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Deeply buried fractured reservoirs have evolved into significant oil and gas potential in many basins of the world.
However, fracture prediction in deeply buried carbonate reservoirs has always been challenging. Fracture pre-
diction in the deep-buried carbonate structure of North China is problematic because of multiphase tectonic
movements, variable sediment lithology, and complex diagenesis. Because of deep burial depth and complex
heterogeneity, the resolution of seismic reflection data beneath the buried-structure is poor, making it chal-
lenging to identify the fault reflection characteristics. This paper proposes a novel idea to identify natural
fractures in carbonate reservoirs using conventional logs with seismic reflection data. The proposed model can
also predict the fracture aperture and fracture density, a distinctive feature. Another novel hybrid model based
on deep-learning neural network (DNN) and cluster analysis is proposed to predict further the spatial variations
of lithology, porosity, and fracture parameters from seismic inversion. The proposed models provide valuable
insights that help determine fracture parameters in the Paleozoic strata and associated reservoirs through
quantitative analysis using petrophysics, rock physics, seismic inversion, and seismic attributes. The overlapping
of seismic interpreted fault networks and spatial variations of the inverted fracture parameters indicate a high
correlation of fracture development zones. The methodology proposed in this study presents a valuable template
valid for the characterization of fractured reservoirs in deeply-buried carbonate reservoirs throughout the world.

1. Introduction

Naturally fractured carbonate reservoirs have contributed signifi-
cantly to petroleum reserves after recent significant advances in geo-
sciences (Aghli et al., 2016; Aguilera, 2010; Ginting et al., 2011; Yasin
et al., 2018a). However, the correct identification of the fractures” dis-
tribution in deeply-buried reservoirs is still challenging and has become
an obstacle for seismic interpreters to explore the fractured reservoirs
(DING et al., 2020; Saboorian-Jooybari et al., 2015). Conventionally,
geologists and geophysicists use cores, and formation micro-imaging
(FMI) logs for fracture evaluation (Tao and Alves, 2019). FMI logs can
be used directly to determine fracture parameters like aperture, orien-
tation, and porosity (Khoshbakht et al., 2012). However, these tools are
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costly and are rarely available in all wells (Ferrill et al., 2017; Tokhmchi
et al., 2010).

Over the past decade, significant progress has been made in the
development of digital outcrop models (DOM) for fracture character-
ization (Casini et al., 2016; Larssen, 2018), mapping of sedimentary and
igneous bodies (Galland et al., 2019), and as input for seismic modeling.
The fracture systems from outcrops are investigated using Lidar scan-
ning, photogrammetry, and satellite photos (Hodgetts et al., 2004; Smith
et al., 2015). Photogrammetry-based DOM is the most popular method
for acquiring outcrop images, as it only requires a camera and processing
software. It is helpful in various geological settings, but it is especially
useful for characterizing extremely heterogeneous carbonate platforms
(Loza Espejel et al., 2020).
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While those techniques are designed only for outcrops, alternative
tools based on conventional logs have recently been proposed to
investigate the fractures’ distribution. In fact, fractures contribute
directly to the porosity of the reservoir, and hence the conventional
porosity logs are strongly related to fracture parameters as fracture
aperture (Ouenes, 2000; Ouenes et al., 1995). The fracture aperture also
provides a vital contribution to the rock permeability, i.e., the larger the
aperture size, the more fluid phases can flow in the fracture (Aguilera,
2010; Al-Ghamdi et al., 2010; Movahed Z., 2015). To understand the
fractured reservoir’s behavior, we should perform estimations for both
the primary (matrix) and secondary (fracture-only) porosities (Hornby
et al., 1992; Mohebbi et al., 2007; Ouenes, 2000). However, porosity
formed by fractures is considered too small to detect with conventional
logs due to their low vertical resolution (Hornby et al., 1992; Mohebbi
et al., 2007). Recent studies have shown that fracture zones can be
identified on conventional logs while modern logging tools are being
designed specially to provide higher resolution (Aghli et al., 2016, 2019;
Ge et al., 2014; Tokhmchi et al., 2010; Tokhmechi et al., 2009). The
researchers have recognized sonic, density, resistivity, gamma-ray
(uranium), neutron porosity, and caliper logs as the best logging com-
bination for fracture identification (Ge et al., 2014; Martinez et al.,
2002; Saboorian-Jooybari et al., 2015).

P-wave and S-wave (e.g., compressional and shear sonic logs) indi-
cate the formation’s interval transit time (Du et al., 2018, 2019). (Wyllie
et al., 1956) proposed the relationships between acoustic travel time
versus porosity, and since then, the oldest and most popular Wyllie
time-average is considered the most common equation for the field. The
transmission speed in the fractured zone is reduced due to the forma-
tion’s low density (especially in open fractures). Based on this, we expect
transit time to increase in the fractured zones (Aghli et al., 2019; Gol-
sanami et al., 2021).

Neutron log (e.g., porosity or NPHI) measures hydrogen concentra-
tion in a formation and determines porosity. Hydrocarbons and water
are organic molecules consisting of large amounts of hydrogen that
significantly reduce the neutron speed. High hydrogen concentrations in
the pore network system result in neutron energy loss, reflecting the
formation porosity (Ismail et al., 2017; Laongsakul and Diirrast, 2011).
Therefore, in the fracture zones, where there is an increase in the
amount of formation fluid, there is a corresponding increase in the
neutron log values. Hence, the neutron log could be the best log for the
prediction of fracture aperture.

Shallow and deep resistivity logs (LLS and LLD) are also suitable for
fracture detection among old and new logging measurements. The
shallow resistivity curve shows lower values along with the fracture
intervals because of fluid invasion in the fractures, especially when the
true resistivity of the formation is greater than the resistivity of mud
(Saboorian-Jooybari et al., 2015). Similarly, the induction log shows low
resistivity spikes on resistivity curves that indicate the presence of
fractures (Golsanami et al., 2020). If deeper induction resistivity curves
show spikes to lower resistivity, we suppose that the pre-existing frac-
tures are quite deep and also significant (Bakhshi et al., 2020; Golsanami
et al., 2019).

Moreover, the microfractures are generally filled with uranium
minerals which are commonly determined by spectral gamma-ray logs
(SGR). Petrophysicists use SGR to estimate clay mineral volumes and
identify fractures containing uranium salts precipitated in there by
ground-water systems (Aghli et al., 2019; Darling, 2005).

The bulk-density (RHOB) log is also significantly influenced by the
fracture zones. Previous studies indicate that the density curve shows a
significant difference between the rock and fluid density around the
fracture zones (Laongsakul and Diirrast, 2011; Saboorian-Jooybari et al.,
2015; Yasin* et al., 2020b). An increase in fluid volume in fractured
zones leads to density contrast because fluid density is less than rock
density (Yasin et al., 2018b).

