# THE DETERMINATION OF CROP WATER REQUIREMENT OF MANGO

## IN THE TRANSITIONAL ZONE OF GHANA

by

Samuel Kyei Okyereh, B. Sc. Agricultural Engineering

A Thesis submitted to the Department of Agricultural Engineering,

Kwame Nkrumah University of Science and

**Technology** 

in partial fulfillment of the requirements for the degree of

## MASTER OF SCIENCE IN SOIL AND WATER ENGINEERING

Faculty of Mechanical and Agricultural Engineering,

**College of Engineering** 

March, 2009

#### CERTIFICATION

I, Samuel Kyei Okyereh hereby declare that this submission is my own work towards the MSc and that, to the best of my knowledge, it contains no material previously published by another person nor the material which has been accepted for the award of any other degree of the University, except where due acknowledgment has been made in the text.



#### ABSTRACT

This study sought to determine the optimum crop water requirement of mango using meteorological data for the transitional agro-ecological zone of Ghana and make comparison of the various methods of crop water requirement determination or estimation.

The estimates could be useful in the design and management of irrigation systems. Mango production would offer or create employment for rural and urban dwellers. It would assist to minimize or reduce the rural-urban migration and supply some of the basic raw materials needed to feed fruit processing or agro-based industries in Ghana. It can be also used for afforestation and reforestation programmes in Ghana.

Meteorological data were collected from Ghana Meteorological Agency for selected locations in the transitional agro-ecological zones for the period 1976-2006. The locations were: Atebubu, Berekum, Ejura and Wenchi. The crop water requirement was estimated using Blaney-Criddle, Radiation, Penman, Thornthwaite and Pan Evaporation methods. From the results of the research, the least and highest optimum crop water requirement of mango using meteorological data were 880 mm and 1127 mm for Blaney-Criddle, 1224 mm and 1271 mm for Radiation, 1367 mm and 1446 mm for Penman, 1567 mm and 1780 mm for Thornthwaite respectively .The value of 1111 mm was for Pan Evaporation method. Also, the Thornthwaite method had the highest annual crop water requirement of mango with the values of 1694 mm in Atebubu, 1607 mm in Berekum, 1567 mm in Ejura and 1780 mm in Atebubu, 1021 mm in Berekum, 938 mm in Ejura and 1127 mm in Wenchi.

In conclusion, Penman is the standard or best method. It includes all the climatic factors that affect evapotranspiration. Blaney-Criddle, Radiation and Thornthwaite are temperature based methods. Blaney-Criddle and Radiation underestimate the crop water requirement. However, Thornthwaite overestimates the crop water requirement. Pan Evaporation is the direct method and shows the combined effect of the climatic factors .

# TABLE OF CONTENT

| CHAPTER | CONTENTS                         | PAGES |
|---------|----------------------------------|-------|
|         | CERTIFICATION                    | i     |
|         | ABSTRACT                         | ii    |
|         | TABLE OF CONTENTS                | iii   |
|         | LIST OF TABLES                   | vi    |
|         | LIST OF FIGURES                  | viii  |
|         | LIST OF SYMBOLS                  | ix    |
|         | ACKNOWLEDGMENT                   | x     |
| 1       | 1.0 INTRODUCTION                 | 1     |
|         | 1.1 BACKGROUND                   | 1     |
|         | 1.2 OBJECTIVES OF STUDY          | 8     |
| 2       | 2.0 LITERATURE REVIEW            | 9     |
|         | 2.1 Climate and Weather          | 9     |
|         | 2.1.1 Climate and Agriculture    | 9     |
|         | 2.1.2 Rain-fed Agriculture       | 9     |
|         | 2.2 Rainfall                     | 10    |
|         | 2.2.1 Rainfall Effectiveness     | 11    |
|         | 2.2.2 Rainfall Reliability       | 12    |
|         | 2.2.3 Rainfall Distribution      | 12    |
|         | 2.2.4 Rainfall Intensity         | 12    |
|         | 2.2.5 Rainfall Measurements      | 13    |
|         | 2.2.6 Hydrological (Water) Cycle | 13    |

|                            |                                             | PAGES   |
|----------------------------|---------------------------------------------|---------|
| 2.2.7 Importance           | ce of Water to plants                       | 14      |
| 2.2.8 Rainfall in          | n relation to mango production              | 15      |
| 2.3 Temperature            |                                             | 17      |
| 2.3.1 Temperature in a     | relation to mango production                | 18      |
| 2.4 The effect of relative | e humidity on crop production               | 19      |
| 2.5 Wind                   |                                             | 20      |
| 2.5.1 Ecological signific  | cance of wind                               | 20      |
| 2.6 Light (Solar Radiatic  | on)                                         | 22      |
| 2.6.1 Light Intensity      |                                             | 22      |
| 2.6.2 Day Length           |                                             | 23      |
| 2.7 Soil and Topograph     | y in relation to mango production           | 23      |
| 2.8 Altitude in relation t | o mango production                          | 25      |
| 2.9 Evapotranspiration     |                                             | 26      |
| 2.9.1 Factors affecting e  | vapotranspiration                           | 27      |
| 2.10 Crop water require    | ment                                        | 31      |
| 2.11 Elements to be con    | sidered when estimating crop water required | ment 31 |
| 2.12 Current Production    | of Mango                                    | 36      |
| 2.13 Demands for Man       | go                                          | 38      |
| 3.0 MATERIALS AND          | METHODS                                     | 39      |
| 3.1 Study area             |                                             | 39      |
| 3.2 Calculation of refere  | nce crop water evapotranspiration (ET o)    | 41      |
| 3.3 Calculation or determ  | nination of crop water requirement of mang  | o 47    |
| 4.0 RESULTS AND D          | ISCUSSIONS                                  | 49      |

3

4

|   | 4.1 Determination or estimation of optimum crop water requireme      | PAGES<br>ent of Mango 49 |
|---|----------------------------------------------------------------------|--------------------------|
|   | 4.1.1 Blaney-Criddle                                                 | 51                       |
|   | 4.1.2 Radiation                                                      | 55                       |
|   | 4.1.3 Penman                                                         | 59                       |
|   | 4.1.4 Thornthwaite                                                   | 63                       |
|   | 4.15 Pan evaporation                                                 | 66                       |
|   | 4.2 Comparison of crop water requirement determination or estimation | ation methods 67         |
| 5 | 5.0 CONCLUSION AND RECOMMENDATIONS                                   | 74                       |
|   | 5.1 CONCLUSION<br>5.2 Recommendations<br>References                  | 74<br>77<br>78           |
|   | Appendices                                                           | 82                       |

# LIST OF TABLES

| TABLE2.1 Crop Growing Seasons     | PAGES 33 |
|-----------------------------------|----------|
| 4.1 Atebubu Climatic Data         | 81       |
| 4.2 Berekum Climatic Data         | 81       |
| 4.3 Ejura Climatic Data           | 81       |
| 4.4 Wenchi Climatic Data          | 82       |
| METHOD ONE: BLANEY-CRIDDLE METHOD | 82       |
| 4.5 Atebubu                       | 82       |
| 4.6 Berekum                       | 83       |
| 4.7 Ejura                         | 84       |
| 4.8 Wenchi                        | 85       |
| METHOD TWO: RADIATION METHOD      | 85       |
| 4.9 Atebubu                       | 85       |
| 4.10 Berekum                      | 86       |
| 4.11 Ejura                        | 87       |
| 4.12 Wenchi                       | 87       |
| METHOD THREE: PENMAN METHOD       | 88       |
| 4.13 Atebubu                      | 88       |
| 4.14 Berekum                      | 89       |
| 4.15 Ejura                        | 91       |
| 4.16 Wenchi                       | 92       |
| METHOD FOUR: THORNTHWAITE METHOD  | 94       |
| 4.17 Atebubu                      |          |

| 94                                                                         |    |
|----------------------------------------------------------------------------|----|
| 4.18 Berekum                                                               | 94 |
| 4.19 Ejura                                                                 | 95 |
| 4.20 Wenchi                                                                | 95 |
| METHOD FIVE: PAN EVAPORATION METHOD                                        | 96 |
| 4.21 Wenchi                                                                | 96 |
| 4.22 Comparison of various methods of crop water requirement determination | 96 |
| 4.24 Average Annual Rainfall                                               | 50 |
| 4.26 Potential Evapotranspiration                                          | 50 |
| 4.27 Deficit or Surplus of Rainfall                                        | 51 |
| 4.28 Overestimation or Underestimation of Crop Water Requirement           | 68 |
| 4.29 Ratios of Crop Water Requirement Determination                        | 68 |
|                                                                            |    |

# LIST OF FIGURES

| FIGURES                                                         | PAGES |
|-----------------------------------------------------------------|-------|
| 1.1 Ripe Mango Fruit                                            | 2     |
| 2.1 The Hydrological Cycle                                      | 14    |
| 2.2 Crop Coefficient Curve for Mango                            | 34    |
| 2.3 Mango Tree with fruits                                      | 37    |
| 3.1 Map of Ghana showing the transitional agro-ecological zone. | 40    |
| 3.2 Class A evaporation pan                                     | 42    |
|                                                                 |       |



# LIST OF SYMBOLS

|                                                                                          | PAGES |  |
|------------------------------------------------------------------------------------------|-------|--|
| 1. FAO- Food and Agriculture Organization                                                | 3     |  |
| 2. GSS- Ghana Statistical Service                                                        | 39    |  |
| 3. N -North                                                                              |       |  |
| 4. PH -A measurement of the level of acid or alkali in a solution or substance. In the   |       |  |
| pH range of 0 to 14 a reading of below 7 shows an acid and of above 7 shows an alkali 25 |       |  |
| 5. S -South                                                                              | 23    |  |
| 6. T-Temperature (°C)                                                                    | 18    |  |
| 7. USAID-United States Agency International Development                                  | 2     |  |
| 8. N D A-National Department of Agriculture                                              |       |  |
|                                                                                          |       |  |

#### ACKNOWLEDGEMENTS

Special thanks goes to omniscient God for the knowledge and wisdom He gave me to do this project .I would like to thank my parents, Mr. J. O .Kyei (Late) and Madam Elizebeth Asare for their financial support.

I am greatly indebted to my supervisors Professor S.K. Agodzo and Mr. P. Y. Adjei for their meaningful suggestions and invaluable assistance .I would like to express my sincere appreciation to Professor Nicholas Kyei-Baffour, Dr .E. A. Ofori, Mr. Adjei Gyapong, Mr. Solomon N. Maamah, Mr. Antwi Boasiko, Mr.John Boateng, Mr.Micheal Owusu. Mr. Akowuah, Mr. Shaibu and Mr.Benedict Agyeman for their constant assistance.

I am very grateful to my wife Mrs. Janet Kyei Okyereh, Mr. Appiah (Techiman), Mr. Vincent Antwi, Mr. Appallo, Mr. Ofori and the entire staff of Ghana Meteorological Agency for their constant help in diverse ways .I would particularly like to thank the Department of Agricultural Engineering for permitting me to work on this project.

My sincere thanks goes to many colleagues who responded to my requests for ideas and informations for use in the preparation of this project .I want to thank them for their helpful comments, remarks, support and encouragement.



#### **CHAPTER ONE**

#### **1.0 INTRODUCTION**

#### **1.1 BACKGROUND**

Mango (*Mangifera Indica L*.) belongs to the family Anacardiaceace, also known as the cashew family (Nakasone and Paull, 1999). It is a very popular and highly productive tropical fruit crop which is indigenous to tropical Asia and may have originated from India (Rice *et al*, 1990). From the Indian sub-continent it has spread to other parts of the tropical world and is one of the most popular and choicest fruits of India (Purseglove, 1987). However, it is now found in all the tropical areas, as well as many subtropical regions of the world, attesting to its wide range of adaptability. It was introduced into Ghana in the early 1920's from the Sri Lanka, India and Trinidad (Addo-Quaye *et al*,1993). The yield depends on the age and cultivar, but generally, about 500-1500 fruits per tree per year may be obtained at three to four years (Addo-Quaye *et al*, 1993).

It is highly prized as a dessert fruit (Kochhar, 1986). All parts of the mango tree, from the root to the leaf, serve some purpose to mankind. For example the leaves may be used as fodder to feed livestock and the wood is valuable for boat building. In most tropical regions, the fruit is grown only for local consumption and has been described as "king of all fruits" (Samson, 1992). All kinds of preserve including juice and jam can be prepared from ripe fruits, while pickles and chutney are prepared from unripe fruits .It has a rich, luscious aromatic flavour and delicious taste with a blend of sweetness and acidity. The bark contains tannin which may be used for tanning leather.

The edible portion takes up 60-75 percent of the fruit weight. The flesh of a riped fruit as depicted in figure1.1 contains about 15 percent sugar, mostly sucrose, much

vitamin A and a fair amount of vitamin B and C (Samson, 1992). It also contains 84 percent water and small amount of fruit acids, minerals, fats and protein (Kochhar, 1986).



Figure 1.1 Ripe mango fruit (Cultivar- Zill)

Mango production would offer or create employment for rural and urban dwellers. It could also help to solve unemployment problems. A favourable and vibrant agricultural sector in Ghana is the key to poverty reduction because it employs the majority of the poor (Adu-Gyamerah, 2008). For instance, the youth could be engaged in mango production in mango plantations under the National Youth Employment Programme. In Ghana's Eastern Region, for example, cultivation of improved exportable mango has created jobs for over 5,000 people and made the area the most prominent in mango production (USAID, 2005). Mango production increased from 700 kg per acre in 2002 to 2704 kg per acre in 2005 in Ghana (USAID, 2005). Clusters of mangoes grow from long

stems attached to the main branches with each tree producing an average of 100 fruits each year. India is by far the largest producer, with an area of 16,000 km<sup>2</sup> and an annual production of 10.8 million tonnes, which accounted for 57.18% of the total world production. Within India, the southern state of Andhra Pradesh is the largest producer of Mangoes, with 350,000 hectares under cultivation (UN and FAO, 2004).

Mango production in Ghana would also assist to minimize or reduce the ruralurban migration and supply some of the basic raw materials needed to feed fruit processing or agro-based industries in Ghana. Since the crop is developing to become an industry in Ghana, we need to assist farmers to grow the fruit and take advantage of the growing world consumption. Commercially cultivated mango is relatively a new agricultural industry in Ghana. This industry is one area within the horticultural sector which, if well developed and provided with the necessary logistics and support, can easily become a major foreign exchange earner (Adu-Gyamerah, 2008). This is because the country has fertile lands for mangoes, which can easily become a top export product. According to experts in agriculture, Ghana is one of the few countries in the world with two mango seasons, major and minor season. Therefore, with the right practices, both seasons can yield fruits for the international mango market (Asamoah, 2006).

Mango is generating greater income per acre than even cocoa. For example, cocoa is today making about a ton per acre with revenue of 900 Ghana Cedis, but the same acre of land of exotic mango is making over 2,000 Ghana Cedis (Asante-Mensah, 2004). In terms of export earnings, currently yield per acre for cocoa stand more than 1,000 Ghana Cedis; citrus, 1,500 Ghana Cedis to 2,500 Ghana Cedis but mango ranges

3

between 2,500 Ghana Cedis and 4,000 Ghana Cedis (Quartey, 2008). In 2004, the European Union imported 170,000 metric tonnes valued at more than \$ 200 million. Out of this, Ghana registered only 220 metric tonnes representing one percent of the total volume of imports of the product (Asamoah, 2006). Although Ghana has been exporting mangoes over the past 15 years, the country's exports are very insignificant in the international market, as the country is not listed in the first 40 exporters of mangoes in spite of the fact that the country has a comparative advantage over the other exporters of mango (Asamoah, 2006). Recent studies have shown that, Ghana's comparative advantage in the production of fresh mangoes, especially the grafted type, has the potential to greatly turn around and transform the economy, if much attention were redirected and focused on mass cultivation of the fruit (Quartey, 2008). In addition, current statistics on the export earnings have shown that the crop has enormous potential that could transform Ghana's economy much better than other traditional export products (Quartey, 2008).

In addition, mango can be used for afforestation and reforestation programmes in Ghana. Located in the transitional zone between the Savannah North and the Forest South, large-scale mango farms which will provide shelter, slow down desertification and contribute to save the environment (Adu-Gyamerah, 2008).

Within the tropics it has relatively wide ecological amplitude, and thrives well in the dry transitional zones (Addo-Quaye *et al*, 1993). In Ghana, it grows well across all the ecological zones, although it performs best in less humid forest-savannah transition and savannah zones (Mintah *et al*, 2002). The soil should be deep and well-drained. With the growing importance of the crop its crop water requirement data are frequently needed at short notice for forecasting and project planning. The knowledge of the crop water requirement can also assist in the cultivation and improvement in yield.

Climate is one of the most important factors that controls agriculture and rainfall in particular influences agriculture in the tropics. For instance, heavy rainfall during flowering and fruiting can cause marked reductions in pollination or washes away the pollen; reduces fruit set and maturation of fruits. Temperature affects the normal growth of crops .High temperatures during the day cause great loss of water through the process of evapotranspiration which increases with increasing temperature. High night temperatures can affect crop yield. Light energy is also very essential for the manufacturing of plant's food. Apart from photosynthesis, light intensity influences the rate of plant growth and development. Humidity alters the rate of evapotranspiration. Under low humidity, plant loses a lot of water to the atmosphere. Evaporation and transpiration decrease with increase in relative humidity but increase with decrease in relative humidity. Strong wind can do much harm to the mango trees as its wood is soft. When the storms are frequent, serious damage may be inflicted. It may cause damage to crops by causing fruits to drop from plants and sometimes breaking or even uprooting the whole plants. Plants lose more water by evaporation and transpiration in dry wind.

It is necessary to estimate crop water needs in order to calculate deficiencies in the crop water requirement caused by shortage in precipitation or soil moisture storage capacities. Irrigation systems are designed and constructed to meet water deficits and to ensure that adequate supplies of water to plant at the critical stages of growth are provided. Generally, development of farm water management programmes requires knowledge of when to irrigate and how much water should be provided in order to realize the full potential yield of the crop.

It is therefore reasonable to estimate the potential evapotranspiration for tropical mango, since evapotranspiration depends on climatic factors like temperature and humidity. An estimate of crop water requirement can be calculated from measured meteorological data and the crop water requirement of mango, may for example, begin from transplanting, maturity or establishment to harvesting. In general, dry weather and a cloudless sky during flowering and fruit-ripening are considered essential for a good crop (Kochhar, 1986).

