .  .  . .  .  . .  .  . .  .  . 
.  .  

. 
.  .  . 

.  .  . .  .  . 
∂𝑥𝑥Rij 

∂c(𝑥𝑥) 
.  .  . .  .  . 𝑠𝑠i 𝑠𝑠i 

∂𝑥𝑥Rn1 

∂c(𝑥𝑥) 
.  .  . .  .  . .  .  . 

∂𝑥𝑥Rnm 

∂c(𝑥𝑥) 
𝑠𝑠n 𝑠𝑠n 

𝑑𝑑1 .  .  . .  .  . .  .  . 𝑑𝑑m 

𝑣𝑣1 .  .  . 𝑣𝑣j .  .  . 𝑣𝑣m 
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  Z(𝑥𝑥, 𝜆𝜆 , 𝜔𝜔) = C(𝑥𝑥) + 𝜔𝜔(b – A𝑥𝑥) - 𝜆𝜆𝑥𝑥 

Where  𝜆𝜆 and 𝜔𝜔 are Lagrange multipliers and 𝜆𝜆𝜖𝜖ℝ+
nmU{0} 𝜔𝜔 ∈ℝ

The optimal point  𝑥𝑥 should satisfy the KKT conditions; 

n +m 

  ∇z = ∇𝐶𝐶 (𝑥𝑥) – 𝜔𝜔P

T

   𝜆𝜆𝑥𝑥 = 0 

 A – 𝜆𝜆 = 0 

   𝜆𝜆 ≥ 0 

   𝑥𝑥  ≥ 0 

Specifically for each cell (i, j,) we have 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

=  𝜕𝜕𝑠𝑠 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− (𝑠𝑠,𝑣𝑣)�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑛𝑛+𝑗𝑗 � − 𝜆𝜆𝑘𝑘 = 0                                (3.1)  

𝜆𝜆ij𝑥𝑥ij

    𝑥𝑥Rij

 = 0 

    𝜆𝜆

≥ 0 

k 

Where k = 1 .  .  . nm and 𝑤𝑤 = (𝑠𝑠, 𝑣𝑣) = (𝑠𝑠R1

≥ 0 

, 𝑠𝑠R2, . . ., 𝑠𝑠Rn,  𝑣𝑣R1, .  .  .,𝑣𝑣Rm), ek Є ℝ

Is a vector of zeros except at position k which is 1. 

m+n 

From the conditions (3.1) and 𝜆𝜆k

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

=  𝜕𝜕𝑠𝑠 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � ≥ 0        (3.2)

 ≥ 0, we get, 

 𝑥𝑥Rij
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

=  𝜕𝜕𝑠𝑠 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � ≥ 0        (3.3)

  

  

                   𝑥𝑥ij

 

≥ 0 
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General Solution Procedure for the NTP 

Initialization 

Find an initial basic feasible solution 𝒙𝒙 

Iteration 

Step 1 If  𝒙𝒙 is KKT point, stop.  Otherwise go to the next step. 

Step 2 Find the new feasible solution that improves the cost function and go to step 1. 

3.1 Transportation Problem with Concave Cost Functions 

For large shipments, volume discount may be available sometimes.  In this case the cost function 

of the transportation problem generally takes concave structure for it is separable and the 

marginal cost (cost per unit commodity shipped) decreases with increase of the amount of 

shipment; and increasing, because of the total cost increase per addition of unit commodity 

shipped. 

The discount may be either directly related to the unit commodity. 

Or have the same rate for some amount. 
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Case 1: 

 If the discount is directly related to the unit commodity the resulting cost function will be 

continues and have continues first partial derivatives. 

 

The graph of Cij (𝑥𝑥Rij

Fig 3.2 

) looks like, 

                       120 

                               100 

          Total cost   80 

                               60 

40 

                                20  

                                          5         10         15        20       25       30 

Commodity shipped 

Figure 3.1:  Transportation problem with continuous volume discount 

 

 

 

 



48 
 

 

 

Nonlinear programming formulation of such a problem is given by  

�𝑠𝑠𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

𝑛𝑛

𝑖𝑖=1

= 𝑑𝑑𝑗𝑗  

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 

�𝑥𝑥𝑖𝑖𝑗𝑗

𝑚𝑚

𝐼𝐼=1

= 𝑠𝑠𝑖𝑖  

�𝑥𝑥𝑖𝑖𝑗𝑗

𝑛𝑛

𝐽𝐽=1

= 𝑑𝑑𝑗𝑗  

Where 

   Cij

Now before going to look for an optimal solution let’s state an important theorem: 

  : ℝ                       ℝ 

Theorem 3.2.4 

Let 𝑓𝑓 be concave and continues function and P be a non empty compact polyhedral set.  Then the 

optimal solution to the problem   

min𝑓𝑓(𝑥𝑥), 𝑥𝑥 ЄP exists and can be found at an extreme point of P. 

Let E = (𝑥𝑥R1

Proof 

, 𝑥𝑥R2,,𝑥𝑥Rk.  , 𝑥𝑥Rn

and 𝒙𝒙Rk

) be the set of extreme points of P, 

 Є E such that f(𝑥𝑥Rk) = min {f(𝒙𝒙Ri

 

)  : i= 1, .  .  .,n}. Now since P is compact and𝑓𝑓is 

continuous, 𝑓𝑓 attains its minimum in P, call it𝑥𝑥, 
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If 𝑥𝑥 is extreme point, we are done.  Otherwise, we have that, 

 

 𝑥𝑥 =  �𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

�𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1 

𝜆𝜆𝑖𝑖 > 0 

Where (𝑥𝑥R1, 𝑥𝑥R2…….. 𝑥𝑥Rn

Then by concavity of 𝑓𝑓 it follows that,  

) are extreme points of P. 

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) ≥  ∑ 𝜆𝜆𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ≥  𝑓𝑓(𝑥𝑥𝑘𝑘)∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1  

 

⇒𝑓𝑓(𝑥𝑥) ≥ 𝑓𝑓(𝑥𝑥𝑘𝑘)         (𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠 𝑓𝑓𝑡𝑡𝑓𝑓 𝑠𝑠𝐵𝐵𝑠𝑠ℎ 𝑖𝑖 = 1, … … … ;   𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝑓𝑓(𝑥𝑥𝑖𝑖) 𝐵𝐵𝑛𝑛𝑑𝑑 ∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1). 

 

Since 𝑥𝑥 is minimize, in addition we have, 

    𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) 

It then follows that 

    𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥𝑘𝑘). 

Solution Procedure 

Because of the above theorem, it suffices to consider only the extreme points to find the 

minimum; the following is the procedure 

Let 𝑥𝑥 be the basic solution we have in the current iteration, i.e. n+m-1. 
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Next let’s decompose our 𝑥𝑥 to ( 𝑥𝑥RB,  𝑥𝑥RN) where 𝑥𝑥RB and 𝑥𝑥RN are the basic and  nonbasic variables 

respectively.  Since 𝒙𝒙RB

 

> 0, the complementary slackness condition given in equation (3.3) giver 

us m + n – 1 equations; 

 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗
=  𝜕𝜕𝑠𝑠 (𝑥𝑥)

𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗
− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � = 0       (3.4) 

From the above relation we can determine the values of 𝑠𝑠Ri and 𝑣𝑣Rj by assigning one of 𝑠𝑠’is the 

value zero for we have m + n variables, 𝑠𝑠Ri and 𝑣𝑣Rj

Then we calculate 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥Rij

. 

 for the non basic variables 𝑥𝑥Rij.  Since all 𝑥𝑥Rij

Therefore if equation (3.2) is satisfied for all non basic variable 𝑥𝑥Rij

 are zero at the extreme, 

the complementary slackness condition is satisfied. 