Besides all the above conventional logs used for simple fracture
prediction, progress in high-performance computing systems has
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enabled data-driven machine learning (ML) algorithms to establish the
nonlinear relationships between two variables (input and output) based
on a statistical approach (Al Mogbel and Wang, 2011; Dandan and
Qiaodeng, 2002; Qiang et al., 2020; Russell, 1988, 2004). Geoscientists
have recently succeeded in applying intelligent ML algorithms to
high-quality seismic reservoir characterization. (Esmaeilzadeh et al.,
2019, 2020). (Jun et al., 2006) established the mapping relationship
between logging porosity and seismic multi-attributes with the con-
ventional NN method to predict fracture development zones in car-
bonate reservoirs (Lin et al., 2018). used a combination of the
soft-porous petrophysics model and conventional NN to calculate frac-
ture porosity and then used formation micro-image (FMI) logging to
confirm the accuracy of the fracture prediction (Luo et al., 2021).
recently proposed a parametrized residual rock physics model for reli-
able production data forecasts using machine learning methods.
Although various ML algorithms have been proposed for seismic
inversion, e.g., back-propagation (BP), support vector machine (SVM),
genetic inversion, particle swarm optimization (PSO), and multi-layer
linear calculator (Abdulaziz et al., 2019; Boateng et al., 2020; Nwa-
chukwu et al., 2018; Yasin et al., 2020a; Zhang and Ruan, 2009), the
practical use of the suitable inversion algorithm is still a challenging task
and depends a lot on the quality of input data and stage of exploration or
field development.

In recent decades, substantial development has been made in deep-
learning neural networks (DNN) to improve the spatial prediction of
petrophysical, geological, and geomechanical properties in conven-
tional and unconventional reservoirs (Hinton et al., 2006; Lin et al.,
2018; Wu and Cao, 2016). Deep learning’s core idea is to learn the
nonlinear relationship between inputs and outputs, as well as the un-
derlying structure of data vectors. In contrast to the single-layer neural
network, a DNN contains many hidden layers with strong learning
abilities to improve prediction accuracy (Temirchev et al., 2020). It is
composed of a multi-layer processing structure that can divide a com-
plex function into many simple linear functions by controlling each
layer’s output weight (Lin et al., 2018). The structure of DNN is more
complex and represents the learning mode of big data plus a complex
model. It is a semi-supervised generation model, i.e., the training of DNN
needs to be carried out in two steps by way of unsupervised and su-
pervised neural networks. In the first step, the weights of each neuron
are trained in an unsupervised manner. The whole neural network
generates data according to the maximum probability to form clustering
information. In the second step, BP is used to guide the DNN to fine-tune
network parameters, that is, to optimize with a supervised neural
network (Lin et al., 2018).

The DNN is appropriate for complex and highly fractured reservoirs,
such as the buried-hill carbonate reservoir in the oilfield X, one of the
largest oilfields in North China. The geological reserves of the buried-hill
are nearly 200 million tons (Sun et al., 2018). It is a regional oil and
gas-bearing area with 65 oil and gas fields, two gas fields, and eight
major oil fields covering about 2117 km? The multiphase tectonic
movements, complex diagenesis, well-developed faults network, and
low-frequency seismic reflection data cause extreme heterogeneity.
Consequently, an accurate description of the fault network, fracture
development zone, lithology, and reservoir parameters, to identify
high-quality reservoir regions of the deeply-buried structure; is a chal-
lenging task in this area. This study proposes a novel, inexpensive, and
reliable method based on the combination of high-resolution conven-
tional logs with seismic data. This method consists of a meticulous
application of various tools for evaluating the fracture parameters.
Herein, we explore the relationship between fracture-sensitive param-
eters and the reservoir rock’s elastic properties to define the fractured
and non-fractured zones. Also, we suggest the DNN inversion strategy to
predict spatial variations of lithology, porosity, and fracture parameters
using 3D seismic reflection data. The present study’s proposed meth-
odology would effectively acquire the fractured zone’s most subtle in-
formation from the low-frequency seismic data and conventional logs,
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contributing to the more profound understanding of the petrophysical
characteristics of the subject’s buried-hill structure.

2. Geological setting and stratigraphy

The study area is located in the North China of Y Basin. Tectonically,
it is subdivided into depressions and uplifts, roughly oriented NE-SW by
transtensional faults which are themselves compartmentalized into sub-
units (‘sags’ and ’rises’) (Cai et al., 2008). Regarding the regional
framework, the oilfield lies in the northeast part of the
Zhuangxi-Gudong buried-hill anticlinal belt of the Zhanhua sag. It is
adjacent to the Kendong-Qingtuozi dome in the SE, the Gunan sag in the
SW, the Zhuangxi sag in the NW, and the Zhuangdong sag in the NE
(Fig. 1a) (Cai et al., 2008; Sun et al., 2018; Yue, 2007). The Zhanhua sag
comprises a basement fault block pattern, which is faulted in the
southern part and overlapped in the northern part. The sag exhibits a NE
trend and ‘double half-graben’ structure in the planar view. The struc-
tural features are affected mainly by the tensional and transtensional
faults of NE directions (Yue, 2007).

Stratigraphically, the oilfield X is a large anticlinal buried-hill
structure developed from the Paleozoic stratum. Lithologies are
mainly primarily oolitic limestone and dolomite with many high angle
fractures (Fig. 1b). These limestones and dolomite of the Paleozoic
formations act as the main reservoir unit in the buried-hill structure. The
limestone section is mainly fractured and filled with calcite. At the
bottom intervals, the limestone and dolomite section comprises breccia,
calcite filling, and argillaceous filling. The breccia of fractured limestone
and dolomite intervals are filled with oil (Fig. 1b). (DING et al., 2020)
recently applied deep neural networks to predict fractures’ spatial dis-
tribution in the Paleozoic formations’ buried-hill structure. In the same
oilfield, they discovered a well-developed northeast trending fracture
network along the fault.

Subsurface well correlation indicates that the Paleozoic strata under
the buried-hill were eroded to a large extent. The thinnest eroded strata
were at the top, compared with the regular sections. Towards the
northern direction, the eroded thickness of strata is high. Meanwhile,
the lower Paleozoic strata are seriously faulted, relatively thin, with
rapid lateral horizon variation. The lower Paleozoic strata encountered
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in several wells are different, and the horizontal and vertical distribution
is also unstable (Fig. 2).

Boundary faults principally control the whole structure. There are
mainly two normal extensional faults at the boundary of the buried-hill.
Simultaneously, there are two large secondary NE faults, i.e., the fault
south of the 30A-2 well and the fault north of the 301 well. These faults
make the buried hills’ central fault system more complicated and control
its structure. The faults along the EW direction also play a significant
role in forming the structure and trapping the hydrocarbons. Note that
each block has different structural characteristics to trap the oil and gas
accumulation, which complicates more and more the exploration.

