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ABSTRACT

Low wind speed conditions in various parts of Ghana calls for a wind turbine blade
capable of giving maximum circulation to produce a high lift which will turn
turbines. In this thesis, a wind speed of at least 3 m/s is used as a benchmark in
optimizing the design of a blade airfoil to give optimal performance during low wind

speed conditions.

Blade-element momentum theory which is the current mainstay of aerodynamic
design for horizontal-axis wind turbine blade was used in the optimization process. A
couple of design processes were considered to arrive at successful wind turbine

design.

Ten high-lift-coefficient airfoils, which could give high lift leading to high moment
at low wind speed conditions, were selected and their aerodynamics parameters
iterated and tested for optimum performance under low wind speed conditions. The
iteration of these aerodynamics parameters were computed and analysed using a
programmed spreadsheet for all the ten profiles. For each section of the blade, the
airfoil that gave the highest power coefficient was used. The sections were then

lofted to form a seamless blade.

The resulting low wind speed blade airfoil design offers substantial improvements on
the reference designs. The application of optimization methods successfully aided the
creation of a wind turbine blade with consistent peak performance over a range of

design points.
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CHAPTER ONE

Introduction

1.1  Background

The significant rise in the cost of petroleum oil has increased the search for viable
alternative technologies for power generation. One option under consideration is
wind power which utilizes the turning effect of a turbine to generate energy. A wind
turbine operates by using the wind’s energy to spin a shaft that drives an electricity-

producing generator.

One critical aspect of the wind turbine that has not been evaluated until recently is
the blade itself. Interest in using wind turbines at low wind speed is growing, so
technical improvement to the operating angles of the blade is needed so as to boost
its performance. The operation of wind turbines at low wind speeds must be

upgraded. [1]

The main approach to improving the performance of the blade at low wind speeds is
to increase its angle of attack, the angle that the blade makes into the incident wind.
A recurring problem is that increasing the angle eventually forces the blade to stall.
Stalling, which is determined by wind speed and direction, is difficult to predict. This
has resulted blade manufacturers with limited operating angles to ensure that stalling

is minimized and unfortunately, leads to inferior blade performance [1].

The correct choice of wind turbine blade profile and blade design procedures taking
into consideration the rotor diameter, tip speed ratio, number of blades, twist angles
etc. will lead to good lift and drag coefficients for a good rotor performance. It has

been noticed that the blade manufacturers put some fins on certain length of the



blade to create a thin layer of turbulence and curiously make the blade stall at a
steeper angle. This technology has been used on aircraft for a long time. If a
technology could be developed to boost the operating angle of the blade, the prospect

exists for improved wind turbine performance [2].

This study confirms that the low wind energy at onshore can play a major role in
achieving Ghana’s renewable energy. This is achieved by optimizing and improving
the available wind turbine blade profiles to maximize energy capture and power

output.

1.2 Scope of Study

Blade-element momentum theory (BEM) also known as strip theory is used for the
optimization of design, analysis, modification and optimization of the horizontal-axis
wind turbines blade in this thesis. The thesis develops systematic procedures for
analyzing the airfoil of the three bladed-wind turbine at low speed wind speed of at

least 3 m/s.

The optimum wind turbine profiles for horizontal axis wind turbine are analysed and
their optimized aerodynamics properties and sections stored and used in the designed

of the new low wind speed airfoil blade.

The main work is limited to aerodynamics design of the blade without due

consideration of the structural and electrical requirements.

Moreover, Club Cycom, a computer user-interface program for turbine blade design

would be used in the design of blade airfoils.



1.3 Justification

The quest for renewable energies that preserves the environment is an issue
of major importance in Ghana and the world at large. Wind energy is one typical
example among many others. A wind turbine with carefully designed blade will
utilize wind energy for the production of electricity which will subsequently reduce

the energy problem in the country.

In the process of generating electricity from wind, a slowly turning wind
turbine connected through a gear box to a fast-turning electric generator efficiently
converts the kinetic energy of wind to electrical energy as shown in Figure 1.1.
Almost all wind turbines producing electricity consist of rotor blades which rotate
around a horizontal hub. The hub is connected to a gearbox and generator, which are
located inside the nacelle. The nacelle is the large part at the top of the tower where

all the electrical components are located [3].

e Gearbox Power Electronics

Electrical Grid
—_— Generator

Rotor

Figure 1.1 Model of a Wind Turbine



The aerodynamic characteristics of wind turbines are closely related to the
geometry of their blades. The innovation and the technological development of wind
turbine blades can be centered on two tendencies in areas of low wind speed. The
first is to improve the shape of the existing blade, in order to achieve an optimal
circulation. The second is to design new shapes of blades in order to get some more
ambitious aerodynamic characteristics. The blade profile is the critical aspect of the
system design which affects the maximum energy capture of the turbine, its optimal
rotational speed, its self-starting ability, and its susceptibility to stalling in turbulent
wind. In horizontal axis wind turbine, NACA profiles standards of the National

Advisory Committee for Aerodynamics are normally used [4].

This thesis presents a three bladed rotor optimization analysis on existing
blade profiles using the Blade Element Momentum theory. The accuracy of the
results is validated with international data to see how the optimized blade would

perform in areas of low wind speed in the country.

1.4  Aims
To use a computer to optimize a wind turbine blade airfoil for low wind

speed applications

1.5  Objectives

The aim can be achieved through the realization of the following objectives:

e To study and analyze existing horizontal axis wind turbine blade airfoils.



e To use BEM theory to conduct an analytical design for a horizontal axis wind

turbine blade airfoil.

e To use a computer software to aid in the design optimization of the blade

airfoil.

1.6 Methodology

The problems to be discussed in this thesis cover a wide range of technical
issues. In order to come out with appropriate airfoil for horizontal axis wind turbine
blade at a certain wind condition, we need to have knowledge on the aerodynamic
forces and parameters. This report commences with examination of wind turbine
blade airfoil which can give satisfactory lift, low drag and maximum circulation at

low wind speed of at least 3.0 m/s.

The Blade Element Momentum theory is used to determine the optimum
airfoil sections for the wind turbine blade. The blade is divided into N number of
elements. The elemental power coefficients, chord length, blade twist angle, torque
and power distributions along the span of the blade are iterated repeatedly in a
spreadsheet for optimum parameters for the blade. The optimum parameters are then
used in a computer software application to come out with the optimum section of the

airfoil.

Finally, optimum sections of the existing blade airfoils are brought together
to come with an optimized one which can work well in low wind speed conditions.

The optimized blade is finally validated with standard data.



1.7

Facilities Available

The facilities available for the thesis include the following;

Internet facilities at both the Mechanical Engineering Department and the
Postgraduate office in the University, wind turbines designed by students of

KNUST and Energy center at KNUST.

Wind data from KNUST, the Energy Commission and Metrological Service

Department of Ghana would be examined and validated for blade analysis.

There is access to Computer laboratory for computer software and literature
for the thesis. The accuracy and the validity of the results are tested using
recognized wind turbine companies to see how the optimized blade profile
can stand the low wind speed experienced in almost all low wind speed areas

in Ghana.



CHAPTER TWO

Literature Review

2.1  Background

The sole dependence on hydroelectric and thermal powers in Ghana has been
increasingly mounting pressure on its infrastructure. Blackouts are routine almost
every week within many areas in the country. This is frustrating homes, businesses
and people who use hydroelectric power in many ways of their lives. Companies are
devising alternative means such as power generators, solar panels and other forms of
power to compensate for the shortfall of hydroelectric power in the country. The
exploitation of renewable energy sources can help meet many of environmental and

energy policy goals, including obligation to reduce greenhouse effect.

Increasing world population and increasingly reducing oil reserves and
resulting requirement for clean, reliable, renewable energy systems intensifies the
requirement for wind energy in long term. As a proven source of clean, affordable
energy, wind resources clearly have a vital role to play in realizing these goals. For
that to be in reality, wind turbines are used to transform the wind energy into
electrical and mechanical energy. In order to economically gain from a wind turbine
in terms of maximum performance, data based on blade cross-section characteristics
must be investigated and used. The innovation and the technological development of

wind turbine blade is of major importance [5].

Wind turbines operating at low wind speed are unable to turn the blade to
optimize its efficiency in generating electric power. This has lead to a lot of test on
wind turbines to increase its power performance. One of such test was performed by

Wind Energy Institute of Canada. They conducted a test on Whale Power tubercle
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blade power performance characteristic. These blades contain tubercles along most
of the leading edge of the blade, much in the same way that humpback whales have

tubercles on their flippers [1].

2.2  Blade Profiles

Horizontal axis wind turbine blades use airfoils to develop mechanical
energy. It is through the rotor that the energy of the wind is transformed into
mechanical energy that turns the main shaft of the wind turbine. The cross-sections
of horizontal axis wind turbine blades have the shape of airfoils. The width and
length of the blade are functions of the desired aerodynamic parameter, the
maximum desired rotor power, the assumed airfoil parameters and strength
calculations [6]. Hence designing Horizontal axis wind turbine blade depends on
knowledge of the properties of airfoils. The most significant flow factor influencing
the behaviour of airfoils is that of viscosity which is characterized by the Reynolds
number. Airfoils in use on modern wind turbines range in representative chord size
from about 0.3 m on a small-scale turbine to over 2 meters on a megawatt-scale
rotor. For horizontal axis wind turbines, the Reynolds number ranges from about 0.5
million to 10 million. This implies that turbine airfoils generally operate beyond
sensitive. It should be noted that there are significant differences in airfoil behaviour
at different Reynolds numbers. For that reason it must be made sure that appropriate
Reynolds number data are available for the blade design [6, 7].

There are evidently many engineering requirements into the selection of a
wind turbine airfoil. These include primary requirements related to aerodynamic

performance, structural, strength and stiffness, manufacturability and maintainability.



Two very important elements of a successful wind turbine are the blade and the
power control system. In designing the blade, the most essential thing is to choose a
good profile. Before designing the blade, a number of compromises including good
lift and stall characteristics are taken into consideration. In selecting a profile for a
wind turbine blade for a low wind speed ranging between 1.5 m/s and 4 m/s, one
must check several important criteria: it should have a high coefficient of lift while
maintaining a low coefficient of drag. Consequently, the lift/drag coefficient C, /Cp

should have a high value [8].

2.2.1 The Aerodynamic Profiles

The shape of the aerodynamic profile is decisive for blade performance. Even
minor alterations in the shape of the profile can greatly alter the power curve and
noise level. Therefore a blade designer does not merely sit down and outline the
shape when designing a new blade. The aerodynamics of wind turbine blades has
been largely based on models and calculations from the aeronautical industry. The
shape must be chosen with great care on the basis of past experience. For this reason
blade profiles were previously chosen from a widely used catalogue of airfoil
profiles developed in wind tunnel research by NACA around the time of the Second
World War [9]. The shape of the NACA airfoil is described using a series of digits
following the word "NACA". The parameters in the numerical code can be entered
into equations to precisely generate the cross-section of the airfoil and calculate its
properties. At the start of a blade thesis, the specifications for the wind turbine are
clearly stated so that the designer can use these specifications to perform initial

calculations of the geometry and structure [10].



Figure 2.1 shows a wind turbine profile showing all the relevant parts. The
mean camber line is the locus of points halfway between the upper and lower
surfaces as measured perpendicular to the mean camber line itself. The most forward
and rearward points of the mean camber line are the leading and trailing edges,
respectively. The straight line connecting the leading and trailing edges is the chord
line of the airfoil, and the distance from the leading to the trailing edge measured
along the chord line is simply designated the chord of the airfoil. The thickness of the
airfoil is the distance from the upper to the lower surface, measured perpendicular to

the chord line, and varies with distance along the chord [11].

Thickness
Mean Camber Line

Leading Edge .
l Trailing Edge

Chamber Chord Line ‘
Chord Length |

Figure 2.1: Wind Turbine Blade Nomenclature
Source: Walker, J. and Jenkins, N. (1997).

The maximum thickness, and where it occurs along the chord, is an important design
feature of the turbine blade. The camber is the maximum distance between the mean
camber line and the chord line, measured perpendicular to the chord line. Both the
maximum thickness and the camber are usually expressed in terms of a percentage of
the chord length; for example, a 12% thick airfoil has a maximum thickness equal to

0.12 multiplied by the chord length [5].

The aerodynamics of a horizontal-axis wind turbine is not straightforward.

The air speed at the blades is not the same as the air speed far away from the turbine.
10



The very nature of the way in which energy is extracted from the air also causes air
to be deflected by the turbine. In addition the aerodynamics of a wind turbine at the

rotor surface exhibit phenomena that are rarely seen in other aerodynamic fields [9].