Otherwise, if 

,  𝑥𝑥 is a KKT point.   

  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � < 0 

 

We will move to look for better basic solution such that all the constraints (feasibility conditions) 

are satisfied.  We do this by using the same procedure as the transportation simplex algorithm.   

3.1.1 The Transportation Concave Simplex Algorithm (TCS) 

Initialization 

Find the initial basic feasible solution using some rule like west corner rule. 

Iteration 

Step 1:  Determine the values of 𝑠𝑠Ri and vi

𝜕𝜕𝑠𝑠 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � = 0 

 from the equation,    

Where 𝑥𝑥RBij

 

 are the basic variables. 
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Step 2 

If  

𝜕𝜕𝑠𝑠�𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � = 0 

For all 𝑥𝑥Rij  

Step 3 

non-basic, stop, 𝑥𝑥 is KKT point. Else go to step 3. 

Calculate 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

 = 𝑚𝑚𝑖𝑖𝑛𝑛 { 
𝜕𝜕𝑠𝑠�𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 �} 

𝑥𝑥Rrl 

Allocate 𝑥𝑥Rrl

will enter the basis. 

Adjust the allocations so that the constraints are satisfied. 

 = θ where θ is found as in the linear transportation case. 

Determine the leaving variable say 𝑥𝑥RBrk, where 𝑥𝑥RBrk

Then find the new basic variables and go to step 1. 

 is the basic variable which comes to zero 

first while making the adjustment. 

Finite Convergence of the Algorithm 

The feasible set of our problem is a non empty polyhedral set.  And by definition, a polyhedral 

set P is a set bounded with a finite number of hyper planes from which it follows that it possesses 

finite number of extreme points.  

In each step of the algorithm, we jump from one extreme point to another looking for a better 

feasible solution implying that the algorithm will terminate after a finite iteration.  In addition 

since for all i and j, 0 ≤𝑥𝑥Rij ≤ max {si, dj

 

}, P is bounded that guarantees the existence of minimum 

value.   
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Example:  The following example illustrates the algorithm. 

       Consider the transportation problem 

 

�.
3

𝑖𝑖=1

�𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

3

𝑗𝑗=1

= 𝑑𝑑𝑗𝑗  

𝑥𝑥11 +  𝑥𝑥12 + 𝑥𝑥13 = 150 

𝑥𝑥21 +  𝑥𝑥22 + 𝑥𝑥23 = 175 

𝑥𝑥31 +  𝑥𝑥32 + 𝑥𝑥33 = 275 

𝑥𝑥11 + 𝑥𝑥21 + 𝑥𝑥31 = 200 

𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 = 100 

𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥33 = 600 

𝐶𝐶11(𝑥𝑥11) = 6𝑥𝑥11 − 0.01𝑥𝑥2
11            𝐶𝐶23(𝑥𝑥23) = 11𝑥𝑥23 − 0.015𝑥𝑥2

23  

𝐶𝐶12(𝑥𝑥12) = 7𝑥𝑥12 − 0.01𝑥𝑥2
12          𝐶𝐶31(𝑥𝑥31) = 4𝑥𝑥31 − 0.02𝑥𝑥2

31 

𝐶𝐶13(𝑥𝑥13) = 10𝑥𝑥13 − 0.02𝑥𝑥2
13             𝐶𝐶32(𝑥𝑥32) = 5𝑥𝑥32 − 0.02𝑥𝑥2

32  

𝐶𝐶21(𝑥𝑥21) = 7𝑥𝑥21 − 0.03𝑥𝑥2
21                   𝐶𝐶33(𝑥𝑥33) = 12𝑥𝑥33 − 0.015𝑥𝑥2

33  

                    𝐶𝐶22(𝑥𝑥22) = 11𝑥𝑥22 − 0.01𝑥𝑥2
22  

Using the West Corner rule we get the initial basic solution. 

 𝑥𝑥 = (𝑥𝑥𝐵𝐵11, 𝑥𝑥12, 𝑥𝑥13, 𝑥𝑥𝐵𝐵21, 𝑥𝑥𝐵𝐵22, 𝑥𝑥𝐵𝐵23, 𝑥𝑥31, 𝑥𝑥32, 𝑥𝑥𝐵𝐵33) 

               = (150, 0, 0, 50, 100, 25, 0, 0, 275) 
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The partial derivatives at 𝑥𝑥 are given as:    

𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥11

= 3,        𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥21

= 4,       𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥22

= 9,        𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥23

= 10.25,           𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥33

= 3.75 

Now we find,  

  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � = 0 

ie 
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

= �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 �. 

Hence 

𝑠𝑠1 + 𝑣𝑣1 = 3,   𝑠𝑠2 + 𝑣𝑣1 = 4,   𝑠𝑠2 + 𝑣𝑣2 = 9,   𝑠𝑠2 + 𝑣𝑣3 = 10.25,  𝑠𝑠3 + 𝑣𝑣3 = 3.75 

Letting𝑠𝑠1 = 0, from the above equations,we have 

𝑠𝑠0 = 0,       𝑠𝑠2 = 1,      𝑠𝑠3 = −5.5 

                                                   𝑣𝑣1 = 3, 𝑣𝑣2 = 8        𝑣𝑣3 = 9.25  

Then the reduced costs for the non basic variables is    

   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥12

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥12

− (𝑠𝑠1 + 𝑣𝑣2) = 5                      𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥13

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥13

− (𝑠𝑠1 + 𝑣𝑣3) = 0.75 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥31

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥31

− (𝑠𝑠3 + 𝑣𝑣1) = 6.5                   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥32

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥32

− (𝑠𝑠3 + 𝑣𝑣2) = 1.25 

Since all are non-negative, x is kkt point and optimal solution to the problem. 
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Case 2:  

 In the case when the volume discount is fixed for some amount of commodity, rather than 

varying with unit amount shipped, the transportation cost function will be piecewise linear 

concave yet increasing. 

fig. 3.3 

                        8 

                        7 

                        6 

                        5 

Total cost 

                        3  

                        2 

    1   

                            0          1          2          3         4        5         6 

Commodity shipped 

Figure 3.2:  Transportation problem with piecewise linear concave cost 

To avoid complication, assuming that to each combination of source and destination, the interval 

in which the marginal cost (cost per unit commodity) changes is the same, the cost of shipping 

𝑥𝑥Rij units from source i to destination j is given by Cij (𝑥𝑥Rij), then the nonlinear programming 

formulation of the problem is given by 
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𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝜕𝜕𝑠𝑠                  �.
𝑛𝑛