There are a multitude of methods used to estimate or determine crop water requirement. Some of these are the Pan evaporation, Blaney-Criddle, Thornthwaite, Penman, Radiation, Jensen-Haise, Atmometer, Penman-Montieth, Bowen Ratio, CROPWAT, Priestley –Taylor and Lysimeter methods. In this study, the methods that would be used are the Pan evaporation, Blaney-Criddle, Thornthwaite, Penman and Radiation.

Concerning the accuracy of these methods, the modified Penman method would offer the best results with minimum possible error of plus or minus 10 percent in summer, and up to 20 percent under low evaporative conditions (Doorenbos and Pruitt, 1996). The Pan method can be graded next with possible error of 15 percent, depending on the location of the pan .The Radiation method, in extreme conditions, involves a possible error of up to 20 percent in the summer. The Blaney-Criddle method should only be applied for periods of one month or longer; in humid, windy, mid-latitude winter conditions and over and under prediction of up to 25 percent (Doorenbos and Pruitt,

6

1996). The Thornthwaite method has the largest possible error of 56 percent of ET in April and the smallest error of 22 (Shelton, 1978).

Evaporation pans provide a measurement of the integrated effect of radiation, wind, temperature and humidity on evaporation from a specific open water surface. Blaney-Criddle Method is suggested for areas where available climatic data cover air temperature data only. Using measured temperature data as well as general levels of humidity, sunshine and wind, an improved prediction of effect of climate on evapotranspiration should be obtainable.

Radiation Method is suggested for areas where climatic data include measured of air temperature and sunshine, cloudiness or radiation but not measured wind and humidity. Knowledge of general levels of humidity and wind is required. The Penman equation (Penman Method) consists of two terms: the energy (radiation) term and aerodynamic term (wind and humidity) and varies with climatic conditions. Under calm weather conditions the aerodynamic term is usually less important than the energy term. The Thornthwaite method depends on temperature and latitude.

The prediction methods of crop water requirements are used owing to the difficulty in obtaining accurate field measurements. The methods that are often needed to be applied under climatic and agronomic conditions are very different from those under which they were originally developed. Testing the accuracy of the methods under a new set of conditions is also laborious, time-consuming and costly. Besides, little effort is sometimes put into the estimation of crop water requirements for design and the management of irrigations.

7

# **1.2 OBJECTIVES OF STUDY**

The general objective of the study was to determine or estimate the crop water requirement of mango. The following are the specific objectives of the study:

1. To determine optimum crop water requirement of mango using meteorological data, and

2. To make comparison of various methods of crop water requirement determination.



#### **CHAPTER TWO**

#### 2.0 LITERATURE REVIEW

#### 2.1 CLIMATE AND WEATHER

Weather can be described as atmospheric condition for a place for a short period of time, usually less than a year (a day, week or month). Weather changes from day to day. The elements that make up the weather include atmospheric temperature, rainfall or precipitation, humidity, sunshine, pressure and wind. Climate on the other hand may be defined as the total day to day weather conditions of a place or as the whole average atmospheric phenomena for a certain region, calculated for a period of thirty years. It is the sum total of all the elements of weather for any place for a long period of time usually more than a year.

#### 2.1.1 CLIMATE AND AGRICULTURE

Climate is one of the most important factors in agriculture, for not only does it determine the moisture status and radiation receipts for photosynthesis and to a large extent plant growth and crop yields, but also it is the dominant factor in determining the geographic limits within which farm crops can be grown and the type of farming that can be practiced in any region. It determines the natural vegetation and nature or characteristics of the properties of the soil. The climate has an important influence on the nature of the natural vegetation and the characteristics of the soil (Tweneboah, 2000).

#### 2.1.2 RAIN-FED AGRICULTURE

Rain-fed agriculture is entirely depended on rains. It relies on the rain calendar and on

rain distribution during the rainy seasons. Rain calendar means the pattern of rainfall during the year (Tweneboah, 2000). In some regions, rain-fed farming is practised during one growing season whereas in others, two growing seasons are possible. In the case where there is only one rainy season and one dry season in the year, the rain calendar is said to be UNIMODAL. In other regions, where there are two wet seasons and two dry seasons of varying length, the rain calendar is BIMODAL and the farmer benefits from two growing seasons. Regions with bimodal rains are characterized by the fact that many plants are able to prolong their life cycles without a break throughout the year.

#### 2.2 RAINFALL

This is the amount of rain falling within a given area in a given time. Rainfall is the natural form of water application to the soil for crop production Rain is one of the condensation forms of precipitation (Beinempaka *et al* 1990). As air rises, it cools and becomes saturated with water vapor.

Most crops require a good supply of water from the time of planting to nearly the time of harvesting (Beinempaka *et al* 1990). The root hairs, which absorb water containing plant nutrients (food), are found mainly in the top layer of soil. If these root hairs fail to absorb enough water because of low rainfalls crop yield will be reduced. In some cases, crops may fail completely due to lack of soil moisture.

Rainfall is the most essential factor that determines the distribution of vegetation and is the most important climatic factor influencing agriculture in the tropics, as it generally has the biggest effect in determining the potential of any area, the farming system which can be followed and the nature, timing and sequences of farming operations. It is the major environmental factor that determines which crops can be grown, when they are planted, and the yield. Rainfall, which greatly determines the deficit or surplus of moisture in the soil, is the major element of the climate which exerts limiting influence on the plant growth in the tropics. The agriculturist is primarily interested in rainfall as the supplier of soil moisture for crops and grassland. It still remains the predominant means by which food and other plant products are produced worldwide.

The vegetation in an area is affected by the rainfall distribution throughout the year. Areas receiving little or unreliable rainfall usually have short grass and little vegetation cover, whereas areas receiving a lot of rainfall have tall grass and thick vegetation cover (Beinempaka *et al* 1990). Sometimes the rainfall is sufficient in amount but poorly distributed. Other times the rain is inadequate; in these cases irrigation comes in as an artificial intervention to add or supplement rainfall (Beinempaka *et al* 1990).

#### 2.2.1 Rainfall Effectiveness

Not all rainfall is effective but only the portion that contributes to evapotranspiration. It should be noted that expected effective rainfall is considered in determining the field irrigation requirement. A certain amount of rain is necessary to ensure successful growth of the vegetation in general and crop in particular. The rapid rates of evaporation and transpiration which result from high temperatures over large areas of Africa mean that both natural vegetation and crops require very large quantities of water in order to live and grow. A well-distributed, ample rainfall is necessary for successful growth of plants (Beinempaka *et al* 1990).

#### 2.2.2 Rainfall Reliability

This is another important factor in the growth of crops. It is that of a place's mean annual rainfall at a site or place that can be expected. Using rainfall records, we can calculate the chances of rains falling. In other words, rainfall reliability refers to how sure one can be that the rains will come when they are expected to. This can help to assess the risk involved in growing a particular crop in any area in a particular year (Beinempaka *et al* 1990).

#### 2.2.3 Rainfall Distribution

Rainfall distribution helps the farmer to decide which crops (annual or perennial) to grow and when to plant them. The distribution alters the length of the growing seasons (Beinempaka *et al* 1990).

#### 2.2.4 Rainfall Intensity

This is a measurement of the heaviness of the rain over a given time. It is measured by recording the amount of rain that falls in a short period, such as five or ten minutes. This can be measured with a recording rain gauge. Usually, the heavier the storm, the higher the intensity. Tropical rains are characterized by short, heavy storms that lead to run-off and soil erosion, whereas temperate rains are gentle and well-distributed over time (Beinempaka *et al* 1990).

#### 2.2.5 Rainfall Measurement

The usual method of measuring rainfall is by using a standard rain gauge which is 12.5 cm in diameter. The rainfall during the previous 24 hours is usually measured and recorded at 9:00 am each day. At the end of each month, the daily figures are added to give a monthly total. The mean rainfall often quoted for a place is an average rainfall figure over several years (Beinempaka *et al* 1990).

#### 2.2.6 Hydrological (Water) Cycle

This is the cycle of water movement from the atmosphere to the ground, through living organisms and back to the atmosphere as shown in figure 2.1. It is the study of water as it occurs in the atmosphere as well as on and below the surface of the earth and the formation of precipitation which may occur as rain, snow or hail (Schwab *et al*, 1993).

Some of the precipitation evaporates partially or completely before reaching the ground. Precipitation reaching the ground may be intercepted by vegetation. It may infiltrate the surface of the ground; it may evaporate, or may run off the surface. Evaporation may be from the free water surfaces, or from the leaves of the plants through transpiration .A portion of the total rainfall which moves into the soil surface, is used by vegetation, becomes part of the deep groundwater supply or seeps to stream and to the oceans (Schwab *et al*, 1993).



Figure 2.1 The hydrological cycle

### 2.2.7 Importance of water to plants

Water is very essential for plant growth and during the actively-growing phase According to Addo-Quaye *et al* (1993), some of the uses to plants are as follows:

(i) It is a medium through which plant nutrients are taken by the plant. It acts as a solvent for the nutrients. Water forms the solution of the nutrients, and this solution is absorbed by the roots. Thus, water acts as the nutrient carrier. The transpiration stream carries essential nutrients from the soil to the sites where they are needed in the shoot.

(ii) Water permits the movement of food substances produced in the leaves to other parts of the plants to support new growth or storage.

(iii) It confers mechanical strength to the plant in non-woody tissues by maintaining turgidity in the tissues. If water shortage occurs for long periods, permanent wilting and death may ensue.

(iv)The lack of water decreases the intensity of photosynthesis.

(v) Water cools the soil and atmosphere, and thus makes more favourable environment for healthy plant growth. It helps to control soil temperature and soil aeration.

(vi) Water provides a good medium for microbial activity in the soil and it satisfies the evapotranspiration requirements of plants. It supplies moisture which is essential for the life of bacteria beneficial to the plant growth.

(vii) It aids or assists in germination and development of seeds and crops.

(viii) It maintains plant's turgidity, which the sum total of the pressure is built on the cell sap against the cell wall due to the water absorbed by the root hair.

(ix) It is a constituent of plant protoplasm.

#### 2.2. 8 Rainfall in relation to mango production

An annual rainfall of 750-1900 mm is generally desirable for mango production (Kochhar, 1986). It has a rainfall tolerance of between 250 mm and 2500 mm (Gibbon and Pain, 1988). Mango trees can tolerate a wide range of climatic conditions. The trees can survive in swampy conditions for an extended period of time, but will also survive in areas with an annual rainfall of less than 300 mm (NDA, 2000).

According to Tweneboah (2000), the transitional zone has a mean annual rainfall of 1300-1400 mm and a humid period of 180-190 days. Mango thrives in the transitional zone and has rainfall distribution of 1300 mm for a period of 180-190 days with one major season (Addo-Quaye *et al*, 1993).

An important feature of the mango is its ability to perform well in low rainfall regimes. According to Opeke (1992), a good crop can even be obtained with 750 mm per annum, if this is well distributed over eight to nine months. There exits a relatively long dry season. Such dry areas also fulfill the condition of high insulation. Where the dry season coincides with flowering, a good crop of high quality, tasty fruits are usually obtained.

It can withstand occasional flooding. According to Rice *et al* (1993), for commercial production a minimum of 635 mm is recommended. This is why mango is gradually gaining prominence in the drier northern regions of Ghana.

Heavy rainfall during flowering and fruiting can cause marked reductions in pollination or washes away the pollen, reduces fruit set and mars maturation of fruits. The mango flower is very delicate and easily injured in most weather. During rainy days, pollinating insects remain inactive and an effective pollination cannot occur. Furthermore, heavy rains at flowering can cause a high incidence of fungal infections on the inflorescences. Heavy rains during the flowering and fruit ripening periods are harmful and are fairly sensitive to frost. The best regions for commercial mango production are those with a humid rainy season alternating with a well defined dry season during the flowering period of the plants. Good rainfall distribution is crucial for flowering and fruit set, rather than total rainfall. A dry or even more effective cool period preceding flowering is necessary for reliable mango production as it promotes flower induction. Low rainfall is preferred during flowering. In areas with two wet seasons, such as parts of West Africa, flowering and fruit production may occur twice each year, but in most areas one crop per year is produced (Nakasone and Paull 1999).

Irrigation must be applied regularly to prevent water stress during early fruit development when cell division is occurring and to produce vegetative flushing after harvest. Where mangoes are produced under such low-rainfall conditions irrigation is of vital importance (NDA, 2000). Mangoes are to some extent drought resistant, but will not achieve optimum growth if they do not receive sufficient water (especially during the fruit-developing phase). Correct irrigation is very important for maximum production in most mango-producing areas of the country (NDA, 2000).

#### **2.3 TEMPERATURE**

It may be defined as the degree of hotness or coldness of the atmospheric air. It is influenced by the latitude and altitude of a place. Temperature affects growth, flowering and fruit setting in crops. Some crops are adapted to low temperature while others need high temperatures for normal growth. Of all the necessary factors for growth the most important is the temperature of the air. Soil temperatures are also important as they influence root growth and function. Temperature is the major factor controlling the crop growth rate and range of adaptation. Each crop has its own optimum temperature for growth, plus a maximum for normal development and survival.

High temperatures during the day cause great loss of water through the process of transpiration, which increase with increasing temperature (Beinempaka *et al* 1990).

Transpiration rate increases with increasing temperature. Extremely high temperature can cause heat injury. The growth of the crop will then be affected. If the ambient temperature of air and ground are high, evaporation will proceed more rapidly than if they are low since heat energy is more readily available. Extremely low temperature causes possibility of cold injury and water deficit (Yayock *et al*, 1988).

## 2.3.1 Temperature in relation to mango production

There must be a marked dry season. Light frost is tolerated but the minimum for growth lies above  $10^{\circ}$ C, the optimum near  $25^{\circ}$ C and the maximum at  $42^{\circ}$ C. The maximum temperature during very hot weather is at  $32^{\circ}$ C (Dickson and Benneh, 1980).

Optimum growth temperature ranges from  $24^{\circ}$ C to  $27^{\circ}$ C (Kochhar, 1986). According to Nakasone and Paull (1999), the air temperature in the range of  $24^{\circ}$ C- $30^{\circ}$ C is needed and the tree can endure up to  $48^{\circ}$ C during fruit development if sufficient irrigation is available. The tree readily grows in all the tropic and subtropic climates with a mean temperature of  $21^{\circ}$ C to  $27^{\circ}$ C. The lowest temperatures tolerated by mango are  $1^{\circ}$ C to $2^{\circ}$ C (Opeke, 1992). The trees also survive in a temperature as high as 45 °C (NDA, 2000).

On the other hand, it can withstand very high temperatures. Certain cultivars are less tolerant to high temperatures and low humidity, and the fruit will show symptoms of sunburn (Sensation, Edward, Isis, Fascell and Keitt). Cultivars with a high tolerance include Neldica, Tommy Atkins, Irwin, Lilley, Lippens, Chené, Kent, Ceriese, Kensington, Jubilee, Palmer and Zill (NDA, 2000). Mango trees will grow and produce well in areas with very high temperatures (45 °C). However, when the maximum temperature exceeds 46 °C vegetative growth ceases, especially if it is accompanied by low humidity. For optimum growth and production, the average maximum temperature should be between  $27^{0}$  and 36 °C (NDA, 2000).

According toYayock *et al* (1988), they perform best in areas commonly known as the dry tropics where they can withstand temperature as high as 48°C. Temperature plays a key role in mango flowering and the response varies with varieties. Some varieties can withstand frost without damage while others are severely injured. It can stand frost without damage while other crops are severely injured. Low temperature can lead to flower deformation and loss of pollen viability. Ovule abortion occurs at low temperature, which is around 14°C. Low temperatures when the trees are in full bloom can cause the fruit to develop to approximately golf-ball size, turn yellow and then be aborted. Large numbers of these fruit result in a reduction in yield (NDA, 2000). High temperature is not as injurious as low temperature but if accompanied by low humidity and high winds it affects the tree adversely.

#### 2.4 The effect of relative humidity on crop production

The average relative humidity is about 55% and the maximum temperature during very hot weather is at 32 °C (Dickson and Benneh, 1988). Some of the ways humidity affects crops are as follows:

(i) High humidity favours the development and spread of a number of fungal and bacterial diseases and makes the drying of crop very difficult.

(ii) The rate at which crops use water is highest under hot, dry condition and lowest when it is very humid.

(iii) The humidity of the air has an important effect on the process of flowering and

fertilization. It is well known that the viability and fertility of pollen grains greatly depend on the humidity of the air (Addo-Quaye *et al*, 1993).

(iv) Daily temperature variation is greater under low humidity; high humidity exerts an effect on temperature (Addo-Quaye *et al*, 1993).

(v) Humidity affects the rate of transpiration. Under low humidity, the plant loses a lot of water to the atmosphere. Transpiration is faster in a dry or partially saturated atmosphere. Evaporation and transpiration decrease with increase in relative humidity but increase with decrease in relative humidity (Addo-Quaye *et al*, 1993). The crop is successfully cultivated under conditions which vary from very hot, very humid to cool and dry, to very hot and arid conditions (NDA, 2000).

## **2.5 WIND**

Winds blow from centres of high pressure to centres of low pressure. These centres are usually associated with low and high temperature respectively. Wind often influences rainfall distribution. The prevailing winds in the tropical regions are caused by the heating of the earth through the heating of the sun and by the earth's rotation (Beinempaka *et al* 1990).

#### 2.5.1 Ecological significance of wind.

According to Beinempaka *et al* (1990), ecological significance of the wind is as follows: (i) It interferes with agricultural operations such as irrigation, spraying, dusting and broadcasting.

(ii) It helps as an agent of cross-pollination.

(iii) It may cause damage to crops by causing fruits to drop from plants and sometimes breaking and uprooting the whole plants.

(iv) Plants lose more water by evaporation and transpiration in dry wind. Transpiration is faster on windy days than on calm days.

Moreover, according to NDA (2000), the effects of wind are:

(i) Wind (even moderate winds) could cause scratch marks on fruit. Harmful fungi and bacteria can enter the fruit through these wounds. Fruit with such marks are unacceptable for marketing.

(ii) Stronger winds will cause fruit loss, resulting in lower yields. Certain cultivars, such as Zill, Haden and Kent, are prone to a greater extent to fruit loss under windy conditions than others.

Damage by wind can be minimised by:

(a) Avoiding very windy areas.

(b) Establishing windbreaks such as artificial structures or fast-growing trees on the upwind side of prevailing winds. It is advisable to establish mango orchards in such a manner that the rows run diagonally to the prevailing wind direction to avoid a funnel effect.

(c) Prune the non-bearing flower panicles as soon as it is evident that these will not bear any fruit, because when they become dry and hard, they cause scratch marks on the fruit. (NDA, 2000).