2.3 Classes of Wind Turbine

A wind turbine is a generic term for machines with rotating blades that
convert the kinetic energy of wind into useful power. The basic idea has been around
for a long time but modern wind turbines are a far cry from the original designs.
Wind turbines can rotate about either on a horizontal or vertical axis, the former

being more common. [8]

Modern turbines evolved from the early designs and are typically classified as
two or three blade rotors. Most of the turbines used today have three blades. The
rotational speed is also a very important design factor. Turbines operating at a
constant rotor speed have been fomenting up to now, but turbines with variable
rotational speed are becoming increasingly more common with the desire to optimize

the energy captured, to lower stress, and to obtain better power quality. [7]

2.3.1 Horizontal Axis Wind Turbine Concept

Horizontal-axis wind turbine has the main rotor shaft and electrical generator
at the top of a tower, and must be pointed into the wind as shown in Figure 2.2.
Small turbines are pointed by a simple wind vane, while large turbines generally use
a wind sensor coupled with a servo motor. Most have a gearbox, which turns the
slow rotation of the blades into a quicker rotation that is more suitable to drive an

electrical generator.
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Figure 2.2: Horizontal Axis Wind Turbine
Source: Walker, J. and Jenkins, N. (1997).

Turbine blades are made stiff to prevent the blades from being pushed into
the tower by high winds. Additionally, the blades are placed a considerable distance
in front of the tower and are sometimes tilted forward into the wind a small amount.
Downwind machines have been built, despite the problem of turbulence because they
don't need an additional mechanism for keeping them in line with the wind, and
because in high winds the blades can be allowed to bend which reduces their swept
area and thus their wind resistance. Since cyclic or repetitive turbulence may lead to

fatigue failures most Horizontal wind turbine are upwind machines [9].

2.3.2 Vertical Axis Wind Turbine Concept

Vertical Axis Wind Turbines have the main rotor shaft arranged vertically as
shown in Figure 2.3. Key advantages of this arrangement are that the turbine does
not need to be pointed into the wind to be effective. This is an advantage on sites

where the wind direction is highly variable.
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Figure 2.3: Vertical Axis Wind Turbine
Source: Walker, J. and Jenkins, N. (1997).

With a vertical axis, the generator and gearbox can be placed near the ground, so the
tower doesn't need to support it, and it is more accessible for maintenance.
Drawbacks are that some designs produce pulsating torque. It is difficult to mount
vertical-axis turbines on towers, meaning they are often installed nearer to the base

on which they rest, such as the ground or a building rooftop [9].

The wind speed is slower at a lower altitude, so less wind energy is available
for a given size turbine. Air flow near the ground and other objects can create
turbulent flow, which can introduce issues of vibration, including noise and bearing
wear which may increase the maintenance or shorten the service life. However, when
a turbine is mounted on a rooftop, the building generally redirects wind over the roof
and these can double the wind speed at the turbine. If the height of the rooftop
mounted turbine tower is approximately 50% of the building height, this is near the

optimum for maximum wind energy and minimum wind turbulence [10].
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2.4 Wind Speed Analysis on Horizontal and Vertical Axis Wind Turbine

The calculated wind speed for Horizontal Axis Wind Turbines is in the limits
of 12 m/s to 15 m/s because of strength requirements for inertial loading. If the
starting speed will be changed from 4.5 m/s to 7.5 m/s, then the energy production
will be reduced on 2%. The influence of calculated nominal speed on the energy
production is high. For instance the increase of calculated wind speed from 10.4 m/s
to 20 m/s makes the energy production higher by four times. It means that for regions
with high wind potential the calculated wind speed, taken for normal conditions, is
smaller than it should be. Big wind power resources will not be used. The operating
range of wind speed for low speed Vertical Axis Wind Turbine’s is increased up to
20 m/s to 25 m/s, comparing with Horizontal Axis Wind Turbine which is 12 m/s to
15 m/s. It means that Vertical Axis Wind Turbines are preferable for regions with

high wind potential [11].

2.5  Wind Resources in Ghana

One of the most important considerations in wind turbine design is the
environment where it will be installed. Wind turbines can work in almost all the
places, but the design dimensions would be different depending conditions of the
place. Winds are large scale movements of air masses in the atmosphere. The
movements are created on a global scale primarily by different solar heating of the
earth’s atmosphere. Wind speeds, of up to about 13 m/s can be harnessed by wind
turbines to provide sufficient power in remote areas. The Metrological service
department has installed a cup counter anemometer and dines pressure tube
anemometer to measure instantaneous wind speed and direction. They have since

recorded wind speed and direction data at 12 m above ground level from all their 22
14



synoptic stations sited within every latitude and longitude of the country. The data
obtained from the Metrological service department indicate wind speeds of
approximately 2.4 m/s at 12 m above ground level at stations set up with objectives
other than for energy applications. The sites were deliberately selected for their low
wind regimes as the measurements were made for meteorological and agricultural
applications. The obtained data could therefore not be used as a true assessment of
the wind energy potential in the country. For a long time, the lack of dependable
countrywide data on wind energy has been the main obstacles for harnessing wind
energy. Nonetheless, it is quite obvious that Ghana has some winds that could be

tapped to supplement her energy requirements

The Energy Commission in 1999 started wind energy resource measurement
along the coast of Ghana with the view to develop adequate, accurate and reliable
wind energy data and evaluation tools as an integral part of Ghana’s energy planning
and policy framework. Measurements were taken at 11 sites East and West of the
Meridian. The sites east of the Meridian were Tema, Adafoah, Lolonya, Pute, and
Kpone with the sites west of the Meridian being Asemkow in Takoradi, Warabeba in
Winneba, Mankoadze, Bortianor, GomoaFetteh and Aplaku. These studies and others
made by private concerns at six coastal sites east of Tema in 1999 indicated the
existence of fairly strong winds that could be utilized for power generation. The data
collected included average wind speed, average wind direction and standard
deviation. The monthly average wind speed measurement at 12 m above ground
varied in the range of 4.8 m/s to 5.5 m/s. The data somehow validated a six year
satellite-borne measurement provided by the U.S National Renewable Energy
Laboratory (NREL), which suggested that Ghana has appreciable wind resource for

power generation.
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A wind energy system usually needs an average annual wind speed of at least
4 m/s to be practical. Table 2.1 shows the average wind speeds for coastal Ghana;
between Latitude 5°-6° N and Longitude 0°-1° E. Over the last decade, there has been
a marked change towards offshore wind as a key energy resource. Increased wind
speed and reduced wind turbulence offshore are much more appreciated now, and
this in conjunction with more cost effective infrastructure has reduced the predicted
cost of energy from offshore projects. Offshore Ghana has a considerable high
potential for wind energy from the conducted studies undertaken by National

Renewable Energy Laboratory.

These are monthly average wind speeds at Tema and four other surrounding
coastal towns, namely; Kpone, Lolonya, Adafoah and Pute in 1999 compiled by the
Energy Commission. The average wind speed measured about 10 km off the
coastline in the direction of the sea is about 5.5 m/s. It is about the same in the
western and central regions which constitute about two thirds of the total coastline of

Ghana. The offshore wind energy potential is huge and worth pursuing.

Table 2.1: Average wind speeds for coastal Ghana; between Latitude 5°~6°N and
Longitude 0° -1° E

Sensor

] July Aug Sept Oct Nov Dec
Height*(m/s)
12 meters 4.56 541 5.49 6.36 5.08 4.74
40 meters 5.41 6.31 6.54 7.54 6.02 5.18

Satellite(NREL) | 5.4-6.0 4.6-5.2 4.8-5.3 4.5-5.0 3.5-3.7 3.6-4.2
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Over the land, the wind speed is averagely between 2 m/s and 9 m/s. With the
wind speeds recorded for medium power turbines could be operated as alternative to
large-scale turbines. Some investors have shown considerable interest in the
exploitation of wind energy in Ghana. Indeed, some private firms are already in
touch with the Energy Commission on the possibility of setting up wind farms for
power generation. The average wind speed of the extrapolated data for all the 22
synoptic stations were in the range of 2 m/s to 5.1 m/s at 12 m above ground and 3.5

m/s to 8.4 m/s at 50 m above ground level.

The average wind speed along the coast was in the range of 4 m/s to 5.1 m/s
at 12 m above the ground and 6 m/s to 6.4 m/s at 50 m above the ground level along
the coast, west of the meridian. Mankoadze recorded the highest mean speed of 6.08
m/s whilst Oshiyie recorded the lowest of 3.33 m/s. Figure 2.4, 2.5, and 2.6 all show
the wind distribution at onshore areas at 12 m and 50 m above ground levels

respectively.
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Figure 2.4: Wind Speed Distribution at 12 m above ground level in Ghana
Source: SWERA Ghana project, (2005)
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Figure 2.5: Wind Speed Distribution at 50 m above ground level in Ghana
Source: SWERA Ghana project, (2005)

On the east coast of the meridian, Lolonya gave the highest wind speed of
5.43 m/s and the predominant direction of the wind speed was 240° with a
corresponding mean wind speed of 5.66 m/s and frequency 47%. For Adafoah the
mean wind speed was 5.33 m/s and the predominant direction of the wind speed was
240° with a corresponding mean wind speed of 5.52 m/s and frequency of 47%

followed by 210° with mean speed of 5.69 m/s and frequency of 31%.

The analyses of the available wind data indicate that the mean wind speed for
Mankoadze, Lolonya, Adafoah, Petu, and Aklaku were in the range of 5 m/s to 6.1
m/s at 12 m above ground with corresponding power densities of 119 to 410 W/m>.
With these speeds electric power generation is favorable. Aerial survey by an
international team on the SWERA project identified some spots inland Ghana with

high wind regimes [11].
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Figure 2.6: Wind Power Classification Map at 50 m
Source: SWERA Ghana project, (2005)
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CHAPTER THREE

3.0  Model of Aerodynamic Parameters and Calculation

In this chapter, the application of blade element momentum theory on
horizontal axis wind turbine and the analysis on the aerodynamic performance of the
blade profile would be computed and explained. Finally, the blade designed

procedure would be used to design a blade profile with optimum performance.

3.1 Blade Element Momentum Theory

The principle of the blade element theory is to consider the forces
experienced by the blades of the rotor in their motion through the air and this theory
is therefore intimately concerned with the geometrical shape of the blade. That is, the
blade-element theory method will be used in analysing the behaviour of blades due to
their motion through air. Blade element momentum theory relates rotor performance
to rotor geometry and particularly important, prediction of this theory is the effect of

finite blade number [12, 13].

The first assumption in Blade element momentum theory is that individual
stream tubes can be analysed independently of the rest of the flow. A second
assumption associated with the development of blade element momentum theory is
that span wise flow is negligible, and therefore airfoil or profile data taken from two-
dimensional section tests are acceptable. A third assumption is that flow conditions
do not vary in the circumferential direction. With this assumption the stream tube to

be analysed is a uniform annular ring centred on the axis of revolution [12, 15].

Blade Element Momentum Theory equates two methods of examining how a

wind turbine operates. The first method is to use a momentum balance on a rotating
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annular stream tube passing through a turbine. The second is to examine the forces
generated by the airfoil lift and drag coefficients at various sections along the blade.
These two methods then give a series of equations that can be solved iteratively [16,

17].
3.2  Equations under Blade Momentum Theory

3.2.1 Axial Force

The blade momentum theory assumes a control volume, in which the control
volume boundaries are the surface of a stream tube. The turbine in the tube creates a
discontinuity of pressure in the stream tube of air flowing through it. Considering the
stream tube around a wind turbine shown in Figure 3.1, there are four points shown
in the Figure. Point (1) is the upstream of the turbine, point (2) just before the turbine
blades, point (3) just after the blades and point (4), downstream of the blades.
Between point (2) and point (3), energy is extracted from the wind and there is a

change in pressure as a result [13, 18].

Blade

Vi - ay / V,

23

Figure 3.1: Axial Stream tube around a Wind Turbine
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From the assumption that the continuity of velocity through the turbine exists,

Assume p; = p4 and that V, = V3,

We can also assume that between points (1) and (2) and between points (3) and (4)

the flow is frictionless so we can apply Bernoulli’s equation to arrive at.
b2 —P3= % p(VE = V§) 1)
It is also known that force is the product of pressure and area, so we find that;
dE.= (p2 — p3)dA )
dE=5p (V] = V})dA ©)

If an axial induction factor, a is defined as the fractional decrease in the wind

velocity between the free stream and the rotor plane, then a, can be defined as;

=% (Vlv —1V2) @
It can also be shown from equation (4) and (6) that:

V,=Vi(1-a) (5)

Vi=V;(1-2a) (6)
Substituting equation (6) into equation (3) yields:

dFy = % V2 [4a(l - a)]2TTrdr (7)
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3.2.2 Rotating Annular Stream tube
Consider the conservation of angular momentum in this annular stream tube.