𝑖𝑖=1

�𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡                        �𝑥𝑥𝑖𝑖𝑗𝑗 = 𝑠𝑠𝑖𝑖

𝑚𝑚

𝐼𝐼=1

 

�𝑥𝑥𝑖𝑖𝑗𝑗 = 𝑑𝑑𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 

𝑖𝑖 = 1,2, … , 𝑛𝑛   𝑗𝑗 = 1,2,3 … ,𝑚𝑚 

Where, 

𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗  =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐶𝐶0

𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗                    0 ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  𝐵𝐵1

𝐶𝐶1
𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗   𝐵𝐵1  ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  𝐵𝐵2

… … … … … … … . . … … … … … … .
𝐶𝐶𝑟𝑟 𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗   𝐵𝐵𝑟𝑟  ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  𝐵𝐵𝑟𝑟+1

… … … … … … … . … … … … … … . .
… … … … … … … … … … … … … …
𝐶𝐶𝑘𝑘−1

𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗   𝐵𝐵𝑘𝑘−1 ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  𝐵𝐵𝑘𝑘
𝐶𝐶𝑘𝑘 𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗   𝐵𝐵𝑘𝑘 ≤ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝑠𝑠 = 𝑚𝑚𝐵𝐵𝑥𝑥(𝑠𝑠𝑖𝑖 ,   𝑑𝑑𝑗𝑗 )

�     

and 

1.   (0,𝐵𝐵1, … .𝐵𝐵𝑟𝑟 , … 𝐵𝐵𝑘𝑘−1, 𝐵𝐵𝑘𝑘 , 𝑠𝑠)  is the partition of the interval (0, b) in to k + 1 sub intervals 

2. Each Cl
ij

To solve this problem, as we can see from the structure of the cost function, it’s impossible to 

directly apply the algorithm of the previous section for non-differentiability of the total cost 

function. 

 is linear in the sub interval (𝐵𝐵𝑟𝑟 ,𝐵𝐵𝑟𝑟+1) 
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But, since the function, also, has a simple structure and differentiability fails at discrete points, it 

can be easily approximated using differentiable functions like Chebyshev trigonometric or 

Legendre polynomials. 

We choose to approximate it by the so called shifted Legendre polynomials. 

These set of Legendre polynomials say (p0, p1, . .  .  pr

    <  𝑓𝑓,𝑔𝑔 > =  ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥1
0 ,  for all f, g Є C (0,1) 

) are orthogonal in (0,1) with respect to 

weight function w(𝑥𝑥) = 1, where the inner product on C(0,1) is defined by 

Where C (0,1) is the space of continuous functions on (0,1).      

The first three terms are, 

 𝑝𝑝0(𝑥𝑥) = 1 

𝑝𝑝1(𝑥𝑥) = 𝑥𝑥  

𝑝𝑝2(𝑥𝑥) = 3𝑥𝑥2 − 1   

And the others can be obtained from 

𝑝𝑝𝑓𝑓(𝑥𝑥) =
1

2𝑓𝑓 !
𝑑𝑑𝑓𝑓[(𝑥𝑥2 − 1)𝑓𝑓]

𝑑𝑑𝑥𝑥𝑓𝑓
 

Then, the space spanned by (𝑝𝑝0,𝑝𝑝1, … … … 𝑝𝑝𝑓𝑓) is a subspace of C(0, 1).  Hence, given any f(𝑥𝑥) Є 

C (0,1), we can find a unique least square approximation of f in the subspace.  Note that every 

element of the subspace spanned (𝑝𝑝0,𝑝𝑝1, … … … 𝑝𝑝𝑓𝑓) is at least twice differentiable. 

The least square approximation of any function f(𝑥𝑥) with r of these polynomials in (0,1) is given 

by,    

   𝑓𝑓(𝑥𝑥) =  𝐵𝐵𝑡𝑡𝑝𝑝𝑡𝑡(𝑥𝑥) +  𝐵𝐵1𝑝𝑝1(𝑥𝑥) … … … .𝐵𝐵𝑖𝑖𝑝𝑝𝑖𝑖(𝑥𝑥). . . . . .𝐵𝐵𝑓𝑓𝑝𝑝𝑓𝑓(𝑥𝑥) 

where 
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                           𝐵𝐵𝑖𝑖 =  ∫
𝑝𝑝𝑖𝑖𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1

0

∫ [𝑝𝑝𝑖𝑖(𝑥𝑥)]2𝑑𝑑𝑥𝑥1
0

              𝑖𝑖 = 0, 1, 2, … … . 𝑓𝑓P

    

To approximate our functions Cij(𝑥𝑥Rij

   

), in the same manner, we define a one to one 

correspondence between (0, b) to (0,1) by  

                                                                                                                                                                                                                                                       

                                                       𝑔𝑔: (0, 𝑠𝑠)  → (0, 1) 

𝑔𝑔�𝑥𝑥𝑖𝑖𝑗𝑗 � =
1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗  

That is, we substitute 𝑥𝑥Rij 

Then we have, 

𝑥𝑥𝑖𝑖𝑗𝑗  →  𝐶𝐶∗𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 � = 𝐶𝐶𝑖𝑖𝑗𝑗 (
1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗 )  =  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝐶𝐶0

𝑖𝑖𝑗𝑗 (
1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗  )                 0 ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  

𝐵𝐵𝑖𝑖
𝑠𝑠

𝐶𝐶1
𝑖𝑖𝑗𝑗 (

1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗   )                

𝐵𝐵𝑖𝑖
𝑠𝑠

 ≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  
𝐵𝐵2

𝑠𝑠… … … … … … … . . … … … … … … .

𝐶𝐶𝑟𝑟 𝑖𝑖𝑗𝑗 (
1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗   )              

𝐵𝐵𝑟𝑟
𝑠𝑠
≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  

𝐵𝐵𝑟𝑟+1

𝑠𝑠… … … … … … … . … … … … … … . .
… … … … … … … … … … … … … …

𝐶𝐶𝑘𝑘−1
𝑖𝑖𝑗𝑗 (

1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗   )       

𝐵𝐵𝑘𝑘−1

𝑠𝑠
≤  𝑥𝑥𝑖𝑖𝑗𝑗 ≤  

𝐵𝐵𝑘𝑘
𝑠𝑠

𝐶𝐶𝑘𝑘𝑖𝑖𝑗𝑗 (
1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗   )   

𝐵𝐵𝑘𝑘
𝑠𝑠
≤ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 1 = 𝑚𝑚𝐵𝐵𝑥𝑥(𝑠𝑠𝑖𝑖 ,   𝑑𝑑𝑗𝑗 )

� 

by (1
𝑠𝑠
𝑥𝑥𝑖𝑖𝑗𝑗 )so that its domain will be (0,1).                                                 

Now, after approximating 𝐶𝐶∗𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 � by the shifted Legendre polynomials on (0,1), assume we 

have found it’s best approximation at 𝐶𝐶^
𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 �. 

