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A B S T R A C T   

Deeply buried fractured reservoirs have evolved into significant oil and gas potential in many basins of the world. 
However, fracture prediction in deeply buried carbonate reservoirs has always been challenging. Fracture pre
diction in the deep-buried carbonate structure of North China is problematic because of multiphase tectonic 
movements, variable sediment lithology, and complex diagenesis. Because of deep burial depth and complex 
heterogeneity, the resolution of seismic reflection data beneath the buried-structure is poor, making it chal
lenging to identify the fault reflection characteristics. This paper proposes a novel idea to identify natural 
fractures in carbonate reservoirs using conventional logs with seismic reflection data. The proposed model can 
also predict the fracture aperture and fracture density, a distinctive feature. Another novel hybrid model based 
on deep-learning neural network (DNN) and cluster analysis is proposed to predict further the spatial variations 
of lithology, porosity, and fracture parameters from seismic inversion. The proposed models provide valuable 
insights that help determine fracture parameters in the Paleozoic strata and associated reservoirs through 
quantitative analysis using petrophysics, rock physics, seismic inversion, and seismic attributes. The overlapping 
of seismic interpreted fault networks and spatial variations of the inverted fracture parameters indicate a high 
correlation of fracture development zones. The methodology proposed in this study presents a valuable template 
valid for the characterization of fractured reservoirs in deeply-buried carbonate reservoirs throughout the world.   

1. Introduction 

Naturally fractured carbonate reservoirs have contributed signifi
cantly to petroleum reserves after recent significant advances in geo
sciences (Aghli et al., 2016; Aguilera, 2010; Ginting et al., 2011; Yasin 
et al., 2018a). However, the correct identification of the fractures´ dis
tribution in deeply-buried reservoirs is still challenging and has become 
an obstacle for seismic interpreters to explore the fractured reservoirs 
(DING et al., 2020; Saboorian-Jooybari et al., 2015). Conventionally, 
geologists and geophysicists use cores, and formation micro-imaging 
(FMI) logs for fracture evaluation (Tao and Alves, 2019). FMI logs can 
be used directly to determine fracture parameters like aperture, orien
tation, and porosity (Khoshbakht et al., 2012). However, these tools are 

costly and are rarely available in all wells (Ferrill et al., 2017; Tokhmchi 
et al., 2010). 

Over the past decade, significant progress has been made in the 
development of digital outcrop models (DOM) for fracture character
ization (Casini et al., 2016; Larssen, 2018), mapping of sedimentary and 
igneous bodies (Galland et al., 2019), and as input for seismic modeling. 
The fracture systems from outcrops are investigated using Lidar scan
ning, photogrammetry, and satellite photos (Hodgetts et al., 2004; Smith 
et al., 2015). Photogrammetry-based DOM is the most popular method 
for acquiring outcrop images, as it only requires a camera and processing 
software. It is helpful in various geological settings, but it is especially 
useful for characterizing extremely heterogeneous carbonate platforms 
(Loza Espejel et al., 2020). 
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While those techniques are designed only for outcrops, alternative 
tools based on conventional logs have recently been proposed to 
investigate the fractures´ distribution. In fact, fractures contribute 
directly to the porosity of the reservoir, and hence the conventional 
porosity logs are strongly related to fracture parameters as fracture 
aperture (Ouenes, 2000; Ouenes et al., 1995). The fracture aperture also 
provides a vital contribution to the rock permeability, i.e., the larger the 
aperture size, the more fluid phases can flow in the fracture (Aguilera, 
2010; Al-Ghamdi et al., 2010; Movahed Z., 2015). To understand the 
fractured reservoir’s behavior, we should perform estimations for both 
the primary (matrix) and secondary (fracture-only) porosities (Hornby 
et al., 1992; Mohebbi et al., 2007; Ouenes, 2000). However, porosity 
formed by fractures is considered too small to detect with conventional 
logs due to their low vertical resolution (Hornby et al., 1992; Mohebbi 
et al., 2007). Recent studies have shown that fracture zones can be 
identified on conventional logs while modern logging tools are being 
designed specially to provide higher resolution (Aghli et al., 2016, 2019; 
Ge et al., 2014; Tokhmchi et al., 2010; Tokhmechi et al., 2009). The 
researchers have recognized sonic, density, resistivity, gamma-ray 
(uranium), neutron porosity, and caliper logs as the best logging com
bination for fracture identification (Ge et al., 2014; Martinez et al., 
2002; Saboorian-Jooybari et al., 2015). 

P-wave and S-wave (e.g., compressional and shear sonic logs) indi
cate the formation’s interval transit time (Du et al., 2018, 2019). (Wyllie 
et al., 1956) proposed the relationships between acoustic travel time 
versus porosity, and since then, the oldest and most popular Wyllie 
time-average is considered the most common equation for the field. The 
transmission speed in the fractured zone is reduced due to the forma
tion’s low density (especially in open fractures). Based on this, we expect 
transit time to increase in the fractured zones (Aghli et al., 2019; Gol
sanami et al., 2021). 

Neutron log (e.g., porosity or NPHI) measures hydrogen concentra
tion in a formation and determines porosity. Hydrocarbons and water 
are organic molecules consisting of large amounts of hydrogen that 
significantly reduce the neutron speed. High hydrogen concentrations in 
the pore network system result in neutron energy loss, reflecting the 
formation porosity (Ismail et al., 2017; Laongsakul and Dürrast, 2011). 
Therefore, in the fracture zones, where there is an increase in the 
amount of formation fluid, there is a corresponding increase in the 
neutron log values. Hence, the neutron log could be the best log for the 
prediction of fracture aperture. 

Shallow and deep resistivity logs (LLS and LLD) are also suitable for 
fracture detection among old and new logging measurements. The 
shallow resistivity curve shows lower values along with the fracture 
intervals because of fluid invasion in the fractures, especially when the 
true resistivity of the formation is greater than the resistivity of mud 
(Saboorian-Jooybari et al., 2015). Similarly, the induction log shows low 
resistivity spikes on resistivity curves that indicate the presence of 
fractures (Golsanami et al., 2020). If deeper induction resistivity curves 
show spikes to lower resistivity, we suppose that the pre-existing frac
tures are quite deep and also significant (Bakhshi et al., 2020; Golsanami 
et al., 2019). 

Moreover, the microfractures are generally filled with uranium 
minerals which are commonly determined by spectral gamma-ray logs 
(SGR). Petrophysicists use SGR to estimate clay mineral volumes and 
identify fractures containing uranium salts precipitated in there by 
ground-water systems (Aghli et al., 2019; Darling, 2005). 

The bulk-density (RHOB) log is also significantly influenced by the 
fracture zones. Previous studies indicate that the density curve shows a 
significant difference between the rock and fluid density around the 
fracture zones (Laongsakul and Dürrast, 2011; Saboorian-Jooybari et al., 
2015; Yasin* et al., 2020b). An increase in fluid volume in fractured 
zones leads to density contrast because fluid density is less than rock 
density (Yasin et al., 2018b). 