A side and an end view are shown in Figure 3.2 and Figure 3.3 respectively.

SIDE VIEW

Figure 3.2: A Side View of Rotating Annular Stream Tube

dr

Figure 3.3: An End View of Rotating Annular Stream Tube
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The blade wake rotates with an angular velocity o, and the blades rotate with
an angular velocity, Q. For steady state flow, air mass flow rate through the disk can

be written as:

Moment of Inertia of an annulus,

| = mr? (8)
Angular Moment,
L=lo 9)
Torque,
=il (10)
dt

T=—-= = —rn (11)

So for a small element the corresponding torque will be:
dT= drivor? (12)

For steady state flow, air mass flow rate through the disk can be written as;

dri= p AV, (13)
dm= p2rrdrVom 12 (14)
dm= pV, or’2xrdr (15)
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Define angular induction factor a":

a=_ (16)

From Equation (5), V2=V (1 - a) so:
dT=4a’' (1 - a)pVQrindr (17)

Momentum theory has therefore yielded equations for the axial Equation (7)

and tangential force Equation (17) on an annular element of fluid.

3.2.3 Blade Element Theory

Blade element theory relies on two key assumptions [19]:

e There are no aerodynamic interactions between different blade elements.
e The forces on the blade elements are solely determined by the lift and drag

coefficients.

Consider a blade divided up into N elements as shown in Figure 3.4.

dr

Figure 3.4: The Blade Element Model
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Each of the blade elements will experience a slightly different flow as they
have a different rotational speed (Qr), a different chord length (c) and a different
twist angle (y). Blade element theory involves dividing up the blade into a sufficient
number of elements and calculating the flow at each one. The overall performance

characteristics are determined by numerical integration along the blade span [13, 20].

3.2.4 Relative Flow
In practice the flow of wind over a turbine blade is turned slightly as it passes
over it. In order to obtain a more accurate estimate of turbine blade performance, an

average of inlet and exit flow conditions is used to estimate performance.

The flow around the blades starts at station (2) as shown in Figures 3.1 and
3.2 and ends at station (3). At inlet to the blade the flow is not rotating, at exit from
the blade row the flow rotates at rotational speed w. That is over the blade row wake
rotation has been introduced. The average rotational flow over the blade due to wake
rotation is therefore /2. The average tangential velocity which the blade experiences

is shown in Figure 3.5.

Figure 3.5: Flow onto the Turbine Blade
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Examining Figure 3.5 we can immediately note that:
wr
Qr +7 =Qr(l+a) (18)

From Equation (11), V,=V;(1-a) and so:

tan B :M (19)
V(1—a)

Where V is used to represent the incoming flow velocity. The value of  will vary

from blade element to blade element. The local tip speed ratio, A is defined as:
A=—H (20)

So the expression for tan  can be further simplified:

t _M1+a’) 2
anf == 5 (21)
From Figure 3.5 the following relation is apparent:
_V(1-a)
~ cos B (22)
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3.2.5 Blade Elements
The forces on the blade element are shown in Figure 3.6. Note that by

definition the lift and drag forces are perpendicular and parallel to the incoming flow.

For each blade element one can see:

dFg = dLcosp - dDsinf3 (23)

dFy« = dLsinp - dDcosp (24)

Figure 3.6: Forces on the Turbine Blade

Where dL and dD are the lift and drag forces on the blade element respectively. dL

and dD can be found from the definition of the lift and drag coefficients as follows:
dL=2Ci- p- c-Widr (25)
dD=2 Co- p- c-W’dr (26)
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If there are B blades, combining equation (23) and equation (24) it can be shown

that;

dF= B%pWZ(CLsinB +Cpcosf)cdr (27)

dFy = B2pW?(Cicosp +Cosinp)cdr (28)

The Torque on an element, dT is simply the tangential force multiplied by the radius.
dT= BpW’(Cicosp +Cosin)crdr (29)

The effect of the drag force is clearly seen in the equations, an increase in thrust

force on the machine and a decrease in torque and power output.

These equations can be made more useful by noting that 3 and W can be expressed in

terms of induction factors etc. Substituting and carrying out some algebra yields:

V2 a)?

dFX=o’anE)S—2B)(CLsinB +CpcosB)rdr  (30)

2 (l—a )
dTZG'anO—

T (Cicosp +Cpsinp)ridr  (31)

Where o' is called the local solidity and is defined as:

/_B_C 32
° T onr (32)
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3.2.6 Tip Loss Correction

At the tip of the turbine blade losses are introduced in a similar manner to
those found in wind tip vortices on turbine blades. These can be accounted for in
BEM theory by means of a correction factor. This correction factor Q varies from 0

to 1 and characterizes the reduction in forces along the blade [20].
_ 2 1 _ (B/2[1-r/R
Q T cos [exp { ((r/R)cosﬁ )}] (33)

The results from cos™ must be in radians. The tip loss correction is applied to

Equation (7) and Equation (17) to give:
dF,=QpV#[4a(1 — a)|nrdr (34)
dT = Q4a (1 — a)pVQrindr (35)

3.2.7 Blade Element Momentum Equations
We now have four equations; two derived from momentum theory which expresses

the axial thrust and the torque in terms of flow parameters Equations (7) and (17).
dE,= QpV{[4a(l — a)]mrdr (36)
dT = Q4a (1 — a)pVQr3ndr (37)

We also have two equations derived from a consideration of blade forces which
express the axial force and torque in terms of the lift and drag coefficients of the

airfoil from Equations (30) and (31) as follow:

dF, =0 np (CLsmB + Cpcosf)rdr  (38)

dT = o' mp L22C (CLCOS,B Cpsinf)ridr (39)
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To calculate rotor performance, Equations (35) and (34) from a momentum balance
are equated with Equations (30) and (31). Once this is done the following useful

relationships arise:

"[CLsinB +C

a _o [CLsinB 2D cosf | (40)

1—a 4Qcos=p

a _ G [Cy,cos B+C§ sin ] 1)

1-a 4QA cos“f3
Equation (40) and (41) are used in the blade design procedure.
3.2.8 Power Output
The contribution to the total power from each annulus is:

a—QdT (42)
The total power from the rotor is:

R

P= frh dPdr (43)

P = [ QdTdr (44)
Where ry, is the hub radius. The power coefficient Cp is given by:

P
CP N Pwind (45)
— erh QdT
Cp = %an2v3 (46)

Using Equation (31) it is possible to develop an integral for the power coefficient

directly. After some algebra:

A '
Cr==5f1, Bad(1-a) [1 - i—ftanﬁ] dL.  (47)
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For a selected airfoil type and for a specified tip-speed ratio and blade length,
the blade shape can be designed for optimum blade airfoil for maximum circulation.
Also, from the deduction of power coefficient maximum power and lift force can
then be calculated to see the performance of the rotor in an average wind velocity of

3 mfs.

3.3 Blade Design

3.3.1 Introduction

Designing a blade shape from a known airfoil or profile type for an optimum
blade means determining the blade shape parameters such as the chord length
distribution and twist distribution along the blade length for a certain tip-speed ratio
at which the power coefficient and of the rotor is maximum. To achieve this, the
change of the power coefficient of the rotor with respect to tip-speed ratio should be
figured out in order to determine the design tip-speed ratio at which the rotor has a
maximum power coefficient. The blade design parameters are then obtained
accordingly using the design tip-speed ratio. Since the airfoil type is selected before,
the glide ratio included in this term can be chosen so as to it gets maximum value

[21].

All the airfoils were chosen based on its performance and its ability to
circulate at low wind speed to generate both power and lift at its maximum. A spread
sheet is used to determine the maximum power coefficient for each blade element

(elemental power coefficient) for any set of values of local tip-speed ratio [22].
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3.3.2 Blade Design Procedure

Choose ¢
AIRFOIL v v v v
A B cC |- J
Divide Blade into (N) number of
Elements < v v v v
v
Select Glide Ratio from its Polar diagram /
v Enter Selected Re = 2.5 x
Define Aerodynamics Parameters such as Cy, 10*t0 1.0 x 10°
Cpb, Cwm and a at selected Re <
L
Iterate Blade Elemental Parameters
Relative Angle of Tip Speed Chord Twist Angle
Wind Angle ] Attack g Ratio > Length ]
Compute Tip Loss Correction Factor, Q |«
v
Compute Elemental Power Coefficient, Cp
v
Find Average Cp for every N/10
v
Select Maximum Cp
v
Store maximum Cp and Optimum
Parameters
|
; : )
Use maximum Cp to Use Parameters to draw
Compute Thrust and blade
Power ¢
END

Figure 3.7: Flow Chart for Wind Turbine Blade Design Using the BEM Approach
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The blade design procedure shown in Figure 3.7 gives a summary on how all
the ten blade profiles are first designed for maximum performance within low wind
speed. The airfoils were chosen based on its maximum performance in low wind
speed with appreciable Reynolds number in the order of 1 million. In each case of
the design, the power coefficient was iterated to obtain a maximum value at which
the corresponding blade parameters were stored. These parameters are taken as the
optimum blade parameters. Some of the blade parameters include the chord width,
the tip speed ratio, twist angle, blade angle, angle of attack, lift coefficient, drag
coefficient and moment coefficient. The design begins with airfoil NACA 4412
followed by WorthmannFx 63-137, Selig 1210, Ara-D 6%, Selig 2091, Selig
Donovan 7032, Selig Donovan 7037, Selig Donovan 8000, Selig 3021, and Ara-D

10%.

Aerodynamic parameters with optimum performance with good features from
the ten designed profiles in Figure 3.7 are stored. The stored values as well as some
good features from the ten profiles are used to redesign a new blade profile called
low wind speed (LWS) Blade profile which would comparatively give an
appreciable power coefficient at low wind speed. The redesign process is shown in

Figure 3.8.

In designing the LWS blade profile for maximum circulation and power
generation, the existing ten blade profiles are selected one after the other and its

stored aerodynamics parameters (Figure 3.7) tested and optimized.
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Figure 3.8: Flow Chart for Optimized LWS Blade Profile

35



CHAPTER FOUR

Results and Discussion

4.1 Introduction

The design procedures shown in Figures 3.7 and 3.8 (chapter three) are used
to obtain graphs and drawings for analysis and discussions. The designed process in
Figure 3.7 gives the design analysis of all the ten air foils which were selected and
their parameters and or features examined through an iterative process to obtain
optimum parameters. Appendix I give detailed information of the iterative process of
one of the profiles. In the analysis of these profiles, several graphs were drawn to
show the various effects that aerodynamic parameters have on the performances of
the blade.The elemental blade profile as well as two dimensional views of each blade
profile was generated. The results are illustrated in Figures 4.1 through to Figure

4.79.

The performance of the blade profile greatly depends on the power
coefficient of the airfoil and this factor is directly proportional to the power output of
the blade profile [9]. Therefore, in designing a blade profile that performs best at low
wind speed, the blade parameters and features that tend to give a higher power
coefficient are critically tested and stored for the design of a new blade profile called
the LWS blade profile. Figure 3.8 systematically depicts how the LWS blade profile
is obtained. Similarly graphs and drawings are obtained for the LWS blade profile to

substantiate its pattern and profile shape in Figure 4.80 through to Figure 4.90.

The parameters of the optimized LWS blade profile are then compared with

the existing profiles. The power of the optimized LWS blade profile is validated with
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standard Power versus Wind speed data of the Evance Wind Turbine Limited, a

recognized and accredited wind turbine company.

4.2 Blade Design Results

The aerodynamic properties of all ten blade profiles in Appendix Il and I11
are used in the design process to obtain a number of plots and drawings for the
profiles. Some of the graphs plotted to assess the profiles for its performance are the
variation of elemental power. coefficient with respect to relative wind angles for
values of local tip-speed ratio, power coefficient against relative wind angles, power
coefficient against chord-length distribution, power coefficient against tip-speed

ratio, twist, torque and thrust distributions for the designed blade.

