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SUMMARY OF THESIS 

The use of nanotechnology to develop a suite of sustainable energy production scheme is one 

of the most important scientific challeges of the 21st century. The challenge is to design, to 

synthesize and characterize new functional nanomaterials with controllable sizes, shapes 

and/or structures. The work described in this thesis deals with the exploitation of the unique 

properties pertaining at the water-toluene interface for the synthesis of functional zinc, copper, 

cadmium and lead chalcogenide nanomaterials at temperatures below 100 oC. These 

semiconductor materials had hitherto been synthesized by sophisticated methods at high 

temperatures and/or under quite difficult conditions such as high vacuum or high pressure or 

salt solvent mediated high temperature conditions. The metal chalcogenides are important 

semiconductor nanomaterials which have found many applications in optoelectronics and solar 

cell technology. Metal chalcogenides as thin films and nanocrystals have also received 

considerable interest in low cost photovoltaic devices. 

In the first part of this work a series of copper, zinc, cadmium and lead alkyldithiocarbamate 

complexes were prepared with variations of the carbon chains of the alkyl moiety from two to 

four.  In addition to copper, zinc, cadmium and lead cupferronates were also prepared. These 

precursors were characterized by FTIR as well as elemental analyses.  

In the second part of the work the as-synthesised organometallic complexes were used as 

precursors for the deposition of zinc, copper, cadmium and lead chalcogenide thin films 

nanoparticles at the water-toluene interface. The as-deposited thin films nanoparticles were 

characterised by XRD, SEM, TEM and energy dispersive X-ray (EDAX) analyses. Although 

the self-assembly of colloidal particles at a curved fluid interface has been reported for about 

100 years, the self-assembly at a flat fluid interface to form functional films is just a burgeoning 

field. Compared with previous solution-based self-assembly routes, the advantages of this self-
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assembly strategy are evident in their universality, simplicity, high efficiency and the high 

quality of the as-assembled film. The binary metal chalcogenides were successfully prepared 

using cheap, low temperature and environmentally friendly methods. Easy manipulation of the 

processes at the water-toluene interface has led to the syntheses of particles with controlled 

sizes and morphologies. The variation of the deposition parameters such as concentrations of 

the precursors, deposition times, temperatures of the deposition and other rheological 

parameters has led to the synthesis of nanomaterials with varied optical and electrical properties 

based on the quantum-size effects. With the appropriate choice of metal precursors and 

reducing agents, this work has led to the fabrication of a variety of nanocrystalline thin films. 

This thesis is made up of the following chapters: 

1. Chapter one presents a general discussion on semiconductors, band structure, quantum 

size effects, classification of nanocrystals, methods of synthesis of nanomaterials, the 

liquid-liquid interface method-assembly at fluid interface, growth process of 

nanocrystals and applications of semiconductors (thin films and nanocrystals). 

Additionally, literature report about metal chalcogenide nanocrystals and their 

applications is also presented. 

2. Chapters two to five describe the deposition of zinc, copper, cadmium and lead 

chalcogenide nanomaterials/thin films at the water-toluene interface and their 

characterization by XRD, SEM and TEM.  

3. Chapter six describes the methodology and other physical measurements.  

4. Chapter seven gives a short summary of the results and conclusions drawn from this 

research work and based on these conclusions provides an outlook to future research. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

In this chapter, a general discussion about semiconductors, band structure, quantum size effects, 

classification of nanocrystals, methods of syntheses of nanomaterials, the liquid-liquid interface 

method-assembly at fluid interface, growth process of nanocrystals and applications of 

semiconductors (thin films and nanocrystals) is described. Additionally, literature about metal 

chalcogenide nanocrystals and their applications is also presented. 

1.1 Introduction 

The natural world artfully harnesses the interface between immiscible liquids to carry out vital 

processes such as growing bones and contracting muscles (Volkov et al., 1998). In contrast, 

synthetic chemists generally regard such an interface as an intractable barrier to be circumvented 

by the use of phase transfer reagents. A small number of studies have explored the use of the 

water–oil interface to synthesize inorganic nanostructures, materials that have assumed great 

significance in recent times (Faraday, 1857; Brust et al., 1994; Rao et al., 2005; Fan et al., 

2007a,b; Rao and Kalyanikutty, 2008; Stansfield et al., 2010). In these studies, the use of the 

interface has led to remarkably simple and straightforward routes to complex solids. Careful 

consideration of current understanding of the structure and properties of the water-oil interface 

suggests the interface and its immediate environs possess features well suited for synthesis of 

solids with reduced dimensions. 

 The interface introduces steep gradients in ionic concentration with critical lengths of the order 

of nanometres, owing to limited mixing of the liquids around the original interface (Birdi, 1997). 

With appropriate precursors, these gradients can create a spatially confined region of 

supersaturation for the growth of low-dimensional crystallites. These crystallites can then be 
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quickly extracted from the interface to yield a dispersion of nanocrystals (Faraday, 1857). This 

method, originally due to Faraday, has been very successfully adapted by Schiffrin as well as 

others for the synthesis of metal nanocrystals such as Au (Brust et al., 1994), Ag (Kang and Kim, 

1998), Pt (Horswell et al., 1999) and Pd (Chen et al., 2000). However, this technique has 

remained largely unexplored for the synthesis of semiconductor nanocrystals.  

Nanostructured materials are not only in the forefront of the hottest fundamental materials 

research nowadays, but they are also gradually intruded into our daily life (Fang et al., 2008; 

Zhai et al., 2010; Fang et al., 2009). ‘‘There’s plenty of room at the bottom, the principles of 

physics, as far as I can see, do not speak against the possibility of manoeuvring things atom by 

atom, put the atoms down where the chemist says, and so you make the substance...’’, this 

famous statement of legendary Richard Feynman made in 1959 with immense foresight has been 

realized in less than half a century by consistent efforts and significant contributions from the 

scientific community across the globe (Kuchibhatla et al., 2007). 

Nanostructured materials are a new class of materials, having dimensions in the 1–100 nm range, 

which provide one of the greatest potentials for improving performance and extended capabilities 

of products in a number of industrial sectors (Xia et al., 2003). There is a large number of new 

opportunities that could be realized by down-sizing currently existing structures into the 

nanometer scale (<100 nm), or by making new types of nanostructures. The most successful 

examples are seen in microelectronics, where ‘‘smaller’’ has always meant a greater 

performance ever since the invention of transistors: e.g. higher density of integration, faster 

response, lower cost, and less power consumption (Fang et al., 2008). 

Inorganic semiconductor nanomaterials like CdS, ZnS, CdSe, ZnSe etc. are proven to be versatile 

materials because of their applications in optoelectronic devices due to large variation of band 

gap as a function of particle size. Cadmium sulphide (CdS) and zinc sulphide (ZnS) 
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nanomaterials have attracted considerable interest in recent years. CdS is a wide band gap 

semiconducting material having band gap energy 2.4 eV and widely used because of its size 

dependent photophysical, photochemical and non-linear optical properties etc. (Alivisatos, 1996; 

Soloviev et al., 2001; Zhang et al., 2003). ZnS (band gap energy 3.6 eV) is also most widely 

used nanomaterial in solar cells, electroluminescent devices for the cathode ray tube, field 

emission display and scintillators as one of the most frequently used phosphors (Ghrayeb et al., 

1997; Barton and Ranby, 1997).  

Recently, CdS and CdSe nanocrystals have been obtained by employing cadmium myristate in 

toluene and aqueous thio- or selenourea, in an autoclave (Pan et al., 2004, 2005). Core-shell 

nanocrystals such as CdS/CdSe have been obtained by alternating the two reactions (Pan et al., 

2008). Crucially, the semiconductor nanocrystals exhibited band-edge, size-tunable emission, 

which is characteristic of crystallites with low defects (Murray et al., 1993; Lazell and O’Brien, 

1999; Malik et al., 2001; Peng & Peng, 2001; Battaglia and Peng, 2002; Nair et al., 2002; Yu 

and Peng, 2002; Li et al., 2003; Pradhan et al., 2003; Park et al., 2004; Mohamed et al., 2005). 

Such band-edge emission which is critical for these applications had hitherto been achieved 

using only non-facile methods that usually involve high temperatures (Murray et al., 1993; 

Lazell and O’Brien, 1999; Malik et al., 2001; Peng and Peng, 2001; Nair et al., 2002; Park et al., 

2004). 

Various morphologies of lead chalcogenide (PbS, PbSe and PbTe) nanocrystal have been 

reported  including spheres (Murray et al., 2001), cubes (Lu et al., 2005) rings (Cho et al., 2005), 

tubes (Tong et al., 2006), wires (Wang et al., 1998; Afzaal and O’Brien, 2006), dendrides (li et 

al., 2008), and spongelike structures (Kerner et al., 2001). In addition some groups have also 

reported shape evolution in PbSe nanocrystals from cubes to truncated octahedral (Cheng et al., 

2009), spheres to cubes (Lee et al., 2002) and star shape to cubes (Jdanov et al., 2004). The shape 

evolution for the lead chalcogenides can be affected by temperature, growth time, solvent and 
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precursor delivery. The synthesis of such nanocrystals has involved methods that include 

sputtering (Ge and Li, 2003), ultrasonic synthesis (Kumar et al., 2009), the injection of a solution 

of lead salt and tri-octylphosphinechalcogenide (TOP-E, E=S, Se, Te) into a hot solvent 

(Trindade et al., 1999; Akhtar et al., 2010),  thermolysis of single source precursors (Lee et al., 

2002; Trindade et al., 1997; Moloto et al., 2005; Berhanu et al., 2006; Du et al., 2008; Rhodes 

et al., 2011) or hydrothermal synthesis (Rhodes et al., 2011; Ziqubu et al., 2010). These methods 

generally involve high temperatures and/or quite difficult conditions such as high vacuum or 

high pressure or salt solvent mediated high temperature.  

In contrast to the other techniques, the liquid-liquid interface method is a one-step process that 

enables syntheses of nanoparticle arrays at the interface under ambient conditions. Thus, 

interfacial schemes hold out the promise of producing high-quality crystallites under mild 

conditions (Pan et al. 2004, 2008), since the systematic tuning of nanocrystallites size and shape 

remains a key objective in realizing both functionality and assembly. The liquid-liquid interface 

is therefore considered a new route to semiconductor nanocrystals, reliant on the barrier provided 

by the water-oil interface, to be a worthy addition to the arsenal of available techniques. 

Nanoparticles anchored to surfaces in the form of film are considered to be important because of 

their potential use in nanodevices. A liquid-liquid interface offers potential to synthesize 

nanoparticles, as well as casting them into films. At a liquid-liquid interface, the particles are 

highly mobile and rapidly achieve an equilibrium assembly (Russell et al., 2003). This method 

involves the reaction of a metal precursor dissolved in the organic layer with a reducing, a 

chalcogenide, or an oxidising agent in the aqueous layer. The material formed at the interface 

corresponds to an ultrathin nanocrystalline film consisting of closely-packed nanocrystals coated 

with the organic species present at the interface. 

The novelty of this method is that it involves a finite growth rate of the ultrathin nanocrystalline 

film with controllable parameters such as temperature and concentration. The nanocrystals in the 
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films can be readily extracted to aqueous or organic layers by adding suitable capping agents. 

Further, the nanocrystalline film obtained at the interface can be easily transferred onto a solid 

support such as mica, glass, quartz or a polymer film. With appropriate choice of metal 

precursors and reducing agents, a variety of nanocrystalline films can be fabricated. Unlike the 

air-water interface, the liquid–liquid (organic-aqueous) interface has not been investigated 

sufficiently, and it is only recently that there has been concerted efforts to understand the 

structure of the liquid-liquid interface. The liquid-liquid surface possesses unique 

thermodynamic properties such as viscosity and density. A liquid-liquid interface is a 

nonhomogeneous region having a thickness of the order of a few nanometres. The interface is 

not sharp, since there is always a little solubility of one phase in the other. 

Metal chalcogenide materials with critical dimensions in the nanometer range have been of 

considerable interests lately because of their unique physical and chemical properties, and the 

potential for use in a diverse range of applications. Zinc chalcogenide semiconductors are well-

established photo-conductors with several current and many potential uses. It is also a promising 

material for use in solar cells and in non-linear optical devices. CuSe is a p-type semiconductor 

material with potential application in solar cells, superionic conductors, thermoelectric devices 

and microwave shield coating.  It also has potential application in optical filters, nanoswitches, 

thermoelectric and photoelectric transformers and superconductors. Copper and indium based 

nanocrystals have been utilized as mid to low band gap photovoltaic materials (Braunger et al., 

1996; Wu et al., 2008). Lead chalcogenides (PbS, and PbSe) are frequently studied for their 

optoelectronic properties and represent promising components for a wide range of applications 

from near-infrared photodetectors to biological labelling materials (Konstantatos et al., 2006). 

Low-temperature cadmium based nanocrystals, CdS, CdSe, CdTe, are being explored for a 

variety of applications including light-emitting diodes, lasers, biological labelling and 

photovoltaic devices. Since size and shape drastically affect their electronic properties, there 
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have been significant advances in achieving strict morphological control.  However, most low-

temperature synthetic methods of CdS, CdSe and CdTe produce only ill-defined, highly 

agglomerated nanocrystals (Wang et al., 1999a; Wang et al., 1999b; Wang et al., 2000; 2002). 

1.1.1 Objectives of research and justification 

While the examples described in the previous section represent the most successful attempts 

towards low-temperature solution-phase synthesis of metal chalcogenide nanocrystals, high-

temperature routes  remain  the most dependable and popular methods to produce 

monodispersed, high-quality nanocrystals. Most low-temperature synthetic methods rely on 

poorly reactive reagents, such as thiourea and selenourea among others to serve as the 

chalcogenide source which often results in small, ill-defined, polydispersed nanocrystals.  In 

addition, reaction conditions whereby controlled anisotropic growth is favoured at lower 

temperatures are rare. Since the demand for nanocrystal-based technologies is steadily growing, 

there is a strong need for dependable and versatile synthetic strategies that avoid high-

temperatures, thus decreasing the energy and costs required to create nanocrystals. 

Inspired by the above, this research project seeks to explore the unique properties of the liquid-

liquid interface to synthesize semiconductor nanomaterials. It will also contribute to the 

development of the liquid-liquid interface as a full-fledged, generic, benign soft-chemical 

medium for the growth and deposition of thin films and nanoscopic material.  

The specific objective of this work is to synthesize nanomaterials of zinc, cadmium, copper and 

lead chalcogenide at the water-toluene interface using metal-dithiocarbamates and metal-

cupferronates precursors and characterize them. Dithiocarbamates and cupferronates belong to 

families of compounds whose chemistry is well known and analogues are readily available, 

making the present benign method potentially generic (Hogarth, 2005). The chalcogenide source 
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would either be a sulphide or selenide or telluride ion obtained by the borohydride reduction of 

sulphur or selenium or tellurium powder in ultrapure water. 

The justification of these objectives lie in the fact that the project is going to exploit the simple 

and unique properties of the water-toluene interface to synthesize these semiconductor materials 

which had hitherto been synthesized by sophisticated methods at high temperatures and/or quite 

difficult conditions such as high vacuum or high pressure or salt solvent mediated high 

temperature. Easy manipulation of the processes at the liquid-liquid interface would lead to the 

synthesis of particles with controlled sizes and morphologies. The variation of the deposition 

parameters such as concentrations of the precursors, deposition times, temperatures of the 

deposition and other rheological parameters will lead to the synthesis of nanomaterials with 

varied optical and electrical properties based on the quantum-size effects. With the appropriate 

choice of metal precursors and reducing agents, this work is also going to lead to the fabrication 

of a variety of nanocrystalline films. 

1.2 Inorganic materials 

Inorganic materials can be classified in a number of ways. One of the most common method is 

according to their ability to conduct electricity namely, conductors, insulators, and 

semiconductors (Singh, 2006, Brus, 1984). A material that has much lower resistance to the flow 

of electricity can be classified as a conductor. Common examples of conductors include copper 

(Cu), zinc (Zn), silver (Ag) and sodium (Na). In all these examples, there is a partially filled 

outermost band. For instance each copper atom has one 4s electron and so the 4s band is half 

filled. Electrons in this band are free to move when an electric field is applied. An insulator on 

the other hand offers more resistance to the flow of the electric current. All the electrons are held 

within the valence band and the conduction band remains completely empty. Due to large band 

gap it is energetically unlikely for an electron in the valence band to be promoted to the empty 
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conduction band. A semiconductor on the other hand, shows resistance to the flow of electric 

current in between those of insulators and conductors. They have completely filled band 

separated by a small band gap from an empty conduction band. As a result, electrons can obtain 

enough energy to move into the conduction band. The electrical conduction in semiconductors 

depends on temperature, illumination and magnetic field. Another way of defining a 

semiconductor is on the basis of free carrier concentration at room temperature. Semiconductors 

have moderate carrier density while conductors have rather large carrier density, and insulators 

have negligible carrier density. Table 1.1 shows the classification of inorganic solids on the basis 

of resitivity (ρ), energy gap (Eg), and carrier density (n) 

Table 1.1 Classification of inorganic materials according to electrical conductivity (Grahn, 1999) 

Type Resistivity 

(Ohm/cm) 

Eg (eV) n (cm-3) Examples 

Conductor 10-5 to 10-8 nil 1022 Copper, silver, tungsten, gold, 

carbon 

Semiconductor 10-2 to 109 0 Eg 4  1017 Lead sulphide, lead telluride, 

lead selenide, copper sulphide, 

copper selenide, zinc sulphide, 

zinc selenide, Cadmium 

sulphide, cadmium selenide 

Insulator  1012 to 1022 4 ≤ Eg    1 Sulphur, glass, quartz 
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1.3 Electronic structure of semiconductors 

Semiconductors are made up of individual atoms bonded together in a regular, periodic structure 

to form an arrangement whereby each atom is surrounded by 8 electrons. An individual atom 

consists of a nucleus made up of a core of protons (positively charged particles) and neutrons 

(particles having no charge) surrounded by electrons. The number of electrons and protons is 

equal, making the atom electrically neutral. The electrons occupy certain energy levels, based 

on the number of electrons in the atom, which is different for each element in the Periodic Table. 

The structure of a typical semiconducting material, silicon, is shown in Figure 1.1 below. 

   

Figure 1.1: Schematic representation of covalent bonds in a silicon crystal lattice (Honsberg and 

Bowden, 1999). 

The atoms in a semiconductor are materials from either group IV of the Periodic Table, or from 

a combination of group III and group V (called III-V semiconductors), or of combinations from 

group II and group VI (called II-VI semiconductors). Silicon is the most commonly used 

semiconductor material as it forms the basis for integrated circuit (IC) chips. Most solar cells are 

also silicon based. Figure 1.2 shows a section of the Periodic Table where the elements (either 

in single forms or in compound forms or alloyed forms) are semiconductors. A semiconductor 
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can be either of a single element, such as Si or Ge, a compound, such as GaAs, INP or CdTe, or 

an alloy, such as SixGe (1-x) or AlxGa (1-x) as, where x is the fraction of the particular element and 

ranges from 0 to 1. 

 

Figure 1.2: Part of the Periodic Table showing the elements involved in the formation of 

semiconductors (Liu, 1999).  

 

The bond structure of a semiconductor determines the material properties of a semiconductor. 

One of the key effects is that it limits the energy levels which the electrons can occupy and how 

they move about in the crystal lattice. The electrons surrounding each atom in a semiconductor 

are part of a covalent bond. A covalent bond consists of two atoms "sharing" a single electron, 

such that each atom is surrounded by 8 electrons (octet rule). The electrons in the covalent bond 

are held in place by this bond and hence they are localised to the region surrounding the atom. 

Since they cannot move or change their energy, electrons in a bond are not considered "free" and 

cannot participate in current flow, absorption or other physical processes which require presence 

of free electrons. However, it is only at absolute zero temperature that all electrons are in a 

bonded arrangement. At elevated temperatures, the electron can gain enough energy to escape 
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from its bond, and when this happens, the electron is free to move about the crystal lattice and 

participate in conduction. At room temperature, a semiconductor material has enough free 

electrons to allow it to conduct current, while at, or close to absolute zero temperatures, a 

semiconductor behaves like an insulator. 

 

Figure 1.3: Simplified diagram of the electronic band structure of metals, semiconductors, 

 and insulators (Gong and Barron, 2012). 

 

The presence of the bond introduces two distinct energy states for the electrons. The lowest 

energy position for the electron is to be in its bound state. However, if the electron has enough 

thermal energy to break free of its bond, then it becomes free. The electron cannot attain energy 

values intermediate to these two levels; it is either at a low energy position in the bond, or it has 

gained enough energy to break free and therefore has a certain minimum energy. This minimum 

energy is called the band gap of a semiconductor. The number and energy of the free electrons 

is basic to the operation of electronic devices. 
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The space left behind by the electrons allows a covalent bond to move from one electron to 

another, thus appearing to be a positive charge moving through the crystal lattice. This empty 

space is commonly called a "hole", and is similar to an electron, but with a positive charge. 

The most important parameters of a semiconductor material for its operation in electronic 

devices and solar cells are: the band gap, the number of free carriers available for conduction, 

and the "generation" and recombination of free carriers in response to the electric field, 

temperature and light shining on the material. 

The band structure of a semiconductor gives the energy of the electrons on the y-axis and is 

referred to as a "band diagram". The lower energy level of a semiconductor is referred to as the 

"valence band" (Ev) and the energy level at which an electron can be considered free is called 

the "conduction band" (Ec). The band gap (Eg) is the distance between the conduction band and 

valence band. Figure 1.3 shows a simplified diagram of the electronic band structure of metals, 

semiconductors and insulators. 

Once the electron is in the conduction band, it is free to move about the semiconductor and 

participate in conduction. However, the movement of an electron to the conduction band leaves 

behind an empty space for another electron. Therefore, an electron from a neighbouring atom 

can move into this empty space creating behind another space. The continuous movement of the 

space for an electron, "hole", can be illustrated as the movement of a positively charged particle 

through the crystal structure. Consequently, the movement of an electron to the conduction band 

results not only in an electron in the conduction but also a hole in the valence band. Hence both 

the electron and hole can participate in conduction and are known as "carriers". The thermal 

excitation of a carrier from the valence band to the conduction band creates free carriers in both 

bands. 
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In order to understand the physics and application of semiconductors, there is the need to study 

the band theory. Band theory is basically derived from the molecular orbital theory (MOT) 

(James, 2008). According to the MOT the linear combination of atomic orbitals approximation 

(LCAO) results in the formation of molecular orbitals on the basis of interaction of wave 

functions as shown in Figure 1.4. Hydrogen molecule (H2) is a typical example in which the 

single s electron wave functions of two hydrogen atoms (commonly represented as A + B) 

interact with all possible linear combinations to generate a bonding and antibonding orbital (1 

and 2) respectively. 

  1 =  A  +  B   and  2  =  A  -  B 

 

Figure 1.4: Schematic diagram of molecular orbitals in inorganic solids on the basis of linear 

combination of atomic orbitals (LCAO) (Daintith, 2004). 

 

The molecular orbitals thus formed thus have different energy levels than the corresponding 

overlapping atomic s orbitals. The bonding orbitals have lower energy while the antibonding 

orbitals are higher in energy than the original atomic orbitals. The two s electrons from hydrogen 
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atoms in each case occupy the lowest possible energy configuration therefore populating the 

bonding orbitals whereas the antibonding orbitals remain unoccupied (Daintith, 2004). In a 

similar way, due to large number of combining atomic orbitals in materials (conductors, 

insulators and semiconductors) these energy levels merged together and form energy bands as 

shown in Figure 1.3. Each band has a different energy and the electrons fill these bands from the 

lowest energy to the highest, similar to the way electrons occupy the orbitals in a single atom. 

The band gap is the difference in energy between the valence and conduction bands. The laws 

of quantum mechanics forbid electrons from being in the band gap; thus, an electron must always 

be in one of the bands (Singh, 2006).  

Electrons are unable to occupy the region between energy bands and this region is termed as the 

band gap (Eg). Absorption of energy results in transition of an electron from the valence band 

that crosses the band gap and shifts to the conduction band. The energy required for this transition 

is a characteristic of the particular material in question. These unique band gaps are usually 

measured in electron-volts. In a metal (Cu, Ag), the valence band is only partially filled with 

electrons. This means that the electron can access empty areas within the valence band, and move 

freely across all atoms that make up the solid as shown in Figure 1.5 (a). A semiconductor Figure 

1.5 (b) is a special case in which the band gap is small enough for electrons in the valence band 

to be able to jump into the conduction band using thermal energy. Thus an important property 

of semiconductors is that their conductivity increases as they heat up and more electrons fill the 

conduction band. In an electrical insulator, there is no possibility for electron transition (Figure 

1.5 (c)), because the valence band is completely filled with electrons, and the conduction band 

is too far away in terms of energy to be accessed by these electrons. 
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Figure 1.5. Schematic diagram of electronic band structure of (a) conductor (b) semiconductor 

and (c) insulator (Anthony,  1999) 

           

                                                                        

Figure 1.6. Electronic diagram of (a) Si semiconductor crystal showing the distribution of 

electrons in the outer shell of each Si atom; (b) n-type doping, the fifth electron does not 

contribute to the bonding, free to move inside he Si crystal; (c) p-type doping (Anthony,  1999). 

 

(a) 
(b) 

(c) 
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1.4 Extrinsic and intrinsic semiconductors 

Extrinsic semiconductors have their electrical properties based on impurities, also known as 

dopants. They have considerably higher conductivity compared to intrinsic semiconductors. The 

commercially available semiconductors belong to this type. The process of addition of controlled 

impurities is known as doping which can tailor the electronic and conductivity properties. The 

addition of impurity atoms into a semiconductor material produces new energy levels within the 

band gap. When a semiconductor is doped with atoms having more valence electrons (doping of 

silicon with phosphorus), the materials are termed as n-type as shown in Figure 1.6 (b). The extra 

non-bonded electron remains bonded to phosphorus atom. When this electron is promoted to the 

conduction band by utilizing thermal energy at room temperature, a positive charge on each 

phosphorus atom is created. This positive charge is attached to the phosphorus nuclei and does 

not act as mobile hole. Under the charge imbalance, the Fermi level shifts towards the conduction 

band and a new energy level is thus formed as shown in Figure 1.7 (a).  

  

Figure 1.7. (a) A direct transition from the valence band (VB) to the conduction band (CB), (b) 

and (c) fundamental absorption of photon of GaAs (Kudman and Seided, 1962) and CdTe 

(Rakhshani, 1997) respectively. 

 

b a c 
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However, when doping is created with such atoms which have one less valence electron than the 

host (e.g. doping of silicon with boron) as shown in Figure 1.6 (c), the impurity atoms act as 

electron acceptors and create holes (positive charge) in the host materials. They are known as p-

type and the Fermi level shifts close to the valence band as in Figure 1.7 (b) (Anthony, 1999). 

Besides, a number of compound semiconductors can act as n-type or p-type materials based on 

defects within the crystal lattice. These defects arise due to vacant sites in the lattice points 

corresponding to the stoichiometry of the compounds. For example, in PBS, due to excess of 

sulphur vacancies it acts as n-type or p-type due to excess of Pb sites. 

1.5 Direct and indirect band gap semiconductors 

The band gap of a semiconductor is always one of two types, a direct band gap or an indirect 

band gap. The band gap is said to be "direct" if the momentum of electrons and holes is the same 

in both the conduction band and the valence band; an electron can directly emit a photon. In an 

"indirect" band gap, a photon cannot be emitted because the electron must pass through an 

intermediate state and transfer momentum to the crystal lattice. The minimal-energy state in the 

conduction band and the maximal-energy state in the valence band are each characterized by a 

certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are the same, it is 

called a "direct gap". If they are different, it is called an "indirect gap". Band- to- band absorption 

occurs due to the photo excitation of an electron from the valence band to the conduction band. 

In crystalline solids, the band structures depend on the electron wave vector K.  On the basis of 

transition between band to band, semiconductors can be grouped as direct and indirect band gap 

semiconductors (Kudman and Seided, 1962, Rakhshani, 1997).  

In direct band gap semiconductors (e.g. GaAs, PbS or ZnO), the process does not involve 

phonons. Since phonon momentum is negligible compared with electron momentum, the K-

vector does not change. A direct transition on the E-K diagram is a vertical transition from an 
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initial energy E and wave vector K in the VB to the final energy E’ and wave vector K’ in the 

CB where K’ = K as shown in Figure 1.8 (a) (Singh, 2006). The energy (E-Ec) is the kinetic 

energy of the electron with an effective mass Q, and Ev-E is the kinetic energy of the hole left 

behind in the VB. The Eg is band gap energy (Ec-Ev) (Singh, 2006). Figure 1.7 (b) and (c) 

represents the direct band gap of GaAs and CdTe semiconductors, the extrapolation to zero 

phonon energy provides band gap Eg which is 1.40 eV for GaAS and 1.46 eV for CdTe. 

In indirect band gap semiconductors, absorption of phonons requires the absorption thick layer 

or emission of phonons as illustrated in Figure 1.8 (a). For indirect band gap semiconductor like 

silicon, an electron cannot be directly excited to the conduction band with energy Eg. Additional 

energy is required as a phonon, the electron undergoes a change in momentum obtain an indirect 

transition with energy Ev = Eg + Ephonon is obtained. The phonon energy, Eph, is very small 

compared to Eg.  

 

Figure 1.8 (a) Indirect transition across the band gap involve phonons; (b) Fundamental 

absorption in Si at two temperatures (Singh, 2006).  

Figure 1.8 (b) shows fundamental absorption of Si at two temperatures. Since indirect transition 

require the participation of phonon (lattice vibrational energy) and hence are unambiguously 

dependent on temperature. The absorption coefficient for indirect semiconductors is smaller than 

for direct semiconductors; in essence light absorption is less efficient process for indirect 

a b 
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semiconductors. Indirect band gap semiconductors have lower absorption co-efficient for 

example, 99 % of light photons with energy equal to the band gap of CdTe (1.45 eV) are absorbed 

by a 1 µm. By comparison, crystalline silicon (indirect band gap material) requires 20 µm 

thickness layers.  

Similarly, in the case of light emission, a direct band gap material is also more likely to emit a 

phonon than an indirect band gap material. Indirect band gap materials are occasionally used for 

some LEDs; they result in low conversion efficiency. Direct band gap materials are used 

exclusively for semiconductor laser diodes. Table 1.2 shows band gaps and other important 

parameters of selected semiconducting materials (Grahn, 1999).   

1.6 Applications of semiconductors 

Semiconductors form the basis of the modern information processing devices. In essence the 

current technological modern life would not be possible without the semiconductor industry. The 

fabrication of the first semiconductor device in 1948 at Bell laboratories stimulated scientists to 

prepare improved technological devices. To date, these tiny structures are integral components 

of CD/DVD players, cellular phones and computers. In addition, they have also been used to 

prepare diodes, bi-polar junction transistors and field effect transistors. The fabrication of 

modern optoelectronic devices such as laser diodes, modulators and detectors is very much 

indebted to them. Semiconductors also provided a platform to explore fundamental questions of 

physics.  
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Table 1.2: Physical properties of commonly used semiconducting materials (Grahn, 1999) 

Semiconductors Bang gap (eV) Band gap type Lattice 

Parameters (A) 

Crystal Structure 

IV - IV     

Ge 0.66 Indirect 5.846 Cubic 

Si 1.12 Indirect 5.437 Cubic 

II - IV     

ZnS 3.68 Direct 5.420 Cubic 

CdS 2.42 

2.51 

Direct  

Direct 

5.832 

6.710 

Cubic 

Hexagonal 

ZnSe 2.70 

4.00 

Direct  

Direct 

5.669 

6.54 

Cubic 

Hexagonal 

CdSe 1.70 

1.75 

Direct 

Direct 

6.050 

7.010 

Cubic 

Hexagonal 

CdTe 1.56 Direct 6.482 Zinc blend 

III - V     

GaAs 1.42 Direct 5.653 Cubic 

InP 1.35 Direct 5.869 Cubic 

InAs 0.36 Direct 6.058 Cubic 

AlAs 2.16 Indirect 5.661 Cubic 

IV – VI     

PbTe 0.29 Direct 6.439 Cubic 

PbSe 0.27 Direct 6.12 Cubic 

PbS 0.41 Direct 5,9 Cubic 
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Table 1.3: Applications of some important semiconductors (Jones and O'Brien, 1997). 

Materials Devices Applications 

GaAs/AlGaAS Detectors, infrared LEDs, 

lasers 

Remote control TV, video 

disk players, rang findings, 

optical fibre communication 

InP/InGaP Infrared LEDs, lasers (1.6 µm) Optical fibre communication 

InP/InGaAs 1-1.6 m detectors Optical fibre communication, 

Displays, laser 

InGaAlAs/InGaAS 1.67-2 m LEDs Printers/scanners 

GaInAlP LEDs and lasers Watches, calculators 

Si Detectors, solar cells Detectors 

SiC Blue LEDs Displays 

GaSb/GaAlSb/InSb Long wavelength detector Infrared imaging, night vision 

sights, missile seekers 

PbS IR-detectors, photodetectors Optical fibre communication, 

sensors, lasers 

PbSe IR-detectors, photodetectors Optical fibre communication, 

sensors 

PbTe Thermoelectric devices Heating devices 

 

Quantum Hall Effect (QHE), tunnelling effect (TE) and multiple exciton generation (MEG) are 

some noteworthy processes that have been studied in semiconductor structures. Table 1.3 shows 

the main application of semiconductors (Jones and O'Brien, 1997).  
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1.7 Semiconductor nanoparticles 

Nanocrystalline particles represent a state of matter in the transition region between bulk solid 

and single molecule. As a consequence, their physical and chemical properties gradually change 

from solid state to molecular behaviour with decreasing particle size. The band structure 

gradually evolves with increasing particle size, i. e., molecular orbital convert into delocalised 

band states. Figure 1.9, shows the size quantization effect responsible for the transition between 

a bulk metal or semiconductor, and cluster species. In a metal, the quasi-continuous density of 

states in the valence and the conduction bands splits into discrete electronic levels, the spacing 

between these levels and the band gap increasing with decreasing particle size (Schön and 

Simon, 1995). Also for semiconductors the band gap increases when the particle size is decreased 

and the energy bands gradually convert into discrete molecular electronic levels (Weller, 1993). 