3. Dataset and methodology

This study used borehole log data from more than ten producing
wells to estimate fracture parameters and reservoir properties in the
lower Paleozoic (Pz) interval. We analyzed caliper (CAL), gamma-ray
(GR), deep resistivity (LLD), spontaneous potential (SP), P- and S-
wave sonic (DTP and DTS), density (RHOB), and neutron porosity
(NPHI) log to explore the fracture zones for reservoir modeling from the
following key wells: 302, 306, 307, 39, 40, 313, and 30. Also, several
thin sections were available in the reservoir interval to calibrate porosity
and fractures. Furthermore, we utilized 3D seismic data covering about
200 km? to interpret the target horizons, i.e., ‘Pz’ (lower Paleozoic)
interval top and ‘Art’ (igneous rock) top for reservoir characterization
and modeling.

The following is a detailed description and overview of a specific
workflow proposed to analyze fracture parameters using a combination
of high-resolution conventional logs and seismic reflection data (Fig. 3).

a) A theoretical model based on unique logging response versus frac-
tures was developed to predict fracture parameters.

b) A hybrid model based on deep-learning neural network and cluster
analysis was proposed to measure the spatial variations of lithology,
porosity, and fracture parameters using seismic data.

c) The results were compared by overlapping the seismic interpreted
fault network and spatial variations of the inverted Al, lithofacies,
and fracture parameters.

///; > Age g Core Ph Dept L ithologic | Structurat | "¢ [Struct %,
// @60’-/\00 3 ore oto ) [Characters Features | cop | ure | %,
//\.)\//é;‘ 3757
*\Q,/ /// < ===
\‘e/ ,/, §;Q = wss === z
R A4 —— F
/. /77 = 3750 T \N 2
& R S o
N A / o=
e X / /7 O sreoL—
\QS,/’ B ’ . - Q//,’/"/ : = 3806 /l\l/
NG /_/ Yanshan uplift &7 ,//,/g 2 —— m 72
Y/ - - / = 3s07 Fi
°¢ /, ,—§ _,/’/P\ﬁ/ //‘//‘QQ E - I . : B
S N s / 3 saon T
& ) =>4/ 5 — ile
,&%/ - - /’I /2\ Bozh depressi N 3300 L1 vee | 3 | =
S/, 53 A Z ozhong depression [ g — :
§ 507, = / E 38104 T T
Vi Y4 S . el
/1 I,m uphIt/ Ll’/h‘ hua sag B se11 T \\%\ E' Z
A ;‘—”\A .—_’?’/f’ znannua sag f T T I ;_-_ =)
2 3 ' ,/ . . wa ST 2
= S = ’_-:‘\\,Lq%".llyang depression so13 1 : T N
;£ === IS =
¢ ARET
2 i o O S-&..//: - .m/,\/u
S o v 3 > K Iy [T = I I
4 4 nib = |
s g—; & s, Luxi uplltt\ II II 5 - 4306 7|z
d -/ /,'/ Iluimir?ggémg sag/? ) 5 = = H\ : |
I - ¥ 3 . ¢ ElE
N4 ] = Study Area & - N 4398 T 2l2
/ /' /1 /I / % - H ~
14/ [/ Qi-Guang fault Iy sk SIS
\: // I’ /I Limestone  Dolomite ‘\l':g g5 ‘"r" Dolomf ': Calcareous  pydstone
@ N0 300 km [/ ®) s g o i o
Oolitic limestone  Breccia Open seam Limestone Cacite filling Argillaceous
cave

Fig. 1. (a) Regional tectonic framework of the study area (modified after (Sun et al., 2018), (b) identification of structural features and lithologic characteristics from

the cores of the studied interval.
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Fig. 2. Stratigraphic sequences and structural architecture in the buried-hill. Note that 021, 022, O1, E33, E32, E31, E22, E21, E13, E12, and E18 are members of

the Paleozoic strata, and ‘Art’ stands for basement rocks.
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Fig. 3. Proposed workflow for fracture parameters estimation.

d) The RGB color blending visualization was used to assess the quan-
titative seismic prediction of sweet spots.

3.1. Logs™ data normalization and averaging

Delineating fracture patterns from log data is an intricate process
that classical regression techniques cannot evaluate. Therefore, the log’s
pre-processing is considered an essential step before evaluating frac-
tures. We performed initial processes such as averaging and normalizing
the raw petrophysical logs to get an equal contribution from all types of
logs. Without data normalization, the GR and DT logs would dominate in
the process steps. We normalized the input logs using Xmin and Xmax by
Eq. (1). Also, we used cross-correlation to evaluate the similarity be-
tween two signals, i.e., comparing and analyzing the logs and fracture
parameters before and after applying log’s processing. Cross-correlation
of the logs and fracture parameters was normalized as ‘logs’ data per

energy for each log.
The normalized data was measured by Eq. (2) and Eq. (3).

Xi — Xmin

XNom = — (1)
N Xmax - Xmin
Ee=» X @
i=1
Xi
N log — (3)

where ‘i’ indicates the index of the data points on each individual log,
and Ej,¢ and Njog denote each log’s total energy and normalized log per
energy, respectively.

Averaging the petrophysical logs is another preferred method for
increasing the relationship between input and output variables. It is a
statistical procedure that relies heavily on the resolution of each log. The
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averaging range varies between 50 and 200 data points, e.g., depending
on the log’s resolution (Eq. (4)). The averaging range of a log with 0.15
cm resolution is 50, e.g., DT. A log with a resolution of 0.05 cm, on the
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homogeneous subgroups based on mineralogy, rock type, facies, and
pore fluid for reliable fracture prediction.
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3.2. Fracture identification constant (FIC) model prediction
FIC=A,+B,+C,+D, +E, (12)

According to recent studies, fractures influence significantly con-
ventional well logs (Aghli et al., 2016; Mohebbi et al., 2007; Tokhmchi
et al., 2010). According to researchers, a single conventional log might
not distinguish fracture zones, but a combination of conventional logs is
useful (Ge et al., 2014; Martinez et al., 2002; Saboorian-Jooybari et al.,
2015). We developed a theoretical model based on unique logging
response versus fractures by combining gamma-ray (uranium content),
shallow and deep resistivity (RD and RS), compressional and shear sonic
(DTP, DTS), density (DEN), and neutron porosity (CNL) logs (Eq. (7) to
(11)). However, it is important to note that certain logs show defiant
behavior and cancel one another. To avoid this, we convert the model’s
parameters into positive factors. Furthermore, we normalize the factors
between 0’ and 1’ in order for each log to participate equally in the
model development process. As shown in Eq. (12), the combined effect
of all normalized logs is referred to as the fracture identification constant
(FIC) model. Note that the reservoir interval was divided into

where GR = gamma-ray, DEN = density, RD = resistivity deep, RS =
resistivity shallow, DTP = compressional sonic, DTS = shear sonic.