4.2.1 Blade design results for NACA 4412

Both Figure 4.1 and Figure 4.2 show an elemental blade section and a set of
elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile.The plot in Figure 4.3 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, =5 ....., As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.55 occurred at a relative wind angle of
10.20° as shown in Figures 4.3. For each of the profiles the coefficient of lift
increased by 0.11 from the reference value for every extra degree of angle of attack
up to some maximum lift limit when the airflow separated from the airfoil and lift

suddenly dropped and whiles drag increased.
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Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.44 at the same Cp of 0.55. Similarly, a tip speed ratio of 7.44 occurred at the

same power coefficient as indicated in Figure 4.6
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7
g RT3 a] 1A | _hq_q_f_““‘“\
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 4.1: 2-D Sectional View of NACA 4412 Designed Blade Profile Element
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——— 10th blade element

20th blade element
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—— 40th blade element
——— 50th blade element
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Figure 4.2: 2-D Sectional View of NACA 4412 Designed Blade Profile for Set of Blade

Elements
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Figure 4.3: Variation of Elemental Power Coefficient with Relative Wind Angles for
Values of Local Tip-Speed Ratio for NACA 4412
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Figure 4.4: A Graph of Power Coefficient against Relative Wind Angle for NACA

4412
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Figure 4.5: Variation of Power Coefficient to Chord Length Ratio for NACA 4412
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Figure 4.6: Variation of Elemental Power Coefficient to Elemental Tip Speed Ratio
for NACA 4412
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From Figure 4.7, the twist distribution for the designed blade showed a
normalized outline. It could be observed from the aforementioned Figure that as the
twist distribution reaches zero the radial locations gives a negative twist angle pattern
starting from (r/R) 0.81. This has a higher probability of stalling the blade at that
point. It could also be seen that the twist angle is highest at the root and least at the

tip of the blade as radial location increases accordingly.

Figure 4.8 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.7: Twist Distributions for the Designed Bladefor NACA 4412
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Figure 4.8: Power Coefficient against Torque and Thrust Distribution for NACA
4412

4.2.2 Blade design results for Selig 1210

Both Figure 4.9 and Figure 4.10 show an elemental blade section and a set of
elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile.The plot in Figure 4.11 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of A;= 4, A,=5 ....... , As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5961 occurred at a relative wind angle of

9.80° as shown in Figures 4.12.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.2118 at the same Cp of 0.5961 as shown in Figure 4.13. Similarly, a tip speed

ratio of 7.52 occurred at the same power coefficient as indicated in Figure 4.14.
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Figure 4.11: Variation of Elemental Power Coefficient with Relative Wind Angles
for Values of Local Tip-Speed Ratio for Selig 1210
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Figure 4.12: A Graph of Power Coefficient against Relative Wind Angle for Selig
1210
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Figure 4.14: Variation of Elemental Power Coefficient to Elemental Tip Speed Ratio
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From Figure 4.15, the twist distribution for the designed blade shows a
normalized outline as the various radial locations gave a positive twist angle pattern.
This could be observed in the aforementioned Figure that the twist angle is highest at

the root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.15: Twist Distribution for the Designed Blade for Selig 1210

Figure 4.16 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.16: Power Coefficient against Torque and Thrust Distribution for Selig
1210

4.2.3 Blade design Results for Worthmann FX 63-137

Both Figure 4.17 and Figure 4.18 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile. The plot in Figure 4.19 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, =5 ......, As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5581 occurred at a relative wind angle of
10.03° as shown in Figures 4.20.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.25 at the same Cp of 0.5581 as shown in Figure 4.21. Similarly, a tip speed ratio

of 7.44 occurred at the same power coefficient as indicated in Figure 4.22.
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Figure 4.17: 2-D Sectional View of Worthmann FX63-137 Designed Blade Profile
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Figure 4.18: 2-D Sectional View of Worthmann FX63-137 Designed Blade Profile for Set of
Blade Elements
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Figure 4.19: Variation of Elemental Power Coefficient with Relative Wind Angles
for Values of Local Tip-Speed Ratio for Worthmann FX63-137
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Figure 4.21: Variation of Power Coefficient to Chord Length Ratio for Worthmann
FX63-137
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Figure 4.22: Variation of Elemental Power Coefficient with respect to Elemental
Tip Speed Ratio for Worthmann FX63-137.
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Figure 4.23 also shows the twist distribution for the designed blade which
4gives a normalized outline as the various radial locations gave a positive twist angle
pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.23: Twist Distribution for the Designed Blade for Worthmann FX63-137

Figure 4.24 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.24: Power Coefficient against Torque and Thrust Distribution for
Worthmann FX 63-137

4.2.4 Blade design Results for Ara-D 6%

Both Figure 4.25 and Figure 4.26 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile. The plot in Figure 4.27 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, A=5 ......, As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5503 occurred at a relative wind angle of

10.03° as shown in Figures 4.28.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.40 at the same Cp of 0.5503 as shown in Figure 4.30. Similarly, a tip speed ratio

of 7.44 occurred at the same power coefficient as indicated in Figure 4.31.
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Figure 4.25: 2-D Sectional View of Ara-D 6% Designed Blade Profile Element
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Figure 4.26: 2-D Sectional View of Ara-D 6% Designed Blade Profile for a Set of Blade
Elements
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Figure 4.27: Variation of Elemental Power Coefficient with Relative Wind Angles
for Values of Local Tip-Speed Ratio for Ara-D 6%.
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Figure 4.28: A Graph of Power Coefficient against Relative Wind Angle for Ara-D
6%.
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Figure 4.29: Twist Distribution for the Designed Blade for Ara-D 6%.
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Figure 4.30: Variation of Power Coefficient to Chord Length Ratio for Ara-D 6%.
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Figure 4.29 also shows the twist distribution for the designed blade which
gives a normalized outline as the various radial locations gave a positive twist angle
pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.31: Variation of Elemental Power coefficient to Elemental Tip Speed Ratio
for Ara-D 6%.

Figure 4.32 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.32: Power Coefficient against Torque and Thrust Distribution for Ara-D
6%.

4.2.5 Blade design Results for Selig 2091

Both Figure 4.33 and Figure 4.34 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile. The plot in Figure 4.35 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, A=5 ......, As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.0266 occurred at a relative wind angle of
24.22° as shown in Figures 4.36.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.7981 at the same Cp of 0.0266 as shown in Figure 4.38. Similarly, a tip speed

ratio of 2.72 occurred at the same power coefficient as indicated in Figure 4.39.
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Figure 4.33: 2-D Sectional View of Selig 2091 Designed Blade Profile Element
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Figure 4.34: 2-D Sectional View of Selig 2091 Designed Blade Profile for Set of
Blade Elements
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Figure 4.37 also shows the twist distribution for the designed blade which
gives a normalized outline. It could also be seen from the Figure that, the blade
performs very well at a twist angle of 5° and a radial location greater than 0.80. The
blade has a high probability to stall as it gives negative twist angle pattern beyond
radial location value of 0.80. It could also be observed that the twist angle is highest

at the root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.37: Twist Distribution for the Designed Blade for Selig 2091
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Figure 4.38: Variation of Power Coefficient to Chord Length Ratio for Selig 2091
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Figure 4.40 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.40: Power Coefficient against Torque and Trust Distribution for Selig 2091

4.2.6 Blade design Results for Selig Donovan 7032

Both Figure 4.41 and Figure 4.42 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile. The plot in Figure 4.43 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed

ratios of M= 4, =5 ......, As= 8. The highest elemental power coefficient as well as
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the generalized power coefficient, Cp of 0.5996 occurred at a relative wind angle of
10.03° as shown in Figures 4.44.

Moreover, when the power coefficient was plotted against various chord
length ratios in Figure 4.45, the optimum power and hence lift occurred at a chord
length ratio (c/R) of 0.56 at the same Cp 0f 0.5996. Similarly, a tip speed ratio of 7.52

occurred at the same power coefficient as indicated in Figure 4.46.
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Figure 4.41: 2-D Sectional View of Selig Donovan 7032 Designed Blade Profile
Element
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Figure 4.42:2-D Sectional View of Selig Donovan 7032 Designed Blade Profile for
Set of Blade Elements
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Figure 4.43: Variation of Elemental Power Coefficient with Relative Wind Angles
for Values of Local Tip-Speed Ratio for Selig Donovan 7032
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Figure 4.47: Twist Distribution for the Designed Blade for Selig Donovan 7032.

66




0.04 14
Torque

A — ]

"7\ Ak
// \ // .
T 7 N\ 171.

o 1]/ AN /4 ¢
o b N S 0

Torque(Nm)
Thrust(N)

0.00 0.01 004 0.08 0.14 0.21 0.29 038 049 0.59
Power Coefficient

Figure 4.48: Power Coefficient against Torque and Thrust Distribution for Selig
Donovan 7032

Figure 4.47 above also shows the twist distribution for the designed blade
which gives a normalized outline as the various radial locations gave a positive twist
angle pattern. This could be observed from the Figure that the twist angle is highest

at the root and least at the tip of the blade as radial location increases accordingly.

Figure 4.48 above also shows how power coefficient relates to torque and
thrust distribution along the blade profile. It depicts when the maximum thrust and
torque occurred along the blade against the required power coefficient. The

maximum thrust and torque were considered in the design of the blade profile.

4.2.7 Blade design Results for Selig Donovan 7037
Both Figure 4.49 and Figure 4.50 show an elemental blade section and a set

of elemental blade sections up to 50" element to substantiate the pattern of the
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Thickness

dimensional views of the blade profile. The plot in Figure 4.51 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of A= 4, A=5 ......, As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5933 occurred at a relative wind angle of
10.03° as shown in Figure 4.52.

Moreover, when the power coefficient was plotted against various chord
length ratios as shown in Figure 4.53, the optimum power and hence lift occurred at a
chord length ratio (c/R) of 0.63 at the same Cp of 0.5933. Similarly, a tip speed ratio

of 7.44 occurred at the same power coefficient as indicated in Figure 4.54.
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Figure 4.49: 2-D Sectional View of Selig Donovan 7037 Designed Blade Profile
Element
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Figure 4.50: 2-D Sectional View of Selig Donovan 7037 Designed Blade Profile for a
Set of Blade Elements

0.7

0.6

Elemental Power Coefficient

1.0 16.0 31.0 46.0 61.0 76.0 91.0

Relative Wind Angle(degrees)

Figure 4.51: Variation of Elemental Power Coefficient with Relative Wind Angles for
Values of Local Tip-Speed Ratio for Selig Donovan 7037

69



0.7

0.6 /\
0.5

y /

Power Coefficient

0.2

. _

58.5 38.3 25.9 19.0 14.9 12.1 10.2

Relative Wind Angle(degrees)
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Figure 4.53: Variation of Power Coefficient to Chord Length Ratio for Selig
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Figure 4.54: Variation of Elemental Power Coefficient to Elemental for Selig Donovan
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Figure 4.55 also shows the twist distribution for the designed blade which
gives a normalized outline as the various radial locations gave a positive twist angle
pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly.

Figure 4.56 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.56: Power Coefficient against Torque and Thrust Distribution for Selig
Donovan 7037
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4.2.8 Blade design Results for Selig Donovan 8000

Both Figure 4.57 and Figure 4.58 show an elemental blade section and a set
of elemental blade sections up to 50 element to substantiate the pattern of the
dimensional views of the blade profile.The plot in Figure 4.59 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, ;=5 ...., As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5711 occurred at a relative wind angle of
10.03° as shown in Figures 4.60.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.9052 at the same Cp of 0.5711 as shown in Figure 4.62. Similarly, a tip speed

ratio of 7.44 occurred at the same power coefficient as indicated in Figure 4.63.
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Figure 4.57: 2-D Sectional View of Selig Donovan 7037Designed Blade Profile
Element
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Figure 4.58: 2-D Sectional View of Selig Donovan 8000 Designed Blade Profile for a
Set of Blade Elements
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Figure 4.59: Variation of Elemental Power Coefficient with Relative Wind Angles for
Values of Local Tip-Speed Ratio for Selig Donovan 8000.
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Figure 4.61 also shows the twist distribution for the designed blade which
gives a normalized outline as the various radial locations gave a positive twist angle

pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly
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Figure 4.61: Twist distribution for the Designed Blade for Selig Donovan 8000
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Figure 4.62: Variation of Power Coefficient to Chord Length Ratio for Selig
Donovan 8000
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Figure 4.63: Variation of Elemental Power Coefficient with Respect to Elemental
Tip Speed Ratio for Selig Donovan 8000

Figure 4.64 also shows how power coefficient relates to torque and thrust

distribution along the blade profile. It depicts when the maximum thrust and torque
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occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.64: Power Coefficient against Torque and Thrust Distribution for Selig
Donovan 8000

4.2.9 Blade design Results for Selig 3021

Both Figure 4.65 and Figure 4.66 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile.The plot in Figure 4.67 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed
ratios of M= 4, A=5 ......, As= 8. The highest elemental power coefficient as well as
the generalized power coefficient, Cp of 0.5884 occurred at a relative wind angle of
10.03° as shown in Figures 4.68.