By judiciously choosing the size of the semiconductor nanoparticles one can alter the energy 

width of the band gap and consequently tune the optical and electrical response of the material.  

 

 

Figure 1.9. Size quantization effect. Electronic state transition from bulk metal/semiconductor 

to small cluster (Alivisatos,  1996b). 
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One fact that should not be forgotten in all of these is that the chemical compound (material) 

remains in essence the same and therefore has effectively the same composition and chemistry. 

The nanomaterials are considered as artificial atoms and occupy a unique position as a bridge 

between atoms and bulk solids as shown in Figure 1.10. This is a major advantage that therefore 

arises from the use of materials at the nanometre scale as any chemical modification that has 

been successfully applied to one size (colour) can be further applied to any other. This is unlike 

the case for dye stuffs, where the optically active centres are molecular and where to change the 

optical properties one must engineer the molecule. This is by its very nature a more challenging 

prospect and once achieved still only allows one characteristic absorption and emission profile. 

On the other hand by stopping the growth of nanoparticles at a particular size one can effectively 

pre-select the part of the spectrum that one wishes the material to be active in. By removing 

portions of the growth mixture at different times one can obtain the material at a number of 

different sizes and therefore, where the different fractions are optically active, obtain material 

which has been tuned to be active in a number of different regions of the spectrum. 

One of the most important criteria that one must consider when dealing with the “quality” of a 

sample of nanoparticles is the polydispersity i.e. the range of sizes present in the sample. It makes 

sense of course that if the properties of the material are determined by the size then having a 

wide range of sizes present will lead to a situation where the required property is smeared out or 

hidden due to the range of size determined properties present in the sample. This makes it 

difficult to determine accurately the extent of the property of interest or at the very least the 

material becomes more difficult to characterize. An added advantage to being able to achieve 

monodisperse samples is the tendency of such systems to self-assemble giving access to 

secondary (monolayer) and even tertiary (multilayer) levels of organisation. 

The properties of bulk materials are determined by intramolecular bonding forces as their 

strength is much stronger than intermolecular binding forces therefore, electronic, optical 
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properties of such materials are independent of the size of the crystal (Brus, 1984). On the other 

hand, inorganic semiconductors and metals consist of network of ordered atoms, where 

electronic excitations from valence band to conduction band results in the formation of loosely 

bound electron-hole pair usually delocalized over a length longer than the lattice constant of the 

material. As the size of the semiconductor crystallite approaches this exciton Bohr diameter, 

electronic properties start to change. This effect is known as the quantum size effect (QSE). 

 

Figure1.10. Schematic diagram to show energy levels in an isolated atom, molecule, nanocrystal 

and bulk solid (Roduner, 2006).   

1.8 Quantum size effects 

Quantum size effects are unusual properties of extremely small crystals that arise from 

confinement of electrons to small regions of space in one, two, or three dimensions. Figure 1.11 

shows quantum confinement and corresponding increase in band gap whereas Figure 1.12 shows 

the density of states for a free electron gas in various dimensions. In a metal thin film of a 

semiconductor, the conduction electrons are confined in a quantum-size region bound by the 

vacuum on one side and the metal semiconductor interface on the other, which produces quantum 

levels or sub-bands known as quantum well states. Such quantum-size effect can influence the 
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stability of metal thin films on a supporting substrate. Their model contains three central 

ingredients: (i) quantum confinement, (ii) charge spilling, and (iii) interface-induced Friedel 

oscillations. Electronic confinement within the metal over layer can mediate an effective 

repulsive force between the interface and the metal surface, acting to stabilize the over layer. 

Electron transfer from the over layer to the substrate leads to an attractive force between the two 

interfaces, acting to destabilize the flat over layer. Interface-induced Friedel oscillatory 

modulation in electron density can further impose an oscillatory modulation on to the two 

previous interfaces. These three competing actors, all of electronic nature, can make a flat metal 

over layer critically or marginally stable or totally unstable against roughening. 

 

Figure 1.11 Quantum confinement – Increase in band gap (Rao et al., 2007). 

 

Figure 1.12: Density of states for a free electron gas in various dimensions (general trend) 

(Arregui, 2004). 
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When the system size achieves the same order of its components, a transition from the scalable 

to the non-scalable regime occurs because the strength of the interaction between the particles is 

of the same order as the total energy of the system. This new emergent nature can be triggered 

by different processes that compete or complement with each other to give peculiar properties to 

the system. When the size of the system achieves the electron wavelength the role of Quantum 

Mechanics is crucial. Nevertheless, even from the classical point of view, if the system size is of 

the same order of the atomic scale, the addition or subtraction of one atom produces non-scalable, 

discontinuous and eventually qualitative changes. Finally, a third one that is closely related to 

the previous ones is the reduction of the dimensionality (i.e., the system becomes very small in 

1, 2 or 3 dimensions of the space). 

The effect of the dimensionality on quantum mechanical properties is shown in Figure1.9, where 

the density of states (DOS) of an electron gas is plotted. For zero-dimensional systems the DOS 

are delta functions located at the energies of the allowed electronic states. In a one-dimensional 

system the DOS still has divergences at the energy positions of the confined states. For the two-

dimensional electron gas the stepped DOS is quite similar to the 3-dimensional or bulk 

continuous function. 

When the size is comparable to the mean free path of the conduction electrons, the mesoscopic 

transport regime is entered leading to so-called finite-size effects (FSE) or classical-size effects 

(CSE). These effects include additional electron scattering processes both at the surface of the 

structure and at inner grain boundaries. When the structure size even reaches the Fermi-

wavelength λF and, hence, the electronic wave function becomes confined, quantum-size effects 

(QSE) are expected to occur which involve a change of the density of states and, thus, affect the 

transport properties as well as the optical properties. 
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The quantum size effect describes the physics of electron properties in solids with great 

reductions in particle size. This effect does not come into play by going from macro to micro 

dimensions. However, it becomes dominant when the nanometer size range is reached. Quantum 

effects can begin to dominate the behaviour of matter at the nanoscale – particularly at the lower 

end (single digit and low tens of nanometers) – affecting the optical, electrical and magnetic 

behaviour of materials. Materials can be produced that are nanoscale in one dimension (for 

example, very thin surface coatings), in two dimensions (for example, nanowires and nanotubes) 

or in all three dimensions (for example, nanoparticles and quantum dots). 

The causes of these drastic changes stem from the weird world of quantum physics. The bulk 

properties of any material are merely the average of all the quantum forces affecting all the atoms 

that make up the material. As things are made smaller and smaller, eventually a point would be 

reached where the averaging no longer works and specific behaviour of individual atoms or 

molecules have to be dealt with - the behaviour that can be very different from when these atoms 

are aggregated into a bulk material. 

Materials reduced to the nanoscale can suddenly show very different properties compared to 

what they show on a macro scale. For instance, opaque substances become transparent (copper); 

inert materials become catalysts (platinum); stable materials turn combustible (aluminium); 

solids turn into liquids at room temperature (gold); insulators become conductors (silicon). 

Quantum size effects (QSE) can be defined as the increase in band gap of a metal or 

semiconductor material with increase in the size of the particle. It results in the formation of 

discrete energy levels of the electrons and holes. The QSE can be observed as a blue shift in the 

optical absorption spectrum of the NCs. For example, in CdS, QSE occurs when the crystallite 

diameter is comparable or below the exciton diameter of 50-60 Å (3000-4000 atoms), however, 

in PbS this size effect can be observed for a crystallite as large as 180 Å, which contains over 
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105 atoms. In confinement regime, electrons and holes are trapped in a small area, leading to 

novel physical and chemical properties. Quantum confinement of holes and electrons takes place 

in two-dimensions (2-D), one-dimensions (1-D) or zero-dimensions (0-D) (Wise, 2000). The 

nanocrystals are promising and ideal materials for applications in devices from optoelectronics, 

single electron transistors and light emitters, nonlinear optical devices, catalysis, solar energy 

conversions, photonic band gap materials to biomedical applications. 

1.9 Properties of nanoparticles (NPs) 

1.9.1 Electronic properties 

The size-dependent properties of nanoparticles can be attributed to two main factors: their small 

size and extremely large surface-to-volume (S/V) ratio. These two are interrelated since the S/V 

ratio increases as the size decrease, for example, S/V = 3/r for a spherical particle. In general, 

the density of electronic states (DOS) decreases and the energy level spacing increases as a 

consequence of reducing the dimensionality, which means that a charge carrier in nanoparticles 

is no longer solvated in an effectively infinite medium. From a quantum mechanical point of 

view, it is due to the spatial confinement of the wave function of charge carriers, which is termed 

quantum size confinement and result in the quantization of energy states.  

1.9.2 Metallic nanoparticles 

The energetic band structures in a metallic atom, a metallic nanoparticle and a bulk metal are 

compared in Figure 1.13. The bulk metal has a band structure that consists of a large number of 

electronic levels with very similar energy. In a metallic atom, the electronic structure features a 

series of discrete energetic levels with a highest occupied molecular orbital (HOMO) and a 

lowest unoccupied molecular orbital (LUMO). However, in a nanoparticle consisting of a few 

tens or hundreds of atoms, the structured s- and d-bands are beginning to be split and disappear 
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and discrete energy levels are appearing but not truly forming. There is no sharp borderline 

between these two fundamental situations, but this transition is continuous. The description of 

bulk metals is made in terms of the laws of classical physics. And quantum mechanics is a well-

established theory for describing the electronic situation in molecules and atoms. So far, there is 

nothing new, however, in relation to nanoparticles. The model of the “electron in a box”, 

normally used for atoms, helps to describe simply the situation in small metal particles when 

size restriction begin to influence electronic behaviour. 

 

Figure 1.13 Comparison of the electronic band structure of a metallic atom (a), a metallic 

nanoparticle (b) and a bulk metal (c). EF = Fermi energy; DOS = density of states (Alivisatos,  

1996b). 

 

The most important property of a metal is its conductivity. For example, in d10 elements such as 

palladium, platinum, or gold, the s-bands can function as unoccupied bands for transfer of 

electrons located in the fully occupied d-bands. The conductivity in the bulk metal follows the 

classic Ohm’s law. However, as a metal particle becomes small enough, discrete energy levels 

finally dominate and, as a consequence, ohms law is no longer valid. Indeed, small gold 

nanoparticles consisting of less than 200 gold atoms do not show a linear current response with 
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respect to the potential but a successive single electron transfer behaviour even at room 

temperature (Chen et al., 1998).  

1.9.3 Size dependent effects of nanoparticles  

According to the theory of energy levels in solid-state physics, the electronic properties of a bulk 

semiconductor are determined by the energy band gap (𝐸𝑔) between valence band (VB) and 

conduction band (CB): 

  𝐸𝑔 = 𝐸𝐶𝐵− 𝐸𝑉𝐵      (1.1) 

As particles become smaller, their electronic structure changes, and eventually the charge 

carriers produces discrete energy states in the valence and conduction bands due to local 

confinement: there is no sufficient space for electron-hole pairs to form. The electronic and 

optical properties of such small particles are hence more like those of a molecule than an 

extended solid. Size dependent effects are expected to occur when the particle size become 

smaller than the Bohr radius of the first exciton in the bulk semiconductor. The Bohr radius is 

defined as: 

  𝑟𝐵 = 
ℎ2𝜀0𝜀𝑟

𝜋𝑒2𝑚∗𝑚0
      (1.2)  

Where h is the Plank constant, 𝜀0 and 𝜀𝑟 are the dielectric constants of the vacuum and the 

semiconducting material, respectively; e, 𝑚∗ and 𝑚0 are the elementary charge, the effective 

mass of the charge carriers and the electron mass, respectively. In general, semiconducting NPs 

with physical dimensions smaller than  𝑟𝐵 are termed quantum dots. In quantum dots, the band 

gap energy becomes size-dependent (Brus, 1984): 

𝐸𝑔(𝑄𝐷𝑠) =  𝐸𝑔(𝑏𝑢𝑙𝑘) +  
ℎ2

8𝑟2
(

1

𝑚𝑒
∗𝑚0

+  
1

𝑚ℎ
∗ 𝑚0

)−
1.82𝑒2

4𝜋𝜀0𝜀𝑟
−

0.124𝑒4

ℎ2(4𝜋𝜀0𝜀𝑟)2
(

1

𝑚𝑒
∗𝑚0

+  
1

𝑚ℎ
∗ 𝑚0

)
−1

  (1.3) 
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The first term is the band gap energy of the bulk semiconductor, r is the particle radius, 𝑚𝑒
∗  and 

𝑚ℎ
∗  are the effective mass of the electron and hole, respectively. The third term shifts 𝐸𝑔(𝑄𝐷𝑠) 

to smaller energy as r, while the second term shifts 𝐸𝑔(𝑄𝐷𝑠)to higher energy as𝑟2. The fourth 

term is generally very small. Thus the apparent band gap energy will always increase for small 

enough r. 

1.9.4 Surface effect and nanoparticle stability 

With decreasing the size of metal particles, the percentage of surface atoms increases. This is an 

important point to be considered when one discusses the properties of nanoparticles. The 

influence of surface atoms becomes more important the smaller the particle is. Strictly speaking, 

only the inner-core atoms represent a minute piece of the bulk with strong quantum size effects. 

Physical measurements that give averaged information on the total particle are therefore always 

to be considered in this light. Another surface effect is equally important: nanoparticles in 

general are provided with a protective shell of ligand molecules. Otherwise, one would not be 

able to prepare them by chemical methods and especially to isolate and to investigate them as 

individual particles. Nanoparticles can be stabilized electrostatically in solutions. Basically, the 

repulsive interaction of the diffuse layers around nanoparticles offsets the van der Waals 

interactions. The sum of these two energies determines the particle stability. High diffuse layer 

potentials and low electrolyte concentrations, which increase the range of repulsion, are 

necessary for nanoparticles stability. A typical example is the stabilization of gold nanoparticles 

prepared by citrate reduction following the Turkevich method (Enustun and Turkevich, 1963). 

In this case, gold nanoparticles are stabilized by an electric double layer composed of bulky 

citrate ions, chloride ions and the cations attached to them. In contrast to the charge-stabilization 

of nanoparticles, the stabilization of nanoparticles by ligands which form chemical bonds with 

or chemisorb onto the particle surface are an effective method, which also enable nanoparticles 
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use for a variety of purposes. A typical example is the stabilization of gold nanoparticles by 

molecules with mercaptan groups, which have a very strong affinity for gold surfaces and ensure 

the formation of a dense monolayer on the surface. The merit of this approach is that the 

stabilized nanoparticles can be repeatedly isolated from and dissolved in the dispersing solvent 

without irreversible aggregation or decomposition. Importantly, further functionalization is 

possible by ligand-exchange reactions. 

1.9.5 Optical properties 

1.9.5.1 Optical absorption of nanoparticles 

According to Lambert-Beer law, for a dilute colloidal solution, if the particles are much smaller 

than the incident light wavelength, the electric dipole absorption is predominant: 

   A = log(
𝐼0

𝐼
) = 

𝑁𝜎𝑙

2.303
     (1.4) 

Where l in cm is the light path in a spectrophotometer, N in cm-3 is the number density of the 

particle, σ is the extinction cross-section of a single particle in cm-2 and I0 and I are the initial 

and final intensities of the light. For a metallic nanoparticle, σ is given by: 

 σ = 
24𝜋2𝑟2𝜀𝑚

3/2
𝜀2

(𝜀1+2𝜀𝑚)2+ 𝜀2
2      (1.5) 

where λ is the wavelength of the incident light, r is the particle radius, 𝜀𝑚 is the dielectric function 

of the medium, 𝜀1 and 𝜀2 are the real and imaginary parts of the complex dielectric function of 

the particle (ε = 𝜀1 + i𝜀2). Considering the motions of electrons in a spherical metal nanoparticle 

under the effect of an electric field vector of the light, it is possible to get: 

 𝜀1 = 𝜀∞ − 
𝜔𝑝

2

𝜔2+ 𝜔𝑑
2      (1.6) 
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𝜀2 = 
𝜔𝑝

2𝜔𝑑

𝜔(𝜔2+ 𝜔𝑑
2)

     (1.7) 

Where ω is the frequency of the incident light, 𝜀∞ is the high-frequency dielectric constant, 𝜔𝑑 

is the relaxation or damping frequency and 𝜔𝑝 is the bulk plasma frequency.  

For a semiconductor nanoparticle, if the optical transitions are far from the strong resonance and 

far from the band edges where the density of states could be approximated as a continuum, its 

extinction cross-section can be formalized to the sum of the absorption (σabs) and scattering (σscat) 

cross sections (van de Hulst, 1957,1981): 

σex = σabs + σscat      (1.8) 

For particles with radii much smaller than the light wavelength, σabs is much larger than σscat . 

Therefore, the latter can be neglected. Then for the absorbing particles with isotropic 

polarizability, σabs can be evaluated from: 

σ = 4πkRe (iα) = 
8𝜋2𝑚2


𝑅𝑒(𝑖𝛼)   (1.9) 

Where k is the wave vector and λ the light wavelength, α is the polarizability of the dielectric 

sphere: 

α = 
𝑚1

2− 𝑚2
2

𝑚1
2+ 2𝑚2

2 𝑎3    (1.10) 

Where 𝑎 is the radius of the particle, 𝑚1 = 𝑛1− 𝑖𝑘1 and 𝑚2 = 𝑛2− 𝑖𝑘2 are the complex refractive 

indices of the particle and the solvent. Thus, σabs is given by: 

σabs = 
8𝜋2𝑚2


 x 

(2𝑛1𝑘1− 2𝑛2𝑘2)(𝑛1
2− 𝑘1

2+ 2𝑛2
2− 2𝑘2

2)− (𝑛1
2− 𝑘1

2− 𝑛2
2+ 𝑘2

2)(2𝑛1𝑘1+ 4𝑛2𝑘2)

(𝑛1
2− 𝑘1

2+ 2𝑛2
2− 2𝑘2

2)
2

+ (2𝑛1𝑘1+ 4𝑛2𝑘2)2
  (1.11) 
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1.9.5.2 Size dependent optical properties 

For a bulk metal, there is: 

 𝜔𝑑 = 
𝐹

𝑟∞
      (1.12) 

Where 𝑣𝐹 is the electron velocity at Fermi level and 𝑟∞ the mean free path of the electron in the 

bulk metal. When the particle radius, r, is smaller than 𝑟∞, the mean free path, R, becomes size-

dependent with:  

  
1

𝑅
 = 

1

𝑟
 + 

1

𝑟∞
     (1.13) 

It can be seen that a decrease in the particle size leads to an increase in𝜔𝑑, causing the band to 

broaden and the maximum intensity to decrease. The peak position is virtually unaffected by 

small changes of 𝜔𝑑, but for large damping frequencies, a slow shift to lower energies occurs. 

For rather small particles (< 1-2 nm), quantization of the energy levels within the conduction 

band takes place as the metal character of the particles begins to disappear, and the Plasmon band 

characteristic of the delocalized electrons breaks up into discrete bands due to single electron 

optical transitions.  

For semiconducting nanoparticles, the fundamental absorption edge is related to the band gap 

energy via: 

 𝜆𝑔(𝑛𝑚) = 
1240

𝐸𝑔(𝑒𝑉)
    (1.14) 

Since in quantum dots the effective band gap increases with decreasing size of the particles, 

accordingly, a blue shift in the band edge absorption will be observed. 
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1.9.5.3 Luminescence properties 

For a d10 metallic nanoparticle, absorption of light by the d-band electrons leads to interband 

transitions of these electrons to the empty sp-conduction band above the Fermi level. Both 

electrons and holes can relax by scattering with phonons then recombine radiatively to give rise 

to the visible luminescence (Huang and Murray, 2001). Light excitation of a semiconducting 

nanoparticle with an energy higher than that of the band gap leads to an electron-hole pair in the 

nanoparticle. The recombination lifetime of this excitation is usually small (in the picosecond to 

microsecond range) depending on the recombination pathway. Ideally, the luminescence of 

semiconducting nanoparticles should be size dependent as that of the excitation, but it is not the 

case. First, the nature of the nanoparticle surface strongly influences the luminescence through 

the surface trap states, which may result from a lot of factors, such as structural defects, atomic 

vacancies, dangling bonds, and adsorbates at the interface. For well-passivated surfaces, the 

luminescence of the nanoparticles is indeed very strong and is blue-shifted when the nanoparticle 

size is decreased. The luminescence is attributed to the radiative band-gap or near-band-gap 

(shallow trap states) recombination. However, if the electrons and/or holes are able to crossover 

into traps of various energy levels, the possibility of radiative recombination is decreased. A 

weak, broad, and substantially red shifted luminescence band is usually observed, indicating the 

loss of the radiationless recombination (Rogach et al., 1999; Gao et al., 1998). Second, if the 

holes or electrons are preferentially scavenged by a reducing or oxidizing species, the 

nanoparticle is left with electrons (or holes) solely. As electrons and holes are separated into two 

different phases, the lifetime of the charge carriers in the nanoparticle can be relatively long 

(Germeau et al., 2003). Third, electrons can be injected into semiconducting nanoparticles using 

strong reducing species. The oxidized species form then the positive counter charge, 

compensating the charge of the electrons in the nanoparticles (Wang et al., 2001; Shim and 

Guyot-Sionnest, 2000). 
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1.10 The Liquid-liquid interface method assembly at fluid interface 

The self-assembly of nanoparticles at fluid interfaces (liquid–vapour and liquid–liquid) has 

enabled the preparation of high quality two-dimensional crystals. In particular Langmuir trough 

techniques provide a means to tune the interparticle distances and facilitate the transfer of the 

crystal monolayers to solid substrates (Fendler, 1996). Particles adsorbed at interfaces also play 

an important role in industrial processes concerned with foams and emulsion (Aveyard and Clint, 

1995; Binks, 2002). Among the interfacial assembly methods, such as liquid-air interface, the 

liquid-liquid (water-oil) interface possess unique thermodynamic properties such as viscosity, 

density and also the interface is not sharp since there is always the solubility of one phase in the 

other (Burdi, 1997). There have been remarkable experimental developments on the assembly 

of metallic nanoscopic materials at the liquid-liquid interface, with the particular mention of the 

assembly of gold monolayers at the water-oil interface driven by the reduction of particle’s 

hydrodynamic radius (Vanmaekelbergh et al., 2004). Vanmaekelbergh et al (2004) have reported 

that citrate capped, hydrophilic gold nanoparticles can be assembled into two dimensional arrays 

at liquid-liquid interface, induced by the destabilization with the addition of a low-dielectric 

solvent to an aqueous colloidal solvent. Möhwald et al (2005) also directed the assembly of 

hydrophobic and hydrophilic nanoparticles at water-oil interface by capping the nanoparticles 

with appropriate ligands. 

1.10.1 Water-air interface 

Monolayers of insoluble amphiphiles assembled at the water/air interface are considered 

traditional means of assembly. They have played a huge role in providing an insight into 

fundamental aspects of two dimensional assemblies at interfaces, and have been a cornerstone 

of modern colloid chemistry and interface science (Böker et al., 2007; Avouris et al., 2009). The 

generation of Langmuir monolayers involves, firstly, the formation of a single layer of molecules 
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(a monolayer), on a water surface. The interaction on the surfaces of the water molecules is 

strong and two dimensional, which ensures that the molecules are bound to the surface and have 

no tendency to form a layer more than one molecule thick. The existence of strong anisotropic 

interaction between the molecules and the liquid or sub-phase is critical. This factor necessitates 

the use of water in this technique, so that the molecules in the monolayer have no tendency to 

prefer their own kind and thus crystallize (Böker et al., 2007; Avouris et al., 2009; Golberg et 

al., 2009) Also to achieve the necessary 2-D interaction, one end of the molecule must be 

substituted with a group capable of interacting strongly with water (hydrophilic) via its dipole 

moment or hydrogen bonding, while the other end must be a hydrophobic chemical group large 

enough to ensure that the molecule as a whole is insoluble (Böker et al., 2007; Avouris et al., 

2009; Golberg et al., 2009). The formed layer is initially quite loosely packed and 

inhomogeneous, but by reducing the area of the water surface the molecules are forced together, 

thus eliminating voids. In a second step, the now uniform layer can be transferred onto a solid 

substrate as a material known as Langmuir-Blodgett film. An illustration of a transfer for a 

Langmuir-Blodgett thin film to the substrate is shown in Figure 1.14. In this method the particles 

are mostly prepared prior to their dispersion and assembly into films (Waser and Aono, 2007). 

 

Figure 1.14. A schematic diagram showing how a Langmuir-Blodgett monolayer can be 

transferred from the surface of the solvent to a hydrophilic solid by raising the substrate through 

the water air interface (Golberg et al., 2010). 
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1.10.2 Oil–water interfacial self-assembly 

Most recently, an oil–water planar interface has been considered as an ideal template for self-

assembly of various nanostructures into functional nanofilms, and has received intensive 

attention (Rao and Kalyanikutty, 2008; Ariga et al., 2009; Vanmaekelbergh et al., 2004; Wang 

and Möhwald, 2004; Möhwald et al., 2004; Möhwald et al., 2006; Xia and Wang, 2008; 

Möhwald et al., 2005; Wang et al., 2010).  Au, Ag, Pt, SiO2 and CoPt3 nanoparticles have been 

successfully self-assembled at the oil–water interface (Park et al., 2007;  Park and Park, 2008; 

Park et al., 2008; Sun et al., 2006; Rotello et al., 2008).  1-D nanostructures and 2-D 

nanoplatelets and exfoliated nanosheets have also been successfully self-assembled at the oil–

water interface (Rotello et al., 2008; Miyashita et al., 2007; Miyashita et al., 2008; Miyashita et 

al., 2009; Niu et al., 2008; Kane et al., 2006; Park et al., 2007; Park et al., 2009; Yu et al., 2010; 

Sasaki et al., 2008; Sasaki et al., 2009; Biswas and Drzal, 2009;  Wang et al., 2010). This novel 

assembly strategy effectively opens the door for the self-assembly of hydrophilic nanostructures 

into closely-packed nanofilms. More importantly, this self-assembly has been developed as a 

novel and facile strategy to fabricate nanofilm-based devices, such as photodetectors, electrical 

resistive switching device (Langmuir et al., 2010; Fang et al., 2011). 

1.10.3 Discovery and mechanism of oil–water planar interfacial self-assembly 

The self-assembly of colloidal particles at the curved liquid interface has been studied for a 

century since it was pioneered by Pickering (Pickering, 1907; Nagayama et al., 1996; Weitz et 

al., 2002; Binks, 2002; Clint et al., 2003). Emulsions stabilized by colloidal particles are known 

as Pickering emulsions. Similar to the curved liquid interfacial self-assembly, the planar 

interfaces between two immiscible fluids have also been employed as an ideal template to 

produce 2-D self-assemblies with long-range orders. In 2004, Vanmaekelbergh et al. first 

observed a surprising result that gold nanocrystals can spontaneously form a monolayer film at 
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the oil–water interface by the addition of some inducer (Vanmaekelbergh et al., 2004). Upon 

addition of ethanol to the gold sol, a blue layer of gold nanocrystal immediately appears at the 

heptane–water interface. The as-formed film at the interface is very stable and does not collapse 

into multilayers. Instead, the film creeps up the glass wall of the vial to a height of a few 

centimetres without breaking into pieces. According to Pieranski’s thermodynamics model, the 

self-assembly of particles at a curved oil–water interface can be regarded as the reduction in the 

total interfacial energy of the system (Pieranski, 1980; Binks and Clint, 2002,). Analogously, the 

fundamental mechanism of the self-assembly at the planar oil–water interface can also be 

understood by Pieranski’s theory. Concretely, before assembly, the hydrophilic nanoparticles are 

dispersed in the water phase and the initial interfacial energy is the energy between the oil and 

water phases. After the entrapment of one spherical crystallite at the oil–water interface, a 

proportion of initial oil–water interface is replaced by the nanoparticle-oil interface (as shown in 

Figure 1.14), and thus there are three contributions for the total energy change for this process, 

respectively arising from the particle–oil, particle–water and nanoparticle–water interfaces. 

Combined with the Young’s equation (Pieranski, 1980), the total energy (Helmholtz free energy) 

change ΔE can be expressed as follows (Russell et al., 2003): 

ΔE = - πR2 [OW - (PW - PO)] 2/OW  0                                     (1.1) 

Where PO, PW, and OW represent the interfacial tensions between the particle and oil, the 

particle and water, the oil and water, respectively. R is the radius of a spherical nanoparticle. 

From eqn (1.1), one can see that the total energy change ΔE is negative after the entrapment of 

the nanoparticles at the oil–water interface. Thus the interfacial assembly of nanoparticles is 

dictated by a minimization of the Helmholtz free energy. Here, ΔE is mainly dominated by two 

factors, the size of particle and the wettability of the particle surface. Because ΔE is directly 

proportional to R2, the energy gain is larger and the assembly is more stable for larger 
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nanoparticles than for smaller ones (Russell et al., 2003; Russell et al., 2003; Russell et al., 

2005): For large-sized particles, the decrease in the total energy per particle is much larger than 

the thermal energy, kBT, (where kB is the is the Boltzmann constant and T is the temperature) so 

the particles are strongly held on the liquid–liquid interface.  

 

Figure 1.15. An isotropic particle at the oil–water interface, showing the interfacial tensions 

between the particle and oil, the particle and water, the oil and water, respectively (Wang et al., 

2010). 

 
 

For small-sized nanoparticles, thermal energy is sufficient to induce a displacement of the 

particles from the interface, and the assembly is dynamic with particles adsorbing to and 

desorbing from the oil–water interface. Therefore, this liquid–liquid interfacial self-assembly is 

quite size-dependent. In fact, Russell et al. (2003) have observed that thermal fluctuation makes 

no droplet stabilization at a curved liquid–liquid interface when the diameter of the particles is 

less than 1.6 nm. In their study, a~20 mm-diameter water droplet was dispersed in toluene 

containing CdSe nanoparticles. The nanoparticles segregated to the toluene–water interface, 

forming a monolayer at the interface. By addition of water to the dispersion of nanoparticles in 

toluene, nanoparticle-coated water droplets with diameters from 10 to 100 mm were obtained. 

Subsequently, they introduced 4.6 nm CdSe particles in toluene to a dispersion containing water 
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droplets in toluene that had been stabilized with 2.8 nm particles. Interestingly, the 4.6 nm 

particles assembled on the surface of an existing stabilized droplet, displacing the smaller 2.8 

nm particles. However, displacement of larger nanoparticles with smaller ones did not occur. 

This result confirms the reliability of eqn (1.1), and thus the self-assembly of the particles should 

be attributed to the decrease in total interfacial energy. Wang and co-workers found an essential 

role of the contact angle of 90º for the interface entrapment of nanoparticles (Möhwald et al., 

2004; Möhwald et al., 2006; Xia and Wang, 2008; Möhwald et al., 2005). They transferred the 

as-assembled film at the oil–water interface onto solid substrates, and then the contact angle of 

the nanoparticles with the oil–water interface could be determined by resting a water droplet 

covered with toluene on the surface of the as-assembled film. As shown in Figure 1.15, the 

position of nanoparticles at the oil–water interface is determined by their contact angle: for a 

hydrophilic particle with a contact angle smaller than 90º, its larger fraction resides in the water 

bulk phase, or vice versa. When its contact angle is around 90º, the particle prefers to reside at 

the interface. Furthermore, the profile of the calculated partition of 10 nm particles in oil–water 

two-phase systems shows that when the contact angle slightly deviates from 90º, the 

nanoparticles prefer to go to the bulk phase, further suggesting that the contact angle of 90º 

should play a pivotal role for the interface entrapment of nanoparticles (Russell et al., 2005). 

Wang et al. (2006) and Binks, (2003) also studied the effect of the surface charge of particles on 

their interfacial entrapment at an oil–water interface. They observed the interfacial assembly of 

nanoparticles at a low pH value when the surface charge density of the nanoparticles was reduced 

by the protonation of the carboxylic acid groups on the surfaces. Then the de-protonation of the 

carboxylic acid groups at a high pH value caused the detachment of the nanoparticles from the 

interfaces and redispersion in bulk water phase. This result suggests that the increase of the 

surface charge density not only reduces the interfacial activity of the particles but also enlarges 

the electrostatic repulsion between the charged particles. 
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Although the nanoparticles are readily self-assembled at an oil–water interface, the entrapment 

does not occur with the absence of an inducer. Vanmaekelbergh et al. (2004) pointed out that 

the surface charge of the nanoparticles dispersed in a water phase was decreased by the addition 

of an inducer, such as ethanol. They speculated that the decreasing surface charge reduced the 

interfacial energy of the nanoparticles and caused the contact angle of nanoparticles to approach 

to 90º. This has been also confirmed by Miyashita’s experiment by examining the ζ-potential of 

an aqueous dispersion of carbon nanotubes. The ζ-potential of the carbon nanotubes gradually 

decreases with addition of ethanol to the dispersion, due to the adsorption of ethanol molecules 

to the multi-walled carbon nanotube (MWCNT) surface (Miyashita et al., 2007). The hydroxyl 

groups of ethanol molecules form hydrogen bonds with carboxyl anions, which compensate the 

negative charge at the MWCNT surface. Vanmaekelbergh et al. (2004) considered this self-

assemble process in terms of a thermodynamic evaluation of charged nanoparticles. In their 

model, the chemical potential of the nanoparticles in the bulk phase and the oil water interface 

were considered by taking into account the interfacial energies, van der Waals interactions and 

the electrostatic interactions. They derived an equation by setting the chemical potential for 

charged nanoparticles at the interface to be equal to one in the bulk phase, showing an isotherm 

of the interfacial particle coverage as a function of the surface charge density of nanoparticles. 

