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ABSTRACT 

Embedded in Life insurance contracts are surrender options and also path dependency. 

Surrender option stems from many reasons. Multi morbidity increases the rate of 

mortality and a variety of adverse health outcomes which may lead to surrendering. In 

Ghana, poverty levels coupled with social burdens can inform a multi-morbid person to 

surrender a life policy contract. The study seeks to incorporate the multi-morbid survival 

rate of a policy holder in the Black-Scholes model for option pricing. The solution to this 

model come along with its own complexities. Therefore the need to resort to numerical 

solutions for the option valuation. Further, a comparison is made of two finite difference 

algorithms in solving the proposed Black-Scholes equation ;the Crank-Nicolson method 

and the Implicit method. In line with these objectives, simulations of survival times were 

performed to compute the survival rate and the stability, consistency and convergence 

of these algorithms were investigated. It was observed that the algorithms were stable, 

consistent and converges to the exact solution. However the Explicit method of the finite 

difference approximation is found to be conditionally stable. Numerical solution to the 

Black -Scholes model and the proposed model indicates that the Crank-Nicolson method 

converges faster than the Implicit method for the Black-Scholes while the Implicit 

method converges faster than the CrankNicolson method. Finally it is observed that the 

Implicit method converges faster as the multi-morbid survival rate decreases below the 

short rate of the Black-Scholes model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

In this study, one seeks to incorporating the multi-morbid survival rate of a policy holder 

in the Black Scholes model for option pricing. Pricing actuarial and life contingent 

insurance reserves comprises of the computation of statistics regarding the occurrences 

and value of prospective cash flows. For instance, the premium of an insurance policy is 

regarded as the expected amount of the future cash flow distribution which is computed 

at t=0 given the structure of the interest rate. The probabilities of the prospective 

benefits cash flow depend on the occurrences of the policy holder’s life events(life 

contingencies). That is, being multi morbid or co-morbid person as years go by. The 

present value of the future cash flows are computed using the theory of interest. Hence 

demography and theory of interest are the two main concepts used in life insurance 

mathematics. 

1.1.1 Types of Insurance Policy 

Whole life Insurance 

This is a type of insurance policy which is for the policyholder’s whole life and it requires 

premium every year.Is a life insurance policy which is guaranteed to remain in force for 

the insured’s entire lifetime. Premiums are fixed, based on the age issue, and usually do 

not increase with age. The insured party normally pays premiums until death, except for 

limited pay policies which may be paid up in 10 years, 20 years, or at age 65. Whole life 

insurance belongs to the cash value category of life insurance, which also includes 

universal life, variable life, and endowment policies. 
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Single Premium 

This is a form of insurance contract which requires a large premium upfront. This type 

of policies always have fees in the beginning of the policy years if the insured cash it in. 

Interest Sensitive 

This is a type of insurance policy where there is either current assumption whole life or 

excess interest. The contracts are combination of both universal and whole life 

insurance. With whole life, benefits to be given during death remain the same for life, 

for universal life the payment of premium could change, but not exceeding the 

maximum of the premium guaranteed within the policy. 

Life Insurance 

Life insurance policy is a contract between the policyholder and the insurer. The 

policyholder pays premium to the insurer and in return the insurer pays benefit to the 

policyholder during death or when the policyholder survives the maturity date. Other 

events such as chronic illness and severe illness could also trigger 

payment(surrendering). Depending on the type of policy, policyholders are required to 

pay a regular premium or a lump sum premium . Life insurance contracts are legal 

contracts and the limitations of the insured events are based on the terms and 

conditions of the contract. The liabilities of the insurer are limited by writing specific 

exclusion into the contact; examples are catastrophic events. Life based contracts tend 

to fall into two major categories; 

• Protection policies - Designed to provide a benefit in the event of specific event, 

typically a lump sum payment. A common form of this design is term insurance. 

• Investment policies - Where the main objective is to facilitate the growth of 

capital by regular or single premiums. Common forms are whole life, universal life and 

variable life policies. 
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Life Insurance Liabilities 

The correct assessment of convexity and duration of the equity and liabilities measure 

is crucial because they consist of the primary features of any sound assetliability 

management approach.. , Policyholders are the first claim when it comes to the 

company’s asset. The holders of equity have limited liability; interest rate guarantees 

are common elements of LICs; and LICs according to the so called contribution principal 

(which states that if a risk is insured by multiple carriers, and one carrier has paid out a 

claim, that is entitled to collect proportionate coverage from other carriers) are entitled 

to received a fair share of any investment surplus. Risk-taking initially occurs on the 

liability side of the balance sheet. Underwriters issue insurance policies which are 

transformed into liabilities. Because of the time indemnity outflow,reserves are always 

invested on the financial market place and the portfolio of the company’s assets is 

generated. 

1.1.2 Co-morbidity and Multi-morbidity 

These terms are often used by healthcare professionals in clinical practice and in health 

policy documents. Used in medical settings, morbidity means illness or disease and is 

not to be confused with mortality, which means death, and is frequently used in 

statistical reports. Co-morbidity simply means more than one illness or disease occurring 

in the same person at the same time and multi-morbidity means more than two illnesses 

or diseases occurring in the same person at the same time. Due to an ageing population 

and improved detection and treatment of disease, many older people now have more 

than one illness. Common co-morbid conditions in older people include heart disease, 

hypertension, respiratory disease, mental health problems(including dementia), 

cerebrovascular disease, joint disease, diabetes and sensory impairment. Alongside co-

morbidity and multi-morbidity comes poly pharmacy, or the prescription of many 

medications. 
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1.1.3 Multi-morbidity and Life insurance 

One of the biggest myths that aggressive life insurance agents perpetuate is that, 

"insurance is harder to qualify for as you age, so you better get it while you are young". 

To put it bluntly, insurance companies make money by betting on how long you will live. 

When you are young, your premiums will be relatively cheap. If you die suddenly and 

the company has to pay out, you were a bad bet. Fortunately, many young people 

survive to old age, paying higher and higher premiums as they age(the increase risk of 

dying due to multi-morbidity makes the odd less attractive). On the other hand, 

someone can purchase life insurance policy with a good health records but may be multi-

morbid as age goes by when the policy is still in place, such insured may not allow the 

contact to mature and would like to surrender the contract or policy(that is, by selling it 

back to the insurer at a surrender value). 

Since most insurance contracts in Ghana contains surrender options, which is an 

American style of put option that gives the holder the right to sell the contract to the 

issuer at a surrender value. 

1.1.4 Types of Life Insurance Contracts 

Insurance contracts come in different forms. The popular among them are the European-

style and the American style contracts. Options of these types and all other types where 

the pay off has similar calculations are called vanilla options. Similarly options with 

different methods of calculating pay off are grouped as exotic options. Exotic options 

have sophisticated methods in terms of valuation and hedging. 

The exercise style of an option governs the time at which exercise can occur. 

European-style option pays off simply the future benefit at the expiration date. The price 

the buyer pays for the asset when the option or contract is exercised is called the 

"exercise price or strike price". The date or the last day by which the option must either 

be exercise or it becomes worthless is called the "expiration date or maturity date". 
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American-style option pays off simply the future benefit at any time before the 

expiration date. Since the American-style option provides an investor with a greater 

degree of flexibility than the European style option, the premium for the American style 

option is at least equal to or higher than the premium for an European-style option 

which otherwise has all the same features. For both, the payoff - when it occurs is given 

as: 

max[(K − S),0], for a put option. Where K is the strike price (The price the buyer pays for 

the asset when the option or contract is exercised for the underlying commodity or 

asset, that is, in the case of a put option.) and S is the spot price of the underlying asset. 

1.1.5 Numerical Methods 

Valuation of life insurance contracts can pose sophisticated mathematical problems and 

consist of path dependence derivative and in most cases analytical approach to the 

valuation problems do not exist. Therefore the need for numerical approach is highly 

recommended in valuing the contract. Among the numerical approaches for solving such 

problems is the Monte Carlo Simulations which is used for the valuation of the insurance 

contract provided that the policy holders cannot change or partially surrender the 

contract during its term - European contracts. 

Option pricing is a critical issue in financial institutions. The appropriate tool for pricing 

various types of option is the Black-Schole model. The model gives a direct calculation 

which requires high effort of computations. 

1.2 Statement of the Problem 

A surrender option is an American-style put option that entitles its owner (the 

policyholder) to sell back the contract to the issuer (the insurer) at (the surrender value). 

The fair valuation of such an option, as well as an accurate assessment of the surrender 

values, are clearly crucial topics in the management of a life insurance company, both 

on the solvency and on the competitiveness side. According to (Broadie and Detemple 
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(1996)), life insurance contracts and pension plans are complex financial securities that 

come in many variations. This is due to the surrender options which are embedded in 

life insurance policies and they are also path dependent. Contract with guaranteed rate 

of returns every year before maturity are common throughout Ghana and other 

developing countries. The contracts in Ghana are sometimes equipped to terminate the 

contract prior to maturity. 

Existing models do not take into account the likelihood that someone surrendering is 

multi morbid. This paper seeks to address the issue concerning the fact that 

policyholders can terminate the contract prior to maturity due to the co-existence of 

two or more diseases in their lives which calls for some forms of financial burden, and 

since there is an option for them to surrender prior to maturity then surrendering 

becomes very paramount. Consequently, what will happen to the value of the insurance 

portfolio, also the surrender value that is due a policy holder when such an action is 

taken by him or her. 

Analytical solution to the valuation problems cannot be found because of the 

complexities and the presence of path-dependence derivatives in the life insurance 

contract. Hence the need to resort to numerical methods in the valuation of insurance 

contract in Ghana. 

1.3 Objectives of the study 

The objectives of the study are: 

1. To implement a Black-Scholes model that accommodates the survival rate of a 

non-monotonic hazard function of the policyholder . 

2. To determine which of the finite difference methods is appropriate for the 

valuation of the American style life insurance contact using the Black-Scholes 

equation embedded in the survival rate. 



 

7 

3. To compare the Crank Nicolson numerical approach, the Implicit numerical 

approach and the Explicit numerical approach in the numerical valuation of life 

insurance contracts in Ghana which contains surrender option. 

1.4 Methodology 

Since path dependence demands derivation of closed-form solution formulas, the 

problem can be reduced to allow for the development and implementation of a finite 

difference approximation algorithm for fast and accurate numerical valuation of life 

insurance contracts. Agents are assumed to operate in a continuous time frictionless 

economy with a perfect financial market, so that tax effects, transaction costs, 

divisibility, liquidity, and short sales constraints and other imperfections can be ignored. 

As regards the specific contracts, we ignore the effects of expense charges and mortality 

(Dufie (1999)). In the case of this study the effect of mortality is not ignored since the 

survival rate of the insured influences the value of the insurance 

portfolio. 

1.5 Justification of the Study 

The study analyses a participating contract embedding a surrender option which is also 

known as the so called participating (or with profits) policy in the Black-Scholes 

framework. The study takes a finite difference algorithm approach to the market 

valuation of the equity and liabilities in life insurance companies. 

1.6 Thesis Organization 

This thesis is organized into five main chapters. Chapter 1 presents the introduction of 

the thesis. This consists of the background of the study, the research problem 

statement, objectives of the study, methodology, thesis justification and organization. 

Chapter 2 is the literature review, which looks at briefly work done by other researchers 

on the topic. Chapter 3 is the formulation of the mathematical model. Chapter 4 contains 
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the data collection and analysis, formulation of model instances, algorithm, 

computational procedure, results and discussion. Chapter 5 looks at summary, 

conclusions, and recommendation of the results.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In this section there is a review of the work of several authors regarding definition, 

concept of surrender options and various studies done to discover how to value life 

insurance contracts. 

2.2 Background on Life Insurance Contracts 

Unit-linked contracts are directly connected to the investment portfolio of the contract. 

Embedded in these types of contracts are maturity guarantees, which could be 

explained as option given a right to a fixed minimum amount when the contract is 

matured. Valuation of these contracts are highlighted, for example in Siu (2005). 

Policyholder is given portion of the profit attained by the portfolio linked to the contract. 