Moreover, when the power coefficient was plotted against various chord

length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
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of 0.80 at the same Cp of 0.5884 as shown in Figure 4.69. Similarly, a tip speed ratio

of 7.44 occurred at the same power coefficient as indicated in Figure 4.70.
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Figure 4.65: 2-D Sectional View of Selig 3021 Designed Blade Profile Element
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Figure 4.66: 2-D Sectional View of Selig 3021 Designed Blade Profile for a Set of
Blade Elements
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Figure 4.67: A Graph of Power Coefficient against Relative Wind Angle for Selig
3021
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Figure 4.68: Variation of Power Coefficient to Chord Length Ratio for Selig 3021
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Figure 4.69: Variation of Elemental Power Coefficient to Elemental Tip Speed Ratio
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Figure 4.70 also shows the twist distribution for the designed blade which
gives a normalized outline as the various radial locations gave a positive twist angle

pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.70: Twist Distribution for the Designed Blade for Selig 3021

80




Figure 4.71 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.71: Power Coefficient against Torque and Thrust Distribution for Selig
3021

4.2.10 Blade design Results for Ara-D 10%

Both Figure 4.72 and Figure 4.73 show an elemental blade section and a set
of elemental blade sections up to 50" element to substantiate the pattern of the
dimensional views of the blade profile. The plot in Figure 4.74 clearly shows the
elemental power coefficient versus relative wind angles for values of local tip speed

ratios of ;= 4, A,=5 ......, As= 8. The highest elemental power coefficient as well as
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the generalized power coefficient, Cp of 0.50 occurred at a relative wind angle of
10.03° as shown in Figures 4.75.

Moreover, when the power coefficient was plotted against various chord
length ratios, the optimum power and hence lift occurred at a chord length ratio (c/R)
of 0.49 at the same Cp of 0.50 as in Figure 4.76. Similarly, a tip speed ratio of 7.44

occurred at the same power coefficient as indicated in Figure 4.77.
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Figure 4.72: 2-D Sectional View of Ara-D 10% Designed Blade Profile Element
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Figure 4.73: 2-D Sectional View of Ara-D 10% Designed Blade Profile for a Set
of Blade Elements
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Figure 4.74: Variation of Elemental Power Coefficient with Relative Wind Angles
for Values of Local Tip-Speed Ratio for Ara-D 10%
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Figure 4.77: Variation of Elemental Power coefficient to Elemental Tip Speed Ratio
for Ara-D 10%

Figure 4.78 also shows the twist distribution for the designed blade which
gives a normalized outline as the various radial locations gave a positive twist angle
pattern. This could be observed from the Figure that the twist angle is highest at the

root and least at the tip of the blade as radial location increases accordingly.
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Figure 4.78: Twist Distribution for the Designed Blade for Ara-D 10%
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Figure 4.79 also shows how power coefficient relates to torque and thrust
distribution along the blade profile. It depicts when the maximum thrust and torque
occurred along the blade against the required power coefficient. The maximum thrust

and torque were considered in the design of the blade profile.
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Figure 4.79: Power Coefficient against Torque and Thrust Distribution for Ara D-
10%
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4.3 Model of the LWS Blade Profile
Figure 4.80 and Figure 4.81 show the elemental blade section and the set of

elemental blade sections to substantiate the pattern of the dimensional views.
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Figure 4.80: 2-D Sectional View of LWS Designed Blade Profile Element
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Figure 4.81: 2-D Sectional View of LWS Blade Profile for a Set of Blade Elements
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The final LWS blade airfoil is obtained by combining all the optimum sections of the
ten blade airfoils discussed in section 4.2 along their respective radial locations to

produce the 3D model of the LWS Blade airfoil in Figure 4.82.

KEY:
1-SELIG 3021 2-SELIG 1210 3- WORTHMANN FX 63-137 :
4- ARA-D 6% 5-NACA 4412 6-ARA 10% 7-SELIG DONOVAN 7032
8- SELIG DONOVAN 7037 9-SELIG 2091 10- SELIG DONOVAN 8000

Figure 4.82: 3-D Model of the LWS Blade Profile

4.4  Designed LWS Blade Profile Results versus Existing Profiles

The results of the designed LWS blade profile is compared with all the
existing ten profiles discussed earlier. It would be seen that most of the designed
parameters in this blade profile is comparatively better than the existing profiles.
Several plotted graphs are used to attest to the fact that the LWS blade profile is the

best alternative when operating in an area of at least 3m/s wind speed.

In Figure 4.83, it could be seen that the power coefficient is least for Selig
2091 and highest for the LWS blade profile. This is also true for the power output of
the blade profile as there is a direct proportionality between the power coefficient
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and the power output of a blade profile. The highest power among the existing
profiles is 31.04 W recorded by Selig Donovan 7032 whilst that of the designed
LWS Blade profile is 48.23 W which the later is approximately 35.64% greater than

Selig Donovan 7032.
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Figure 4.83: Comparison of Airfoils against Power Coefficient and Power

The ratio of the speed at which the tip of the blade would move relative to the
undisturbed free wind speed upstream for the ten profiles varies from 7.3 to 8.0 as
shown in Figure 4.84. The higher the tip speed ratio, the faster the rotation of the
blade. From the aforementioned Figure, it showed that the LWS Blade profile
recorded a tip speed ratio of 8.0 which is comparatively a better ratio that will

enhance the rotation of the blade.

89



8.0 /
g 7° / N— /
I R
% ~
2 72
& 70
2 7
l_ 6.8 T T T T T T T T T 1
RS 0\9 > Q<8\° S ,\0'5\ ,\0'9' SR N
o] ) 0% & > Q (@)
SHEN P U N S SO N G G
N\ A\ S s R N AN S
S SIS P
D Q 9 9 ¥
W Q Q Q S
< NN NG NS
& £ P
N
Airfoil
Figure 4.84: Airfoils versus Tip Speed Ratio
14 Angle of Attack
= Twist Angle
1 A /
&
$ 10 -
&
: . [\ /
£
@ 6
3 [\ /
g 4
“ [\ /
0 T T T T T T T T T T 1
O & & SR O O o &
o> '\,)/'\/ $$‘< ch\ ’\90) OAV OAV OAV %Q’L ,\9"\ o<<\\f
x P Q YN S—N0 § P V’Q &
¥ NS v O & & o«
IS Ll S RN
S S >
N O S
v
Airfoils

Figure 4.85: Angle of Attack and Twist Angle versus Airfoils

Also, the angle between respective chord line and their local relative airflow

direction of all the profiles are plotted as shown in Figure 4.85. Comparing the angle

of attack of the LWS blade profile to the ten profiles it is seen that the former
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recorded 8.0°. The parameters achieved by the LWS blade profile is better compared
to the rest of the ten profiles as it helps to prevent the blade from stalling during its

operation.
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Figure 4.86: Aerodynamic Coefficient against Airfoils

From Figure 4.86 the drag coefficient is very much less than the lift
coefficient making the lift to drag ratio C./Cp better than 50. The LWS blade profile

gives a better ratio compared to all the ten profiles.

Both Figure 4.87 and Figure 4.88 give detailed information as to how the
chord and thrust distributions faired along the blade where its maximum power
coefficient was recorded. In both cases the LWS blade profile was maximum,
recording 0.9 m which attest to the fact that the LWS blade profile has been

optimized and can give maximum circulation at low wind speed.
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4.5  Validations of Low Wind Speed Blade Profile Results

The power of the modified LWS blade profile is validated with the standard
Power/Wind speed data of the Evans R9000 wind turbine performance to verify that
the power obtained for the designed LWS blade profile is in conformity with the
international standard data of wind turbine companies. The R9000 turbine whose
data performance will be used as a real data for validation is specifically designed to
capture more energy at lower wind speeds which makes it one of the most efficient
turbines available. The LWS blade profile is capable of producing an approximate
power output of 50 W (Figure 4.89) at 3 m/s at 12 m above sea level. This power
positively correlates with an interpolated power output of nearly 50 W at 3 m/s and
50 m above sea level from the Power versus Wind Speed curve of the Evans R9000

wind turbine chart (Figure 4.90).
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Figure 4.89: Power versus Wind Speed at 12 m above sea level for LWS blade
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Figure 4.90: Standard Power generated against Variable Wind Speed at 50 m above
sea level

It is also evident that, the designed LWS blade profile is in consonance with
the existing blade profile power outputs from recognized wind turbine companies. A
critical comparison would also reveal that since the LWS blade profile was designed
to operate at an altitude of 12 m above sea level, it is expected that a higher power
output would be achieved when its operation altitude is increased from 12 m to 50 m
above sea level. This is because at high altitude there is high wind circulation which

tends to increase the power output of the blade.
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CHAPTER FIVE

Conclusions and Recommendations

5.1  Conclusion

A new profile or airfoil capable of producing a high lift at low wind speed has
been designed. The profile could deliver a power of approximately 50 W which is
about 35.64% greater than the best profile (Selig Donovan 7032) within the existing

profiles in terms of power output.

The blade momentum theory was used to critically inspect and analyze all the
ten profiles. It revealed that Selig Donovan 7032 is the best profile that could be used
to produce electricity at areas of low wind speed. However, the redesigned LWS
Blade Profile is more efficient than the Selig Donovan 7032 as it produces extra
power of 35.64% more than later. Several graphs were plotted using blade profile
parameters to access the performances of the blades. The graphs of Power
Coefficient versus Relative wind angle gave a maximum C,, of 0.6 for Selig Donovan

7032 at 5.2°.

It is found that a standard wind speed of 3 m/s corresponds to 50 W while the
redesigned profile gave closely the same power of 48.23 W at 3 m/s. This power is
about almost the same as that of the existing standard power for the Evance R9000
blade profile. Comparatively, there is very good correlation between the power

output of the redesigned LWS Blade profile and the existing standard profile.

In addition, when the proposed power obtained from the LWS blade profile
was validated with the international wind turbine data it yielded good correlation. It

is found that, the power for the LWS blade profile is quiet higher than that which
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existed. The power obtained for the LWS blade profile confirms that it is an

improvement upon the existing profiles.

The optimized designed LWS blade profile is professed to be the best profile
that could generate an effective, sustainable and high lift and power at average wind
speed of at least 3m/s when the necessary structural and electrical components are
incorporated. Finally, Club Cycom, a computer software combined with iterative
procedures using the BEM has been used to optimized a wind turbine airfoil for low

wind speed applications.

5.2 Recommendations

The following recommendations are necessary for future researchers:

1. Future researchers could concentrate on the construction and testing of the
proposed LWS blade design. The constructed wind turbine must be expanded
and take into accounts the structural and electrical components to ensure a

feasible power generation.

2. Moreover, a more challenging but efficient computer program could be
written for the two flow charts in this work to ensure flexible and dynamic
way of designing new turbine blades at low wind speeds for construction and

testing.

3. Future extensions of this thesis could study how the materials properties such

as mass distribution would be used in constructing the LWS blades.
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4| 01318 0245 02059 0208 0213 02180 02245 01318 01026 00768 00545| 00359 06066 06056 05167) 04262 0337 02389) 95 118 207 360] 558 821 1184 2034 1157 1310 1508 1770 2134 320 3200] 280 240 200 160] 80| 700 600 500 400 00| 100| 100] 100 L00[ 2400 | 2L00] 1800| 1500 1200] 300|300 | 150| 100]040) 040 061f 002 127 002 47001 00174
dist] 01360 02238 02052 02087 02126) 02074] 02238) 01380 01074) 00804 OQS7L| 00376 0S615| 05615 04791 03952 03094 02015) 05 114 180] 33| 526 784 114 29 1130 1281) 1475 1734 209 328 3280] 287 246 205| 164 800 7.00] 600] 500 400) 100] 100 100 100] 100 2400 | 2100 1800 1500] 1200{ 300|300 150| 100|041 ) 041| 056[ 002 127 002 447%| (00162
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4h| 0M5T5| 0227|0203 02069 02108| 02155 02217 01575 01226 00918 0062 00429 04383 04383| 03739) 03084 02414 01724| 95{ 102] 107 249 433 680] 1024 1074 1057 1199 1388 1630 1974] 352 350 308 264 220 176 80| 700 600 500 400 00| L100| 100] 100 L00[ 2400 | 2L00] 1800| 1500 1200] 300|300 | 150| 100] 044) 044 044f 002 127 002 37826 00128
oth| 064 022100 02028 02063 02102 02149 02210] 0.642| 01279) 00358 00680| 00448] 04004 04004 03416) 02817 02203 01570) 95| 99| 085 224 405 647 987 1037 1036 1074 1355 1597 1937 36| 3600] 315 270] 225 160] 80| 700 600 500 400 00| L100| 100] 100 L00[ 2400 | 2L00] 1800| 1500 1200] 300|300 | 150| 100] 045) 045| 040f 002 127) 002 3546 00117
dath) 0A7MYl 0204 0202|0257 02097 02143 02204 04711 01333) 00398 00709| 00466] 03641 03641 03106 02560 02001 01425| 95| 95| 083 200 378 A7 952 1902 1013 1150 1328 1567 1902 36| 3680 322 276) 230 184 80| 700 600 500 400 00| L100| 100] 100 L00[ 2400 | 2L00] 1800| 1500 1200] 300|300 | 150| 100] 046) 046| 036 002 127) 002 33008 00107
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Opti ative Wind Angle ] Elemental Power Elemental Chord Length Distribution Twist Angles Elemental Relative Wind Angles d/Local Tip Speed Ratio Tip Loss Correction Factor /cL