Besides all the above conventional logs used for simple fracture 
prediction, progress in high-performance computing systems has 

enabled data-driven machine learning (ML) algorithms to establish the 
nonlinear relationships between two variables (input and output) based 
on a statistical approach (Al Moqbel and Wang, 2011; Dandan and 
Qiaodeng, 2002; Qiang et al., 2020; Russell, 1988, 2004). Geoscientists 
have recently succeeded in applying intelligent ML algorithms to 
high-quality seismic reservoir characterization. (Esmaeilzadeh et al., 
2019, 2020). (Jun et al., 2006) established the mapping relationship 
between logging porosity and seismic multi-attributes with the con
ventional NN method to predict fracture development zones in car
bonate reservoirs (Lin et al., 2018). used a combination of the 
soft-porous petrophysics model and conventional NN to calculate frac
ture porosity and then used formation micro-image (FMI) logging to 
confirm the accuracy of the fracture prediction (Luo et al., 2021). 
recently proposed a parametrized residual rock physics model for reli
able production data forecasts using machine learning methods. 
Although various ML algorithms have been proposed for seismic 
inversion, e.g., back-propagation (BP), support vector machine (SVM), 
genetic inversion, particle swarm optimization (PSO), and multi-layer 
linear calculator (Abdulaziz et al., 2019; Boateng et al., 2020; Nwa
chukwu et al., 2018; Yasin et al., 2020a; Zhang and Ruan, 2009), the 
practical use of the suitable inversion algorithm is still a challenging task 
and depends a lot on the quality of input data and stage of exploration or 
field development. 

In recent decades, substantial development has been made in deep- 
learning neural networks (DNN) to improve the spatial prediction of 
petrophysical, geological, and geomechanical properties in conven
tional and unconventional reservoirs (Hinton et al., 2006; Lin et al., 
2018; Wu and Cao, 2016). Deep learning’s core idea is to learn the 
nonlinear relationship between inputs and outputs, as well as the un
derlying structure of data vectors. In contrast to the single-layer neural 
network, a DNN contains many hidden layers with strong learning 
abilities to improve prediction accuracy (Temirchev et al., 2020). It is 
composed of a multi-layer processing structure that can divide a com
plex function into many simple linear functions by controlling each 
layer’s output weight (Lin et al., 2018). The structure of DNN is more 
complex and represents the learning mode of big data plus a complex 
model. It is a semi-supervised generation model, i.e., the training of DNN 
needs to be carried out in two steps by way of unsupervised and su
pervised neural networks. In the first step, the weights of each neuron 
are trained in an unsupervised manner. The whole neural network 
generates data according to the maximum probability to form clustering 
information. In the second step, BP is used to guide the DNN to fine-tune 
network parameters, that is, to optimize with a supervised neural 
network (Lin et al., 2018). 

The DNN is appropriate for complex and highly fractured reservoirs, 
such as the buried-hill carbonate reservoir in the oilfield X, one of the 
largest oilfields in North China. The geological reserves of the buried-hill 
are nearly 200 million tons (Sun et al., 2018). It is a regional oil and 
gas-bearing area with 65 oil and gas fields, two gas fields, and eight 
major oil fields covering about 2117 km2. The multiphase tectonic 
movements, complex diagenesis, well-developed faults network, and 
low-frequency seismic reflection data cause extreme heterogeneity. 
Consequently, an accurate description of the fault network, fracture 
development zone, lithology, and reservoir parameters, to identify 
high-quality reservoir regions of the deeply-buried structure; is a chal
lenging task in this area. This study proposes a novel, inexpensive, and 
reliable method based on the combination of high-resolution conven
tional logs with seismic data. This method consists of a meticulous 
application of various tools for evaluating the fracture parameters. 
Herein, we explore the relationship between fracture-sensitive param
eters and the reservoir rock’s elastic properties to define the fractured 
and non-fractured zones. Also, we suggest the DNN inversion strategy to 
predict spatial variations of lithology, porosity, and fracture parameters 
using 3D seismic reflection data. The present study’s proposed meth
odology would effectively acquire the fractured zone’s most subtle in
formation from the low-frequency seismic data and conventional logs, 
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contributing to the more profound understanding of the petrophysical 
characteristics of the subject’s buried-hill structure. 

2. Geological setting and stratigraphy 

The study area is located in the North China of Y Basin. Tectonically, 
it is subdivided into depressions and uplifts, roughly oriented NE-SW by 
transtensional faults which are themselves compartmentalized into sub- 
units (‘sags’ and ’rises’) (Cai et al., 2008). Regarding the regional 
framework, the oilfield lies in the northeast part of the 
Zhuangxi-Gudong buried-hill anticlinal belt of the Zhanhua sag. It is 
adjacent to the Kendong-Qingtuozi dome in the SE, the Gunan sag in the 
SW, the Zhuangxi sag in the NW, and the Zhuangdong sag in the NE 
(Fig. 1a) (Cai et al., 2008; Sun et al., 2018; Yue, 2007). The Zhanhua sag 
comprises a basement fault block pattern, which is faulted in the 
southern part and overlapped in the northern part. The sag exhibits a NE 
trend and ‘double half-graben’ structure in the planar view. The struc
tural features are affected mainly by the tensional and transtensional 
faults of NE directions (Yue, 2007). 

Stratigraphically, the oilfield X is a large anticlinal buried-hill 
structure developed from the Paleozoic stratum. Lithologies are 
mainly primarily oolitic limestone and dolomite with many high angle 
fractures (Fig. 1b). These limestones and dolomite of the Paleozoic 
formations act as the main reservoir unit in the buried-hill structure. The 
limestone section is mainly fractured and filled with calcite. At the 
bottom intervals, the limestone and dolomite section comprises breccia, 
calcite filling, and argillaceous filling. The breccia of fractured limestone 
and dolomite intervals are filled with oil (Fig. 1b). (DING et al., 2020) 
recently applied deep neural networks to predict fractures’ spatial dis
tribution in the Paleozoic formations’ buried-hill structure. In the same 
oilfield, they discovered a well-developed northeast trending fracture 
network along the fault. 

Subsurface well correlation indicates that the Paleozoic strata under 
the buried-hill were eroded to a large extent. The thinnest eroded strata 
were at the top, compared with the regular sections. Towards the 
northern direction, the eroded thickness of strata is high. Meanwhile, 
the lower Paleozoic strata are seriously faulted, relatively thin, with 
rapid lateral horizon variation. The lower Paleozoic strata encountered 

in several wells are different, and the horizontal and vertical distribution 
is also unstable (Fig. 2). 

Boundary faults principally control the whole structure. There are 
mainly two normal extensional faults at the boundary of the buried-hill. 
Simultaneously, there are two large secondary NE faults, i.e., the fault 
south of the 30A-2 well and the fault north of the 301 well. These faults 
make the buried hills’ central fault system more complicated and control 
its structure. The faults along the EW direction also play a significant 
role in forming the structure and trapping the hydrocarbons. Note that 
each block has different structural characteristics to trap the oil and gas 
accumulation, which complicates more and more the exploration. 

3. Dataset and methodology 

This study used borehole log data from more than ten producing 
wells to estimate fracture parameters and reservoir properties in the 
lower Paleozoic (Pz) interval. We analyzed caliper (CAL), gamma-ray 
(GR), deep resistivity (LLD), spontaneous potential (SP), P- and S- 
wave sonic (DTP and DTS), density (RHOB), and neutron porosity 
(NPHI) log to explore the fracture zones for reservoir modeling from the 
following key wells: 302, 306, 307, 39, 40, 313, and 30. Also, several 
thin sections were available in the reservoir interval to calibrate porosity 
and fractures. Furthermore, we utilized 3D seismic data covering about 
200 km2 to interpret the target horizons, i.e., ‘Pz’ (lower Paleozoic) 
interval top and ‘Art’ (igneous rock) top for reservoir characterization 
and modeling. 