The bonus policy dictates the profit division between the policyholder, reserves among 

others. Policyholders are also given contracts which may offer them the chance to select 

between several bonus mechanisms at a point in time of the contract term. Switching 

from a bonus to other bonuses is an embedded option,which is an opportunity for the 

policyholder. It is always necessary to enquire about the value of such opportunity. This 

provision is called a switch option. (Tanskanena and Lukkarinenb (2003)). Insurance 

contracts are grouped into two, European and American which is the same in regular 

literature. Contracts containing surrender option are contracts in which the policyholder 

can terminate the contract before maturity. American options are contracts that are 

with surrender option whereas European options are contracts that are without 

surrender options.. 
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2.3 Insurance Accounting 

Insurance accounting simply shift the traditional way of valuing insurance debt to the 

fair value of the liabilities. This has being in existence partly because in the balance sheet 

while the assets are evaluated, the liabilities are not. Jarrow and Turnbull (1996). 

Interest rate guarantee is a problem for insurance companies and insurance contracts 

due to low interest rates. Insurance firms and financial institutions like Nissan Mutual 

Life, have got into problems partly because they have always underestimated the 

embedded option in their written insurance contracts.Hull (2003). This interest rate 

issue can be addressed by the upcoming IAS standard for insurance contacts. IAS 

adopted a radical valuation: the valuation of liabilities are to be marketed in large 

quantities among independent investors in a liquid market. The process referred to as 

fair valuation and it is defined as ”the value at which an asset is exchanged or the 

settlement of a liability in an arm’s length transaction between knowledgeable willing 

people” IASB(2001). With the draft IAS standard, sophisticated future cash flow 

estimates which are backdated with risk free interest, should be used in the valuation. 

International Accounting Standard Board(IASB) is shifting from the use of exact fair 

valuation. Comprehending fair valuation is relevant, because the actual importance of 

the evaluation approach, indirect obligation and reliable valuation of embedded options 

are still in place. 

To Comprehend the feasibility of fair valuation, the construction of the model approach 

for valuing the participation life insurance contracts need to be done by improving the 

work of Grosen and Jorgensen (2000), and coming out with an analytical method for 

valuing the contract. The model gives analytical outcome for certain simple bonus 

mechanism. Iterated integral whose results rely on numerics are obtained from most 

bonus policies. Designing of the model gives chance for including most types of bonus 

mechanisms, thereby resulting in a simple and practical method to the comprehending 

of valuing participating contracts. Briefly we look at how to include a known term riskless 

interest structure to the model. 
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2.4 Options 

An option is a contract or a financial derivative and trading these contracts is a cost-

effective alternative to trading directly on the stock market. In financial engineering, 

option pricing is a major topic because options are widely used for hedging and 

speculations. Currently, on the market are different option contracts which includes 

European option,path-dependence and American option. In brief, all stock options are 

based on companies stock price movement. Investors can decide whether or not to 

exercise the contracts any time before the maturity or at the pre specified price. 

European option holders can exercise the contract at maturity. A path-dependence 

option is fairly different because its price is dependent on the initial price movement of 

the trading asset,example Asian options. A good asymmetry exists between obligation 

and rights of trading parties; the buyer of an option has the right but no obligation to 

exercise the contract, on the other hand his counter party bears the responsibility but 

not the right to complete the transaction. Therefore an appropriate price for the option 

is necessary for the need of both parties (buyer and seller) to be satisfied. . 

European options valuation are simple and easy to compute because its exercise limit 

price is known on the date of maturity. Analytical methods for European options without 

dividend is derived from the Black and Scholes (1973) and Merton (1973). The American 

option has a larger executing time, there is an inherent possibly for traders to get higher 

payoff, that is why it is at the moment the main option contract traded on the most large 

stock exchange across the globe. Therefore on the market, it is very needed for the seller 

of the option to demand for a fair option premium so as to make it profitable for the 

buyer. An investor must be very circumspect in the calculation before exercising the 

option when the payoff is high. The premium, also known as the option price, is what 

needs to be carefully modelled for real-world trading, this originally motivated this 

research. 

Further studies is needed to price American option correctly because of its early exercise 

factor. Under the non-dividend-paying assumption, the American call option can be 
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regarded as a European-style option and can therefore be valued by the standard Black-

Scholes formula. The idea is simple; when the option price is greater than the exercise 

price, the investor gets a premium greater than the intrinsic value by selling the call 

option instead of getting only the intrinsic value by exercising the option. Therefore, 

there is no economic benefit to exercise the American call early. Thus, the focus of the 

research work is narrowed to the pricing of American put options. For these options, 

early-exercising may lead to a higher payoff, which complicates the pricing formula. The 

Black-Scholes method must be adapted since the expected payoff depends on the 

underlying assets price movement. American put option has no fixed exercise boundary 

thus has no closed form solutions, an appropriate approximation to the option price is 

essential. 

Technology allows for the use of numerical methods in approximating the price. Example 

finite element method, finite difference method, binomial method and Monte Carlo 

simulation. 

2.5 Factors Affecting Option Pricing 

Option prices are influence by various factors. The difference between the underlying 

stocks current price and the strike price is essential as it determines the final payoff; 

market volatility has a significant impact on option prices as it reflects the potential risk 

of quick price changes in the market; the interest rate is the return on riskfree 

investments. Investors would regard it as the benchmark to decide the level of 

premiums they are willing to pay for the protection against market risk. In order to find 

optimal price for options for these risk factors, much studies is needed to come out with 

a compact formula for the option. Ali (2013). Stock prices are assumed to follow 

Brownian motion in the last century with a drift term of zero (Bachelier 1900). 

Bachelier’s ideas however have two major drawbacks ; first prices could be negative 

based on the assumption that the drift term is zero, secondly the assumption that all 
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investors are risk neutral. Number of academic boards have come out with modification 

of the model proposed by Bachelier by stating that stock returns rather follows a 

Brownian motion and not the stock price itself (Sprenkle 

,1961). This assertion was also supported later by Bones (1964) and Samuelson (1965). 

Tolerance level of risk the returns of expected rate were incorporated in the formula. 

The model did not define the parameters used, hence making the practical use of the 

model irrelevant. This research work gave the basics for the Black-Scholes model, which 

was published in 1973 (Black and Scholes). In the study, an explicit formula was derived 

by Black and Scholes which can be used in the pricing of an 

European option with no dividend, this is done by constructing a risk free portfolio. The 

assumptions of the model have been criticised because it was built on a set of 

assumptions, its significance is not undermined in any scientific literature. The Black-

Scholes model the original (PDE) was changed into a standard heat equation given the 

fixed exercise boundaries and the prescribed assumptions. In this way, an exact 

analytical solution to the approximation to the option price was derived. The model 

suggests individual’s risk tolerance level has no effects on the option price. Hence the 

model does not include expected return of the stock . Since we can get the estimated 

values of the volatility and interest rate from historical data, the model could be simply 

fitted to an empirical data . Black-Scholes model has a number of disadvantages based 

on one of its weak assumptions; example, transaction cost and non-negligible tax exist 

in the market, which makes the market frictionless. Again continuous trading is not 

allowed at the opening market. Properties of dividend paying stock is accounted for by 

improving upon the Black-Scholes formula to fit the idea behind pricing theory. Research 

has shown that asset returns follow a distribution having heavier tails than expected, 

hence their model assumption is challenged. Furthermore, the Black-Scholes model is 

based on the assumption that the behaviour of stock price follows a Markov process. It 

is argued that the formula will not be valid should this assumption be flawed (Chance 

(1995)). Considering this, risk neutrality is an alternative to derive the Black-Scholes 

formula since it does not necessarily require the Markov property assumption to hold. 
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In Cox and Ross paper (1976) and Harrison and Pliska’s contribution (1981), probabilities 

were assigned to the intrinsic option prices from the next time step which is then used 

to compute the expected option price. In a risk neutral world risk neutral rate was used 

to discount stock prices and the volatility of the underlying assets was obtained by using 

the probability to reflect on them. The martingale pricing comes with sophisticated 

approach than no-arbitrage pricing method by Black-Scholes. To check option volatility, 

(Kerman (2002)). introduced a double-exponential jump diffusion model by adding a 

probability measure of return jumps into the formula. One major disadvantage of the 

extended model is that the introduction of the return jumps prevents the formulation 

of riskless hedging. An equality is replaced by an inequality in the equation of the original 

Black-Scholes formula when valuing American options. 

(Wilmott et al., 1995). The idea is American option is valued bigger than the European 

option in a riskless portfolio because of its early exercise option price. The exercise 

boundary makes it impossible to get analytical solution to the pricing of the option. 

Black-Scholes formula can be solved now by using numerical methods. The finite 

difference method was introduced in 1977 to approximate the value of American 

option(Brennan and Schwartz). This method works by discretising the continuous stock 

and time into fine mesh grid. The key idea is to approximate the Black-Scholes PDE. 

Approximating the Black-Scholes PDE can be realized using Taylor’s series expansions. 

Through this conversion, at each mesh point, the PDE is written in linear form 

differences. (Zhilin (2007)). Option prices at each grid point is solved using systems of 

linear equations. To solve the explicit scheme, the direct LU-factorization method could 

be applied easily. To solve the implicit scheme, both LU-factorization and Gauss-Seidel 

iteration method are possible candidates whereas the latter is more efficient. In 

particular, when the large system is sparse, the iterative successive over-relaxation 

(SOR) can speed up the convergence of the Gauss-Seidel method (Kreyszig, 2006). Finite 

difference method is used to obtain option price on each grid point. Some techniques 

for solving the exercise boundary are needed for pricing American options. According to 

Mitchell and Griffiths (1980), this method has a high level of convergence and is accurate 
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as long as it is stable. However, If the mesh is not properly established it gives rise to 

instability and time consuming computations; the two major draw backs of this 

approach.(Young and Mohlenkamp (2014)). 

In 1979, as an alternative, Cox et al. (1979) came out with a model for option pricing and 

it was called the binomial model. In effect, the explicit finite difference method is 

equivalent to its trinomial variant. The binomial model is mostly because of it easy 

computations and concept. The binomial model when used to value pathdependent 

options, there is an exponential growth of the parameters as time steps increases. Error 

term also increases with increasing time steps. 

In terms of analytical approximations to the price of American options, Geske and 

Johnson (1984) proposed a quadratic approximation formula. One major merit of this 

analytical approximation method lies in the relative accuracy as it is free from the 

truncation error arising from numerical discretisation. American option pricing can be 

divided into several price units in their model. Each unit is treated singularly as an 

European option of which exercise is done only at maturity. Extrapolation method of 

using prices of two neighbouring units is used to value an American option on any 

exercise date. Despite the merits, this method is still an approximation to the price of an 

American put. The exercise boundary cannot be determined therefore making 

extrapolation being impaired by the accuracy of the model.. 

American put option’s price can be valued by using the method proposed by Carr et al. 

(1992). The European-style counterpart and its premium are equated to an American-

style option. Since the premium is related to the exercise limit or boundary, it can be 

expressed analytically in integral form. The exercise limit or boundary and the associated 

option price were solved by adopting numerical integration methods. Other kinds of 

new methods and approaches were discussed by (Broadie and Detemple (1996)). In 

2001, Longstaff and Schwartz (2001) leastsquare Monte Carlo simulation method was 

initiated to solve for the value of an American option. It is easy to implement this method 

when solving for option with multiple factors of risk. Nonetheless, the accuracy of the 

ultimate estimator is not ensured since is time consuming when simulating large number 
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of paths.; As an alternative, a penalty approach was proposed by Manon(2012) to 

accompany the finite element method. 

2.6 Valuation of Life Insurance Liabilities 

Insurance regulatory and Development Authority (IRDA) in India define Life Insurance as 

a financial cover for contingency linked with human life, like death, disability, accident. 

retirement etc. Human life is subject to risk of death and disability due to natural and 

accidental causes. When human life is lost or a person is disabled permanently or 

temporarily, there is loss of income to the household. 