ProfilefAirfoil | N | Cp | Opt-p | Opt-pl | Opt-p2 | Opt-p3 | Opt-p4 |Opt-ps| Cer | Ce2 | Ces | Cos | Ces |Cuax| Ct | Co | Co | Cu | Cs T 2] 8 4] 5| p [t p| B | p|B5| Max| ri| r2] 3 o 15 1] 2 3| 4] 5[Q1|Q2|Q3|Q4[Q5| Q1| Q2] Q3| Q4[05|V|BI[BR|R|r|rR|cR|Cy|C|Cy/Ci| Trust |Torque
Slst| 02073 02175 01993 02030] 0.2070] 02117} 0.2175) 0.2073] 0.1617| 0.1212) 0.0860] 0.0566| 0.2078) 0.2078| 0.1768| 0.1451) 0.1126] 0.0789] 95| 7.9) -0.32[ 093 256| 478 7.91| 17.41] 9.18| 1043 12.06| 1428 1741  4.08[ 4.080] 357) 3.06] 2.5 2.04| 8.00) 7.00] 6.00 5.00] 4.00| 1.00] 1.0 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00{ 1,50/ 1.00/0.51{0.51| 0.21] 002 127| 0.02] 2.1091] 0.0062]

Sind| 02149 02170 0.1987] 02005 0.2065] 0.2112] 0.2170) 0.2149] 0.1677] 0.1257) 0.0892( 0.0587| 0.1817| 0.1817] 0.1544| 0.1266) 0.0979] 0.0682( 95| 7.6 -049| 074 235 453 7.62 17.12 9.01| 1024] 1185 1403 17.12)  416[ 4.160) 3.64| 3.12| 2.60] 2.08| 8.00) 7.00] 6.00 5.00] 4.00] 1.00] 1.0 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00]1.50/1.00/0.52{0.52| 0.18 0.02) 127 0.02] 1.8829| 0.0054

S3d] 0.2227] 02165 0.1982 02019 0.2060] 0.2107] 0.2165( 0.2227| 0.1737| 0.1302| 0.0925) 0.0608) 0.1572| 0.1572) 0.1335) 0.1092) 0.0842) 0.0583) 95| 7.3| 065 0.56| 214] 428 7.34 1684 885 10.06) 1164 1378 1684  424] 4240 371| 3.18) 2.65 2.12 8.00) 7.00| 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00) 15.00 12.003.00{3.00| 1.50] 1.00| 0.53| 0.53) 0.16] 0.02[ 1.27| 0.02] 1.6637 0.0047

S4th) 02305 02160 0.1976 0.2014] 0.2056] 0.2102] 0.2160| 0.2305] 0.1799| 0.1349) 0.0958] 0.0630| 0.1345| 0.1345) 0.1141) 0.0931) 0.0715) 0.04%2) 95| 7.1 081 038 193 405 7.06] 1656] 869 9.88) 1143 1355 16.56]  432) 4320 378| 3.24] 2.70| 2.16 8.00) 7.00| 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.54|0.54] 0.13] 0.02] 1.27| 0.02] 14526 0.0040

S5th| 02384 02155 0.1971f 02009 02051 0.2098| 0.2155] 0.2384| 0.1861| 0.139] 0.0991] 0.0652| 0.1136) 0.1136| 0.0961| 0.0783] 0.0598| 0.0407| 95| 6.8 -0.96] 021] 174] 382 680 1630] 854 971 1124) 1332 1630  4.40| 4400] 3:85) 330 2.75 2.20] 8.00) 7.00] 6.00] 5.00] 4.00] 1.00] 1.00) 1.00| 1.00f 1.00{24.00 21.00| 18.00] 15.00) 12.00[3.00{3.001.50)1.00/0.55(0.55| 0.11] 0.02) 127| 0.02] 12509 0.0034)

Seth) 0.2465| 02150 0.1965| 0.2004] 0.2046 0.2093] 0.2150] 0.2465] 0.1925] 0.1444| 0.1026 0.0674) 0.0944] 0.0944] 0.0797) 0.0647) 0.0492) 0.0331) 95| 6.5 -111| 0.04] 155 360] 654 1604 839 9.54) 1105 1310 1604  448) 4480 392| 336] 2.80] 2.24 8.00) 7.00| 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00| 1.00|24.00| 21.00] 18.00) 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.56|0.56] 0.09] 0.02[ 127 0.02] 1.0598| 0.0028

S7th] 0.2547| 02145 0.1960 0.1999] 0.2041 0.2088] 0.2145( 0.2547| 0.1989) 0.1492 0.1060| 0.0697) 0.0770| 0.0770| 0.0648) 0.0524) 0.03%5| 0.0262) 95| 63 -125| -0.12 137 339] 629 1579 825 9.38) 1087 12.89 1579  4.56] 4560 3.99| 342) 2.85 2.28 8.00) 7.00| 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.57|0.57) 0.08] 0.02] 1.27| 0.02] (0.8806] 0.0023

58th| 0.2630] 02141] 01954/ 01994 0.2037] 02084 0.2141] 0.2630] 0.2054| 0.1542] 0.1095] 0.0720) 0.0613) 0.0613] 0.0515] 0.0414] 0.0309] 0.0201f 95) 60| -139| 028 119 318 6.05 1555 811 9.22| 10.69) 1268 1555 464 4.640] 4.06) 3.48| 2.90| 2.32| 8.00) 7.00] 6.00] 5.00] 4.00] 1.00] 1.00) 1.00| 1.00f 1.00{24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.001.501.00/0.58(0.58| 0.06] 0.02| 127 0.02] 0.7144] 0.0018]

Soth| 0.2714] 02136 01949 01989 02032 0.2080| 0.2136] 0.2714| 0.2121f 0.1592] 0.1131] 0.0744] 0.0474) 0.0474| 0.03%] 0.0316] 0.0233 0.0148| 9.5) 58] -153| -043) 102| 298 581) 1531 7.97) 9.07| 1052 12.48] 1531 472 4.720] 413) 354 2.95 2.36| 8.00) 7.00] 6.00] 5.00] 400[ 1.00] 1.0 1.00| 1.00f 1.00{24.00 21.00| 18.00] 15.00) 12.00[3.00{3.001.501.00/0.59{0.59| 0.05 0.02| 1.27| 0.02] (0.5625| 0.0014)

60th) 02799 02132 0.1944 0.1984] 0.2028 0.2075] 0.2132f 0.2799) 0.2188] 0.1642| 0.1167) 0.0768) 0.0353| 0.0353) 0.0293) 0.0232) 0.0168) 0.0103) 9.5) 5.6 -165| -0.57| 085 279 558 15.08] 7.85 893) 1035 12.29 15.08]  4.80] 4.800] 4.20| 3.60] 3.00{ 2.40 8.00) 7.00| 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00) 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.60| 0.60] 0.04 0.02[ 1.27| 0.02] 0.4261] 0.0011

6lst| 02885 02128 0.1933 0.1980] 02023 0.2071] 0.2128) 0.2885] 0.2256] 0.1634) 0.1204] 0.0792| 0.0249) 0.0249| 0.0205| 0.0160) 0.0114] 0.0066( 95| 54) -178 -0.71) 069 260 536 1486 7.72| 879 10.19| 12.10] 1486  4.88| 4.880] 4.27) 3.66 3.05 2.44| 8.00) 7.00] 6.00| 5.00] 4.00| 1.00] 1.00] 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.001.50/1.00/0.61{0.61| 0.02] 0.02| 127| 0.02] 0.3064| 0.0007]

6nd| 02972 02124] 01933 01975 0.2019] 0.2067| 0.2124) 0.2972] 0.2325] 0.1746| 0.1241] 0.0816( 0.0163| 0.0163] 0.0133| 0.0102) 0.0070] 00037 95| 5.1 -1.90] -0.85) 053 242) 5.14| 1464) 7.60| 865 10.03| 11.92] 1464 496 4.960) 4.34| 3.72| 3.10] 2.48| 8.00) 7.00] 6.00 5.00] 4.00] 1.00] 1.0 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00|1.50|1.00|0.62{0.62| 0.02] 0.02| 127 0.02] 0.2046| 0.0005

63d] 03061 02119 0.1928 0.1970] 0.2014] 0.2063] 0.2119| 0.3061| 0.2394] 0.1799] 0.1279] 0.0841) 0.0096] 0.0096| 0.0077) 0.0057) 0.0036| 0.0016] 95| 49 -202 -0.98| 038 224| 493 1443 7.48) 85) 988 1174 1443  5.04] 5040 441| 378) 315 252 8.00) 7.00] 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.63| 0.63 0.01] 0.02[ 127 0.02] (0.1220] 0.0003

64th] 031500 02115 01923 0.195| 0.2010] 0.2059] 0.2115f 0.3150] 0.2465] 0.1852| 0.1318] 0.0866) 0.0046| 0.0046 0.0035) 0.0025) 0.0014) 0.0004] 95| 47| -2.13] -L11| 023 207 472 1422 737 839 973 1157 1422 512 5.120] 448| 3.84] 3.0 2.56] 8.00) 7.00| 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00] 12.00]3.00{3.00| 1.50] 1.00| 0.64| 0.64) 0.00] 0.02[ 1.27| 0.02] (0.0597 0.0001

65th| 03240] 02111] 01917| 0.1960] 0.2006[ 0.2055| 0.2111 0.3240| 0.2537| 0.1907] 0.1356| 0.0892| 0.0014] 0.0014| 0.0010f 0.0006] 0.0002( 0.0000| 9.5] 45| -2.24 -124] 0.09| 190] 453| 1403] 7.26| 8.26] 9.59) 1140 1403  5.20] 5200] 455) 3.90| 3.25 2.60| 8.00) 7.00] 6.00] 5.00] 4.00] 1.00] 1.00) 1.00| 1.00f 1.00{24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00]1.50]1.00| 0.65(0.65] 0.00] 0.02| 127 0.02] 0.0189| 0.0000]

66th| 03332 02107] 01912f 01956 0.2001f 02051 0.2107 03332 0.2609| 0.1961] 0.1396| 0.0918| 0.0004 0.0001] 0.0000f 0.0000] 0.0001 0.0004| 9.5) 43 -2.35 -136] -0.05| 174] 433| 1383 7.15| 814] 945 1024 1383  5.28| 5.280] 462 3.96| 330 2.64| 8.00) 7.00] 6.00[ 5.00] 400] 1.00] 1.0 1.00| 1.00f 1.00{24.00 21.00| 18.00] 15.00) 12.00[3.00{3.00] 1.50] 1.00| 0.66{0.66| 0.00] 0.02| 1.27| 0.02] (0.0060| 0.0000|

67th) 0344 02103 0.1907| 01951 0.1997] 0.2047] 0.2103| 0.3424] 0.2682| 0.2017| 0.1436| 0.0944) 0.0017| 0.0005) 0.0006] 0.0008) 0.0011) 0.0017) 95| 41| -2.45 -1.48| -0.19) 158 414 1364] 705 802 931 1108 1364  536) 5360 469| 4.02) 335 2.68] 8.00) 7.00[ 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.67| 0.67) 0.00] 0.02[ 1.27| 0.02] 0.0236 0.0001