#### 2.6 LIGHT (SOLAR RADIATION)

Solar radiation is the energy source that drives most of the processes of importance to soils and plants (Hanks, 1992). Light is the most important ecological factor for nature, because it serves as the only source of energy for majority of species. Light energy is very important for green plants, for it is necessary for the manufacture of the plant's food in the vital process of photosynthesis. Light causes the stomata to open and also increases the air temperature. The main aspects of light that are of interest in agriculture are:

(i) The day length (from sunrise to sunset) and

(ii) The cloudiness during the day, both of which determine radiation (Addo-Quaye *et al*, 1993).

It is also a component of the environment which has a large influence on the crop growth and development. Two aspects of light are important:

i. How much or the intensity.

ii. How long or the duration (day length).

#### 2.6.1 Light Intensity

Light intensity depends on the geographical latitude of a locality and the time of the year. Tropical regions, i.e. area between the Tropic of Cancer  $(23.5^{0}N)$  and the Tropic of Capricorn  $(23.5^{0}S)$  has relatively little seasonal variation in solar intensity since the sun remains fairly high in the sky all year around (Addo-Quaye *et al*, 1993). The Sun is overhead on the Tropic of Capricorn on 22 nd December, Equator on both 23 rd March and 22 nd September and Tropics of Cancer on 21st June (Akinsanmi, 1988).

The fundamental process of photosynthesis in green plants depends on light intensity. Apart from photosynthesis, light intensity also influences the rate of plant growth and development. For example, it has a tremendous influence in regulating many processes in plant such as flowering, stem elongation, leaf expansion and seed germination.

Furthermore, light regulates and co-ordinates growing movements in plants (Addo-Quaye *et al*, 1993).

#### 2.6.2 Day length

The length of the light period of the day is very important for plant life. The length of the day in the tropics (on the equator) all the year round is about 12 hours. The day length has a different influence on the generative development. The value of this information is to enable the farmer to select appropriate crops for his farm (Addo-Quaye *et al*, 1993).

#### 2.7 SOIL AND TOPOGRAPHY IN RELATION TO MANGO PRODUCTION

Mango trees grow and produce well on various soil types. Mango does not make high demand on the soil. It may be sandy or loamy, lateritic or alluvial, as long as it is not waterlogged. Mango does well on sandy loam or well drained soil. Deep alluvial soils which are well drained and rich in organic matter are best for its cultivation. Mango is adapted to a wide range of soils than is very important for green plants most tropical fruit trees, provided the soil is sufficiently deep and well-drained. Mango will grow in almost any well-drained soil whether sandy, loam or clay, but avoid heavy, wet soils. The tree often develops a fairly strong taproot shortly after planting. This taproot can continue growing until it reaches the soil water-table, and under favourable conditions can penetrate the soil to a depth of 6 m. However, most of the roots responsible for nutrient uptake are found in the top 500 mm of soil, with the largest concentrations in the top 250

mm (NDA, 2000). Depending on the conditions under which the mango is grown, i.e. dryland or under irrigation, the response to the soil type will vary.

The shape of the ground in the relation to underlying rock of the earth's surface is known as Topography. It affects the rate of runoff and erosion (Iwena, 2007). Mango trees grow best on a slight slope which enables runoff of excess water and prevents waterlogging. Physical properties are important: good drainage, permeability, fair water holding capacity and ground water at a depth of 3-4 m are features of an ideal soil for mango (Samson, 1992). There should be a hard layer to limit root penetration and watertable should not be higher than 2.5 m (Nakasone and Paull 1999). A light slope is desirable as it improves drainage; but steep slopes are also unsuitable. Mango trees do not grow and produce well in soils with impermeable layers. They also do not thrive on very steep slopes because excessive drainage in this case could lead to water shortages and soil erosion. Under irrigation, mangoes grow well in soils with an unimpeded depth of more than 1 m. If irrigation scheduling is well planned, there should be no problem on soil with a depth of 750 mm, provided that any soil or rocky layers that restrict root growth to a depth of 750 mm allows excess water to drain easily (NDA, 2000). If not, a temporary shallow soil water table could develop above this layer, with resulting damage to the trees. The ideal soil texture for mango cultivation under irrigation is a sandy loam or loam (with a clay content of 15 to 25 %), but soils with a clay content of up to 50 % are also suitable (NDA, 2000). The ideal soil has a fairly loose, brittle, crumbly structure. Compact or strongly-developed soil structures prevent effective water infiltration and root penetration. These soils are normally associated with high clay content in the subsoil. Allowing the soil to dry out for 2 or 3 months before the flowering stage will
promote good flower formation. This phenomenon is attributed to a simultaneous stimulation of vegetative growth during the autumn months which, in turn, influences flower formation in spring. Fruit drop as well as the size and quality of mango fruit seems to be influenced by irrigation at certain times. Irrigation during the developmental stage of the fruit is essential to prevent fruit drop and to promote the development of young fruit. Additional irrigation from fruit set to ripening results in a considerable improvement in both fruit size and quality (NDA, 2000).

In some areas moisture losses through transpiration and evaporation are so low (because of humidity, temperature and rainfall conditions) that the soil remains moist enough throughout the year to prevent wilting of the trees. Mangoes can then be grown under dryland conditions, provided the soil has the ability to retain moisture that can be available to the plants in drier periods (NDA, 2000). For good growth, mango needs a deep soil to accommodate their extensive root systems. Soils with lower or higher clay content will not be able to supply sufficient moisture to the plants. Mango trees grow best in soils with pH values of 6 to 7.2 (NDA, 2000). The P<sup>H</sup> should be between 5.5 and 6.00 (Kochhar, 1986). According to Nakasone and Paull (1999) a flat alluvial soil with of P<sup>H</sup> of 5.5-7.0 is also suitable. The exchangeable aluminium (Al) is not more than 30 ppm; soils with a P<sup>H</sup> of 5.5 or higher may be used. At P<sup>H</sup> values lower or higher than 6 to 7.2 the trees may suffer trace-element deficiencies, especially phosphate and potassium (NDA, 2000). They are somewhat tolerant of alkalinity.

#### **2.8 ALTITUDE IN RELATION TO MANGO PRODUCTION**

Although mango trees are found at elevations up to 1200 m, it is unwise to plant orchards

higher than 600 m (Samson 1992). The best production occurs at elevation between 0 and 600 m (Rice *et al* 1993). According to Opeke (1992), mango may grow at up to 1200 m in the tropics, but best performance can be expected in the tropical lowlands below 600 m. In the tropical and subtropical regions, mangoes grow well at altitudes ranging from sea level to 1 200 m. However, production decreases at higher altitudes. In South Africa, it is generally accepted that mango production above altitudes of 600 m is not commercially viable (NDA, 2000).

#### 2.9 EVAPOTRANSPIRATION

Evapotranspiration (ET) is the process by which water is released into the air by evaporation from the soil and transpiration from plant surfaces. It is a combination of two separate processes whereby water is lost on the one hand from the soil surface by evaporation and on the other hand from the crop by transpiration. Evapotranspiration is the total movement of water vapour into the air from land which supports plant life. It includes transpiration from the plants, evaporation from damp soil and evaporation from any open water that may be present in furrows or depressions following irrigation or heavy rainfall. It is expressed in terms of depth of water (millimeters), and the rate of evapotranspiration in millimeters per hour.

Evaporation is the process whereby liquid water is converted to water vapour (vaporization) and removed from the evaporating surface (vapour removal). Water evaporates from a variety of surfaces, such as lakes, rivers, pavements, soils and wet vegetation. Transpiration consists of the vaporization of liquid water contained in plant tissues and the vapour removal to the atmosphere. Crops predominately lose their water through stomata. These are small openings on the plant leaf through which gases and

26

water vapour pass. Evaporation and transpiration occur simultaneously and there is no easy way of distinguishing between the two processes. Apart from the water availability in the topsoil, the evaporation from a cropped soil is mainly determined by the fraction of the solar radiation reaching the soil surface. This fraction decreases over the growing period as the crop develops and the crop canopy shades more and more of the ground area. When the crop is small, water is predominately lost by soil evaporation, but once the crop is well developed and completely covers the soil, transpiration becomes the main process.

#### 2.9.1 Factors affecting crop evapotranspiration

(i) Climate

#### (a) Variation with time

It is common practice to use mean climatic data for determining mean ETcrop. However, due to weather changes, ETcrop will vary from year to year and for each period within the year .In areas having distinct dry and wet seasons, the transition months show significant differences from year to year depending on rains arriving early or late.

#### (b) Variation with distance

In calculating ETcrop, by necessity climatic data are sometimes used from station located some distance from the area under study. This is permissible in areas where the same weather extends for long distances. With the change in weather over distance consequently ETcrop may change markedly over small distances

#### (c) Variation with size of irrigation development, advection.

Meteorological data used are often collected prior to irrigation development in stations located in rainfed or uncultivated, or even on rooftops and airports. ETcrop will be higher in fields surrounded by dry fallow land as compared to that surrounded by extensive vegetated area.

## (d) Variation with altitude

In a given climatic zone, ETcrop will vary with altitude. This is not caused by difference in altitude as such but mainly by associated changes in temperature, humidity and wind. Also radiation at high altitude may be different to that in low lying areas. For the Blaney-Criddle method, ETo may be adjusted by 10 percent for each 1000 m altitude change above sea level (Doorenbos and Pruitt, 1996).

#### (ii) Soil water

#### (a)Level of available soil water

The methods presented on ETcrop assume soil water in ample supply. As the soil dries, the rate of water transmitted through the soil will be reduced. When at some stage the rate of flow is below the rate needed to meet ETcrop, ETcrop will fall below its predicted level.

#### (b) Groundwater

For most crops, growth and consequently ETcrop will be affected when

groundwater is shallow or the soil is waterlogged. In spring in cooler climates, wet soils warm up slowly, causing delay in germination and plant development; land preparation may be delayed resulting in later planting. Consequently, different ETcrop values apply during the remainder of the season.

#### (c) Salinity

ETcrop can be affected by soil salinity since the soil water uptake by plant can be drastically reduced due to higher osmotic potential of the saline groundwater. Poor crop growth may be due to adverse physical characteristics of saline soils.

#### (iii) Method of irrigation.

ETcrop is affected little by the method of irrigation if the system is properly designed, installed and operated. Only with widely spaced crops and young orchards will ETcrop be reduced since evaporation will be restricted to the area kept moist.

#### (iv) Cultural practices.

#### (a) Fertilizers

The use of fertilizer has only a slight effect on ETcrop unless crop growth was previously adversely affectd by low soil nutrition.

#### (b)Plant population

The effect of plant or plant density on ETcrop is similar to that of percentage of ground cover. When top soils are kept relatively dry, evaporation from the soil surface is sharply reduced and ETcrop will be less for low population crop than for high population crop.

#### (c) Tillage

Tillage produces little, if any effects on ETcrop unless a significant quantity of weed is eliminated. Rough tillage will accelerate evaporation from the plough layer; deep tillage may increase water losses when the land is fallow or when the crop cover is sparse. After the surface has dried, evaporation from the dry surface might be less than an untilled soil

# KNUST

#### (d) Mulching

In irrigated agriculture the use of mulch from crop residues to reduce ETcrop is often considered of little net benefit, except for specific purposes such as reducing erosion, preventing soil sealing and increasing infiltration.

Polyethylene and perhaps also asphalt mulches are effective in reducing ETcrop, when it covers more than 80 percent of the soil surface and crop cover is less than 50 percent of the total cultivated area (Doorenbos and Pruitt, 1996).

#### (e) Windbreaks

Reduced wind velocities produced by artificial and vegetative windbreaks may reduce ETcrop by about 5 percent under windy, warm dry conditions at horizontal distance equal to 25 times the height of barrier downwind from it, increasing to 10 and sometimes up to 30 percent at a distance of 10 times this height (Doorenbos and Pruitt, 1996).

#### 2.10 CROP WATER REQUIREMENTS

Crop water requirements are defined as the depth of water needed to meet the water loss through evapotranspiration (ETcrop) of a disease - free crop, growing in large fields under non-restricting soil conditions including soil water and fertility and achieving full production potential under the given growing environment (Doorenbos and Pruitt, 1996). The amount of water required to compensate the evapotranspiration loss from the cropped field is defined as crop water requirement. The total quantity of water required by a plant for its growth and maturity under field conditions, including that supplied by rainfall, and any irrigation and groundwater available to the plant. Crop water requirements encompass the total amount of water used in evapotranspiration. Out of the total evapotranspiration, evaporation account for about 10 percent and plant transpiration for the remaining 90 percent (Phocaides, 2001).

Successful irrigation must begin by trying to decide how much is needed and then supplying that need. To supply more water than necessary will be wasteful, but this must be adequate for crop growth. The quantity of water used by a crop depends on how much is evaporated from the leaves. This is affected by how hot and dry the air is and how much the wind blows (Hudson, 1975).

# 2.11 ELEMENTS TO BE CONSIDERED WHEN ESTIMATING CROP WATER REQUIREMENT

#### **1. Effective rainfall**

It is the amount of rainwater retained in the root zone and it should be deducted from the total irrigation water requirements calculated. It is that part of the precipitation falling

during the growing period of a crop that is available to meet the evapotranspiration needs of the crop (Punmia and Pande, 1990).

In surface hydrology, it is the rain that produces runoff. In irrigation practice, that portion of the total precipitation which is retained by the soil so that it is available for use for crop production. In geohydrology, it is that part of the total precipitation that reaches the groundwater.

#### 2. Groundcover

It is the percentage of the field area (ground) covered by the cultivation .A reduction factor, expressed as Kr, is applied to the conventional ETcrop calculations.

#### 3. Crop coefficient.

Crop Coefficient, Kc, is the ability (indication) of crop response to water. It is an indication of water use. Crop Coefficient (Kc) can be obtained from:

$$Kc = \frac{ETcrop}{ETo}....(2.1)$$

*where*, The procedures for the selection of appropriate Kc values take into account the crop characteristics, time of planting or sowing, and stages of crop development and general climatic conditions. The factors affecting the value of the crop coefficient (Kc) are mainly the crop characteristics, crop planting or sowing data, rate of crop development, length of growing season and climatic conditions.

#### 4. Crop growing season

The crop growing season has been divided into four stages as illustrated in Table 2.1 and Figure 2.2.:

| Table 2.1 | <b>CROP GROWING</b> | SEASONS. |  |
|-----------|---------------------|----------|--|
|           |                     |          |  |

| FOUR STAGES           | MONTHS    | CROP           | Кс    |
|-----------------------|-----------|----------------|-------|
|                       |           | COEFICIENT, Kc |       |
| 1.Crop Establishment  | May       | 0.3            | Kc< 1 |
| 1.Crop Establishment  | June      | 0.3            | Kc< 1 |
| 2.Crop Development    | July      | 0.6            | Kc< 1 |
| 2.Crop Development    | August    | 0.8            | Kc< 1 |
| 3.Maturity (Critical) | September | 1.2            | Kc>1  |
| 3.Maturity (Critical) | October   | 1.2            | Kc >1 |
| 3.Maturity (Critical) | November  | 1.2            | Kc>1  |
| 3.Maturity (Critical) | December  | 1.2            | Kc>1  |
| 3.Maturity (Critical) | January   | 1.2            | Kc>1  |
| 4.Harvest             | February  | 0.8            | Kc< 1 |
| 4.Harvest             | March     | 0.5            | Kc< 1 |
| 4.Harvest             | April     | 0.2            | Kc< 1 |



Figure 2.2. Crop Coefficient Curve for Mango

The current varieties or cultivars take about an average of three years to start bearing fruits. The seed is sown in the nursery beds which are later budded or grafted. The seedlings are then transplanted after about six to twelve months in the nursery. It is supplied with a generous amount of organic manure. The young mango plant is mulched. Pruning is done to remove dead wood and low hanging branches.

The crop can be established by three years. Table 2.1 and Figure 2.2, it depict that it is an annual cycle of flowering and fruiting and this cycle repeats itself.

The four stages of crop development are

#### (i) Crop establishment stage or initial period

The least amount of water is required at this stage. There is a lower demand for water. The demand for water increases gradually from this stage to the crop development stage. Kc is less than one. There is germination and early growth when the soil surface is not or is hardly covered by crop (groundcover less than10 percent).

#### (ii) Crop development stage or period

From the end of the initial stage to the time of effective full groundcover, that is 70 to 80 percent groundcover ). Kc is less than one.

#### (iii) Mid-season or maturity stage

From the end of crop development period to the start of maturity as indicated by leaf discoloration, leaves falling off or curling and discolouring. A high or great amount of water is used for flower formation and fruiting. It is the time of the highest crop water demand. It is the most critical stage. Kc is greater than one.

#### (iv) Late-season or harvest stage

From the end of the mid-season stage until full maturity or harvest (Doorenbos and Pruitt, 1996), Kc is less than one.

#### 5. Potential Evapotranspiration.

The term potential evapotranspiration is used to describe the evapotranspiration which could occur under natural conditions without irrigation, if water were freely available to the plants, which is what irrigation would provide. Potential evapotranspiration refers to the maximum rate of evapotranspiration from a large area completely and uniformly covered with growing vegetation with an unlimited moisture supply.

#### 2.12 CURRENT PRODUCTION OF MANGO

Globally, the production of mango currently stands at about 25 million tonnes of fresh fruits as depicted in figure 2.2 and 290,000-processed mango pulp, puree and juice (Quartey, 2008). Of this Africa produces only 2.5 million tonnes, accounting for about 10 per cent of fresh fruits and 11 per cent of processed mango (Quartey, 2008). Ghana's current production is said to have increased from about 1,200 tonnes in 2007 to about 2,000 in 2008 (Quartey, 2008). The rest of global production comes from leading producers like Brazil, Mexico, Venezuela, Peru, India and U.S.A.



Figure 2.3 Mango tree with fruits.

There was a strong recommendation for the expansion of the production base of mangoes for export and the recent intervention includes; the mango mapping exercise undertaken by the Trade and Investment Programme for a Competitive Export Economy (Asamoah, 2006). Under this programme, the objective was to establish a database on current mango production and operation as a guide to interventions in the industry. The Ministry of Food and Agriculture developed the Horticultural Export Industry Initiative to help improve the country's horticultural industry capacity to compete on the international market (Asamoah, 2006). All these interventions were to propel the country's mango sector to new heights and take advantage of the growing international market of mangoes.

#### 2.13 DEMAND FOR MANGO

The demand for mango in Ghana far exceeds the supply (Quartey, 2008). This is welcome news that must be embraced by not just individual farmers but also at the national level in order to make gains for the nation's development. The country as it stands now cannot in the short term produce enough to meet the ever-increasing demand on the European market (Quartey, 2008).