Anders and Peter (2002) presented a model which explicitly takes into account the fact 

that the holders life insurance contracts (LICs) have the first claim on the company’s 

asset whereas equity holders have limited liability, that is, interest rate guarantees are 

common elements of LICs, and that LICs according to the socalled contribution principle 

are entitled to receive a fair share of any investment surplus. He further built a 

regulatory mechanism in the form of an investment surplus. He further built a regulatory 

mechanism in the form of an intervention rule into the model. The mechanism was 

shown to significantly reduce the insolvency risk of the issued contracts and it implies 

that the various claims on the company’s asset become more exotic and obtained barrier 

option properties. He derived closed valuation formulas. Numericals were also used to 

illustrate how the model can be used to establish the set of initially fair contracts and to 

determine the market values of the contracts after inception. 

Daniel et al (2010) introduced a model used for valuing life insurance contracts with 

embedded options. Numerical methods for the valuation are described within their 

generic set up. Contracts containing early surrendering features pose numerical 

challenging problems so they particularly focus on such contracts. Using the 

participating contract as an example, different methods were applied to it to check and 

compare the efficiency of a simple Black-Scholes model. The effect of early exercise 

characteristics of their example were studied of which it was analysed to check how the 
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impact of the model risk after introducing L,evy model. In their study, it was observed 

that the Monte Carlo method gives fast results for European contracts, that is, contracts 

without any early exercise features, but it was inefficient for the valuation of long-term 

non-European contracts. In this case, accurate results may not be obtained because the 

number of necessary simulation steps may be extremely high. Secondly, they presented 

a discretization approach based on the consecutive solution of certain partial (integro) 

differential equations (PDE approach). Christopher(2009). Based on the the consistent 

value of the market was able to explain the rational behind the new valuation approach 

; New regime was formed to tackle the issues faced by life insurers; and came out how 

to address these issues. This was done by analysing 38 life insurance companies 

valuation report who used the new method and, specifically, the information they used 

in modelling. He found that the basis of market consistency gives a number of merits 

over the local regime way of which liabilities are valued in the United Kingdom. He also 

realized that there have got some challenges ahead. 

(Eric (1995)) addressed the problem of convexity and duration of the liabilities and 

equity of an insurance company, because the insurance landscape was affected. The 

assessment of risk measure is crucial because they consist of primary components of 

any good asset-liability management method. To overcome all the pitfalls that are 

normally encountered in an insurance firm much effort is required to look accurately the 

picture of the risk . Fabio et al(2006) analysed the interest structure and the role of 

mortality in evaluating a fair value of a life insurance company. They discussed a fair 

value accounting impact on reserve evaluations and compare it to the traditional 

deterministic model based on local rules for an Italian balance sheet calculation and a 

stochastic one based on a diffusion process for both mortality and financial risks. They 

separated the embedded derivatives from their host contracts so the fair value of a 

traditional life insurance contract would be expressed as the value of four component: 

the basic contract, the participation option, the option to annuities and the surrender 

option. 
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2.7 Model Framework 

There are financial and actuarial approaches to assess financial guarantees within life 

insurance contracts. Some of the financial approach is concerned with the riskneutral 

valuation and has been researched by various authors. 

The rational insurance premium on an equity -linked insurance contract was obtained 

through the application of the theory of contingent claims pricing. The premium was 

determined in an economy with the equity following a geometric 

Brownian motion, whereas the interest rate was assumed to be constant. Nielsen and 

Sandmann(1995) realized that, further consideration with deterministic interest rate 

allow for interest rate by assuming an Ornstein-Uhlenbeck process implying a closed 

form solution of the single premium endowment policy. They presented a model for the 

multi premium case in the contest of a stochastic interest rate process. It was shown 

that the insurance contract includes an Asian-like option contract. No closed form 

solution will be obtained. They discuss different numerical approaches and apply Monte 

Carlo simulations with a variance reduction technique. 

Neilsen and Sandmann(1995) concluded that, in an economy with stochastic 

development of the term structure of interest rates a model for the determination of 

the fair valuation premium on an equity linked life insurance contract has been 

established. An essential part of the premium of the equation consist of a contingent 

claim with a character as an Asian option. However it was shown that the stochastic 

interest rate and the long time maturity of the insurance contract prohibited the 

application of the ”usual” solution methods: Edgeworth expansion or fast Fourier 

transform. The approximation formula developed by Vorst(1992) cited in Neilsen and 

Sandmann(1995 exhibited a better performance than the two just mentioned for 

medium term contracts. Neilsen and Sandmann (1995) applied and advocated for 

Monte Carlo simulations to overcome the difficulties. The result obtained was compared 

to the Edgeworth and Vorst approximation and found to be perfected to these. They 

realized that, although the Monte Carlo simulations are more time consuming than the 
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other methods they did not take it as a serious critical point against simulations as far as 

the fair premium only has to be calculated once when the contract is entered. 

The use of advanced data mining techniques to improve decision making has already 

taken root in property and casualty insurance as well as in many other industries. 

however since in their opinion, the application of such techniques for more objectives, 

consistent and optimal decision making in the life insurance industry is still in a nascent 

stage, they described the ways data mining and multivariate analytic techniques can be 

used to improve decision making processes in such functions as life insurance 

underwriting and marketing, resulting in more profitable and efficient operations. They 

implemented predictive modelling in life insurance underwriting and marketing and 

demonstrated the segmentation power of predictive modelling and resulting business 

benefits. 

The liability structure of the insurance company is implied by participating life insurance 

contracts and based on a model suggested . In other for policyholders to initiate 

contracts, they must pay a single premium P0 and if the company’s initial capital is E0, 

then the sum of the initial contribution A0 = E0 + P0. This sum of initial contribution A0 is 

invested in the reference portfolio. Hence for 0 < k ≤ 1, it holds that P0 = k. A0 and E0 = 

(1 − k).A0 where k represents the leverage of the company. if P denote the policyholders’ 

account, that is, the book value of the policy reserves. the policy reserve P is a year-to-

year, or cliquet-style, guarantee, which means it annually earns the maximum 

guaranteed interest rate or a fraction α of the annual surplus generated by the insurer’s 

investment portfolio. Hence for t = 1,2,...T, the development of the policy reserve is 

given by 

 

The value of liabilities L(T) are summarized as 

L(T) = P(T) + ∆[k.A(T)]+ = P(T) + ∆.B(T) − D(T) 
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Where D(T) denotes the default put option, E(T), the residual claims of the equity holds 

and is determined as the difference between the market value of the reference portfolio 

A(T) and the policyholder’s claim L(T). i.e. 

E(T) = A(T) − L(T) = max(A(T) − P(T,0) − ∆.B(T) ≥ 0 

In the standard Black Scholes frame work, the total market value of asset A evolves 

according to a geometric Brownian motion as stated earlier. In Black Scholes model for 

asset prices, the standard Brownian motion (Wp(t),0 ≤ (t) ≤ T on a probability space 

(Ω,F,P) and (Ft,0 ≤ (t) ≤ T), be the filtration generated by the Brownian motion. The 

total market value of the asset A in standard Brownian motion evolves according to a 

geometric motion under the objective measure P is given by 

dA(t) = mA(t)dt + σA(t)dWp(t), 

with constant asset drift m, volatility σ and P-Brownian motion Wp(t), assuming a 

complete perfect, and frictionless market. The solution of the stochastic differential 

equation is 

 

According to Nadine and Alexander(unpublished), fair pricing of embedded options in 

life insurance contracts is usually conducted by using the appropriate concept of risk-

neutral valuation. This concept assumes a perfect hedging strategy, which insurance 

companies can hardly pursue i practice. They extended the risk-neutral valuation 

concept with a risk measurement approach and accomplish this by first calibrating 

contract parameters that lead to the same market value risk-neutral valuation.They then 

measure the resulting risk assuming that insurers do not follow perfect hedging 

strategies. They use lower partial moments as the relevant risk measure, comparing 

shortfall probability, expected shortfall, and shortfall variance. This research showed 

that even when contracts have the same market value, the insurance company’s risk can 
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vary widely, a finding that allows us to identify key risk drivers for participating life 

insurance contracts. 

2.8 Numerical Valuations Approach 

Gerstner et al (unpublished) propose a discrete time asset-liability management(ALM) 

model which was to simulate life insurance product balance sheet. Incorporating in the 

model is the life insurance product features or characteristics, the surrender option, a 

reserve-dependent bonus declaration, a dynamic assets allocation and a two-factor 

stochastic capital market. All terms in the model could be computed recursively which 

gives a simple implementation and efficient evaluation of the model equations. The 

modular design of the model permits straightforward modifications and extensions to 

handle specific requirements. In practise, the simulation of stochastic ALM models is 

usually performed by Monte Carlo methods which suffer from relatively low 

convergence rates and often very long run times, though. As alternatives to Monte Carlo 

simulation, they proposed deterministic integration schemes, such as quasi-Monte Carlo 

and sparse grid methods for the numerical simulation of such models. Their efficiency is 

demonstrated by numerical examples which show that the deterministic methods often 

perform much better than Monte Carlo simulation as well as by theoretical 

considerations which show that ALM problems are often of low effective dimension. 

Russel and Collins (1992) described the application of the Monte Carlo technique to a 

practical situation in a company to solve the problem of rate-making with real problem 

in the transfer of coverage from one carrier to another by a policyholder who finds 

himself or herself in a large deficit position with the original carrier in the field of 

insurance. This situation can be avoided if the policyholder is willing to pay an additional 

charge for a guarantee of an upper limit on the amount of deficit carried forward from 

one year to the following years. In order to determine such a charge, it is necessary to 

know the probability of, the expected value of, and the variation of claims in excess of a 

given amount. The basic problem to be solved, of course, is that of determining the 
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frequency distribution of the annual claim cost of a given group of lives for a given year. 

It was desired that the following properties of the group be allowed to vary over rather 

wide ranges: 

• The size of the group 

• The age distribution of the group 

• The sex distribution of the group 

• The total amount of insurance, and 

• The distribution of the insurance on individual lives. 

Since the analytical solution of such a problem was complex, they use the Monte Carlo 

technique, which is admirably suited to a problem of this nature. 

Bjarke et al (2001), came out with a model for valuing traditional participating life 

insurance policy. The difference approaches used include the implicit finite difference, 

the explicit finite difference and the Crank Nicolson. Among them, it was realiized was 

more accurate than the implicit and the explicit finite difference because the error 

associated with the final solution with Crank Nicolson is smaller than the other two 

methods. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This chapter seeks to explain the methodology used in the numerical approach used in 

valuation of the participation surrender option of life insurance contracts, embedded in 

the model is the survival rate which is the rate at which an insured becomes multi-

morbid . There are three formulas of finite difference method, the explicit method(the 

forward difference scheme), the implicit method(the backward difference scheme) and 

the Crank Nicolson method(the central difference scheme). 

3.2 Preliminaries 

In this study the algorithm was derived from the simple idea of approximating partial 

derivative of a given partial differential equation by finite difference which is the 

fundamental sole for finite difference methods. As a tool for solving (PDEs), this process 

transforms analytical differential equation into a set of algebraic equations. As in many 

numerical algorithms, the starting point is a finite series approximation. Again, in this 

study the algorithm was derived from the application of the finite difference scheme to 

solve boundary-value partial differential equations proposed by Bjarke et al (2001). This 

is because in this scheme the European-style and the American-style contract, path-

dependence variable is appropriately treated as a parameter. 

Definition 3.1: Differential Equation 

A differential equation is an equation involving the unknown function y = f(t), 

together with derivatives y0,y00,...,yn. 

Mathematically, a differential equation may be express implicitly as 
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 F(t,y,y0,y00,...,yn) = 0 (3.1) 

Explicitly, the general form of a differential equation can be written as 

 yn = f(t,y0,y00,...,y(n−1)) (3.2) 

Definition 3.2: Ordinary Differential Equations 

An ordinary differential equation(ODE) is an equation involving an unknown function of 

a single variable together with one or more of it derivatives. 

Definition 3.3: Order of Differential Equations 

A first order differential equation is of the form 

0 
 y = f(t,y) (3.3) 

and the equation is said to be in normal form. 

A differential equation of of order n is of the form 

  (3.4) 

and is said to be normal form. 