The following is a detailed description and overview of a specific 
workflow proposed to analyze fracture parameters using a combination 
of high-resolution conventional logs and seismic reflection data (Fig. 3). 

a) A theoretical model based on unique logging response versus frac
tures was developed to predict fracture parameters.  

b) A hybrid model based on deep-learning neural network and cluster 
analysis was proposed to measure the spatial variations of lithology, 
porosity, and fracture parameters using seismic data.  

c) The results were compared by overlapping the seismic interpreted 
fault network and spatial variations of the inverted AI, lithofacies, 
and fracture parameters. 

Fig. 1. (a) Regional tectonic framework of the study area (modified after (Sun et al., 2018), (b) identification of structural features and lithologic characteristics from 
the cores of the studied interval. 
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d) The RGB color blending visualization was used to assess the quan
titative seismic prediction of sweet spots. 

3.1. Logs´ data normalization and averaging 

Delineating fracture patterns from log data is an intricate process 
that classical regression techniques cannot evaluate. Therefore, the log’s 
pre-processing is considered an essential step before evaluating frac
tures. We performed initial processes such as averaging and normalizing 
the raw petrophysical logs to get an equal contribution from all types of 
logs. Without data normalization, the GR and DT logs would dominate in 
the process steps. We normalized the input logs using Xmin and Xmax by 
Eq. (1). Also, we used cross-correlation to evaluate the similarity be
tween two signals, i.e., comparing and analyzing the logs and fracture 
parameters before and after applying log’s processing. Cross-correlation 
of the logs and fracture parameters was normalized as ‘logs’ data per 

energy for each log. 
The normalized data was measured by Eq. (2) and Eq. (3). 

XNorm =
Xi − Xmin

Xmax − Xmin
(1)  

E log =
∑n

i=1
X2

i (2)  

N log =
Xi
̅̅̅̅̅̅̅̅̅
E log

√ (3)  

where ‘i’ indicates the index of the data points on each individual log, 
and Elog and Nlog denote each log’s total energy and normalized log per 
energy, respectively. 

Averaging the petrophysical logs is another preferred method for 
increasing the relationship between input and output variables. It is a 
statistical procedure that relies heavily on the resolution of each log. The 

Fig. 2. Stratigraphic sequences and structural architecture in the buried-hill. Note that O21, O22, O1, E33, E32, E31, E22, E21, E13, E12, and E18 are members of 
the Paleozoic strata, and ‘Art’ stands for basement rocks. 

Fig. 3. Proposed workflow for fracture parameters estimation.  
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averaging range varies between 50 and 200 data points, e.g., depending 
on the log’s resolution (Eq. (4)). The averaging range of a log with 0.15 
cm resolution is 50, e.g., DT. A log with a resolution of 0.05 cm, on the 
other hand, has a range of averaging of 200, e.g., LLD. Notice that ‘c’ is a 
constant weight factor (between 0 and 1) that is highly dependent on the 
resolution of each log (Eq. (4)). Instead of a single point, log averaging 
shows the behavior of each log in an interval (Luo et al., 2016). 

Xint =
Xi + (1 + c)a(i)

2 + c
, 0< c ≤ 1 (4)      

where ‘dt’ and ‘gr’ stand for sonic and gamma-ray logs, respectively, and 
‘Xint’ and Xi signify log readings in a specific interval. Note that ‘a(i)’ is 
the number of nth point data before and after Xi, and 1+ c is vertical 
resolution weight factor. 

3.2. Fracture identification constant (FIC) model prediction 

According to recent studies, fractures influence significantly con
ventional well logs (Aghli et al., 2016; Mohebbi et al., 2007; Tokhmchi 
et al., 2010). According to researchers, a single conventional log might 
not distinguish fracture zones, but a combination of conventional logs is 
useful (Ge et al., 2014; Martinez et al., 2002; Saboorian-Jooybari et al., 
2015). We developed a theoretical model based on unique logging 
response versus fractures by combining gamma-ray (uranium content), 
shallow and deep resistivity (RD and RS), compressional and shear sonic 
(DTP, DTS), density (DEN), and neutron porosity (CNL) logs (Eq. (7) to 
(11)). However, it is important to note that certain logs show defiant 
behavior and cancel one another. To avoid this, we convert the model’s 
parameters into positive factors. Furthermore, we normalize the factors 
between 0′ and 1′ in order for each log to participate equally in the 
model development process. As shown in Eq. (12), the combined effect 
of all normalized logs is referred to as the fracture identification constant 
(FIC) model. Note that the reservoir interval was divided into 

homogeneous subgroups based on mineralogy, rock type, facies, and 
pore fluid for reliable fracture prediction. 

A=(GR − Average)2⇒An =
∑n

i=1

(
A − Amin

Amax − Amin

)

zone i
(7)  

B=(RD − RS)2⇒Bn =
∑n

i=1

(
B − Bmin

Bmax − Bmin

)

zone i
(8)  

C=(CNL − Average)2⇒Cn =
∑n

i=1

(
C − Cmin

Cmax − Cmin

)

zone i
(9)  

D=(DTP − DTS)2⇒Dn =
∑n

i=1

(
D − Dmin

Dmax − Dmin

)

zone i
(10)  

E=(Average − DEN)
2⇒En =

∑n

i=1

(
E − Emin

Emax − Emin

)

zone i
(11)  

FIC =An + Bn + Cn + Dn + En (12)  

where GR = gamma-ray, DEN = density, RD = resistivity deep, RS =
resistivity shallow, DTP = compressional sonic, DTS = shear sonic. 

3.3. Well-to-seismic calibration 

Seismic inversion is the process of converting seismic reflection data 
into reservoir physical properties. The process of generating and cali
brating synthetics seismogram to real field seismic data is an art. The 
first move in calibrating well-to-seismic is to use seismic data to cali
brate sonic (acoustic) and bulk density logs. In this workflow, 3D seismic 
volume, acoustic, and bulk density logs were imported into the open- 
source rock star seismic inversion software (Beijing Rock Star Petro
leum Technology Co. Ltd.). We extracted the wavelet directly from the 
seismic dataset, i.e., seismic traces from inline and crossline with the 
evaluation window ranges from 2100 to 2800 ms. To generate a 

a(i)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i+50

k=i
dt(k)

50
, i < 51

∑i+50

k=i− 50
dt(k)

100
, 51 < i < 6261

∑i

k=i− 50
dt(k)

50
, 6261 < i < 6311

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

When ​ log ​ resolution ​ is ​ 0.15 ​ and ​ c ​ is ​ 0.1 (5)   

a(i)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i+200

k=i
gr(k)

200
, i < 201

∑i+200

k=i− 200
gr(k)

100
, 201 < i < 6111

∑i

k=i− 200
gr(k)

200
, 6111 < i < 6311

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

When ​ log ​ resolution ​ is ​ 0.05 ​ and ​ c ​ is ​ 0.2 (6)   
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synthetic seismogram, we convolved the reflectivity series (derived from 
acoustic and density logs) with the wavelet derived from seismic data. 
The seismogram was then converted from depth to time domain using 
check-shot (borehole velocity survey) data from control wells. The 
synthetic seismogram was then correlated with seismic traces to create 
an impedance model in terms of a series of reflection coefficients. To 
generate the synthetic trace for this dataset, we used a Ricker wavelet 
with a dominant frequency of 30 Hz, a sample rate of 2 ms, and sample 
lengths of 128 ms. A plot of a synthetic seismogram and related reflec
tivity series, extracted wavelet, and well-to-seismic calibration is shown 
in Fig. 4. 