Then, substituting back the 𝑥𝑥Rij in C^ij by b𝑥𝑥Rij

𝐶𝐶𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 � over (0,b).  Therefore the best approximation of 𝐶𝐶𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 � over (0,b) will be  

 gives us the approximation to  

    𝐶𝐶𝑖𝑖𝑗𝑗 �𝑥𝑥𝑖𝑖𝑗𝑗 �=𝐶𝐶^
𝑖𝑖𝑗𝑗 �𝑠𝑠𝑥𝑥𝑖𝑖𝑗𝑗 �.                                                               
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This has continuous derivatives. 

 

 

 

Consequently, we solve the problem 

 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝜕𝜕𝑠𝑠                    �.
𝑛𝑛

𝑖𝑖=1

�𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

𝑚𝑚

𝑗𝑗=1

=  �.
2

𝑟𝑟=0

�.
𝑛𝑛

𝑖𝑖=1

�𝐵𝐵𝑟𝑟𝑝𝑝𝑟𝑟(𝑥𝑥𝑖𝑖𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

 

𝑠𝑠. 𝑠𝑠.           �𝑥𝑥𝑖𝑖𝑗𝑗 =
𝑠𝑠𝑖𝑖
𝑠𝑠

𝑚𝑚

𝑗𝑗=1

 

        

�𝑥𝑥𝑖𝑖𝑗𝑗 =
𝑑𝑑𝑗𝑗
𝑠𝑠

𝑛𝑛

𝑖𝑖=1

 

                                                                                  𝑖𝑖 = 1, 2, … … … … … . . , 𝑛𝑛             𝑗𝑗 = 1, 2, … … … … … …𝑚𝑚, 

We then use the same procedure as above to solve the problem. 

3.2. Convex Transportation Problem: This case may arise when the objective function is 
composed of not only the unit transportation cost but also of production cost related to each 
commodity. Or in the case when the distance from each source to each destination is not fixed, 

The problem can be formulated as 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝜕𝜕𝑠𝑠       𝐶𝐶(𝑥𝑥) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡      𝐴𝐴𝑥𝑥 = 𝑠𝑠 

𝑥𝑥 ≥ 0 

Where C (𝑥𝑥) is convex, continuous and has continuous first order partial derivatives. 

The Convex Simplex solution procedure for Transportation problem 
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In the case when the cost function is convex, the minimum point may not be attained necessarily 

at an extreme; it may be found before reaching a boundary of the feasible set. 

What precisely happens is that there may be non basic variable with positive allocation while 

none of the basis is driven to zero. 

 

 

To solve this problem, we use the idea of the convex simplex algorithm of Zangwill (32) which 

was originally designed to take care of convex and pseudo convex problem with linear 

constraints.  Actually the original procedure is used to look for a local optimal solution for any 

other linearly constrained programming problem.  

 We use the special structure of transportation problem in the procedure so as to make it efficient 

for our particular problem. 

The method reduces to the ordinary transportation simplex algorithm whenever the objective 

function is linear, to the method of Beal when it is quadratic and to the above concave simplex 

procedure when the function is concave. 

We partition the variable, 𝑥𝑥 = (𝑥𝑥11, 𝑥𝑥12 … … . 𝑥𝑥𝑛𝑛𝑚𝑚 ) 𝑠𝑠𝑡𝑡 (𝑥𝑥𝐵𝐵 , 𝑥𝑥𝑁𝑁).  Where 𝑥𝑥RB is n + m – 1 

component vector of basic variables and 𝑥𝑥RN

Suppose we have the initial basic feasible solution x

is nm – (n + m -1) component vector of non-basic 

variables, corresponding to the (n + m – 1) X(n + m – 1) basis sub matrix and (n +m – 1)X(nm – 

(n + m – 1) non basic sub matrix of A. 

0

In the procedure what we do is to find a mechanism in which non optimal basic solution 𝑥𝑥 at a 

given iteration is improved until it satisfies the KKT conditions which  are also sufficient 

conditions for convex transportation problem, 

. 

i.e, until for each cell we have; 

     𝑥𝑥𝑖𝑖𝑗𝑗 ( 𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 �) = 0          and            
𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � ≥ 0 
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Since we have each basic variable 𝑥𝑥RBij 

Slackness condition implies that for each basic cell,  

> 0, the above complementary 

we must have 

𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � = 0 

𝑥𝑥RBij 

Since we have n + m – 1 of such equations, by letting u

 basic variable. 

1 = 0 we obtain all the values of 𝑠𝑠Ri and 𝑣𝑣Ri

Now for a non basic cell, at a feasible iterate point 𝑥𝑥; we may have:   

 

as we have done exactly for the concave and linear cases. 

(i) 𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � > 0                              𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 − �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � > 0 

(ii) 𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � < 0                           𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 − �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � < 0 

(iii)  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � ≥ 0                         𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 − �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 � > 0 

From the KKT conditions given earlier, the last case occurs when 𝑥𝑥 is optimal. 

But if the solution 𝑥𝑥 falls on either of the other three, it must be improved as follows. 

Let 𝐼𝐼𝐽𝐽 = (𝑖𝑖𝑗𝑗 ∶ 𝑥𝑥𝑖𝑖𝑗𝑗  𝑖𝑖𝑠𝑠 𝑛𝑛𝑡𝑡𝑛𝑛 − 𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠 𝑣𝑣𝐵𝐵𝑓𝑓𝑖𝑖𝐵𝐵𝑠𝑠𝑟𝑟𝑠𝑠) and suppose that we are in the kth

We first begin by computing; 

iteration. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

 =   𝑚𝑚𝑖𝑖𝑛𝑛    𝜕𝜕𝑓𝑓 (𝑥𝑥𝑘𝑘 )
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗 �                    𝑖𝑖𝑗𝑗 ∈ 𝐼𝐼𝐽𝐽 

 

𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 =  𝑚𝑚𝐵𝐵𝑥𝑥    𝑥𝑥𝑖𝑖𝑗𝑗
𝜕𝜕𝑓𝑓�𝑥𝑥𝑘𝑘�
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− �𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗�                      𝑖𝑖𝑗𝑗 ∈ 𝐼𝐼𝐽𝐽 

Here we do not want to improve (decrease) a positive valued non-basic variable 𝑥𝑥Rij unless its 

partial derivative is positive. 
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Therefore we only focus on the positive values of the product 

𝑥𝑥𝑖𝑖𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

 

Now the variable to be selected is as below, 

 

 

Case 1 

𝑓𝑓𝑡𝑡𝑓𝑓        
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

≥ 0    𝐵𝐵𝑛𝑛𝑑𝑑     𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 ≥ 0          

Decrease 𝑥𝑥Rst

Let 𝑦𝑦𝑘𝑘 = (𝑦𝑦𝑘𝑘11,  𝑦𝑦𝑘𝑘12, … … … . 𝑦𝑦𝑘𝑘𝑛𝑛𝑚𝑚 ) be the value of 𝑥𝑥𝑘𝑘 = (𝑥𝑥𝑘𝑘11,  𝑥𝑥𝑘𝑘12, … … … . 𝑥𝑥𝑘𝑘𝑛𝑛𝑚𝑚 ) after 

making the necessary adjustment by adding and subtracting θ in the loop containing 𝑥𝑥Rst

 by the value θ using the transportation table as in the linear and concave cases. 