This is besides the growing demand for the fresh mango fruits from South Africa, especially during the winter months, which incidentally coincides with the harvest in Ghana (Quartey, 2008). This means, the export market for mangoes has already been created by the huge demand. This is simple but vital information that should trigger effort to supply. The SPORE Journal reports that, there is an enormous growing demand for mangoes globally. This demand has risen to an annual average of 10 per cent and is expected to rise by a further 8 per cent by the close of 2008 (Quartey, 2008). Such growth, according to the SPORE Journal could prove a golden opportunity to Africa, especially, Ghana that has comparative advantage in the cultivation of the mango fruit.

The local volume of trade for the giant fibreless hybrid mango species (Keitt and Kent) in Ghana is very small because the vast majority of Ghanaian mango eaters go in for the local type. Hybrid mangoes produced in Ghana are therefore meant for European market where there is a huge demand for it (Adu-Gyamerah, 2008).

#### **CHAPTER THREE**

#### **3.0 MATERIALS AND METHODS**

#### **3.1 STUDY AREA**

The transitional agro-ecological zone of Ghana is so named because it is located between the forest and savannah vegetative zones of southern and northern Ghana. The zone covers an area of 10630 km<sup>2</sup> with a population of 544,131 in 2000. This is located mainly in the Brong-Ahafo and Ashanti regions of Ghana as shown in figure 3.1. (GSS, 2002). Some of the major urban areas in the zone are Atebubu, Berekum, Ejura, Wenchi, Techiman and Nkoranza.

The zone, which was originally forested, has lost most of its cover and is now a derived savannah, and is the leading producer of grains, cereals and tubers in Ghana. In recent times, commercial tree crops such as cashew have become popular. Variations in climatic and vegetative conditions have rendered the transitional zone and the southern part of Ghana more favourable for farming compared to the north. The transitional zone, however, experiences a double maximum rainfall regime, where there are two rainy or wet seasons. The two rainfall regimes occur from May to August and from September to October, with a mean annual rainfall of 1430mm.

Ghana has an immeasurable comparative advantage in the cultivation of grafted mango. This rests in the fact that most of the lands of the Coastal Savannah, Northern Ashanti, the transitional zones of Ashanti and Brong Ahafo Regions, the Northern Volta Region, and the whole of Northern, Upper East and Upper West Regions are suitable for mango production that meets international quality specification (Quartey, 2008).



FIGURE 3.1: Map of Ghana showing the transitional agro-ecological zone.

The study was conducted in the Transitional agro-ecological zone of Ghana. Climatic or meteorological data were collected from the Ghana Meteorological Agency, Accra from 1976 to 2006. These were the mean monthly rainfall, maximum and minimum temperatures, relative humidity (0600 and 1500 hours), wind speed, sunshine hours and potential evapotranspiration. The following towns were selected in the study area:

Atebubu  $(7.55^{\circ} \text{ N}, 2.3^{\circ} \text{ W})$ , Berekum  $(7.45^{\circ} \text{ N}, 2.59^{\circ} \text{ W})$ , Ejura  $(7.38^{\circ} \text{ N}, 1.36^{\circ} \text{ W})$ , and Wenchi  $(7.75^{\circ} \text{ N}, 2.1^{\circ} \text{ W})$ . The crop water requirement was computed or estimated using Pan Evaporation, Blaney-Criddle, Radiation, Penman and Thornthwaite Methods.

#### **3.2 CALCULATION OF REFERENCE CROP EVAPOTRANSPIRATION (ETo).**

1. Pan Evaporation Method.

Evaporation pans provide a measurement of the integrated effect of radiation, wind, temperature and humidity on evaporation from a specific open water surface. Reference crop evapotranspiration (ETo ) can be obtained from: ETo = KpEpan ......(3.1) where,

*Epan* = *pan evaporation*(*mm* / *day*)

*Kp* = *pan coefficient* 

Pan evaporation is a measurement that combines or integrates the effects of several climate elements: temperature, humidity, solar radiation, and wind. Evaporation is greatest on hot, windy, dry days; and is greatly reduced when air is cool, calm, and humid. Pan evaporation measurements enable farmers and ranchers to understand how much water their crops will need.

An evaporation pan is used to hold water during observations for the determination of the quantity of evaporation at a given location. Such pans are of varying sizes and shapes, the most commonly used being circular or square. The best known of the pans are the "Class A" evaporation pan as shown in figure 3.2 and the "Sunken Colorado Pan". Often the evaporation pans are automated with water level sensors and a

small weather station is located nearby.

The **Class A evaporation pan**. Has a cylinder with a diameter of 47.5 in (120.7 cm), has a depth of 10 in (25 cm) (Wikipedia, 2008). The pan rests on a carefully leveled, wooden base and is often enclosed by a chain link fence to prevent animals drinking from it as shown in figure 3.2. Evaporation is measured daily as the depth of water (in inches) evaporates from the pan. The measurement day begins with the pan filled to exactly two inches (5 cm) from the pan top. At the end of 24 hours, the amount of water to refill the pan to exactly two inches from its top is measured.



Figure 3.2 Class A evaporation pan

If precipitation occurs in the 24-hour period, it is taken into account in calculating the evaporation. Sometimes precipitation is greater than evaporation, and measured increments of water must be dipped from the pan. Evaporation cannot be measured in a Class A pan when the pan's water surface is frozen.

The Class A Evaporation Pan is of limited use on days with rainfall events of greater than 30mm (203mm rain gauge) unless it is emptied more than once per 24 hours (Wikipedia , , 2008). Analysis of the daily rainfall and evaporation readings in areas with regular heavy rainfall events shows that almost without fail, on days with rainfall in excess of 30mm (203mm Rain Gauge) the daily evaporation is spuriously higher than other days in the same month where conditions were more receptive to evaporation that prevailed.

The most common and obvious error is in daily rainfall events of more than 55 mm (203 mm rain gauge) where the Class A Evaporation pan will likely overflow (Wikipedia ,2008). The less obvious is the influence of heavy or intense rainfall causing spuriously high daily evaporation totals without obvious overflow. Again, reflection of solar radiation from the water surface is only 5-8 percent, from most vegetative surfaces if is 20-25 percent (Doorenbos and Pruitt, 1996). Storage of heat within the pan can be appreciable and may cause almost equal evaporation during night and day. Also, the difference in water losses from the pans and crops can be caused by differences in turbulence, temperature and humidity of air immediately above the surfaces. Heat transfer through the sides of the pan can occur. Besides, the colour of the pan and the use of screens will affect water losses. In addition, the siting of the pan and the pan environment influence the measured results, especially when the pan is placed in fallow

rather than cropped field. Finally, the Pan method can be graded with possible error of 15 percent, depending on the location of the pan (Doorenbos and Pruitt, 1996).

#### 2. Blaney-Criddle Method

This method is suggested for areas where available climatic data cover air temperature data only. This empirical temperature-based method requires only mean monthly temperatures and an estimate of the monthly percentage of annual daytime hours. Using measured temperature data as well as general levels of humidity, sunshine and wind, an improved prediction of effect of climate on evapotranspiration should be obtainable. The Blaney-Criddle method should only be applied for periods of one month or longer; in humid, windy, mid-latitude winter conditions and over and under prediction of up to 25 percent (Doorenbos and Pruitt, 1996).

The relationship recommended, representing mean value over the given month, is expressed as:

ETo = c[p(0.46T + 8)] .....(3.2)

where,

*ETo* = *reference crop evapotranspiration(mm/day)* 

 $T = mean \ daily \ temperature(^{o} C)$ 

 $p = mean \ daily \ percentage \ of \ total \ annual \ daytime \ hours \ obtained \ from \ tables \ for \ a$  given month and latitude

c = adjustment factor which depends on minimum relative humidity, sunshine hours and daytime wind estimates

3. Radiation Method

This method is suggested for areas where climatic data include measured air

temperature and sunshine, cloudiness or radiation but not measured wind and humidity. Knowledge of general levels of humidity and wind is required. The Radiation method, in extreme conditions, involves a possible error of up to 20 percent in the summer (Doorenbos and Pruitt, 1996).

The relationship recommended (representing mean value over the given period) is expressed as:

ETo = c(W.Rs)....(3.3)where,

*ETo* = *reference crop evapotranspiration*(*mm*/*day*)

Rs = solar radiation in equivalent evaporation (mm/day)

*W* = weighting factor which depends on temperature and altitude

c = adjustment factor which depends on mean humidity and daytime wind conditions

4. Penman Method

The Penman equation consists of two terms: the energy (radiation) term and aerodynamic term (wind and humidity). The equation varies with climatic conditions. Under calm weather conditions the aerodynamic term is usually less important than the energy term. The modified Penman method would offer the best results with minimum possible error of plus or minus 10 percent in summer, and up to 20 percent under low evaporative conditions (Doorenbos and Pruitt, 1996).

The form of the equation used in this method is:

$$ETo = c[W \cdot Rn + (1 - W) \cdot f(u) \cdot (ea - ed)] \qquad (3 \cdot 4)$$

where,

*ETo* = *reference crop evapotranspiration* (*mm* / *day*)

*W* = *temperature* – *related weighting factor* 

Rn = net radiation in equivalent evaporation (mm / day)

f(u) = wind - related function

(ea - ed) = difference between the saturation vapour pressure at mean air temperature and the mean actual vapour pressure of the air(mbar)

c = adjustment factor to compensate for the effect of day and night weather conditions

5. Thornthwaite method

The Thornthwaite method also depends on temperature and latitude. The largest possible error is 56 percent of ET in April and the smallest error is 22 (Shelton, 1978). This is computed as follows:

1. Tabulate the mean monthly temperature T<sup>O</sup> C.

2. For each monthly value of T find the corresponding value of the heat index i from monthly heat index for estimating moisture requirements by Thornwthwaite method table.

3. Add the monthly values of i to get the annual heat index *I*.

4. On a Nomograph, draw a line joining the point of convergence to the appropriate value of *I* on the *I* scale.

5. From the line drawn on figure, find and tabulate, for each monthly value of T, the corresponding value of PET (potential evapotranspiration).

6. From latitude correction factors for the Thornthwaite method find and tabulate the monthly correction factors for the latitude.

7. The monthly values of the PET are then multiplied by the latitude correction factor to give the estimated monthly consumptive use of moisture.

# 3.3. CALCULATION OR DETERMINATION OF CROP WATER REQUIREMENT OF MANGO.

After determining ETo, ETcrop can be predicted using the appropriate crop coefficient of mango (Kc). By selecting cropping pattern and determining time of planting or sowing, rate of crop development, length of crop development stages and growing period one can select Kc for mango and stage of mango development under prevailing climatic conditions. Crop water requirement of mango (ET) can be obtained from:

$$ET = K_{C}ET_{O} \qquad (3.5)$$

where,

ET = crop water requirement of mango (mm/day)

*Kc* = *crop coefficient of mango* 

 $ET_{o} = reference \ crop \ evapotranspiration \ (mm/day)$ 

To calculate ETcrop a three-stage procedure is recommended:

1. The effects of climate on crop water requirements is given by the reference crop evapotranspiration (ETo) which is defined as "the rate of evapotranspiration from an extensive surface of 8 to 15 cm tall, green grass cover of uniform height, actively growing , completely shading the ground and not short of water. The five methods presented, the Blaney-Criddle, Radiation, Penman, Pan Evaporation and Thornthwaite method, are modified to calculate ETo using the mean daily climatic data for 30 day periods. ETo is expressed in mm per day and represents the mean value over that period. Climatic data needed for the different methods are temperature, humidity, wind,

sunshine, radiation and evapotranspiration.

2. The effect of the crop characteristics on crop water requirements is given by the crop coefficient (Kc) which presents the relationship between reference (ETo) and crop evapotranspiration ETcrop. Values of Kc given as shown vary with the crop, its stage of growth, growing season and the prevailing weather conditions.

3. The effect of local conditions and agricultural practices or crop water requirements includes the local effect of variations in climate over time, distance and altitude, size of fields, advectioin, soil water availability, salinity, methods of irrigation and cultivation methods and practice, for which local field data is required.



#### **CHAPTER FOUR**

#### 4.0 RESULTS AND DISCUSSION

# 4.1 DETERMINATION OF OPTIMUM CROP WATER REQUIREMENT OF MANGO.

Results of water requirements of mango are shown in the tables below.

Table 4.5 AMOUNT OF WATER REQUIRED FOR MANGO USING BLANEY-

### CRIDDLE METHOD FOR ATEBUBU (MONTHLY)

| Months   | J   | F  | М  | А  | М  | J  | J  | А  | S  | 0  | N  | D  |
|----------|-----|----|----|----|----|----|----|----|----|----|----|----|
| ETc      | 149 | 94 | 67 | 19 | 31 | 29 | 52 | 67 | 97 | 97 | 90 | 89 |
| mm/month |     |    |    | 1  | 12 | 2  |    |    |    |    |    |    |

#### Table 4.22 CROP WATER REQUIREMENT (ANNUAL)

| METHODS          | ATEBUBU | BEREKUM | EJURA | WENCHI |
|------------------|---------|---------|-------|--------|
|                  | Mm      | mm      | mm    | mm     |
| Blaney-Criddle   | 880     | 1021    | 938   | 1127   |
| Radiation        | 1271    | 1235    | 1224  | 1256   |
| Penman           | 1432    | 1409    | 1367  | 1446   |
| Thornthwaite     | 1694    | 1607    | 1567  | 1780   |
| Pan Evaporation. | -       | -       | -     | 1111   |

#### Table 4.24 AVERAGE ANNUAL RAINFALL

| TOWNS | ATEBUBU | BEREKUM | EJURA | WENCHI |
|-------|---------|---------|-------|--------|
|       | mm      | mm      | mm    | mm     |
|       | 1882    | 1116    | 1288  | 1237   |

Table 4.26 (a) POTENTIAL EVAPOTRANSPIRATION USING BLANEY-CRIDLLEFOR ATEBUBU (MONTHLY): SAMPLE CALCULATION.

| Months     | J     | F     | М     | А    | М     | J    | J    | А    | S    | 0    | N    | D    |
|------------|-------|-------|-------|------|-------|------|------|------|------|------|------|------|
| ЕТо        | 4     | 4.2   | 4.3   | 3.2  | 3.3   | 3.2  | 2.8  | 2.7  | 2.7  | 2.6  | 2.5  | 2.4  |
| mm/day     |       |       | N     | 1    | 12    | 2    |      |      |      |      |      |      |
| No. of day | 31    | 28    | 31    | 30   | 31    | 30   | 31   | 31   | 30   | 31   | 30   | 31   |
| ЕТо        | 124.0 | 117.6 | 133.3 | 96.0 | 102.3 | 96.0 | 86.8 | 83.7 | 81.0 | 80.6 | 75.0 | 74.4 |
| mm/month   |       | X     | XX    |      |       |      | XX   | 7    |      |      |      |      |

ANNUAL =1150.7 mm = 1151 mm.

### Table 4.26 (b) POTENTIAL EVAPOTRANSPIRATION (ANNUAL)

| METHODS          | ATEBUBU | BEREKUM | EJURA | WENCHI |
|------------------|---------|---------|-------|--------|
| W.               | Mm      | mm      | mm    | mm     |
| Blaney-Criddle   | 1151    | 1303    | 1216  | 1446   |
| Radiation        | 1639    | 1576    | 1567  | 1621   |
| Penman           | 1858    | 1818    | 1776  | 1303   |
| Thornthwaite     | 1652    | 1557    | 1526  | 1737   |
| Pan Evaporation. | -       | -       | -     | 1391   |

#### Table 4.27 DEFICIT OR SURPLUS OF RAINFALL

| METHODS         | ATEBUBU | BEREKUM | EJURA   | WENCHI  |
|-----------------|---------|---------|---------|---------|
|                 | Mm      | mm      | mm      | mm      |
| Blaney-Criddle  | 731     | 187     | 72      | 209     |
|                 | SURPLUS | DEFICIT | SURPLUS | DEFICIT |
| Radiation       | 243     | 460     | 279     | 384     |
|                 | SURPLUS | DEFICIT | DEFICIT | DEFICIT |
| Penman          | 24      | 702     | 488     | 67      |
|                 | SURPLUS | DEFICIT | DEFICIT | DEFICIT |
| Thornthwaite    | 230     | 441     | 238     | 500     |
|                 | SURPLUS | DEFICIT | DEFICIT | DEFICIT |
| Pan Evaporation |         | -137    | -       | 154     |
| The             |         |         |         | DEFICIT |

#### 4. 1.1 BLANEY-CRIDDLE

#### ATEBUBU (VALUES ARE CORRECTED TO NEAREST WHOLE NUMBERS)

The least amount of crop water requirement of mango was 19 mm in the month of April. The highest amount of crop water requirement of mango was 149 mm in the month of January as shown in Table 4.5. It had an annual crop water requirement for mango of 880 mm also shown in Table 4.5 and this means that 880 mm of water is required to meet the water loss through evapotranspiration of a disease-free mango annually in Atebubu using Blaney-Criddle method. Also, the average annual rainfall of 1882 mm as illustrated in Table 4.24 exceeded the annual potential evapotranspiration of mango of 1151 mm as depicted in Table 4.26 by 731 mm. This means that there is a surplus of 731 mm of water (Table 4.27). Therefore, there is the need to design, construct and manage supplementary irrigation systems for short duration droughts. The average annual rainfall compensates the water loss through evapotranspiration at Atebubu.

#### BEREKUM

Table 4.6 BLANEY-CRIDDLE METHOD FOR BEREKUM

| Months   | J   | F   | М      | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|----------|-----|-----|--------|----|----|----|----|----|-----|-----|-----|-----|
| ETc      | 167 | 108 | 76     | 20 | 30 | 30 | 65 | 80 | 115 | 123 | 104 | 104 |
| mm/month |     | X   | $\sim$ | X  | ſ. |    | Ŵ  | h  |     |     |     |     |

The highest amount of crop water requirement of mango was 167 mm in the month of January as shown in Table 4.6. It had the lowest mean relative humidity of 54.5 % as shown in Table 4.2. The least amount of crop water requirement of mango was 20 mm in the month of April. Berekum had the annual crop water requirement of 1021 mm as illustrated in Table 4.22. This means that 1021 mm of water is required to compensate the water loss through evapotranspiration of a disease-free mango annually in Berekum using Blaney-Criddle method.

Moreover, the average annual rainfall of 1116 mm as illustrated in Table 4.24 and is less than the annual potential evapotranspiration of mango of 1303 mm as depicted in

Table 4.26 by 187 mm. This means that there is a deficit of 187 mm of water as shown in Table 4.27 As a result, there is the need to design, construct and manage supplementary irrigation systems. The average annual rainfall is inadequate to meet the water loss through evapotranspiration.