3.4. Deep-learning neural network 

DNN is a kind of neural network with several hidden layers trained 
using backpropagation-type algorithms. It consists of three types of 
layers; an input layer, hidden layers, and an output layer. All neurons in 

each layer are fully connected to the neurons of the next layer. The 
structure of the DNN model is shown in Fig. 5. It includes signal-forward 
and error back-propagation processing. We enter a sample data into the 
input layer during forward propagation, processes it as per the hidden 
layer’s activation function, and continue to the output layer. The net
work’s actual output is then compared to the expected output for that 
particular input. If the actual result is different than the expected result, 
the error back-propagation process is used to repeat this process (Del
l’Aversana, 2019; Moosavi et al., 2019). During back-propagation, the 
weights and biases of each layer are continuously updated through 
various parameter optimization methods so that the actual output is 
closer to the expected results (Nguyen and Bui, 2019; Nguyen et al., 
2020). The output of a neuron is shown in Eq. (13): 

Yk
j = f

[
∑m

i=1
Wh

ijX
k
i + bk

j

]

(j= 1, 2,…) (13)  

where Yk
j is the output of the j neuron in the layer k, ƒ for the activation 

function, Wh
ij indicates the connection weights of the ith neuron in the 

layer k–1 and j neuron in the layer k, Xk
i represents the i component of 

input sample data Xk, and bk
j is used for the bias of the j neuron in layer k. 

To calculate the error in back-propagation, the predicted and actual 
values of the neural network should be computed using Eq (14): 

ek =
1
2
∑n

i=1
(di − Yi) (14)  

where di is the actual value, and Yi is the predicted value. 
From Eqs. (13) and (14), the error function, ek can be calculated for 

each neuron. This process makes it possible to continually modify the 
neural network’s weights and biases so that the predicted output is 
closer to the desired results. Taking Wij as the connection weight and bi 
as bias of the ith neuron in the hidden layer and the j neuron in the 
output layer of the DNN, the updated mode of the value l to the value l+1 

Fig. 4. Composite plot for the well 302 showing synthetic seismogram, reflectivity series, and extracted wavelet.  

Fig. 5. A schematic representation of the DNN model. The input variables 
(seismic attributes) in the model are denoted by x1, x2, and x3. The y1 to y4 
shows the number of hidden neurons in each hidden layer, and z1 illustrates the 
output parameter. 
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can be found from Eqs. (15) and (16): 

Wij(l+ 1)=Wij(l) − ηδiYi (15)  

bi(l+ 1)= bi(l) − ηδi (16)  

where Wij (l) denotes the weight coefficient taken from the l training 
step and η is learning rate (often in the range of 0, 0.5), δi is the gradient 
of the performance function, Yi is a derivative of Yi, and bj (l) indicates 
the bias obtained from the l training step. 

In this study, the designed model consists of mainly two modules, (i) 
optimization of multiple seismic attributes and (ii) construction of the 
DNN. In this model, we used unsupervised learning to optimize seismic 
attributes that are sensitive to reservoir fractures. It was then fed into 
supervised learning to improve reservoir fracture prediction reliability 
and effectiveness. 

3.4.1. Optimization of seismic attributes 
Optimization of seismic attributes is the basis for predicting reservoir 

properties such as porosity, saturation, and lithology. There are many 
different seismic attributes, and each makes a substantial contribution to 
seismic oil and gas reservoir prediction. In this particular study, we 
selected those seismic attributes sensitive and contribute more to 
reservoir fracture prediction through cluster analysis. Cluster analysis 
can highlight the specific features such as faults, fractures, and channels 
in seismic attributes, which are further combined with expert experience 
to improve the supervised learning process’s efficiency. Cluster analysis 
combines seismic attributes based on the degree of information simi
larity. The information with a high degree of similarities was clustered, 
which continued until the seismic data was divided into several attribute 
aggregations based on detailed characteristics, completing the cluster 
analysis process. We customized multiple seismic attributes based on 
cluster analysis data, author domain knowledge, and proven reservoir 
characteristics, including (a) instantaneous phase, (b) instantaneous 
frequency, (c) RMS amplitude, (d) instantaneous amplitude, (e) average 
peak amplitude, and (f) arc length amplitude. 

3.4.2. DNN construction 
According to the input data characteristics and output results, we 

decided the number of nodes in the input and output layers for DNN 
construction. However, the method of determining the number of nodes 
in the hidden layers is fairly complicated. We did this by training the 
neural network with various numbers of nodes in the same data set to 
find the number of hidden layer nodes that can limit the error to the 
smallest. Eq. (17) gives out the number of nodes in the hidden layer 
(Zhang and Ruan, 2009): 

h=
̅̅̅̅̅̅̅̅̅̅
k + l

√
+ a (17)  

where k denotes the number of nodes in the input layer, l stands for the 
number of nodes in the output layer, and a is an uncertain value between 
1 and 10, which can be set during the training process in specific 

conditions. 

3.4.3. Activation functions 
We used an activation function to ensure that each DNN layer’s 

output is not a linear combination of inputs and to take advantage of 
their nonlinearity over the whole network. The activation functions 
Sigmoid, Tanh, and Relu are widely used (Fig. 6). We checked the errors 
in each of the three activation functions and found that the Relu acti
vation function had a minimal error. (Table 1). We noticed that the 
activation function in the hidden layer had changed the output of certain 
neurons to zero during neural network training. This phenomenon not 
only reduces parameter interdependency (effectively addressing the 
overfitting problem in the training process), but it also improves neural 
network training performance. Since the Relu activation function can 
increase the network’s nonlinearity, it was selected for this analysis 
(Fig. 6c). 

3.4.4. Hyperparameter selection 
To obtain the best model, we designed the corresponding neural 

networks using the selected training datasets. DNN efficiency and ca
pacity improve as the number of hidden layers increases. Too many 
hidden layers, on the other hand, can result in structural complexity, 
poor training performance, high generalization error, and high compu
tational cost. We calculated the number of hidden layer nodes using 
empirical equations. To make predictions, a neural network model with 
varying numbers of hidden layer nodes was used. The neural network’s 
mean square error (MSE) was accomplished with nine hidden layers 
(Fig. 7a and b). We noticed that when the neural network training 
epochs crossed 20000, the MSE was 0.001, fulfilling the accuracy 
criteria. We learned that as the number of hidden layers increases at the 
same training epoch, the MSE decreases and eventually becomes stable 
(Table 2). After 20000 training epochs, the MSE with seven hidden 
layers reaches the given threshold (i.e., 10− 3), as shown in Fig. 7a and b. 
We proved that a network of seven hidden layers is adequate for pre
dicting reservoir fractures and was chosen for this study. 

3.5. DNN for lithofacies identification 

In DNN seismic inversion, first, we set one-to-one samples using the 
seismic trace (attribute). Second, we used the logging curve to generate 
the sample sets for training, validation, and testing. A uniform sampling 
method based on well and lithofacies was used to solve missing 

Fig. 6. Errors test in all three activation functions, (a) Sigmoid, (b) Tanh, (c) Relu.  

Table 1 
Test errors of Sigmoid, Tanh, and Relu activation 
functions.  