The surface coverage of the nanoparticles at the interface increased with decreasing surface 

charge density of the particles. When an inducer such as ethanol was added, the surface charge 

density of the nanoparticles decreased, and the liquid–liquid interface became completely filled 

with nanoparticles (Möhwald et al., 2006; Böker et al., 2007). Combined with the 

aforementioned Wang’s results one can conclude that addition of an inducer decreases the 

surface charge density of the particles, increases the interfacial activity of the particles, and 

finally leads to the attachment of particles at the oil–water interface. Although the surface charge 

of nanoparticles is apparently decreased by the addition of an inducer, Park et al. supposed that 
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there exists a limiting point for the surface charge that can be achieved by adding an inducer 

(Park et al., 2007; Park and Park,  2008; Park et al., 2008). It is easily understood that the 

complete removal of the electrostatic repulsive force should lead to the irreversible coagulation 

of nanoparticles at the interface. Since the as-assembled film is very stable at the interface, the 

entrapped nanoparticles at the interface should retain a certain electrostatic repulsive force, 

which prevents the formation of closely-packed aggregations by counteracting the van der Waals 

interaction. In fact, the voids among the nanoparticles were usually observed in the as-assembled 

film by this strategy (Vanmaekelbergh et al., 2004; Wang and Möhwald , 2004; Möhwald  et al., 

2004; Möhwald  et al., 2006; Xia and Wang, 2008; Möhwald  et al., 2005; Wang et al., 2010; 

Park et al., 2007; Park and Park, 2008; Park et al., 2008; Sun et al., 2006), also demonstrating 

the presence of residual surface charge of the nanoparticles assembled at the interface. 

 

Figure 1.16  Schematic representation of the position of a particle at an oil–water interface for a 

contact angle with the interface less than 90º (left), equal to 90º (centre), and larger than 90º 

(right) (Möhwald  et al., 2004). 

 

The liquid-liquid interface techniques have the advantages of being simple, scalable, low cost, 

low temperature deposition, no additives are necessary and films produced independent of 

substrate. 
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Figure 1.17: Schematic diagram showing thin film nanoparticles formed at the liquid-liquid 

interface (Rao and Kalyanikutty, 2008). 

 
 

The method primarily involves a metal precursor dissolved in the organic layer and a reducing, 

a precipitating, or an oxidizing agent in the aqueous layer. The reaction occurs at the interface 

giving rise to a film at the interface with several interesting features. The interface has a dual role 

in controlling charge transport and directing the structure of the deposit. This method has been 

employed in the preparation of nanocrystalline films of gold and in generating ultrathin 

polycrystalline, as well as single-crystaline, films of some metal chalcogenides at the interface 

(Figure 1.17). The formation of single-crystalline films is indeed a noteworthy feature and it is 

believed that this method can be adopted not only for generating nanocrystalline films of various 

materials but also to study processes occurring at the liquid–liquid interface.  

 

Figure 1.18: Nanocrystalline films of (a) Au and (b) CdS formed at the water-toluene interface 

(Rao and Kalyanikutty, 2008).  
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When toluene solution containing the metal precursor was mixed with aqueous solution 

containing NaHE (E= S, Se, Te), the colour of the interfacial layer changes immediately 

indicating the nucleation process has started. After the container was left under ambient 

laboratory conditions for some time a thin film was formed at the interface. Figure 1.19 shows 

the interface formation and subsequently reaction occurring in both phases. The overall reaction 

is given below 

M (S2CNR2)2 + 2NaHE   ME +    2R2CNS2Na     +    H2E 

Where M = a metal; E = a chalcogenide 

 

Figure 1.19. Schematic diagram showing the formation of interfacial layer on mixing 

toluene/water and movement of ions. 
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1.11 Growth process of nanocrystals 

According to classical model of crystallization a crystal is formed via addition of atom by atom 

or monomer by monomer to an inorganic or organic temperate or alternatively by dissolution of 

unstable phases and precipitation of the more thermodynamically stable phase (Lamer and 

Dineger, 1950; Kim and Kim, 2003). Extensive research has been carried out to understand these 

processes and factors affecting them aiming to get an insight to prepare nanocrystals of desired 

shape and size. Interestingly for a specific solute there is certain limit of solubility in a particular 

solvent and addition of excess solute will result in precipitation and formation of nanocrystals. 

Broadly two stages can be identified during growth of nanocrytals namely nucleation and growth 

(Lamer and Dinegar’s model) (Lamer and Dineger, 1950). For the nucleation stage, solution 

should be supersaturated either by directly dissolving the solute at a higher temperature and 

subsequently cooling to room temperature or by introduction of reactants to yield supersaturating 

solution during the reaction. Nucleation stage is followed by particle growth stage. Growth 

occurs either by diffusion or coalescence. In diffusion growth, monomers in solution interact 

with the solid seeds to form a bigger particle, whereas in coalescence nuclear merge into a bigger 

particle. The coalescence mechanism creates defects and grain boundaries in resulting 

nanocrystals due to utilization of energy process (Figure 1.20).  
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Figure 1.20. A schematic representation of the mechanism during the growth of nanocrystals 

according to Lamer and Dinegar’s model of variation of concentration versus time (Lamer and 

Dineger, 1950).  

 

Curve I represents formation of uniform particles by diffusion, curve II is for bigger size particle 

formation by aggregation of smaller subunits, while curve III represents formation of large 

particles by Ostwald ripening. (Lamer and Dineger, 1950). 

With the passage of time when the reactants are depleted due to particle growth, size defocusing 

or Ostwald ripening will take place, where larger nuclei continue to grow and smaller ones get 

smaller and finally dissolve. Stopping the reaction at this stage will result in the particles having 

broad size distribution. Thus, it is difficult to get monodisperse particles unless the reaction time 

is extended to deplete the supersaturation and the smaller nuclear. Thus by rapid injection of 

precursors in solvent which generates sudden burst of nuclei simultaneously followed by self-

sharpening growth process nearly monodisperse sized particles can be obtained by stopping the 

reaction. 
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CHAPTER TWO 

DEPOSITION OF COPPER CHALCOGENIDE NANOMATERIALS AT THE WATER-

TOLUENE INTERFACE 

This chapter describes the syntheses of Copper chalcogenide nanoparticles. The work was 

carried out at the School of Chemistry, and characterization of nanomaterials by XRD and SEM 

was performed in the School of Materials Science, The University of Manchester, UK. 
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Deposition of copper chalcogenide nanomaterials at the water/toluene interface 

Abstract 

Nanostructured thin films of CuE (E=S, Se, Te) have been prepared at the water-toluene interface 

by reacting toluene solutions of copper cupferronates with aqueous chalcogenide ions obtained 

by the borohydride reduction of sulphur, selenium and tellurium powder. The thin film deposits 

were characterized by powder X-ray crystallography, scanning electron microscopy and 

absorption spectroscopy. The influence of deposition conditions such as precursor 

concentrations, temperature as well as deposition times were studied. The average crystallite 

sizes of the as-prepared nanoparticles at different temperatures, concentrations and deposition 

times ranged from 3.4 to 4.3 nm for CuS, 5.1 to 5.7 nm for CuSe and 1.4 to 4.5 nm for CuTe. 

The dislocation densities ranged from 5.46 to 8.85 x 1017 lines/m for CuS and 2.32 to 3.86 x 1017 

lines/m for CuSe, 5.0 to 47.91 x 1017 lines/m for CuTe. The shape of the as-prepared 

nanoparticles at different temperatures was studied by SEM and gave morphologies from cubes 

to rods. The band gaps obtained for CuS ranged from 3.6 to 3.9 eV and CuSe ranged from 3.53 

to 3.96 eV.  

2.1 Introduction 

The potential for the use of the interface between two liquids to synthesize materials of 

importance is at present being realized (Rao et al., 2003, 2005). There have been some reports 

on deposition of nanocrystals and thin films at the interface of two essentially immiscible liquids 

(Rao et al., 2003; 2005; Gautam et al., 2004; 2003; Platt et al., 2004). In this method, a metal 

precursor dissolved in a solvent such as toluene is held in contact with an aqueous layer 

containing a reducing or oxidizing agent. The reaction proceeds at the interface of the liquids 

and results in deposits suspended in the interfacial region. The products of such reactions are 

typically thin continuous films or aggregates of nanocrystals. The macroscopic structure of the 
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deposit at the interface is reflective of the structure of the interface. The interface has a dual role 

of controlling charge transport and directing the structure of the deposit. The former role has 

recently received much attention due to its ability to cast preformed nanocrystals into thin layers 

(Duan et al., 2004; Dryfe, 2006; Lin et al., 2003; Reincke et al., 2004; Su et al., 2005). Different 

methods have been employed for the synthesis of II-VI semiconductor nanocrystals. These 

include solution-based methods, solvothermal and sonochemical procedures, precursor 

decomposition, and the use of confined media such as zeolites and micelles (O’Brien and Green, 

1999; Catarina et al., 2002; Murray et al., 1999; Wang et al., 2002; Gedanken, 2004). 

The method of interfacial deposition shares many of the advantages of conventional chemical 

bath deposition. It provides a simple, convenient and inexpensive route to thin films. Films can 

be deposited at low temperatures and on a variety of substrates. The thickness and other 

characteristics of the deposited layers may be controlled by variation of the deposition 

parameters such as deposition time, temperature or reagent concentrations. The process is 

potentially easily adaptable to large area processing with low fabrication cost. Further, unlike 

other methods that use templates, little or no effort is required to remove the template at the end 

of deposition.  

Currently research on the controlled synthesis of semiconductor nanocrystals is not only geared 

towards high quality, but also attempts the use of facile “green” low cost environmentally 

friendly precursors and solvents in addition to low temperatures. This is because there are 

environmental concerns that limit the application of current nanocrystals containing heavy 

metals such as Cd, Hg, and Pb which are essentially toxic (Shen et al., 2010). In addition those 

containing the rare metals (such as in) are threatened by potential shortages due to their limited 

abundances. The use of pyrophoric, toxic and expensive reagents is increasingly becoming 

inappropriate for industrial synthesis or application in the near future. In order to address this 

situation attention is now being directed towards, non-toxic and inexpensive nanocrystals such 
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as those of Copper chalcogenides. Recently various methods have been reported on the synthesis 

of chalcogenide nanomaterials due to their excellent chemical and physical properties (Qin et 

al., 2005).  

A considerable amount of interest has been focused on copper sulphides owing to their special 

properties arising from their varied nonstoichiometric composition, valence states, nanocrystal 

morphologies, complex structures among others. The stoichiometry of copper sulphides varies 

starting from CuS2 at the copper-deficient side to Cu2S at the copper-rich side (Zhang et al., 

2008). At least five stable phases of the copper sulphur system are known to exist in nature and 

these are covellite (Cu1.00S), anilite (Cu1.75S), digenite (Cu1.80S), djurleite (Cu1.97S), and 

chalcocite (Cu2.00S) (Panthan and Lokhande, 2004, Evans, 1981). Other phases that exist include 

yarowite (Cu1.12S) and spionkopite (Cu1.14S) (Goble, 1985). The crystal structures of the CuxS 

such as hexagonal, orthorhombic, pseudo cubic and tetragonal is determined by the value of x.  

XRD diffractogram have shown that varying the deposition temperature for the films grown by 

spray CuS, one of the important semiconductor transition metal chalcogenides, transforms into 

a superconductor at 1.6 K (Yao et al., 2007) and has potential application as p-type 

semiconductor, sensor, solar energy converter, cathode material, catalyst, optical filter, and 

nonlinear optical material (Li et al., 2009, Mao et al., 2009, Wan et al., 2004). In the form of 

thin film, CuS has been used in photo thermal conversion, electrodes, solar cell devices, coatings 

for microwave shields, and solar control (Zhang et al., 2005, Sigman et al., 2003, Chen et al., 

2003). 

Different morphologies of CuS have been fabricated using different methods in recent times 

(Saunders et al., 2006, Du et al., 2007). Many methodologies have been explored which include 

solventless and solution thermolysis, sacrificial templating, solution phase reactions, 

hydrothermal or solvothermal method, ultrasonic and microwave irradiation, template-assisted 

methods, micro emulsion, electro deposition, chemical vapour deposition, and so on 
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(Nagarathinam et al., 2009, Yan et al., 2008, Feng et al., 2007). Nicolini et al. (2005) have 

directly synthesized CuS nanoparticles in the polymer matrix using carboxylic groups of the 

polymer as nucleation centres and H2S as sulphide source. Ying et al. (2008) have fabricated 

hierarchical CuS nanoparticles employing CuCl2 and thioacetamide (TAA) in ionic liquid, Yu 

and co-workers have synthesized complex CuS micro tubes using CuCl2 and TAA in acetic acid 

(Yu et al., 2006). In solution phase, syntheses of transition metal chalcogenides, TAA is a 

commonly used sulphide source (Yao et al., 2007). Lone pair of electrons on nitrogen and 

sulphur of TAA coordinate to form a metal complex. In case of Cu (II) complex, TAA suffers 

decomposition to form CuS because of the strong affinity of sulphide ion with Cu (II) 

(Nagarathinam et al., 2009). The TAA assisted CuS syntheses have inspired us to explore a facile 

method to prepare CuS nanoparticles in large-scale under mild modified hydrothermal (MHT) 

(Sinha et al., 2009) condition at the liquid-liquid interface. The CuS nanoparticles at the liquid-

liquid junction emerge as stacked plates and efficient photo catalyst. 

Photocatalysis has many merits in terms of the removal of harmful organic compounds, 

wastewater treatment, and clean-up measures of polluted air (Vinu and Madras, 2009). Dyes 

constitute a major class of organic compounds, which find a multitude of applications in our 

daily life (Kar et al., 2009). The preparation of submicrometer size covellite CuS crystals in 

liquid-liquid interface via a simple MHT method at a relatively lower temperature without using 

any stabilizing agent has been reported (Basu et al., 2010). CuS being a nontoxic, inexpensive, 

and stable under ambient conditions, would be ideal to use it in clean technology. The 

morphology of the CuS plates is habitually stacked and the plates show an effective catalytic 

property under visible light for mineralization of varied dye molecules in water. 

CuSe is also a p-type semiconductor material with potential application in solar cells, superionic 

conductors, thermoelectric devices and microwave shield coating (Lakshmikvmar, 1994, Mane 

et al., 2006, Bhuse et al., 2003, Grozdanov, 1994).  It also has potential application in optical 
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filters, nanoswitches, thermoelectric and photoelectric transformers and superconductors (Bhuse 

et al., 2003). Micro- and nanocrystallites with various morphologies such as particles (Zhang et 

al., 2000), tubes (Xu et al., 2008), cages (Cao et al., 2006) and flake-like structures (Xie et al., 

2002) have been reported. Thin films of CuSe prepared chemical bath deposition (CBD) 

(Dhanam et al., 2005, Pai et al., 2005).and CuSe with p-type semiconducting behaviour have 

been also been reported by Zainal et al using a combination of chemical precipitation and dip 

coating technique (Zainal et al., 2005).  There have been few reports of the synthesis of one 

dimensional (1D) nanomaterials of copper selenides like Cu2-XSe nanowires (Hsu et al., 2006). 

Arrays of copper selenide nanowires of mixed compositions with Se/Cu/ in various proportions 

for example Cu3Se2/Cu2-XSe or Cu2-XSe/Cu have been reported (Jagminas et al., 2006). 1-D 

snake-like CuSe nanomaterial based on biomolecule-assisted synthesis by Munoz-Rojas et al 

(2008) and bovine serum albumen-assisted copper selenide nanosnakes by Cui et al. (2010) have 

also been reported. 

Several methods of synthesis have been employed for the synthesis of CuSe including the 

thermolysis of copper and selenium powder mixtures between 400-700 oC under argon, 

mechanical alloying of selenium and copper in a high energy ball mill (Ohtani and Motoki, 

1995), reaction of selenium with elemental copper in liquid ammonia (Henshaw et al., 1996, 

1997). Synthesis of nanocrystalline Cu2-XSe using a solvothermal method in which CuI and Se 

were heated at 90 oC in an autoclave with ethylenediammine as solvent has also been reported 

(Wang et al., 1998). 

Most of the synthetic techniques employed for the synthesis have been reported to be tedious 

and yield polycrystalline films.  Polycrystalline films are associated with having defects and 

grain boundaries which create trap states which act as carrier scattering centres reducing the 

carrier mobility and transparency of the films. It is therefore desirable to develop techniques that 
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would easily yield these materials with relative ease and at the same time reduce the 

polycrystalline nature of the film. 

Interfaces between immiscible liquids are known to be ideal for assembling of colloidal particles 

(Lin et al., 2003). Brust et al., (1994) used immiscible water-organic solvent mixtures in the 

presence of phase-transferring reagents to prepare metal organosols. Preliminary experiments 

have revealed that it was indeed possible to prepare nanocrystals of metals and other materials 

at the liquid-liquid interface through the reaction of a metal precursor taken in the organic layer 

with an appropriate reagent in the aqueous layer (Rao et al., 2003, 2003). 

The potential for the use of the interface between two liquids to synthesize materials of 

importance is at present being realized (Rao et al., 2003, 2005). There have been several recent 

reports on deposition of nanocrystals and thin films at the interface of two essentially immiscible 

liquids (Gautam et al., 2004, Platt et al., 2004, Duan et al., 2004, Dryfe, 2006, Lin et al., 2003, 

Reincke et al., 2004, Su et al., 2005). In this method, a metal precursor dissolved in a solvent 

such as toluene is held in contact with an aqueous layer containing a reducing or oxidizing agent. 

The reaction proceeds at the interface of the liquids and results in deposits suspended in the 

interfacial region. The products of such a reaction are typically thin continuous films or 

aggregates of nanocrystals. The macroscopic structure of the deposit at the interface is reflective 

of the structure of the interface. The interface has a dual role of controlling charge transport and 

directing the structure of the deposit. The former role has recently received much attention due 

to its ability to cast preformed nanocrystals into thin layers (Shen et al., 2010). 

Rao et al (2004) have reported the synthesis and significant features of the ultrathin films of CuS 

and CuO obtained at the liquid-liquid interface and demonstrated the utility and potential of the 

liquid-liquid interface in generating such novel materials. This was remarkable considering that 

the procedure is so simple, basically involving the dissolution of copper cupferronate in the 
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organic layer and Na2S or NaOH in the aqueous layer to produce the metal sulphide or the oxide 

film at the interface. Extensive investigations carried out since indicated that the nanocrystalline 

CuS and CuO films obtained at the interface were essentially single crystalline in nature. 

In this chapter, the synthesis of thin films/ nanomaterials of CuS, CuSe and CuTe by the use of 

copper cupferronate (Cu(cup)2)/copper dithiocarbamate as copper source and the borohydride 

reduction sulphur, selenium and tellurium powders as sulphide, selenide and telluride sources 

respectively are being reported.  

2.2 Deposition of copper chalcogenide thin film nanomaterials 

Briefly 30 ml of degassed water containing 0.1 mmol of NaHE (E= S, Se, Te) was transferred 

into a 100 ml beaker and 30 ml of toluene containing the 0.1 mmol of the copper  

dialkyldithiocarbamate/cupferronate precursor was layered on top of the solution in the beaker. 

The reaction vessel was placed in an oven preheated to the desired temperature for 4 hours. The 

deposits formed at the interface were isolated by gently lifting the film from the interface onto 

glass substrates.  The reaction was repeated by varying the reaction conditions such as 

temperature, time and the reacting species (details of the deposition are given in chapter 6 section 

6.4). The reactions were carried out in a 100 ml beaker with the height of the liquid column at 4 

cm. The nature and characteristics of the as-prepared thin film nanoparticles were studied by X-

ray diffraction, scanning electron microscopy, and, UV-visible spectroscopy. 
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2.3 Results and Discussions 

2.3.1 Copper sulphide 

2.3.1.1 Structural characterization and morphology 

Figure 2.1shows the XRD diffractogram of the as-prepared of CuS nanoparticles obtained at the 

liquid-liquid interface at room temperature, 50 °C after 4 to 6 hours, respectively. These are 

fairly continuous films and extend over wide areas. All the reflections are attributed to pure 

hexagonal phase CuS covellite. The entire diffraction patterns match with the data reported in 

the literature (JCPDS card no. 06-0464). The diffraction peaks at 2θ of 29.45, 31.82, 48.10 and 

59.18 correspond to the 102,103, 110 and 116 peaks of hexagonal CuS respectively. Hexagonal 

CuS crystallite has space group P63/mmc and primitive unit cell with cell constants a= 3.792 Å 

and c=16.34 Å which contains twelve atoms, six for Cu and S each.  No impurities such as CuO 

and other nonstoichiometric copper sulphides were detected. The XRD peaks were quite broad 

indicating these samples were composed of nanocrystalline particles. Peak intensity increases 

with an increase in deposition time and indicates increase in the crystallinity of the material 

shown in Figure 2.1. The peak broadening at lower angle is more meaningful for the calculation 

of particle size; therefore size of the nanocrystals has been calculated using Debye-Scherrer 

formula (Guinier, 1963) using reflections from the XRD pattern.  

The Debye-Scherrer formula for crystallite size determination is given by: 

      D = 
0.94  

𝛽 𝐶𝑜𝑠 
 

Where D is the crystallite size,  is the wavelength of X-ray, β is the full width at half maximum 

(FWHM) after correcting for the instrument for peak broadening (β is expressed in radians),  is 
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the Bragg’s angle. The calculated crystallite sizes of the CuS nanoparticles range from 3.36 to 

4.28 nm as calculated by the Debye-Scherrer formula (Table 2.1). 
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Figure 2.1: XRD of different as-prepared CuS samples (a) for 4 hours (b) for 5 hours and (c) 6 

hours at 50 °C.  
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Figure 2.2: Scanning electron microscopy (SEM) image of CuS nanomaterial formed at 50 oC 

for 5 hours at different magnifications (a-5000x, b-10000x and c-20000x). 

 
 

The Scanning electron microscopy (SEM) images of CuS nanomaterials/thin films formed at the 

water-toluene interface by reacting 30 ml of toluene solution of 0.10 mM copper cupferronate 

and 30 ml of 0.10 mM NaHS for 5 hours at 50 oC with different magnifications.  

2.3.1.2 Optical analyses 

The optical absorption spectra of the nanocrystals were measured using CARY 5000 UV-Vis-

NIR spectrophotometer. The optical absorption spectra have been measured at room temperature 

over a range of 250 to 600 nm. 

a b 

c 
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Figure 2.3: (a) Optical absorption spectra and (b) optical band gap of the as-prepared CuS 

samples for 4, 5 and 6 hours at 50 °C.   

 
 

The fundamental absorption corresponds to the electron excitation from the valence band to the 

conduction band and can be used to determine the optical band gap. The relationship between 

the absorbance (A) and the incident photon energy (h) is given by the Stern relationship of 

near-edge absorption (Stern and Kim, 1981): 

    A = [k(h-Eg)]
1/n/h 

Where  is the frequency, h is the constant, k is a constant and carries a value of either 1 or 4. 

The value of n is 1 for direct transition and 4 for indirect transition respectively. The optical band 

gap is determined by a plot of (Ah)2/n as a function of h extrapolation of the line  to the h 

axis where (Ah)2/n is zero gives the band gap Eg.  The plots of (Ah)2 versus h is a straight 

line indicating that CuS is a direct band gap material. The plots of (Ah)2 versus h for the 

different nanocrystallites obtained at 50 oC are given in the Figure 2.3b. 
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Table 2.1 Optical parameters and crystalline sizes of CuS nanoparticles 

Precursor Deposition 

Temperature/oC 

Deposition 

time (hours) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Cu(Cup)2: 

S/NaBH4 

50 

 

4 

5 

6 

3.9 

3.85 

3.6 

1.79 

1.82 

2.0 

3.36 

4.28 

3.95 

Band gap of bulk CuS = 1.75 eV  

The optical band gap of the CuS nanocrystalline thin films was in the range between 3.6 and 3.9 

eV, exhibiting considerable blue shift due to quantum size effects. 

2.3.2 Copper selenide 

2.3.2.1 Structural characterization and morphology 

Figures 2.4 to 2.7 displays the powder X-ray patterns of the  nanoparticles/thin films obtained 

by the reaction of 0.1 mmols of Cu(cup)2 in 30 ml of toluene with 0.1 mmol of selenide ion 

generated by the reduction of selenium powder with NaBH4 in an ice bath at room temperature, 

at 50 oC and at 70 oC respectively. Figure 2.8 also gives the XRD diffractogram of different as-

prepared CuSe samples (a) for 8 hours and (b) for 10 hours at 50 oC when selenosulphate was 

used as the selenide source. 
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Figure 2.4: XRD of different as-prepared CuSe samples (a) for 5 hours and (b) 6 hours at room 

temperature using copper cupferronate. 
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Figure 2.5: XRD of different as-prepared CuSe samples (a) for 4 hours (b) for 5 hours and (c) 

for 6 hours at 50 oC using copper cupferronate.  
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Figure 2.6: XRD of different as-prepared CuSe samples (a) for 5 hours and (b) for 6 hours at 70 

oC using copper cupferronate. 
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Figure 2.7: XRD of different as-prepared CuSe samples (a) for 4 hours, (b) for 5 hours at and (c) 

for 6 hours at 50 oC using copper cupferronate. 
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Figure 2.8: XRD of different as-prepared CuSe samples (a) for 8 hours and (b) for 10 hours at 

50 oC using selenosulphate as the selenide source and copper cupferronate. 
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The diffraction peaks observed at 26.6o, 33.1o, 45.8o and 50.6o could be indexed to 101, 002, 201 

and 003 of the hexagonal structure of CuSe (ICDD 00-020-1020) with orientation along the 101 

plane. The broadening of the XRD peaks pattern clearly indicates the formation of CuSe 

nanocrystalline materials.  Peak intensity was observed to increase with an increase in deposition 

time and temperature. This indicates increase in the crystallinity of the material shown in Figures 

2.4 to 2.7. The XRD pattern for the as prepared CuSe at room temperature for 5 hours show no 

peak at all and clearly indicates that the thin film formed was amorphous. The particle sizes 

calculated by the Debye-Scherrer formula ranged from 1.3 nm to 6.6 nm as indicated in Table 

2.2. 

The Scanning electron microscopy (SEM) images of CuSe nanomaterials/thin films formed at 

the water-toluene interface by reacting toluene solution of copper cupferronate and aqueous 

solution of NaHSe obtained by the borohydride reduction of selenium powder for 5 hours at 50 

oC and 70 oC are shown in Figure 2.9.  Figure 2.9 (d) shows that for CuSe formed at 70 oC the 

predominant morphology of the particles were flakes. The energy dispersive X-ray analysis 

(EDAX) spectra as shown in Figure 2.10 indicate the elemental composition of the CuSe 

nanomaterial/thin film formed at 50 oC for 5 hours at water-toluene interface. Analysis by energy 

dispersion analytical X-ray (EDAX) in the electron microscope showed the presence of Cu and 

Se with atomic weight percentage ratio of 52.31: 47.69 within the limitations of the experimental 

conditions. 
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Figure 2.9: (a), (b), (c), Scanning electron microscopy (SEM) image of CuSe nanomaterial 

formed at 50 oC for 5 hours at different magnifications (a-5000x, b-10000x, c-20000x) and (d) 

SEM image of CuSe nanomaterial formed at 70 oC for 5 hours. 

a b 

c d 
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Figure 2.10: Quantitative EDAX analysis of CuSe nanomaterial formed at the water-toluene 

interface at 50 oC for 5 hours 

 

It is believed that the following steps are responsible for the formation of the copper selenide 

structures indicated. Initially the two liquids (water and toluene) mix to a limited extent at the 

interface, leading to the formation of spherical granules which are adsorbed at the interface to 

form a “pickering” emulsion. The formation of this emulsion lowers the interfacial tension 

promoting the diffusion of selenide ions. Further growth at the interface is autocatalytic. It is 

suggested that the interfacial copper selenide films grow in three stages as suggested for ceria 

(O’Brien et al., 2009; Zhang et al., 2005) and shown in Figure 2.11 for ceria.  

Element [norm. at. %] 

Copper 52.31 

Selenium 47.69 

 100 
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Figure 2.11. Schematic diagram illustrating the growth and agglomeration mechanism for CeO2 

nanoparticles (O’Brien et al., 2009; Zhang et al., 2005) 

 

The first stage involves the growth of the primary nanoparticles, these then aggregate into larger 

mesoscopic discs or spheres. The voids between the spheres are filled by the smaller particles; 

which with the passage of time form the flakes as indicated in the SEM image (Figure 2.9). 

Presumably the formation of large spherical aggregates further lowers the interfacial tension, 

permitting diffusion of selenide ions that aids the generation of the flaky deposits in the Figure 

2.9d. The large spherical aggregates are probably held together by weak van der Waals forces: 

whilst the platelet structures are more likely to be due to stronger chemical bonds between the 

particulates (Tsantilis et al., 2004; Kammler et al., 2005).  
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2.3.2.2 Optical analyses 
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Figure 2.12: (a) Optical absorption spectra and (b) optical band gap of the as-prepared CuSe 

samples for 4, 5 and 6 hours at 50 oC 
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Figure 2.13: (a) Optical absorption spectra and (b) optical band gap of the as-prepared CuSe 

samples for 4, 5 and 6 hours at 70 oC 
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Figure 2.14: (a) Optical absorption spectra and (b) optical band gap of the as-prepared CuSe 

sample for 4, 5, 6 and 8 hours at 50 oC 

 

Figures 2.12b–2.14b show the optical absorption spectra and the plots of (Ah)2 versus h for 

the different nanocrystallites of different as-prepared CuSe nanoparticles with deposition times 

ranging from 4 to 6 hours and deposition temperatures of 50 oC and 70 oC . The optical absorption 

spectra have been measured at room temperature over a range of 250 to 600 nm using the CARY 

5000 UV-Vis-NIR spectrophotometer. 
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Table 2.2 Optical parameters and crystallite sizes of CuSe nanoparticles 

Precursor Deposition 

Temperature/oC 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

 

U.V XRD 

Cu(Cup)2: Se/NaBH4 RT 6   5.091 

Cu(Cup)2: Se/NaBH4  

50  

4 

5 

6 

8 

3.96 

3.91 

3.53 

3.78 

1.95/2.82 

1.98/2.89 

2.29/3.67 

2.08/3.11 

6.56 

5.37 

5.69 

Cu(Cup)2: Se/NaBH4  

70  

4 

5 

6 

3.80 

3.94 

3.82 

2.05/3.07 

1.96/2.85 

2.05/3.04 

5.51 

- 

5.31 

Cu(Cup)2: Selenosulphate 50 8 - - 1.265 

Cu(Cup)2: Selenosulphate 50 10 - - 1.274 

Band gap of bulk CuSe = 2.0/2.8 eV 

The CuSe nanocrystals show a considerable increase in band gap. The broad absorption edge 

with an excitonic peak at 320 nm observed for all the nanocrystalline thin films suggests a 

decrease in the particle size and a narrow size distribution. The absorption band edges fitted to a 

direct transition for the nanocrystalline thin films as shown in Figures 2.12b -2.14b. The average 
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particle size of CuSe ranged from 1.27 to 6.56 nm and the band gap ranged from 3.78–3.94 eV 

as indicated in Table 2.2. This change in size is reflected as a shift in the absorption spectra 

2.3.3 Copper telluride 

2.3.3.1 Structural characterization and morphology 

Figure 2.15 displays the powder X-ray pattern of the  nanoparticles/thin films obtained by the 

reaction of 0.1 mmols of Cu(cup)2 in 30 ml of toluene with 0.1 mmol of telluride ion generated 

by the reduction of tellurium powder with NaBH4 at 50 oC (a) and at 70 oC (b). The diffraction 

peaks observed at 22.9o, 27.5o, 40.5o and 50.7o could be indexed to 111, 112, 106 and 108 of the 

hexagonal structure of CuTe. The particle sizes ranged from 1.4 nm to 4.5 nm as indicated in 

Table 2.3. 
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Figure 2.15: XRD of different as-prepared CuTe sample at (a) 50 oC and (b) 70 oC 
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Table 2.3 Crystallite sizes of CuTe nanoparticles 

Precursors Deposition 

Temperature/oC 

Deposition 

time (hrs) 

Particle size (nm) 

Cu(Cup)2: Te/NaBH4 50  6 1.4 

Cu(Cup)2: Te/NaBH4 70  6 4.5 

 

2.4 Conclusions 

The present study shows how the liquid-liquid interface provides a unique way to produce single-

crystalline ultrathin films/nanomaterials of inorganic materials. This has been demonstrated by 

the preparation of CuS, CuSe and CuTe at the water-toluene interface by a simple technique 

involving the reaction of copper cupferronate [Cu(cup)2]/copper bis-(diethyldithiocarbamate) 

[Cu(dtc)2] dissolved in toluene and sulphide, selenide or telluride ions in water generated by the 

NaBH4 reduction of sulphur/selenium/tellurium powder. Unlike chemical methods such as the 

LB technique where non-single-crystalline films are obtained by assembling nanocrystals or 

CVD and related techniques where stringent conditions as well as substrates are required, the 

interface method described here is simple and can also be extended for use with a variety of 

materials. The average crystallite sizes of the as-prepared nanoparticles at different temperatures, 

concentrations and deposition times ranged from 3.4 to 4.3 nm for CuS, 5.1 to 5.7 nm for CuSe 

and 1.4 to 4.5 nm for CuTe. The dislocation densities ranged from 5.46 to 8.85 x 1017 lines/m 

for CuS, 2.32 to 3.86 x 1017 lines/m for CuSe and 5.0 to 47.91 x 1017 lines/m for CuTe. The band 

gaps obtained for CuS ranged from 3.6 to 3.9 eV and CuSe ranged from 3.53 to 3.96 eV. These 

show significant increases from the band gaps of the bulk materials. 
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CHAPTER THREE 

DEPOSITION OF ZINC CHALCOGENIDE NANOMATERIALS AT THE WATER-

TOLUENE INTERFACE 

This chapter describes the syntheses of Zinc chalcogenide nanoparticles and nanorods. The work 

was carried out at the School of Chemistry, and characterization of nanomaterials/ nanowires by 

XRD, SEM and TEM was performed in the School of Materials Science, The University of 

Manchester, UK. 
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Deposition of zinc chalcogenide nanomaterials at the water-toluene interface 

Abstract 

Nanostructured thin films of ZnE (E=S, Se, Te) have been prepared at the water-toluene interface 

by reacting toluene solutions of alkyldithiocarbamates with aqueous chalcogenide ions obtained 

by the borohydride reduction of sulphur, selenium and tellurium powder. The thin film deposits 

were characterized by powder X-ray crystallography, scanning and transmission electron 

microscopy and absorption spectroscopy. The influence of deposition conditions such as 

precursor concentrations, temperature as well as deposition times were studied. The average 

crystallite sizes of the as-prepared nanoparticles at different temperatures, concentrations and 

deposition times ranged from 1.3 to 6.9 nm for ZnS, 2.0 to 7.1 nm for t-Se and 1.8 to 6.7 nm for 

t-Te. The dislocation densities ranged from 1.14 to 9.33 x 1017 lines/m for ZnS, 2.0 to 8.7 x 1017 

lines/m for t-Se and 2.22 to 6.5 x 1017 lines/m for t-Te. The shape of the as-prepared nanoparticles 

at different temperatures was studied by SEM and gave morphologies from flowers to nanowires. 