#### **EJURA**

| Months   | J   | F  | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |  |
|----------|-----|----|----|----|----|----|----|----|-----|-----|-----|-----|--|
| ETc      | 112 | 76 | 54 | 22 | 33 | 32 | 65 | 79 | 118 | 119 | 112 | 115 |  |
| mm/month |     |    |    |    |    | 2  | 2  |    |     |     |     |     |  |

 Table 4.7 BLANEY-CRIDDLE METHOD FOR EJURA

It had the highest amount of crop water requirement of mango of 119 mm in the month of October as illustrated in Table 4.7. The least amount of crop water requirement of mango was in the month of April with the value of 22 mm. The annual crop water requirement of mango was 938 mm. This means that 938 mm of water is required to meet the water loss through evapotranspiration of a disease-free mango annually in Ejura using Blaney-Criddle method.

Again, the average annual rainfall of 1288 mm as illustrated in Table 4.24 is more than the annual potential evapotranspiration of 1216 mm as depicted in Table 4.26 by 72 mm. This means that there is a surplus of 72 mm of water as shown in Table 4.27. For this reason, there is the need to design, construct and manage supplementary irrigation systems for short duration droughts. The average annual rainfall compensates for the water loss through evapotranspiration.

#### WENCHI

#### Table 4.8 BLANEY-CRIDDLE METHOD FOR WENCHI

|          |     |     |    | Ζ.Ν |    |    |    |    |     |     |     |     |
|----------|-----|-----|----|-----|----|----|----|----|-----|-----|-----|-----|
| Months   | J   | F   | Μ  | А   | Μ  | J  | J  | А  | S   | 0   | Ν   | D   |
|          |     |     |    |     |    | -  |    |    |     |     |     |     |
| ETc      | 160 | 112 | 81 | 23  | 35 | 34 | 69 | 89 | 130 | 134 | 126 | 134 |
|          |     |     |    |     |    |    |    |    |     |     |     |     |
| mm/month |     |     |    |     | (  |    |    |    |     |     |     |     |
|          |     |     |    |     |    | -  |    |    |     |     |     |     |

As shown in Table 4.8, the highest amount of crop water requirement of mango was 160 mm in the month of January. The least amount of crop water requirement of mango was 23 mm in the month of April. The annual crop water requirement of mango was 1127 mm. This means that 1127 mm of water is required to compensate the water loss through evapotranspiration of a disease-free mango annually in Wenchi using Blaney-Criddle method.

Furthermore, according to Tindall *et al* (1993), for commercial production a minimum of 635 mm of rainfall is recommended. The average annual rainfall of 1237 mm as illustrated in Table 4.24 and Figure 4.32 is less than the annual potential evapotranspiration of 1446 mm as depicted in Table 4.26 by 209mm. This means that there is a deficit of 209 mm of water as shown in Table 4.27. Thus, there is the need to

design, construct and manage supplementary irrigation systems. The average annual rainfall is insufficient to meet the water loss through evapotranspiration.

#### **4.1.2. RADIATION**

#### ATEBUBU

 Table 4.9 RADIATION METHOD FOR ATEBUBU

| Months   | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|----------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| ETc      | 193 | 130 | 90 | 31 | 46 | 36 | 65 | 80 | 137 | 156 | 154 | 153 |
| mm/month |     |     |    |    |    | Y  |    |    |     |     |     |     |

Table 4.9 indicated that the highest crop water requirement of mango was 193 mm in the month of January. The least amount of crop water requirement of mango was 31 mm in the month of April. The annual crop water requirement of mango was 1271 mm. This means that in Atebubu 1271 mm of water is required annually to meet the water loss through evapotranspiration of a disease-free mango using Radiation method.

Besides, the average annual rainfall of 1882 mm as illustrated in Table 4.24 exceeded the annual potential evapotranspiration of 1639 mm as depicted in Table 4.22 by 243 mm. This means that there is an excess of 243 mm of water as shown in Table 4.27. For this reason, there is the need to design, construct and manage supplementary irrigation systems for short duration droughts. The average annual rainfall is sufficient to meet the water loss through evapotranspiration.

#### BEREKUM

| Months          | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|-----------------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| ETc<br>mm/month | 193 | 119 | 82 | 30 | 42 | 36 | 60 | 80 | 130 | 156 | 155 | 157 |
|                 |     |     | _  | 4  | Н  |    | 5  | -  |     |     |     |     |

#### Table 4.10 RADIATION METHOD FOR BEREKUM

Table 4.10 depicts that the highest crop water requirement of mango was 193 mm in the month of January. In the month of April it had least value of crop water requirement of 30 mm. The annual crop water requirement of mango was 1235 mm. This means that in Berekum, 1235 mm of water is required annually to meet the water loss through evapotranspiration of a disease-free mango using Radiation method.

Apart from this, the average annual rainfall of 1116 mm as illustrated in Table 4.24 and Figure 4.32 is less than the annual potential evapotranspiration of 1576 mm as depicted in Table 4.26 by 460mm. This means that there is a deficit of 460 mm of water as shown in Table 4.27. Consequently, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

#### EJURA

| ETc 182 116 78 31 40 36 68 80 137 153 155 149 | Months          | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|-----------------------------------------------|-----------------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| mm/month                                      | ETc<br>mm/month | 182 | 116 | 78 | 31 | 40 | 36 | 68 | 80 | 137 | 153 | 155 | 149 |

#### Table 4.11 RADIATION METHOD FOR EJURA



From Table 4.11, the highest amount of crop water requirement of mango was 182 mm in the month of January. The least amount of crop water requirement of mango was 31 mm in the month of April. It had an annual crop water requirement of mango of 1224 mm. This means that at Ejura 1224 mm of water is required annually to compensate the water loss through evapotranspiration of a disease-free mango using Radiation method.

That is the average annual rainfall of 1288 mm as illustrated in Table 4.24 and Figure 4.32 is less than the annual potential evapotranspiration of 1567 mm as depicted in Table 4.26 by 279 mm. This means that there is a deficit of 279 mm of water as shown in Table 4.27. In consequence, there is the need to design, construct and manage supplementary irrigation systems. The average annual rainfall is insufficient to meet the water loss through evapotranspiration.

#### WENCHI

| Months   | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|----------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| ETc      | 205 | 134 | 90 | 30 | 45 | 36 | 65 | 77 | 130 | 149 | 151 | 145 |
| mm/month |     |     |    |    |    |    |    |    |     |     |     |     |

#### Table 4.12 RADIATION METHOD FOR WENCHI

# **KNUST**

The highest amount of crop water requirement of mango was 205 mm in the month of January as shown in Table 4.12. The least amount of crop water requirement of mango was 30 mm in the month of April. It had the annual crop water requirement of mango of 1256 mm. This means that in Wenchi 1256 mm of water is required annually to meet the water loss through evapotranspiration of a disease-free mango using Radiation method. The average annual rainfall of 1237 mm as illustrated in Table 4.24 is less than the annual potential evapotranspiration of 1621 mm as depicted in Table 4.26 by 384 mm. This means that there is a deficit of 384 mm of water as shown in Table 4.27. Thus, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

#### **4.1.3 PENMAN**

#### ATEBUBU

#### Table 4.13 PENMAN METHOD FOR ATEBUBU

| Months   | J   | F   | М   | А  | М  | J  | J  | А        | S   | 0   | N   | D   |
|----------|-----|-----|-----|----|----|----|----|----------|-----|-----|-----|-----|
| ETc      | 209 | 147 | 100 | 37 | 53 | 40 | 73 | 91       | 153 | 178 | 176 | 175 |
| mm/month |     |     |     | ZN |    |    | C- | <b>_</b> |     |     |     |     |

It had the highest amount of crop water requirement of mango of 209 mm in the month of January as illustrated in Table 4.13 The least amount of crop water requirement of mango was in the month of April with the value of 37 mm. The annual crop water requirement of mango was 1432 mm. This means that 1432 mm of water is needed to compensate the water loss through evapotranspirition of a disease-free mango annually in Atebubu using Penman method. The average annual rainfall of 1882 mm as illustrated in Table 4.24 exceeded the annual potential evapotranspiration of 1858 mm as depicted in Table 4.26 by 24 mm. This means that there is a surplus of 24 mm of water as shown in Table 4.27. Therefore, there is the need to design, construct and manage supplementary irrigation systems for short duration drought. The average annual rainfall is adequate to meet the water loss through evapotranspiration.

#### BEREKUM

| Months          | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|-----------------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| ETc             | 203 | 148 | 94 | 36 | 50 | 38 | 73 | 90 | 153 | 176 | 168 | 176 |
| IIIII/IIIOIIIII |     |     |    |    |    |    |    |    |     |     |     |     |

#### Table 4.14 PENMAN METHOD FOR BEREKUM

From Table 4.14 the highest amount of crop water requirement of mango was 203 mm in the month of January. The least amount of crop water requirement of mango was 36 mm in the month of April. It had an annual crop water requirement of mango of 1409 mm. This means that 1409 mm of water is needed to meet the water loss through evapotranspirition of a disease-free mango annually in Berekum using Penman method.

Apart from this, the average annual rainfall of 1116 mm as illustrated in Table 4.24 is less than the annual potential evapotranspiration of 1818 mm as depicted in Table 4.26 by 702 mm. This means that there is a deficit of 702 mm of water as shown in Table 4.27. In view of this, supplementary irrigation systems should be designed, constructed and managed to compensate deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).
## **EJURA**

| Months          | J   | F   | М  | А  | М  | J  | J  | А  | S   | 0   | N   | D   |
|-----------------|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|
| ETc             | 195 | 138 | 97 | 36 | 51 | 38 | 71 | 87 | 150 | 169 | 169 | 166 |
| IIIII/III0IIIII |     |     |    |    |    |    |    |    |     |     |     |     |

## Table 4.15 PENMAN METHOD FOR EJURA

# **KNUST**

The highest amount of crop water requirement of mango was 195 mm in the month of January as shown in Table 4.15. The least amount of crop water requirement of mango was 36 mm in the month of April. It had an annual crop water requirement of 1367 mm. This means that 1367 mm of water is needed to meet the water loss through evapotranspirition of a disease-free mango annually in Ejura using Penman method.

In addition, the average annual rainfall of 1288 mm as illustrated in Table 4.24 and Figure 4.32 is less than the annual potential evapotranspiration 1776 mm as depicted in Table 4.26 by 488 mm. This means that there is a deficit of 488 mm of water as shown in Table 4.27. Hence, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

### WENCH

| Months  | J   | F   | М   | А | М  | J  | J  | А  | S   | 0   | N   | D   |
|---------|-----|-----|-----|---|----|----|----|----|-----|-----|-----|-----|
| ETc     | 219 | 161 | 105 | 2 | 12 | 39 | 71 | 89 | 149 | -34 | 178 | 185 |
| mm/monu |     |     |     |   |    |    |    |    |     |     |     |     |

## Table 4.16 PENMAN METHOD FOR ATEBUBU

Mango had the highest amount of crop water requirement of 219 mm in the month of January at Wenchi as illustrated in Table 4.16. The highest mean temperature was 28.5°C.The least amount of crop water requirement of mango was in the month of October with the value of -34 mm, the annual crop water requirement of mango was 1446 mm. This means that 1446 mm of water is needed to compensate the water loss through evapotranspirition of a disease-free mango annually in Wenchi using Penman method.

However, the average annual rainfall of 1237 mm as illustrated in Table 4.24 and Figure 4.32 is less than the annual potential evapotranspiration of 1303 mm as depicted in Table 4.26 by 66 mm. This means that there is a deficit of 66 mm of water as shown in Table 4.27. In effect, supplementary irrigation systems must be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

## **1.4 THORNTHWAITE METHOD**

## ATEBUBU

### Table 4.17 THORNTHWAITE METHOD FOR ATEBUBU

| Months          | J   | F   | М   | А             | М   | J   | J   | А   | S   | 0   | N   | D   |
|-----------------|-----|-----|-----|---------------|-----|-----|-----|-----|-----|-----|-----|-----|
| ETc<br>mm/month | 154 | 139 | 147 | 156           | 156 | 144 | 131 | 127 | 126 | 141 | 139 | 135 |
|                 |     |     |     | $^{\prime}$ N |     |     |     |     |     |     |     |     |

As shown in Table 4.17, the crop water requirement of mango was ranging from 126 mm in September to the highest of 156 mm in May. The annual crop water requirement of mango was 1694 mm. This means that in Atebubu 1694 mm of water is needed to meet the water loss through evapotranspiration of a disease-free mango annually using Thornthwaite method. The average annual rainfall of 1882 mm as illustrated in Table 4.24 exceeded the annual potential evapotranspiration of 1652 mm as depicted in Table 4.26 by 230 mm. This means that there is a surplus of 230 mm of water as shown in Table 4.27 and Figure 4.33. Therefore, there is no need to design, construct and manage supplementary irrigation systems. The average annual rainfall is sufficient to meet the water loss through evapotranspiration.

## BEREKUM

| Months   | J   | F   | М   | А   | М   | J   | J   | А   | S   | 0   | N   | D   |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ETc      | 275 | 124 | 142 | 138 | 139 | 115 | 117 | 116 | 112 | 112 | 108 | 109 |
| mm/month |     |     |     |     |     |     |     |     |     |     |     |     |

## Table 4.18 THORNTHWAITE METHOD FOR EJURA

## **KNUST**

Table 4.18 illustrates that the crop water requirement of mango ranged between 108 mm in November to 142 mm in March. The annual crop water requirement of mango was 1607 mm. This means that in Berekum 1607 mm of water is needed to compensate the water loss through evapotranspiration of a disease-free mango annually using the Thornthwaite method. The average annual rainfall of 1116 mm as illustrated in Table 4.24 is less than the annual potential evapotranspiration of 1557 mm as depicted in Table 4.26 by 441 mm. This means that there is a deficit of 441 mm of water as shown in Table 4.27. Consequently, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

## **EJURA**

| Months   | J   | F   | М   | А   | М   | J   | J   | А   | S   | 0   | N   | D   |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ETc      | 151 | 111 | 140 | 152 | 150 | 127 | 122 | 119 | 118 | 124 | 134 | 119 |
| mm/month |     |     |     |     |     |     |     |     |     |     |     |     |

## Table 4.19 THORNTHWAITE METHOD FOR EJURA

Table 4.19 depicted that the crop water requirement of mango was 1567 mm. This means that in Ejura 1567 mm of water is needed to meet the water loss through evapotranspiration of a disease-free mango annually using the Thornthwaite method. The least amount of crop water requirement of mango was 111 mm in the month of February. The month of April had the highest amount of crop water requirement of mango of 152 mm. Since the average annual rainfall of 1288 mm as illustrated in Table 4.2 is less than the annual potential evapotranspiration of mango of 1526 mm as depicted in Table 4.26 by 238 mm. It means that there is a deficit of 238 mm of water as shown in Table 4.27. In view of this, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

## WENCHI

| Table 4.20 | THORN | THWAIT | E METH | OD FOR | WENCH |
|------------|-------|--------|--------|--------|-------|
|            |       |        |        |        |       |

| Months   | J   | F   | М   | А   | М   | J   | J   | А   | S   | 0   | N   | D   |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ETc      | 157 | 146 | 174 | 168 | 164 | 148 | 118 | 127 | 145 | 148 | 146 | 139 |
| mm/month |     | /   |     | 25  | ANE | 2   | Je. |     |     |     |     |     |

From Table 4.20, the highest amount of crop water requirement of mango was 174 mm in the month of March. The least amount of crop water requirement of mango was 118 mm in the month of July. It had the annual crop water requirement of mango of 1780

mm. This means that in Wenchi 1780 mm of water is needed to compensate the water loss through evapotranspiration of a disease-free mango annually using the Thornthwaite method. The average annual rainfall of 1237 mm as illustrated in Table 4.24 is less than the annual potential evapotranspiration of mango of 1737 mm as depicted in Table 4.26 by 500 mm. This means that there is a deficit of 500 mm of water as shown in Table 4.2. Thus, supplementary irrigation systems should be designed, constructed and managed to meet deficiencies in potential evapotranspiration caused by shortages in precipitation or soil-moisture shortage capacities (Cuenca, 1989).

## 4.1.5. PAN EVAPORATION

## WENCHI (NO DATA AVAILABLE FOR ATEBUBU, BEREKUM AND EJURA) Table 4.21 PAN EVAPOTRANSPIRATION METHOD

| Months  | J   | F   | М  | А  | М  | l  | J  | A  | S  | 0  | N   | D   |
|---------|-----|-----|----|----|----|----|----|----|----|----|-----|-----|
| ETc     | 221 | 155 | 86 | 25 | 31 | 25 | 42 | 56 | 91 | 99 | 125 | 157 |
| mm/monu |     |     |    |    |    |    |    |    |    |    |     |     |

As shown in Table 4.21, the least amount of crop water requirement of mango was 25 mm in the month of June. The highest amount of crop water requirement of mango was 221 mm in the month of January. Wenchi had the annual crop water requirement of mango of 1111 mm using Pan Evaporation method. This means that water required to meet the water loss through evapotranspiration of a disease-free mango is 1111 mm annually in Wenchi.

Again, the average annual rainfall of 1236.5 mm as illustrated in Table 4.24 and Figure 4.32 is in excess of the annual crop water requirement of mango of 1111.3 mm as depicted in Table 4.22 by 125.2 mm. This means that there is a surplus of 125.2 mm of water as shown in Table 4.25. Thus, there is no need to design, construct and manage supplementary irrigation systems. The average annual rainfall is sufficient to meet the water loss through evapotranspiration.