A typical nth order linear differential equation is given by 

 y(n) + a1(t)y(n−1) + a2(t)y(n−2) + ... + a(n−1)(t)y0 + an(t)y = f(t) (3.5) 
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Definition 3.4: Partial Differential Equation (PDE) 

A partial differential equation(PDE) is an equation that involves an unknown function 

(the dependent variable) and some of its partial derivatives, with respect to two or more 

independent variables. Mathematically, PDE is of the form 

  (3.6) 

If F ia a linear function of u and its derivatives, then the PDE is called linear. An nth - order 

PDE has the highest order derivative of order n. A simple PDE is 

  (3.7) 

This relation implies that the function u(t,y) is independent of t. However the equation 

gives no information on the function’s dependence on the variable y. Hence the general 

solution of this equation is 

 u(t,y) = f(y) (3.8) 

where f is an arbitrary function of y. General linear second order PDE is of the form 

a(t,y)utt + 2b(t,y)uty + c(t,y)uyy + d(t,y)ut + e(t,y)uy + g(t,y)u = f(t,y) (3.9) 

where (t,y) ∈ Ω is a domain in t-y coordinates. 

Definition 3.5: Stochastic Differential Equation (SDE) 

A stochastic differential equation (SDE) is a differential equation in which one or more 

of the terms is stochastic process, resulting in a solution which is itself a stochastic 

process(Davis, 2005). In probability theory, a stochastic process or sometimes random 

process (widely used) is a collection of random variables; this is often used to present 

the evolution of some random variable, or system, over time. This is the probabilistic 
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counterpart to a deterministic process (or deterministic system). In valuing insurance 

liabilities, the randomness of the underlying asset is modelled by SDE’s. For example, 

asset price with respect to time is given by 

 dst = α(At,t)dt + σ(At,t)dWt,fort ∈ [0,∞). (3.10) 

3.3 The General Approach Use In Solving Partial Differential 

Equations Numerically 

1. First we attempt to replace the partial derivative with truncated Taylor series 

approximation. 

2. Then we create a linear system from the new expression with the aid of the 

boundary conditions. 

3. Then we use the initial conditions to begin iteration through the system. 

4. When we using forward Euler we use straight forward iteration. 

5. When using backward Euler we iterate using Jacobi iteration. 

3.4 Finite Difference Approximation 

A finite difference method typically involves the following steps: 

1. Generate a grid, for example (xi,t(k)), where we want to find an approximate 

solution. 

2. Substitute the derivatives in an ODE/PDE system of equation with finite difference 

schemes. The ODE/PDE then become a linear or non-linear system of algebraic 

equations. 
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3. Solve the system of algebraic equations. 

4. Implement and debug the computer code. 

5. Do the error analysis, both analytically and numerically. 

3.4.1 Types of Finite Difference Methods 

Depending on how we approximate the partial derivative with respect to time, we have 

three different finite difference schemes: 

1. Explicit finite difference scheme, when forward difference formula is used 

2. Implicit finite difference scheme, when backward difference formula is used 

3. Crank-Nicolson finite difference scheme, when the central difference formula is 

used. 

3.4.2 Finite Difference Formulas of Ordinary Differential Equations 

(ODE) 

There are three commonly used finite difference formulas to approximate first order 

derivative of a function f(x). They are forward finite difference, backward finite 

difference and central finite difference. Let’s consider Tylor’s series expansion of a 

function f(x) in the neighbourhood of x = xi : 

  (3.11) 

where ∆x = xi+1 − xi. Solving equation 3.11 for fi, we have 

  (3.12) 

Using the mean-value theorem, equation 3.12 becomes 
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  (3.13) 

Where , the order of ∆x, indicates the error is proportional to 

the length (∆x) and also a second derivative of f. Hence 

  (3.14) 

Equation 3.14 is called the Forward Difference Formula. Similarly, the Backward 

Difference Formula from the Taylor series 

  (3.15) 

is given by 

  (3.16) 

Where the error . Finally, subtracting equation 3.15 from 3.11 

we have the central difference formula 

  (3.17) 

with the error . 

3.4.3 Finite Difference Approximation for Partial Differential Equations 

(PDE) 

With regards to many financial engineering problems, the function f depends on two or 

more independent variables, hence the need for finite difference approximation of 

partial derivatives. Since the partial derivatives denotes the local variation of a function 

with respect to a particular independent variable while all other independent variables 

are held constant, finite difference approximation of ordinary derivatives can be 

adapted for the partial derivatives. If there are two independent variables, we use the 
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notation (i,j) to designate the pivot point, and if there are three independent variables, 

(i,j,k) are used where, i, j, and k are the counters in x, y and z directions. 

Figure 3.1 below is a two dimensional finite difference grid. If we consider the function 

f(x,y), then the finite difference approximation for the partial derivative  at x = 

xi,y = yi can be found by fixing the value of y at yi 

and treating f(x,yi) as a one-variable function. The forward, backward and the central 

difference of  can be expressed as 

  (3.18) 

  (3.19) 

  (3.20) 

 

Figure 3.1: Two dimensional grid 

Second Order Partial Derivative Central Difference 

Approximation 

The central difference approximation of second partial derivatives at (xi,yj) can be 

derived as 

  (3.21) 
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  (3.22) 

Error of Finite Difference Approximation of Partial Derivatives 

To fine the error associated with finite difference approximation of partial derivatives, 

we use the Taylor series expansion of f(x,y) around the point(xi,yj). That is, 

  (3.23) 

 (3.24) Truncating 

equation 3.23 after the nth order, we have the error 

  (3.25) 

and truncating equation 3.24 after the nth order gives the error 

  (3.26) 

3.4.4 Finite Difference Approximation for One Dimensional 

Partial Differential Equations 

Let consider a one dimensional partial differential equation 

  0 ≤ x ≤ L, t ≥ 0 (3.27) 

Where φ = φ(x,t) is the dependent variable, and α is a constant coefficient. In a practical 

computation, the solution is obtained only for a finite time say tmax. solution to equation 
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3.27 requires specification of boundary conditions at x = 0 and x = L, and the initial 

conditions as t = 0. Simple boundary and initial conditions 

are 

 φ(0,t) = φ0, φ(L,t) = φL φ(x,0) = f0(x). (3.28) 

The finite difference method involves using discrete approximation like 

  (3.29) 

Figure 3.2 below is a mesh on a semi-infinite strip used for solution to the one 

dimensional equation above. The solid squares indicate the location of the (known) 

initial values.The open squares indicate the location of (known) boundary values or 

conditions. The open circles indicate the position of the interior points when the finite 

difference approximation is computed. Where the quantities on the right hand side are 

defined on the finite difference mesh. Approximations to the governing differential 

equation are obtained by replacing all continuous derivative by discrete formulas such 

as those in equation 3.29. The relationship between the continuous(exact) solution and 

the discrete approximation is shown in above. 

 

Figure 3.2: Mesh of a semi finite strip 

Note that φim from the finite difference model is a distinct step from translating the 

continuous problem to discrete problem. 
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3.4.5 Finite Difference Approximation for Two Dimensional 

PDEs 

Let consider a two dimensional PDE 

  (3.30) 

such that a ≤ x ≤ b and c ≤ y ≤ d. if U(a,y) = Ua, U(b,y) = Ub, U(x,c) = Uc and U(x,d) = Ud, 

where Ua, Ub, Uc and Ud are boundary conditions at y and x respectively. Note that, ∆x is 

not necessarily equal to ∆y, but for this case we let ∆x = ∆y = h At the generic points 

where x is in the direction of i and y is in the direction of j, the pde can be written as 

 
Using the central difference approximation scheme we have 

  (3.31) 

and 

  (3.32) 

adding equation 3.31 and 3.32, we have 

  (3.33) 

⇒ Ui−1,j + Ui+1,j − 4Ui,j + Ui,j−1 + Ui,j+1 = h2gi,j At the first 

node of the grid, say P1 : i = 1,j = 1 

⇒ U0,1 + U2,1 − 4U1,1 + U1,0 + U1,2 = h2g1,1 let U0,1 

= Ua,and U1,0 = Uc 

⇒ −4U1,1 + U2,1 + U1,2 = h2g1,1 − Ua − Uc 

(3.34) 
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⇒ −4P1 + P2 + P4 = h2g1,1 − Ua − Uc 

At the second node, say P2 : i = 2,j = 1 

(3.35) 

P1 − 4P2 + P3 + P5 = h2g2,1 − Uc (3.36) 

summarizing the generic points, we have 
 2 2 2 

 = h2g1,1 −Ua −Uc 

 = h2g2,1 −Uc 

 = h2g3,1 −Ub 

= h2g1,2 −Ua = 

h2g2,2 

+P9 = h2g3,2 −Ub 

 = h2g1,3 −Ua −Ud 

+P9 = h2g2,3 −Ud 

−4P9 = h2g3,3 −Ub −Ud 

  

b1  

 

  

  

b2  

  

  

  

b3  

  



 

34 

  

  

b4  

  

  

P1 : −4P1 +P2  P4     

P2 : P1 −2P2 +P3 
 

P5 
   

P3 : 
 

P2 −4P3 
 

 p6 
  

P4 : P1 
  

−P4 +P5 
 

P7 
 

P5 : 
 

P2 
 

+P4 −4P5 
  

P8 

P6 : 
  

P3 
 

+P5 −4P6 
  

P7 : 
   

P4 
  

−4P7 +P8 

P8 : 
    

P5 
 

P7 −4P8 

P9 : 
     

P6 
  +P8 

writing the above system to matrix we have 
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b5  

  

  

  

b6  

  

  

 

−4 

 

 
 
 1 
 
 

 

 

 0 

 

 

 

 1 

 

 
 
 0 
 
 

 

 

 0 

 

 

 

 0 

 

 
 
 0 
 
 

 

 

0 

1 

−4 

1 

0 

1 

0 

0 

0 

0 

0 

1 

−4 

0 

0 

1 

0 

0 

0 

1 

0 

0 

−4 

1 

0 

1 

0 

0 

0 

1 

0 

1 

−4 

1 

0 

1 

0 

0 

0 

1 

0 

1 

−4 

0 

0 

1 

0 

0 

0 

1 

0 

0 

−4 

1 

0 

0 

0 

0 

0 

1 

0 

1 

−4 

1 

  

0 P1  

 

  

  

P2  

  

  

P3  

  

  

  

P4  

 

  

  

0 P5  

  

  

1 P6  

  

  

  

0 P7  

 

  

  

1 P8  

  

  

− P9  
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b7  

  

  

b8  

 

  

  

 b9 

where b1 = h g1,1 − Ua − Uc, b2 = h g2,1 − Uc,b3 = h g3,1 − Ub,b4 = h2g1,2 − Ua,b5 = h2g2,2,b6 = 

h2g3,2−Ub,b7 = h2g1,3−Ua−Ud, b8 = h2g2,3−Ud and b9 = h2g3,3−Ub−Ud if We let 

       

 −4 1 0 1 0 0 0 0 0 

       

       

       

A=  1 −4 , I= 0 1  and O= 0 0  

       

       

       

 0 1 4 0 0 1 0 0 0 

Also letB1 = b1 : b3, B2 = b4 : b6, B3 = b7 : b9, X1 = P1 : P3, X2 = P4 : P6 and 

X3 = P7 : P9, we obtain the matrix below  

   
 1  B1  A I O X 

   

   

 I AI X2  B2  

   

   

   

 O I A X3 B3 

Which is further simplified in the form 

(3.37) 

HX = B (3.38) 
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Systems expressed in the form HX = B have several solution techniques in solving 

it. 