The band gaps obtained for ZnS ranged from 3.6 to 3.88 eV, t-Se ranged from 2.86 to 3.91 eV 

and for t-Te from 3.6 to 3.9 eV.  

3.1 Introduction 

Zinc sulphide (ZnS) is one of the first semiconductors discovered (Davidson, 1948) and it has 

traditionally shown remarkable fundamental properties versatility and a promise for novel 

diverse applications, including light-emitting diodes (LEDs), electroluminescence, flat panel 

displays, infrared windows, sensors, lasers, and biodevices, etc. Its atomic structure and chemical 

properties are comparable to more popular and widely known ZnO. However, certain properties 

pertaining to ZnS are unique and advantageous compared to ZnO. ZnS has a larger band gap of 

3.72 eV and 3.77 eV (for cubic zinc blende (ZB) and hexagonal wurtzite (WZ) ZnS, respectively) 

as compared to ZnO (3.4 eV) and therefore it is more suitable for visible-blind ultraviolet (UV)-
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light based devices such as sensors/photodetectors. ZnS is also traditionally the most suitable 

candidate for electroluminescence devices. 

The nanostructures of ZnS have not been investigated in much detail as compared to ZnO 

nanostructures. Using various facile techniques, nanoparticles, nanorods, nanowires, nano- 

belts/nanoribbons, nanosheets, nanotubes, core/shell nanostructures, hierarchical nanostructures, 

complex nanostuctrues and heterostructures of ZnS have been synthesized under specific growth 

conditions so far. The recent progress on the improvement of their properties and finding novel 

potential applications, such as the latest achievements in using various ZnS nanostructures as 

field emitters, field effect transistors (FETs), p-type conductors, catalyzators, UV-light and 

chemical sensors (including gas sensors), biosensors, and nanogenerators cannot be 

overemphasized.  

Two crystallographic modifications are commonly found for ZnS (Wang et al., 2006; Wu et al., 

2005; Wright and Gale, 2004; Gardner and Pang, 1988). Both contain close-packed sulphur 

layers with zinc atoms occupying one half of the tetrahedral interstices. The low temperature, 

cubic polymorph, ZnS, is known as sphalerite or zincblende, while the high temperature, 

hexagonal polymorph, ZnS, is known as wurtzite (Figure 3.1). The ΔH° of the sphalerite to 

wurtzite phase transition has recently been reported to be ca. -2.5 + 1.5 kJmo1-1 (Gardner and 

Pang, 1988). 
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  a       b 

Figure 3.1.The sphalerite or zinc blend crystal structure of ZnS (a) and the wurtzite structure of 

ZnS (b). 

 

At elevated temperatures, bulk ZnS can undergo a phase transformation from the cubic structure 

to the hexagonal wurtzitic form (Moore and Wang, 2006; Fang and Zhang, 2006; Wang et al., 

2006; Wu et al., 2005; Wright and Gale, 2004; Gardner and Pang, 1988). The hexagonal form 

has more desirable optical properties than the cubic form.  

Another important characteristic of ZnS is its polar surface. The most common polar surface is 

the basal plane. The oppositely charged ions produce positively charged Zn(0001) and negatively 

charged S(0001) polar surfaces, resulting in a normal dipole moment and polarization along the 

c-axis as well as a divergence in surface energy (Moore and Wang, 2006; Fang and Zhang, 2006). 

Zinc selenide (ZnSe) has a structure which is closely related to that of ZnS but is a narrower 

band gap semiconductor material with bulk band gap of 2.7 eV (Xinhua et al., 2005). It emits in 

the violet-blue window when the size is reduced to below the Bohr excitonic radius (Hines and 

Guyot-Sionnest, 1998). In recent developments, ZnSe has been targeted as an efficient 

semiconductor host to dope different transition metal ions extending its emission window from 

violet blue to the red end of the visible spectrum (Norris et al., 2008; 2001; Pradhan et al., 2005; 

Chin et al., 2009; Erwin et al., 2005).  
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Zinc selenide (ZnSe) is a light yellow binary compound (II-VI) semiconductor and like most of 

its counterparts is generally produced as an n-type semiconductor (Yenkatachalam et al., 2006). 

The properties such as large band gap, low resistivity and high photosensitivity make this 

semiconducting material highly attractive. As a photoelectronic semiconductor material, ZnSe, 

has been extensively studied as single crystals and also as epitaxial and polycrystalline thin films 

prepared by different techniques to unearth other properties with the hope of exploring 

potentialities for fabrication of new scientific and technological devices.  

Among the II-VI compound semiconductors, ZnSe has drawn considerable interest due to its 

direct and large band gap which makes it appropriate for use in optoelectronics as detectors as 

well as emitters. It is useful for optical components in high power laser window and multispectral 

applications where it provides good imaging characteristics (Deutsch, 1973; Chu et al., 1996). It 

is also used as an infrared optical material because of its wide transmission wavelength range 

(200 nm - 2000 nm) (Masetti et al., 1993), and commonly used as a transmission window in IR 

spectroscopy, right vision application and Attenuated total reflection (ATR) prism. ZnSe is also 

useful in high resolution thermal imaging systems where it is used to correct for colour distortion 

inherent in other lenses used in the systems. ZnSe exists in two crystallite forms: wurtzite 

(Hexagonal) and zinc blende (cubic) of which the cubic phase is believed to be stable. The ZnSe 

has the electron affinity of 4.09 eV and electron mobility of 530 Cm2V-1S-1 at room temperature 

(Tamarso, 2002). Some groups have reported the syntheses of high quality ZnSe and related Cu-

, Mn-doped ZnSe nanocrystals with an emitting window of from 400-610 nm (Pradhan et al., 

2007; 2005; Pradhan and Peng, 2007; Hines and Guyot-Sionnest, 1998; Santangelo et al., 2007; 

Zu et al., 2006; Norberg et al., 2006; Panda et al., 2007; Cozzoli, 2005; Pradhan et al., 2004; 

Dai et al., 2008; Shen et al., 2009; 2010). These features indicate that ZnSe nanocrystals with or 

without dopant have the potential of replacing nanocrystals of heavy metal ions (such as Cd, Hg 

and Pb), and those containing rare metals (such as Indium). However the synthetic procedures 
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so far employed have involved temperatures above 300 oC and other drastic conditions such as 

high pressure and long residence times.  

In recent years, research on zinc telluride (ZnTe) has gained momentum due to its potential 

applications in different optoelectronic devices and solar cell technology. While most II–VI 

semiconductors such as ZnO, ZnS, and CdS exhibit n-type characteristics (Johnson et al., 2003, 

Ding et al., 2004), zinc telluride (ZnTe) is a p-type II-VI semiconductor with applications in 

various optoelectronic devices, such as green light-emitting diodes, solar cells, etc. (Wu et al., 

1996, Bose and Bhunia, 1998). ZnTe has a direct band gap of ∼2.26 eV at 300 K. P-type 

characteristics of ZnTe offer great potential in fabricating p-type FETs (Zhang et al., 2008) or in 

forming p–n junctions with other n-type II–VI semiconductors (Schrier et al., 2007).  ZnTe films 

are well suited for use in thin-film optoelectronic devices due to their high-absorption-coefficient 

and p-type conductivity (Nisho et al., 2001). Polycrystalline ZnTe films and its alloys such as 

CdTe, CdSe, and CdS are successfully utilized in the fabrication of tandem solar cells and 

quantum well structures (Kim et al., 1999).  

ZnTe films are usually prepared by techniques such as thermal evaporation (Aquili et al., 2000), 

hot-wall evaporation (Mondal et al., 1987), radio frequency (rf) sputtering (Bellakhder et al., 

2001), liquid-phase epitaxy (Fujita et al., 1975), molecular beam epitaxy (Lee et al., 1990), and 

electrodeposition (Bozzini et al., 2000). Among these techniques, electrodeposition seems to be 

the most promising, especially for large-scale use. It has been shown that smooth, uniform, and 

good quality ZnTe films could be obtained from inexpensive raw materials by low-cost 

techniques such as electrodeposition (Bozzini et al., 2000). ZnTe nanorods, nanowires, and 

nanoribbons have been synthesized by the pulsed electrochemical deposition technique (Li et 

al., 2005), solvothermal synthesis (Yong et al., 2007; Li et al., 1999), molecular beam epitaxy 

(Janik et al., 2006), and thermal evaporation or the sublimation method (Huo et al., 2006). 
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However, there are few reports on heterostructures of ZnTe nanowires and their properties (Dong 

et al., 2007). 

In this chapter, the synthesis of ZnS, ZnSe and ZnTe nanomaterial/thin films at water-toluene 

interface at temperatures below 100 oC by the use of zinc diethyldithiocarbamate (ZDTC) as zinc 

source and the borohydride reduction of Sulphur/Selenium/Tellurium as 

sulphide/selenide/telluride sources are reported.  

3.2 Deposition of zinc chalcogenide thin film nanomaterials 

Briefly 30 ml of degassed water containing 0.1 mmol of NaHE (E = S, Se, Te) was transferred 

into a 100 ml beaker. 30 ml of toluene containing the 0.1mmol of the zinc dialkyldithiocarbamate 

precursor was layered on top of the solution in the beaker. The reaction vessel was placed in an 

oven preheated to the desired temperature for 4 hours. The deposits formed at the interface were 

isolated by gently lifting the film from the interface onto glass substrates.  The reaction was 

repeated by varying the reaction conditions such as temperature, time and the reacting species 

(details of the deposition are given in chapter 7 section 7.4). The reactions were carried out in a 

100 ml beaker with the height of the liquid column at 4 cm. The nature and characteristics of the 

thin films obtained were studied by X-ray diffraction, transmission electron microscopy, 

scanning electron microscopy, and, UV-visible spectroscopy 

3.3 Results and discussions 

3.3.1 Zinc sulphide 

3.3.1.1 Structural characterization and morphology 

The reaction of 0.1 mM of zinc diethyldithiocarbamate in 30 ml of toluene with 0.1 mM NaHS 

generated by the borohydride reduction of sulphur powder in 30 ml of water at 50 oC for 4, 5 and 
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6 hours yielded cubic (zinc blende) ZnS nanomaterial at the water-toluene interface as shown by 

the X-ray diffraction measurements. Figures 3.2 and 3.3 show the XRD pattern of ZnS film with 

reflections corresponding to those of the cubic ZnS (ICDD 01-080-0020, cell constant a = 

1.54056 Å) (Yeh et al., 1992).  
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Figure 3.2.  XRD of different as-prepared ZnS samples (a) for 4 hrs (b) for 5 hrs, (c) for 6 hrs 

and (d) for 8 hrs at 50 °C.   
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Figure 3.3. XRD of different as-prepared ZnS samples (a) for 5 hrs and (b) for 6 hrs at 70 °C. 

 

Broadening of the diffraction peaks were observed implying that the size of the ZnS particles 

was small. Due to size effects the peaks broaden and the widths become larger as the crystal 

becomes smaller (Lu et al., 2001; Ghosh et al., 2004; Hu et al., 2005; Warad et al., 2005; Lan et 

al., 2003). Gosh et al (2004) have reported that the broadening of the peak may also occur due 
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to micro strains of the crystal structure arising from defects like dislocation and twinning etc. 

They have considered these defects to be associated with the chemically synthesized 

spontaneously growing nanocrystals. But in this work since the nanocrystals grew in a controlled 

manner at the interface there is no possibility of having considerable defects. The broadening of 

the peaks may arise due to insufficient energy that is needed for the atom to move to the proper 

site in forming the crystallite as reported. Small crystallites have relatively few lattice planes that 

contribute to the broadening. The observed diffraction peaks correspond to the (111), (220) and 

(311) planes of the cubic crystalline ZnS and are reported as identifying peaks of ZnS by earlier 

workers. Using the Bragg equation 

 𝑑ℎ𝑘𝑙 =  
𝑛𝜆

2𝑠𝑖𝑛 𝜃
,      (3.1) 

Where d is the spacing, hkl are the miller indices,  is the wavelength of X-ray, θ is the Bragg 

angle and n is an integer determined by the order given. The d-spacing has been calculated and 

the estimated values are in good agreement with ICDD 10-080-0020. Peak intensity was 

observed to increase with increase in deposition time and temperature indicating increase in the 

crystallinity of the material shown in Figures 3.2 and 3.3. 

The peak broadening at lower angle is more meaningful for the calculation of particle size; 

therefore size of the nanocrystals has been calculated using Debye-Scherrer formula (Guinier, 

1963) using reflections from the XRD pattern.  

The calculation gave particle sizes ranging from 1.4 to 5.5 nm with dislocation densities 

estimated from X-ray diffraction ranging from 1.13 to 9.32 x 1017 lines per metre. The dislocation 

density is a measure of the number of dislocations in a unit volume of a crystalline material.  

Dislocations in semiconductors are a nuisance for device developers since they introduce states 

which trap electrical charge, reducing the number of available carriers. By getting charged they 
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introduce electric fields, locally affecting device performance by scattering the electrons. Their 

states act as non-radiative recombination centers for electrons and holes, therefore reducing the 

efficiency of opto-electronic devices. They may also cause current leakages by jumping of the 

electrons from state to state. 
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Figure 3.4: XRD of different as-prepared ZnS samples using different chain lengths of the alkyl 

group in the dithiocarbamate precursors at 50 °C for 6 hours. (Et = ethyl, Pr = propyl, Bu = butyl,  

iBu = isobutyl) 

 

The effect of the length of the alkyl chain length on the size of the crystallites and morphology 

of the nanoparticle was also investigated by varying the alkyl chain from ethyl to butyl and 

isobutyl in the dithiocarbamate precursor. The XRD diffractogram is shown in Figure 3.4 and 

the structural parameters given in table 3.2. The crystallite sizes as calculated by the Debye-

Scherrer relation increase with increasing chain length (i.e. from Et=ethyl through Pr= propyl to 

Bu= butyl). However there was a reduction in size from Bu to iBu. In another experiment when 
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zinc cupferronate was used as the precursor under the same experimental conditions as the zinc 

dialkyldithiocarbamate no thin film nanoparticle was formed. 

The Scanning electron microscopy (SEM) images of ZnS nanomaterials/thin films formed at the 

water-toluene interface by reacting toluene solution of zinc diethyldithiocarbamate and aqueous 

solution of NaHS for 5 hours at 50 oC is shown in Figure 3.5.  

      

   

Figure 3.5: Scanning electron microscopy (SEM) image of ZnS nanomaterial formed at the 

water-toluene interface at 50 oC for 5 hours at different magnifications (a-5000x, b-10000x and 

c-20000x).  

 

The compositional analysis of ZnS was done by energy dispersive X-ray analysis (EDAX) as 

shown in Figures 3.6. The ratio between zinc and sulphide peaks should be nearly stoichiometric. 

From the graph it is noted that for a deposition time of 5 hours and temperature of 50 oC the 

a b 

c 
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atomic percentage of zinc was 48.41 while that of sulphur was 51.59. The composition ratio is 

affected by the cumulative effect of ionic transport, discharge, nucleation and growth during the 

higher deposition time and temperature.  

 

Figure 3.6: EDAX analysis of ZnS nanomaterial formed at the water-toluene interface at 50 oC 

for 5 hours 

3.3.1.2 Optical analysis 

In order to examine the quantum confinement effect of the synthesized nanoparticles, UV-VIS 

absorption spectra was employed. The optical absorption spectra of the nanocrystals were 

measured using CARY 5000 UV-Vis-NIR spectrophotometer. The optical absorption spectra 

have been measured at room temperature over a range of 250 to 600 nm (Figures 3.7-3.10). The 

peak of the UV absorption is indicative of the band gap of the semiconductor ZnS nanoparticles.  

Element [norm. at. %] 

Zinc 48.41 

Sulphur 51.59 

 100 
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Figure 3.7: (a) Optical absorption spectra and (b) optical band gap of the as-prepared ZnS 

samples for 4, 5, 6 and 8 hrs at 50 °C.   
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Figure 3.8: (a) Optical absorption spectra and (b) optical band gap of the as-prepared ZnS 

samples for 2, 3, and 5hrs at 50 °C.   
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Figure 3.9: (a) Optical absorption spectra and (b) optical band gap of the as-prepared ZnS 

samples for 4, 5, and 6 hrs at 70 °C.    
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Figure 3.10: (a) Optical absorption spectra and (b) optical band gap of as-prepared ZnS samples 

using different chain lengths of the alkyl group in the dithiocarbamate precursors and lead 

cupferronate precursor at 50 °C for 6 hrs. (Et = ethyl; Pr = propyl; Bu = butyl; iBu = isobutyl). 

 

The fundamental absorption corresponds to the electron excitation from the valence band to the 

conduction band and can be used to determine the optical band gap. The relationship between 

the absorbance (A) and the incident photon energy (h) is given by the Stern relationship of 

near-edge absorption (Stern and Kim, 1981): 

    A = [k(h-Eg)]
1/n/h 

Where  is the frequency, h is the constant, k is a constant and carries a value of either 1 of 4. 

The value of n is 1 for direct transition and 4 for indirect transition. The optical band gap is 

determined by a plot of (Ah)2/n as a function of h, extrapolation of the line to the h axis where 

(Ah)2/n is zero gives the band gap Eg.  The plots of (Ah)2 versus h is a straight line indicating 

that ZnS is a direct band gap material. The plots of (Ah)2 versus h for the different 

nanocrystallites obtained at various temperatures are also given in the Figures 3.7-3.10. Using 

the estimated band gap values of the nanoparticles in the Brus equation (Brus, 1984) (eq 3.1), 

the particle size can be calculated from the optical spectra. The Brus equation is the theoretical 

calculation for semiconductor nanoparticles based on “effective mass approximation” (EMA). 
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In this approximation, an exciton is considered to be confined to a spherical volume of the 

crystallite and the mass of electron and hole is replaced with effective masses (me and mh) to 

define the wave function.  

   𝐸𝑛𝑝 =  𝐸𝑔 + 
ℎ2

8𝑟2 [
1

𝑚𝑒
∗ + 

1

𝑚ℎ
∗ ] − 

1.8𝑒2

4𝜋𝜀𝜀0𝑟
    (3.2) 

Where, Enp = band gap energy of nanoparticle, Eg(bulk) = band gap energy of bulk 

semiconductor, r = radius of nanoparticle, m*e = effective mass of excited electron, m*h = 

effective mass of excited hole, h = Planck’s constant and e = electronic charge. 
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Table 3.1 Optical parameters and crystallite sizes of ZnS nanoparticles 

Precursor Deposition 

Temperature /°C 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Zn(S2CNEt2)2: S/NaBH4  

50  

2 

3 

4 

5 

6 

8 

3.60 

3.74 

3.88 

3.75 

3.82 

3.75 

- 

10.5 

5.70 

9.72 

6.84 

9.72 

2.962* 

2.123 

 

1.335 

1.687 

1.988 

Zn(S2CNEt2)2: S/NaBH4 70  4 

5 

6 

3.69/3.01 

3.71 

3.73 

- 

14.88 

5.70 

2.274 

1.981 

1.624 

Zn(S2CNPr2)2: S/NaBH4 50 6 3.84 6.39 6.877 

Zn(S2CNBu2)2: S/NaBH4 50 6 3.92 5.19 6.793 

Zn(S2CNiBu2)2: S/NaBH4 50 6 3.93 5.08 5.267 

Band gap of bulk ZnS = 3.68 eV; * X-ray measured radius above Bohr exciton bulk radius of 

2.5 nm. 

 

Table 3.1 shows optical parameters and crystallite sizes of ZnS nanoparticles. The XRD 

measurements showed that the average radii of the nanoparticles in this study are below the 

excitonic Bohr radius of bulk ZnS (2.5 nm). The calculated band gap values ranging from 3.74 

to 3.93 eV are higher than the bulk value of 3.68 eV because of quantum confinements of the 

ZnS nanoparticle thin films. The absorption spectra reveal that the excitonic absorption peaks 

for the nanoparticles are blue shifted compared to the bulk band gap of 3.68 eV (corresponding 

to the absorption edge at 336 nm) and clearly indicate strong quantum size effects. Size 
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quantization of carriers in a small volume crystallite is well known to cause the blue shift. The 

shift of band gap have been utilized in determining the crystallite radius using the effective mass 

approximation relation and the particle sizes obtained in this work are also given in Table 3.1. 

These values are significantly above the estimates based on X-ray diffraction measurements 

because of the assumption that the confining potentials for the electron and hole are infinite. 

3.3.2 t-Selenium nanorods 

The reaction of toluene solution of zinc diethyldithiocarbamate with NaHSe generated by the 

borohydride reduction of selenium powder in water at 50 oC for 5 hours yielded t-Selenium 

nanorods contaminated with cubic (zinc blende) ZnSe nanomaterial at the water-toluene 

interface as shown by the X-ray diffraction measurements. Selenium shows interesting properties 

such as high photoconductive and catalytic properties and has commercial use in photocopiers 

and rectifiers (Zingaro and Cooper, 1974). Nanorods of t-selenium have been synthesized by 

using a simple solution-based method (Rao et al., 2003), where selenium powder is first reduced 

with NaBH4 to yield NaHSe (Klayman and Griffin, 1973) in aqueous solution to obtain 

amorphous selenium. The selenium dissolves in water in 60 min giving rise to a clear colourless 

solution. The reaction mechanisms involved are:  

4NaBH4   +   2Se   +   7H2O     2NaHSe  +  Na2B4O7 + 14H2   ……(3.3) 

Na2B4O7   +   2NaHSe   +   2Se   +   5H2O     2Na2Se   +   4H3BO3  ...….(3.4) 

Na2Se   +   2H2O      2a-Se   +   2NaOH   +   H2              .....… (3.5) 

a-Se     t-Se                      ……(3.6) 

The selenide ion acts as the source of Se in this method. The nascent selenium produced in step 

(3) imparts a wine red colour to the aqueous solution. On standing for a few hours, the solution 
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transforms into amorphous Se in colloidal form. A small portion of the dissolved selenium 

precipitates as t-Se nanoparticles which act as nuclei to form one-dimensional nanorods (Gautam 

et al., 2005).  

In the water-toluene interface method which is the method for this study the mechanism is quite 

similar to the simple solution-based method but with a slight variation. The dissolved selenide 

ion migrated to the water-toluene interface. The expectation was that Zn2+ ions which were 

obtained through the decomposition of the zinc diethyldithiocarbamate would also migrate to the 

water-toluene interface where it would react with the selenide ions to form ZnSe nanoparticles. 

However, the results indicate that there were two processes at the water-toluene interface. The 

first process is the reaction between the Zn2+ ions and the Se2- anions to form ZnSe as expected 

i.e.  

  Zn2+       +      Se2-                                ZnSe                  (3.7) 

The second process involves the transformation of the selenide ion into amorphous Se in 

colloidal form a small portion of which precipitates as t-Se nanoparticles which acts as nuclear 

to form one-dimensional nanorods according to equation (3.6). The predominance of the t-Se 

nanorods points to the fact that the conditions and energetics at the water-toluene interface was 

more favourable towards the second process. 

3.3.2.1 Structural characterization and morphology 

Figures 3.11 and 3.12 show the X-ray diffraction patterns of as-prepared t-Se nanowires. The 

diffraction peaks at 2θ (degrees) of 23.57o, 29.73o, 41.28o, 43.68o, 45.43o, 51.72o, 56.07o, 61.62o. 

65.24o and 71.60o are respectively indexed as the (100), (101), (110), (102), (111), (201), (112), 

(103), (210) and (113) planes of t-Se. All the diffraction peaks in the 2θ range measured 

correspond to the trigonal structure of t-Se with lattice constants a = 4.35 Å and c = 4.93 Å are 
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in good agreement with those on the standard card (JCPDS card No. 06-0362). The sharpness of 

the diffraction peaks suggests that the product is well crystallized. The crystallite size of t-

selenium is calculated using Debye-Scherrer formula. Peak intensity was observed to increase 

with increase in deposition time and temperature. This indicates increase in the crystallinity of 

the material with increase in deposition time and temperature. 
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Figure 3.11: XRD of different as-prepared t-Se nanorods (a) for 4 hrs (b) for 5 hrs and (c) for 6 

hrs at 50 oC.   
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Figure 3.12: XRD of different as-prepared t-Se nanorods (a) for 4 hrs (b) for 5 hrs and (c) for 6 

hrs at 70 oC.   
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As in the case of ZnS the effect of the length of the alkyl chain length on the size of the crystallites 

and morphology of the nanoparticle was also investigated. The XRD diffractogram is shown in 

Figure 3.13 and the structural parameters given in Table 3.5. 

 

20 30 40 50 60 70 80

R
e

la
ti
v
e

 i
n

te
n

s
it
y
 (

a
.u

)

2degrees)

Bu

Et

Pr

iBu
100

111

101

110 111
102 201

003 210 113
ZnSe

 

Figure 3.13: XRD of different as-prepared t-Se nanorods using different chain lengths of the 

alkyl group in the Zinc dithiocarbamate precursors at 50 °C for 6 hrs. (Et = ethyl; Pr = propyl; 

Bu = butyl;  iBu = isobutyl). 

 

The Scanning electron microscopy (SEM) images of t-Se nanowires formed at the water-toluene 

interface by reacting 30 ml of toluene solution of 0.56 mM zinc diethyldithiocarbamate and 

aqueous solution of NaHSe generated by the borohydride reduction of selenium powder for 5 

hours at 50 oC and 70 oC are shown in Figure 3.14. These images show the formation of some 

hexagonal rods structures. The high resolution transmission electron microscopy (HRTEM) 

image at high magnification of t-Se nanorods formed at water-toluene interface by reacting 

toluene solution zinc diethyldithiocarbamate and aqueous solution of NaHSe at 50 oC for 5 hours 
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is also given by Figure 3.15 with the Fresnel fringes indicating the formation of crystalline 

material. The energy dispersive X-ray analysis (EDAX) spectra shown in Figure 3.16 indicate 

the elemental composition of the nanomaterial/thin film formed at 50 oC for 5 hours.  

Quantitative EDAX spectra of t-Se nanomaterial formed at water-toluene interface 50 oC for 5 

hours gave a composition ratio of 1:7.33 within the limitations of the experimental conditions 

(Figure 3.16) indicating that the nanorods formed were predominantly that of t-Se. 

      

   

Figure 3.14: Scanning electron microscopy (SEM) image of t-Se nanorods formed at the water-

toluene interface at 50 oC for 5 hours at different magnifications (a-5000x, b-10000x and c-

20000x).  

 

a b 

c d 
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Figure 3.15: High resolution transmission electron microscopy (HRTEM) image at high 

magnification of t-Se nanorods formed at water-toluene interface by reacting toluene solution of 

zinc diethyldithiocarbamate and aqueous solution of NaHSe at 50 C for 5 hours 

a b 

c 
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Figure 3.16: EDAX spectra of t-Se nanorods formed at water-toluene interface by reacting at 50 

oC for 5 hours. 

3.3.2.2 Optical analyses 

The optical absorption spectra of the nanorods were also measured using CARY 5000 UV-Vis-

NIR spectrophotometer. The optical absorption spectra were measured at room temperature over 

a range of 250 to 600 nm (Figures 3.17-3.20). 

The plots of (Ah)2 versus h is a straight line indicating that t-Se is a direct band gap material. 

The plots of (Ah) 2 versus h for the different nanocrystallites obtained at 50 oC are given in 

the Figures 3.17–3.20. Using the estimated band gap values of the nanoparticles in the Brus 

equation the particle size were calculated from the optical spectra.        

Element [norm. at-%] 

Zinc 11.90 

Selenium 88.10 

 100 
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Figure 3.17: (a) Optical absorption spectra and (b) optical band gap of the as-prepared t-Se 

nanorods for 4, 5 and 6 hours at room temperature. 
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Figure 3.18: (a) Optical absorption spectra and (b) optical band gap of as-prepared t-Se nanorods 

for 4, 5, 6 and 24 hours at 50 oC. 
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Figure 3.19: (a) Optical absorption spectra and (b) optical band gap of the as-prepared t-Se 

nanorods for 4, 5 and 6 hours at 70 oC 
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Figure 3.20: (a) Optical absorption spectra and (b) optical band gap of the as-prepared t-Se 

nanorods using different chain lengths of the alkyl group in the Zinc dithiocarbamate precursors 

at 50 °C for 6 hours. (Bu = butyl; Et = ethyl; Pr = propyl; iBu = isobutyl). 
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Table 3.2 Optical parameters and crystallite sizes of t-Se nanowires 

Precursor Deposition 

Temperature/ 

oC 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Zn(S2CNEt2)2: Se/NaBH4 RT 4 

5 

6 

3.85 

3.87 

3.48 

1.81/2.83 

1.80/2.79 

2.06/3.52 

- 

- 

- 

Zn(S2CNEt2)2: Se/NaBH4 50  4 

5 

6 

3.7 

3.8 

3.7 

1.91/3.06 

1.84/2.90 

1.91/3.06 

5.61 

3.65 

7.08 

Zn(S2CNEt2)2: Se/NaBH4 70  4 

5 

6 

2.86 

3.96 

3.83 

2.74/8/22 

1.75/2.67 

1.82/2.85 

6.14 

1.07 

6.12 

Zn(S2CNPr2)2: Se/NaBH4 50 6 3.91 1.78/2.74 6.18 

Zn(S2CNBu2)2: Se/NaBH4 50 6 3.70 1.90/3.06 2.00 

Zn(S2CNiBu2)2: Se/NaBH4 50 6 3.83 1.82/2.85 5.10 

Band gap of bulk t-Se = 1.74 

Table 3.2 gives the optical parameters and crystallite sizes of the t-Se nanoparticle thin films 

formed at different temperatures, deposition times and with different precursors. The band gap 

of t-Se nanoparticle thin films increased from the bulk t-Se of 1.74 eV to the range 2.86 eV to 

3.96 eV as the crystallite sizes changed to between 1.07 to 7.08 nm.  
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3.3.3 Tellurium nanorods 

The reaction of toluene solution of zinc diethyldithiocarbamate with aqueous solution of NaHTe 

obtained by the borohydride reduction of tellurium powder yielded t-Te nanorods at the water-

toluene interface. Rao et al., (2004) synthesized t-Te nanowires in water and indicated that the 

lateral dimensions of the 1-D structures formed depended on the nature of the seeds and can be 

varied by varying the initial reaction conditions. A likely reaction scheme is as follows: 

4NaBH4   +   2Te   +   7H2O     2NaHTe  +  Na2B4O7 + 14H2    ….. (3.8) 

Na2B4O7   +   2NaHTe   +   2Te   +   5H2O     2Na2Te   +   4H3BO3    ..…(3.9) 

Na2Te   +   2H2O      2a-Te   +   2NaOH   +   H2                   .….(3.10) 

a-Te     t-Te   …………               (3.11) 

 

Figure 3.21. (a) SEM image of t-Te nanorods obtained from the reaction of 0.03 g of Te with 

NaBH4 in 20 ml water. (b) HREM image of one of the nanorods showing (0 0 1) planes of 

hexagonal t-Te (inset shows the corresponding SAED pattern) (Gautam et al., 2005) 
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Figure 3.21 shows a SEM image of the nanorods obtained  and HREM image of one of the 

nanorods showing the (001) planes of hexagonal t-Te and the corresponding SAED pattern in 

such a preparation (Rao et al., 2004). The process involved addition of NaBH4 to a container 

with Te powder in water upon heating leads to an aqueous solution of NaHTe. By appropriate 

control of the reaction conditions, different morphologies of the 1D nanostructures of Te have 

been achieved: (i) rods or wires, (ii) belts, (iii) tapered rods or whiskers, (iv) T-junctions and (v) 

Y-junctions. Figure 3.22 gives a Schematic process of formation of t-Te nanorods in solution.  