By doing so, either 𝑥𝑥Rst

 so that 

all the constraints are satisfied. 

 itself or a basic variable say 𝑥𝑥RBst

 Now y

 will be driven to zero. 

k may not be the next iterate point; since the function is convex, a better point could be 

found before reaching yk 

𝐵𝐵𝑛𝑛𝑑𝑑 𝑔𝑔𝑠𝑠𝑠𝑠 (𝑥𝑥𝑘𝑘+1) =  { 𝜆𝜆𝑥𝑥𝑘𝑘 + (1 − 𝜆𝜆 )𝑦𝑦𝑘𝑘} 𝑤𝑤ℎ𝑠𝑠𝑓𝑓𝑠𝑠  λ  is the optimal solution of equation ( 3.5) 

to check this, we solve problem; 

𝑓𝑓(𝑥𝑥𝑘𝑘+1) =  𝑚𝑚𝑖𝑖𝑛𝑛 { 𝑓𝑓(𝜆𝜆𝑥𝑥𝑘𝑘 + (1 − 𝜆𝜆)𝑦𝑦𝑘𝑘 ∶ 0 ≤ 𝜆𝜆 ≤ 1}                                                           3.5 

Before the next iteration, 

If  𝑥𝑥𝑘𝑘+1 = 𝜆𝜆𝑥𝑥𝑘𝑘   and if a basic variable became zero during adjustment made, we change the 

basis. 

𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≠ 𝑦𝑦𝑘𝑘𝑡𝑡𝑓𝑓 𝑥𝑥𝑘𝑘+1 = 𝑦𝑦𝑘𝑘and𝑥𝑥Rst is driven to zero, we don’t change the basic by substituting the 

leaving basic variable by 𝑥𝑥Rst. 
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Case 2 

𝑓𝑓𝑡𝑡𝑓𝑓   
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

< 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

 ≤ 0 

In this case the value of 𝑥𝑥Rrl should be increased by θ and then we find yk, where θ and yk

Note that: as we increase the value of 𝑥𝑥Rrl

 are 

defined as in the case 1. 

 one of the basic variables, say, 𝑥𝑥RBt will be driven to 

zero, and this is the exit criteria of the linear and concave transportation simplex algorithm and 

yk

But now after solving for 𝑥𝑥𝑘𝑘+1 from 3.5, before going to the next iteration, we will have the 

following possibilities. 

 would have been the next iterate point of the procedure. 

𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘+1 = 𝑦𝑦𝑘𝑘  we change the former basis, substitute 𝑥𝑥RBt

𝑖𝑖𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≠ 𝑦𝑦𝑘𝑘  we do not change the basis. All the basic variables outside of the loop will remain 

unchanged. 

 by 𝑥𝑥Rrl. 

 

Case 3 

In this case either we decrease 𝑥𝑥Rst

 

𝑓𝑓𝑡𝑡𝑓𝑓        
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

< 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

> 0 

 as in the case 1 or increase 𝑥𝑥Rrl

3.2.1 The Transportation Convex Simplex Algorithm 

 according to case 2. 

Now we write the formal algorithm for solving the convex transportation problem. 

Initialization 

Final the initial basic feasible solution 

Iteration 
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Step 1:  Determine all 𝑠𝑠Ri and 𝑣𝑣Rj

 
𝜕𝜕𝑓𝑓�𝑥𝑥𝑘𝑘�
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 = 0 

 from 

For each basic cell 

Step 2:  For each non basic cell, calculate; 

          𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

 = 𝑚𝑚𝑖𝑖𝑛𝑛.    
𝜕𝜕𝑓𝑓�𝑥𝑥𝑘𝑘�
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 

 𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

= max    𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑓𝑓�𝑥𝑥𝑘𝑘�
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗� 

Step 3 

      𝐼𝐼𝑓𝑓                𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟
 ≥ 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

= 0 

Determine the non-basic variable to change. 

Decrease 𝑥𝑥Rrl 

Increase 𝑥𝑥Rrl

according to case if     𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟
< 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

> 0 . 

Either increase 𝑥𝑥Rrl

 according to case 2 if     𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟
< 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

≤ 0 . 

 or decrease 𝑥𝑥Rst

Step 4:    

 if  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

< 0  𝐵𝐵𝑛𝑛𝑑𝑑  𝑥𝑥𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

< 0 . 

Find the values of yk, by means of θ, and 𝑥𝑥P

k+1

If  y

, from 3.5 

k = 𝑥𝑥P

k+1

 𝑥𝑥P

k

and a basic variable is driven to zero, change the basic otherwise do not change the 

basis. 

 = 𝑥𝑥P

k+ 

 

go to step 1.              
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An Example. 

This example is used by Zangwill to illustrate the Convex Simplex Algorithm. 

min 𝜕𝜕 = 𝑓𝑓(𝑥𝑥) = 𝑥𝑥11 + 2𝑥𝑥12 + 𝑥𝑥2
12 + 𝑥𝑥2

13 + 3𝑥𝑥22 + 2𝑥𝑥2
23 + 𝑠𝑠(𝑥𝑥11 + 𝑥𝑥21)  

   𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 

𝑥𝑥11 + 𝑥𝑥12 + 𝑥𝑥13 = 2 = 𝑠𝑠1 

𝑥𝑥21 + 𝑥𝑥22 + 𝑥𝑥23 = 2 = 𝑠𝑠2 

𝑥𝑥11 + 𝑥𝑥21 = 1 = 𝑑𝑑1 

𝑥𝑥12 + 𝑥𝑥22 = 2 = 𝑑𝑑2 

𝑥𝑥13 + 𝑥𝑥23 = 2 = 𝑑𝑑3 

𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 0  

Using the west corner rule, we found 

𝑥𝑥1 = 𝑥𝑥𝐵𝐵11 + 𝑥𝑥𝐵𝐵12 + 𝑥𝑥13 + 𝑥𝑥21 + 𝑥𝑥𝐵𝐵22 + 𝑥𝑥𝐵𝐵23 = (1, 2, 0, 0, 0, 2) 

   𝑖𝑖𝑠𝑠 𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝐵𝐵𝑟𝑟 𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠 𝑓𝑓𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛.  