Solution Techniques to Systems of Linear Algebraic Equations 

A system of linear equation algebraic equations is nothing but a system of ’n’ algebraic 

equations satisfied by a set of n unknown quantities. The aim is to find these n unknown 

quantities satisfying the n equations. It is a very common practice to write the system of 

n equations in matrix form as in equation 3.37 

HX = B 

Where H is an n × n, non singular matrix and X and B are n × 1 matrices out of which B 

is known. For a small n the elementary methods like crammer’s rule, matrix inversion 

are very convenient to get the unknown vector X from the system HX = B. However for 

large n these methods will become computationally very expensive because of the 

evaluation of matrix determinants involved in these methods. Hence to make the 

solution methods less expensive one has to find alternate means which does not require 

the evalution of any determinants to find X from HX = B There are two types of methods 

exists to solve these linear systems: 

• Direct Method 

• Iterative Method 

Direct Method 

These are the methods which can find the solution of the system in a finite number of 

steps known apriori. Some of the important direct methods are 

• Gauss Elimination Methods 

There are two basic steps in this type of elimination method they are: 
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1. Forward Elimination 

2. Backward Elimination 

In forward elimination the augmented matrix(the elements of the vector B has joined 

with the coefficient matrix H as (n + 1)th column) and is denoted by H|B is converted 

into upper diagonal form by making use of matrix row transformations(one can also 

convert into lower triangular form in which case the process is called backward 

elimination). Then by starting with the last row of the upper triangular matrix(first row 

for lower triangular matrix) the unknown quantity is obtained by back (forward) 

substitution 

• Decomposition Methods 

In this method we have two types: 

1. LU Decomposition Method 

2. QR Decomposition Method 

In these methods the coeffficient matrix H of the given system of equation HX = B is 

written as a product of a lower triangular matrix L and an upper triangular matrix U, such 

that H = LU, where the elements of L = (lij = 0,i < j) and the element of 

U = (uij = 0,i > j) 

Iterative methods 

Iterative techniques for solving linear syetems of algebraic equation are Jacobi, Guass-

Seidel and SOR method. The basic idea is to solve the ith equation in the system for ith 

variable(Laurene,2008). Let consider the 4 × 4 system below: 

a11x1 + a12x2 + a13x3 + a14x4 = b1 (3.39) 

a21x1 + a22x2 + a23x3 + a24x4 = b2 
(3.40) 

a31x1 + a32x2 + a33x3 + a34x4 = b3 (3.41) 
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a41x1 + a42x2 + a43x3 + a44x4 = b4 

Solving for x1, x2, x3, x4 in equation 3.39 t0 3.42, we have 

(3.42) 

  (3.43) 

(3.44) 

(3.45) 

(3.46) 

Iterative methods are stooped at certain conditions. Below are two possibilities: 

1. Iteration are stopped when the norm of the change in the solution vector x from 

iteration to the next is sufficiently small or 

2. Whwn norm of residual vector,kAx − bk, is below a specific tolerance. 

3.4.6 Jacobi Iteration 

In the jacobi method, the system Ax = b is transformed into the system X = Hx+d, where 

H has the zeros on the diagonal and X is a vector which is updated from 

previous vector x. 

The systems of equations in 3.43 to 3.46 in a matrix form is 

  (3.47) 

Which is in the form X = Hx + d. Iteratively 

 Xi+1 = Hxi + d (3.48) 



 

40 

Equation 3.48 is the Jacobi iterative technique. In this iteration, MATLAB will be used to 

run the iteration. 

3.4.7 Convergence, Consistency and Stability 

Convergence 

One step finite difference scheme approximating a partial differential equation is a 

convergent scheme if for any solution to the partial differential equation,u(t,x), and 

solutions to the finite difference scheme uni such that vi0 converges to u0(x) as i∆x 

converges to x, then vin converges to u(t,x) as (n∆t,i∆x) converges to (t,x) as ∆t, ∆x 

converge to 0 (Singiresu, 2002). 

Def: A numerical method is convergent if its global error computed up to a given x 

satisfies 

lim kεk ≡ lim ky − Y k = lim max|yn − Yn| = 0 (3.49) h−→0 h−→0 h−→0 

This implies that, the numerical solution Yn is computed with no round-off error. 

Consistency 

Def: A numerical method is said to be consistent if for a partial differential equation PU 

= S then P∆t,∆xU = f we say the finite difference scheme is consistent with the partial 

differential equation if for any smooth function φ(x,t) 

 Pφ − P∆t,∆xφ → 0 as,∆t,∆x → 0 (3.50) 

Stability 

A one step finite difference Scheme with constant coefficients is stable in a stability 

region Λ if and only if there is a constant K (independent of θ, ∆t, and ∆x) such 

that, 

 |g(θ,∆t,∆x)| ≤ 1 + K∆t (3.51) 
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with . If g(θ,∆t,∆x), is independent of of ∆t and ∆x the stability 

condition may be replaced with restricted stability condition |g(θ)| ≤ 1 

3.5 Life Insurance Portfolio 

3.5.1 Life Insurance Model 

Considering the accounting equation of an insurance company: 

At = Lt + Bt 

The above accounting equation is a simplified form of the asset and liability situation 

given in relation to a given contract. At denotes the market value of the insurer’s asset 

portfolio, Lt denotes the policyholder’s account balance and Bt = At − Lt is the bonus 

reserve at time t. If charges are not taken into consideration, the policyholder’s account 

balance at time zero L0 equals the single up-front Premium P, that is, L0 = P. Note that 

the policyholder may surrender his or her contract during the term of the contract with 

regard to the fact that he or she becomes multi-morbid while the contract is still in place. 

If the contract is lapsed at time 

, the policyholder receives the current account balance Lv0. It is assumed 

that shareholders are paid dividends during the anniversaries as compensations for the 

adopted risk. 

3.5.2 Stock Price Model 

The price of a stock can be modelled by a continuous stochastic process which is the sum 

of a predicted and an unpredicted part. However, this type of model does not take into 

account market crashes. If those are to be taken into consideration, the stock price 

needs to contain a third component which models the unexpected jumps. 
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Constant Drift and Volatility Model 

Let St denote the price of a stock at time t. If Ft denotes the information set at time t, 

then St is a continuous process that is Ft-adapted. The return on the stock during the 

time interval ∆t measures the percentage increase in the stock price between instances 

t and t + ∆t is given by . When ∆t is infinitesimally small, we obtain the 

instantaneous return, . This is suppose to be the sum of two components: 

• The predicted part αdt 

• The noisy part due to unexpected news σdzt 

Adding these two components yields 

  (3.52) 

Which leads to the stochastic equation: 

dSt = αStdt + σStdzt 

The goal is to come up with Yt = F(St) so that Yt will not contain any reference to 

St 

Yt = log(St) 

Applying Ito’s lemma 

(3.53) 

 

From equation 3.53  and b=σ 

 

(3.54) 

(3.55) 

applying integration to both sides we obtain 
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  (3.56) 

  (3.57) 

The process S satisfies the stochastic differential equation which is a geometric Brownian 

motion with parameter . Hence the stock price becomes: 

 St = S0e(µt+σzt) (3.58) 

3.6 Numerical Approach 

With regards to European contracts there exist a closed form solutions to price such 

contract, for American and Asian contracts there exist no closed form solutions so 

numerical approach or method is adopted for a market participant to price such 

contracts. Among these numerical approach or method are Monte Carlo Simulations, 

Finite Difference Approximation and Risk Neutral Valuation. This paper incorporates a 

survival rate(rate at which an insured becomes multi-morbid) into the Black-Scholes 

model and use that to value the surrender option embedded in the life insurance 

contract. The model is solved using the numerical approach of the finite difference 

approximation, of which the solution that will be obtained from the implicit method, 

explicit method and Crank Nicolson method will be compared and analysed. 

3.7 Black-Scholes Analysis 

Black-Scholes analysis is established based on two concepts: 

• The concept of hedging 

• The concept of arbitrage 
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The Concept of Hedging 

Is an investment position intended to offset potential losses or gains that may be 

incurred by a company on investment. In simple language a hedge is used to reduce any 

substantial losses or gains suffered by an individual or an organisation. A hedge can be 

constructed from many types of financial instruments, including stock, exchange traded 

funds, insurance, forward contracts, swaps options many types of over-the-counter and 

derivative products and futures contracts. Hedging is the practice of taking a position in 

one market to offset and balance against the risk adopted by assuming a position in a 

contract or opposing market or investment. Delta Hedging: In finance, it is the process 

of setting or keeping the delta of the portfolio as close to zero as possible. In practice, 

maintaining a zero delta is very complex because there are risk associated with re-

hedging on large movement in the underlying stocks prices and research indicates 

portfolios tend to have lower cash flows if re-hedged too frequently. Mathematically 

delta hedging is given as: 

 

The Concept of Arbitrage 

Is the practice of taking advantage of a price difference between two or more markets. 

Striking a combination of matching deals that capitalize upon the imbalance, the profit 

being the difference between the market prices. An arbitrage can also be defined as a 

transaction that involves no negative cash flow at any probabilistic or temporal state 

and a positive cash flow in at least one state. In simple terms it is the possibility of risk-

free profit after transaction cost, for instance an arbitrage is present when there is the 

opportunity to instantaneously buy low and sell high. In principle and in academic use, 

an arbitrage is risk-free; in common use, as in statistical arbitrage, it may refer to 

expected profit though losses may occur and in practice, there are always risk in 

arbitrage, some minor(such as fluctuations of prices decreasing profit margin) some 

major (such as devaluation of currency or derivatives). 



 

45 

3.8 Derivation of Black-Scholes Model 

Black-Scholes assumed that one risky asset like stock, and one riskless asset like cash or 

bond are both traded in the market . 

1. There is a constant interest rate on the riskless asset. 

2. The instantaneous log returns of the stock price is an infinitesimal random walk 

with drift. 

3. The stock is a non-dividend paying stock 

4. There are no arbitrage opportunities( that is, there is no way to make a riskless 

profit). 

5. Borrowing and lending of stock and cash at a riskless rate and at a fractional 

amount are allowed 

6. Short selling is possible. 

7. The market is frictionless 

Bases on the model assumption above the stock price follows a geometric Brownian 

motion: 

  (3.59) 

Where W is a stochastic variable(Brownian motion). Note that W, and consequently its 

infinitesimal increment dW, represents the only source of uncertainty in the price 

history of the stock. Intuitively, W(t) is a process that wiggles up and down in such a 

random way that its expected change over any time interval is zero.(In addition its 

variance over time T is equal to 1). A good discrete analogue for W is a simple random 

walk, thus equation 3.85 above states that the infinitesimal rate of return on the stock 

has an expected value of µdt and a variance of σ2dt. 
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The payoff of an option V(A,t) at maturity is known. To find its value at an earlier time 

we need to know how V evolves as a function of S and t by Ito’s lemma, for two variables 

we have: 

  (3.60) 

Now let take a portfolio; delta hedging portfolio comprising of a short position in one 

option and a long position of  shares at time t. The value of these holdings is: 

  (3.61) 

During the period of time [t,t+∆t] all the gains or loss from differences in the values of 

the portfolio is: 

 (3.62) Now we discretize the equation for  and dV by 

replacing differentials with deltas: 

 ∆A = µA∆t + σA∆W (3.63) 

  (3.64) 

And appropriately substitute equation 3.63 and 3.64 into 3.62 for ∆π we have: 

  (3.65) 

Notice that ∆W term has vanished. Thus uncertainty has been eliminated and 

the portfolio is effectively riskless.In order for the portfolio to maintain its riskless 

property, it must be rebalanced at every point in time as  will not remain the same for 

different time values of t. Thus shares need to be bought and sold continuously in 

fractional amounts as was stated in the assumption. The returns on other instruments 

which are riskless must be the same as the returns on the portfolio; if not it creates room 

for arbitrage opportunities. Taking returns of the riskless interest rate r we should get 

during the time period [t,t + ∆t] 
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r∆Π∆t = ∆Π 

when we equate the two equations that is, equation 3.61 and 3.65 for ∆Π we obtain 

 

Simplifying, gives us the Black-Scholes partial derivative 

  (3.66) 

V is the option price which is the function of the stock price S and time t V(S,t), the 

riskless rate is r, and the volatility is σ The option is hedge by constantly buying and 

selling the trading asset in order to eliminate risk. This act of hedge means that there is 

only one correct price for the option, as given by the Black-Scholes formula. The Black-

Scholes is the fundamentals of derivatives and is commonly used by practitioners 

because of it solid interpretations. 

The equation can be rewritten as: 

  (3.67) 

3.8.1 Dividend Paying Asset 

The contract pays no dividend . We will therefore cater for these dividends which are 

paid during the life of the contract. 