   

Figure. 3.22 Schematic process of formation of t-Te nanorods in solution (Gautam and Rao, 

2004)  
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3.3.3.1 Structural characterization and morphology 

Figures 3.22-3.24 show the XRD spectra taken from the t-Te nanowires. It can be seen that the 

positions of the diffraction peaks of the various samples are approximately the same. All the 

peaks of t-Te NWs in the XRD pattern can be indexed to the hexagonal phase of Te, whose unit 

cell constants are a = 0.4451 nm and c= 0.5904 nm, which is consistent with the literature data 

(JCPDS: card no. 36-1452).  
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Figure 3.23: XRD of different as-prepared t-Te nanowires (a) for 4 hours (b) for 5 hours and (c) 

for 6 hours at 50 oC.  
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Figure 3.24: XRD of different as-prepared t-Te nanowires at (a) 50 oC, (b) 60 oC, and (c) 70 oC, 

for 24 hours.   

The XRD pattern show peaks whose intensities increase with increasing deposition time and 

temperature (Figures 3.23 and 3.24). This indicates increase in the crystallinity of the 

nanomaterial thin film with increase in deposition time and temperature. The hexagonal 

structures show orientations along the 101 planes. 
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The effect of the length of the alkyl chain length on the size of the crystallites and morphology 

of the t-Te nanorods was also investigated. The XRD diffractogram is shown in Figure 3.25 and 

the structural parameters given in Table 3.8. 
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Figure 3.25: XRD of different as-prepared t-Te nanorods using different chain lengths of the 

alkyl group in the dithiocarbamate precursors and lead cupferronate precursor at 50 °C for 6 

hours. (Et = ethyl; Pr = propyl; Bu = butyl; iBu = isobutyl). 

3.3.3.2 Optical analyses 

The optical absorption spectra of the nanorods were measured using CARY 5000 UV-Vis-NIR 

spectrophotometer. The optical absorption spectra were measured at room temperature over a 

range of 400 to 1500 nm. The spectra of the nanorods show a broad band at 800 nm which is not 

observed in the spectrum of the bulk Te. 
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Figure 3.26: (a) Optical absorption spectra and (b) optical band gap of the as-prepared t-Te 

nanowires using different chain lengths of the alkyl group in the Zinc dithiocarbamate precursors 

at 50 °C for 6 hours. (Bu = butyl; Et = ethyl; Pr = propyl; iBu = isobutyl). 

 

The fundamental absorption corresponds to the electron excitation from the valence band to the 

conduction band and can be used to determine the optical band gap. The t-Te nanowires have 

been reported to possess two characteristic peaks: peak I and peak II. Peak I is due to the 

transition from π-bonding valence band (VB2) to the p-antibonding conduction band (CB1), and 

it appears in the range of 250-350 nm. Peak II is due to the transition from p-lone pair valence 

band (VB3) to the p-antibonding conduction band (CB1), and it appears around 600-850 nm (Lin 

et al., 2008; Sreeprasad et al., 2009; Rao and Gautama, 2004). Plots of the absorption spectra 

and plots of (Ah)2 versus h are given in Figure 3.26.  
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Table 3.3 Optical parameters and crystalline sizes of t-Te nanowires 

Precursors Deposition 

Temperature/°C 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Zn(S2CNEt2)2: 

Te/NaBH4 

50 

 

4 

5 

6 

3.9 

3.85 

3.6 

0.69/2.22 

0.71/2.26 

0.76/2.52 

 

Zn(S2CNEt2)2: 

Te/NaBH4 

50 5 1.17 - 5.70 

Zn(S2CNPr2)2: 

Te/NaBH4 

50 5 1.10 - 6.38 

Zn(S2CNBu2)2: 

Te/NaBH4 

50 5 1.16 - 6.74 

Zn(S2CNiBu2)2: 

Te/NaBH4 

50 5 1.09 - 5.70 

Band gap of bulk Te = 0.33 eV 
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3.4 Conclusions 

ZnS, nanoparticles/thin films have been prepared at the water-toluene interface using sulphide 

produced from sulphur powder reduced with NaBH4 and zinc diethyldithiocarbamate as zinc 

source. The ZnS prepared exhibited the cubic structure as confirmed by powder XRD. The 

characteristics of these nanoparticles/thin films prepared under these mild conditions compare 

favourably with other materials prepared by other methods under drastic conditions. However 

attempts to synthesize ZnSe and ZnTe using the same procedure resulted in the formation of t-

Se and t-Te nanowires. The average crystallite sizes of the as-prepared nanoparticles at different 

temperatures, concentrations and deposition times ranged from 1.3 to 6.9 nm for ZnS, 2.0 to 7.1 

nm for t-Se and 5.70 to 6.74 nm for t-Te. The dislocation densities ranged from 1.14 to 9.33 x 

1017 lines/m for ZnS, 2.0 to 8.7 x 1017 lines/m for t-Se and 2.22 to 6.5 x 1017 lines/m for t-Te. 

The shape of the as-prepared nanoparticles at different temperatures was studied by SEM and 

gave morphologies from cubes to rods. The band gaps obtained for ZnS ranged from 3.6 to 3.88 

eV, t-Se ranged from 2.86 to 3.91 eV and for t-Te from 1.09 to 1.17 eV. These show significant 

increases from the band gaps of the bulk materials. 
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CHAPTER FOUR 

DEPOSITION OF CADMIUM CHALCOGENIDE NANOMATERIALS AT THE WATER-

TOLUENE INTERFACE 

This chapter describes the syntheses of Cadmium chalcogenide nanoparticles. The work was 

carried out at the School of Chemistry, and characterization of nanomaterials by XRD and SEM 

was performed in the School of Materials Science, The University of Manchester, UK. 
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Deposition of cadmium chalcogenide nanomaterials at the water/toluene interface 

Abstract 

Nanostructured thin films of CdE (E=S, Se,) have been prepared at the water-toluene interface 

by reacting toluene solutions of alkyidithiocarbamates/ cupferronates with aqueous chalcogenide 

ions obtained by the borohydride reduction of sulphur and selenium powder. The thin film 

deposits were characterized by powder X-ray crystallography, scanning electron microscopy and 

absorption spectroscopy. The influence of deposition conditions such as precursor 

concentrations, temperature as well as deposition times were studied. The reaction of toluene 

solution of cadmium cupferronate with aqueous solution of NaHS obtained by the borohydride 

reduction of sulphur powder yielded both cubic and hexagonal CdS nanomaterial at the water-

toluene interface as shown by the X-ray diffraction measurements. The crystallite sizes obtained 

using Debye-Scherrer formula gave particle sizes ranging from 0.9 to 7.1 nm with dislocation 

densities ranging between 1.89 to 110 x 1017 lines/m for cubic CdS and 0.94 to 7.3 nm with 

dislocation densities ranging between 1.87 to 112.93 x 1017 lines/m for hexagonal CdS. The 

reaction of toluene solution of cadmium cupferronate with aqueous solution of NaHSe yielded 

hexagonal CdSe nanomaterial at the water-toluene interface. Calculation employing the Debye-

Scherrer formula gave particle sizes ranging from 5.86 to 6.40 nm with dislocation densities 

ranging between 2.13 to 4.223 x 1017 lines/m. The band gaps obtained for CdS ranged from 3.69 

to 3.98 eV, CdSe ranged from 3.7 to 4.05 eV. 

4.1 Introduction 

Colloidal chemistry approaches to the synthesis of nanocrystals of different II-VI and III-V 

semiconductor materials with narrow particle size distributions, high crystallinity, and size-

dependent optical properties have been developed (Murray et al., 1993; Bowen Katari, 1994; 
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Vossmeyer et al., 1994; Rogach et al., 1996; Guzelian et al., 1996; Micic et al., 1997; Peng and 

Peng, 2001; Talapin et al., 2001, 2001). 

Owing to the quantum confinement effect, semiconductor nanocrystals, especially the II–VI 

semiconductor nanocrystals, exhibit remarkable size-dependent optical properties (Alivisatos, 

1996) which have attracted a great deal of attention in recent years for both fundamental research 

and technical applications such as light-emitting diodes (LED) (Colvin et al., 1994; Coe et al., 

2002;  Schlamp et al., 1997), solar cells  (Huynh et al., 1999; 2002), lasers (Klimov et al., 2000) 

and biological markers (Bruchez et al.,1998; Chan and Nie, 1998; Zhang et al., 2003 ). In the 

past two decades, considerable effort has been made to synthesize high-quality semiconductor 

nanocrystals. Among the methods employed for synthesizing dot-shaped semiconductor 

nanocrystals, the organometallic approach (Murray et al., 1993; Peng,  et al., 1998; Talapin et 

al., 2001) and its variations (Peng et al., 2002; Qu et al., 2001; Yu, et al., 2002; 2003) have 

proved the most popular, though other methods have also been very successful (Zhang et al., 

2003; Vossmeyer et al., 1994; Cumberland et al., 2002; Talapin et al., 2002). For any 

applications based on the optical properties of nanocrystals, it is essential to use high quality 

nanocrystals. In principle, high quality nanocrystals should possess at least two characteristics, 

high emission colour purity and high photoluminescence quantum yield (PLQY). The colour 

purity of the emission is strongly dependent on the size distribution of the nanocrystals. The 

narrower the size distribution, the purer the colour of the emission light, which can be reflected 

by the narrow photoluminescence (PL) emission bandwidth and/or the narrow UV/Vis band-

edge absorption bandwidth. The PLQY is very sensitive to the surface environment of the 

nanocrystals, and can be dramatically reduced by surface trap states (Qu and Peng, 2002). These 

surface trap states result from the dangling bonds and/or stacking faults of some of the surface 

atoms (Zhang et al., 2003; Qu and Peng, 2002; Doneg et al., 2002). Surface passivation with 
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suitable organic or inorganic materials and an increase of the crystallinity can effectively remove 

the surface trap states, and lead to a significant increase in the quantum yield.  

Among the II–VI semiconductor nanocrystals, CdSe nanocrystals have been most extensively 

investigated, and their size and size distribution can be controlled, whereas relatively little work 

has been done on CdS nanocrystals. Recently, high quality CdS nanocrystals with a controllable 

size and a narrow size distribution were prepared successfully in a noncoordinating solvent (Yu 

et al., 2002).  It was believed that maintaining a good balance between nucleation and growth by 

tuning the activities of the precursors was the key to this success. More recently, Pan et al. 

developed a two-phase approach to successfully synthesize highly luminescent and nearly 

monodisperse CdS nanocrystals (Pan et al., 2004). The reaction was carried out under mild 

conditions (at below 100 oC) with less toxic reagents than employed traditionally. The possible 

mechanism was based on slow nucleation and slow growth, which is definitely different from a 

mechanism based on fast nucleation and slow growth as reported previously. In fact, the two-

phase approach, in which the reaction occurs at the interface of two liquid phases, was first 

applied to the synthesis of gold nanocrystals by Brust et al in 1994. Based on the work by Pan 

et al., (2004) a new two-phase approach to synthesize high quality CdS nanocrysals in an 

autoclave was developed. Compared with the earlier results, the CdS nanocrystals obtained by 

the new approach exhibited a narrower size distribution and a higher PLQY. Moreover, through 

a seeding-growth technique, tunable size CdS nanocrystals were obtained with PL peaks with a 

quite similar full width at half-maximum (FWHM = 18–22 nm) to those of the initial nanocrystal 

seed s throughout the whole controllable size range. In this study, cadmium myristate (CdM2) 

and thiourea were used as cadmium source and sulphur source, respectively, and oleic acid (OA) 

was used as a ligand for stabilizing the nanocrystals. It was found that the resulting nanocrystals, 

without any size sorting, appeared to be comparable with the CdS nanocrystals reported 

previously. 
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CdSe nanocrystals have been synthesized in a trioctylphosphine oxide-trioctylphosphine 

(TOPO-TOP) (Murray et al., 1993; Bowen Katari et al., 1994) or hexadecylamine (HDA)-

TOPO-TOP mixture (Talapin et al., 2001),  and fractions of nanocrystals with narrow (~4 %) 

size distributions were carefully separated by a size-selective precipitation technique (Murray et 

al., 1993; Bowen Katari et al., 1994)  and redissolved in toluene. In this chapter, the synthesis 

of CdS and CdSe nanomaterial/thin films at water-toluene interface at temperatures below 100 

oC by the use of cadmium dialkylyldithiocarbamate/cupferronate (Cd(dtc)2/Cd(cup)2) as 

cadmium source and the borohydride reduction of Sulphur/Selenium/Tellurium as 

sulphide/selenide/telluride sources are reported. 

4.2 Deposition of cadmium chalcogenide thin film nanomaterials 

Briefly 30 ml of degassed water containing 0.1 mmol of NaHE (E= S, Se, Te) was transferred 

into a 100 ml beaker. 30 ml of toluene containing the 0.1mmol of the cadmium 

dialkyldithiocarbamate/cupferronate precursor was layered on top of the solution in the beaker. 

The reaction vessel was placed in an oven preheated to the desired temperature for 4 hours. The 

deposits formed at the interface were isolated by gently lifting the film from the interface onto 

glass substrates.  The reaction was repeated by varying the reaction conditions such as 

temperature, time and the reacting species (details of the deposition are given in chapter 6 section 

6.4). The reactions were carried out in a 100 ml beaker with the height of the liquid column at 4 

cm. 
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4.3 Results and discussions 

4.3.1 Cadmium sulphide 

4.3.1.1 Structural characterization and morphology 

The reaction of Cadmium cupferronate with aqueous solution of NaHS obtained by the 

borohydride reduction of sulphur powder at 50 oC for 5 hours yielded cubic and hexagonal CdS 

nanomaterial at the water-toluene interface as shown by the X-ray diffraction measurements. 

Figure 4.1 show the XRD pattern of CdS film with reflections at 26.5o, 43.8o and 52.3o 

corresponding to 111, 220 and 311 respectively of the cubic CdS (ICDD 01-080-0021, cell 

constant a=5.618 Å) and reflections 25.37o , 41.26o and 49.0o corresponding to 002, 110 and 200 

respectively of hexagonal CdS (ICDD 01-075-1545). The peak broadening at lower angle is 

more meaningful for the calculation of particle size therefore size of the nanocrystals has been 

calculated using Debye-Scherrer formula (Guinier, 1963) using (111), (220) and (311) 

reflections from the XRD pattern for the cubic CdS and (002), (110) and (200) reflections for 

the hexagonal CdS. The calculation gave particle sizes ranging from 0.9 to 7.1 nm with 

dislocation densities ranging between 1.89 to 110 x 1017 lines/m for cubic CdS and 0.94 to 7.3 

nm with dislocation densities ranging between 1.87 to 112.93 x 1017 lines/m for hexagonal CdS.  
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Figure 4.1: XRD of different as-prepared CdS samples (a) for 4 hours, (b) for 5 hours and (c) for 

6 hours at 70 oC. 
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The SEM image of CdS nanomaterial formed at the water-toluene interface by reacting 30 ml of 

toluene solution of 0.1 mM copper cupferronate and 30 ml of 0.1 mM NaHS at 50 oC for 5 hours 

is shown in Figure 4.2.  

     

    

Figure 4.2: SEM image of CdS nanomaterial formed at the water-toluene interface by reacting 

30 ml of toluene solution of 0.1 mM copper cupferronate and 30 ml of 0.1 mM NaHS at 50 oC 

for 5 hours at different magnifications (a-5000x, b-10000x, c-20000x and d-20000x). 

a b 

c d 
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Figure 4.3: EDAX image of CdS nanomaterial formed at the water-toluene interface by reacting 

30 ml of toluene solution of 0.1 mM copper cupferronate and 30 ml of 0.1 mM NaHS at 50 oC 

for 5 hours 

 

The Scanning electron microscopy (SEM) images of CdS nanomaterials/thin films formed at the 

water-toluene interface by reacting 30 ml of toluene solution of 0.1mM cadmium cupferronate 

and 30 ml of 0.56 mM NaHS for 5 hours at 50 oC are shown in Figure 4.2. The microstructure 

consisted of jagged platelets with long dimension around 1 μm and thickness around 10 nm. The 

platelets stack to form five to six layer tall stacks that extend across the entire area of the 

interface. The surface of the platelets seems rough. The energy dispersive X-ray analysis 

(EDAX) spectra shown in Figure 4.3 indicates the elemental composition of the 

nanomaterial/thin film formed at 50 oC for 5 hours in addition to those of the glass substrate 

respectively.  Quantitative EDAX analysis of CdS nanomaterial formed at water-toluene 

interface also indicate that the CdS formed at 50 oC for 5 hours show slightly Cadmium rich 

(4.66%) in comparism with sulphur. 

 

Element [norm. at. %] 

Cadmium 52,33 

Sulphur 47.67 

 100 
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4.3.1.2 Optical analyses 

The optical absorption spectra of the nanocrystals were measured using CARY 5000 UV-Vis-

NIR spectrophotometer. The optical absorption spectra have been measured at room temperature 

over a range of 250 to 600 nm. 
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Figure 4.4:  (a) Optical absorption spectra and (b) optical band gap of the as-prepared CdS 

samples for 4, 5 and 6 hours at 50 oC 
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Figure 4.5:  (a) Optical absorption spectra and (b) optical band gap of the as-prepared CdS 

samples using different chain lengths of the alkyl group (Et = ethyl; Bu – butyl; iBu = isobutyl) 

for 6 hours at 70 oC. 
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The fundamental absorption corresponds to the electron excitation from the valence band to the 

conduction band and can be used to determine the optical band gap. The relationship between 

the absorbance (A) and the incident photon energy (h) is given by the Stern relationship of 

near-edge absorption (Stern and Kim, 1981): 

    A = [k(h-Eg)]
1/n/h 

Where  is the frequency, h is the constant, k is a constant and carries a value of either 1 or 4. 

The value of n is 1 for direct transition and 4 for indirect transition respectively. The optical band 

gap is determined by a plot of (Ah)2/n as a function of h extrapolation of the line to the h axis 

where (Ah)2/n is zero gives the band gap Eg.  The plots of (Ah)2 versus h is a straight line 

indicating that CdS is a direct band gap material. The plots of (Ah)2 versus h for the different 

nanocrystallites obtained at 50 oC are given in the Figures 5.4b and 5.5b. 

Generally, this wavelength of the maximum exciton absorption decreases as the particle size 

decreases as a result of quantum confinement of the photogenerated electron-hole pairs. The 

grain size of semiconductor particles can be determined using Brus equation (Brus, 1984) where 

E is the onset of absorption of the sample, Eg is the bulk band gap, R is the radius of the particle, 

me and mh are the reduced masses of the conduction band electron and valence band hole in units 

of the electron mass, ε0 is the vacuum permittivity and εRy is the high-frequency dielectric 

constant. Estimation of particle size of the present CdS sample, using a value of 2.4 eV for Eg 

gave a values ranging from 2.48 to 2.82 nm. This is more than twice the value of the grain size 

obtained by XRD technique. It has been shown by a number of experimental studies that the 

equation for E cannot be expected to be quantitatively correct for very small particles. 
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Table 4.1 Optical parameters and crystallite sizes of the CdS nanoparticles 

Precursors Deposition 

Temperature/

oC 

deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

UV       

XRD 

Cd(Cup)2: S/NaBH4 70  4 

5 

6 

3.97 

3.69 

3.92 

2.49 

2.82 

2.54 

7.3 

3.9 

4.5 

Cd(S2CNBu2)2: S/NaBH4 50 6 3.97 2.49 - 

Cd(S2CNiBu2)2: S/NaBH4 50 6 3.98 2.48 - 

Cd(S2CNPr2)2: S/NaBH4 50 6 3.83 2.64 - 

Band gap of bulk CdS =2.42a/2.51b eV aCubic; bHexagonal, 

 

4.3.2 Cadmium selenide 

4.3.2.1 Structural characterization and morphology 

The reaction of toluene solution of Cadmium cupferronate with aqueous solution of NaHSe for 

4, 5 and 6 hours at room temperature, 50 oC and 70 oC yielded hexagonal CdSe nanomaterial at 

the water-toluene interface as shown by the X-ray diffraction measurements. Figures 5.6-5.8 

show the XRD pattern of CdSe film with 23.5o, 27.0o and 48.8o reflections corresponding to 

(100), (101) and (200) respectively of the hexagonal CdSe (ICDD 01-077-2307, cell constant a= 

b= 4.299 Å, c= 7.010 Å). The peak broadening at lower angle is more meaningful for the 

calculation of particle size therefore size of the nanocrystals has been calculated using Debye-

Scherrer formula (Guinier, 1963) using (100), (002), (101) and (200) reflections from the XRD 

pattern. The calculation gave particle sizes ranging from 5.86 to 6.40 nm with dislocation 

densities ranging between 2.1295 to 4.2213 x 1017 lines/m (Table 4.5). Figure 4.9 and Table 4.4 
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show the XRD diffractogram and structural parameters respectively when selenosulphate was 

used as the seleniding source. 
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Figure 4.6: XRD of different as-prepared CdSe samples (a) for 4 hrs and (b) for 5 hours at room 

temperature using cadmium cupferronate precursors. 
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Figure 4.7: XRD of different as-prepared CdSe samples (a) for 4 hours, (b) for 5 hours and (c) 

for 6 hours at 50 oC using cadmium cupferronate precursors. 
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Figure 4.8: XRD of different as-prepared CdSe samples (a) for 4 hours, (b) for 5 hours and (c) 

for 6 hours at 70 oC using cadmium cupferronate precursors. 
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Figure 4.9: XRD of different as-prepared CdSe samples (a) for 8 hours, (b) for 10 hours and (c) 

for 12 hours at 50 oC using selenosulphate as the seleniding source. 

   

Figure 4.10: Scanning electron microscopy (SEM) image of CdSe nanomaterial formed at the 

water-toluene interface by reacting 30 ml of toluene solution of 0.1 mM Cadmium cupferronate 

and 30 ml of 0.1 mM NaHSe at 50 oC for 5 hours at different magnifications (a-5000x and b-

20000x). 

a b 
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Figure 4.11: EDAX mapping of CdSe nanomaterial formed at the water-toluene interface by 

reacting 30 ml of toluene solution of 0.1 mM Cadmium cupferronate and 30 ml of 0.1 mM 

NaHSe. 

  

The Scanning electron microscopy (SEM) images of CdSe thin film nanoparticles formed at the 

water-toluene interface by reacting toluene solution of Cadmium Cupferronate and aqueous 

solution of NaHSe obtained by the borohydride reduction of selenium powder for 5 hours at 50 

oC is shown in Figure 4.10.  

 

Element [norm. at.-%] 

Cadmium 61.77 

Selenium 38.23 

 100 
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Figure 4.12: EDAX mapping of CdSe nanomaterial formed at the water-toluene interface by 

reacting 30 ml of toluene solution of 0.1 mM Cadmium cupferronate and 30 ml of 0.1 mM 

NaHSe at 50 oC for 5 hours: (a) shows distribution of Cd and Se, (b) shows Cd distribution and 

(c) shows Se distribution. 

 

These images show the formation of some hexagonal structures. The energy dispersive X-ray 

analysis (EDAX) spectra shown in Figure 4.11 indicate the elemental composition of the 

a 

b c 
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nanomaterial/thin film formed at 50 oC for 5 hours at water-toluene interface. The EDAX 

mapping is given in Figure 4.12.  

4.3.2.2 Optical analyses 
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Figure 4.13:  (a) Optical absorption spectra and (b) optical band gap of the as-prepared CdSe 

samples for 4, 5 and 6 hours at 50 oC.  
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Figure 4.14:  Absorption spectra of different as-prepared CdSe samples for 4 hours, for 5 hours 

and for 6 hours at 70 oC.  
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Figure 4.15:  (a) Optical absorption spectra and (b) optical band gap of the as-prepared CdSe 

samples using sodium selenosulphate as selenide ion source for 8, 10 and 12 hours at 50 oC. 
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Figure 4.16:  (a) Optical absorption spectra and (b) optical band gap of the as-prepared CdSe 

samples using different chain lengths of the alkyl group in the Cadmium dithiocarbamate 

precursor for 6 hours at 50 oC. (Et=ethyl; Pr = propyl; Bu = butyl; iBu = isobutyl. 

The optical absorption spectra have been measured at room temperature over a range of 250 to 

600 nm using CARY 5000 UV-Vis-NIR spectrophotometer. The fundamental absorption 

corresponds to the electron excitation from the valence band to the conduction band and can be 

used to determine the optical band gap. The plots of (Ah)2 versus h for the different 

nanocrystallites obtained at 50 oC are given in the Figures 4.13 - 4.15. The grain size was also 
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estimated using a method proposed by Sarma and Sapra (2004). This method is based on high 

level theoretical calculations yield accurate estimates of size dependent shifts in band gap. 

Accordingly, the increase in band gap (ΔEg) is given by:  

    ∆𝐸𝑔 =  
1

𝑎𝑑2+ 𝑏𝑑 + 𝑐
     (4.1) 

Where, d is the diameter and a, b and c are material dependent constants. For CdSe, a= 0.0397, 

b = 0.1723 and c= 0.1111. 

Table 4.2 Optical parameters and crystallite sizes of CdSe nanoparticles 

Precursors Deposition 

Temperature/
oC 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

(a) (b) 

Cd(Cup)2: Se/NaBH4 50  4 

5 

6 

3.99 

3.84 

4.02 

2.31 

2.42 

2.29 

1.46 

1.49 

1.45 

4.9 

5.8 

4.9 

Cd(Cup)2: Se/NaBH4 70  4 

5 

6 

3.9 

4.05 

3.7 

2.38 

2.27 

2.54 

1.62 

1.44 

1.68 

5.9 

5.9 

6.4 

Cd(S2CNPr2)2: Se/NaBH4 50 6 3.96 2.33 1.47 - 

Cd(S2CNBu2)2: Se/NaBH4 50 6 3.87 2.40 1.50 - 

Cd(S2CNiBu2)2: Se/NaBH4 50 6 3.86 2.41 1.50 - 

Cd(S2CNEt2)2: Se/NaBH4 50 6 3.99 2.31 1.46 - 

Cd(Cup)2: Selenosulphate 50 8 4.05 - - 4.2 

Cd(Cup)2: Selenosulphate 50 10 4.10 - - 6.4 

Cd(Cup)2: Selenosulphate 50 12 3.90 - - 6.5 

Band gap of bulk CdSe =1.70c/1.75d eV. aCalculated from the Brust relation, bcalculated from 

Sarma and Sapra method; cCubic; dHexagonal. 
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4.4 Conclusions 

Nanoparticles of CdS and CdSe have been synthesized at the water-toluene interface. The crystal 

structure and grain size of the particles were determined using XRD. UV-visible absorption 

spectrum showed a blue-shift indicating quantum confinement of charged particles. The average 

crystallite sizes of the as-prepared nanoparticles at different temperatures, concentrations and 

deposition times ranged from 0.9 to 7.1 nm for cubic CdS, 0.94 to 7.3 nm for hexagonal CdS 

and 5.9 to 6.4 nm for CdSe. The dislocation densities ranged from 2.89 to 110 x 1017 lines/m for 

cubic CdS, 1.87 to 112.93 x 1017 lines/m for hexagonal CdS and 2.12 to 4.22 x 1017 lines/m for 

CdSe. The band gaps obtained for CdS ranged from 3.69 to 3.98 eV, CdSe ranged from 3.7 to 

4.05 eV. When selenosulphate was used as the seleniding source the crystallite sizes obtained 

ranged from4.1 to 6.4 nm with dislocation densities ranging from 2.4 to 5.7 x 1017 lines/m.  
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CHAPTER FIVE 

DEPOSITION OF LEAD CHALCOGENIDE NANOMATERIALS AT WATER-TOLUENE 

INTERFACE 

This chapter describes the syntheses of Lead chalcogenide nanoparticles. The work was carried 

out at the School of Chemistry, and characterization of nanomaterials nanowires by XRD and 

SEM was performed in the School of Materials Science, The University of Manchester, UK. 
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Deposition of lead chalcogenide nanomaterials at water-toluene interface 

Abstract 

Nanostructured thin films of PbE (E=S, Se, Te) have been prepared at the water-toluene interface 

by reacting toluene solutions of lead alkyldithiocarbamates/ cupferronates with aqueous 

chalcogenide ions obtained by the borohydride reduction of sulphur, selenium and tellurium 

powder. The thin film deposits were characterized by powder X-ray diffraction, scanning and 

transmission electron microscopy and absorption spectroscopy. The influence of deposition 

conditions such as precursor concentrations, temperature as well as deposition times were 

studied. At lower concentrations of the reacting species the films formed at the water-toluene 

interface consisted mainly of nanocrystals. However with increasing concentration as well as 

temperature thicker films were formed which were mostly single crystalline. All the materials 

prepared have the halite structure as confirmed by X-ray diffraction. The average crystallite sizes 

of the as-prepared nanoparticles at different temperatures, concentrations and deposition times 

ranged from 1.8 to 6.3 nm for PbS, 2.5 to 8.3 nm for PbSe and 3.9 to 6.3 nm for PbTe. The 

dislocation densities ranged from 2.2 to 31.4 x 1017 lines/m for PbS, 2.5 to 5.7 x 1017 lines/m for 

PbSe and 2.5 to 6.6 x 1017 lines/m for PbTe. The shape of the as-prepared nanoparticles at 

different temperatures was studied by SEM and gave morphologies from cubes to rods. The band 

gaps obtained for PbS ranged from 0.84 to 1.75 eV, PbSe ranged from 1.35 to 1.80 eV and 0.96 

eV for PbTe. These show significant increases from the band gaps of the bulk materials of 0.41 

eV, 0.29 eV and 0.27 eV for PbS, PbSe and PbTe respectively. 
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5.1 Introduction 

The synthesis of materials with different morphologies not only facilitate the realization of 

constructing nanodevices using nanoscale building blocks, but also avail the applications of 

complex inorganic materials in optics, electronics, mechanical, magnetism and biology (Moore 

et al., 2006, Xu et al., 2007). Remarkable progress has been made for the synthesis of inorganic 

materials including metal, metal oxide, sulphide and other minerals with complex structures 

(Chen and Ye, 2008). Among all kinds of fabrication strategy, solution phase synthesis has 

proved to be an effective way for controlling the morphology of the final products with low cost 

and large-scale production (Manna et al., 2003).  

Lead chalcogenides (PbE, E= S/Se/Te) are extremely important in both basic scientific studies 

and technological applications. Lead chalcogenide materials with critical dimensions of the order 

of nanometers have been of considerable interest of late both because of their unique physical 

and chemical properties and because of a perceived potential for use in a diverse range of 

applications (Alivisatos, 1996, Wang and Herron, 1991, Calvert, 1999, Hu et al., 1999, Cheng 

et al., 2007). Such materials can be used in photovoltaic cells (Cui et al., 2006), infrared 

detectors, (Qi et al., 2005) and thermoelectric devices (Harman et al., 2002). Lead chalcogenide 

nanocrystals exhibit a strong quantum size effect because of the large Bohr radii of both electron 

and holes [PbS (≈18 nm), PbSe and PbTe (≈46 nm)], which leads to a large confinement energy. 

Their critical dimensions, especially for selenide and telluride, are greater than in most II–VI and 

III–V semi-conductors (ZnSe, CdSe, CdS, InAs) (Wise, 2000). The stable and tunable emission 

of NIR-emitting lead chalcogenide quantum dots (QDs) make them suitable for applications in 

telecommunications (1300–1600 nm), bioimaging (near-IR tissue window 800 and 1100 nm) 

and solar cells (800–2000 nm) (McDonald et al., 2005). 
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The structures of lead chalcogenides can be viewed as a face-centred cubic (fcc) array of E2- (E 

= S, Se, Te) anions with bulky cations Pb2+ occupying all the octahedral holes. Alternatively it 

can be viewed as a structure in which the anions occupy all the octahedral holes in an fcc array 

of Pb2+ ions. The coordination number is of each type of ion is 6, and the structure is said to have 

(6, 6)-coordination. The nature of bond between Pb and the chalcogenide has been studied 

extensively; some reports treat this bonding as ionic, others covalent and still other mixtures of 

both ionic and covalent. Notwithstanding, ionic bonding is considered more important and ionic 

characters decrease as the size of chalcogenide species increases (Khoklov, 2003; Alivisastos et 

al., 1998; Pantarotto et al., Ma et al., 2003). Important properties of bulk lead chalcogenide are 

given in Table 6.1 (Khoklov, 2003; Alivisastos et al., 1998; Pantarotto et al., Ma et al., 2003). 

Table 5.1 Selected physical properties of lead chalcogenides (Khoklov, 2003; Alivisastos et al., 

1998; Pantarotto et al., Ma et al., 2003). 

Properties PbS PbSe PbTe 

Bohr radius bulk (nm) 18 46 46 

Band gap (373) (eV) 0.41 0.29 0.27 

Density (g/cm3) 7.6 8.3 8.2 

Dielectric constant 169 204 414 

Structure cubic Cubic Cubic 

Lattice constant 5.936 6.124 6.460 

 

Various morphologies of PbE nanocrystals have been reported, including spheres (Murray et al., 

2001), cubes (Lu et al., 2005), rings (Cho, et al., 2005), tubes (Tong et al., 2006), wires (Wang 

et al., 1998, Afzaal and O’Brien, 2006), dendrites (Li et al., 2008), and sponge-like structures 

(Kerner et al., 2001). Several groups have reported the shape evolution of PbSe nanocrystals 
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from cubes to truncated octahedral (Cheng et al., 2009), spheres to cubes (Lee et al., 2002) and 

stars to cubes (Lu et al., 2005).  Shape evolution for PbE can be affected by temperature, growth 

time, solvent and precursor delivery. The systematic tuning of the size and shape of 

nanocrystallites remains a key objective in realizing both functionality and assembly. The 

synthesis of such nanocrystals has involved methods that include sputtering (Jdanov et al., 2004), 

ultrasonic synthesis (Ge and Li, 2003), injection of a solution of a lead salt and trioctylphosphane 

chalcogenide (TOP-E, E = S, Se, Te) into a hot solvent (Cho et al., 2005; Kumar et al., 2009), 

thermolysis of single source precursors (Lee et al., 2002; Trindade et al., 1999; Akhtar et al., 

2010; Trindade et al., 1997; Moloto et al., 2005; 2005; Berhanu et al., 2006), or hydrothermal 

synthesis (Berhanu et al., 2006). These methods generally involve high temperatures and/or quite 

difficult conditions such as high vacuum or high pressure or salt–solvent-mediated high 

temperature. Rhodes et al. demonstrated the triggered aggregation of PbS nanocrystals in a 

polymer matrix by changing the 1,2-ethanedithiol concentration-triggered assembly of network-

like quantum dot (QD) structures (low concentration) and self-assembled more-ordered 

micrometer-sized crystals (high concentration) (Rhodes et al., 2011). The role of 1, 2-

ethanedithiol in decreasing the aggregation as a result of decreasing inter-QD separation and the 

self-assembly as result of a rapid ligand-exchange process was suggested (Rhodes et al., 2011). 