Then   

         
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥11

= 1                         
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥12

= 2                       
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥13

= 0 
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𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥21

= 1                         
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥22

= 3                       
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥23

= 8 

     𝑠𝑠ℎ𝑠𝑠 𝑓𝑓𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

=
𝜕𝜕𝑓𝑓(𝑥𝑥1)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗  

are calculated and we get the values 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥11

= 0     
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥12

= 0    
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥13

= −7 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥21

= −1     
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥22

= 0    
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥23

= 0 

𝜕𝜕𝜕𝜕
𝑥𝑥13

=  𝑚𝑚𝑖𝑖𝑛𝑛      𝜕𝜕𝑓𝑓 (𝑥𝑥1)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗     = −7 < 0  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

= max    𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑓𝑓 (𝑥𝑥1)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 �     = 0 

Therefore x13

    𝜃𝜃 = min(𝑥𝑥12  𝑥𝑥23) = 2 

 must be increased by θ where 

Thereby making the value of 

y1

Now to find the value of 𝑥𝑥2 we solve 

 = (1, 0, 2,0, 2, 0) 

 𝑓𝑓(𝑥𝑥2) =  𝑚𝑚𝑖𝑖𝑛𝑛 { 𝑓𝑓(𝜆𝜆𝑥𝑥𝑘𝑘 + (1 − 𝜆𝜆)𝑦𝑦1} ∶    0 ≤ 𝜆𝜆 ≤ 1 

 This gives us 

𝜆𝜆 =
5

12  𝐵𝐵𝑛𝑛𝑑𝑑 𝑥𝑥2 = (𝑥𝑥𝐵𝐵11, 𝑥𝑥𝐵𝐵12, 𝑥𝑥13, 𝑥𝑥21, 𝑥𝑥𝐵𝐵22, 𝑥𝑥𝐵𝐵23) 

                                                = (1  5
6

  7
6

  0  7
6

  5
6
 ) 
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Where 𝜆𝜆= ∑𝑥𝑥𝐵𝐵
𝑛𝑛𝑡𝑡 .𝑡𝑡𝑓𝑓  𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠

  and 𝑥𝑥2= 𝜆𝜆𝑥𝑥1 + (1- 𝜆𝜆) 𝑦𝑦1 

Bases are not changed.  

 Calculating the reduced costs, we get, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑓𝑓𝑟𝑟

= min(
𝜕𝜕𝑓𝑓(𝑥𝑥2)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

−  𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗  )  = −1 < 0     

                              𝑥𝑥𝑖𝑖𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠

= 𝑚𝑚𝐵𝐵𝑥𝑥    𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑓𝑓 (𝑥𝑥2)
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 �   = 0     

Therefore we increase 𝑥𝑥R21

This time 𝑥𝑥R21

 by θ calculated as before.   

 becomes basic while 𝑥𝑥R11

Then we get 𝑦𝑦2 =  (0, 11
6

, 7
6

, 1
6

, 1
6

, 5
6
) 

 leaves the basis 

Continuing the process, we find 𝑥𝑥3=𝑦𝑦2 

The reduced costs are 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥11

= 1    
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥12

= 0    
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥13

= 0 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥11

= 0      
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥12

= 0      
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥13

= 0 

And all 

𝑥𝑥𝑖𝑖𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

= max    𝑥𝑥𝑖𝑖𝑗𝑗 �
𝜕𝜕𝑓𝑓�𝑥𝑥𝑘𝑘�
𝜕𝜕𝑥𝑥𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 �   = 0  

Therefore  

 𝑥𝑥3 = (0, 11
6

, 7
6

, 1
6

, 1
6

, 5
6
 ) 

is the optimal solution. 
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CHAPTER 4 

DATA ANALYSIS 

Introduction 

In this chapter we examine a practical application of the above solution procedures. Emphasis 

will be on the concave transportation problem. We will examine the data obtained from the 

GALCO Company limited; manipulate the data to suit our transportation problem. 

DATA AND ANALYSIS 

The GALCO Ghana limited is a manufacturing company located in Kumasi. They produce 

pomade (obaatannku), body powder, machine oil, candle wax etc. these products are supplied to 

the 10 regional capitals of the country. For the purpose of this project only 4 of these demand 

points will be considered; Accra sunyani tamale and bolga. The estimated supply capacities of 

the three products, the demand requirements at the four sites (regions) and the transportation cost 

per box of each product are given below.  

1. Body powder           15               10                    4                20                     15000 

                                  Accra          Tamale           Sunyani          Bolga              Supply 

2. Obaatannku            7                 6                      8                3                       25000 

3.  Machine oil             1                 9                      5                3                       10000 
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       Demand            20000          10000               8000          12000                  50000 

The problem is to determine how many boxes of each product to be transported from the source 

to each destination on a monthly basis in order to minimize the total transportation cost. 

 

 

 

A diagram of the different transportation routes with supply and demand figures is shown below.                                                   

Supply                                                                                                                              

1 obaatannku (25000)                                                                                                                                               A  Accra (20000) 

 demand 

 

2 body powder (15000)                                                                                                                                          B     sunyani (10000)  

 

3 machine oil (10000)                                                                                                                                              C      tamale   (8000)           

 

                                                                                                                                                                              D     bolga (12000). 

 

Forming the transportation tableau

To form transportation tableau, let  

. 

i= product to be shipped. 

j = destination of each product. 

si  =

d

the capacity of source node i, 

j  =the demand of destination j, 
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xij

C

= the total capacity from source i to destination j 

ij

𝑝𝑝Rm

 = the per unit cost of transporting commodity from i to destination j. 

If we suppose that discount is given on each box transported from i to j then the non linear 

transportation problem can be formulated as: 

𝑚𝑚𝑖𝑖𝑛𝑛        �.
3

𝑖𝑖=1

�𝐶𝐶𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗

4

𝑗𝑗=1

 

𝑥𝑥11 + 𝑥𝑥12 + 𝑥𝑥13 + 𝑥𝑥14 = 15 

𝑥𝑥21 + 𝑥𝑥22 + 𝑥𝑥23 + 𝑥𝑥24 = 25 

𝑥𝑥31 + 𝑥𝑥32 + 𝑥𝑥33 + 𝑥𝑥34 = 10 

𝑥𝑥11 + 𝑥𝑥21 + 𝑥𝑥31 = 20 

𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 = 10 

𝑥𝑥13 + 𝑥𝑥23 + 𝑥𝑥33 = 8 

𝑥𝑥14 + 𝑥𝑥24 + 𝑥𝑥34 = 12 

 = percentage discount allowed for transporting from i to destination j. 

   

Where 

𝐶𝐶11𝑥𝑥11 = 15𝑥𝑥11 − 𝑝𝑝11𝑥𝑥2
11𝐶𝐶23𝑥𝑥23 = 8𝑥𝑥23 − 𝑝𝑝23𝑥𝑥2

23  

𝐶𝐶12𝑥𝑥12 = 10𝑥𝑥12 − 𝑝𝑝12𝑥𝑥2
12𝐶𝐶24𝑥𝑥24 = 3𝑥𝑥24 − 𝑝𝑝24𝑥𝑥2

24  

𝐶𝐶13𝑥𝑥13 = 4𝑥𝑥13 − 𝑝𝑝13𝑥𝑥2
13𝐶𝐶31𝑥𝑥31 = 𝑥𝑥31 − 𝑝𝑝31𝑥𝑥2

31  

𝐶𝐶14𝑥𝑥14 = 20𝑥𝑥14 − 𝑝𝑝14𝑥𝑥2
14𝐶𝐶32𝑥𝑥32 = 9𝑥𝑥32 − 𝑝𝑝32𝑥𝑥2

32  

𝐶𝐶21𝑥𝑥21 = 7𝑥𝑥21 − 𝑝𝑝21𝑥𝑥2
21𝐶𝐶33𝑥𝑥33 = 5𝑥𝑥33 − 𝑝𝑝33𝑥𝑥2

33  



70 
 

𝐶𝐶22𝑥𝑥22 = 6𝑥𝑥22 − 𝑝𝑝22𝑥𝑥2
22𝐶𝐶34𝑥𝑥34 = 2𝑥𝑥34 − 𝑝𝑝34𝑥𝑥2

34If we allow the following discounts on each 

transported product i from the source to each of the destinations, 

 (𝑝𝑝11,𝑝𝑝12,𝑝𝑝13,𝑝𝑝14,𝑝𝑝21,𝑝𝑝22,𝑝𝑝23,𝑝𝑝24,𝑝𝑝31,𝑝𝑝32,𝑝𝑝33,𝑝𝑝14) 

= (0.02, 0.01, 0.04, 0.07, 0.01, 0.04, 0.03, 0.02, 0.005, 0.03, 0.015, and 0.01). 