3.3. Well-to-seismic calibration

Seismic inversion is the process of converting seismic reflection data
into reservoir physical properties. The process of generating and cali-
brating synthetics seismogram to real field seismic data is an art. The
first move in calibrating well-to-seismic is to use seismic data to cali-
brate sonic (acoustic) and bulk density logs. In this workflow, 3D seismic
volume, acoustic, and bulk density logs were imported into the open-
source rock star seismic inversion software (Beijing Rock Star Petro-
leum Technology Co. Ltd.). We extracted the wavelet directly from the
seismic dataset, i.e., seismic traces from inline and crossline with the
evaluation window ranges from 2100 to 2800 ms. To generate a
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Fig. 4. Composite plot for the well 302 showing synthetic seismogram, reflectivity series, and extracted wavelet.

input layers hidden layers output layers

Fig. 5. A schematic representation of the DNN model. The input variables
(seismic attributes) in the model are denoted by x;, x», and x3. The y; to y4
shows the number of hidden neurons in each hidden layer, and 2; illustrates the
output parameter.

synthetic seismogram, we convolved the reflectivity series (derived from
acoustic and density logs) with the wavelet derived from seismic data.
The seismogram was then converted from depth to time domain using
check-shot (borehole velocity survey) data from control wells. The
synthetic seismogram was then correlated with seismic traces to create
an impedance model in terms of a series of reflection coefficients. To
generate the synthetic trace for this dataset, we used a Ricker wavelet
with a dominant frequency of 30 Hz, a sample rate of 2 ms, and sample
lengths of 128 ms. A plot of a synthetic seismogram and related reflec-
tivity series, extracted wavelet, and well-to-seismic calibration is shown
in Fig. 4.

3.4. Deep-learning neural network

DNN is a kind of neural network with several hidden layers trained
using backpropagation-type algorithms. It consists of three types of
layers; an input layer, hidden layers, and an output layer. All neurons in

each layer are fully connected to the neurons of the next layer. The
structure of the DNN model is shown in Fig. 5. It includes signal-forward
and error back-propagation processing. We enter a sample data into the
input layer during forward propagation, processes it as per the hidden
layer’s activation function, and continue to the output layer. The net-
work’s actual output is then compared to the expected output for that
particular input. If the actual result is different than the expected result,
the error back-propagation process is used to repeat this process (Del-
I’Aversana, 2019; Moosavi et al., 2019). During back-propagation, the
weights and biases of each layer are continuously updated through
various parameter optimization methods so that the actual output is
closer to the expected results (Nguyen and Bui, 2019; Nguyen et al.,
2020). The output of a neuron is shown in Eq. (13):

YJF—f{ZW}}X{W—b}’.‘]U—LZ,...) 13)
i=1

where YJ" is the output of the j neuron in the layer k, f for the activation
function, W;‘ indicates the connection weights of the ith neuron in the
layer k-1 and j neuron in the layer k, X¥ represents the i component of
input sample data X, and b]’-‘ is used for the bias of the j neuron in layer k.

To calculate the error in back-propagation, the predicted and actual
values of the neural network should be computed using Eq (14):

1 n
€=y ;(di—yi)

where d; is the actual value, and Y; is the predicted value.

From Egs. (13) and (14), the error function, e; can be calculated for
each neuron. This process makes it possible to continually modify the
neural network’s weights and biases so that the predicted output is
closer to the desired results. Taking W;; as the connection weight and b;
as bias of the ith neuron in the hidden layer and the j neuron in the
output layer of the DNN, the updated mode of the value [ to the value I+1

14
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can be found from Egs. (15) and (16):

Wi(l+1) =Wy(l) — néY; (15)

bi(l+1)=b;(1) — né; (16)
where Wj; (D) denotes the weight coefficient taken from the [ training
step and 7 is learning rate (often in the range of 0, 0.5), §; is the gradient
of the performance function, Y; is a derivative of Y;, and b; (I) indicates
the bias obtained from the [ training step.

In this study, the designed model consists of mainly two modules, (i)
optimization of multiple seismic attributes and (ii) construction of the
DNN. In this model, we used unsupervised learning to optimize seismic
attributes that are sensitive to reservoir fractures. It was then fed into
supervised learning to improve reservoir fracture prediction reliability
and effectiveness.

3.4.1. Optimization of seismic attributes

Optimization of seismic attributes is the basis for predicting reservoir
properties such as porosity, saturation, and lithology. There are many
different seismic attributes, and each makes a substantial contribution to
seismic oil and gas reservoir prediction. In this particular study, we
selected those seismic attributes sensitive and contribute more to
reservoir fracture prediction through cluster analysis. Cluster analysis
can highlight the specific features such as faults, fractures, and channels
in seismic attributes, which are further combined with expert experience
to improve the supervised learning process’s efficiency. Cluster analysis
combines seismic attributes based on the degree of information simi-
larity. The information with a high degree of similarities was clustered,
which continued until the seismic data was divided into several attribute
aggregations based on detailed characteristics, completing the cluster
analysis process. We customized multiple seismic attributes based on
cluster analysis data, author domain knowledge, and proven reservoir
characteristics, including (a) instantaneous phase, (b) instantaneous
frequency, (c) RMS amplitude, (d) instantaneous amplitude, (e) average
peak amplitude, and (f) arc length amplitude.

3.4.2. DNN construction

According to the input data characteristics and output results, we
decided the number of nodes in the input and output layers for DNN
construction. However, the method of determining the number of nodes
in the hidden layers is fairly complicated. We did this by training the
neural network with various numbers of nodes in the same data set to
find the number of hidden layer nodes that can limit the error to the
smallest. Eq. (17) gives out the number of nodes in the hidden layer
(Zhang and Ruan, 2009):

h=vk+Il+a a7)

where k denotes the number of nodes in the input layer, [ stands for the
number of nodes in the output layer, and a is an uncertain value between
1 and 10, which can be set during the training process in specific
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Table 1

Test errors of Sigmoid, Tanh, and Relu activation

functions.
Activation function Error
Sigmoid 0.4260
Tanh 0.0655
Relu 0.0114

conditions.

3.4.3. Activation functions

We used an activation function to ensure that each DNN layer’s
output is not a linear combination of inputs and to take advantage of
their nonlinearity over the whole network. The activation functions
Sigmoid, Tanh, and Relu are widely used (Fig. 6). We checked the errors
in each of the three activation functions and found that the Relu acti-
vation function had a minimal error. (Table 1). We noticed that the
activation function in the hidden layer had changed the output of certain
neurons to zero during neural network training. This phenomenon not
only reduces parameter interdependency (effectively addressing the
overfitting problem in the training process), but it also improves neural
network training performance. Since the Relu activation function can
increase the network’s nonlinearity, it was selected for this analysis
(Fig. 6¢).

3.4.4. Hyperparameter selection

To obtain the best model, we designed the corresponding neural
networks using the selected training datasets. DNN efficiency and ca-
pacity improve as the number of hidden layers increases. Too many
hidden layers, on the other hand, can result in structural complexity,
poor training performance, high generalization error, and high compu-
tational cost. We calculated the number of hidden layer nodes using
empirical equations. To make predictions, a neural network model with
varying numbers of hidden layer nodes was used. The neural network’s
mean square error (MSE) was accomplished with nine hidden layers
(Fig. 7a and b). We noticed that when the neural network training
epochs crossed 20000, the MSE was 0.001, fulfilling the accuracy
criteria. We learned that as the number of hidden layers increases at the
same training epoch, the MSE decreases and eventually becomes stable
(Table 2). After 20000 training epochs, the MSE with seven hidden
layers reaches the given threshold (i.e., 10~>), as shown in Fig. 7a and b.
We proved that a network of seven hidden layers is adequate for pre-
dicting reservoir fractures and was chosen for this study.