(%) 68th 0357| 02099 01902 0.1946] 01993 0.2043] 0.2099| 0.3517| 0.2756| 0.2073| 0.1476 0.0971) 0.0039| 0.0027) 0.0027) 0.0029) 0.0032) 0.0039) 95| 40| -2.56 -159| -032 143] 39| 13.46] 694 791 918 1093 1346] 544 5.440 476| 4.08) 340 2.72| 8.00) 7.00] 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.003.00{3.00| 1.50] 1.00| 0.68| 0.68) 0.00] 0.02[ 1.27| 0.02] (0.0535] 0.0001
p 69th| 03612 02095 0.1897] 01942 01989 0.2039| 0.2095[ 0.3612| 0.2831f 0.2130] 0.1517] 0.0997) 0.0069) 0.0068| 0.0065| 0.0063 0.0063 0.0069| 9.5) 38 -265 -1.70] -0.45| 128 378| 13.28] 685 7.80] 9.05 10.78] 1328 552/ 5520 4383| 4.14| 345 2.76| 8.00) 7.00] 6.00[ 5.00] 400[ 1.00] 1.0 1.00| 1.00f 1.00{24.00 21.00| 18.00] 15.00) 12.00[3.00{3.001.501.00| 0.69{0.69| 0.01] 0.02) 127 0.02[ 0.0962| 0.0002]
- 0th 03707| 02091 0.1891f 0.1937] 0.1984] 0.2035] 0.2091f 0.3707| 0.2907| 0.2188] 0.1558] 0.1025) 00126 0.0126 0.0118) 0.0111) 0.0106) 0.0107) 95| 36| -275| -181) -0.57 113 360] 1310] 675 769 893 1063 13.10]  560) 5.600] 490| 4.20] 350 2.80 8.00) 7.00| 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00| 1.00|24.00| 21.00] 18.00) 15.00 12.00]3.00{3.00|1.50] 1.00|0.70{0.70] 0.01] 0.02 1.27| 0.02] (0.1800] 0.0004
m Tist| 03804] 02087 0.1836 0.1932] 01980 0.2031] 0.2087) 0.3804] 0.2983| 0.2246] 0.1600] 0.1052| 0.0203| 0.0203| 0.0187| 0.0172) 0.0160] 0.0154[ 95| 34] -284 -1.92] -0.69| 099 343| 12.93) 6.66| 7.58] 881| 1049 1293  5.68| 5.680] 497) 4.26| 355 2.84f 8.00) 7.00] 6.00| 5.00] 4.00| 1.00] 1.00| 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00| 1,50/ 1.00{0.7{0.71] 0.02 0.02| 127| 0.02] 0.2936 0.0006]
U Tind| 03%01] 02083) 0.1881] 01928 0.1976] 0.2027] 0.2083) 0.3901] 0.3060| 0.2305) 0.1642] 0.1080f 0.0298| 0.0298] 0.0271] 0.0246) 0.0225| 0.0210[ 95| 33) -2.93| -2.02) -081f 085 327| 12.77) 657| 7.48) 869 1035 1277)  5.76[ 5.760] 5.04| 432| 360| 2.88| 8.00) 7.00) 6.00 5.00] 4.00] 1.0 1.0 1.00| 1.00f 1.00]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00] 1,50/ 1.00{0.72{0.72| 0.03) 0.02| 127 0.02] 0.4371| 0.0009]
o Trd| 03999 02078 0.1876[ 01923 01972[ 0.2023| 0.2078] 0.3999| 0.3139| 0.2364] 0.1684] 0.1108| 0.0411) 0.0411] 0.0372| 0.0334] 0.0301 0.0274] 95| 31| -3.02 -212) -0.93| 071 3.10| 12.60] 648 7.38] 857 10.21 1260 584 5840 5.11) 438| 365 2.92| 8.00) 7.00] 6.00| 5.00] 400] 1.00] 1.0 1.00| 1.00f 1.00{24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00{1.50) 1.00{0.73{0.73| 0.04] 0.02| 1.27| 0.02] 06118 0.0012]
74th) 04098 02074 0.1871f 01919 0.1968 0.2019] 0.2074| 0.4098| 0.3217| 0.2424| 0.1727) 0.1136) 0.0543| 0.0543) 0.0488) 0.0436] 0.0388) 0.0347) 95| 29| -3.11] -2.22| -104] 058 294 12.44| 639 7.28) 846 1008 12.44] 59| 5900] 5.18| 4.44] 370 2.%| 8.00) 7.00[ 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.74|0.74) 0.05 0.02[ 1.27| 0.02] (0.8187 0.0016)

Z 75th| 04198 0209 0.18g6| 0.1914] 01963 0.2015| 0.2069] 04198| 0.3297| 0.2485] 0.1771] 0.1164] 0.0692) 0.0692| 0.0620| 0.0551 0.0486 0.0429| 9.5) 28] -3.19 -2.31] -115| 045| 279| 12.29] 631 7.19] 835 9.95 1229 6.0 6.000] 5.25) 450 3.75| 3.00] 8.00) 7.00] 6.00] 5.00] 4.00] 1.00] 1.00) 1.00| 1.00f 1.00{24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00{150/1.00/0.75(0.75] 0.07/ 0.02| 127| 0.02] 1.0591| 0.0021)
o T6th| 04299 02065 0.1861f 01909 01959 02011 0.2065 04299| 0.3377| 0.2546] 0.1815] 0.1193)| 0.0860] 0.0860| 0.0768| 0.0680] 0.0595 0.0519| 9.5) 2.6] -3.27| -240] -1.25| 033] 264| 12.14] 623) 7.10] 825 983 12.14]  6.08| 6.080] 532) 456 3.80| 3.04| 8.00) 7.00] 6.00[ 5.00] 400] 1.00] 1.0 1.00| 1.00f 1.00{24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00]1.501.00{0.76{0.76] 0.09 0.02| 1.27| 0.02] 1.3342| 0.0026|
< Tith] 04401 02059 0.18%6[ 0.1905| (0.1955 0.2006] 0.2059| 0.4401| 0.3455| 0.2608] 0.1859| 0.1221) 0.1046 0.1046 0.0932) 0.0822) 0.0715) 0.0617) 95| 25| -3.35| -249| -136 021] 249 11.99] 615 7.00 814 971 1199  6.16] 6.160] 5.39| 4.62) 385 3.08] 8.00) 7.00[ 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 1.00|24.00| 21.00] 18.00 15.00 12.003.00{3.00| 1,50 1.00|0.77|0.77) 0.10] 0.02 1.27| 0.02] 16451 0.0031
> 78th) 04504/ 02054 01851 0.1900] (0.1950] 0.2002] 0.2054| 0.4504| 0.3540] 0.2670| 0.1903| 0.1250) 0.1250| 0.1250) 0.1112) 0.0977) 0.0847) 0.0724) 95| 23| -343| -258| -1.46] 0.09] 235 1185 6.07) 692 804 959 1185  6.24] 6.240] 5.46| 4.68) 390 3.12] 8.00) 7.00[ 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 1.00f 0.99|24.00| 21.00] 18.00 15.00 12.00{3.00{3.00| 1.50] 1.00|0.78|0.78) 0.13] 0.02[ 1.27| 0.02] 1.9930] 0.0037]
Z 79th| 04607] 02048 0.1846] 01895 0.1946[ 0.1997| 0.2048] 04607| 0.3623| 0.2733) 0.1948] 0.1278| 0.1473) 0.1473| 0.1308| 0.1146] 0.0989] 0.0840] 9.5) 2.2| -351| -2.67] -156| 003 221| 10.71] 59| 683 794 947 1171  6.32| 6320] 553| 474 3.95| 3.16| 8.00) 7.00] 6.00| 5.00] 400[ 1.00] 1.0 1.00| 1.00f 0.99]24.00 21.00| 18.00] 15.00) 12.00[3.00{3.001.50)1.00/0.79{0.79] 0.15 0.02| 127 0.02] 2.3791| 0.0044|
Ni 80th) 04711 02041 0.1840 0.1891 0.1941 0.1992] 0.2041f 0.4711| 0.3706| 0.2796] 0.1992| 0.1306) 0.1714] 0.1714) 0.1520) 0.1328) 0.1142) 0.0963) 95| 2.1| -3.58| -275| -165| -0.14] 207 1157 592 675 7.8 936 1157  640) 6.400] 5.60| 4.80] 400 3.20] 8.00) 7.00] 6.00] 5.00] 4.00] 1.00| 1.00] 1.00] 1.00f 0.99|24.00| 21.00] 18.00) 15.00] 12.00]3.00{3.00|1.50] 1.00| 0.80{ 0.80] 0.17[ 0.02 1.27| 0.02] 2.8046| 0.0051
(o) 8lst| 04816 02034 0.1835 01886 01937] 0.1987] 0.2034) 0.4816[ 0.3789| 0.2859) 0.2037] 0.1334| 0.1973 0.1973| 0.1747| 0.1524) 0.1306] 0.1095[ 95| 1.9] -365 -2.83) -L75| 0.5 193| 11.43) 585 667 775 9.25 1143|  6.48| 6.480] 567) 486 405 3.24f 8.00) 7.00] 6.00{ 5.00] 4.00| 1.00] 1.0 1.00| 1.00f 0.99]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.00| 1,50/ 1.00/0.81{0.81] 0.20{ 0.02| 127| 0.02] 32705 0.0059|
W 8nd| 04922 02025) 0.1830 0.1881) 0.1932) 0.1981] 0.2025) 0.4922] 0.3873| 0.2922 0.2081] 0.1362f 0.2250| 0.2250] 0.1990] 0.1733) 0.1480] 0.1234] 95| 18) -372 -291) -1.84 036 180 1130 578| 659) 7.66| 9.14] 1130|  6.56 6.560) 5.74| 4.92| 410] 3.28| 8.00) 7.00) 6.00 5.00] 4.00] 1.00] 1.0 1.00| 0.99} 0.99]24.00| 21.00f 18.00] 15.00) 12.00[3.00{3.001.50/1.00/0.82{0.82| 0.23] 0.02| 1.27| 0.02] 3.7780| 0.0067]
N 83rd| 05028 02015 01825 0.1876] 0.1926[ 01974 0.2015 0.5028] 0.3957| 0.2985] 0.2125] 0.1388] 0.2545) 0.2545| 0.2249| 0.1955 01664 0.1380] 9.5) 17| -379| -299] -1.93| -047| 168| 1118 571 651 757 903 11.18]  6.64 6.640] 5.81) 4.98| 415 3.32| 8.00) 7.00] 6.00[ 5.00] 400] 1.00] 1.0 1.00| 0.99| 0.98] 24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00] 1,50 1.00/ 0.83{0.83| 0.25 0.02| 1.27| 0.02] 43280| 0.0076|
8ath) 05134/ 02004 0.1819| 0.1870] 0.1920 0.1966| 0.2004| 0.5134] 0.4041| 0.3048] 0.2168] 0.1414) 0.2859| 0.2859) 0.2523) 0.2189) 0.1858) 0.1533) 95| 15| -3.86] -3.07 -2.02| -057| 155 11.05| 564 643 748 893 10.05|  6.72) 6.720| 5.88| 5.04] 420 336 8.00) 7.00[ 6.00] 5.00] 4.00| 1.00| 1.00] 1.00] 0.99| 0.98|24.00| 21.00] 18.00 15.00) 12.00]3.00{3.00| 1.50] 1.00| 0.84|0.84) 0.29] 0.02 1.27| 0.02] 49214 0.0085)

85th| 05241 01991 01813 01864 01913 (0.1957] 0.191f 0.5241| 0.4125] 03110] 0.2209] 0.1438) 0.3190] 03190 0.2812) 0.2436) 0.2061) 01691 95| 14| -392| -3.14| -2.10] -067 143 1093| 558 636 7.40] 883 1093  6:80] 6.800] 5.95| 5.10] 425 3.40] 8.00) 7.00] 6.00] 5.00] 4.00| 1.00| 1.00] 0.99| 0.99| 0.97| 24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.85|0.85 032 0.02[ .27 0.02] 5.5590] 0.0095)

86th| 05347 01975 01807 01858 01905 0.1946| 0.1975( 0.5347| 0.4208| 0.3170] 0.2249] 0.1461| 0.3538) 0.3538| 0.3115] 0.2693) 0.2272] 0.1854| 9.5) 13| -3.99 -321] -219| -0.77] 131) 1081 551 629 731 873 1081  6.88| 6.880] 6.02) 5.16| 4.30| 3.44| 8.00) 7.00] 6.00[ 5.00] 400[ 1.00] 1.00 0.9| 0.98] 0.97[24.00 21.00| 18.00] 15.00) 12.00[3.00{3.001.501.00/ 0.86{0.86| 0.35 0.02| 1.27| 0.02] 6.2412| 0.0105|

87th) 05452 01956 0.1801 0.1850] (0.1896 (0.1934] 0.1956| 0.5452| 0.4289| 03229 0.2287| 0.1481) 0.3903| 0.3903| 0.3432) 0.2961) 0.24%0] 0.2021) 95| 12| -405| -3.28| -2.27) -087| 119 1069 545 622 7.3 863 1069 69| 6.960 6.09| 5.22) 435 348 8.00) 7.00] 6.00] 5.00] 4.00] 1.00] 0.99] 0.99| 0.98 0.96| 24.00| 21.00] 18.00) 15.00 12.00]3.00{3.00|1.50] 1.00| 0.87|0.87) 039 0.02 1.27| 0.02] 6.9677| 0.0116