Activation function Error 

Sigmoid 0.4260 
Tanh 0.0655 
Relu 0.0114  
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lithofacies details to retain the network’s predictive capabilities. Fig. 8 
illustrates lithofacies grouping and uniform sampling for each well 
graphically. We divided the well’s lithofacies curve into three types and 
extracted the M frequency division data from the sidetrack to build a 
vector (X1, X2, X3, …, XM). The number of sidetracks is listed in reverse 
chronological order (1n). We put the vector in the relevant lithofacies set 
based on the lithofacies group it belongs to, representing a sample set. 
Notice that lithofacies 1 has 4 samples at time intervals of 1, 2, 3, and 9, 
lithofacies 2 has 6 samples at time intervals of 4, 5, 6, 7, 14, and 15, and 
lithofacies 3 has 7 samples at time intervals of 10, 11, 12, 13, 16, 17, and 
18, respectively (Fig. 8). We define three sets of data after lithofacies 
grouping and uniform sampling. Finally, we divide these three sets into 

classification and recognition sets with similar time intervals. The input 
was the frequency division attribute, and the learning target was the 
multi-well seismic lithofacies curve, e.g., the label. The first step began 
with the frequency division data, training the data from the bottom of 
the network before the network’s top was achieved, an unsupervised 
training method. The second step began with the multi-well seismic 
lithofacies curve, transferred the error step by step from the top to the 
bottom of the network through back-propagation, and optimized the 
network layer by layer until it was developed. The validation process 
was adjusted based on the results obtained at each training epoch during 
the network’s testing. Finally, we developed a sophisticated functional 
network that can predict and transform seismic lithofacies based on the 
frequency division attribute. 

4. Results and discussion 

4.1. Reservoir characterization 

Thin sections were used to examine the fractures and connected and 
non-connected pores (Fig. 9a–f). We know that the most common 
reservoir pores are fractures, dissolution pores, and intergranular pores. 
Thin sections indicate a micritic matrix crossed by fractures of varying 
sizes in different directions. The majority of the fractures are open-mode 
with a wide fracture aperture, while others are filled with epigranualar 
sparitic cement (Fig. 9a–d, and f). It is worth noting that tiny dissolved 
pores developed alongside those fractures served as another primary 

Fig. 7. DNN performance curve, (a) MSE versus hidden layer, (b) MSE versus training epochs.  

Table 2 
MSE for different hidden layer numbers in neural networks.  

Training 
Epochs 

Hidden 
Layer One 

Hidden 
Layer 
Three 

Hidden 
Layer Five 

Hidden 
Layer 
Seven 

Hidden 
Layer 
Nine 

1000 0.111 0.052 0.016 0.015 0.015 
5000 0.109 0.022 0.008 0.007 0.007 
10000 0.107 0.012 0.007 0.006 0.005 
15000 0.106 0.006 0.004 0.004 0.004 
17500 0.105 0.005 0.003 0.003 0.003 
20000 0.105 0.003 0.003 0.001 0.001 
22500 0.104 0.003 0.002 0.001 0.001 
25000 0.104 0.003 0.002 0.001 0.001 
30000 0.104 0.003 0.002 0.001 0.001  

Fig. 8. The architecture of the uniform lithofacies assemblages.  
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reservoir storage space in the study area. The thin sections show calcite, 
dolomite, and biotite dissolution, as well as several micro-pores with a 
diameter of around 1 μm. In Fig. 9a, we see some hydrocarbon along the 
intergranular dissolved pore. Fig. 9e depicts a fracture-filled with calcite 
as a result of late diagenesis. Other fractures cross the fractures, and 
styloliths impact their cement in various directions (Fig. 9b, c, e). This 

complex heterogeneity and the intersection of the fracture networks lead 
to an increase in porosity by enhancing the interconnection between the 
existing pores. 

Fig. 9. Thin sections of Paleozoic reservoir in the oilfield X, (a) network fracture in calcite; (b) open fracture in dolomite at 3531 m; (c) open fracture in dolomite at 
3531.2 m; (d) fracture zone in dolomite at 3451 m; (e) open fractures and pores at 3553.2 m; (f) micro-fractures developed in dolomite. 

Fig. 10. Computed results of petrophysical parameters and characterization of fracture parameters for 313 well. FVA is fracture aperture from the FMI log, FA is 
fracture aperture calculated from the FIC model, FD is fracture density from the FIC model, and RQI is reservoir quality index. 
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4.2. Estimating fracture parameters from the FIC model 

4.2.1. Comprehensive evaluation in well 313 
The comprehensive evaluation of the fractured carbonate reservoir 

in the 313 well is shown in Fig. 10. The FIC logging curve (track 13) 
exhibits abnormal behavior or deflection along fractured zones (track 
11), indicating cracks or natural fractures in the reservoir interval. 
Notably, the curves of fracture porosity (PORF) and hydrocarbon satu
ration (Sg) (tracks 7 and 8) as well as elastic parameters (tracks 9 and 10) 
indicate deflection or non-steady behavior across the deflection of the 
FIC model curve. A good correlation between high fracture and total 
porosity regions with the FIC model curve deflection will help re
searchers and explorers to identify favorable fracturing sweet spot. It 
also adds credibility to the workflow used in the research. When the FIC 
model curve is compared to the measured fracture zones and fracture 
aperture from the FMI log (tracks 11 and 12), the results are remarkably 
consistent and uniform. 

It should be noted that uranium has a more positive impact on the 
FIC model (track 1). Consequently, using the GR log, the FIC model 
produces improved results for detecting natural fractures in the reser
voir. It is important to note that the length of the deflected curve (track 
17) indicates the size of the fracture aperture, which is validated by high 
values of neutron porosity log (CNL) and measured fracture aperture 
from FMI logging data (track 12). The predicted (track 17) and 
measured (track 12) fracture apertures are consistent throughout the 
interval. These findings strengthen our confidence in the prediction 
model’s accuracy. According to (Aghli et al., 2019), porosity logs such as 
NPHI and PHIE show high-porosity spikes along fracture zones, partic
ularly when the fractures are open. As a result, porosity logs are the best 
logging tool for determining fracture aperture. The number of fractures 
in specific zones can be measured by counting the number of deflected 
curves per 100 m (track 14). Furthermore, we validate the predicted 
fracture density by counting the number of faults/fractures in FMI log 
data (track 16). 

Some areas in the reservoir interval where shale is the dominant li
thology, and no FMI log was recorded, but the FIC model picked up or 
identified the fracture signature in those areas (e.g., 4600–4700 m). It 
should be noted that peaks or deflections in the gamma-ray log across 
natural fractures can often reflect conductive fractures in which soluble 
compounds or radioactive materials invade the fracture. 

According to the interpretation of the 313 well, depths ranging from 
4320 to 4325 m and 4340–4355 m have high fracture intensity and good 
fracture aperture, which is supported by high CNL and fracture porosity 
values. Furthermore, the reservoir quality index (RQI) indicates good 
values in certain fracture zones, i.e., RQI > 0.4. Also, we see that the 
density curve has low values along high RQI, indicating a gas anomaly. 
The high gas saturation (Sg) values in Fig. 10 (track 7) confirm this. 
Appendix A contains more detail on calculating elastic and petrophys
ical parameters, such as RQI and mineralogical composition. 

Fig. 12 shows a further enlarged (zoomed-in) portion of Fig. 11 that 
indicates the range of fracture porosity and identified fractures in the 
productive zone (4342–4354 m) of the 313 well. Note that the dominant 
lithology in this zone is limestone and dolomite. 