The one-dimensional (1-D) structures from such processes are often polycrystalline and not well 

dispersed after separating from the template. Limited success has been re-ported in the growth 

of 1D PbTe by solution-based soft-templating approaches. 

 In a preliminary work, Ziqubu et al. (2010) have demonstrated a simple approach to controlled 

growth of low-dimension PbTe structures (spheres or rods) and extended the method to the 

synthesis of PbS and PbSe. The method involves the reaction of sulphur, selenium or tellurium 

powder with sodium borohydride (NaBH4) to produce sulphide, selenide or telluride ions, 

followed by reaction with a lead salt.   
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Lead sulphide (galena) has been known as a distinct entity since antiquity (Pliny, 1991) and was 

one of the earliest materials to be used as a photodetector. Polycrystalline layers of PbS, which 

may be produced by chemical deposition or evaporation, find wide application in infrared 

detection (Elliot, 1981). PbS has a cubic (rock-salt type structure  and, as with  the other lead  

chalcogenides  (PbSe,  PbTe), the  intrinsic  band  gap  decreases  with  decreasing temperature,  

which  is  unusual  in  semiconductors (Elliot, 1981).  The electronic band  structure (Kohn   et 

al., 1973)  of  PbS  has  been  reported showing a minimum  direct  gap  at  the L  point  in  the 

Brillouin zone. It is readily recognized in nature by its distinctive crystal habit as small cubes 

({001} faceted) with the occasional occurrence of forms involving the expression of the (111) 

faces of the octahedron or tetrahedron and ready cleavage of the cubes along the (111) planes. 

The form of the crystal has attracted attention for well over 100 years (Buckley, 1951). After 

detailed calculations, Dowty (Dowty, 1976) has ranked the stability of faces in the order {100}, 

{111}, {110}, {113}, {210} and noted that this is not perfect, especially as regards the form 

{113} which is never observed (Stranski, 1928). 

Indeed both natural and synthetic forms of PbS show only {100} or {111} facets (Rhodes et al., 

2011, Sunagawa, 1987, Garcia-ruiz, 1986). O’Brien et al (2010) have reported a simple method 

for the preparation of square based pyramids with {113} faces and {002} basal planes. These 

unique crystals have been formed by precipitation at the interface of toluene (lead containing) 

and water (sulphide containing) solutions. 

As an important semiconductor with narrow band gap of 0.41 eV, lead sulphide has been 

extensively studied and employed in various applications such as IR photodetectors, solar 

absorbers, electro- and photoluminescence, sensors, and so on (Kumar et al., 2009, Warner, 

2008). The synthesis of PbS with well-defined morphology has been achieved via a huge number 

of new methods (Xiu et al., 2008; Sun et al., 2009; Jana et al., 2009; Stavrinadis et al., 2008; 

Peng et al., 2008). Pyramidal PbS crystallites with high energy {113} facets were obtained at 
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the interface between toluene and water (O’Brien et al., 2008). PbS nanowire “pine trees” was 

fabricated using chemical vapour deposition method (Lau et al., 2009). The size dependent 

optical properties of PbS quantum dots have also been investigated thoroughly (Moreels et al., 

2009). For the inevitable reaction with water vapour and other matters under ambient 

environment, PbS devices were usually coated with protective materials. Undoubtedly, the 

coating process not only increases the cost, but also requires additional apparatus.  

Lead selenide (PbSe) is a leading material, because of its small band gap of (0.27 eV) and large 

bulk exciton Bohr radius (46 nm), which results in strong confinement of the electron-hole pair 

and large optical nonlinearity (Lifshitz et al., 2003). From a technological perspective, PbSe is a 

promising material in many applications, including laser materials (Cui et al., 2006), 

thermoelectric devices (Harman et al., 2002, Murray et al., 2001), near-infrared (near-IR) 

luminescence (Schaller et al., 2003), and IR detectors (Qi et al., 2005). The recently discovered 

phenomenon of the multiple exciton generation (MEG) effect in PbE (where E = S, Se, or Te) 

materials could lead to an entirely new paradigm for high-efficiency and low-cost solar cell 

technology (Elingson et al., 2005, Allan and Delerue, 2006, Nozik, 2008). The deposition of 

PbSe thin films have been reported by various methods, including molecular beam epitaxy (Zhao 

et al., 2008), electrodeposition (Shah and Holze, 2008), pulse laser deposition (Evstratov et al., 

2001), and chemical bath deposition (Gorer et al., 1995). Reports on the growth of PbSe thin 

films by chemical vapor deposition (CVD) techniques are scarce (O’Brien et al., 2004, Bierman 

et al., 2007). An earlier report on the thermal decomposition (O’Brien et al., 2004) of 

[Pb((SePiPr)2N)2], which is a precursor sufficiently volatile for low-pressure CVD, resulted in 

globular PbSe films. Later, hyperbranched structures of PbS and PbSe were reported by CVD 

from PbCl2 and S/Se under hydrogen flow (Trindade et al., 1999). The formation of PbSe in 

nanocrystalline form has been demonstrated by several methods including the decomposition of 

a single molecular precursor (Cheng et al., 2009), polymer-assisted solvothermal method (Liu et 
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al., 2003), soft template routes (Das and Bhat, 1990), electrodeposition (Birdi, 1997), Aerosol-

assisted chemical vapor deposition (AACVD) of PbSe films/crystals on glass and Si/SiO2 (100) 

substrates from lead phosphonodiselenoato compounds (Pb[Ph(RO)PSe2]2, where R is a methyl 

group (Me) or an ethyl group (Et)) have been reported (Das and Bhat, 1990). Deposition on 

Si/SiO2 (100) substrates leads to highly faceted PbSe micrometer- sized crystals with 

morphologies strongly influenced by growth temperatures. 

PbTe is an important narrow band gap semiconductor material with a large excitonic Bohr radius 

(∼46 nm). It can or could be used in optical switches, solar cells (Harman et al., 2002; Hsu et 

al., 2004), photodetectors (Wise, 2000), thermoelectrical applications, and electroluminescent 

devices (Sargent, 2005). Nano dimensional crystals of PbTe have been reported, as dendrites 

(McDonald et al., 2005), sponge like structures (Lu et al., 2004; Bakueva et al., 2003; Steckel et 

al., 2003), spheres (Tong et al., 2006), and boxes (Hu et al., 1999). Many groups have reported 

that nanodimensional lead chalcogenide crystals undergo shape evolution from spherical to 

polyhedral, cubic, or tetragonal structures with increasing size/reaction time (Li et al., 2008). 

Dependence of the form of the final product on reaction temperature and the choice of capping 

ligand has also been noted (Cheng et al., 2007). The synthesis of 1D PbTe nano structures is 

challenging (Kerner et al., 2001). Rods can also show good thermoelectric Figures of merit (ZT) 

as compared to isotropic structures (Zou et al., 2004). 

There are only a few reports of synthesis of PbTe nanorods or nanotubes, which include 

hydrothermal, sonoelectrochemical, and template-assisted synthesis (Kerner et al., 2001; Zou et 

al., 2004; Lee et al., 2002; Pietryga et al., 2004; Jun et al., 2005; Lee et al., 2003; Lu et al., 

2005). However, these methods have limited success in the control overall shape and size. A 

completely new simple two-step colloidal method to synthesize single-crystal PbTe nano-

spheres and -rods with control of size and shape has been reported by Purkayastha et al. (2008). 

Lead telluride was synthesized by the addition of an aqueous solution or suspension of a lead 
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salt (chloride, nitrate, or carbonate), to a freshly prepared NaHTe solution (The solid product of 

this reaction was isolated by centrifugation, dispersed into TOP and injected into hot 

hexadecylamine (HDA) at temperatures of 190, 230, or 270 °C and held at the same temperature 

for 2 or 4 hour. After being cooled to 50 °C, the PbTe nanoparticles were isolated by the addition 

of methanol to the reaction mixture.  

5.1.2 Mechanism of formation of cubic or spherical nanocrystals 

Factors that control the shapes of inorganic nanocrystals involve competition between 

thermodynamic and kinetic factors (Lee et al., 2003). According to this model, after the 

formation of a preferred crystalline-phase seed, the final morphology of the nanocrystals is 

mainly determined by the growth process through a balance between the kinetic growth and 

thermodynamic preference. At high temperature, the reaction is under thermodynamic control, 

and at low temperature/room temperature the reaction is under kinetic control (O’Brien et al., 

2011). The form of the precipitate is remarkably dependent on reaction conditions. It has been 

reported that the shape of an inorganic nanoparticle is determined by the growth rates of different 

crystal planes (Hou et al., 2009; Cheon et al., 2003). The shape of a face-centre-cubic (fcc) 

nanoparticle is determined by the ratio (R) of the growth rates along (100) and (111) directions 

as shown in Figure 5.1. The surface energy of (111) plane is higher than (100) plane (Cheon et 

al., 2003). When the value of R is close to 0.58, cubes terminated by (100) plane will be produced 

and when the value approaches to 0.87 spherical nanoparticles will be formed (Hou, 2009; Lee, 

2003). However, when R is above 1.73, one dimensional growth occurs producing rods or multi-

pod structures. The cubic shape of PbS is reported to be more stable at higher temperature.  

The intrinsic surface energy of the PbS (111) face is higher than that of the (100) face and growth 

rate of either these face determines the final shape of nanoparticles. Thus the shape of the PbS 

nanoparticles can be controlled by the manipulation of the growth time and temperature. As the 



188 

 

growth temperature increases, a correlation between an increase in intensity of the (200) peak 

and a decrease in the (111) peak emerges. A decrease in the relative intensity of (111) reflection 

indicates that growth along the (111) direction is taking place, thus promoting the formation of 

(100) facets. At lower growth temperature, the growth along the (100) direction increases, 

resulting in the elimination of the (100) facets and promoting the formation of (111) facets. 

                                          

                                 

                  
  

                         
 

 

Figure 5.1: Lattice planes of PbS cubic crystal system, faster growth of (111) or (100) plane 

results in cubic or spherical shape PbS nanoparticles. 

 

In this chapter, the synthesis of PbS, PbSe and PbTe nanomaterial/thin films at water-toluene 

interface at temperatures below 100 oC by the use of cadmium 

dialkylyldithiocarbamate/cupferronate (Pb(dtc)2/Pb(cup)2) as lead source and the borohydride 

reduction of Sulphur/Selenium/Tellurium as sulphide/selenide/telluride sources are being 

reported. 
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5.2 Deposition of lead chalcogenide thin film nanomaterials 

Briefly 30 ml of degassed water containing 0.1 mmol of NaHE (E= S, Se, Te) was transferred 

into a 100 ml beaker. 30 ml of toluene containing the 0.1 mmol of the Lead 

dialkyldithiocarbamate/cupferronate precursor was layered on top of the solution in the beaker. 

The reaction vessel was placed in an oven preheated to the desired temperature for 4 hours. The 

deposits formed at the interface were isolated by gently lifting the film from the interface onto 

glass substrates.  The reaction was repeated by varying the reaction conditions such as 

temperature, time and the reacting species (Details of the deposition are given in chapter 6 

section 6.4). 

5.3 Results and discussions 

Nanoparticles of PbE were synthesized by the layering a toluene solution of lead 

diethyldithiocarbamate/lead cupferronate on top of a freshly prepared NaH(S/Se/Te) solution. 

Previous reports suggest that primary amines preferentially coordinate to the [111] facets of PbSe 

and PbS, which prevents the formation of cubes (Warner and Cao, 2008). In this work, however 

no such observation was made since the structures of the lead chalcogenide deposited adopted 

the cubic structure. It is believed that this route could make available materials in new forms 

with interesting properties as suggested by Burda et al., (2005) and Buhro et al., (2003), and 

provide further insight into classic problems of crystal growth. 

5.3.1 Lead sulphide 

5.3.1.1 Structural characterization and morphology 

The powder X-ray diffraction pattern of the PbS nanoparticles synthesized at 50 °C and 70 °C 

for 4, 5 and 6 hours show the presence of the (111), (200) and (220) diffraction planes of the 
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cubic rock-salt structure of PbS films are characteristic of cubic PbS crystallites with the rock 

salt structure orientated along the (200)  plane. Figures 5.2 and 5.3 show the XRD pattern of PbS 

nanoparticles/thin film with reflections corresponding to those of the cubic PbS (ICDD 01-080-

0021, cell constant a=5.618 Å). Broadening of the diffraction peaks was observed implying that 

the size of the PbS particles were small. The peak broadening at lower angle is more meaningful 

for the calculation of particle size therefore size of the nanocrystals has been calculated using 

Debye-Scherrer formula (Guinier, 1963) using (200), (220) and (311) reflections from the XRD 

pattern. The calculation gave average particle sizes ranging from 2.34 to 6.74 nm with 

dislocation densities ranging from 2.2007 to 18.2628 x 1017 lines/m (Tables 5.2 and 5.3). 
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Figure 5.2: XRD of different as-prepared PbS samples (a) for 4 hours, (b) for 5 hours and (c) for 

6 hours at 50 °C. 
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Figure 5.3: XRD of different as-prepared PbS samples (a) for 4 hours, (b) for 5 hours and (c) for 

6 hours at 70 °C. 
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Figure 5.4: XRD of different as-prepared PbS samples using different chain lengths of the alkyl 

group in the dithiocarbamate precursors and lead cupferronate precursor at 50 °C for 6 hours. 

(Et = ethyl; Pr = propyl; Bu = butyl; iBu = isobutyl; Cup = lead cupferronate). 

 

The effect of the length of the alkyl chain length on the size of the crystallites and morphology 

of the nanoparticle was also investigated by varying the alkyl chain in the dithiocarbamate 

precursor. The XRD diffractogram is shown in Figure 5.4 and the structural parameters given in 

table 5.2. The crystallite sizes as calculated by the Debye-Scherrer relation increase with 

increasing chain length (i.e. from Et=ethyl through Pr= propyl to Bu= butyl). However there was 

a reduction in size from Bu to iBu.The intensity of the diffraction peaks was observed to increase 

with increasing carbon chain length of the precursor (i.e. from ethyl to butyl). This implies that 

the PbS nanomaterial thin film formed become more crystalline with increasing carbon chain 

length of the dialkyldithiocarbamate precursor. However with the same number of carbon atoms 
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the intensity of the diffraction peak of the PbS nanomaterial was observed to decrease from the 

n-butyl to the iso-butyl isomer thus becoming less crystalline. In another experiment when lead 

cupferronate was used as the precursor under the same experimental conditions as the lead 

dialkyldithiocarbamate the thin film nanoparticle produced had crystallites with sizes and 

morphologies similar to those of the lead dialkyldithiocarbamate precursors. The intensity of the 

diffraction peaks was observed to increase with increasing carbon chain length of the precursor 

(i.e. from Et to Pr to Bu). Implying that the PbS nanoparticle thin film become more crystalline 

with increasing carbon chain length of the precursor. However with the isomeric precursors the 

intensity of the diffraction peaks was observed to decrease from the nBu to iBu isomers. 

The scanning electron microscopy (SEM) images Figures 5.5 show two types of crystals i.e. both 

cubic and pyramidal crystallites. The compositional analysis of PbS was confirmed by energy-

dispersive X-ray analysis (EDAX), as shown in Figure 5.6. The ratio between the lead and 

sulphide peaks should be nearly stoichiometric. From the graph it is noted that for a deposition 

time of 5 hours and deposition temperature of 50 °C, the atomic percentage of lead is 54.85 while 

that of sulphur is 45.12.  
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Figure 5.5: SEM image of different as-prepared PbS sample at 50 °C for 5 hours using lead 

cupferronate as precursor at different magnifications (a-5000x, b-10000x and c-20000x). 

 

Figure 5.6: EDAX analysis of different as-prepared PbS sample at 50 °C for 5 hours using lead 

cupferronate as precursor. 
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5.3.1.2 Optical analyses 

The optical absorption spectra of the nanocrystals were measured using CARY 5000 UV-Vis-

NIR spectrophotometer. The optical absorption spectra have been measured at room temperature 

over a range of 500 to 1600 nm have been plotted in Figures 5.7 and 5.8. The fundamental 

absorption corresponds to the electron excitation from the valence band to the conduction band 

and can be used to determine the optical band gap. The relationship between the absorbance (A) 

and the incident photon energy (h) is given by the Stern relationship of near-edge absorption 

(Stern and Kim, 1981): 

    A = [k(h-Eg)]
1/n/h 

Where  is the frequency, h is the constant, k is a constant and carries a value of either 1 of 4. 

The value of n is 1 for direct transition and 4 for indirect transition. The optical band gap is 

determined by a plot of (Ah)2/n as a function of h extrapolation of the line  to the h axis where 

(Ah)2/n is zero gives the band gap Eg.  The plots of (Ah)2 versus h is a straight line indicating 

that PbS is a direct band gap material. The plots of (Ah)2 versus h for the different 

nanocrystallites obtained at 50 oC are given in the Figure below: 
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Figure 5.7: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbS 

samples (a) at 50 °C and (b) at 70 °C for 4 hours. 
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Figure 5.8: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbS 

samples using different chain lengths of the alkyl group in the dithiocarbamate precursors at 50 

°C for 6 hours. (Pr = propyl; Bu = butyl; iBu = isobutyl; Cup= lead cupferronate). 
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Table 5.2: Optical parameters and crystallite sizes of PbS nanoparticles 

Precursors Deposition 

Temperature/ 

oC 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Pb(cup)2: 

S/NaBH4 

50  4 

5 

6 

- 

- 

0.84 

- 

- 

4.04 

5.80 

4.78 

2.34 

Pb(cup)2: 

S/NaBH4 

70  4 

5 

6 

- 

- 

0.96 

- 

- 

3.41 

5.31 

5.28 

4.87 

Pb(S2CNBu2)2: 

S/NaBH4 

50 6 1.10 2.90 6.36 

Pb(S2CNiBu2)2: 

S/NaBH4 

50 6 1.25 2.51 5.84 

Pb(S2CNPr2)2: 

S/NaBH4 

50 6 1.40 2.21 6.27 

Pb(S2CNEt2)2: 

S/NaBH4 

50 6 - - 6.74 

Band gap of bulk PbS = 0.41 eV 

Table 5.2 gives the optical parameters and crystallite sizes of the PbS nanoparticle thin films 

formed at different temperatures, deposition times and with different precursors. The band gap 

of PbS nanoparticle thin films increased from the bulk value of 0.41 eV to 0.84 and 0.96 eV 

when the crystallite size decreased beyond the Bohr exciton radius of 18 nm to 5.3 and 4.87 nm 

respectively when Pb(cup)2 precursor was used for the deposition. However with the 

Pb(S2CNR2)2 (R= Et, Pr, Bu and iBu) precursors the band gap increased from the bulk value of 
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0.41 eV to the range 1.10 to 1.40 eV  as the crystallite sizes changed to between 5.84 to 6.74 nm 

beyond the Bohr exciton radius of 18 nm. Due to the increased oscillator strength in these 

nanoparticles as a result of quantum confinement (Kung & Kung, 2004) these are expected to 

have higher quatum efficiencies in applications such as light emission. This is a direct 

consequence of the greater overlap between the electron and the hole wave functions upon size 

reduction. Thus making them good candidates for electronic and optical devices due to their 

reduced dimensions.  In addition PbS and PbSe Nanoparticles present the multiple exciton 

generation phenomena (Alivisatos et al., 2002; Kung & Kung, 2004) and they can produce n 

excitons for each absorbed photon possessing an energy of at least ‘n’ multiples of the band gap 

energy (Eg) where n is an integer number (Li et al., 2009). This phenomenon is very interesting 

for solar cell devices.  

5.3.2 Lead selenide 

5.3.2.1 Structural characterization and morphology 

Figures 5.9–5.11 show the XRD patterns nanoparticles/thin films formed at the water-toluene 

interface at room temperature, 50 °C and 70 °C for 4, 5 and 6 hours respectively.  The XRD 

patterns can be assigned to the face-centred cubic phase of PbSe with a lattice constant of a = 

6.124 Å. The major diffraction peaks at 25.0°, 29.1°, 41.7° and 49.4°, can be indexed to the 

(111), (200), (220) and (311) planes of cubic PbSe, which is consistent with values in the 

standard card (ICDD-78-1903). The preferred orientation was along the 200 plane and the 

intensity of the diffraction peaks increased with increasing deposition times. The calculated 

lattice constants given in are in good agreement with the literature value (a = 6.128A˚). The peak 

broadening at lower angle is more meaningful for the calculation of particle size therefore size 

of the nanocrystals has been calculated using Debye-Scherrer formula (Guinier, 1963) using 

(200), (220) and (311) reflection from the XRD pattern. The calculation gave particle sizes 
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ranging from 2.50 nm to 8.29 nm with dislocation densities ranging from 1.4558 to15.8223 x 

1017 lines/m (Tables 6.4 and 6.5). 
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Figure 5.9: XRD of different as-prepared PbSe samples (a) for 4 hours, (b) for 5 hours and (c) 6 

hours at 50 °C using lead cupferronate. 
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Figure 5.10: XRD of different as-prepared PbSe samples (a) for 4 hours, (b) for 5 hours and (c) 

6 hours at 70 °C using lead cupferronate. 
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Figure 5.11: XRD of different as-prepared PbSe samples using different chain lengths of the 

alkyl group in the dithiocarbamate precursors and lead cupferronate precursor at 50 °C for 6 

hours. (Et = ethyl; Pr = propyl; Bu = butyl; cup = lead cupferronate). 

 

In another experiment when lead dialkyldithiocarbamate was used as the precursor under the 

same experimental conditions as the lead cupferronate the thin film nanoparticle produced had 

no clear cut morphologies and hence amorphous. 

Scanning electron microscopy (SEM) studies were carried out to analyse the morphology of 

deposited materials. The SEM images shown in Figure 5.12 for compound deposited on glass 

for 5 hours at 50 °C indicates that the morphology of the PbSe thin films consisted predominantly 

of rods. It is also evident that the density of the particles increases as the growth temperature 

increases. The crystallites were scattered on the surface, which resulted in a discontinuous film. 

This may be a result from poor wetting between the PbSe crystallites and silicon substrate 

(Shandalov et al., 2005). 
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The crystal morphology of PbSe crystals is dependent on the relative rates of growth in the (100) 

and (111) direction. The formation of octahedra suggests that the PbSe crystal growth is faster 

in the low-energy (100) direction (Houtepen et al., 2006). The driving force behind the 

transformation from octahedrons to cubes may lie in the fact that the growth rate in the (111) 

direction is greater than that in the (100) direction (Petroski et al., 1988, Dowty, 1976, O’Brien 

et al., 2008). The highest growth temperature (70 °C) seems to shift crystal growth into a 

thermodynamic regime. These observations suggest that the growth of symmetric PbSe crystals 

is very sensitive to the deployed kinetic conditions in the system. 

Studies to gain further insight into the mechanism of the transformation from octahedrons to 

cubic morphologies, have involved growth runs conducted for 5 and 10 min at 400 oC using 

compounds on Si/SiO2 (100) substrates. The results indicate that after 5 min, small PbSe crystals 

that are truncated octahedron through their (111) facets clearly have a tendency to aggregate. 

The promotion of surface domains on neighbouring particles, to match up by sharing their (111) 

face, leads to an increase in lower-index planes and satisfies geometric criterion and dipole 

interactions on flow energy (Pacholski et al., 2002, Korgel and Fitzmaurice, 1998, Lu et al., 

2004, Tang et al., 2006, Harfenist et al., 1997, Wang, 1998, Cho et al., 2005). The evolution of 

truncated cubes involves the cuboctahedral seed growing along the (111) plane at a higher 

growth rate than that of the (100) plane. The compositional analysis of PbSe was confirmed by 

energy-dispersive X-ray analysis (EDAX), as shown in Figure 5.13. The ratio between the lead 

and selenide peaks should be nearly stoichiometric. From the graph it is noted that for a 

deposition time of 5 hours and deposition temperature of 50 °C, the atomic percentage of lead is 

52.35 while that of sulphur is 47.65.  
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Figure 5.12: SEM image of PbSe deposited at 50 °C for 5 hours using lead cupferronate as 

precursor at different magnifications (a-5000x, b-10000x and c-20000x) 

 

Figure 5.13: EDAX spectra of PbSe deposited at 50 °C for 5 hours using lead cupferronate as 

precursor 
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5.3.2.2 Optical analyses 

The optical absorption spectra of the nanocrystals were measured using CARY 5000 UV-Vis-

NIR spectrophotometer. The optical absorption spectra have been measured at room temperature 

over a range of 400 to 1600 nm. The fundamental absorption corresponds to the electron 

excitation from the valence band to the conduction band and can be used to determine the optical 

band gap. The plots of (Ah)2 versus h for the different nanocrystallites obtained at 50 oC are 

given in the Figure below: 
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Figure 5.14: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbSe 

samples for 4, 5 and 6 hours at 50 °C. 
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Figure 5.15: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbSe 

samples for 4, 5 and 6 hours at 70 °C. 



205 

 

800 1000 1200 1400

R
e

la
ti
v
e

 a
b

s
o

rb
a

n
c
e

 (
a

.u
)

Wavelength(nm)

Pr

Et

Bu

(a)

  
1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

(A
h
v
)2

(e
V

)2

hv(ev)

 PbSe-Et

 PbSe-Pr

 PbSe-Bu

Bu

Pr

Et

(b)

Et: Band gap = 1.4 eV

Pr: Band gap = 1.72 eV

Bu: Band gap = 1.8 eV

 

Figure 5.16: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbSe 

samples using different chain length of the alkyl group at 50 °C for 6 hours. (Bu = butyl; Et = 

ethyl; Pr = propyl)  

Table 5.3 Optical parameters and crystallite sizes of PbSe nanoparticles 

Precursors Deposition 

Temperature/ 

oC 

Deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Pb(cup)2: Se/NaBH4 50  4 

5 

6 

1.50 

1.65 

1.35 

1.18 

1.23 

1.17 

4.21 

4.53 

6.22 

Pb(cup)2: Se/NaBH4 70  4 

5 

4 

1.53 

1.40 

1.32 

1.21 

1.16 

1.27 

5.28 

6.21 

6.36 

Pb(S2CNBu2)2: Se/NaBH4 50 6 1.80 1.21 2.51 

Pb(S2CNPr2)2: Se/NaBH4 50 6 1.72 1.22 7.19 

Pb(S2CNEt2)2: Se/NaBH4 50 6 1.40 1.18 8.29 

Band gap of bulk PbSe = 0.29 eV 
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Table 5.3 gives the optical parameters and crystallite sizes of the PbSe nanoparticle thin films 

formed at different temperatures, deposition times and with different precursors. The band gap 

of PbSe nanoparticle thin films increased from the bulk value of 0.41 eV to the range 1.35 eV to 

1.80 eV as the crystallite sizes changed to between 2.51 to 8.29 nm lower than the Bohr exciton 

radius of 18 nm. 

5.3.3 Lead telluride 

5.3.3.1 Structural characterization and morphology 

In experiments using lead diethyldithiocabamate and tellurium, the type of PbTe nanocrystal 

obtained at different temperatures and reaction times varied as illustrated in Figure 5.1. This lead 

source gave distinct and interesting results as with the other soluble salts only spherical particles 

were obtained.  
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Figure 5.17: XRD of different as-prepared PbTe samples (a) for 4 hours, (b) for 5 hours and (c) 

6 hours at 50 °C using lead cupferronate. 
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Figure 5.18: XRD of different as-prepared PbTe samples (a) at 50 °C, (b) at 60 °C and (c) at 70 

°C for 6 hours using lead cupferronate. 

 

In the halite structured lead chalcogenides, the formation of rods in which cubic symmetry is 

broken is really quite a common phenomenon. Close to spherical nanoparticles are minimum 

surface energy structures with no obvious facets. The growth rates on different facets in the 

system are dominated by surface energy. For halite type crystals the {111} face with high surface 

energy grows faster than the lower-surface- energy {100} face. Once an anisotropic structure 



208 

 

has started to form, it is easy for this to propagate into a rod. The crystallinity of the spheres and 

rods prepared has been confirmed by powder X-ray diffraction (PXRD) indicating all are halite 

(fcc, space group Fm3m) Figures 5.17 and 5.18. The major diffraction peaks are indexed as 

(200), (220), (222), (420), and (422) of cubic PbTe (ICDD no. 08-0028). The presence of oxides 

of Pb and Te is expected, as no special precautions to exclude oxygen were taken. The 

predominance of PbTe (as also by PXRD ) suggests that any oxide is likely to be only on the 

surface and with a thickness less than the Pb 4f and Te 3d electron escape depths (< 2 nm).  

5.3.3.2 Optical analyses 

The optical absorption spectra of the nanocrystals were measured at room temperature over a 

range of 500 to 1600 nm using CARY 5000 UV-Vis-NIR spectrophotometer. The spectrum and 

the plots of (Ah)2 versus h for the different nanocrystallites obtained at 50 oC are given in the 

Figure 5.19. 
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Figure 5.19: (a) Optical absorption spectra and (b) optical band gap of the as-prepared PbTe 

samples for 6 hours at 50 °C using lead cupferronate as precursor. 
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Table 5.4 Optical parameters and crystallite sizes of PbTe nanoparticles 

 

Precursor Deposition 

Temperature/oC 

deposition 

time (hrs) 

Band gap of 

nanoparticle 

(eV) 

Particle size (nm) 

U.V XRD 

Pb(Cup)2: Te/NaBH4 50  6 0.96 3.16 5.27 

Pb(Cup)2: Te/NaBH4 60  6 - - 3.88 

Pb(Cup)2: Te/NaBH4 70  6 - - 4.25 

Pb(S2CNBu2)2: 

Te/NaBH4 

50 6 - - 6.33 

Band gap of bulk PbTe = 0.27 eV 

Table 5.4 gives the optical parameters and crystallite sizes of the PbSe nanoparticle thin films 

formed at different temperatures, deposition times and with different precursors. The band gap 

of PbSe nanoparticle thin films formed at a temperature of 50 oC and deposition time of 6 hours 

of increased from the bulk value of 0.41 eV to 0.96 eV as the crystallite size changed to 5.27 nm 

lower than the Bohr exciton radius of 18 nm. 

5.4 Conclusions 

High-quality nanocrystals of PbS, PbSe and PbTe have been prepared by a simple route by using 

sulphide/selenide/telluride produced from sulphur/selenium/tellurium powder reduced with 

NaBH4.  All the materials prepared have the halite structure as confirmed by powder XRD. The 

average crystallite sizes of the as-prepared nanoparticles at different temperatures, 

concentrations and deposition times ranged from 1.8 to 6.3 nm for PbS, 2.5 to 8.3 nm for PbSe 

and 3.9 to 6.3 nm for PbTe. The dislocation densities ranged from 2.2 to 31.4 x 1017 lines/m for 
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PbS, 2.5 to 5.7 x 1017 lines/m for PbSe and 2.5 to 6.6 x 1017 lines/m for PbTe. The shape of the 

as-prepared nanoparticles at different temperatures was studied by SEM and gave morphologies 

from cubes to rods. The band gaps obtained for PbS ranged from 0.84 to 1.75 eV, PbSe ranged 

from 1.35 to 1.80 eV and 0.96 eV for PbTe. These show significant increases from the band gaps 

of the bulk materials of 0.41 eV, 0.29 eV and 0.27 eV for PbS, PbSe and PbTe respectively. 

However these are to be expected considering the large deviations from the bulk exciton radii of 

the bulk materials of 18 nm, 46 nm and ~46 nm for PbS, PbSe and PbTe respectively. 
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CHAPTER SIX 

EXPERIMENTAL METHODS AND TECHNIQUES 

This chapter deals with the synthesis of the metal bis-(dithiocarbamate) and metal cupferronate 

precursors and characterization by elemental analysis, FTIR, and NMR. The synthetic 

procedures of nanocrystals and characterization techniques XRD, SEM and TEM have also been 

described. All synthetic work is carried out at the School of Chemistry, The University of 

Manchester, UK, in lab. 7.23.  

6.1 Synthesis and characterization of precursors and nanoparticles/thin films 

All reagents were purchased from Sigma-Aldrich and used as received. 1H NMR spectra were 

obtained using a Brucker AC 400 FT-NMR spectrometer. Mass spectra were recorded on a 

Kratos concept 15 instrument. Infrared spectra were obtained on a single reflectance ATR 

instrument (4000-400 cm-1). Elemental analysis was perfomed by the University of Manchester 

Micro-analytical facility. 