3.5. DNN for lithofacies identification

In DNN seismic inversion, first, we set one-to-one samples using the
seismic trace (attribute). Second, we used the logging curve to generate
the sample sets for training, validation, and testing. A uniform sampling
method based on well and lithofacies was used to solve missing
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Fig. 6. Errors test in all three activation functions, (a) Sigmoid, (b) Tanh, (c) Relu.
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Fig. 7. DNN performance curve, (a) MSE versus hidden layer, (b) MSE versus training epochs.

Table 2

MSE for different hidden layer numbers in neural networks.
Training Hidden Hidden Hidden Hidden Hidden
Epochs Layer One Layer Layer Five Layer Layer

Three Seven Nine

1000 0.111 0.052 0.016 0.015 0.015
5000 0.109 0.022 0.008 0.007 0.007
10000 0.107 0.012 0.007 0.006 0.005
15000 0.106 0.006 0.004 0.004 0.004
17500 0.105 0.005 0.003 0.003 0.003
20000 0.105 0.003 0.003 0.001 0.001
22500 0.104 0.003 0.002 0.001 0.001
25000 0.104 0.003 0.002 0.001 0.001
30000 0.104 0.003 0.002 0.001 0.001

lithofacies details to retain the network’s predictive capabilities. Fig. 8
illustrates lithofacies grouping and uniform sampling for each well
graphically. We divided the well’s lithofacies curve into three types and
extracted the M frequency division data from the sidetrack to build a
vector (X1, X, X3, ..., Xp). The number of sidetracks is listed in reverse
chronological order (1n). We put the vector in the relevant lithofacies set
based on the lithofacies group it belongs to, representing a sample set.
Notice that lithofacies 1 has 4 samples at time intervals of 1, 2, 3, and 9,
lithofacies 2 has 6 samples at time intervals of 4, 5, 6, 7, 14, and 15, and
lithofacies 3 has 7 samples at time intervals of 10, 11, 12,13, 16, 17, and
18, respectively (Fig. 8). We define three sets of data after lithofacies
grouping and uniform sampling. Finally, we divide these three sets into

classification and recognition sets with similar time intervals. The input
was the frequency division attribute, and the learning target was the
multi-well seismic lithofacies curve, e.g., the label. The first step began
with the frequency division data, training the data from the bottom of
the network before the network’s top was achieved, an unsupervised
training method. The second step began with the multi-well seismic
lithofacies curve, transferred the error step by step from the top to the
bottom of the network through back-propagation, and optimized the
network layer by layer until it was developed. The validation process
was adjusted based on the results obtained at each training epoch during
the network’s testing. Finally, we developed a sophisticated functional
network that can predict and transform seismic lithofacies based on the
frequency division attribute.

4. Results and discussion
4.1. Reservoir characterization

Thin sections were used to examine the fractures and connected and
non-connected pores (Fig. 9a-f). We know that the most common
reservoir pores are fractures, dissolution pores, and intergranular pores.
Thin sections indicate a micritic matrix crossed by fractures of varying
sizes in different directions. The majority of the fractures are open-mode
with a wide fracture aperture, while others are filled with epigranualar
sparitic cement (Fig. 9a-d, and f). It is worth noting that tiny dissolved
pores developed alongside those fractures served as another primary
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Fig. 9. Thin sections of Paleozoic reservoir in the oilfield X, (a) network fracture in calcite; (b) open fracture in dolomite at 3531 m; (c) open fracture in dolomite at
3531.2 m; (d) fracture zone in dolomite at 3451 m; (e) open fractures and pores at 3553.2 m; (f) micro-fractures developed in dolomite.
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Fig. 10. Computed results of petrophysical parameters and characterization of fracture parameters for 313 well. FVA is fracture aperture from the FMI log, FA is
fracture aperture calculated from the FIC model, FD is fracture density from the FIC model, and RQI is reservoir quality index.

reservoir storage space in the study area. The thin sections show calcite, complex heterogeneity and the intersection of the fracture networks lead
dolomite, and biotite dissolution, as well as several micro-pores with a to an increase in porosity by enhancing the interconnection between the
diameter of around 1 pm. In Fig. 9a, we see some hydrocarbon along the existing pores.

intergranular dissolved pore. Fig. 9e depicts a fracture-filled with calcite
as a result of late diagenesis. Other fractures cross the fractures, and
styloliths impact their cement in various directions (Fig. 9b, c, e). This
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4.2. Estimating fracture parameters from the FIC model

4.2.1. Comprehensive evaluation in well 313
The comprehensive evaluation of the fractured carbonate reservoir
in the 313 well is shown in Fig. 10. The FIC logging curve (track 13)
exhibits abnormal behavior or deflection along fractured zones (track
11), indicating cracks or natural fractures in the reservoir interval.
Notably, the curves of fracture porosity (PORF) and hydrocarbon satu-
ration (Sg) (tracks 7 and 8) as well as elastic parameters (tracks 9 and 10)
indicate deflection or non-steady behavior across the deflection of the
FIC model curve. A good correlation between high fracture and total
porosity regions with the FIC model curve deflection will help re-
searchers and explorers to identify favorable fracturing sweet spot. It
also adds credibility to the workflow used in the research. When the FIC
model curve is compared to the measured fracture zones and fracture
aperture from the FMI log (tracks 11 and 12), the results are remarkably
consistent and uniform.
It should be noted that uranium has a more positive impact on the
FIC model (track 1). Consequently, using the GR log, the FIC model
produces improved results for detecting natural fractures in the reser-
voir. It is important to note that the length of the deflected curve (track
17) indicates the size of the fracture aperture, which is validated by high
values of neutron porosity log (CNL) and measured fracture aperture
from FMI logging data (track 12). The predicted (track 17) and
measured (track 12) fracture apertures are consistent throughout the
interval. These findings strengthen our confidence in the prediction
model’s accuracy. According to (Aghli et al., 2019), porosity logs such as
NPHI and PHIE show high-porosity spikes along fracture zones, partic-
ularly when the fractures are open. As a result, porosity logs are the best
logging tool for determining fracture aperture. The number of fractures
in specific zones can be measured by counting the number of deflected
curves per 100 m (track 14). Furthermore, we validate the predicted
fracture density by counting the number of faults/fractures in FMI log

data (track 16).
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Some areas in the reservoir interval where shale is the dominant li-
thology, and no FMI log was recorded, but the FIC model picked up or
identified the fracture signature in those areas (e.g., 4600-4700 m). It
should be noted that peaks or deflections in the gamma-ray log across
natural fractures can often reflect conductive fractures in which soluble
compounds or radioactive materials invade the fracture.