4.2.2. Comprehensive evaluation of well 306 
Fig. 13 shows a comprehensive evaluation of the 306 wells. In this 

well, the FIC model curve exhibits deflection across the fracture porosity 
(track 5) and permeability (track 7) curves, as well as the fracture index 
(FI) and elastic parameters (tracks 8, 9, and 11). The FIC model 
deflection along with low density and high sonic travel time (AC) values 
show possible gas zones (track 6). Furthermore, the presence of high 
total and fracture porosities and permeability results in a more positive 
deflection of the FIC model curve (track 5 and 7). Comparing predicted 
and measured faults/fractures density in particular zones shows good 
agreement (track 13 and 15). The length of the deflected curve (fracture 
aperture) is large, along with the high porosity, permeability, and RQI 
(tracks 16 and 17), as evidenced by higher neutron porosity log values 
(CNL). Limestone and dolomite are the dominant lithologies along the 

Fig. 11. Zoom in on calculation results of fracture parameters of the 313 well (a portion of Fig. 13 from 4320 to 4362 m).  
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high-density FIC model curve (track 3). 
A comprehensive evaluation of the key wells confirmed the validity 

of the proposed FIC model for fractures evaluation as highly correlated 

with the FMI logs and core data. Also, the proposed FIC model proved to 
be very effective in measuring fracture aperture in intervals where 
acoustic and electrical imaging tools could not detect this parameter. 

Fig. 12. The range of fracture porosity and identified fractures in the productive zone of 313 well (zoom in on a portion of Fig. 11 from 4342 to 4354 m).  

Fig. 13. Calculation results of petrophysical parameters and characterization of fracture parameters for 306.  

Q. Yasin et al.                                                                                                                                                                                                                                   



Journal of Petroleum Science and Engineering 208 (2022) 109346

12

Therefore, fracture aperture is considered the critical parameter for 
determining fractures’ effect on the porosity and permeability system. 

4.3. Reservoir evaluation from seismic inversion using DNN inversion 
strategy 

4.3.1. Seismic data interpretation 
Before we can perform seismic inversion, we must first interpret the 

seismic data. The interpretation profile of the top and bottom structure 
of Paleozoic horizons is shown in Fig. 14. According to the interpreted 
results, the target reservoir (Paleozoic strata) gradually thins from west 
to east. Furthermore, we can see the structural High in the west and 

structural Low in the east. The entire study area is covered by a com
bination of normal and thrust sheets locally cut by strike-slip faults. 

4.3.2. Acoustic impedance inversion 
The seismic data in this field is poor in low-frequency components 

below 10 Hz and high-frequency components above 60 Hz. As a result, 
frequency division modeling and random simulation inversion with low- 
and high-frequency components are needed (Luo et al., 2016). The re
sults of different frequency component models and final configuration 
inversion applied to the interpreted 3D seismic volume are shown in 
Fig. 15. The effects of random simulation inversion based on 0–15 Hz 
frequency interpolation, 0–200 Hz under the constraint of the seismic 

Fig. 14. Interpreted seismic section of Paleozoic reservoir along the east-west.  

Fig. 15. The inverted AI profile, (a) low-frequency model 0–15 Hz, (b) high-frequency model 0–200 Hz, (c) frequency band between 0 and 60 Hz, (d) final inversion 
model 0–300 Hz. 

Q. Yasin et al.                                                                                                                                                                                                                                   



Journal of Petroleum Science and Engineering 208 (2022) 109346

13

Fig. 16. (a) Seismic structural map, (b) inverted AI slice, (c) amplitude slice. The lateral variations of AI and amplitude are well-correlated.  

Fig. 17. Correlation of rock physics and petrophysical parameters, (a) GR versus AI, (b) porosity versus AI.  

Fig. 18. Lithological interpretation of Paleozoic strata in key wells.  
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waveform, and a frequency bandwidth of 0–60 Hz are shown in Fig. 15 
(a–c). The inversion result demonstrates a certain similarity between 
seismic reflection characteristics and vertical wells. The final configu
ration inversion result using the well profile is shown in Fig. 15d. We 
observe that the high part of the buried hill has a relatively high 
impedance (unconformity surface and downward). The proposed DNN 
inversion strategy captured vertical and lateral variations in AI with 
high resolution while retaining structural reflection characteristics in 
the seismic frequency band. The inverted impedance surface from the 
DNN inversion strategy matches the impedance log well. As a result, the 
0–300 Hz impedance inversion tests are valid and can be used to 
quantify seismic lithofacies and reservoir parameters. 

Fig. 16(a–c) shows the seismic structural map, amplitude slice, and 
AI inversion under the lower Paleozoic top surface in the buried-hill. 
Comparing amplitude slice with configuration AI inversion slice in
dicates high seismic lateral resolution (Fig. 16b and c). The reflection 
morphology (amplitude) is well-correlated with the lateral variations of 
AI and geological structure. The area around wells 30, 302, 313, and 306 
is characterized by a high amplitude seismic response and high AI, 
indicating fracture zones. 

4.3.3. Seismic lithofacies calculation 
Rock-physics analysis plays a key role in bridging the gap between 

rock parameters and seismic data to improve the prediction accuracy of 
complex sedimentary structures (Al Moqbel and Wang, 2011; Ashraf 
et al., 2019). A cross-plotting between GR versus AI and porosity versus 
AI is generated to establish the relationship between AI, GR, and 

porosity (Fig. 17a and b). The nonlinear relationship between AI, GR, 
and porosity (i.e., high AI > 15000 (m/s) (g/cm3) and low GR) refers to 
limestone and dolomite lithofacies with moderate to low porosity. 

We use the GR and DTP logs to classify the lithofacies in 302, 30–3, 
and 30 wells. Fig. 18 demonstrates the lithological analysis of the 
buried-hill Paleozoic strata (shown with red box). We observe that the 
buried-hill comprises mainly of dolomite and limestones (GR < 20) with 
a minor fraction of shale and sandstone (GR > 70). 

The lower Palaeozoic seismic lithofacies profile characterized five 
different types of lithofacies distribution (Fig. 19). The limestone and 
dolomite distribution dominates the seismic lithofacies profile around 
wells 30 and 30B-2, while limestone and sandstone are dominant in 
wells 302, 30A-2, and 30–3. It is worth noting that the results of the 
lithofacies inversion meet with the logging interpretation and geological 
settings (Fig. 18). 

Note that the AI varies from 11000 to 25000 (g/c) (m/s) in the study 
zone (lower Paleozoic), which corresponds to dolomite and limestone 
lithofacies with subordinate shale and sandstone lithofacies around well 
302 (Fig. 15). The variations in AI are closely related to facies-related 
changes, i.e., the high AI region (18000–25000 (m/s) (g/c) corre
sponding to dolomite and limestone beds. A probabilistic study of lith
ofacies revealed a strong correlation between limestone and dolomite 
lithofacies with a high AI (Liu et al., 2016; Yasin et al., 2020a). It is 
shown that the DNN inversion strategy can construct and constrain the 
spatial distribution of facies and reservoir parameters as a result of this 
good calibration. 

Fig. 19. Seismic lithofacies inversion profile using DNN inversion strategy.  