Let λ represent the known dividend. Meaning the policy holder receives a dividend λA∆t 

with interval of time ∆t. The value of the share is reduced after paying dividend 

therefore making the returns r becomes (r−λ). So the Geometric Brownian motion from 

equation 3.85 becomes: 

 dA = (r − λ)Adt + σAdX (3.68) 

Hence the Black-Scholes equation becomes 
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  (3.69) 

For a continuous dividend asset, replace r with r − λ Hence we have: 

  (3.70) 

3.9 Survival rate and Stock price 

The approach described here involves a Black-Scholes dividend paying asset price, the 

short rate and a survival rate from a hazard function of a non-monotonic hazard. The 

survival rate from a hazard function of a non-monotonic hazard actually determines the 

rate of an insured being multi-morbid. Since embedded in life insurance contracts is an 

American option, which is an American put option that gives the holder the right to sell 

the contract back to the insurer. Also being multi-morbid calls for some form of financial 

burden or obligation, consequently surrendering is done base on the policy holders rate 

of being multi-morbid. 

3.10 Assumptions of the Rate of Multi-morbid 

1. The rate of being multi-morbid s, is a probability that lies between 0 and 1. 

2. The multi-morbid rate is the median rate of being multi-morbid for all rates as 

time changes or whiles the contract is still in place 

3. The addition of the dividend rate λ and the multi-morbid rate s is less than the 

short rate r mathematically (r > s) 

Hence the Black-Scholes model becomes: 

  (3.71) 
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3.11 Finite Difference Approximation 

In the grid form let V (t,A) be V (n,m), the expansions of V (t,A+∆A) and V (t,A− 

∆A) in Taylors series are: 

 

 

Using equation 3.72, the forward difference is given by 

  (3.74) 

Similarly equation 3.73 gives the corresponding backward difference as 

  (3.75) 

Subtracting equation 3.73 from 3.72 we get 

  (3.76) 

Using central difference method to get the second order partial derivative. We sum 

equation 3.72 and 3.73 and it becomes 

  (3.77) 

Expanding V (t + ∆t,A) in Taylor’s series 

  (3.78) 

Time is approximated using the forward difference 
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  (3.79) 

Boundary and Initial Conditions 

Boundary conditions as well as initial conditions are to be considered when solving a PDE 

problem, if not the solution to the PDE will be infinite. These conditions need to be 

specified. Example the payoff of the European put option is given by max(K−ST ,0) The 

put option is equal to the strike price when the underlying asset is out-of- -the-money. 

that is, 

 Vn,0 = K for n = 0,1,...,N (3.80) 

The put option value is zero when the price of the asset increases. Therefore, we choose 

Amax = AM and get 

 Vn,M = 0 for n = 0,1,...,N. (3.81) 

Initial condition can be imposed and the price of the put option is known in advance 

 VN,m = max(K − m∆A,0) for m = 0,1,...,M. (3.82) 

This approach can be used to solve the price of the American call. Hence equation 3.82 

becomes 

 VN,m = max(m∆A − K,0) for m = 0,1,...,M (3.83) 

3.11.1 Approaches of Finite Difference Scheme 
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Explicit Method 

An expression can be formed to give the next value Vn,m explicitly in the form 

Vm−1,n+1,Vm,n+1 and Vm+1,n+1.if we know the option price at maturity. By knowing the 

maturity the equation, is dicretized to get the expression Vm,n explicitly in terms 

of the given values Vm−1,n+1, Vm,n+1 and Vm+1,n+1. 

Equation 3.72 is discretizing the time by using forward approximation and the stock price 

by using central difference approximation. This gives us 

  (3.84) 

This gives 

  (3.85) 

for n = 0,1,...,N − 1 and m = 1,2,...,M − 1 

The accuracy of the forward approximation for the time is 0(∆t) and that of the central 

approximation for the stock is 0(∆S2). The accuracy of the is 0(∆t∆S2). The weights in 

equation 3.85 are given by 

  (3.86) 

The weights add up to one. These are probabilities of the risk of the three prices A − 

∆A,A, A + ∆A at t + ∆t. Is assumed that the returns of the asset is the same in the risk 

neutral world. The probabilities of the risk neutral need to be positive for the explicit 

method of the finite difference approximation to work well. Negative probabilities of 

the risk neutral in the explicit methods prevent it from working well. Therefore 

producing results which does not converge to the solution of the partial differential 
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equation. The condition to have non-negative probabilities is that σ2m2∆t < 1 and (r −s) 

< σ2m Equation 3.120 gives a system of tridiagonal matrix which is Au + ε = b. The 

boundary condition gives rise to vector ε when m = 0 and M for all n > 0. This is given us 

 

β20 

 

 

 

β11 

 

 

 ... 

 

 

 

 

 

0 

 

 

 

0 

β30 

β21 

... 

0 

0 

0 

β31 

... 

0 

0 

··· 

··· ... 

··· 

··· 

0 

0 

... 

β1M−1 

0 

0 

0 

... 

β2M−1 

β1M 

    

 0 Vn+1,0 Vn,0 

    

    

    

Vn+1,1  Vn,1  

 

    

 ...  ...   ...  

    

    

  

β3M−1 Vn+1,M−1  Vn,M−1  

    

    

    

β2M Vn+1,M Vn,M 

(3.87) 

The system of equation is given us AVn+1,m = Vn,m,form=0,1,...,M and error term 

is neglected. 

At maturity Vn+1,m is fixed based on the initial condition. Solving backward for Vn,m(m = 

0,1,...,M). Matrix A is used because of the probabilities, βkm(k = 1,2,3) are fixed. The 

option price is obtained by the backward iteration. 

Iterating to find the solution errors are generated when solving the difference equation 

to get numerical solution. The system become stable if the errors are not magnifying 

while we iterate. Accuracy and stability are the two problems encountered when using 

numerical approach to solve for the solution to a PDE. The idea is we want to get 

accurate solution with little computations. This makes stability and accuracy an 

important factors to be considered when looking for numerical solution to a solving a 

PDE. 
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3.11.2 Stability Analysis 

The errors generated in the approximation are the fundamental source of errors which 

are,error of truncation in the discretization of both the stock price and time. The 

meaning of the error of truncation basically means the numerical method solve a 

problem which is different from what we are solving. The factors of the approach 

are: 

• Consistency 

• Stability 

• Convergence 

Lax Equivalence Theorem linked together these factors. It states that with a linear value 

problem and an appropriate finite difference approach, convergence of the approach 

will depend on the stability of the scheme. 

Stability Conditions 

Let Vn+1 = AVn be a system of equations. Matrix A and the column vectors Vn+1 and Vn are 

as represented in equation 3.86 we have 

Vn = AVn−1 

= A2Vn−2 

(3.88) 

...  

= A2V0 for n = 1,2,...,N 

Where V0 is the vector of initial values. We are concerned with the stability and we 

investigate the propagation of a perturbation. Perturb the vector of initial values 

. The exact solution at the nth time-row then be 

  (3.89) 

ε, which is the error vector or perturbation is given by 
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ε = V ∗ − V 

and the use of the perturbation vector in equation 3.87 and 3.88 gives 

 

  (3.90) 

 = Anε0 for n = 1,2,...,N. 

Hence, for compatible matrix and vector norms 

kεnk ≤ kAnkkε0k. 

The Eigenvalues of a Common Tridiagonal Matrix 

The eigenvalue of the N × N matrix 

 y z 

   

   

   

 x y z  

   

   

  ... ... ...  (3.91) 

 

 

   

   

   

  x y z  

   

   

   

 x y 

, where x,y are

and z may be real 

or complex 
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The Stability Issue of Explicit Method 

Matrix A in equation 3.120 is used to analyse the explicit finite difference method’s 

stability, where the βkm, for k = 1,2,3 are given by equation 3.121. Matrix A is symmetric 

and real. If λn is the nth eigenvalue of matrix A, then we get 

kAk2 = ρ(A) = max|λn| 

The eigenvalues λn gives 

 , (3.92) 

The values of β0s, are substituted to obtain 

  (3.93) 

for n = 1,2,...,N − 1. Further, applying the binomial theorem and ignoring some terms to 

obtain 

. 

Hence the equations become stable when 

. 

That is, 

  (3.94) 

as ∆t → 0,N → ∞ and . Hence 

 0 ≤ σ2m2∆t ≤ 1 (3.95) 

Alternatively, when 1 − σ2m2∆t ≥ 0, then σ2m2∆t ≤ 1, and 
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kA∞k = β1m + β2m + β3m = 1. 

When 1 − σ2m2∆t < 0,σ2m2∆t > 1, then |σ2m2∆t| = σ2m2∆t − 1, and 

kA∞k = 2σ2m2∆t − 1 > 1 

Therefore by Lax’s Equivalence theorem, the scheme is stable, convergent and 

consistent for 0 ≤ σ2m2∆t ≤ 1. 

In equation 3.120, the other condition is that r < σ2m. These conditions are necessary 

for the weights βnm(k = 1,2,3) to be positive, otherwise, they will be 

negative. 

Implicit Method 

We express Vn+1,m implicit in-terms of the unknown Vn,m−1,Vn,mand Vn,m+1. We discretize 

the Black-Scholes PDE in equation 3.105 using the forward difference for time and 

central difference for the stock price to have 

  (3.96) 

and re-arranging we have 

  (3.97) 

for n = 0,1,...,N − 1 and m = 1,2,...,M − 1 

Similar to the explicit method, the implicit method is accurate to 0(∆t∆S2). The 

parameters  for k=1,2,3 are given as 

  (3.98) 
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The system of equations can be expressed as a tridiagonal system  

     

 Vn+1,0 α20 α30 0 ··· 0 0 0 Vn,0 

     

     

     

  Vn+1,1  α11 α21 α31 ··· 0 0 0  Vn,1  

 

     

  ...  ... ... ... ... ... ... ...  ...  

 

 

     

     

     

 Vn+1,M−1   0 0 0 ··· α1M−1 α2M−1 α3M−1 Vn,M−1  

     

     

     

 Vn+1,M 0 0 0 ··· 0 α1M α2M Vn,M (3.99) 

which can be is rewritten as AVn,m = Vn+1,m. for m = 0,1,...,M. Let Vn,m = Vn, and solve for 

Vn given matrix A and column vector Vn+1 and this gives Vn = A−1Vn+1. 

The matrix A has α2m = 1 + σ2m2∆t in the diagonal which is positive. When the diagonal 

elements are multiplied it gives a non zero matrix. Hence the matrix is non singular. The 

system is solved by finding the inverse matrix A−1. When the boundary conditions are 

applied together with equation 3.133, this gives rise to some changes in the elements of 

matrix A with α20,α2M = 1 and α30,α1M = 0. 

Stability Issue of Implicit Method 

The same principle and idea is used to the test the stability of the implicit finite 

difference approximation. 

The eigenvalues λn are given by 
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 , (3.100) 

The values of α0s, is substituted and we have 

  (3.101) 

for n = 1,2,...,N − 1. Furthermore, applying binomial theorem on the square root and 

ignoring some terms to obtain 

. 

. 

that is, 

 

(3.102) 

as ∆t → 0,N → ∞ and . Hence equation 3.138 reduces to |1| ≤ 1 

1 + σ2m2∆t ≥ 0 and kAk = 1. 

Therefore by Lax’s equivalence theorem the scheme is consistent convergent and 

unconditionally stable. 

Crank Nicolson Method 

This method is the average of the implicit and the explicit methods. Equation 3.119 is 

the explicit scheme and equation 3.133 is the implicit scheme. When the average of the 

two is taken we get 

 

 

  (3.103) 

re-arranging we get 
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+ [−

1σ2m2∆t − 1∆t]Vn,m+1 1 1

 s)m∆t]V ,m−1 (3.104) 

and we simplify to get ρ1mVn,m−1 + ρ2mVn,m + ρ3mVn,m+1 = X1mVn+1,m−1 + X2mVn+1,m + 

X3mVn+1,m+1 

(3.105) 

for n = 0,1,...,N − 1 and m = 1,2,...,M − 1. Then, the parameters ρkm and Xkm for k = 1,2,3 

are given as 

 

∆t 

(3.106) 

 
We express the system of equation in equation 3.141 as CVn = DVn+1. This gives a 

tridiagonal matrix giving by 

  ρ20 ρ30 0 ··· 0 0 0

 Vn,0 

   

   

   

ρ11 ρ21 ρ31 ··· 0 0 Vn,1  

   

 ... ... ... ... ... ... ...  ...  
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 0 0 0 ··· ρ1M−1 ρ2M−1 ρ3M−1 Vn,M−1  

   

   

   

 0 0 0 ··· 0 ρ1M ρ2M Vn,M 
(3.107) 

   

 X20 X30 0 ··· 0 0 0 Vn+1,0 

   

   

   

X11 X21 X31 ··· 0 0 Vn+1,1  

   

... ... ... ... ... ... ...  ...  