88th] 05554 01934 01793 01841 01884 (0.1918] 0.1934| 0.5554| 0.4367| 0.3283| 0.2321] 0.1498) 04283| 04283) 0.3761) 03237) 0.2712) 02189 95| 11| -411| -335| -235 -096] 107 1057 539 6.5 7.5 854/ 1057  7.04] 7.040] 6.16| 5.28) 440 352 8.00) 7.00[ 6.00] 5.00] 4.00| 1.00| 0.99) 0.99| 0.97| 0.95|24.00| 21.00] 18.00 15.00 12.003.00{3.00| 1.50] 1.00| 0.38| 0.88) 043 0.02[ 127 0.02] 7.7377 0.0127

8th| 05653 01907 01784 0.1830] 0.1870[ 0.1899| 0.1907 0.5653| 0.4440| 0.3333) 0.2350] 0.1511) 0.4677) 0.4677| 0.4100| 0.3519) 0.2937 0.2356| 95| 10| -4.17| -342] -2.43| -1.06] 06| 1046] 533 608 7.07) 844 1046  7.12| 7.120] 6.23) 5.34| 4.45| 3.56| 8.00) 7.00] 6.00| 5.00] 400 0.99] 0.99) 0.98| 0.96[ 0.94[ 24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00{1.501.00/0.89{0.89| 047/ 0.02| 127 0.02| 8.5487| 0.0139)

90th) 05745 01875 0.0773| 0.1817] 0.1852 0.1875] 0.1875| 0.5745| 04507| 03376| 0.2373) 0.1519) 05082 0.5082) 0445 0.3304) 0.3160] 0.2518) 95| 0.8 423 -349| -251) -L15[ 085 1035 527) 601 699 835 1035  7.20] 7.200] 6.30| 5.40) 450 3.60] 8.00) 7.00] 6.00] 5.00] 4.00| 0.99| 0.98 0.97] 0.95] 0.92| 24.00| 21.00] 18.00] 15.00] 12.00]3.00{3.00| 1.50] 1.00| 0.90| 0.90] 051 0.02 1.27| 0.02] 9.3959| 0.0150)

9lst| 05827] 01844 01759 01799 01829 0.1844] 0.1835 0.5827] 0.4563| 0.3408) 0.2386] 0.1520| 0.5492) 0.5492| 0.4791f 0.4085) 0.3377] 0.2673| 95| 0.7 -4.29| -3.55| -258| -124] 074 1024] 521 595 692 826 1024  7.28| 7.280] 637) 5.46| 455 3.64| 8.00] 7.00] 6.00 5.00] 4.00] 0.98] 0.98] 0.96| 0.94f 0.91] 2400 21.00| 18.00] 15.00) 12.00[3.00{3.00| 1,50/ 1.00/0.91{0.81| 0.55 0.02| 127 0.02| 10.2708| 0.0162)

9nd| 05893 0.1806] 0.1741] 01776 0.1799] 0.1806] 0.1787) 0.5893] 0.4602( 0.3426| 0.2388] 0.1512f 0.5900| 0.5900] 0.5130] 0.4355) 0.3580] 0.2812[ 95| 0.6) -434] -362 -265 -132 063 1013 516| 588 685 818 10.13|  7.36 7.360] 6.44| 5.52| 460| 3.68| 8.00) 7.00) 6.00 5.00] 4.00] 0.98) 0.97) 0.95] 0.92{ 0.88)24.00| 21.00| 18.00] 15.00) 12.00[3.00{3.00|1.50/1.00/0.92{0.92| 0.59] 0.02| 1.27| 0.02] 11.1585| 0.0174

%rd| 05933 01759 01715 01744 01759 0.1757| 0.1727 0.5933| 0.4618| 0.3424] 0.2374] 0.1494] 0.6292) 0.6292| 0.5449| 0.4603) 03759 0.2930] 9.5) 0.5 -4.40 -368) -273| -141) 053] 1003] 510 58| 677 809 1003 7.4 7.440] 651 5.58| 465 3.72| 8.00) 7.00] 6.00[ 5.00] 400 0.97] 0.95) 0.93| 0.90| 0.86] 24.00) 21.00| 18.00] 15.00) 12.00[3.00{3.00] 1.501.00/ 0.93(0.93| 0.63 0.02) 1.27| 0.02] 12.0341] 0.0186|

94th) 05933 01706 0.1679| 0.1699] 0.1706 0.1693] 0.1653| 0.5933| 04599 03392 0.2338] 0.1461 0.6648] 0.6648| 0.5729) 04811 0.3902) 0.3016] 9.5) 0.4 -445| -374| -2.80 -149] 043] 93| 505 576 670 801 693 752 7.520| 6.58| 5.64] 470 376 8.00) 7.00] 6.00] 5.00] 4.00] 0.95| 0.93 0.90| 0.87| 0.82| 24.00| 21.00] 18.00] 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.94|0.94] 0.66] 0.02[ 1.27| 0.02] 12.8558] 0.019%)

95th] 05870 01638 01626 01638 01634 (0.1611] 0.1562| 0.5870| 0.4526| 03319 0.2272 0.1409) 0.6933) 06933 0.5940) 04955 0.3988| 0.3055) 9.5) 0.3 -450] -380 -287 -157 033 983 500 570 663 793 983  7.60] 7.600 6:65| 5.70] 4.75 3.80] 8.00) 7.00[ 6.00] 5.00] 4.00| 0.92| 0.90] 0.87] 0.83| 0.78| 24.00| 21.00] 18,00 15.00 12.00{3.00{3.00| 1.50] 1.00{0.95|0.95) 0.69] 0.02[ 1.27| 0.02] 13,5543 0.0204

96th| 05708 0.1550] 01548 0.1550] 0.1536[ 0.1503| 0.1446] 0.5708| 0.4374| 0.3185] 0.2164] 0.1332) 0.7091) 0.7091] 0.6034| 0.4995] 03986 0.3026] 9.5) 0.2] -455 -386] -2.93| -16S| 0.23] 9.73( 495 564 657 785 973  7.68| 7.680] 6.72) 5.76| 4.80| 3.84| 8.00) 7.00] 6.00[ 5.00] 400] 0.88] 0.85) 0.82| 0.77| 0.72] 2400 21.00| 18.00] 15.00) 12.00[3.00{3.001.501.00/ 0.96{0.96| 0.72] 0.02) 1.27| 0.02] 140133 0.0209)

97th) 05388 0432 0.1432 0.1423] 0.1399] 0.1359] 0.1296| 0.5388| 0.4100] 0.2963| 0.1997| 0.1219) 0.7026 0.7026) 0.5932) 04870 0.3852) 0.2897) 95| 0.1 -460] -391) -300] -L73[ 013 63| 490 559 650 7.77] 93|  7.76| 7.760| 6.79| 5.82) 485 3.88 8.00) 7.00| 6.00] 5.00] 4.00| 0.81| 0.78) 0.75] 0.70| 0.65| 24.00| 21.00] 18.00) 15.00 12.00]3.00{3.00|1.50] 1.00|0.97|0.97) 0.70] 0.02[ 1.27| 0.02] 14,0333 0.0207

98th] 04803 01250 0.1250{ 01233 01203 0.1158] 0.1095| 0.4803| 0.3626| 0.2599] 0.1738] 0.1052) 0.6561| 0.6561| 0.5493) 04470) 0.3504) 0.2609) 9.5) 0.0] -465 -3.97| -307) -181] 004 954/ 485 553 643 7.69| 954/  7.84] 7.840] 6.86| 5.88) 490 3.92| 8.00) 7.00[ 6.00] 5.00] 4.00] 0.7 0.68) 0.64] 0.60f 0.5/ 24.00| 21.00] 18.00 15.00 12.00]3.00{3.00| 1.50] 1.00| 0.98|0.98] 0.66] 0.02[ 1.27| 0.02] 13.2447 0.01%3

%th 0.3710] 0.0946| 0.0946) 0.0925) 0.0895| 00855 0.0801‘ 0.3710] 02777 0‘1974‘ 0.1309 0.0785] 0.5300) 0‘5300‘ 0.4397‘ 0.3546{ 0.2754) 0.2031[ 95 0.1 -470| -403| -313) -189 005 945| 480 S547| 637 761 45| 7.92) 7.920] 693 5.94] 495 39| 8.00] 7.00] 6.00] 5.00| 4.00] 0.54] 0.51] 0.48] 0.4 0.40| 24.00| 21.00] 18.00) 15.00] 12.00)3.00{3.00| 1.50| 1.00|0.99]0.99) 0.53| 0.02( 1.27| 0.02) 10.8105| 0‘0156‘

100th 0.(1)00| 0.0000| 0.0000 0.0000] 0.0000] 0.0000 0.00{11‘ U.ll}OOl 0.0000] 00000‘ 0.0000] 0.0000] 0.0000] DO(XJO‘ 0.00{11‘ 0.0000] 0.0000] 0.0000| 95 0.0] -475| -4.08] -319) -196| -0.14] 936] 475 542| 631 754 936 800 8000 7.00] 6.00] 5.00) 4.00] 8.00] 7.00] 6.00] 5.00 4.00] 0.00] 0.00] 0.00] 0.00] 0.00| 24.00| 21.00] 18.00) 15.00] 12.00)3.00{3.00| 1.50| 1.00| 1.00] 1.00] 0.00] 0.02[ 1.27] 0.02] 0.0000] DO(XJO‘
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APPENDIX 11

Tables for Aerodynamic Parameters of Profiles

Table A: NACA 4412

Aerodynamic

properties Value

Thickness 12.0%
Camber 4.0%
Trailing edge angle 14.4°
Stall angle 6.0

Max C. 1.507

Max L/D 57.209

Max L/D C. 1.188
Zero-lift angle -4.0
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Table B: Selig 1210

Aerodynamic

properties Value
Thickness 12.0%
Camber 7.2%
Trailing edge angle 6.9°
Stall angle 9.0°
Max C 2.248
Max L/D 73.283
Max L/D C. 1.961
Zero-lift angle -10.5




Table C: Worthmann FX 63-137

Aerodynamic

properties Value

Thickness 12.0%
Camber 7.2%
Trailing edge angle 6.9°
Stall angle 9.0°
Max C, 2.248

Max L/D R
Max L/D C. L5
-10.5

Zero-lift angle
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Table D: Ara-D 6%

Aerodynamic

properties Value
Thickness 6.0%
Camber 5.0%
Trailing edge angle 7.0°
Stall angle 85°
Max C, 1.589

Max L/D 42431
Max L/D C. 1.545

-5.5

Zero-lift angle




Table E: Selig 2091

Aerodynamic

Zero-lift angle

properties Value

Thickness 10.1%
Camber 3.9%
Trailing edge angle 6.3°
Stall angle 11,07
Max C_ 1.348

Max L/D 54.826

Max L/D C, i
-3.5
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Table F: Selig Donovan7032

Aerodynamic

Zero-lift angle

properties Value
Thickness 10.0%
Camber 3.7%
Trailing edge angle [
Stall angle 10.0°
Max C_ 1.381
Max L/D 56.369
Max L/D C, 1.081
-4.0




Table G: Selig Donovan 7037

Aerodynamic

Zero-lift angle

properties Value
Thickness 9.2%
Camber 3.0%
Trailing edge angle 8.2
Stall angle 95°
Max C, 1.269

Max L/D 54.221
Max L/D C. s
-3.0

Table H: Selig Donovan 8000

Aerodynamic

properties Value
Thickness 8.9%
Camber 1.7%
Trailing edge angle 7.7
Stall angle 8.0°
Max C, 1.058

Max L/D 47.616
Max L/D C. 0.908
-1.5

Zero-lift angle
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Table H: Selig 3021 Table J: Ara-D 10%

Aerodynamic Aerodynamic

properties Value properties Value
Thickness 9.5% Thickness 10.0%
Camber 3.0% Camber 4.0%
Trailing edge angle 10.3° Trailing edge angle 10.3°

Stall angle 8.0 Stall angle 95
Max C, 1.122 Max C, 1.433
Max L/D 54.002 Max L/D 34.006
Max L/D C. o Max L/D C. 1.178

Zero-lift angle 7 Zero-lift angle 35
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APPENDIX 111

Lift and Drag Polar Graphs of Profiles

Graph A: NACA 4412
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Graph C: Worthmann FX 63-137
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Graph D: Ara-D 6%
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Graph E:
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Litt Coefficient (C,)

Graph G: Selig Donovan7037
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Litt Coefficient (G,)

Graph I: Selig3021
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