Fig. 20. The synthetic and porosity models, (a) synthetic seismic, (b) inverted porosity model, (c) the RMSE.  
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4.4. Porosity and FIC model prediction from seismic inversion 

4.4.1. Numerical simulation (porosity) 
We designed a complex Marmousi II model (Martin et al., 2006) to 

check further the DNN inversion strategy’s ability to predict porosity. 
The model´s input synthetic seismic response, inverted porosity, and 
root mean square error (RMSE) of each trace are shown in Fig. 20. 

We used several traces (CDP25, CDP50, CDP75, CDP100, CDP125, 
CDP150, CDP170, and CDP200) as pseudo wells to develop a numerical 
model. The porosity of all eight pseudo wells was assumed to be known 
for seismic records of the model during the testing period. To establish 
the mapping relationship between seismic data and logging porosity, we 
trained the DNN model. We used CDP25, CDP75, CDP100, CDP125, and 
CDP200 as learning samples and CDP50, CDP150, and CDP170 as 
testing samples to train the model. The predicted and real porosities at 
various CDPs are compared in Fig. 21. Because of the nonlinear rela
tionship between the inputs and outputs, it is shown that outliers are not 

well captured. Indeed, true measurements are dependent on local vari
ations in the physical properties of the subsurface in one or more 
neighboring points, which may be affected by a variety of environmental 
and measurement factors that cause some outliers to output data. As a 
result, instead of outliers, the DNN application is intended to have a 
stable amount of data. Finally, the trained model was used to estimate 
the spatial distribution of porosity using the seismic volume as input. 
The root mean square error (RMSE) of each trace is also less than 0.001, 
demonstrating the DNN inversion strategy’s consistency and validity 
(Fig. 20b and c). 

4.4.2. Porosity and FIC model inversion 
We analyze the fracture porosity (PORF) calculation of deep-buried 

carbonate reservoirs using the relationship between AI and porosity 
(Fig. 22). According to the figure, the buried-hill’s structural High and 
Low (unconformity surface and downward) have good fracture porosity 
and correlate well with logging porosity (PORF). As a result, the 

Fig. 21. Comparison of the estimated and actual porosity curves (red line represents the predicted results and the black line represents true values). (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 22. The inverted porosity profile using DNN inversion strategy.  

Fig. 23. The inverted profile of the proposed FIC model. The color bar shows the FIC model values. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 24. The horizontal distribution inversion results, (a) lithofacies, (b) AI, (c) FIC model.  
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proposed DNN inversion strategy captured vertical and lateral variations 
in porosity with high resolution and a more tangible geological 
perspective. The results of the synthetic model and the DNN inversion 
strategy revealed an excellent vertical and lateral distribution of 
porosity. Additionally, the results demonstrate that the proposed 
inversion strategy is versatile and applicable to complex geological 
structure. 

Fig. 23 demonstrates the spatial variation of reservoir fracturing 
parameters (e.g., the FIC model) in the inter-well regions. The inverted 
FIC model, based on its linear relationship with fracture porosity, 
highlights good fracture zones in the vicinity of wells 302, 313, 306, and 
307, as well as high AI values (Fig. 15d). Dolomite and limestone are the 
dominant lithologies in these zones (Fig. 19). A good distribution of 
fracture parameters (high FIC model values corresponded to large 
fracture apertures) around wells 302, 313, 306, and 307, indicating 
potential reservoir zones. The horizontal distribution of the FIC model 
matches well with the inverted fracture porosity (Figs. 22 and 23). 

4.5. Quantitative seismic prediction of sweet spots 

To further investigate the plane distribution of fractures, we compare 
the planar distribution results of the FIC model with AI and lithofacies 
planer slices (Fig. 24a–c). We notice that the buried-hill fractures around 
wells 313, 306, and 307 are well-developed. Furthermore, the fractures 
southwest of well 302 and east of well 303 are well-developed (Fig. 24c). 
It should be noted that high fracture regions (Fig. 24c) have high AI 
values (Fig. 24b), dolomite and limestone are the dominant lithologies 
(Fig. 24a) (shown with black circles). 

The quantitative seismic-predicted multi-attribute RGB (Red, Green, 
Blue) color blending technologies employing amplitude (green), AI 
(blue), and FIC model (red) show a well-developed fracture network 
along the major fault zones of wells 302, 306, and 307 (Fig. 25). The 
highlighted red and magenta zones are assumed to be faults and frac
tures. It is worth noting that the zones surrounding wells 305 and 303 
have suitable reservoir thickness but a less well-developed fracture 
network, as interpreted by the attributes map produced by RGB color 
blending. The comprehensive evaluation of fracture development zones 
in the lower Paleozoic buried-hill reservoir is shown in Fig. 25 and 
Table 3. The figure represents well-developed fracture areas (marked 
with red circles) that are defined as class I reservoirs, while less- 
developed fracture areas (marked with blue and white circles) are 
defined as class II and class III reservoirs, respectively (Table 3). 

5. Conclusions 

In this study, we applied a comprehensive set of technical tools and 
research components to the seismic data in order to predict the high- 
quality reservoir regions of a complex buried-hill structure. After all, 
the following conclusions could be drawn:  

1. The application of the proposed FIC model enabled us to successfully 
predict the fracture zones and fracture density in the buried-hill 
structure using a combination of conventional logs. Also, the FIC 
model proves effective in identifying the fracture aperture in zones 
where FMI data are lacking.  

2. The log interpretation results for wells 313, 306, 307, 39, and 30 
show high fracture intensity and good fracture aperture, confirmed 
by high neutron and fracture porosity. Also, RQI reflects good quality 
reservoir sections along the fractured zones (i.e., RQI > 0.4). The 
bulk density curve shows low values against the fractured interval, 
which indicates a gas anomaly.  

3. The proposed DNN inversion strategy trained by multiple seismic 
attributes is highly correlated to the logging interpretation and can 
provide more accurate results. Five different types of lithofacies 
distribution in the buried-hill structure are identified, where lime
stone and dolomite are dominant, with a minor quantity of shale and 
sandstone. The limestone and dolomite reservoir is mainly developed 
around 302, 306, and 307 wells, whereas the sandstone reservoir is 
dominant around 30 well. The results were consistent with the log
ging interpretation and geological settings.  

4. The horizontal distribution of the FIC model matches well with the 
inverted fracture porosity profile. The planer slices of the high FIC 
model around wells 302, 313, 306, and 307 have high AI values, with 
dolomite and limestone are the dominant lithologies.  

5. Based on a comprehensive analysis of the research results, the study 
area is divided into class-I, class-II, and class-III reservoirs according 
to well-developed, developed, and less-developed faults and fracture 
networks. 
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Table 3 
Favorable areas for reservoir development.  

No. Fault Fracture 
development 

Reservoir 
thickness (m) 

Favorable area 
type 

1 developed I <60 II 
2 developed I <60 II 
3 developed I <60 II 
4 developed I 100–160 I 
5 developed I <60 II 
6 Less 

developed 
I 60–100 II 

7 Less 
developed 

I 60–100 II 
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9 developed I 100–140 I 
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12 developed I 60–100 II 
13 developed I 80–100 II 
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II <60 III 

15 Less 
developed 

II <60 III  
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FMI formation micro-image 
BP backpropagation 
K permeability (mD) 
ϕ porosity (%) 
Vsh volume of shale (vol) 
Ed dynamic Young’s modulus (GPa) 
υd dynamic Poisson’s ratio 
GR gamma-ray 
SP spontaneous potential 
LLD deep resistivity 
DTP P-wave sonic (μs) 
DTS S-wave sonic (μs) 
RHOB density (g/cm3) 
NPHI neutron porosity 
FZI flow zone indicator 
RQI reservoir quaity index 
HFU hydraulic flow unit 
VS shear wave velocity (m/s) 
VP compressional wave velocity (m/s) 
FIC fracture identification constant 
FI fracture index 
AI acoustic impedance (m/s) × (g/cm3) 

Appendix A 

A1. Estimating the rock’s parameters 

A1.1 Multi-mineral modeling 
The multi-mineral modeling approach utilizes the relationship between log measurements and various minerals using a set of linear equations (Eq. 