   

   

   
 

 

 

 0 0 0 ··· X1M−1 X2M−1 X3M−1 Vn+1,M−1 

  

  

 ··· 0 X1M X2M Vn+1,M 

The diagonal entries of matrix C is ρ2m = 1 + r∆/2 + σ2m2∆t/2 and this is always positive 

which makes the diagonal elements non zero. Since the entries are non zero ia obvious 

that the matrix is non singular. 

Checking Accuracy of the Crank-Nicolson method 

The approximation from the Taylor’s theorem gives an error of truncation which affect 

the scheme’s accuracy. The Crank-Nicolson method of approximation has an accuracy 

up to 0(∆t2,∆S2). We show this accuracy by equating the central difference 
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and th symmetric central difference at  . We expand  

to yield 

  (3.108) 

and expanding  gives 

  (3.109) 

The two equations are added together and it yields 

 

 

 

Dividing by (∆A2) 

the equality will be 

  (3.111) 

The m which is the subscript is an arbitrary and the central difference approximation is 

as follows. 

 

 . (3.112) 

Dividing by (2∆A) we obtain the equality 

  (3.113) 

Now we subtracting equation 3.113 from equation 3.112 to obtain the approximation of 

∂V/∂t centered at  
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  (3.114) 

Therefore the Black-Scholes equation at  is approximated as 

  (3.115) 

and re-arranging, we get an equation of the form of equation 3.115, the leading error 

of the scheme which is given as .  
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CHAPTER 4 

ANALYSIS 

4.1 Introduction 

In this chapter, the application of the Black-Scholes partial differential equation is looked 

at. The Black-Scholes PDE is solved using the finite difference method. This is achieved 

by approximating the PDE to obtain a systems of algebraic equations. This is done in 

order to obtain numerical solutions to PDE’s. The method is very powerful and comes 

along with simple techniques that is able to generate accurate solutions to PDE’s arising 

in financial and other physical sciences 

In solving a Black-Scholes PDE the implicit, explicit and Crank-Nicolson methods are 

used, and these methods are different in terms of stability, consistency and accuracy. In 

this chapter we compare and contrast the convergence of the original Black-Scholes PDE 

and the Black-Scholes PDE with the survival rate incorporated in the valuation of 

surrender option. 

4.2 Analysis Using Matlab 

The tridiagonal matrix obtained is very large. Large matrices requires high memory and 

its execution also takes a lot of computer time. Matlab is designed in such a way to 

accommodate all these flaw backs. The implicit finite difference method can be 

expressed as fn = A−1fn+1. 

Matlab can solve for the inverse of the matrix. 

H 

Table 4.1: Eigenvalues of the Implicit Finite Difference Approximation as N→ ∞ 

N=2000  N=4000  N=5000  N=6000  N=7000  

j λ j λ j λ j λ j λ 
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1991 1.0197 3991 1.0099 4991 1.0079 5991 1.0066 6991 1.0057 

1992 1.0156 3922 1.0078 4992 1.0063 5992 1.0052 6992 1.0045 

1993 1.0120 3993 1.0060 4993 1.0048 5993 1.0040 6993 1.0034 

1994 1.0088 3994 1.0044 4994 1.0035 5994 1.0029 6994 1.0025 

1995 1.0061 3995 1.0031 4995 1.0025 5995 1.0021 6995 1.0018 

1996 1.0039 3996 1.0020 4996 1.0016 5996 1.0013 6996 1.0011 

1997 1.002 3997 1.0011 4997 1.0009 5997 1.0007 6997 1.0006 

1998 1.0010 3998 1.0005 4998 1.0004 5998 1.0003 6998 1.0003 

1999 1.0003 3999 1.0001 4999 1.0001 5999 1.0001 6999 1.0001 

4.3 Stability Analysis of Implicit Finite Difference 

Approximation 

The eigenvalues of the the resulting matrix are given in Table 4.1 for volatility of 

0.2231 and surrender time of 2 years for maturity of 30 years. 

N=10000 

 

N=11000 

 

j λ j λ 

9991 1.0040 10091 1.0036 

9992 1.0031 10092 1.0029 

9993 1.0024 10093 1.0022 

9994 1.0018 10094 1.0016 

9995 1.0012 10095 1.0011 

9996 1.0008 10096 1.0007 

9997 1.0004 10097 1.0004 
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9998 1.0002 10098 1.0002 

9999 1.0001 10099 1.0000 

It could be verified from table 4.1 that, as the number of time steps N increases, the 

eigenvalue approaches i and this shows that the implicit finite difference scheme is 

unconditionally stable. 

4.4 Stability of Crank-Nicholson Approximation 

The table below shows the eigenvalues of the matrix of the scheme as N → ∞ 

Table 4.2 indicates that as N → ∞, the eigenvalues approaches one showing the 

stability of Crank-Nicolson’s approximation. Also the Crank-Nicolson approximation is 

with the accuracy of 0(∆t2,∆A2) and that also indicates that how accurate the results is 

to the actual value. 

Table 4.2: The eigenvalues of the Crank-Nicholson method as N → ∞ 

N=100  N=500  N=1000  N=2000  N=4000  

j λj j λj j λj j λj j λj 

93 1.0572 493 1.0119 993 1.0060 1993 1.0030 3993 1.0015 

94 1.0398 494 1.0088 994 1.0044 1994 1.0022 3994 1.0011 

95 1.0284 495 1.0062 995 1.0031 1995 1.0016 3995 1.0008 

96 1.0189 496 1.0040 996 1.0020 1996 1.0010 3996 1.0005 

97 1.0111 497 1.0023 997 1.0012 1997 1.0006 3997 1.0003 

98 1.0055 498 1.0011 998 1.0006 1998 1.0003 3998 1.0001 

99 1.0020 499 1.0004 999 1.0002 1999 1.0001 3999 1.0000 
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4.5 Comparing the Convergence of the Implicit and Crank-

Nicolson’s Method for Valuation of Surrender Option 

with no Dividend 

The convergence of the fully implicit and the Crank-Nicolson with relation to the Black-

Scholes value of surrender options were considered earlier in chapter 3. Table 4.3 shows 

the value of life insurance contract containing surrender option with the data from Life 

Insurance Company A and Table 4.4 shows that of the data from 

Life Insurance Company B. The data from company A are as follows: Asset price,A 

= 50, Strike price, K = 52, Risk-free interest rate, r = 0.05, Surrender period, t = 2 years, 

Maturity period, T = 30 years, Volatility, σ = 0.2331 and the Dividend payment rate, φ = 

0.03. The surrender value of the life insurance contract is 5.4650 with the value at 

maturity being 8.22 for non-dividend paying asset. 

The data from Insurance Company B are as follows: 

Asset price, A = 250, Strike price, K = 260, Risk-free interest rate, r = 0.06, Surrender 

period, t = 7 years, Maturity period, T = 30 years, Volatility, σ = 0.24. The surrender value 

of the life insurance contract is 36.04 with the value at maturity being 40.15 for non-

dividend paying asset. 

Table 4.3: The comparison of the two methods in the valuation of surrender options with 

no-dividend payment for company A. Surrender value at t=2 years, Expected value = 

5.4650. 

Number of steps Fully Implicit Crank- Nicolson 

30 5.3770(0.0880) 5.4204(0.04204) 

150 5.4413(0.0237) 5.4503(0.0147) 

210 5.4462(0.0188) 5.4531(0.1191) 

330 5.4501(0.0149) 5.4546(0.0104) 

390 5.4511(0.0139) 5.4550(0.0100) 

450 5.4518(0.0132) 5.4552(0.0098) 

570 5.4529(0.0121) 5.4556(0.0094) 
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630 5.4533(0.0177) 5.4557(0.0093) 

690 5.4536(0.0114) 5.4558(0.0092) 

720 5.4537(0.0113) 5.4559(0.0091) 

780 5.4554(0.0112) 5.4559(0.0091) 

810 5.4541(0.0109) 5.4560(0.0090) 

840 5.4542(0.0108) 5.4560(0.0090) 

870 5.4543(0.0107) 5.4560(0.0090) 

1000 5.4546(0.0104) 5.4561(0.0089) 

Table 4.4: The valuation of surrender option with no-dividend payment at maturity(T=30 

years) for company A. Expected Value=8.22 

Number of steps Fully Implicit Crank- Nicolson 

100 7.4244(0.7956) 7.5107(0.7093) 

250 7.5275(0.6925) 7.5622(0.6578) 

400 5.7.5535(0.6665) 7.5757(0.6443) 

550 7.5656(0.6544) 7.5817(0.6383) 

650 7.5706(0.6494) 7.5842(0.6358) 

700 7.5725(0.6475) 7.5851(0.6349) 

800 7.5757(0.6443) 7.5867(0.6333) 

1000 7.5801(0.6399) 7.5890(0.6310) 

1150 7.5824(0.6376) 7.5901(0.6299) 

1300 7.5842(0.6358) 7.5910(0.6290) 

1500 7.5860(0.6340) 7.5919(0.6281) 

1700 7.5874(0.6326) 7.5926(0.6274) 

2000 7.5890(0.6310) 7.5934(0.6266) 

3000 7.5919(0.6281) 7.5949(0.6251) 
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Table 4.5: The comparison of the two methods in the valuation of surrender option with 

no-dividend payment for company B. Surrender time at t=7 years. Expected value =36.04 

Number of steps Fully Implicit Crank- Nicolson 

30 34.4780(1.5620) 35.0667(0.9733) 

90 35.2300(0.8100) 35.4022(0.6378) 

150 35.3591(0.6809) 35.4687(0.5713) 

200 35.4089(0.6311) 35.4923(0.5477) 

250 35.4388(0.6012) 35.5052(0.5348) 

300 35.4586(0.5814) 35.5146(0.5254) 

350 35.4730(0.5670) 35.5209(0.5191) 

400 35.4836(0.5564) 35.5256(0.5144) 

500 35.4986(0.5414) 35.5323(0.5077) 

600 35.5086(0.5314) 35.5367(0.5033) 

700 35.5157(0.5243) 35.5399(0.5001) 

800 35.5210(0.5190) 35.5423(0.4977) 

900 35.5252(0.5148) 35.5441(0.4959) 

970 35.5276(0.5124) 35.5452(0.4948) 

Note: In the tables above, the figures in the bracket are the differences between the 

actual values obtained from the various numerical methods. 

4.6 Comparing the Convergence of the Implicit and Crank-

Nicolson’s Method for Valuation of Surrender Option 

with survival rate 

4.6.1 Numerical Methods for Surrender Option Valuation with Rate of 

Multimobidity for Company A 

Simulation of Survival Data 

Survival data is obtained through simulations, the simulation is done for 10000 times of 

which the confidence intervals of the last survival rate of each simulation is of 



 

69 

importance as shown in the R code of the appendix c, The maximum of both the lower 

confidence and upper confidence intervals are then obtained of which any random 

number is picked from the interval and fix into the Black Scholes setup as the rate of an 

insured being multi-morbid and use in the valuation of surrender options as the first 

scenario. The averages of both the lower confidence and upper confidence intervals are 

then obtained of which any random number is selected from the interval and fix into the 

Black-Scholes setup as the rate of an insured being multi-morbid and use in the valuation 

of surrender options as the second scenario. Also the median of both the lower and 

upper confidence intervals are also obtained of which any random number is selected 

from the interval and fix into the Black- 

Scholes setup and use in the valuation of surrender options as the third scenario. Lastly 

the minimum of the lower confidence and upper confidence intervals are then obtained 

of which any random number is selected from the interval and fix into the Black-Scholes 

setup as the rate of an insured being multi-morbid and use in the valuation of surrender 

options. The disparities among these valuations are discussed in chapter five. 