 

 𝑠𝑠ℎ𝑠𝑠𝑛𝑛 𝑠𝑠ℎ𝑠𝑠 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 𝑓𝑓𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝐶𝐶𝑖𝑖𝑗𝑗  𝑠𝑠𝐵𝐵𝑛𝑛 𝑠𝑠𝑠𝑠 𝑠𝑠𝑥𝑥𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝐵𝐵𝑠𝑠 

𝐶𝐶11𝑥𝑥11 = 15𝑥𝑥11 − 0.02𝑥𝑥2
11            𝐶𝐶23𝑥𝑥23 = 8𝑥𝑥23 − 0.03𝑥𝑥2

23  

𝐶𝐶12𝑥𝑥12 = 10𝑥𝑥12 − 0.01𝑥𝑥2
12           𝐶𝐶24𝑥𝑥24 = 3𝑥𝑥24 − 0.02𝑥𝑥2

24  

𝐶𝐶13𝑥𝑥13 = 4𝑥𝑥13 − 0.04𝑥𝑥2
13              𝐶𝐶31𝑥𝑥31 = 𝑥𝑥31 − 0.005𝑥𝑥2

31 

𝐶𝐶14𝑥𝑥14 = 20𝑥𝑥14 − 0.07𝑥𝑥2
14            𝐶𝐶32𝑥𝑥32 = 9𝑥𝑥32 − 0.03𝑥𝑥2

32  

𝐶𝐶21𝑥𝑥21 = 7𝑥𝑥21 − 0.01𝑥𝑥2
21                 𝐶𝐶33𝑥𝑥33 = 5𝑥𝑥33 − 0.015𝑥𝑥2

33  

𝐶𝐶22𝑥𝑥22 = 6𝑥𝑥22 − 0.04𝑥𝑥2
22              𝐶𝐶34𝑥𝑥34 = 2𝑥𝑥34 − 0.01𝑥𝑥2

34  

We develop the tableau as below, 

 

 

 

 

 

 

 

 

𝑥𝑥4 Accra Sunyani Tamale 
Bolga 

 
𝑆𝑆1 𝑠𝑠1 

1  

           15 
  10               4 15000            20 u1 

2  

             7 

 

            6 

 

               8 

 

            3 

25000 𝑠𝑠2 

3             1            9               5 
 

            2 

10000 𝑠𝑠3 

𝑑𝑑1 20000 10000 8000 12000 

𝑣𝑣i v 𝑣𝑣2 1 v 𝑣𝑣3 3 
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Total supply = 50000  

Total demand = 50000 

Hence the tableau is balanced. 

 

 

Using the West Corner rule we get the initial basic solution. 

 The solution tableau is as shown below, 

 

 

  

 

 

 

 

 

𝑥𝑥 = (𝑥𝑥𝐵𝐵11, 𝑥𝑥12, 𝑥𝑥13, 𝑥𝑥14, 𝑥𝑥𝐵𝐵21, 𝑥𝑥𝐵𝐵22𝑥𝑥𝐵𝐵23, 𝑥𝑥24, 𝑥𝑥31, 𝑥𝑥32, 𝑥𝑥33, 𝑥𝑥𝐵𝐵34) 

 = (15, 0, 0, 0, 5, 10, 8, 2, 0, 0, 0, 10), 𝑖𝑖𝑛𝑛 𝑠𝑠ℎ𝑡𝑡𝑠𝑠𝑠𝑠𝐵𝐵𝑛𝑛𝑑𝑑𝑠𝑠.   

 𝑊𝑊𝑖𝑖𝑠𝑠ℎ 𝑠𝑠𝑡𝑡𝑠𝑠𝐵𝐵𝑟𝑟 𝑠𝑠𝑓𝑓𝐵𝐵𝑛𝑛𝑠𝑠𝑝𝑝𝑡𝑡𝑓𝑓𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 𝑡𝑡𝑓𝑓 

 1500 ∗ 15 + 5000 ∗ 5 + 10000 ∗ 6 + 8000 ∗ 8 + 2000 ∗ 3 + 10000 ∗ 2 

  = ¢ 400000 

The partial derivatives at 𝑥𝑥 are given as: 

 
Accra sunyani tamale 

Bolga 

 
𝑆𝑆1 𝑠𝑠1 

1 
           15 

15 
           10               4 15000            20 u1 

2 
             7 

5 

            6 

10 

               8 

8 

            3 

25000 2               𝑠𝑠2 

3             1            9               5 
            2 

10000 10 𝑠𝑠3 

𝑑𝑑1 20000 10000 8000 12000 

𝑣𝑣i v 𝑣𝑣2 1 v 𝑣𝑣3 3 
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𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥11

= 14.4              
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥12

= 10          
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥13

= 4         
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥21

= 20 

𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥21

= 6.9              
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥22

= 5.2          
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥23

= 7.52         
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥24

= 2.92 

𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥31

= 1                
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥32

= 9              
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥33

= 5                
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥34

= 1.8 

 

Now we find,  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

− 𝑠𝑠𝑖𝑖 − 𝑣𝑣𝑗𝑗 = 0     

  𝑖𝑖𝑠𝑠  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝐵𝐵𝑖𝑖𝑗𝑗

= 𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑗𝑗  

 hence, 

𝑠𝑠1 + 𝑣𝑣1 = 14.4,  𝑠𝑠1 + 𝑣𝑣2 = 10, 𝑠𝑠2 + 𝑣𝑣2 = 5.2 

                                 𝑠𝑠R1+ 𝑣𝑣R1=14.4                𝑠𝑠R1+𝑣𝑣R2 =10              𝑠𝑠R2+𝑣𝑣R2

Letting 𝑠𝑠R1

=5.2        

We have  

𝑠𝑠0 = 0,         𝑠𝑠2 = −7.5,      𝑠𝑠3 = −6.62 

𝑣𝑣1 = 14.4,   𝑣𝑣2 = 12.7, 𝑣𝑣3 = 15.02, 𝑣𝑣4 = 8.42  

 = 0, from the equations; 

Then the reduced costs for the non-basic variables is    

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥12

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥12

− 𝑠𝑠1 − 𝑣𝑣2 = 2.3                      𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥13

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥13

− 𝑠𝑠1 − 𝑣𝑣3 = −11.02     

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥14

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥14

− 𝑠𝑠1 − 𝑣𝑣4 = 11.58                 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥31

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥31

− 𝑠𝑠3 − 𝑣𝑣1 = −6.78      

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥32

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥32

− 𝑠𝑠3 − 𝑣𝑣2 = 2.92                       𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥33

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥33

− 𝑠𝑠3 − 𝑣𝑣3 = −3.4     

∂z    = min    ∂z       = – 11.02         
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𝜕𝜕𝑥𝑥R13               𝜕𝜕𝑥𝑥Rij             

The presence of negative values for the reduced cost signifies non optimality; hence we readjust. 