## 4.2 COMPARISON OF CROP WATER REQUIREMENT DETERMINATION.

Compared results of water requirements of mango are shown in the tables below. Table 4.22 COMPARISON OF VARIOUS METHODS OF CROP WATER REQUIREMENT .

| METHODS         | ATEBUBU | BEREKUM | EJURA | WENCHI |
|-----------------|---------|---------|-------|--------|
|                 | Mm      | mm      | mm    | mm     |
| Blaney-Criddle  | 880     | 1021    | 938   | 1127   |
| Radiation       | 1271    | 1235    | 1224  | 1256   |
| Penman          | 1432    | 1409    | 1367  | 1446   |
| Thornthwaite    | 1694    | 1607    | 1567  | 1780   |
| Pan Evaporation | SANE N  | 0       | -     | 1111   |

## Table 4.28 OVERESTIMATION OR UNDERESTIMATION OF CROP WATERREQUIREMENT

| METHODS                  | ATEBUBU | BEREKUM | EJURA | WENCHI |
|--------------------------|---------|---------|-------|--------|
|                          | Mm      | mm      | mm    | mm     |
| Blaney-Criddle           | -552    | -388    | -429  | -319   |
| Radiation                | -161    | -174    | -143  | -190   |
| Penman (Standard Method) | 0       | 0       | 0     | 0      |
| Thornthwaite             | +262    | +198    | +200  | +334   |
| Pan Evaporation          | 1       | -       | -     | -335   |

## **KEY:** POSITVE = OVERESTIMATION, NEGATIVE = UNDERESTIMATION

## Table 4.29 RATIOS OF CROP WATER REQUIREMENT

| METHODS         | ATEBUBU | BEREKUM | EJURA | WENCHI |
|-----------------|---------|---------|-------|--------|
| Blaney-Criddle  | 0.6     | 0.7     | 0.7   | 0.8    |
| Radiation       | 0.9     | 0.9     | 0.9   | 0.9    |
| Penman          | 1.0     | 1.0     | 1.0   | 1.0    |
| Thornthwaite    | 1.2     | 1.1     | 1.1   | 1.2    |
| Pan Evaporation | -       | -       | -     | 0.8    |

### PENMAN

Penman is the standard method. From Table 4.28, taking Penman method as a standard unit of measurement, the annual crop water requirements of mango are 0 mm in Atebubu, Berekum, Ejura and Wenchi. It includes all the climatic factors that affect evapotranspiration. It is the best known combination method that applies a radiation (energy) balance plus aerodynamic (wind and humidity) approach to estimating crop evapotranspiration. This method estimates evapotranspiration using the radiation balance to indicate part of the amount of energy available for evaporation and an aerodynamic term to quantify the influence of advection conditions over the crop canopy in removing water vapour from the field. The modified Penman method would offer the best results with minimum possible error of plus or minus 10 percent in summer, and up to 20 percent under low evaporative conditions (Doorenbos and Pruitt, 1996).

### **BLANEY-CRIDDLE**

The Blaney-Criddle method is an empirical temperature-based method. It underestimates crop water requirement. From Table 4.28, the underestimated annual crop water requirements of mango are -552 mm for Atebubu, -388 mm for Berekum, -429 mm for Ejura and -319 mm for Wenchi. The main cause of this underestimation is that the Blaney-Criddle method only includes locally measured average temperature data and evenly weights nighttime and daytime temperatures. In Ghana where there are little variations in the average daily temperatures, the Blaney-Criddle Method does not reflect the true picture of evapotranspiration computations. At the semi-arid low elevation site, the Blaney-Criddle method underpredicts actual crop water use for the entire season and underpredicts the peak demand by about 19 percent. At the higher elevation, arid site, the performance of this method is even less satisfactory with an underestimation of the peak demand of about 29 percent (Cuenca, 1989). The Blaney-Criddle method should only be applied for periods of one month or longer; in humid, windy, mid-latitude winter conditions and over and under prediction of up to 25 percent (Doorenbos and Pruitt, 1996).

## RADIATION

The Radiation method is an empirical temperature-based method. It underestimates crop water requirement. From Table 4.28, the underestimated annual crop water requirements of mango are -161 mm for Atebubu, -174 mm for Berekum, -143 mm for Ejura and -190 mm for Wenchi. The Radiation method is suggested for areas where climatic data include measured air temperature and sunshine, cloudiness or radiation but not measured wind and humidity. The Radiation method, in extreme conditions, involves a possible error of up to 20 percent in the summer (Doorenbos and Pruitt, 1996).

### THORNTHWAITE

The Thornthwaite method is an empirical temperature-based method. It overestimates crop water requirement. From Table 4.28, the overestimated annual crop water requirements of mango are +262 mm for Atebubu, +198 mm for Berekum, +200 mm for Ejura and +334 mm for Wenchi. Thornthwaite method depends on temperature and latitude (Hudson, 1975). The largest possible error is 56 percent of ET in April and the smallest error is 22 (Shelton, 1978).

## **PAN EVAPORATION**

Pan Evaporation method underestimates crop water requirement. From Table 4.28, the underestimated annual crop water requirement of mango is -335 mm in Wenchi. Pan Evaporation is the direct method. It shows the combined of the climatic factors. Evaporation pans provide a measurement of the integrated effect of radiation, wind, temperature and humidity on evaporation from a specific open water surface. The Pan method can be graded with possible error of 15 percent, depending on the location of the pan (Doorenbos and Pruitt, 1996).

#### ATEBUBU

As shown in Table 4.29 the ratios of crop water requirement of mango using Penman to Thornthwaite method are 1.0:1.2 in Atebubu. This means that the ratio of crop water requirement using Thornthwaite method is more than the standard method (Penman). The crop water requirement of mango is overestimated. However, the ratios of crop water requirement of mango using Penman to Radiation to Blaney-Criddle are 1.0:0.9:0.6. This is means that the ratio of the crop water requirement using Radiation and Blaney-Criddle are less than the standard method (Penman). The crop water requirements of mango are underestimated.

## BEREKUM

As shown in Table 4.29 the ratios of crop water requirement of mango using Penman to Thornthwaite method are 1.0:1.1 in Berekum. This means that the ratio of crop water requirement using Thornthwaite method is more than the standard method (Penman). The crop water requirement of mango is overestimated. But, the ratios of crop water requirement of mango using Penman to Radiation to Blaney-Criddle are 1.0:0.9:0.7. This is means that the ratio of the crop water requirement using Radiation and Blaney-Criddle are less than the standard method (Penman). The crop water requirements of mango are underestimated.

## EJURA

As depicted in Table 4.29, the ratios of crop water requirement of mango using Penman to Thornthwaite method are 1.0:1.1 in Ejura. This means that the ratio of crop water requirement using Thornthwaite method is more than the standard method (Penman). The crop water requirement of mango is overestimated. However, the ratio of crop water requirement of mango using Penman to Radiation is 1.0:0.9 and Penman to Blaney-Criddle is 1.0:0.7. This is means that the ratio of the crop water requirement using Radiation and Blaney-Criddle are less than the standard method (Penman). The crop water requirements of mango are underestimated.

## WENCHI

As illustrated in Table 4.29, the ratios of crop water requirement of mango using Penman to Thornthwaite method are1.0:1.2 in Wenchi. This means that the ratio of crop water requirement using Thornthwaite method is more than the standard method (Penman). The crop water requirement of mango is overestimated. However, the ratio of crop water requirement of mango using Penman to Radiation to Blaney-Criddle to Pan Evapotranspiration are 1.0:0.9:0.8:0.8. This means that the ratios of the crop water requirement using Radiation, Blaney-Criddle are less than the standard method (Penman). The crop water requirements of mango are underestimated.



#### **CHAPTER FIVE**

#### **5.0 CONCLUSION AND RECOMMENDATIONS**

## **5.1 CONCLUSION**

From the results of the research, the least and highest optimum crop water requirement of mango using meteorological data were 880 mm and 1127 mm for Blaney-Criddle, 1224 mm and 1271 mm for Radiation, 1367 mm and 1446 mm for Penman, 1567 mm and 1780 mm for Thornthwaite respectively. The value of 1111 mm was for the Pan Evapotranspiration method.

The Thornthwaite method had the highest annual crop water requirement of mango with the values of 1694 mm in Atebubu, 1607 mm in Berekum, 1567 mm in Ejura and 1780 mm in Wenchi. However, the Blaney-Criddle method had the least values with 880 mm in Atebubu, 1021 mm in Berekum, 938 mm in Ejura and 1127 mm in Wenchi.

These values mean the water required to compensate the water loss through evapotranspiration of a disease-free crop, growing in large fields under non-restricting soil conditions including soil water and fertility and achieving full production potential under the given growing environment.

Penman is the standard or best method. It includes all the climatic factors that affect evapotranspiration. The Penman expression uses data on temperature, humidity, wind (speed) and sunshine duration or radiation. The instruments for measuring the data are thermometer (temperature), hygrometer or psychrometer (humidity), anemometer (wind speed), and Campbell Stokes Sunshine Recorder (sunshine duration). It provides reliable estimates and most satisfactory results compared to other methods, but I t is difficult to obtain accurate field measurement. Penman method is laborious, time-consuming and costly (instruments). The modified Penman method which would offer the best results with minimum possible error of plus or minus 10 percent in summer, and up to 20 percent under low evaporative conditions (Doorenbos and Pruitt, 1996).

The Pan Evaporation is the direct method. It shows the combination of the climatic factors. The Evaporation pan integrates the effects of several climate elements: temperature, humidity, solar radiation (sunshine), and wind speed. The Class A pan method is relatively inexpensive and simple to handle. This is the simplest and most widespread method of obtaining a direct measurement. The Pan method can be graded next with possible error of 15 percent, depending on the location of the pan (Doorenbos and Pruitt, 1996). The most common and obvious error is in daily rainfall events of greater than 55 mm (203mm rain gauge) where the Class A Evaporation pan will likely overflow (Wikipedia, 2008). Again, reflection of solar radiation from the water surface is only 5-8 percent, and from most vegetative surfaces it is 20-25 percent (Doorenbos and Pruitt, 1996).

The Radiation method is a temperature based method. It underestimates the crop water requirement. The Radiation method is suggested for areas where climatic data include measured air temperature and sunshine, cloudiness or radiation but not measured wind and humidity. Knowledge of general levels of humidity and wind speed is required. It is more reliable than Blaney-Criddle approach. It is not an accurate method. The Radiation method, in extreme conditions, involves a possible error of up to 20 percent in the summer (Doorenbos and Pruitt, 1996).

75

The Blaney-Criddle is a temperature based method. It underestimates the crop water requirement. The Blaney-Criddle method is suggested for areas where available climatic data cover air temperature data only. It is not accurate and easy to calculate. The Blaney-Criddle method should only be applied for periods of one month or longer; in humid, windy, mid-latitude winter conditions and over and under prediction of up to 25 percent (Doorenbos and Pruitt, 1996). In Ghana where there are little variations in the average daily temperatures, the Blaney-Criddle Method does not reflect the true picture of evapotranspiration computations.

However, the Thornthwaite is temperature- based method. It overestimates the crop water requirement. The Thornthwaite method depends on temperature and latitude. It is easy to calculate. The largest possible error is 56 percent of ET in April and the smallest error is 22 (Shelton, 1978).

Mango under rainfed conditions can produce one crop per year but under supplementary irrigation it is possible to harvest two crops per year. Mango is emerging as an important non-traditional export crop and requires that some programme is put in place to promote its cultivation.

## **5.2 RECOMMENDATIONS**

It is recommended that the computations are carried out for other agroecological zones of Ghana, especially in the three northern regions (Savannah areas) of Ghana and the south-eastern part of Ghana.



#### REFERENCES

**1.** Addo-Quaye, A. A.; Saah, M. K.; Tachie-Menson, Adams, I.; Tetteh, J .P.; Rockson-Akorly, V.K. and Kitson, J .E .S. (1993). General Agriculture for Senior Secondary Schools. H. Gangaram and Sons, Bombay, India.

**2**. Adu-Gyamerah, E. (2008) Making mango a big non-traditional export product. Daily Graphic. p9. of 21 October, 2008.

**3.** Akinsanmi, O. (1988). Certificate Agricultural Science, Longman Singapore Publishers Pte Ltd., Singapore.

**4.** Asamoah, B. (2006). Mango: The next big product of Ghana. Daily Graphic, p 15. of 21 Febuary,2006.

**5.** Asante-Mensah, S. (2004). Mango to bring more income to Ghana than cocoa. Cited 4 January,2008fromhttp://www.ghanaweb.com/GhanaHomePage/NewsArchive/browse.arc hive.php?date=20040903

**6.** Beinempaka, A.B.; Kato,H.;Mulera ,D.B. and Obwol-Ametto, T. (1990). Principles and Practices of Agriculture. Macmillan Education Limited, London and Basingstoke.

7. Cuenca, R. H. (1989). Irrigation System Design. An Engineering Approach. Prentice-Hall International, New Jersey.

 Dickson, K. B. and Benneh, V. (1980). A New Geography of Ghana. Macmillian 452p.
 Doorenbos, J. and Pruitt, W. O. (1996). Crop Water Requirements, Food and Agriculture Organization of the United Nations. Irrigation and Drainage Paper Rome Italy.

**10**. Ghana Statistical Service (2002). 2000 Population and Housing Census. Summary Report on Final Results. Medialite. Accra.

**11**. Gibbon, D. and Pain, A. (1988). Crops of the Drier Regions of the Tropics. Longman Singapore Publisher Pte Limited. Singapore.

**12**. Hanks, R. J., (1992). Applied Soil Physics. Soil Water and Temperature Applications. Hamilton Printing Co. Castleton, N.Y.

**13**. Hudson, H .W. (1975). Field engineering for agricultural development, Oxford University Press. London.

**14.** Iwena, O.A., (2007). Essential Agricultural Science for Senior Secondary Schools. Tonad Publishers Limited, Logos.

**15**. Kochhar, S .L. (1986). *Tropical Crops*: A Textbook of Economic Botany. Macmillan Publisher Limited. London and Basingstoke.

16. Mintah, P.; Anno-Nyarko, F. O. and Oppong-Konadu, E. Y. S. (2002). Evaluation of Hardening Methods for High Field Survival of Mango (*Magnifera indica L.*). Bud-Grafts, Editorial Secretariat, The Agricultural and Food Science Journal of Ghana, 1 : 45-54
17. Nakasone, H. Y. and Paull, R. E. (1999). *Tropical Fruits*. CABI Publishing, CAB

International, United Kingdom.

18. National Department of Agriculture (2000).Cultivation of Mango Resource Centre, Directorate Communication,Pretoria South Africa Cited 20 October,2008 from <u>http://www.nda.agric.za/publications</u>

Opeke, L. K. (1992). Tropical Tree Crops, Spectrum Books Limited, Ibadan, Nigeria.
 Phociades, A. (2001). Handbook On Pressurized Irrigation Techniques. F.A.O. Rome.
 Punmia, B. C. and Pande, B. B.L. (1990). Irrigation and Water Power Engineering.
 Standard Publishers Distributors, Nai Sarak, Dehhi.

**22**. Purseglove, J. W. (1987). Tropical Crops Dicotyledons. John Willey and Sons. New York.

**23**. Quartey, L. (2008). Mango, Ghana's untapped 'gold mine' The Mirror, p39. of 10 May, 2008.

**24**. Rice, R. P.; Rice, L. W. and Tindall, H. D. (1990). Fruit and Vegetable Production in Warm Climates. Macmillian, London.

**25.** Samson, J. A. (1992). *Tropical Fruits*, 2<sup>nd</sup> edition .Longman Singapore Publishers (Pte) Limited, Singapore.

**26**. Schwab, G. O.; Fangmeier, D. D.; Elliot, W. J. and Frevert, R. K. (1993). Soil and Water Conservation Engineering, John Wiley and Sons International. United State of America.

27. Shelton, M.L (1978). Calibrations of Computing Thornthwaite's Potential. Cited 25 January, 2009 from <u>http://www</u>. Blackwell-synergy com / doi / abs /10.1111 / 0033-000124

**28**. Tweneboah, C. K. (2000). Modern Agriculture in the Tropics with special reference to Ghanaian Food Crop. Co-Publisher, Ghana.

**29** UN Food & Agriculture Organisation (FAO) (2004). Wikipedia Cited 4 January, 2008 from http://si.wikipedia.org/w/index.php?title=List\_of\_mango\_cultivars&action=edit&redlink=1

30 .USAID/Ghana's partner wins Development Partner Award. (2005) .Cited 4 January,

2008 from http://www.usaid.gov/gh/food/stories/adra\_award/index.htm

**31.**Wikipedia, The Free Encyclopedia (2008), Pan Evaporation, Cited 14 June, 2008 from

http://en.wikipedia.org/wiki/Pan\_evaporation

**32.** Yayock, J. Y.; Lombin, G and Owonubi, J. J. (1988). Crop Science Production in Warm Climates. Macmillan Publisher Limited. London and Basingstoke.