X-ray diffraction studies were performed on a Brucker AXS D8 diffractometer using Cu-Kα 

radiation with wavelength of 1.54 nm, accelerating voltage set at 40 kV and a 40 mA flux. The 

samples were mounted flat and scanned between 20 to 80° in a step of 0.05 with a count rate of 

7 Sec. Scanning electron microscopy, SEM was applied to investigate the morphology and this 

was performed using Philips XL 30 FEG analyser at 20 kV. The sample for SEM analysis was 

prepared by attaching the glass substrates with the nanomaterials deposited on them to 

aluminium stumps. They were then carbon coated with a GATAN MODEL 682 PRECISION 

ETCHING COATING SYSTEM. Energy dispersive X-ray analysis EDAX was carried out by 

the camera connected to the Philips XL 30 FEG microscope. The nano/microstructures of the 

ZnS, ZnSe and ZnTe products were further observed by transmission electron microscopy, TEM 
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with the C200 with an accelerating voltage of 200 kV. The samples used for the TEM 

observations were prepared by dispersing the nanoparticles in absolute ethanol followed by 

ultrasonic vibration for 10 minutes and then placing a drop of dispersion on to a Cu grid coated 

with a layer of amorphous carbon. Absorbance measurements were taken using CARY 5000 

UV-Vis-NIR spectrophotometer. 

6.2 Methods of syntheses  

6.2.1 Synthesis of zinc dithiocarbamates 

6.2.1.1 Zinc diethyldithiocarbamate 

The zinc diethyldithiocarbamate was prepared using methods reported previously (O’Brien and 

Nomura, 1995). Briefly, Zn(S2CNEt2)2 was prepared by adding 1.128 ml diethylamine and 0.65 

ml carbon disulfide to a stirred 40 ml methanol solution of 0.42 g sodium hydroxide. The solution 

was then cooled to 4 oC using an ice bath and a 40 ml methanol solution of 0.746 g of zinc 

chloride was added dropwise resulting in precipitation of the dithiocarbamate as a white solid. 

The crude product was purified by re-crystallizing from toluene. The resulting white zinc bis-

(diethyldithiocarbamate) was subjected to elemental analysis, FT-IR spectroscopic analysis, 1H 

NMR analysis, and powder X-ray analysis. The elemental analysis gave the following results: 

Found (Calculated) [C8H20S2C2N2Zn]: C (%) 33.30 (33.2), H (%) 5.71 (5.6), N (%) 7.63 (7.7), 

S (%) 35.44 (35.4), Zn (%) 18.24 (18.0). IR cm-1: 2983 υ (C–H), 1502 υ (C–N), 995 υ (C–S). 

Figures A1 and B1 show the powder X-ray diffractogram and FT-IR spectrum respectfully of 

the zinc bis-(diethyldithiocarbamate)  
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6.2.1.2 Zinc dipropyldithiocarbamate 

The procedure was the same as described above but this time dipropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Zn]: C (%) 

40.24 (40.2), H (%) 6.96 (6.8), N (%) 6.70 (6.7), S (%) 30.82 (30.6), Zn (%) 15.53 (15.7). IR 

cm-1: 2961 υ (C–H), 1460 υ (C–N), 968 υ (C–S). Figure B2 shows the FT-IR spectrum of the 

zinc bis-(dipropyldithiocarbamate).   

6.2.1.3 Zinc diisopropyldithiocarbamate 

The procedure was the same as described above but this time diisopropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Zn]: C (%) 

10.31 (40.2), H (%) 3.62 (6.8), N (%) 1.21 (6.7), S (%) 14.30 (30.6), Zn (%) 36.07 (15.7).   

6.2.1.4 Zinc dibutyldithiocarbamate 

The procedure was the same as described above but this time dibutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Zn]: C (%) 

45.58 (45.6), H (%) 7.87 (7.7), N (%) 5.86 (5.9), S (%) 26.94 (27.0), Zn (%) 13.1 (13.8).  IR cm-

1: 2956 υ (C–H), 1457 υ (C–N), 934 υ (C–S). Figure B3 shows the FT-IR spectrum of the zinc 

bis-(dibutyldithiocarbamate) 

6.2.1.5 Zinc diisobutyldithiocarbamate 

The procedure was the same as described above but this time diisobutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Zn]: C (%) 

33.90 (45.6), H (%) 6.34 (7.7), N (%) 4.41 (5.9), S (%) 22.42 (27.0), Zn (%) 29.67 (13.8).    
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6.2.1.6 Zinc ethylhexyldithiocarbamate 

The procedure was the same as described above but this time ethylhexylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Zn]: C (%) 

45.53 (45.6), H (%) 7.94 (7.7), N (%) 5.97 (5.9), S (%) 27.03 (27.0), Zn (%) 13.59 (13.8).  IR 

cm-1: 2930 υ (C–H), 1492 υ (C–N), 951 υ (C–S). Figure B4 shows the FT-IR  spectrum of the 

zinc bis-(diethylhexyldithiocarbamate). 

6.2.2 Synthesis of copper dithiocarbamates 

6.2.2.1 Copper diethyldithiocarbamate 

The copper diethyldithiocarbamate was prepared using methods reported previously (O’Brien 

and Nomura, 1995). Briefly, Cu(S2CNEt2)2 was prepared by adding 1.128 ml diethylamine and 

0.65 ml carbon disulfide to a stirred 40 ml methanol solution of 0.42 g sodium hydroxide. The 

solution was then cooled to 4 oC using an ice bath and a 40 ml methanol solution of 1g copper 

nitrate was added dropwise resulting in precipitation of the dithiocarbamate as a white solid. The 

crude product was purified by re-crystallizing from toluene. The resulting white copper bis-

(diethyldithiocarbamate) was subjected to elemental analysis, FT-IR spectroscopic analysis, 

Proton NMR analysis and powder X-ray analysis. The elemental analysis gave the following 

results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 32.59 (33.4), H (%) 5.49 (5.6), N (%) 7.65 

(7.8), S (%) 35.59 (35.6), Cu (%) 16.88 (17.6). IR cm-1: 2982 υ (C–H), 1502 υ (C–N), 995 υ (C–

S). Figures A2 and B5 show the powder X-ray diffractogram and FT-IR spectrum of the copper 

bis-(diethyldithiocarbamate). 
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6.2.2.2 Copper dipropyldithiocarbamate 

The procedure was the same as described above but this time dipropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 

39.96 (40.42), H (%) 6.46 (6.79), N (%) 6.49 (6.74), S (%) 31.02 (30.77), Cu (%) 15.06 (15.29).  

IR cm-1: 2958 υ (C–H), 1483 υ (C–N), 979 υ (C–S). Figure B6 shows the FT-IR spectrum of the 

zinc bis-(dipropyldithiocarbamate) 

6.2.2.3 Copper diisopropyldithiocarbamate 

 The procedure was the same as described above but this time diisopropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 

30.56 (40.42), H (%) 4.85 (6.79), N (%) 4.10 (6.74), S (%) 33.20 (30.77), Cu (%) 22.58 (15.29).  

IR cm-1: 2968 υ (C–H), 1488 υ (C–N), 1035 υ (C–S). Figure B7 shows the FT-IR spectrum of 

the zinc bis-(diisopropyldithiocarbamate) 

6.2.2.4 Copper dibutyldithiocarbamate 

 The procedure was the same as described above but this time dibutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 

46.05 (45.79), H (%) 8.42 (7.69), N (%) 5.92 (5.94), S (%) 27.37 (27.11), Cu (%) 12.52 (13.47). 

IR cm-1: 2951 υ (C–H), 1491 υ (C–N), 967 υ (C–S). Figure B8 shows the FT-IR spectrum of the 

copper bis-(dibutyldithiocarbamate) 

6.2.2.5 Copper diisobutyldithiocarbamate 

 The procedure was the same as described above but this time diisobutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 

46.03 (45.79), H (%) 7.32 (7.69), N (%) 5.89 (5.94), S (%) 27.03 (27.11), Cu (%) 12.48 (13.47). 
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IR cm-1: 2958 υ (C–H), 1499 υ (C–N), 982 υ (C–S). Figure B9 shows the FT-IR spectrum of the 

copper bis-(diisobutyldithiocarbamate).    

6.2.2.6 Copper ethylhexyldithiocarbamate 

The procedure was the same as described above but this time ethylhexylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cu]: C (%) 

43.53 (45.79), H (%) 7.34 (7.69), N (%) 5.74 (5.94), S (%) 23.49 (27.11), Cu (%) 17.83 (13.47). 

IR cm-1: 2955 υ (C–H), 1456 υ (C–N), 928 υ (C–S). Figure B10 shows the FT-IR spectrum of 

the copper bis-(ethylhexyldithiocarbamate).    

6.2.3 Synthesis of cadmium dithiocarbamates 

6.2.3.1 Cadmium diethyldithiocarbamate 

The cadmium diethyldithiocarbamate was prepared using methods reported previously (O’Brien 

and Nomura, 1995). Briefly, Cd(S2CNEt2)2 was prepared by adding 1.128 ml diethylamine and 

0.65 ml carbon disulfide to a stirred 40 ml methanol solution of 0.42 g sodium hydroxide. The 

solution was then cooled to 4 oC using an ice bath and a 40 ml methanol solution of 1g Cadmium 

chloride was added dropwise resulting in precipitation of the dithiocarbamate as a white solid. 

The crude product was purified by re-crystallizing from toluene. The resulting yellow Cadmium 

bis-(diethyldithiocarbamate) was subjected to elemental analysis, FT-IR spectroscopic analysis, 

1H NMR analysis, and powder X-ray analysis. The elemental analysis gave the following results: 

Found (Calculated) [C8H20S2C2N2Cd]: C (%) 29.34 (29.4), H (%) 4.89 (4.9), N (%) 6.74 (6.9), 

S (%) 31.20 (31.4), Cd (%) 26.26 (27.5). IR cm-1: 2974 υ (C–H), 1495 υ (C–N), 985 υ (C–S). 

Figures A4 and B11 show the powder X-ray diffractogram and FT-IR spectrum respectfully of 

the cadmium bis-(diethyldithiocarbamate) 
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6.2.3.2 Cadmium dipropyldithiocarbamate 

The procedure was the same as described above but this time dipropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cd]: C (%) 

36.47 (36.2), H (%) 5.71 (6.1), N (%) 5.98 (6.0), S (%) 27.68 (27.53), Cd (%) 23.94 (24.2). IR 

cm-1: 2957 υ (C–H), 1491 υ (C–N), 967 υ (C–S). Figure B12 show the FT-IR spectrum of the 

cadmium bis-(dipropyldithiocarbamate).  

6.2.3.3 Cadmium dibutyldithiocarbamate 

The procedure was the same as described above but this time dibutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cd]: C (%) 

40.96 (41.49), H (%) 6.61 (6.97), N (%) 5.20 (5.38), S (%) 24.33 (24.57), Cd (%) 19.72 (21.59). 

IR cm-1: 2957 υ (C–H), 1490 υ (C–N), 950 υ (C–S). Figure B13 shows the FT-IR spectrum of 

the cadmium bis-(dibutyldithiocarbamate).   

6.2.3.4 Cadmium diisobutyldithiocarbamate 

The procedure was the same as described above but this time diisobutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cd]: C (%) 

41.97 (41.49), H (%) 7.29 (6.97), N (%) 5.28 (5.38), S (%) 24.69 (24.57), Cd (%) 21.00 (21.59). 

IR cm-1: 2958 υ (C–H), 1488 υ (C–N), 978 υ (C–S). Figure B14 shows the FT-IR spectrum of 

the cadmium bis-(diisobutyldithiocarbamate).   

6.2.3.5 Cadmium ethylhexyldithiocarbamate 

 The procedure was the same as described above but this time ethylhexylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Cd]: C (%) 

27.67 (41.49), H (%) 4.80 (6.97), N (%) 3.37 (5.38), S (%) 23.70 (24.57), Cd (%) 41.17(21.59). 
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IR cm-1: 2956 υ (C–H), 1461 υ (C–N), 932 υ (C–S). Figure B15 shows the FT-IR spectrum of 

the cadmium bis-(diethylhexyldithiocarbamate). 

6.2.4 Synthesis of lead dithiocarbamates 

6.2.4.1 Lead diethylthiocarbamate 

The lead diethylthiocarbamate was prepared using methods reported previously (O’Brien and 

Nomura, 1995). Briefly, Pb(S2CNEt2)2 was prepared by adding 1.128 ml diethylamine and 0.65 

ml carbon disulfide to a stirred 40 ml methanol solution of 0.42 g sodium hydroxide. The solution 

was then cooled to 4 oC using an ice bath and a 40 ml methanol solution of 1g lead acetate was 

added dropwise resulting in precipitation of the dithiocarbamate as a white solid. The crude 

product was purified by re-crystallizing from toluene. The resulting white lead bis-

(diethyldithiocarbamate) was subjected to elemental analysis, FT-IR spectroscopic analysis, 

Proton NMR analysis and powder X-ray analysis. The elemental analysis gave the following 

results: Found (Calculated) [C8H20S2C2N2Pb]: C (%) 24.12 (23.84), H (%) 3.92 (4.00), N (%) 

5.47 (5.6), S (%) 25.54 (25.4), Pb (%) 40.67 (41.2). IR cm-1: 2962 υ (C–H), 1479 υ (C–N), 980 

υ (C–S). Figures A5 and B16 show the powder X-ray diffractogram and FT-IR spectrum 

respectively of the lead bis-(diethyldithiocarbamate).  

6.2.4.2 Lead dipropyldithiocarbamate 

The procedure was the same as described above but this time dipropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Pb]: C (%) 30.0 

(30.04), H (%) 5.01 (5.05), N (%) 4.90 (5.01), S (%) 22.92 (22.87), Pb (%) 35.62 (37.05). IR cm-

1: 2956 υ (C–H), 1475 υ (C–N), 1009 υ (C–S).  Figure B17 shows the FT-IR spectrum of the 

lead bis-(dipropyldithiocarbamate).  
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6.2.4.3 Lead diisopropyldithiocarbamate 

The procedure was the same as described above but this time diisopropylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Pb]: C (%) 

12.53 (30.04), H (%) 2.40 (5.05), N (%) 0.25 (5.01), S (%) 26.16 (22.87), Pb (%) 37.32 (37.05). 

IR cm-1: 2963 υ (C–H), 1430 υ (C–N), 1013 υ (C–S). Figure B18 shows the FT-IR spectrum of 

the lead bis-(diisopropyldithiocarbamate).  

6.2.4.4 Lead dibutyldithiocarbamate 

The procedure was the same as described above but this time dibutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Pb]: C (%) 

35.27 (35.1), H (%) 6.07 (5.90), N (%) 4.55 (4.55), S (%) 20.80 (20.78), Pb (%) 33.56 (33.67). 

IR cm-1: 2955 υ (C–H), 1474 υ (C–N), 949 υ (C–S). Figure B19 shows the FT-IR spectrum of 

the lead bis-(dibutyldithiocarbamate).  

6.2.4.5 Lead diisobutyldithiocarbamate 

The procedure was the same as described above but this time diisobutylamine was used. The 

elemental analysis gave the following results: Found (Calculated) [C8H20S2C2N2Pb]: C (%) 

35.36 (35.1), H (%) 6.07 (5.90), N (%) 4.40 (4.55), S (%) 20.80 (20.78), Pb (%) 31.59 (33.67).  

IR cm-1: 2953 υ (C–H), 1472 υ (C–N), 973 υ (C–S). Figure B20 shows the FT-IR spectrum of 

the lead bis-(diisobutyldithiocarbamate).  
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6.3.1 Synthesis of zinc cupferronates 

The zinc cupferronate was prepared using methods reported previously (Kalyanikutty et al., 

2007). Briefly, Zn(cup)2 was prepared by solubulizing 1.5 g of cupferron in 60 ml of distilled 

water and cooled to 0 C in an ice bath. 5.51 mM of Zinc chloride was dissolved in 25 ml of 

distilled water and cooled to 0 C in an ice bath. The solubulized cupferron solution was added 

to the ice cold zinc chloride solution dropwise with vigorous stirring. The precipitate of zinc 

cupferronate was filtered washed with 2.5% ammonia solution followed by distilled water to 

remove excess cupferron and then dried. The precipitate was characterized by chemical analysis 

which yielded the following: Found (calculated) C % 39.86 (42.4), H % 3.33(3.0), N % 17.61 % 

(16.5) %, Zn % 18.22 (19.3). IR cm-1: 1461 υ (C–N), 1337 υ (N–N), 1220 υ (N–O), 928 υ (ring 

vibration), 755 υ (C–H-ring). Figure B21 shows the FT-IR spectrum of the zinc cupferronate. 

6.3.2 Synthesis of copper cupferronates 

The procedure was the same as described above but this time a copper nitrate was used. The 

elemental analysis gave the following results: Found (calculated) C % 43.01 (42.7), H % 2.84 

(3.0), N % 16.55 % (16.6) %, Cu % 17.83 (18.8). IR cm-1: 1463 υ (C–N), 1352 υ (N–N), 1200 υ 

(N–O), 931 υ (ring vibration), 760 υ (C–H-ring). Figures A5 and B22 show the powder X-ray 

diffractogram and FT-IR spectrum of the copper cupferronate. 

6.3.3 Synthesis of cadmium cupferronates 

The procedure was the same as described above but this time a cadmium Chloride was used,: 

Found (calculated) C % 36.58 (37.3), H % 2.75 (2.6), N % 14.34 % (14.6) %, Cd % 28.23 (29.1). 

IR cm-1: 1462 υ (C–N), 1363 υ (N–N), 1229 υ (N–O), 921 υ (ring vibration), 745 υ (C–H-ring). 

Figure B23 shows the FT-IR spectrum of the cadmium cupferronate. 
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6.3.4 Synthesis of lead cupferronates 

The procedure was the same as described above but this time a lead acetate was used Found 

(calculated) C % 28.40 (29.9), H % 2.0 (2.1), N % 10.79 % (11.6) %, Pb % 45.08 (43.1). IR cm-

1: 1461 υ (C–N), 1333 υ (N–N), 1275 υ (N–O), 910 υ (ring vibration), 756 υ (C–H-ring). Figure 

B24 shows the FT-IR spectrum of the lead cupferronate. 

6.3.5 Synthesis of sodium selenosulphate 

Sodium selenosulphate was prepared utilizing a method reported previously (Gorer and Hodes, 

1994; Singh et al., 2011). A 50 ml aqueous dispersion containing 1 g Se powder (0.0127 mol) 

and 10 g (0.079 mol) sodium sulphite was heated under reflux in a round bottomed flask at 70 

oC for 24 hours to obtain a nearly clear reddish solution. The solution was cooled to room 

temperatuire and a small quantity of insoluble particles filtered off to obtain a solution of sodium 

selenosulphate. 

6.4 Deposition of nanomaterial/thin films  

6.4.1 Deposition of nanomaterial/thin films with borohydride reduced chalcogenides 

0.212 mmol of Sodium borohydride (8.0 mg) was dissolved in 1 ml ultrapure water in a 20 ml 

glass vial, and then 0.101mmol of selenium powder (7.99 mg) was added. The vial was sealed 

quickly with parafilm having a small hole allowing air circulation between flask and atmosphere, 

and then was placed in an ice bath. A rapid reaction evolved hydrogen in the flask. 

Approximately 30 minutes later, the black selenium powder disappeared completely and NaHSe 

was formed (Klayman and Griffin, 1973; Lan et al., 2007; Chen et al., 2000). The resulting clear 

aqueous solution was transferred carefully, using a syringe, into 30 ml of degassed water in a 
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100 ml beaker. 30 ml of toluene containing 0.10 mM of precursor was gradually layered on top 

of the selenium solution in the beaker. The same procedure was employed for tellurium powder. 

For the metal sulphide films the procedure was slightly different. i.e. Sodium borohydride 0.0303 

g (0.80 mM) was dissolved in 1 ml of ethanol in a 20 ml glass vial, and then  0.0198772 g (0.62 

mmols) of sulphur powder was added. The resulting clear aqueous solution was transferred 

carefully, using a syringe, into 30 ml of degassed water in a 100 ml beaker. 30 ml of toluene 

containing 0.10 mM of precursor was gradually layered on top of the selenium solution in the 

beaker. 

The deposits at the interface were isolated by gently lifting the film from the interface using the 

glass substrates. Depositions at different temperatures were carried out by placing the reaction 

vessel in an oven preheated to the desired temperature. The reactions were carried out in a 100 

ml beaker, with the height of the liquid columns at 4 cm. The deposition occur by via a metathesis 

reaction as shown by equations (iia) and (iib) below.        

   (i)   4NaBH4  +  2E  +  7H2O  →   2NaHE  +  Na2B4O7  +  14H2 

  (iia)   2NaHE  +  M(dtc)2  →  ME  +  2Na(dtc)  +  H2E   

  (iib)   2NaHE  +  M(cup)2  →  ME  +  2Na(cup)  +  H2E 

Where E = S/Se/Te ; M = Zn/Cu/Cd/Pb 

6.4.2 Deposition of nanomaterial/thin films using Sodium selenosulphate 

Metal selenide nanomaterial/thin films were prepared by layering 30 ml of toluene containing 

0.10 mM of metal cupferronate/dialkyldithiocarbamate precursor over 30 ml of freshly prepared 

solution of sodium selenosulphate whose pH was adjusted to below 10 using aqueous KOH in 

the beaker. The beaker containing the liquids was introduced into an oven held at 50 oC and left 
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undisturbed for 8 hours. At the end of this time a brown film was found adhered to the interface 

of the two liquids. The interfacial deposits transferred intact to glass substrates by contact 

transfer. Prior to the transfer, the organic layer at the top was gently decanted.  

6.5 Characterization techniques 

6.5.1 X-ray diffraction 

The principles of X-ray diffraction are based on the theory of X-ray crystallography, which were 

first proposed by Max von Laue in 1912, and published in 1913 (von Laue,1913), as a result of 

experiments aimed at studying the interaction of X-rays with single crystals. Von Laue was 

awarded the Nobel Prize for physics in 1914 as a result of this work.  Based on these early 

experiments, in 1919, Hull (Hull, 1919) presented a paper entitled “A New Method of Chemical 

Analysis”, in which he described the fundamental concepts of modern X-ray diffraction, and was 

able to state: “….every crystalline substance gives a pattern; the same substance always gives 

the same pattern; and in a mixture of substances each produces its pattern independently of the 

others”. The X-ray diffraction pattern of any individual substance is therefore like a precise 

fingerprint of that substance, and also, these precise fingerprints can be readily identified even 

in complex mixtures of compounds. XRD techniques are therefore ideally suited to the 

identification and characterisation of ‘unknown’ powders. Furthermore, with suitable 

instruments, since the usual sample preparation technique for powder samples involves packing 

the sample into a holder to provide a flat surface, the technique is also directly applicable to the 

precise analysis of thin films and corrosion deposits.  

The operating principles of a modern XRD machine are still based on the fundamental 

experiments reported by von Laue (von Laue,1913) in 1913, and the first practical X-Ray 

diffraction apparatus was described by Davey (Davey,1921) in 1921. When X-rays interact with 
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any solid material, the resultant scattered beams can ‘add together’ in a few directions, and 

thereby reinforce each other to yield diffraction. Diffraction therefore occurs when the scattered 

waves are moving ‘in phase’ with each other. This phenomenon is termed ‘constructive 

interference’, and therefore the degree of regularity of the material is responsible for the 

diffraction of the beams, and the diffraction pattern generated by any substance is therefore 

absolutely characteristic of, and specific to that compound. The fact that the material must 

possess a regular periodic structure as a fundamental prerequisite in causing constructive 

interference, means that X-ray diffraction only occurs with, and can only be applied to, 

crystalline substances. A full discussion of the theory of X-ray diffraction is beyond the scope 

of this Section introduction, but a brief summary of the essential operating principles and theory 

will be given. There are several recent comprehensive reviews available in the literatures which 

give a full account of the theory and operating principles of X-ray diffraction techniques 

(Warren, 1990; Chung and Smith, 1999). In addition, several extensive reviews are available that 

discuss fully the specific applications of XRD techniques in the area of materials science, and 

also to the identification of deposit layers and powders (Pecharsky and Zavalij, 2005; 

Suryanarayana and Norton, 1998).  

As stated above, XRD techniques are only applicable to crystalline materials. A crystal can be 

defined as comprised of a regular repeated array of identical lattice points which can be atoms, 

ions or molecules. The lattice is effectively infinite. The smallest unit of the crystal structure, 

which reflects the overall shape of the crystal, is called the unit cell. There are only seven basic 

shapes of unit cell, and these form the seven essential crystal systems, which are: cubic, 

tetragonal, orthorhombic, hexagonal, monoclinic, rhombohedral (trigonal) and triclinic. Note 

that only these seven basic shapes can exist, since there are only seven ways in which atoms etc. 

can be packed together to form a space filling lattice. However, sometimes, extra lattice points 

occur, for example when there may be an atom in the centre of a face or in the centre of the unit 
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cell. When these extra lattice points are combined with the seven crystal systems, this results in 

14 possible Bravais lattices. All crystalline materials fall into one of these groups, although they 

can be of different sizes and can have different aspect ratios within the constraints of symmetry. 

The full symmetry of a crystal lattice is described by the space cell, which relates the symmetry 

of the unit cell to those around it. There are 230 space groups.  

Since crystals consist of lots of unit cells packed together to form a regular array, it will be 

evident that there will be planes of atoms, called lattice planes that exist at the basic structural 

level. The spacing of these lattice planes are called d-planes, and these spacings are measured in 

Ångstroms (10-10 m). The process of X-ray diffraction actually measures these d-spacings, and 

from this information it is possible to determine the size and shape of the crystal, and in turn; the 

crystal structure is determined by the composition of the material. This information therefore 

allows a precise identification of the material, usually by comparing any diffraction pattern that 

is obtained for a particular substance with a library or data-base of known patterns. 

 A coherent beam of monochromatic X-rays of known wavelength is required for XRD analysis. 

Striking a pure anode of a particular metal with high-energy electrons in a sealed vacuum tube 

generates X-rays that may be used for X-ray diffraction. The wavelengths of the X-rays produced 

are dependent on the anode material of the X-ray tube. Most X-ray tubes used for X-ray 

diffraction of inorganic materials use a copper anode, although a cobalt anode is used mainly for 

ferrous samples. The X-ray spectrum produced by any tube consists of two parts; these are the 

continuous radiation, which is unwanted, and the characteristic lines. It is the strongest 

characteristic line, the Kα, which is used for X-ray diffraction, and all other unwanted lines and 

radiation are usually removed using filters, or a device known as a monochromator. The Kα line 

for X-rays generated from a copper anode is 1.54 Å. X-rays are normally characterised by their 

wavelength or their energy which can be connected by the following relation: 



239 

 

E = h c f ………………………………………………………………………… (6.1) 

Where: E = the energy; h = the Planck’s constant (6.62559 x 10-27erg sec); c = the velocity of 

light (3 x 1010 cm/sec); λ = the wavelength. 

Following the above discussion and for ease of explanation; X-rays can be considered as a beam 

of particles called photons, and each photon has its particular energy which can be calculated 

according to the following relation: 

E = h× f ………………………………………………………………………… (6.2) 

Where: f = the frequency of the wave. 

A main component of a typical X-ray diffraction instrument, commonly called a Diffractometer, 

are shown in Figure 6.2. The essential parts of a diffractometer consist of only five main parts: 

X-ray tube used to generate the X-ray beam; the ‘primary optics’ between the X-ray tube and 

the sample, which consists of a tube mainly containing a series of slits that regulates the area of 

the sample being irradiated; the sample holder; the ‘secondary optics’ between the sample and 

the detector, which consists primarily of a set of receiving slits that control resolution, together 

with a curved crystal monochromator; the detector.  

 

Figure 6.1 Diffractometer (Davey, 1921) 
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During operation, the sample is irradiated by the X-ray beam, and the detector is then moved 

through a specific angle: 2θ, known as the Bragg angle, whilst continuously collecting the X-ray 

diffraction pattern. The Bragg angle is given by Bragg’s Law, which describes the angle at which 

a beam of X-rays of a particular wavelength diffracts from a crystalline surface. Bragg’s Law is 

as follows: 

λ = 2d sinθ ………………………………………………………………………… (6.3) 

Where: θ = Bragg angle; λ = is the incident wavelength; d = is the spacing between different 

planes, as atoms in any crystal materials are arranged in a specific way to form various planes 

and the spacing between such planes can be used to calculate the wavelength. This relationship 

is illustrated diagrammatically in Figure 6.2.  

 

Figure 6.2: A schematic diagram for the Bragg’s Law 

   

Based on Bragg’s law (Equation 6.3), we can measure the Bragg angle (2θ). This is the position 

of the Bragg reflection, or peak. Then, since we know the wavelength (λ), of the X-rays, we can 

then calculate the d-spacing (the distance between different planes in the crystal) from Bragg’s 

Law. The d-spacing is characteristic of the compound under investigation and the calculated 
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values of the d-spacing can be matched against a data bank that is stored digitally in the hard-

drive of the XRD machine (currently approximately 120,000 compounds – this will be discussed 

later). The diffraction results are in the form of a unique series of reflections, which form the 

diffraction pattern. Consequently, the exact composition of any compounds can be identified. A 

typical X-ray diffraction pattern is in the form of a graph, with a series of peaks (the actual 

diffraction pattern), with the horizontal axis being 2θ, or twice the Bragg angle; and the vertical 

axis is the intensity, or the X-ray count measured by the detector, which is a function of the 

crystal structure and the orientation of the crystallites. Note that in reality, although the 

diffraction pattern is given as a 2-dimentional graph, the radiation diffracted by any sample is in 

the form of cones, known as Debye Cones. To analyse a thin layer the angle of incidence of the 

incoming X-radiation must be fixed at a low angle, typically around 3º, sometimes referred to as 

ω, so that it skims through the top layer and does not penetrate into the substrate. Also, different 

X-ray optics must be used, the sample must also be flat, and quite large (ideally > 5.0 mm across). 

Once obtained and stored, diffraction patterns are compared with known patterns held in a 

database known as the Powder Diffraction Data Base (PDF), this currently holds over 120,000 

entries, gathered over the last 50 years!. 

6.5.2 Scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDAX) 

6.5.2.1 Introduction 

The technique of Scanning Electron Microscopy (SEM) was employed in this study to obtain 

images of the morphology the as-deposited nanomaterials. The associated analytical facility of 

Energy Dispersive X-ray (EDAX) analysis was used to identify and quantify the elemental 

composition of the as-deposited nanomaterials. It should be noted, that these different techniques 

are essentially part of one instrument: the EDAX facility (basically an X-ray detector and 

associated software) is incorporated intimately as part of the SEM itself, and cannot function 
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without the operation of the SEM, since the generation of the analytical X-ray signal is dependent 

on the interaction between the incident electron beam and the sample in the SEM. Note also that 

the acronyms EDAX and EDS (Energy Dispersive Spectrometer) are often used interchangeably 

in place of EDAX by different instrument manufacturers but are essentially the same technique. 

Therefore, collectively, these techniques (SEM and EDAX) were considered one of the major 

procedures that were used to conduct this research. A brief description and discussion of the 

operating principles and capabilities respectively of these essential techniques is given in the 

following Sections. Both Goldstein et al., (2002) and Echlin (2009) have recently given a 

comprehensive account of the theory, operating principles and capabilities of SEM and EDAX. 

6.5.2.2 Basic principles of scanning electron microscopy (SEM) 

A microscope is an instrument that allows images to be obtained of a sample at magnifications 

greater than 30 times life-size (the term ‘macro’ is applied to instruments that image at 

magnifications from 5 X to 30 X). Since the recent development of new innovative instruments 

such as the Atomic force microscope (AFM) and the acoustic microscope, the older definitions 

of a microscope as being based on instruments that utilize optical systems (either light-rays or 

electron beams) for imaging at magnification above 30X are no longer applicable. There are 

three main types of electron microscope, these are: the Scanning electron microscope (SEM), 

the Transmission electron microscope (TEM) and instruments that have a dual function 

capability: – the Scanning-transmission electron microscope (STEM). Only the SEM will be 

discussed here. Essentially, in a Scanning electron microscope, a beam of electrons is generated 

by an electron gun in a high vacuum column, at an accelerating voltage of between 1.0 to 30 kV, 

but usually within the range 5.0 kV to 20 kV, then collimated into a coherent beam, using a 

system of electromagnetic coils or lenses; then passed down through the main electron gun 

column into the specimen chamber, where it is focused into a fine spot, then scanned rapidly 
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over the surface of the sample. Two processes then occur simultaneously: secondary electrons 

are emitted from the sample as a result of ionization processes, and in addition, some electrons 

from the primary beam (generated by the electron gun), are reflected or ‘bounced back’ from the 

sample as a result of interactions with the nuclei of the elements of the sample. These latter 

electrons are termed ‘backscattered electrons’ or the BSE signal. Both types of electrons are then 

collected separately by a specific type of electron detector, and the resulting signals are then 

processed, amplified and displayed to give an image which can then either be viewed and/or 

stored digitally. Secondary electron detectors are normally a combined scintillator and photo-

multiplier system, known as an Everhart-Thornley detector which is mounted to one side of the 

specimen stage; whilst most modern BSE detectors are a compact semiconductor design and 

mounted directly onto the final electron objective of the microscope (i.e. immediately above the 

sample). Generally, secondary electron (SE) images are used to give high resolution images of 

the sample surfaces as three-dimensional surface topography, with good depth of field; whilst 

BSE images can provide useful analytical information about the sample, since the electrons from 

the primary beam that are backscattered have interacted with the atoms of the sample. BSE 

images at 8 kV give good ‘orientation contrast’, whilst BSE images at 20 kV give atomic number 

contrast, since the intensity of the BSE signal is strongly related to the atomic number (Z) of the 

specimen, the BSE images can provide information about the elemental composition in the 

sample surface, or the near-surface region (~ 1.0 to 2.0 μm). Figure 6.18 illustrates schematically 

the main SEM instrument that was used throughout this study. 