According to the interpretation of the 313 well, depths ranging from
4320 to 4325 m and 4340-4355 m have high fracture intensity and good
fracture aperture, which is supported by high CNL and fracture porosity
values. Furthermore, the reservoir quality index (RQI) indicates good
values in certain fracture zones, i.e., RQI > 0.4. Also, we see that the
density curve has low values along high RQI, indicating a gas anomaly.
The high gas saturation (Sg) values in Fig. 10 (track 7) confirm this.
Appendix A contains more detail on calculating elastic and petrophys-
ical parameters, such as RQI and mineralogical composition.

Fig. 12 shows a further enlarged (zoomed-in) portion of Fig. 11 that
indicates the range of fracture porosity and identified fractures in the
productive zone (4342-4354 m) of the 313 well. Note that the dominant
lithology in this zone is limestone and dolomite.

4.2.2. Comprehensive evaluation of well 306
Fig. 13 shows a comprehensive evaluation of the 306 wells. In this

well, the FIC model curve exhibits deflection across the fracture porosity
(track 5) and permeability (track 7) curves, as well as the fracture index
(FI) and elastic parameters (tracks 8, 9, and 11). The FIC model
deflection along with low density and high sonic travel time (AC) values
show possible gas zones (track 6). Furthermore, the presence of high
total and fracture porosities and permeability results in a more positive
deflection of the FIC model curve (track 5 and 7). Comparing predicted
and measured faults/fractures density in particular zones shows good
agreement (track 13 and 15). The length of the deflected curve (fracture
aperture) is large, along with the high porosity, permeability, and RQI
(tracks 16 and 17), as evidenced by higher neutron porosity log values
(CNL). Limestone and dolomite are the dominant lithologies along the
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Fig. 11. Zoom in on calculation results of fracture parameters of the 313 well (a portion of Fig. 13 from 4320 to 4362 m).
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high-density FIC model curve (track 3).

A comprehensive evaluation of the key wells confirmed the validity
of the proposed FIC model for fractures evaluation as highly correlated

with the FMI logs and core data. Also, the proposed FIC model proved to
be very effective in measuring fracture aperture in intervals where
acoustic and electrical imaging tools could not detect this parameter.
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model 0-300 Hz.

Therefore, fracture aperture is considered the critical parameter for
determining fractures’ effect on the porosity and permeability system.

4.3. Reservoir evaluation from seismic inversion using DNN inversion
strategy

4.3.1. Seismic data interpretation

Before we can perform seismic inversion, we must first interpret the
seismic data. The interpretation profile of the top and bottom structure
of Paleozoic horizons is shown in Fig. 14. According to the interpreted
results, the target reservoir (Paleozoic strata) gradually thins from west
to east. Furthermore, we can see the structural High in the west and

12

structural Low in the east. The entire study area is covered by a com-
bination of normal and thrust sheets locally cut by strike-slip faults.

4.3.2. Acoustic impedance inversion

The seismic data in this field is poor in low-frequency components
below 10 Hz and high-frequency components above 60 Hz. As a result,
frequency division modeling and random simulation inversion with low-
and high-frequency components are needed (Luo et al., 2016). The re-
sults of different frequency component models and final configuration
inversion applied to the interpreted 3D seismic volume are shown in
Fig. 15. The effects of random simulation inversion based on 0-15 Hz
frequency interpolation, 0-200 Hz under the constraint of the seismic
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Fig. 19. Seismic lithofacies inversion profile using DNN inversion strategy.

waveform, and a frequency bandwidth of 0-60 Hz are shown in Fig. 15
(a—c). The inversion result demonstrates a certain similarity between
seismic reflection characteristics and vertical wells. The final configu-
ration inversion result using the well profile is shown in Fig. 15d. We
observe that the high part of the buried hill has a relatively high
impedance (unconformity surface and downward). The proposed DNN
inversion strategy captured vertical and lateral variations in AI with
high resolution while retaining structural reflection characteristics in
the seismic frequency band. The inverted impedance surface from the
DNN inversion strategy matches the impedance log well. As a result, the
0-300 Hz impedance inversion tests are valid and can be used to
quantify seismic lithofacies and reservoir parameters.

Fig. 16(a—c) shows the seismic structural map, amplitude slice, and
Al inversion under the lower Paleozoic top surface in the buried-hill.
Comparing amplitude slice with configuration Al inversion slice in-
dicates high seismic lateral resolution (Fig. 16b and c). The reflection
morphology (amplitude) is well-correlated with the lateral variations of
AT and geological structure. The area around wells 30, 302, 313, and 306
is characterized by a high amplitude seismic response and high AI,
indicating fracture zones.

4.3.3. Seismic lithofacies calculation

Rock-physics analysis plays a key role in bridging the gap between
rock parameters and seismic data to improve the prediction accuracy of
complex sedimentary structures (Al Mogbel and Wang, 2011; Ashraf
et al., 2019). A cross-plotting between GR versus Al and porosity versus
Al is generated to establish the relationship between AI, GR, and

porosity (Fig. 17a and b). The nonlinear relationship between Al, GR,
and porosity (i.e., high AI > 15000 (m/s) (g/cm3) and low GR) refers to
limestone and dolomite lithofacies with moderate to low porosity.

We use the GR and DTP logs to classify the lithofacies in 302, 30-3,
and 30 wells. Fig. 18 demonstrates the lithological analysis of the
buried-hill Paleozoic strata (shown with red box). We observe that the
buried-hill comprises mainly of dolomite and limestones (GR < 20) with
a minor fraction of shale and sandstone (GR > 70).

The lower Palaeozoic seismic lithofacies profile characterized five
different types of lithofacies distribution (Fig. 19). The limestone and
dolomite distribution dominates the seismic lithofacies profile around
wells 30 and 30B-2, while limestone and sandstone are dominant in
wells 302, 30A-2, and 30-3. It is worth noting that the results of the
lithofacies inversion meet with the logging interpretation and geological
settings (Fig. 18).

Note that the Al varies from 11000 to 25000 (g/c) (m/s) in the study
zone (lower Paleozoic), which corresponds to dolomite and limestone
lithofacies with subordinate shale and sandstone lithofacies around well
302 (Fig. 15). The variations in Al are closely related to facies-related
changes, i.e., the high AI region (18000-25000 (m/s) (g/c) corre-
sponding to dolomite and limestone beds. A probabilistic study of lith-
ofacies revealed a strong correlation between limestone and dolomite
lithofacies with a high AI (Liu et al., 2016; Yasin et al., 2020a). It is
shown that the DNN inversion strategy can construct and constrain the
spatial distribution of facies and reservoir parameters as a result of this
good calibration.
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4.4. Porosity and FIC model prediction from seismic inversion

4.4.1. Numerical simulation (porosity)

We designed a complex Marmousi II model (Martin et al., 2006) to
check further the DNN inversion strategy’s ability to predict porosity.
The model’s input synthetic seismic response, inverted porosity, and
root mean square error (RMSE) of each trace are shown in Fig. 20.