## **APPENDICES: TABLES**

| TABLE 4.1 | ATEBUBU CLIMATIC | DATA. LAT 7.55 N      | LON 2.3 W ATL 122      | m                     |           |         |                 |
|-----------|------------------|-----------------------|------------------------|-----------------------|-----------|---------|-----------------|
| Months    | Rain(mm) Average | Tmax( <sup>U</sup> C) | Tmin( <sup>U</sup> C)  | Tm( <sup>U</sup> C)   | RH(%)     | RH (%)  | RH (%)          |
|           |                  |                       |                        |                       | 0600hrs   | 1500hrs | mean            |
| J         | 21.2             | 34.2                  | 19.8                   | 27                    | 77        | 43.41   | 60.205          |
| F         | 15.4             | 35.6                  | 21.4                   | 28.5                  | 79        | 43.82   | 61.41           |
| М         | 68               | 35.3                  | 22.4                   | 28.85                 | 84        | 49.12   | 66.56           |
| А         | 158.3            | 34.3                  | 23.3                   | 28.8                  | 88        | 60.06   | 74.03           |
| Μ         | 217.8            | 33.4                  | 22.1                   | 27.75                 | 90        | 63.59   | 76.795          |
| J         | 579.9            | 32.3                  | 21.5                   | 26.9                  | 92        | 68.88   | 80.44           |
| J         | 199.4            | 31.3                  | 21.3                   | 26.3                  | 93        | 70.71   | 81.855          |
| А         | 145.7            | 31                    | 21.3                   | 26.15                 | 92        | 72.06   | 82.03           |
| S         | 242.3            | 31.4                  | 21.5                   | 26.45                 | 92        | 72.29   | 82.145          |
| 0         | 167.6            | 32.5                  | 21.4                   | 26.95                 | 91        | 67.24   | 79.12           |
| Ν         | 62.3             | 33.3                  | 21                     | 27.15                 | 90        | 59.35   | 74.675          |
| D         | 4.4              | 33.3                  | 20.1                   | 26.7                  | 87        | 53.94   | 70.47           |
| ANNUAL    | 1882.3           |                       |                        |                       |           |         |                 |
| TABLE 4.2 | BEREKUM CLIMATIC | DATA. LAT 7.45        | LON 2.59 W ALT 30      | 94 m                  |           |         |                 |
| Months    | Rain(mm) Average | Tmax( <sup>0</sup> C) | Tmin( <sup>0</sup> C)  | Tm( <sup>0</sup> C)   | RH (%)    | RH (%)  | RH (%)          |
|           |                  |                       |                        |                       | 0600hrs   | 1500hrs | mean            |
| J         | 21.7             | 32                    | 18                     | 25                    | 74        | 35.17   | 54.585          |
| F         | 56.7             | 33.5                  | 19.7                   | 26.6                  | 80        | 36.5    | 58.25           |
| М         | 105              | 33                    | 20.8                   | 26.9                  | 87        | 45.67   | 66.335          |
| А         | 135.1            | 32.1                  | 20.9                   | 26.5                  | 90        | 57.61   | 73.805          |
| М         | 157.5            | 31.4                  | 20.6                   | 26                    | 91        | 62.11   | 76.555          |
| J         | 140.5            | 30.2                  | 20.3                   | 25.25                 | 93        | 67.78   | 80.39           |
| J         | 79.1             | 29.2                  | 19.9                   | 24.55                 | 93        | 70.94   | 81.97           |
| А         | 92               | 29.3                  | 19.8                   | 24.55                 | 92        | 70.17   | 81.085          |
| S         | 145.5            | 29.7                  | 20.1                   | 24.9                  | 91        | 69.22   | 80.11           |
| 0         | 138.2            | 30                    | 20                     | 25                    | 90        | 65.5    | 77.75           |
| Ν         | 37.1             | 30.9                  | 19.9                   | 25.4                  | 90        | 58      | 74              |
| D         | 7.7              | 31                    | 18.6                   | 24.8                  | 82        | 47.11   | 64.555          |
| ANNUAL    | 1116.1           |                       |                        |                       |           |         |                 |
| TABLE4.3. | EJURA            | CLIMATIC              | DATA LAT.7.38N         | LON1.36W              | ALT.225 m |         |                 |
| Months    | Rain(mm) Average | Tmax( <sup>0</sup> C) | Tmin ( <sup>0</sup> C) | Tm ( <sup>0</sup> C ) | RH (%)    | RH (%)  | RH (%)          |
|           | 20               |                       | 28                     |                       | 0600hrs   | 1500hrs | mean            |
| J         | 7.4              | 34.2                  | 19.5                   | 26.85                 | 75.375    | 61.67   | 68.5225         |
| F         | 25.5             | 35.5                  | 21                     | 28.25                 | 79        | 55.58   | 67.29           |
| М         | 105.3            | 35                    | 22.2                   | 28.6                  | 85.75     | 59.83   | 72.79           |
| А         | 142.8            | 34.1                  | 22.2                   | 28.15                 | 88.938    | 66.5    | 77.719          |
| М         | 177.1            | 33.1                  | 21.7                   | 27.4                  | 89.125    | 67.33   | 78.2275         |
| J         | 176.6            | 31.5                  | 21.1                   | 26.3                  | 89.75     | 73.29   | 81.52           |
| J         | 121.9            | 30.2                  | 20.9                   | 25.55                 | 89.563    | 77.67   | 83.6165         |
| А         | 83               | 29.9                  | 20.7                   | 25.3                  | 89.125    | 77.91   | 83.5175         |
| S         | 214.7            | 30.8                  | 20.8                   | 25.8                  | 90.25     | 77.05   | 83.65           |
| 0         | 177.5            | 31.8                  | 20.9                   | 26.35                 | 90.688    | 74.45   | 82.569          |
| N         | 36.5             | 32.9                  | 20.8                   | 26.85                 | 89.75     | 70.55   | 80.15           |
| <u>D</u>  | 19.3             | 32.6                  | 19.8                   | 26.2                  | 82.563    | 67.82   | <u>75.19</u> 15 |
| ANNUAL    | 1287.5           |                       |                        |                       |           |         |                 |

| TABLE 4.4 | WENCHI              |          | CI IMATIC | ΠΑΤ          | Δ         | I AT 7 75N    | I ON2.1   | W 41        | T 340 m  | RH(%)    |
|-----------|---------------------|----------|-----------|--------------|-----------|---------------|-----------|-------------|----------|----------|
|           |                     |          | Tmax      | 2711         | 0         |               | RH (%)    | RH          | l        | (///     |
| Months    | Rain(mm)            | Average  | (°C)      | Tma          | x(°C)     | Tm(°C)        | 0006hrs   | (%          | )1500hrs | Mean     |
| J         |                     | 9        | 34.6      |              | 20.2      | 27.4          |           | 68          | 31       | 49.5     |
| F         |                     | 25.6     | 36.6      |              | 22.9      | 29.75         |           | 76          | 32       | 54       |
| Μ         |                     | 100.2    | 37.5      |              | 25        | 31.25         |           | 86          | 44       | 65       |
| A         |                     | 157      | 36        |              | 25.1      | 30.55         |           | 92          | 59       | 75.5     |
| М         |                     | 157.3    | 33.6      |              | 24        | 28.8          |           | 94          | 65       | 79.5     |
| J         |                     | 152.8    | 31.6      |              | 22.8      | 27.2          |           | 96          | 70       | 83       |
| J         |                     | 124.9    | 30        |              | 21.1      | 25.55         |           | 96          | 72       | 84       |
| A         |                     | 92       | 29.6      |              | 21.9      | 25.75         |           | 95          | 72       | 83.5     |
| S         |                     | 179.6    | 30.5      |              | 21.9      | 26.2          |           | 96          | 72       | 84       |
| 0         |                     | 177.5    | 32.9      |              | 22.5      | 27.7          |           | 96          | 70       | 83       |
| Ν         |                     | 48.9     | 34.9      |              | 21.5      | 28.2          |           | 94          | 62       | 78       |
| D         |                     | 11.8     | 34.6      |              | 19.7      | 27.15         |           | 84          | 46       | 65       |
| ANNUAL    | 1236.5              |          | 1 Knot=   | 0.51         | 5 m/s,1 k | (not=1.85 km  | /hr,1 knc | ot=44.5 km/ | day      |          |
| U         | U2                  |          | U2        | U2           |           |               | Sun       |             |          | Pot Eva  |
| Knots     | m/s                 |          | km/hr     | km/c         | day       |               | hrs       |             |          | mm       |
| 2.6       | 1.339               |          | 4.81      | 115.         | 7         |               | 7.2       |             |          | 184.1    |
| 3.1       | 1.5965              |          | 5.735     | 137.         | 95        |               | 7.6       |             |          | 193.3    |
| 3.4       | 1.751               |          | 6.29      | 151.         | 3         |               | 7.1       |             |          | 171.3    |
| 3.5       | 1.8025              |          | 6.475     | 155.         | 75        |               | 7.4       |             |          | 123.9    |
| 3.2       | 1.648               |          | 5.92      | 142.         | 4         |               | 6.9       |             |          | 102.7    |
| 3         | 1.545               |          | 5.55      | 133.         | 5         |               | 6         |             |          | 82.2     |
| 3.2       | 1.648               |          | 5.92      | 142.         | 4         |               | 4.3       |             |          | 69.8     |
| 3.4       | 1.75 <mark>1</mark> |          | 6.29      | 151.         | 3         |               | 3.3       |             |          | 70       |
| 3         | 1.545               |          | 5.55      | 133.         | 5         |               | 4.2       |             |          | 75.5     |
| 2.7       | 1.3905              |          | 4.995     | 120.         | 15        |               | 6         |             |          | 82.9     |
| 2.6       | 1.339               |          | 4.81      | 115.         | 7         |               | 7.1       |             |          | 104.3    |
| 2.3       | 1.1845              | RAL      | 4.255     | 102.         | 35        |               | 6.9       |             |          | 130.6    |
|           | METHOD O            | NE:      | BLANEY-CI | RIDDL        | E         | METHOD        |           | LAT.7.55N   | LON.2.3W | ALT.122m |
|           | TABLE4.5            | ATEBUBU  |           |              | _         |               |           | RH(%)       | ET 0     |          |
| Months    | T m <sup>o</sup> C  | T m*0.46 | Tm*0.46+8 | $\leftarrow$ | р         | (Tm*0.46+8)*( | o)        | 1500hrs     | mm/day   | Kc       |
| J         | 27                  | 12.42    | 2         | 0.42         | 0.26      | 5.3092        |           | 43.47       | 4        | 1.2      |
| F         | 28.5                | 13.11    | 2         | 1.11         | 0.27      | 5.6997        |           | 43.82       | 2 4.2    | 0.8      |
| М         | 28.85               | 13.271   | 21        | .271         | 0.27      | 5.74317       |           | 49.12       | 4.3      | 0.5      |
| А         | 28.8                | 13.248   | 21        | .248         | 0.28      | 5.94944       |           | 60.06       | 3.2      | 0.2      |
| М         | 27.75               | 12.765   | 20        | .765         | 0.28      | 5.8142        |           | 63.59       | 3.3      | 0.3      |
| J         | 26.9                | 12.374   | 20        | .374         | 0.29      | 5.90846       |           | 68.88       | 3 3.2    | 0.3      |
| J         | 26.3                | 12.098   | 20        | .098         | 0.29      | 5.82842       |           | 70.7        | 2.8      | 0.6      |
| А         | 26.15               | 12.029   | 20        | .029         | 0.28      | 5.60812       |           | 72.06       | 6 2.7    | 0.8      |
| S         | 26.45               | 12.167   | 20        | .167         | 0.28      | 5.64676       |           | 72.29       | ) 2.7    | 1.2      |
| 0         | 26.95               | 12.397   | 20        | .397         | 0.27      | 5.50719       |           | 67.24       | 2.6      | 1.2      |
| Ν         | 27.15               | 12.489   | 20        | .489         | 0.26      | 5.32714       |           | 59.3        | 5 2.5    | 1.2      |
| D         | 26.7                | 12.282   | 20        | .282         | 0.26      | 5.27332       |           | 53.94       | 2.4      | 1.2      |
|           |                     |          |           |              |           |               |           |             |          |          |

| ETc    | No.of | ET c mm/ | ET o<br>mm/ |
|--------|-------|----------|-------------|
| mm/day | days  | month    | month       |
| 4.8    | 31    | 148.8    | 124         |
| 3.36   | 28    | 94.08    | 117.6       |
| 2.15   | 31    | 66.65    | 133.3       |
| 0.64   | 30    | 19.2     | 96          |
| 0.99   | 31    | 30.69    | 102.3       |
| 0.96   | 30    | 28.8     | 96          |
| 1.68   | 31    | 52.08    | 86.8        |
| 2.16   | 31    | 66.96    | 83.7        |
| 3.24   | 30    | 97.2     | 81          |
| 3.12   | 31    | 96.72    | 80.6        |
| 3      | 30    | 90       | 75          |
| 2.88   | 31    | 89.28    | 74.4        |
|        | TOTAL | 880.46   | 1150.7      |

For the factor c refer to the graph under Blaney-Criddle. (Doorenbos and Pruitt,

).

| NOTE: 1. Crop Establishment Stage-May and June-Kc < 1 | - |
|-------------------------------------------------------|---|
| 2. Crop Development Stage-July and August-Kc <1       |   |

| 3       | Crop    | Maturity Stage- | September | ,October ,November  | ,December and Janu | ary- Kc >1 |
|---------|---------|-----------------|-----------|---------------------|--------------------|------------|
| 4       | Late    | Season Stage -  | January,  | Febuary, March ,and | April-Kc<1.        |            |
| As show | n in fi | gure 4.1.       |           |                     |                    | -          |

| Assume wind speed ,U2 m/s | and duration sunhine, hrs for Wenchi to be | the same for ATEBUBU ,BERE | KUM |
|---------------------------|--------------------------------------------|----------------------------|-----|
| AND EJURA.                |                                            |                            |     |

| TABLE4.6 |                       | BEREKUM  | LAT.7.45N | LON<br>2.59W | ALT.304m        | RH(%)   |
|----------|-----------------------|----------|-----------|--------------|-----------------|---------|
| Months   | T m ( <sup>0</sup> C) | T m*0.46 | Tm*0.46+8 | р            | (Tm*0.46+8)*(p) | 1500hrs |
| J        | 25                    | 11.5     | 19.5      | 0.26         | 5.07            | 35.17   |
| F        | 26.6                  | 12.236   | 20.236    | 0.27         | 5.46372         | 36.5    |
| М        | 26.9                  | 12.374   | 20.374    | 0.27         | 5.50098         | 45.67   |
| А        | 26.5                  | 12.19    | 20.19     | 0.28         | 5.6532          | 57.61   |
| М        | 26                    | 11.96    | 19.96     | 0.28         | 5.5888          | 62.11   |
| J        | 25.25                 | 11.615   | 19.615    | 0.29         | 5.68835         | 67.78   |
| J        | 24.55                 | 11.293   | 19.293    | 0.29         | 5.59497         | 70.94   |
| А        | 24.55                 | 11.293   | 19.293    | 0.28         | 5.40204         | 70.17   |
| S        | 24.9                  | 11.454   | 19.454    | 0.28         | 5.44712         | 69.22   |
| 0        | 25                    | 11.5     | 19.5      | 0.27         | 5.265           | 65.5    |
| Ν        | 25.4                  | 11.684   | 19.684    | 0.26         | 5.11784         | 58      |
| D        | 24.8                  | 11.408   | 19.408    | 0.26         | 5.04608         | 47.11   |
|          |                       |          |           |              |                 |         |
|          |                       |          |           | 7 M          |                 |         |

| ET o mm/ |    |     | ET c   | No.of |    | ET c mm/ | ET o<br>mm/ |
|----------|----|-----|--------|-------|----|----------|-------------|
| ay       | Кc |     | mm/day | days  |    | month    | month       |
| 4.5      |    | 1.2 | 5.4    |       | 31 | 167.4    | 139.5       |
| 4.8      |    | 0.8 | 3.84   |       | 28 | 107.52   | 134.4       |
| 4.9      |    | 0.5 | 2.45   |       | 31 | 75.95    | 151.9       |
| 3.3      |    | 0.2 | 0.66   |       | 30 | 19.8     | 99          |
| 3.2      |    | 0.3 | 0.96   |       | 31 | 29.76    | 99.2        |
| 3.3      |    | 0.3 | 0.99   |       | 30 | 29.7     | 99          |
| 3.5      |    | 0.6 | 2.1    |       | 31 | 65.1     | 108.5       |
| 3.2      |    | 0.8 | 2.56   |       | 31 | 79.36    | 99.2        |
| 3.2      |    | 1.2 | 3.84   |       | 30 | 115.2    | 96          |
| 3.3      |    | 1.2 | 3.96   |       | 31 | 122.76   | 102.3       |
| 2.9      |    | 1.2 | 3.48   |       | 30 | 104.4    | 87          |
| 2.8      |    | 1.2 | 3.36   | 1     | 31 | 104.16   | 86.8        |
|          |    |     |        | TOTAL | _  | 1021.11  | 1302.8      |

| TABLE4.7 | EJURA                 | LAT.7.38W            | LON 1.36  | W    | ALT.225m.       | RH(%)   |
|----------|-----------------------|----------------------|-----------|------|-----------------|---------|
| Months   | T m ( <sup>0</sup> C) | T m *0.46            | Tm*0.46+8 | Р    | (Tm*0.46+8)*(p) | 1500hrs |
| J        | 26.85                 | 12.351               | 20.351    | 0.26 | 5.29126         | 61.67   |
| F        | 28.25                 | 12.995               | 20.995    | 0.27 | 5.66865         | 55.58   |
| М        | 28.6                  | 13.15 <mark>6</mark> | 21.156    | 0.27 | 5.71212         | 59.83   |
| А        | 28.15                 | 12.949               | 20.949    | 0.28 | 5.86572         | 66.5    |
| М        | 27.4                  | 12.604               | 20.604    | 0.28 | 5.76912         | 67.33   |
| J        | 26.3                  | 12.098               | 20.098    | 0.29 | 5.82842         | 73.29   |
| J        | 25.55                 | 11.753               | 19.753    | 0.29 | 5.72837         | 77.67   |
| А        | 25.3                  | 11.638               | 19.638    | 0.28 | 5.49864         | 77.91   |
| S        | 25.8                  | 11.868               | 19.868    | 0.28 | 5.56304         | 77.05   |
| 0        | 26.35                 | 12.121               | 20.121    | 0.27 | 5.43267         | 74.45   |
| Ν        | 26.85                 | 12.351               | 20.351    | 0.26 | 5.29126         | 70.55   |
|          |                       |                      |           |      |                 |         |
| D        | 26.2                  | 12.052               | 20.052    | 0.26 | 5.21352         | 67.82   |

| ET o<br>mm/ | ET c mm/ | o.of | ET c   |     | mm/ |
|-------------|----------|------|--------|-----|-----|
| month       | month    | ys   | mm/day | Kc  |     |
| 93          | 111.6    | 31   | 3.6    | 1.2 | 3   |
| 95.2        | 76.16    | 28   | 2.72   | 0.8 | 3.4 |
| 108.5       | 54.25    | 31   | 1.75   | 0.5 | 3.5 |
| 108         | 21.6     | 30   | 0.72   | 0.2 | 3.6 |
| 108.5       | 32.55    | 31   | 1.05   | 0.3 | 3.5 |
| 108         | 32.4     | 30   | 1.08   | 0.3 | 3.6 |
| 108.5       | 65.1     | 31   | 2.1    | 0.6 | 3.5 |
| 99.2        | 79.36    | 31   | 2.56   | 0.8 | 3.2 |
| 99          | 118.8    | 30   | 3.96   | 1.2 | 3.3 |
| 99.2        | 119.04   | 31   | 3.84   | 1.2 | 3.2 |
| 93          | 111.6    | 30   | 3.72   | 1.2 | 3.1 |
| 96.1        | 115.32   | 31   | 3.72   | 1.2 | 3.1 |
| 1216.2      | 937.78   | TAL  |        |     |     |

| TABLE4.8 | WENCHI                | LAT.7.75             | NN.       | LON 2. | 1 W ALT.340m    | RH(%)   |
|----------|-----------------------|----------------------|-----------|--------|-----------------|---------|
| Months   | T m ( <sup>0</sup> C) | T m *0.46            | Tm*0.46+8 | р      | (Tm*0.46+8)*(p) | 1500hrs |
| J        | 27.4                  | 12.604               | 20.604    | 0.26   | 5.35704         | 31      |
| F        | 29.75                 | 13.685               | 21.685    | 0.27   | 5.85495         | 32      |
| М        | 31.25                 | 14.375               | 22.375    | 0.27   | 6.04125         | 44      |
| А        | 30.55                 | 14.053               | 22.053    | 0.28   | 6.17484         | 59      |
| Μ        | 28.8                  | 13.248               | 21.248    | 0.28   | 5.94944         | 65      |
| J        | 27.2                  | 12.512               | 20.512    | 0.29   | 5.94848         | 70      |
| J        | 25.55                 | 11.75 <mark>3</mark> | 19.753    | 0.29   | 5.72837         | 72      |
| А        | 25.75                 | 11.845               | 19.845    | 0.28   | 5.5566          | 72      |
| S        | 26.2                  | 12.052               | 20.052    | 0.28   | 5.61456         | 72      |
| 0        | 27.7                  | 12.742               | 20.742    | 0.27   | 5.60034         | 70      |
| Ν        | 28.2                  | 12.972               | 20.972    | 0.26   | 5.45272         | 62      |
| D        | 27.15                 | 12.489               | 20.489    | 0.26   | 5.32714         | 46      |
|          |                       |                      |           |        |                 |         |