There are several types of SEM instrument available, which vary either in terms of the type of 

electron gun used to produce the primary beam of electrons, or in either/both the type of vacuum 

system and electron detector used to collect the emitted/reflected electrons. There are three types 

of electron gun in common use – two of these are ‘thermionic’; i.e. where electrons are generated 

as a result of emission through heat – most typically by a heated (to ~ 2000 – 2700 K) thin (~ 
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100 μm diameter) tungsten wire or filament formed into a ‘hairpin’ shape, which emits electrons 

and these are attracted and channelled by a charged anode, then passed through an electron optics 

system of electromagnetic coils to give a coherent beam of electrons. The second type of 

thermionic electron gun is a lanthanum hexaboride (LaB6) type, which also operates on a 

‘thermal’ principle to emit electrons, but is much more efficient than a basic heated filament. 

The third and most efficient type of electron producing source is a Field Emission Gun (FEG) 

type, which consists of a very sharp tungsten tip situated adjacent to a high electric field (a highly 

charged anode) and electrons then ‘tunnel’ out of the tip. Such a system is not ‘thermal’ (although 

most currently available FEG guns also heat the tungsten tip to improve efficiency) and is 

extremely efficient since the energy distribution of a FEG system is much narrower than the two 

‘thermal’ filament types. Although the filaments in thermal electron guns are cheap to replace, 

they have low brightness, a limited lifetime (~150 hours) and large energy spread. In contrast, a 

FEG tip will last for about 2 years of constant operation, but costs around three thousand pounds. 

Most of the SEM investigations in this study were undertaken using a FEI (Phillips) XL-30 FEG 

SEM (Figure 6.3).  

One disadvantage of most SEM instruments, is that the electron gun (especially a FEG – tip) 

must always operate in an extremely high vacuum, and any specimen being examined must be 

electrically conductive in order to allow electrons from the primary beam to flow to earth, and 

hence avoid the build-up of regions of ‘charge’ on the surface of the sample, which results in 

severe degradation of the image. About 15 years ago, a new type of SEM instrument known as 

an Environmental SEM or ESEM became readily available, that allowed non-conductive 

samples to be directly imaged in an SEM, without the need to first coat them with a thin film of 

sputtered or evaporated metal (usually gold or platinum) or carbon. Apart from the fact that 

sputtered metal coatings are approximately 7.0 to 25 nm thick, they severely restrict the use of 

EDAX analysis. The ESEM was originally developed with the main aim of being able to examine 
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non-conductive biological samples whilst still hydrated, and without the risk of producing 

imaging artefacts caused by critical point drying or other sample preparation techniques. A full 

account of the development of ESEM instruments has been given by Danilatos (1990).  

 

 

Figure 6.3: Schematic diagram of scanning electron SEM) microscopy 
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Figure 6.4 Photograph of FEI XL 30 FEGSEM  

Both an ESEM, and the more recently available variant of the ESEM known as a Variable 

Pressure SEM or VPSEM are able to eliminate the high vacuum requirements of the SEM by 

separating the vacuum environment in the specimen chamber from the high vacuum environment 

in the main column and electron gun region. In a typical ESEM (or VPSEM), two pressure 

limiting apertures (PLAs) separate the specimen chamber from the electron gun column. All the 

regions are separately pumped, and this gives a graduated vacuum from 10 Torr in the specimen 

chamber, to 10-8 Torr in the column and 10-10 Torr in the electron gun emission chamber. By 

using an electrically cooled (Peltier) stage, water can be maintained in the liquid state within the 

specimen chamber. The presence of gas in the specimen chamber produces two important 

effects, these are induced intrinsic signal amplification, and charge neutralisation. Secondary 

electrons emitted by the sample accelerate within the detector field as imposed by the detector. 
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They then collide with gas molecules. These collisions result in ionization of the gas, creating 

positive ions and also additional secondary electrons called environmental secondary electrons. 

The continuous repetition of this process results in a proportional cascade amplification of the 

original secondary electron signals that are strong enough to be detected. The positive ions are 

attracted to the sample surface as negative charge accumulates from the beam on the (in the case 

of a non-conductor) insulated specimen surface. This is how the positive ions effectively 

suppress charging artefacts. The elimination of charging allows the imaging of non-conductive 

samples in their natural uncoated state, with a free choice of accelerating voltages. A very recent 

comprehensive discussion of the operating principles and capabilities of the ESEM has been 

given by Stokes (2008). 

Most new dedicated ESEM instruments image using a new type of secondary electron detector, 

known as a Gaseous secondary electron detector or GSED, whose main function is to collect 

secondary electrons for imaging, but eliminate the ’noise’ forming electrons. Goldstein, et al., 

(2002) have given a detailed description of the available types of SEM instruments and their 

capabilities. Depending on the type of instrument, SEM instruments are capable of providing 

images of sample surfaces at magnifications up to (realistically) around 250,000 X, and with an 

achievable resolution of around 1.0 nm. However, this would be under ideal operating 

conditions, using a high vacuum FEG instrument, and with an optimum sample type. It should 

be noted, that the term ‘magnification’ has little meaning, since it is possible to generate images 

with ‘false’ magnification, whereby the image of the sample is made larger, but with no 

additional increase in the amount of information contained therein. The term ‘resolution’ is now 

used to describe the main operating capability of any microscope, and is defined as the minimum 

distance between two separate features on the specimen, that any instrument is capable of 

defining/imaging, such that the image that is obtained shows the two features as being separate. 

The particular FEG-SEM (FEI XL30) mainly used in this Study has a resolution of around 1.8 
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nm and had an associated RONTEC EDAX system which was utilised as the primary analytical 

facility.  

6.5.2.3 Energy dispersive X-ray analysis (EDAX) 

One of the consequences of the bombardment of any material with a high energy electron beam 

is the production of X-rays, whose wavelength depends on the nature and characteristics of the 

elements that are present in the specimen. In basic terms, the X-rays arise when an inner shell 

electron of an atom within the sample surface region is sufficiently excited by the primary 

electron beam of the SEM, to leave the atom entirely or go into a higher un-occupied energy 

level. The space created by the excited electron is filled by another electron which drops from a 

higher energy level and emits an X-ray photon of energy equal to the energy lost by the electron 

falling between the two atomic shells. These X-rays are collected by a detector and separated on 

the basis of their energy. This is the principle of Energy dispersive X-ray Analysis (EDAX) 

which is most often associated with Scanning electron microscopy. Note that some X-ray based 

analytical instruments are capable of separating X-rays on the basis of wavelength, and are hence 

known as Wavelength-Dispersive X-ray analysis or WDX systems. The EDAX technique can 

be considered as the most versatile system for the analytical micro characterisation of materials.  

All EDAX systems can function in various different operating modes, depending on the type of 

analysis that is required. The first type of operating mode, is known as ‘spectrometer’ mode, 

whereby the instruments functions as a basic spectrometer, and provides a full spectra and 

quantitative data regarding all the elements that are present either over the whole area of the 

sample being scanned (and imaged) by the SEM electron beam, or within a pre-defined small 

area or spot. Note that the accelerating voltage of the SEM electron beam must be sufficiently 

high enough to be able to detect the elements that it is desired to detect. Usually, the accelerating 

voltage must be at least twice as high as the particular energy of the individual electron shell (i.e. 
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K, L, etc.) of the atom of the specific element being analysed. For example the ‘K’ shell peak 

for the element iron (Fe) is 6.4 keV, which would require a minimum accelerating voltage of 

13.0 kV for effective detection. Note that for some heavier elements, it is impractical to use the 

‘K’ energy shell peak for analysis, since the accelerating voltage required would be far too high, 

and therefore the EDAX system performs the analysis using a peak from a lower energy shell (L 

or M). As an example, the KA (= Kα) peak for gold (Au) is 68.8 keV, which would require an 

accelerating voltage of around 140 kV for effective detection and therefore the ‘L’ shell peak at 

9.7 keV (which requires an SEM accelerating voltage of 20 kV for effective detection) is used. 

However, it should also be noted, that since EDAX analysis usually requires fairly high 

accelerating voltages to be employed, this creates a minimum ‘interaction volume’ at the sample 

surface; i.e. the specific region where beam/atom interactions occur that generate X-rays, as a 

result of beam penetration. This is usually a minimum of around 2 – 3 μm. Care must therefore 

be taken when using the ‘spot’ analysis facility at high magnifications, even at a magnification 

of 25,000 X, the spot analysis area is actually about 25% of the area of the sample being 

examined. The other main EDAX operating mode is known as ‘imaging mode’ and involves two 

further operating functions viz ‘mapping’ mode and ‘line scan’ mode. In mapping mode, the 

EDAX system shows the distribution of several selected elements as a series of coloured dot 

maps, either singly, or overlaid on the corresponding SEM image. In line scan mode, a secondary 

electron image is first obtained, then a line is drawn on the image, and several elements are 

selected as required. The EDAX system then gives a graph with coloured plots corresponding to 

each selected element, of relative percentages of all the elements along the selected line. Once 

the analysis is completed, it is then possible to read off the precise relative percentages of all the 

elements along the line with an accuracy of 2 - 3 μm. A full account of X-ray analysis in the 

SEM using EDAX has been given by Lyman, et al., (1990) and Goldstein, et al., (2002). As 
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indicated previously, an FEI XL 30 FEGSEM fitted with integrated EDAX analysis system was 

used in this work.  

6.5.2.4 Sample preparation for SEM and EDAX 

When a sample is being examined in a high vacuum SEM, the surface of the sample receives 

electrons from the primary beam and loses electrons by either secondary emission or backscatter. 

Therefore, the specimen may have either a net loss or gain of electrons and will charge up 

positively or negatively. Any such charging effects are undesirable, and may cause image 

brightness, beam distortion and loss of resolution. Charging effects can be minimized or 

eliminated either by the use of an electrically conducting specimen that is able to maintain a 

constant zero potential by means of electron flow through the specimen stub and stage to earth, 

or by coating the sample with a conducting film such as carbon or gold which will prevent the 

build-up of charge. A thorough account of sample preparation techniques for SEM has recently 

been given by Echlin (2009). In this study all samples were carbon coated with a GATAN 

MODEL 682 PRECISION ETCHING COATING SYSTEM since the gold coating would have 

given a significant ‘false’ peak, and would also completely prevent a true elemental map being 

obtained. A coating thickness reference chart was used to estimate that samples were coated with 

carbon to a thickness of approximately 5.0 to 8.0 nm. All SEM/EDAX results presented in the 

following Chapters were obtained from prepared samples examined using a FEI XL 30 

FEGSEM, with attached RONTEC EDAX system running Quantax Esprit 1.8 analytical 

software. In the Results Sections of the experimental Chapters the SEM photomicrographs of 

the samples are presented as secondary electron (SE) images, recorded digitally (as TIFF files), 

which give optimum image quality to show surface topography with good depth of field (in 

contrast to backscattered electron [BSE] images). The results of the EDAX analysis are given 

either as results from the EDAX system operating in Spectra Mode (SM) or Imaging Mode (IM). 
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Data from the Spectra Mode results are shown as a series of spectrum peaks, that identify all the 

elements within a sample, and these results are usually shown with the corresponding 

quantification data, usually as an Excel Table, which gives the relative percentages of all the 

elements present at the sample surface, expressed either as Wt. % or At No %. 

The analyses performed using the Imaging Mode of the EDAX facility were carried out using 

the system operating in either Electron Mapping Mode or Line Scan Mode. The Electron 

Mapping Mode indicates the occurrence and distribution of selected elements over the sample 

surface; either singly, or in combination, and/or overlaid over the corresponding secondary 

electron image. The Line Scan Mode shows the quantitative variation in the relative percentages 

of several selected elements over a pre-determined line on the sample surface, and is a very 

sensitive quantitative technique. To ensure that all results obtained could be directly comparable, 

the same SEM instrument operating parameters (accelerating voltage [20KV], spot size, working 

distance [WD] etc.), were maintained for all imaging and EDAX studies, for all samples. Note 

that due to occasional problems with the SEM to EDAX system communication software, the 

real WD was sometimes not displayed in the EDAX images. In addition, to further maintain 

consistency in the SEM and EDAX results, and to allow precise comparisons to be made between 

SEM micrographs obtained for different samples, secondary images were usually recorded for 

the same selected range of instrument magnifications, for each sample, throughout the study. 

These magnifications were mainly: 500X, 1000X, 2000X and 5000X. These magnifications 

correspond to the scale bars given on the SEM images of 50.0 μm, 20.0 μm, 10.0 μm and 5.0 μm 

respectively. The magnifications referred to throughout the text and Figure legends refer to the 

instrument magnification setting only, and do not give the actual real magnifications of the 

images as presented in this Report.  
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6.5.3 Transmission electron microscopy (TEM) / selected area diffraction (SAD) 

In a transmission electron microscope (TEM), a thin specimen is irradiated with a high-energy 

electron beam (usually in the range of 100 to 200 keV). The beam is focused by magnetic lenses. 

The first few lenses before the specimen permit variation of the illumination aperture and the 

size of the illuminated area. The electron intensity distribution of the beam after interaction with 

the specimen is imaged onto a fluorescent screen by the objective lens and the post-objective 

lens system. Images are recorded by a digital charged couple device (CCD) camera or, 

alternatively, with an electron sensitive photographic emulsion (which is chemically developed 

as in light photography). Contrast in the image arises either by absorption of electrons scattered 

through angles larger than the lens aperture (scattering contrast) or by interference between the 

scattered and incident wave at the image point (phase contrast). Information obtained from phase 

contrast is ultimately limited by lens aberrations and the limited coherence of the electron beam. 

The typical limit in a modern TEM is in the 0.2 to 0.4 nm range. 

In addition to imaging information, a TEM is also capable of providing transmission electron 

diffraction data. This is done quite simply by changing the post objective lens settings so that, 

rather than projecting the objective-lens image they project the electron intensity in the objective 

back-focal plane. Many modern TEMs are also capable of forming small electron probes (5 nm 

or less), allowing diffraction information from nano-scale areas – so-called nano-beam 

diffraction. Production of characteristic X-rays (arising from excitation of inner atomic shells) is 

limited essentially to the illuminated area, since beam broadening is typically small for a thin 

sample. Detection of these X-rays allows for qualitative or semi-quantitative elemental analysis 

at the nano-scale. 

Any modern TEM that can form a small electron probe may also be configured as a scanning 

TEM (STEM) simply by adding the capability of beam rastering together with appropriate 
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detectors. This STEM configuration is often available on TEMs with field emission sources. 

STEM mode is convenient for analytical work (X-ray analysis or energy-loss spectroscopy) since 

the rastered image can be recorded almost simultaneously with the analytical signal without 

altering the illumination optics.  

Typical applications involve microstructure and nanostructure size and morphology 

determination and Phase identification at the nano-scale. Double-tilt sample holders permit 

crystallographic studies, including defect analysis (dislocations, stacking faults, etc.). Chemical 

information can also be discerned from emission of characteristic X-rays (energy dispersive 

spectroscopy of X-rays, or EDAX). Chemical information is also discerned from ionization 

edges in the electron energy loss spectrum (EELS). Formation of small electron probe allows 

diffraction, EDAX, or EELS at the nano-scale cross-section analysis (layer thickness, interface 

quality). 

 

Figure 6.5: A schematic diagram of transmission electron microscope (TEM) 
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6.5.4 UV-Visible absorption spectroscopy 

Optical spectroscopy has been widely used for the characterization of nanomaterials. The 

absorption and emission spectra determine the electronic structures of atoms, ions, molecules or 

crystals through exciting electrons from the ground to excited states (absorption) and relaxing 

from the excited to ground states (emission). The characteristic lines observed in the absorption 

and emission spectra of nearly isolated atoms and ions due to transitions between quantum levels 

are extremely sharp. As a result, their wavelengths or photon energies can be determined with 

great accuracy. The lines are characteristic of a particular atom or ion and can be used for 

identification purposes. Molecular Spectra, while usually less sharp than atomic spectra, are also 

relatively sharp. Positions of spectral lines can be determined with sufficient accuracy to verify 

the electronic structure of molecules. 

In solids the large degeneracy of the atomic levels is split by interactions into quasi-continuous 

bands (valence and conduction bands), and makes their optical spectra rather broad. The energy 

difference between the highest lying valence (the highest occupied molecular orbital, HOMO) 

and the lowest lying conduction band (the lowest unoccupied molecular orbital, LUMO) bands 

are designated as the fundamental gap. Penetration depths of electromagnetic radiation are of the 

order of 50 nm through most of the optical spectrum (visible light). That makes this technique 

readily applicable for the characterization of nanostructures and nanomaterials. In this work, 

UV-vis spectra were recorded using a Cary 5000 Uv-Vis-NIR spectrophotometer. A lamp 

produces a beam of light which hits a prism and splits into its component wavelengths. The prism 

is rotated so that only a specific wavelength of light reaches the exit aperture, before interacting 

with the sample. A detector then measures the transmittance and absorbance of the sample. 

Transmittance light passes through the sample and hits the detector, while absorbance is a 
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measure of the light absorbed by the sample. The detector senses the light being transmitted 

through the sample and converts the information to a digital display. 

 

Figure 6.6 Photograph of Cary 5000 Uv-Vis-NIR- spectrometer. 

 

6.5.5 Elemental analyses 

6.5.5.1 Determination of C/H/N/S - elemental analyser 

The determination of C/H/N/S was performed using the Carbo Erba EA 1108 Elemental 

Analyser. The technique used for the determination of C, H, N and C, H, N, S is based on the 

quantitative “dynamic flash combustion” method. In this method the samples are held in a thin 

container/ placed inside the auto-sampler drum where they are purged with a continuous flow of 

helium and then dropped at pre-set intervals into a vertical quartz tube maintained at 1020 oC 

(combustion reactor). When the samples are dropped inside the furnace, the helium stream is 

temporary enriched with pure oxygen and sample and its container melt and the tin promotes a 

violent reaction (flush combustion) in a temporary enriched atmosphere of oxygen.  Under those 

favourable conditions even thermally resistant substances are completely oxidized. Quantitative 

combustion is then achieved by passing the mixture of gases over a catalyst layer. The mixture 
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plug of combustion gases is then passed over copper to remove the excess of oxygen and to 

reduce the nitrogen oxides to elemental nitrogen. The resulting mixture is directed to the 

chromatographic column (Porapak PQS) where the individual components are separated and 

eluted as nitrogen (N2), carbon dioxide (CO2), water and sulphur dioxide (SO2) with the help of 

a Thermal conductivity detector whose signal feeds a potentiometric recorder or an integrator or 

the automatic workstation known as EAGER 200. The instrument is calibrated with the analysis 

of standard compounds using K factors calculation or using the linear regression method 

incorporated in the EAGER 200 workstation. 

6.5.5.2 Fourier transform infrared spectroscopy (FTIR) 

Molecules and crystals can be thought of as systems of balls (atoms or ions) that are connected 

by springs (chemical bonds). These systems can be set into vibration, and vibrate with 

frequencies determined by the mass of the balls (atomic weight) and by the stiffness of the 

springs (bond lengths). The mechanical molecular and crystal vibrations are at very high 

frequencies ranging from 10 to 1014 kHz (3 - 300 µm wavelength), which is in the infrared (IR) 

regions of the electromagnetic spectrum. 

The oscillations induced by certain vibrational frequencies provide a means for matter to couple 

with an impinging beam of infrared electromagnetic radiation and exchange energy with it when 

the frequencies are in resonance. These absorption frequencies represent excitations of vibrations 

of the chemical bonds and thus are specific to the type of bond and the group of atoms involved 

in the vibration. In the infrared experiment, the intensity of a beam of infrared radiation is 

measured before and after it interacts with the sample as a function of light frequency. A plot of 

the relative intensity versus the frequency gives the “infrared spectrum”. A familiar term “FTIR” 

refers to Fourier Transform Infrared Spectroscopy when the intensity - time output or the 

interferometer is subjected to Fourier transform to convert it to the familiar infrared spectrum 
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(intensity-frequency). The identities, surrounding environments or atomic arrangement, and 

concentrations of the chemical bonds that are present in the sample can therefore be determined. 

6.5.5.3 Metal content/inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

The quantitative analysis of metals content in samples (precursors) is performed using 

inductively coupled plasma-optical emission spectroscopy (ICP-OES). The equipment used is a 

Fissons instrument horizon model. Atomic emission spectroscopy is a process in which the light 

emitted by excited atoms or ions is measured. If sufficient thermal or electrical energy is 

available to excite a free atom or ion to an unstable energy state, then light is emitted, consisting 

of certain wavelengths which are characteristic to each element. The thermal energy source is 

provided by an argon plasma which is the basis of the ICP-OES technique. In ICP, the sample is 

heated to around 8,000 K in an argon plasma which is formed by the interaction between a 

rapidly oscillating magnetic field (RF field) and ionized argon gas – this occurs in the ICP torch. 

The sample solution is aspirated via a nebulizer and spray–chamber and enters the plasma as an 

aerosol up through the centre of the ICP torch. Here, it forms an atomic vapour to a high 

proportion of the atoms being raised to a high energy level because of the temperature in the 

plasma. The emitted radiation is focused onto the spectrometer where the signal intensity and 

wavelength are measured. Samples are introduced into the ICP-OES instrument in the form of 

aqueous solution. Because most samples are solids that are generally not water soluble, wet acid 

digestion is required. Samples and standard reference materials are accurately weighed into glass 

digestion tubes- normally 4 standards are prepared to cover a suitable concentration range, an 

appropriate amount of sample is weighed to ensure it will fit within this range, this is calculated 

from the expected percentage value. The samples and standards are then acid digested in a fume 

cupboard – the actual acids and heating temperature used depends on the nature of the sample 

and the elements present within it. After digestion the samples and standards are quantitatively 
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transferred to volumetric flasks, and are now ready to run on the ICP instrument. The emission 

in the plasma will vary proportionately according to the concentration of element in the solution. 

So first the range of standards prepared is run on the ICP to generate a calibration curve, i.e. a 

graph of emission signal versus concentration of element. The sample is then also run and the 

emission signal is directly converted into a concentration value using the stored calibration curve. 
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CHAPTER SEVEN: OUTLOOK AND CONCLUSION 

In this thesis deposition of Copper, Zinc, cadmium and Lead Chalcogenide nanomaterials/thin 

films have been described. Section 7.1 contains a short summary of the research work. The 

results and conclusions drawn from this research work are described in section 7.2. Based on 

these conclusions, an outlook to future research is provided in section 7.3. 

7.1 Summary 

Metal chalcogenides, ME (M= Cu, Zn, Cd, Pb; E=S, Se, Te) are important semiconductor 

materials which have found many applications in optoelectronics and solar cell technology. 

Metal chalcogenides as thin films and nanocrystals have received considerable interest in low 

cost photovoltaics devices. The work described in this thesis deals with the exploitation of the 

unique properties pertaining at the water/toluene interface for the preparation of these materials 

at temperatures below 100 oC. In the first part of this work a series of metal dithiocarbamate 

complexes were prepared with variations of the carbon chains from two to four and 

characterized. In addition metal cupferronates were also prepared and characterized. 

Although the self-assembly of colloidal particles at a curved fluid interface has been reported for 

about 100 years, the self-assembly at a flat fluid interface to be functional films is just a 

burgeoning field. Compared with previous solution-based self-assembly routes, the advantages 

for this self-assembly strategy are evident in their universality, simplicity and high efficiency, 

the high quality of the as-assembled film. Multilayer nanofilms can be obtained by this interfacial 

self-assembly through a multiple deposition procedures. 
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Table 7.1 Summary of the properties of the prepared nanomaterials/thin films 

Nanoparticle Precursor Chalcogenide Observed 

morphology 

Average 

crystallite 

size/ nm 

Bulk 

Band 

gap/eV 

Nanomaterial 

Band gap/eV 

ZnS Zn(S2CNEt2)2 Sulphur Cubic 2.2 3.68 3.7 

 Zn(S2CNPr2)2   6.8  3.84 

 Zn(S2CNBu2)2   6.8  3.92 

 Zn(S2CNiBu2)2   5.1  3.93 

ZnSe/t-Se Zn(S2CNEt2)2 Selenium Hexagonal 3.7 2.70 3.7 

 Zn(S2CNPr2)2   6.2  3.91 

 Zn(S2CNBu2)2   5.2  3.70 

 Zn(S2CNiBu2)2   6.1  3.83 

ZnTe/t-Te Zn(S2CNEt2)2 Tellurium Hexagonal 4.1 0.33 1.17 

 Zn(S2CNPr2)2   6.4  1.10 

 Zn(S2CNBu2)2   6.7  1.16 

 Zn(S2CNiBu2)2   5.7  1.09 

CuS Cu(cup)2 Sulphur Hexagonal 3.8 1.75 3.8 

CuSe Cu(cup)2 Selenium Hexagonal 5.6 2.0/2.8 3.7 

CuSe Cu(cup)2 Selenosulphate Hexagonal 1.3 -  

CuTe Cu(cup)2 Tellurium Hexagonal  1.5a  

CdS Cd(cup)2 Sulphur Cubic 5.2 2.42 3.86 

CdS Cd(cup)2 Sulphur Hexagonal 5.0 2.51 3.86 

CdSe Cd(cup)2 Selenium Hexagonal 5.9 1.75 3.9 

CdSe Cd(cup)2 Selenosulphate Hexagonal 3.6 1.75 3.9 

PbS Pb(cup)2 Sulphur Cubic 3.9 0.41 0.9 
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 Pb(S2CNEt2)2   6.7   

 Pb(S2CNPr2)2   6.3  1.4 

 Pb(S2CNBu2)2   6.4  1.1 

 Pb(S2CNiBu2)2   5.8  1.3 

PbSe Pb(cup)2 Selenium Cubic 5.5 0.27 1.46 

 Pb(S2CNEt2)2   8.3  1.4 

 Pb(S2CNPr2)2   7.2  1.7 

 Pb(S2CNBu2)2   2.5  1.8 

PbTe Pb(cup)2 Tellurium Cubic 2.7 0.29 0.96 

 Pb(S2CNBu2)2   6.3   

aReported by Synco-Davis (2004).  

7.2 Conclusion 

A number of metal dithiocarbamato and metal cupferronates have been synthesized and used as 

precursors for the deposition of binary chalcogenide nanomaterial/thin films of Copper, Zinc, 

Cadmium and Lead at the water/toluene interface. For the first time the assembly of 

semiconductor nanocrystalline thin film at water-toluene interface has been carried out 

successfully with borohydride reduction of chalcogen powders as sources of chalcogenide ions. 

This procedure has yielded single crystalline films as against polycrystalline films. Hitherto 

defects and grain boundaries in polycrystalline films had led to the creation of trap states that act 

as carrier scattering centers, thus reducing the carrier mobility and transparency of the films. 

UV-visible spectra indicated that the nanocrystals forming the films interact strongly with each 

other with tangible red shift of the surface plasmon band. Varying the concentration, 

temperature, deposition times and the precursors have influenced the optical properties and 

morphology of the thin films.  
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The average crystallite sizes of the as-prepared copper nanoparticles at different temperatures, 

concentrations and deposition times ranged from 3.4 to 4.3 nm for CuS, 5.1 to 5.7 nm for CuSe 

and 1.4 to 4.5 nm for CuTe. The band gaps obtained for CuS ranged from 3.6 to 3.9 eV and CuSe 

ranged from 3.53 to 3.96 eV. 

The average crystallite sizes of the as-prepared zinc sulphide nanoparticles at different 

temperatures, concentrations and deposition times ranged from 2.2 to 6.8 nm and band gap 

ranging from 3.7 to 3.93 eV. Attempts to deposit ZnSe and ZnTe nanocrystal thin films at the 

toluene –water interface rather yielded predominantly t-Se and t-Te respectively. The average 

crystallite sizes ranged from 3.7 to 6.2 nm for t-Se and 4.1 to 6.7 nm. The band gap of t-Se ranged 

from 3.7 to 3.91 eV and that of t-Te ranged from 1.09 to 1.17 eV. Yesu Thangam et al (2012) 

have reported of the synthesis of ZnS nanoparticle with a band gap as high as 5.48 eV and particle 

size of 1.57 nm and absorption peak at 227 nm. Panthan and Lokhande (2003) have also reported 

the synthesis of ZnS nanomaterials with band gap of 2.2 eV.  

The average crystallite sizes of the as-prepared cadmium nanoparticles at different temperatures, 

concentrations and deposition times ranged from 0.9 to 7.1 nm for cubic CdS, 0.94 to 7.3 nm for 

hexagonal CdS and 5.9 to 6.4 nm for CdSe. The band gaps obtained for CdS ranged from 3.69 

to 3.98 eV, CdSe ranged from 3.7 to 4.05 eV. When selenosulphate was used as the seleniding 

source the crystallite sizes obtained ranged from 4.1 to 6.4 nm. Nanostructured CdSe deposits 

with a mixture of hexagonal and cubic phases are formed at room temperature, 50 oC and 70 oC. 

Good quality PbS, PbSe and PbSe NCs with narrow size distribution absorbing in visible/near 

IR region were obtained. The diameters of PbS, PbSe and PbTe crystallites ranged from 3.9-6.4 

nm, 2.5-8.3 nm and 2.7-6.3 nm respectively. Experiments have shown that by carefully 

controlling the conditions of reactions leads to lead chalcogenide nanocrystals with well-defined 

shapes, and band gaps can be tuned between 0.9 - 1.4 eV for PbS, 1.40 - 1.8 eV for PbSe  and 

0.9 eV for PbTe  NCs. 
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7.3 Outlook 

The synthetic work described in this thesis on different classes of compounds can be extended 

to other metals. In addition it could be employed for the controlled synthesis of compositionally 

tunable binary and ternary nanomaterials of different morphologies. It is hoped that the oil–water 

interfacial self-assembly, the state-of-the-art synthesis of nanoparticle thin films and 

nanomaterials presented in this thesis can provide the necessary background and principles of 

this exciting self-assembly with low-cost and high efficiency. And more importantly, it is hoped 

that this thesis can lead to more work by the candidate to prepare novel and functional 

nanomaterial thin films and also help younger researchers seeking new directions to find 

interesting topics in this burgeoning field, to push the development of oil–water self-assembly 

strategy in fundamental and practical applications together. 
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APPENDIX A 

 

Figure A1: X-ray diffractogram of zinc diethyl dithiocarbamate (Zn(S2CNEt2)2 precursor. 

 

Figure A2: X-ray diffractogram of copper diethyldithiocarbamate (Cu(S2CNEt2)2 precursor. 
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Figure A3: X-ray diffractogram of cadmium diethyldithiocarbamate (Cd(S2CNEt2)2) precursor. 

 

Figure A4: X-ray diffractogram of lead diethyldithiocarbamate (Pb(S2CNEt2)2) precursor. 
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Figure A5: X-ray diffractogram of the copper cupferronate (Cu(cup)2) precursor 
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APPENDIX B 

 

       Figure B1: FT-IR Spectra for zinc diethyldithiocarbamate (Zn(S2CNEt2)2) 

 

 

        Figure B2: FT-IR Spectra for zinc dipropyldithiocarbamate (Zn(S2CNPr2)2) 
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         Figure B3: FT-IR Spectra for zinc dibutyldithiocarbamate (Zn(S2CNBu2)2) 

 

 

        Figure B4: FT-IR Spectra for zinc ethylhexyldithiocarbamate (Zn(S2CNEtHex)2) 
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        Figure B5: FT-IR Spectra for copper diethyldithiocarbamate Cu(S2CNEt2)2 

 

 

        Figure B6: FT-IR Spectra for copper dipropyldithiocarbamate(Cu(S2CNPr2)2) 
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        Figure B7: FT-IR Spectra for copper diisopropyldithiocarbamate (Cu(S2CNiPr2)2 

 

        Figure B8: FT-IR Spectra for copper dibutyldithiocarbamate (Cu(S2CNBu2)2) 
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         Figure B9: FT-IR Spectra for copper diisobutyldithiocarbamate (Cu(S2CNiBu2)2) 

 

 

          Figure B10: FT-IR Spectra for copper ethexyldithiocarbamate (Cu(S2CNEtHex)2) 

 

 



277 

 

 

         Figure B11: FT-IR Spectra for cadmium diethyldithiocarbamate (Cd(S2CNEt2)2)  

 

 

          Figure B12: FT-IR Spectra for cadmium dipropyldithiocarbamate (Cd(S2CNPr2)2) 
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        Figure B13: FT-IR Spectra for cadmium dibutyldithiocarbamate (Cd(S2CNBu2)2) 

 

 

        Figure B14: FT-IR Spectra for cadmium diisobutyldithiocarbamate (Cd(S2CNiBu2)2) 
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       Figure B15: FT-IR Spectra for cadmium ethylhexyldithiocarbamate (Cd(S2CNEtHex)2) 

 

 

        Figure B16: FT-IR Spectra for lead diethyldithiocarbamate (Pb(S2CNEt2)2) 
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       Figure B17: FT-IR Spectra for lead dipropyldithiocarbamate (Pb(S2CNPr2)2) 

 

 

       Figure B18: FT-IR Spectra for lead diisopropyldithiocarbamate (Pb(S2CNiPr2)2) 
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       Figure B19: FT-IR Spectra for lead dibutyldithiocarbamate (Pb(S2CNBu2)2) 

 

 

         Figure B20: FT-IR Spectra for lead diisobutyldithiocarbamate (Pb(S2CNiBu2)2) 
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        Figure B21: FT-IR Spectra for zinc cupferronate (Zn(cup)2) 

 

 Figure B22: FT-IR Spectra for copper cupferronate (Cu(cup)2) 
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       Figure B23: FT-IR Spectra for cadmium cupferronate (Cd(cup)2) 

 

 

         Figure B24: FT-IR Spectra for lead cupferronate (Pb(cup)2) 

 

 