Therefore 𝑥𝑥R13 should enter the basis since it is the most negative reduced cost; after adjusting the 

values 𝑥𝑥R23

 

 left the basic. 

Continuing in the same manner, after three iterations (excluding the first) 

The reduced costs for the non-basic ones at a basic feasible point 

𝑥𝑥4 = (𝑥𝑥11, 𝑥𝑥𝐵𝐵12, 𝑥𝑥𝐵𝐵13, 𝑥𝑥14, 𝑥𝑥𝐵𝐵21, 𝑥𝑥𝐵𝐵22, 𝑥𝑥23, 𝑥𝑥𝐵𝐵24, 𝑥𝑥31, 𝑥𝑥𝐵𝐵32, 𝑥𝑥34) 

= (0, 7, 8, 0, 10, 3, 0, 12, 0, 10, 0, 0)   

Will be;    

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥11

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥11

− 𝑠𝑠1 − 𝑣𝑣1 = 4.1                  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥14

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥14

− 𝑠𝑠1 − 𝑣𝑣4 = 13.38      

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥23

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥23

− 𝑠𝑠2 − 𝑣𝑣3 = 8.74                   𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥32

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥32

− 𝑠𝑠3 − 𝑣𝑣2 = 9.14      

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥33

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥33

− 𝑠𝑠3 − 𝑣𝑣3 = 11.64                        𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥34

=  𝜕𝜕𝑓𝑓 (𝑥𝑥)
𝜕𝜕𝑥𝑥34

− 𝑠𝑠3 − 4 = 5.38     

All are non-negative, implying that 𝑥𝑥4 is a KKT point.  

 In fact, the optimal solution to our problem. 

 𝐻𝐻𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑠𝑠ℎ𝑠𝑠 𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑤𝑤𝑖𝑖𝑛𝑛𝑔𝑔 𝐵𝐵𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝑠𝑠ℎ𝑡𝑡𝑠𝑠𝑟𝑟𝑑𝑑 𝑠𝑠𝑠𝑠 𝑚𝑚𝐵𝐵𝑑𝑑𝑠𝑠: 

7000 boxes of obaatan nku should be supplied to Sunyani, 8000 of same product be supplied to 

Tamale. Allocate 10000 boxes of body powder to Accra, 3000 boxes to sunyani and 12000 boxes 

to Bolga. Finally allocate 10000 boxes of machine oil to Accra.  

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒄𝒄𝑻𝑻𝒄𝒄𝑻𝑻 =  10000 𝑥𝑥 7 +  8000 𝑥𝑥 4 +  10000 𝑥𝑥 7 + 3000 𝑥𝑥 6 + 12000 𝑥𝑥 3 

+  10000 𝑥𝑥 9 
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                                 = ¢𝟑𝟑𝟑𝟑𝟑𝟑,𝟎𝟎𝟎𝟎𝟎𝟎 

  

 

 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

Sometimes, there may be different ways to model a particular problem, but choosing the best 

approach minimizes the complexity of the problem and time to solve. 

Since any programming problem with constraint matrix structure the same as the transportation 

problem, it can be regarded as a transportation type problem regardless of its physical meaning 

and because of its simple structure, modeling such problems as transportation problem requires 

much less effort to solve than modeling it differently. 

In this paper the nonlinear transportation problem is considered as a nonlinear programming 

problem and algorithms to solve this particular problem are given. The first algorithm is similar 

to that of the transportation simplex algorithm except for the nonlinearity assumption. The 

second algorithm is dependent on the simplex algorithm of Zangwill that we modified to use the 

special property of the coefficient matrix of the transportation problem so that we may take 

shortcuts to make problem solving simple.  

For the purposes of even distribution of each product, reasonable reallocation could be made to 

unassigned destinations. 

However, the algorithms are not compared to any other previous algorithms therefore in the 

future further work should be done to: 

1. 𝑀𝑀𝑠𝑠𝐵𝐵𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠 𝑠𝑠ℎ𝑠𝑠 𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝐵𝐵𝑟𝑟𝑔𝑔𝑡𝑡𝑓𝑓𝑖𝑖𝑠𝑠ℎ𝑚𝑚. 

2. 𝐶𝐶ℎ𝑠𝑠𝑠𝑠𝑘𝑘 ℎ𝑡𝑡𝑤𝑤 𝑛𝑛𝑠𝑠𝐵𝐵𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝑠𝑠𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝐵𝐵𝑝𝑝𝑝𝑝𝑓𝑓𝑡𝑡𝑥𝑥𝑖𝑖𝑚𝑚𝐵𝐵𝑠𝑠𝑠𝑠𝑑𝑑 𝑝𝑝𝑓𝑓𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝑝𝑝𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 𝑛𝑛𝑡𝑡𝑛𝑛𝑟𝑟𝑖𝑖𝑛𝑛𝑠𝑠𝐵𝐵𝑓𝑓  
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  𝑠𝑠𝑓𝑓𝐵𝐵𝑛𝑛𝑠𝑠𝑝𝑝𝑡𝑡𝑓𝑓𝑠𝑠𝐵𝐵𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝑝𝑝𝑓𝑓𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚 𝑖𝑖𝑠𝑠 𝑠𝑠𝑡𝑡 𝑠𝑠ℎ𝑠𝑠 𝑡𝑡𝑝𝑝𝑠𝑠𝑖𝑖𝑚𝑚𝐵𝐵𝑟𝑟 𝑠𝑠𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡𝑛𝑛 𝑡𝑡𝑓𝑓 𝑠𝑠ℎ𝑠𝑠 𝑡𝑡𝑓𝑓𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝐵𝐵𝑟𝑟 𝑝𝑝𝑓𝑓𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚. 

3. 𝑇𝑇𝑡𝑡 𝑖𝑖𝑚𝑚𝑝𝑝𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠𝑛𝑛𝑠𝑠 𝑠𝑠ℎ𝑠𝑠 𝐵𝐵𝑟𝑟𝑔𝑔𝑡𝑡𝑓𝑓𝑖𝑖𝑠𝑠ℎ𝑚𝑚 𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡𝑚𝑚𝑝𝑝𝑟𝑟𝑠𝑠𝑥𝑥 𝑓𝑓𝑠𝑠𝐵𝐵𝑟𝑟 𝑟𝑟𝑖𝑖𝑓𝑓𝑠𝑠 𝑝𝑝𝑓𝑓𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠. 

 

 

We then conclude that given discounts on cost of transportation could lead to increased 

productivity of producers. This as a result of the fact that wholesalers and retailers, will have to 

pay less on transport for buying in large quantities; subsequently, consumers will buy at lower 

cost comparatively.  
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