Table 4.6: The comparison of the two methods in the valuation of surrender options with 

no-dividend payment for company A. Surrender value at t=2 years,with maximum rate 

of being multi-morbid between 0.436 and 0.691(ie, s=0.5) Expected value = 5.4650. 

Number of steps Fully Implicit Crank- Nicolson 

100 28.5885 77.9099 

150 28.6136 77.9098 

210 28.6279 77.9098 

330 28.6409 77.9097 

390 28.6444 77.9097 

450 28.6470 77.9097 

570 28.6505 77.9097 

630 28.6518 77.9097 

690 28.6521 77.9097 

720 28.6330 77.9097 

780 28.6541 77.9097 
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810 28.6545 77.9097 

840 28.6548 77.9097 

870 28.6551 77.9097 

1000 28.6562 77.9097 

Table 4.7: The comparison of the two methods in the valuation of surrender options with 

no-dividend payment for company A. Surrender value at t=2 years,with mean rate of 

being multi-morbid between 0.214 and 0.453(ie, s=0.3) Expected value = 

5.4650. 

Number of steps Fully Implicit Crank- Nicolson 

100 19.8259 36.0963 

150 19.8385 36.0981 

210 19.8453 36.0990 

330 19.8512 36.0994 

390 19.8528 36.0994 

450 19.8539 36.0994 

570 19.8555 36.0995 

630 19.8561 36.0995 

690 19.8565 36.0995 

720 19.8567 36.0995 

780 19.8571 36.0995 

810 19.8572 36.0995 

840 19.8574 36.0995 

870 19.8575 36.0995 

1000 19.8558 36.0995 

Table 4.8: The comparison of the two methods in the valuation of surrender options with 

no-dividend payment for company A. Surrender value at t=2 years,with median rate of 

being multi-morbid between 0.216 and 0.458(ie, s=0.25) Expected value = 

5.4650. 

Number of steps Fully Implicit Crank- Nicolson 

100 17.4888 28.2978 

150 17.2322 28.2999 

210 17.2373 28.3009 
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330 17.2417 28.3014 

390 17.2428 28.3014 

450 17.2436 28.3014 

570 17.2448 28.3015 

630 17.2452 28.3015 

690 17.2455 28.3015 

720 17.2457 28.3015 

780 17.2459 28.3016 

810 17.2461 28.3016 

840 17.2462 28.3016 

870 17.2463 28.3016 

1000 17.2466 28.3016 

Table 4.9: The comparison of the two methods in the valuation of surrender options with 

no-dividend payment for company A. Surrender value at t=2 years,with minimum rate 

of being multi-morbid between 0.03 and 0.214 (ie, s=0.035) Expected value = 5.4650. 

Number of steps Fully Implicit Crank- Nicolson 

100 6.6783 6.7042 

150 6.6850 6.7068 

210 6.6888 6.7083 

330 6.6918 6.7090 

390 6.6693 6.7090 

450 6.6931 6.7091 

570 6.6939 6.7093 

630 6.6942 6.7094 

690 6.6944 6.7094 

720 6.6946 6.7094 

780 6.6947 6.7094 

810 6.6948 6.7094 

840 6.6949 6.7094 

870 6.6950 6.7094 

1000 6.6952 6.7094 
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Tables 4.3, 4.4 and 4.5 shows that the Crank-Nicolson finite scheme converges faster 

than the fully implicit finite scheme as N−→ ∞, The Crank-Nicolson finite difference 

approximation is closer to the value of the surrender value for large values of N than the 

Fully implicit finite difference approximation. (see figure 4.1, 4.2 and 

4.3) 

Chart Describing the Valuation of Surrender Option With no 

Dividend 

 

Figure 4.1: Chart on Fully Implicit method for the valuation of surrender option with no 

dividend 

 

Figure 4.2: Chart on Crank-Nicolson method for the valuation of surrender option with 

no dividend 
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Figure 4.3: Chart Comparing the Crank-Nicolson method and the Fully Implicit method. 

Tables 4.6, 4.7 and 4.8 and 4.9 shows that the implicit finite scheme converges faster 

than the Crank Nicolson finite scheme as N−→ ∞, The implicit finite difference 

approximation is closer to the value of the surrender value for large values of N than the 

Crank-Nicolson finite difference approximation. (see Figure 4.4, 4.5, 4.6, 4.7, 4.8) 

Chart Describing the Valuation of Surrender Option with Rate 

of Being Multi-morbid Incorporated 

 

Figure 4.4: Chart comparing the valuation of surrender option with different rate 

of being multi-morbid using implicit finite difference scheme  
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Chart Describing the Valuation of Surrender Option with Rate 

of Being Multi-morbidity Incorporated 

 

Figure 4.5: Chart for the valuation of surrender option with median rate of being multi-

morbid using Crank Nicolson finite difference scheme 

 

Figure 4.6: Chart for the valuation of surrender option with a minimum rate of being 

multi-morbid using Crank-Nicolson finite difference scheme 
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Figure 4.7: Chart for the valuation of surrender option with a mean rate of being multi-

morbid using Crank-Nicolson finite difference scheme 

 

Figure 4.8: Chart for the valuation of surrender option with a maximum rate of being 

multi-morbid using Crank-Nicolson finite difference scheme. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

In this chapter the conclusions were made based on the study findings and the 

recommendations were also made based on the conclusions drawn. 

5.2 Summary of Results 

Findings from the analysis show that asset price discretization and time discretization 

contain two fundamental source of errors of which Lax Equivalence theorem indicated 

that the three fundamental factors that characterized a numerical scheme are 

consistency, stability and convergence. 

The study used the eigenvalue to test the three finite difference methods. The results 

showed that, the explicit finite difference scheme is conditionally stable but the implicit 

finite difference and the Crank-Nicolson methods were unconditionally 

stable. 

It was also observed that the Crank-Nicolson Finite Difference Approximation converges 

faster than the Implicit Finite Difference Approximation, which implies that the Crank-

Nicolson Finite Difference Approximation gives more accurate results than the Implicit 

Finite Difference Approximation. 

5.3 Conclusions 

Rate of being multi-morbid increases as age increases, Most insurers would not like to 

insure someone who is multi-morbid, or someone with a higher rate of being 

multimorbid. This is because the company may encounter losses when the person 
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comes in to surrender after few years the contact is put in place. Numerical valuation of 

surrender option with no rate of being multi-morbid incorporated in the valuation has a 

pay off which is a bit lower than the actual pay off, of which the Crank- 

Nicolson method converges faster than the implicit method. This means that the Crank-

Nicolson approach gives more accurate results than the implicit approach. 

On the other hand numerical valuation of surrender option with rate of being 

multimorbid incorporated into the Black-Scholes model has a pay off that is dependent 

on how high or low the policy holder’s rate of being multi-morbid is when he or she 

comes in to surrender at any point in time. It is observed that higher rate of being multi-

morbid when one comes in to surrender will result in higher pay off of which the 

insurance company would be losing. Also it is also observed that lower rate of being 

multi-morbid that is a rate that is less or equal to the drift of the Black Scholes model 

will results in lower pay off when someone comes to surrender of which the insurance 

company would be gaining and the insured or the policyholder would be 

losing. 

With regards to the numerical analysis the Crank-Nicolson method converges faster than 

the Implicit method when valuation is done without incorporating the rate of being 

multi-morbid in the Black-Scholes model, consequently Crank-Nicolson given more 

accurate results than the implicit method. On the other hand it is observed in the 

computational analysis that when the valuation is done with the rate of being multi-

morbid incorporated into the Black-Scholes model the implicit finite difference method 

converges faster than the Crank-Nicolson finite difference method, as a results the 

implicit method giving more accurate results than the Crank-Nicolson method. 

5.4 Recommendations 

In finding the value of American style life insurance contract where by the rate of being 

multi-morbid is ignored in the valuation using Black-Scholes model, the CrankNicolson 

method converges faster and gives more accurate results than the implicit finite 
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difference scheme. Again in finding the value of American style insurance contract 

where by the rate of being multi-morbid is incorporated in the Black Scholes model the 

implicit finite scheme converges faster than the Crank-Nicolson finite scheme. But the 

explicit finite scheme may not give accurate results because of its 

conditional stability. 

5.5 Further Studies 

The scope of this research is centred around the valuiation of surrender options, which 

is a single premium American life insurance contract on a dividend paying asset. The 

researcher wish to look at the valuation of surrender option which involves continuous-

instalment premiums or multiple premiums  
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APPENDIX 

Appendix I- Matlab Code for Crank-Nicolson Scheme 

function[P]=CrankNicolsonFDBS(S,K,r,sigma,T,N,M,s,) 
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% S is the asset price 

% K is the strike price 

% T is the maturity period 

% N is the number of iterations in the time direction 

% M is the number of iterations in the asset direction 

% s is the rate of being multimorbid % sigma is 

the volatility dt=T/N ; ds=2*S/M ; 

A=zeros(M+1,M+1) ; f=max(K-(0:M)*ds,0)’ ; 

for m=1:M-1 

A(m+1,m)=((r-lambda)*m*dt-sigma.^2*m.^2*dt)/4 ; 

A(m+1,m+1)=1+0.5*(r-s)*dt+0.5*sigma.^2*m.^2*dt ; 

A(m+1,m+2)=(-(r-s)*m*dt-sigma.^2*m.^2*dt)/4 ; end 

A(1,1)=1 ; 

A(M+1,M+1)=1 ; 

A ; 

for m=1:M-1 

B(m+1,m)=(-(r-s)*m*dt+sigma.^2*m.^2*dt)/4 ; 

B(m+1,m+1)=1-0.5*(r-s)*dt-0.5*sigma.^2*m.^2*dt ; B(m+1,m+2)=((r-

s)*m*dt+sigma.^2*m.^2*dt)/4 ; end 

B(1,1)=1 ; 

B(M+1,M+1)=1 ; 

B ; 

for i=N:-1:1 f=A^(-1)*(B*f) ; 

f=max(f,(K-(0:M)*ds)’) ; end 

f ; 

P=f(round((M+1)/2)) ; 
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Appendix II Matlab Code for Implicit Scheme 

function[Rec,V]=ImplicitFDBS_nodividend(A,K,r,volatility,T,N,M,s) 

%If no dividend payment was made, enter zero for the dividend_yield 

% A is the asset price 

% K is the strike price 

% T is the maturity period 

% N is the number of iterations in the time directions % M is the 

number of iterations in the asset direction 

% s is the rate of being multimorbid 

sigma=volatility; 

y=length(N); 

Table=zeros(y,3); for 

j=1:y dt=T/N(j); 

dA=2*A/M(j); 

B=zeros(M(j)+1,M(j)+1); f=max(K-(0:M(j))*dA,0)’; f(1)=f(1)-

(0.5*r*1*dt-0.5*sigma^2*1*dt); x=1/(1-r*dt); for 

m=1:M(j)-1 

B(m+1,m)=x*(0.5*(r-s)*m*dt-0.5*sigma.^2*m.^2*dt); 

B(m+1,m+1)=x*(1+sigma.^2*m.^2*dt); 

B(m+1,m+2)=x*(-(r-s)*m*dt-sigma.^2*m.^2*dt)/2; end 

B(1,1)=1; B(M(j)+1,M(j)+1)=1; for i=N(j):-1:1 f=B\f; f=max(f,(K-

(0:M(j))*dA)’); end f; 

V=f(round((M(j)+1)/2)); 

Table(j,1)=j; 

Table(j,2)=N(j); 

Table(j,3)=V; 

end Rec=Table; 
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Appendix III- R Codes for Simulating Survival Data 

y<-function(n){ 

V<-matrix(0,nrow=n, ncol=2) for(i in 

1:n) { 

lifetimes<-rexp(60,rate=1/15) censtimes<-15+5*runif(60) ztimes<-

pmin(lifetimes,censtimes) status<-as.numeric(censtimes>lifetimes) 

kwasi<-summary(survfit(Surv(lifetimes,status)~1)) t<-

length(kwasi$lower) g<-kwasi$lower[t] h<-kwasi$upper[t] d<-

cbind(g,h) 

V[i,]<-d 

} 

V 

} 