We used several traces (CDP25, CDP50, CDP75, CDP100, CDP125,
CDP150, CDP170, and CDP200) as pseudo wells to develop a numerical
model. The porosity of all eight pseudo wells was assumed to be known
for seismic records of the model during the testing period. To establish
the mapping relationship between seismic data and logging porosity, we
trained the DNN model. We used CDP25, CDP75, CDP100, CDP125, and
CDP200 as learning samples and CDP50, CDP150, and CDP170 as
testing samples to train the model. The predicted and real porosities at
various CDPs are compared in Fig. 21. Because of the nonlinear rela-
tionship between the inputs and outputs, it is shown that outliers are not
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well captured. Indeed, true measurements are dependent on local vari-
ations in the physical properties of the subsurface in one or more
neighboring points, which may be affected by a variety of environmental
and measurement factors that cause some outliers to output data. As a
result, instead of outliers, the DNN application is intended to have a
stable amount of data. Finally, the trained model was used to estimate
the spatial distribution of porosity using the seismic volume as input.
The root mean square error (RMSE) of each trace is also less than 0.001,
demonstrating the DNN inversion strategy’s consistency and validity
(Fig. 20b and c).

4.4.2. Porosity and FIC model inversion

We analyze the fracture porosity (PORF) calculation of deep-buried
carbonate reservoirs using the relationship between AI and porosity
(Fig. 22). According to the figure, the buried-hill’s structural High and
Low (unconformity surface and downward) have good fracture porosity
and correlate well with logging porosity (PORF). As a result, the
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Fig. 22. The inverted porosity profile using DNN inversion strategy.
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Fig. 23. The inverted profile of the proposed FIC model. The color bar shows the FIC model values. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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Fig. 24. The horizontal distribution inversion results, (a) lithofacies, (b) Al, (c) FIC model.

16



Q. Yasin et al.

Fig. 25. RGB color blending map of fracture development areas for the lower
Paleozoic buried-hill structure. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Table 3
Favorable areas for reservoir development.

No.  Fault Fracture Reservoir Favorable area
development thickness (m) type
1 developed I <60 I
2 developed I <60 I
3 developed I <60 I
4 developed 1 100-160 1
5 developed I <60 I
6 Less I 60-100 1I
developed
7 Less I 60-100 1I
developed
8 developed I 120-160 I
9 developed I 100-140 I
10 developed I 40-80 1L
11 developed I 60-100 I
12 developed 1 60-100 I
13 developed 1 80-100 I
14 Less 1I <60 111
developed
15 Less 1I <60 111
developed

proposed DNN inversion strategy captured vertical and lateral variations
in porosity with high resolution and a more tangible geological
perspective. The results of the synthetic model and the DNN inversion
strategy revealed an excellent vertical and lateral distribution of
porosity. Additionally, the results demonstrate that the proposed
inversion strategy is versatile and applicable to complex geological
structure.

Fig. 23 demonstrates the spatial variation of reservoir fracturing
parameters (e.g., the FIC model) in the inter-well regions. The inverted
FIC model, based on its linear relationship with fracture porosity,
highlights good fracture zones in the vicinity of wells 302, 313, 306, and
307, as well as high Al values (Fig. 15d). Dolomite and limestone are the
dominant lithologies in these zones (Fig. 19). A good distribution of
fracture parameters (high FIC model values corresponded to large
fracture apertures) around wells 302, 313, 306, and 307, indicating
potential reservoir zones. The horizontal distribution of the FIC model
matches well with the inverted fracture porosity (Figs. 22 and 23).
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4.5. Quantitative seismic prediction of sweet spots

To further investigate the plane distribution of fractures, we compare
the planar distribution results of the FIC model with Al and lithofacies
planer slices (Fig. 24a—c). We notice that the buried-hill fractures around
wells 313, 306, and 307 are well-developed. Furthermore, the fractures
southwest of well 302 and east of well 303 are well-developed (Fig. 24c).
It should be noted that high fracture regions (Fig. 24c) have high Al
values (Fig. 24b), dolomite and limestone are the dominant lithologies
(Fig. 24a) (shown with black circles).

The quantitative seismic-predicted multi-attribute RGB (Red, Green,
Blue) color blending technologies employing amplitude (green), Al
(blue), and FIC model (red) show a well-developed fracture network
along the major fault zones of wells 302, 306, and 307 (Fig. 25). The
highlighted red and magenta zones are assumed to be faults and frac-
tures. It is worth noting that the zones surrounding wells 305 and 303
have suitable reservoir thickness but a less well-developed fracture
network, as interpreted by the attributes map produced by RGB color
blending. The comprehensive evaluation of fracture development zones
in the lower Paleozoic buried-hill reservoir is shown in Fig. 25 and
Table 3. The figure represents well-developed fracture areas (marked
with red circles) that are defined as class I reservoirs, while less-
developed fracture areas (marked with blue and white circles) are
defined as class II and class III reservoirs, respectively (Table 3).

5. Conclusions

In this study, we applied a comprehensive set of technical tools and
research components to the seismic data in order to predict the high-
quality reservoir regions of a complex buried-hill structure. After all,
the following conclusions could be drawn:

1. The application of the proposed FIC model enabled us to successfully
predict the fracture zones and fracture density in the buried-hill
structure using a combination of conventional logs. Also, the FIC
model proves effective in identifying the fracture aperture in zones
where FMI data are lacking.

2. The log interpretation results for wells 313, 306, 307, 39, and 30
show high fracture intensity and good fracture aperture, confirmed
by high neutron and fracture porosity. Also, RQI reflects good quality
reservoir sections along the fractured zones (i.e., RQI > 0.4). The
bulk density curve shows low values against the fractured interval,
which indicates a gas anomaly.

3. The proposed DNN inversion strategy trained by multiple seismic
attributes is highly correlated to the logging interpretation and can
provide more accurate results. Five different types of lithofacies
distribution in the buried-hill structure are identified, where lime-
stone and dolomite are dominant, with a minor quantity of shale and
sandstone. The limestone and dolomite reservoir is mainly developed
around 302, 306, and 307 wells, whereas the sandstone reservoir is
dominant around 30 well. The results were consistent with the log-
ging interpretation and geological settings.

4. The horizontal distribution of the FIC model matches well with the
inverted fracture porosity profile. The planer slices of the high FIC
model around wells 302, 313, 306, and 307 have high Al values, with
dolomite and limestone are the dominant lithologies.

5. Based on a comprehensive analysis of the research results, the study
area is divided into class-I, class-II, and class-III reservoirs according
to well-developed, developed, and less-developed faults and fracture
networks.