(A1)). An additional unity equation with the sum of the individual mineral components and fluid proportions is 1 was included. The proposed model 
uses six equations to solve six unknowns: five minerals and porosity. 

The log measurements used for the model are density (ρ), VP, Vs, acoustic impedance (AI), and the parameter ‘L’ equaling the product of density 
and photoelectric index, i.e., (L = Pe×ρ), which can be written as in Eq. (A2) 

ρ = ρfl*φ + ρ1*M1 + ρ2*M2 + ρ3*M3 + ρ4*M4 + ρ5*M5
AI = AIfl*φ + AI1*M1 + AI2*M2 + AI3*M3 + AI4*M4 + AI5*M5
Vp = Vpfl*φ + Vp1*M1 + Vp2*M2 + Vp3*M3 + Vp4*M4 + Vp5*M5
Vs = Vsfl*φ + Vs1*M1 + Vs2*M2 + Vs3*M3 + Vs4*M4 + Vs5*M5
L = Lfl*φ + L1*M1 + L2*M2 + L3*M3 + L4*M4 + L5*M5
1 = φ + M1 + M2 + M3 + M4 + M5

(A1)  
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(A2)  

where, subscript ‘fl’ stands for fluid, ø is the inverted porosity, Mi (i = 1 to 5) denotes mineral concentration of five minerals. Five minerals were 
selected as limestone, dolomite, quartz, shale, and heavy minerals. 

The matrix system in Eq. (A3) illustrates the simultaneous matrix inversion calculation performed for mineral composition which can be expressed 
as 
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W = C×M                                                                                                                                                                                                    (A3) 
where, W, C, and M denote the well log measurement (i.e., the rock’s physical properties), matrix of the rock constituents, and matrix of the unknown 
proportions of the individual mineral components, respectively. The physical properties of the dominant rock constituents used in this study for 
multimineral modeling are available in the literature (Singh et al., 2013). Eq. (A4) can be solved by treating it as an inverse problem and then solving 
for M:  

M = C− 1×W                                                                                                                                                                                                (A4) 

(Amosu and Sun, 2018) have developed an interactive graphical user interface program with open-source, called MinInversion. In this program, 
the author suggested a balanced linear model system derived from borehole geophysical logs to estimate the mineral content in a rock by an inverse 
method. In this particular study, we also used MinInversion to estimate mineral composition from digital geophysical logs. The MinInversion program 
enables the system to solve and execute the linear equation of the inversion matrix. 

A1.2 Total and fracture porosity 

The density log was used to estimate total porosity using Eq. (A5): 

ϕT =
ρma − ρb

ρma − ρfl
(A5)  

where ρma and ρfl denote the matrix and fluid density, respectively. 
We then calculated the fracture porosity using Eq. (A6): 

ϕF =
Frac(ϕT − 1)
(vϕT − 1)

(A6)  

where ϕF is the fracture porosity (with no vugs), Frac is a number of fractures, and v denotes the porosity partitioning coefficient. 
Finally, the effective porosity (ϕE) was calculated using Eq. (A7). 

ϕE =ϕT(1 − Vsh) (A7) 

In the above equation, GR log was used to estimate the rock’s shale volume (Vsh), as shown in Eq. (A8). 

Vsh =
GRlog − GRmin

GRmax − GRmin
(A8)  

where GRlog is gamma-ray reading, GRmin and GRmax are the minimum (clean sand) and maximum (shale) gamma-ray readings in the zone of interest, 
respectively. 

A1.3 Permeability and RQI estimation 

The permeability was estimated from hydraulic flow units (HFU) as described in the following equations (Hearn et al., 1984). considered the role of 
the mean hydraulic radius (rmh) for identifying and characterizing reservoir HFU. They defined mean hydraulic radius as ‘the ratio between the 
cross-sectional area (r) to the wetted perimeter. 

rmh =
πr2

2πr
=

r
2

(A9) 

The quantitative relationship between porosity and permeability as given by Darcy’s laws and obtained from the Poiseuille formula can be written 
as, 

K =
r2ϕ
8τ2 (A10)  

where K, ϕ andτ define permeability, porosity, and tortuosity, respectively. Note that ϕ and K depend on types of pores, their shape, and their 
connectivity. (Amaefule et al., 1993) used tortuosity (correction factor) for saturated porous media. 

K =
r2ϕ
8τ2 =

ϕ
2τ2

(r
2

)
=

ϕr2
mh

2τ2 (A11) 

In Eq. (A11), the surface area rmh is expressed as per unit grain volume (Svgr) and ϕ, and can be defined as follows, 

rmh =
1

Svgr

[
ϕ

1 − ϕ

]

(A12) 

substituting the result of rmh into the definition of K–C model (Amaefule et al., 1993), we arrive at the following Eq. (A13): 

K =
ϕ3

(1 − ϕ)2

[
1

fgτ2S2
vgr

]

(A13) 
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where symbol fg and Svgr typically represents the shape factor (dimensionless unit) and specific surface area expressed in term of grain (μm− 1), 
respectively. 

In Eq. (A13), we symbolically divided ϕ to both sides and took a square root, 

0.0314

̅̅̅̅̅
K
ϕe

√

=
ϕ

(1 − ϕ)

[
1

fgτ2S2
vgr

]

(A14) 

Finally, Eq. (A14) can be expressed as: 

RQI =FZI × ϕZ (A15)  

where the abbreviations FZI for flow zone indicator (μm) and RQI for reservoir quality index. ϕz is the pore volume-to-grain volume ratio. 
FZI is the only property that has similar geological and petrophysical properties. According to the classical definition, FZI subdivides the reservoir 

into units based on flow behavior. 

RQI = 0.0314

̅̅̅̅̅
K
ϕe

√

(A16)  

where ϕe is effective porosity. 

ϕZ =
ϕe

1 − ϕe
(A17) 

The value of FZI is given at the intercept of a unit-slope line with the coordinate ϕz = 1 on a log-log plot (i.e., RQI versus ϕz). Single value for each 
HFU can be identified based on FZI values. 

The mean FZI (FZImean) values associated with the cluster was used to compute the permeability by Kozeny–Carman Eq. (A18), 

K = 1014 × (FZImean)
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϕe

(1 − ϕe)
2

√

(A18)  

A1.4 Dynamic Young’s modulus 

Young’s modulus (GPa) can be determined directly using shear (VS) and compressional wave velocity (VP) information and bulk density (ρb) 
(Mavko et al., 2009; Rasouli, 2012). 

Ed = ρbV2
s

(
3V2

p − 4V2
s

V2
p − V2

s

)

× 10− 6 (A19)  

A1.5 Dynamic Poisson ratio 

The dynamic Poisson ratio can be expressed as a function of bulk modulus and shear modulus, proposed by Stein (1976). 

νd =
3K − 2G
6K + 2G

(A20)  

where νd denote dynamic Poisson’s ratio, K and G are bulk modulus and shear modulus, respectively in GPa. 
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