Author statement
Qamar Yasin: Conceptualization, Methodology, Writing — original

draft. Yan Ding: Geophysical Data Interpretation. Syrine B: Geological
Data Interpretation. Qizhen Du: Supervision. Cyril D. Boateng:



Q. Yasin et al.

Reviewing and Editing the Writing — original draft. Naser Golsanami:
Petrophysical Evaluation.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

List of abbreviations

DNN deep-learning neural network
FMI formation micro-image

BP backpropagation

K permeability (mD)

0} porosity (%)

Vsn volume of shale (vol)

Eq dynamic Young’s modulus (GPa)
04 dynamic Poisson’s ratio

GR gamma-ray
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LLD deep resistivity
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Vs shear wave velocity (m/s)
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FIC fracture identification constant

FI fracture index

Al acoustic impedance (m/s) x (g/cm3)
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Al. Estimating the rock’s parameters

A1l.1 Multi-mineral modeling
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The multi-mineral modeling approach utilizes the relationship between log measurements and various minerals using a set of linear equations (Eq.
(A1)). An additional unity equation with the sum of the individual mineral components and fluid proportions is 1 was included. The proposed model

uses six equations to solve six unknowns: five minerals and porosity.

The log measurements used for the model are density (p), Vp, Vs, acoustic impedance (AI), and the parameter ‘L’ equaling the product of density
and photoelectric index, i.e., (L = Pexp), which can be written as in Eq. (A2)

P =Pp*@ + M+ py* M + py*Ms + py*Ma + ps*Ms

Al = Aly* g + AL*M, + AL*M, + AL*M;3 4 AL*M, + Als*Ms
Vo = Vo @ + Vo My + Vi ™My + V3 *Ms + Vi "My 4 V,s*Ms
Vi =V o + Vo M, + Vo My + Vs *M3 + Vi *My + Vis*Ms
L= Lﬂ*(p + Ll*Ml + Lz""‘Mz + L3*M3 + L4A""M4 + L5*M5

1= [ﬂ+M1 +M2 +M3 +M4 +M5

4 Pn P Pr P3Py Ps @

Al Al AL, AL, AL Al, Al M,
Yo — Vor Vor Vo2 Vo3 Voo Vps || Ma
Vs Vi Ver Vio Vs Viu Vs M;
L Ly Lp Lp Ly Ly L M,
1 1 1 1 1 1 1 M;s

(A1)

(A2)

where, subscript ‘i’ stands for fluid, ¢ is the inverted porosity, Mi (i = 1 to 5) denotes mineral concentration of five minerals. Five minerals were

selected as limestone, dolomite, quartz, shale, and heavy minerals.

The matrix system in Eq. (A3) illustrates the simultaneous matrix inversion calculation performed for mineral composition which can be expressed

as
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W= CxM (A3)
where, W, C, and M denote the well log measurement (i.e., the rock’s physical properties), matrix of the rock constituents, and matrix of the unknown
proportions of the individual mineral components, respectively. The physical properties of the dominant rock constituents used in this study for
multimineral modeling are available in the literature (Singh et al., 2013). Eq. (A4) can be solved by treating it as an inverse problem and then solving
for M:

M=C'xw (A4)

(Amosu and Sun, 2018) have developed an interactive graphical user interface program with open-source, called MinInversion. In this program,
the author suggested a balanced linear model system derived from borehole geophysical logs to estimate the mineral content in a rock by an inverse
method. In this particular study, we also used MinInversion to estimate mineral composition from digital geophysical logs. The MinInversion program
enables the system to solve and execute the linear equation of the inversion matrix.

A1.2 Total and fracture porosity

The density log was used to estimate total porosity using Eq. (A5):
¢y ="Lma — P (A5)
Pma = Pp

where pmq and pg denote the matrix and fluid density, respectively.
We then calculated the fracture porosity using Eq. (A6):

Frac(¢pr — 1)
pp=——tr— (A6)
! (vgpr — 1)
where ¢y, is the fracture porosity (with no vugs), Frac is a number of fractures, and v denotes the porosity partitioning coefficient.
Finally, the effective porosity (¢r) was calculated using Eq. (A7).
b =¢r(1—=Va) (A7)
In the above equation, GR log was used to estimate the rock’s shale volume (Vg), as shown in Eq. (A8).
_ GRlz)g - GRmin
Y G — G (A8)

where GRjog is gamma-ray reading, GRyin and GRyqx are the minimum (clean sand) and maximum (shale) gamma-ray readings in the zone of interest,
respectively.

A1.3 Permeability and RQI estimation

The permeability was estimated from hydraulic flow units (HFU) as described in the following equations (Hearn et al., 1984). considered the role of
the mean hydraulic radius (rpp) for identifying and characterizing reservoir HFU. They defined mean hydraulic radius as ‘the ratio between the
cross-sectional area (r) to the wetted perimeter.

ar r

mh =~ __ — A A9
T = o T 2 (49)

The quantitative relationship between porosity and permeability as given by Darcy’s laws and obtained from the Poiseuille formula can be written
as,
¢
—_ 7 Al0
3 (A10)

where K, ¢ andr define permeability, porosity, and tortuosity, respectively. Note that ¢ and K depend on types of pores, their shape, and their
connectivity. (Amaefule et al., 1993) used tortuosity (correction factor) for saturated porous media.

¢ ¢ (r or, i:h
K=t =20 (5) = 52 (All)
In Eq. (A11), the surface area rpy, is expressed as per unit grain volume (Syg,) and ¢, and can be defined as follows,
1 ¢
b Al12
T S 11 7¢} ( )
substituting the result of ry,, into the definition of K-C model (Amaefule et al., 1993), we arrive at the following Eq. (A13):
¢ [ 1
K=——|—— (A13)
(1—¢) |75,
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where symbol f, and S, typically represents the shape factor (dimensionless unit) and specific surface area expressed in term of grain (um™Y,
respectively.
In Eq. (A13), we symbolically divided ¢ to both sides and took a square root,

00314 /K¢ |1 (A14)

¢ (1—9) |fe7°S,
Finally, Eq. (A14) can be expressed as:
RQI=FZI x ¢, (A15)

where the abbreviations FZI for flow zone indicator (pm) and RQI for reservoir quality index. ¢, is the pore volume-to-grain volume ratio.
FZI is the only property that has similar geological and petrophysical properties. According to the classical definition, FZI subdivides the reservoir
into units based on flow behavior.

RQI=0.0314 g (Ale6)

e

where ¢, is effective porosity.
¢
=—r¢ Al
b=1T (A17)
The value of FZI is given at the intercept of a unit-slope line with the coordinate ¢, = 1 on a log-log plot (i.e., RQI versus ¢,). Single value for each
HFU can be identified based on FZI values.
The mean FZI (FZI,q,) values associated with the cluster was used to compute the permeability by Kozeny-Carman Eq. (A18),

K =1014 X (FZLean)’ (A18)

A1.4 Dynamic Young’s modulus

Young’s modulus (GPa) can be determined directly using shear (Vs) and compressional wave velocity (Vp) information and bulk density (pp)
(Mavko et al., 2009; Rasouli, 2012).

2 2
3V, —4V,

E;= p,V? =) x107° (A19)
V2 V2

A1.5 Dynamic Poisson ratio

The dynamic Poisson ratio can be expressed as a function of bulk modulus and shear modulus, proposed by Stein (1976).

3K - 2G

Vi= ———— (A20)
6K +2G

where v4 denote dynamic Poisson’s ratio, K and G are bulk modulus and shear modulus, respectively in GPa.
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