|          | 21.10 | 12.405            | 20.400 | 0.20     | 0.02114     |
|----------|-------|-------------------|--------|----------|-------------|
| ET o mm/ | AR    | ET c              | No.of  | ET c mm/ | ET o<br>mm/ |
| day      | Kc    | mm/day            | days   | month    | month       |
| 4.3      | 1.2   | <mark>5.16</mark> | 31     | 159.96   | 133.3       |
| 5        | 0.8   | 4                 | 28     | 112      | 140         |
| 5.2      | 0.5   | 2.6               | 31     | 80.6     | 161.2       |
| 3.9      | 0.2   | 0.78              | 30     | 23.4     | 117         |
| 3.8      | 0.3   | 1.14              | 31     | 35.34    | 117.8       |
| 3.8      | 0.3   | 1.14              | 30     | 34.2     | 114         |
| 3.7      | 0.6   | 2.22              | 31     | 68.82    | 114.7       |
| 3.6      | 0.8   | 2.88              | 31     | 89.28    | 111.6       |
| 3.6      | 1.2   | 4.32              | 30     | 129.6    | 108         |
| 3.6      | 1.2   | 4.32              | 31     | 133.92   | 111.6       |
| 3.5      | 1.2   | 4.2               | 30     | 126      | 105         |
| 3.6      | 1.2   | 4.32              | 31     | 133.92   | 111.6       |
|          |       |                   | TOTAL  | 1127.04  | 1445.8      |

| TABLE4.9  | METHOD              | TWO :     | RADIATON | ATEBUBU | LAT 7.55 N | N LON 2.3 W | ALT 122   | m        |              |
|-----------|---------------------|-----------|----------|---------|------------|-------------|-----------|----------|--------------|
| Months    | Tm( <sup>0</sup> C) | R a mm/   | Ν        | Ν       | n/N        | 0.5*n/N     | 0.25+     |          |              |
|           |                     | day       |          |         |            |             | 0.5*n/N   | _        |              |
| J         | 27                  | 13.8      | 11.7     | 7.2     | 0.6153846  | 0.3076923   | 0.5576923 |          |              |
| F         | 28.5                | 14.6      | 11.8     | 7.6     | 0.6440678  | 0.3220339   | 0.5720339 |          |              |
| Μ         | 28.85               | 15.3      | 12       | 7.1     | 0.5916667  | 0.2958333   | 0.5458333 |          |              |
| А         | 28.8                | 15.3      | 12.2     | 7.4     | 0.6065574  | 0.3032787   | 0.5532787 |          |              |
| Μ         | 27.75               | 15.2      | 12.4     | 6.9     | 0.5564516  | 0.2782258   | 0.5282258 |          |              |
| J         | 26.9                | 14.9      | 12.6     | 6       | 0.4761905  | 0.2380952   | 0.4880952 |          |              |
| J         | 26.3                | 15        | 12.5     | 4.3     | 0.344      | 0.172       | 0.422     |          |              |
| А         | 26.15               | 15.3      | 12.3     | 3.3     | 0.2682927  | 0.1341463   | 0.3841463 |          |              |
| S         | 26.45               | 15.3      | 12.1     | 4.2     | 0.3471074  | 0.1735537   | 0.4235537 |          |              |
| 0         | 26.95               | 15.1      | 11.9     | 6       | 0.5042017  | 0.2521008   | 0.5021008 |          |              |
| Ν         | 27.15               | 14        | 11.8     | 7.1     | 0.6016949  | 0.3008475   | 0.5508475 |          |              |
| D         | 26.7                | 13.5      | 11.6     | 6.9     | 0.5948276  | 0.2974138   | 0.5474138 | _        |              |
| R s       | w                   | W*R s     | RH mean  | ET o    |            | ET c        | No.of     | ET c mm/ | ET o mm<br>/ |
| mm/day    |                     | mm/day    | (%)      | mm/day  | Kc         | mm/day      | days      | month    | month        |
| 7.6961538 | 0.77                | 5.9260385 | 60.205   | 5.2     | 1.2        | 6.24        | 31        | 193.44   | 161.2        |

| mm/day    |      | mm/day    | (%)    | mm/day | Kc  | mm/day | days  | month   | month  |
|-----------|------|-----------|--------|--------|-----|--------|-------|---------|--------|
| 7.6961538 | 0.77 | 5.9260385 | 60.205 | 5.2    | 1.2 | 6.24   | 31    | 193.44  | 161.2  |
| 8.3516949 | 0.78 | 6.514322  | 61.41  | 5.8    | 0.8 | 4.64   | 28    | 129.92  | 162.4  |
| 8.35125   | 0.78 | 6.513975  | 66.56  | 5.8    | 0.5 | 2.9    | 31    | 89.9    | 179.8  |
| 8.4651639 | 0.78 | 6.6028279 | 74.03  | 5.2    | 0.2 | 1.04   | 30    | 31.2    | 156    |
| 8.0290323 | 0.78 | 6.2626452 | 76.795 | 4.9    | 0.3 | 1.47   | 31    | 45.57   | 151.9  |
| 7.272619  | 0.76 | 5.5271905 | 80.44  | 4      | 0.3 | 1.2    | 30    | 36      | 120    |
| 6.33      | 0.76 | 4.8108    | 81.855 | 3.5    | 0.6 | 2.1    | 31    | 65.1    | 108.5  |
| 5.877439  | 0.76 | 4.4668537 | 82.03  | 3.2    | 0.8 | 2.56   | 31    | 79.36   | 99.2   |
| 6.4803719 | 0.76 | 4.9250826 | 82.145 | 3.8    | 1.2 | 4.56   | 30    | 136.8   | 114    |
| 7.5817227 | 0.76 | 5.7621092 | 79.12  | 4.2    | 1.2 | 5.04   | 31    | 156.24  | 130.2  |
| 7.7118644 | 0.77 | 5.9381356 | 74.675 | 4.3    | 1.2 | 5.16   | 30    | 154.8   | 129    |
| 7.3900862 | 0.77 | 5.6903664 | 70.47  | 4.1    | 1.2 | 4.92   | 31    | 152.52  | 127.1  |
|           |      |           |        |        |     |        | TOTAL | 1270.85 | 1639.3 |

1639.3

|        |                   |          |        |           |              |           | TOTAL     |
|--------|-------------------|----------|--------|-----------|--------------|-----------|-----------|
|        | TABLE 4<br>BEREKU | .10<br>M | $\leq$ | LAT.7.45N | LON<br>2.59W | ALT.304m  | ı         |
| Months | T m C             | R a mm/  | N      | n         | n/N          | 0.5*n/N   | 0.25+     |
|        |                   | day      |        |           | - 5          |           | 0.5*n/N   |
| J      | 25                | 13.8     | 11.7   | 7.2       | 0.6153846    | 0.3076923 | 0.5576923 |
| F      | 26.6              | 14.6     | 11.8   | 7.6       | 0.6440678    | 0.3220339 | 0.5720339 |
| М      | 26.9              | 15.3     | 12     | 7.1       | 0.5916667    | 0.2958333 | 0.5458333 |
| А      | 26.5              | 15.3     | 12.2   | 7.4       | 0.6065574    | 0.3032787 | 0.5532787 |
| М      | 26                | 15.2     | 12.4   | 6.9       | 0.5564516    | 0.2782258 | 0.5282258 |
| J      | 25.25             | 14.9     | 12.6   | 6         | 0.4761905    | 0.2380952 | 0.4880952 |
| J      | 24.55             | 15       | 12.5   | 4.3       | 0.344        | 0.172     | 0.422     |
| А      | 24.55             | 15.3     | 12.3   | 3.3       | 0.2682927    | 0.1341463 | 0.3841463 |
| S      | 24.9              | 15.3     | 12.1   | 4.2       | 0.3471074    | 0.1735537 | 0.4235537 |
| 0      | 25                | 15.1     | 11.9   | 6         | 0.5042017    | 0.2521008 | 0.5021008 |
| Ν      | 25.4              | 14       | 11.8   | 7.1       | 0.6016949    | 0.3008475 | 0.5508475 |
| D      | 24.8              | 13.5     | 11.6   | 6.9       | 0.5948276    | 0.2974138 | 0.5474138 |

| Rs        | w |      | W*R s     | RH mean | ET o   |    |     | ET c   | No.of | ET c mm/ | ET o<br>mm/ |
|-----------|---|------|-----------|---------|--------|----|-----|--------|-------|----------|-------------|
| mm/day    |   |      | mm/day    | (%)     | mm/day | Кc |     | mm/day | Days  | month    | month       |
| 7.6961538 |   | 0.74 | 5.6951538 | 54.585  | 5.2    |    | 1.2 | 6.24   | 31    | 193.44   | 161.2       |
| 8.3516949 |   | 0.76 | 6.3472881 | 58.25   | 5.3    |    | 0.8 | 4.24   | 28    | 118.72   | 148.4       |
| 8.35125   |   | 0.76 | 6.34695   | 66.335  | 5.3    |    | 0.5 | 2.65   | 31    | 82.15    | 164.3       |
| 8.4651639 |   | 0.76 | 6.4335246 | 73.805  | 5      |    | 0.2 | 1      | 30    | 30       | 150         |
| 8.0290323 |   | 0.76 | 6.1020645 | 76.555  | 4.5    |    | 0.3 | 1.35   | 31    | 41.85    | 139.5       |
| 7.272619  |   | 0.74 | 5.3817381 | 80.39   | 4      |    | 0.3 | 1.2    | 30    | 36       | 120         |
| 6.33      |   | 0.74 | 4.6842    | 81.97   | 3.2    |    | 0.6 | 1.92   | 31    | 59.52    | 99.2        |
| 5.877439  |   | 0.74 | 4.3493049 | 81.085  | 3.1    |    | 0.8 | 2.48   | 31    | 76.88    | 96.1        |
| 6.4803719 |   | 0.74 | 4.7954752 | 80.11   | 3.6    |    | 1.2 | 4.32   | 30    | 129.6    | 108         |
| 7.5817227 |   | 0.74 | 5.6104748 | 77.75   | 4.2    |    | 1.2 | 5.04   | 31    | 156.24   | 130.2       |
| 7.7118644 |   | 0.74 | 5.7067797 | 74      | 4.3    |    | 1.2 | 5.16   | 30    | 154.8    | 129         |
| 7.3900862 |   | 0.74 | 5.4686638 | 64.555  | 4.2    |    | 1.2 | 5.04   | 31    | 156.24   | 130.2       |
|           |   |      |           |         |        |    |     |        | TOTAL | 1235.44  | 1576.1      |

|        | TABLE 4            | .11 EJURA | LAT.7. <mark>38W</mark> | LON<br>1.36W | ALT.225n  | n.        |           |
|--------|--------------------|-----------|-------------------------|--------------|-----------|-----------|-----------|
| Months | T m <sup>o</sup> C | R a mm/   | N                       | n            | n/N       | 0.5*n/N   | 0.25+     |
|        |                    | day       |                         |              |           |           | 0.5*n/N   |
| J      | 26.85              | 13.8      | 11.7                    | 7.2          | 0.6153846 | 0.3076923 | 0.5576923 |
| F      | 28.25              | 14.6      | 11.8                    | 7.6          | 0.6440678 | 0.3220339 | 0.5720339 |
| M      | 28.6               | 15.3      | 12                      | 7.1          | 0.5916667 | 0.2958333 | 0.5458333 |
| A      | <mark>28.15</mark> | 15.3      | 12.2                    | 7.4          | 0.6065574 | 0.3032787 | 0.5532787 |
| M      | 27.4               | 15.2      | 12.4                    | 6.9          | 0.5564516 | 0.2782258 | 0.5282258 |
| J      | 26.3               | 14.9      | 12.6                    | 6            | 0.4761905 | 0.2380952 | 0.4880952 |
| J      | 25.55              | 15        | 12.5                    | 4.3          | 0.344     | 0.172     | 0.422     |
| A      | 25.3               | 15.3      | 12.3                    | 3.3          | 0.2682927 | 0.1341463 | 0.3841463 |
| S      | 25.8               | 15.3      | 12.1                    | 4.2          | 0.3471074 | 0.1735537 | 0.4235537 |
| 0      | 26.35              | 15.1      | 11.9                    | 6            | 0.5042017 | 0.2521008 | 0.5021008 |
| N      | 26.85              | 14        | 11.8                    | 7.1          | 0.6016949 | 0.3008475 | 0.5508475 |
| D      | 26.2               | 13.5      | 11.6                    | 6.9          | 0.5948276 | 0.2974138 | 0.5474138 |
|        |                    |           |                         |              |           |           |           |

| Rs        | W    | W*R s                  | RH mean | ET o   |    |             | ET c   | No.of | ET | c mm/  | mm/   |
|-----------|------|------------------------|---------|--------|----|-------------|--------|-------|----|--------|-------|
| mm/day    |      | mm/day                 | (%)     | mm/day | Kc | -           | mm/day | days  | mo | onth   | month |
| 7.6961538 | 0.77 | 5.9260385              | 68.5252 | 4.9    | 1  | 1.2         | 5.88   | 3     | 1  | 182.28 | 151.9 |
| 8.3516949 | 0.78 | 6.514 <mark>322</mark> | 67.29   | 5.2    | 0  | 0.8         | 4.16   | 2     | 8  | 116.48 | 145.6 |
| 8.35125   | 0.78 | 6.513975               | 72.79   | 5      | C  | 0.5         | 2.5    | 3     | 1  | 77.5   | 155   |
| 8.4651639 | 0.78 | 6.6028279              | 77.719  | 5.1    | C  | 0.2         | 1.02   | 3     | 0  | 30.6   | 153   |
| 8.0290323 | 0.77 | 6.1823548              | 78.2275 | 4.3    | C  | 0.3         | 1.29   | 3     | 1  | 39.99  | 133.3 |
| 7.272619  | 0.76 | 5.5271905              | 81.52   | 4      | C  | 0.3         | 1.2    | 3     | 0  | 36     | 120   |
| 6.33      | 0.76 | 4.8108                 | 83.6165 | 3.7    | C  | 0.6         | 2.22   | 3     | 1  | 68.82  | 114.7 |
| 5.877439  | 0.75 | 4.4080793              | 83.5175 | 3.2    | C  | <b>).</b> 8 | 2.56   | 3     | 1  | 79.36  | 99.2  |
| 6.4803719 | 0.76 | 4.9250826              | 83.65   | 3.8    | 1  | 1.2         | 4.56   | 3     | 0  | 136.8  | 114   |
| 7.5817227 | 0.76 | 5.7621092              | 82.569  | 4.1    | 1  | 1.2         | 4.92   | 3     | 1  | 152.52 | 127.1 |
| 7.7118644 | 0.77 | 5.9381356              | 80.15   | 4.3    | 1  | 1.2         | 5.16   | 3     | 0  | 154.8  | 129   |
| 7.3900862 | 0.76 | 5.6164655              | 75.1915 | 4      | 1  | 1.2         | 4.8    | 3     | 1  | 148.8  | 124   |
|           |      |                        |         |        |    |             |        |       |    |        |       |

TOTAL 1223.95 1566.8

|        | TABLE 4.           | 12 WENCHI |      | LAT.7.75<br>N | LON 2.1W  | ALT.340m  |           |
|--------|--------------------|-----------|------|---------------|-----------|-----------|-----------|
| Months | T m <sup>o</sup> C | R a mm/   | N    | n             | n/N       | 0.5*n/N   | 0.25+     |
|        |                    | day       |      |               |           |           | 0.5*n/N   |
| J      | 27.4               | 13.8      | 11.7 | 7.2           | 0.6153846 | 0.3076923 | 0.5576923 |
| F      | 29.75              | 14.6      | 11.8 | 7.6           | 0.6440678 | 0.3220339 | 0.5720339 |
| М      | 31.25              | 15.3      | 12   | 7.1           | 0.5916667 | 0.2958333 | 0.5458333 |
| A      | 30.55              | 15.3      | 12.2 | 7.4           | 0.6065574 | 0.3032787 | 0.5532787 |
| Μ      | 28.8               | 15.2      | 12.4 | 6.9           | 0.5564516 | 0.2782258 | 0.5282258 |
| J      | 27.2               | 14.9      | 12.6 | 6             | 0.4761905 | 0.2380952 | 0.4880952 |
| J      | 25.55              | 15        | 12.5 | 4.3           | 0.344     | 0.172     | 0.422     |
| А      | 25.75              | 15.3      | 12.3 | 3.3           | 0.2682927 | 0.1341463 | 0.3841463 |
| S      | 26.2               | 15.3      | 12.1 | 4.2           | 0.3471074 | 0.1735537 | 0.4235537 |
| 0      | 27.7               | 15.1      | 11.9 | 6             | 0.5042017 | 0.2521008 | 0.5021008 |
| Ν      | 28.2               | 14        | 11.8 | 7.1           | 0.6016949 | 0.3008475 | 0.5508475 |
| D      | 27.15              | 13.5      | 11.6 | 6.9           | 0.5948276 | 0.2974138 | 0.5474138 |

| Rs        | w    | W*R s     | RH mean           | ET o   |    |     | ET c   | No.of | ET c mm/ | ET o<br>mm/ |
|-----------|------|-----------|-------------------|--------|----|-----|--------|-------|----------|-------------|
| mm/day    |      | mm/day    | (%)               | mm/day | Кc |     | mm/day | days  | month    | month       |
| 7.6961538 | 0.78 | 6.003     | <mark>49.5</mark> | 5.5    | 4  | 1.2 | 6.6    | 31    | 204.6    | 170.5       |
| 8.3516949 | 0.79 | 6.597839  | 54                | 6      |    | 0.8 | 4.8    | 28    | 134.4    | 168         |
| 8.35125   | 0.81 | 6.7645125 | 65                | 5.8    |    | 0.5 | 2.9    | 31    | 89.9     | 179.8       |
| 8.4651639 | 0.79 | 6.6874795 | 75.5              | 5      |    | 0.2 | 1      | 30    | 30       | 150         |
| 8.0290323 | 0.79 | 6.3429355 | 79.5              | 4.8    |    | 0.3 | 1.44   | 31    | 44.64    | 148.8       |
| 7.272619  | 0.76 | 5.5271905 | 83                | 4      |    | 0.3 | 1.2    | 30    | 36       | 120         |
| 6.33      | 0.75 | 4.7475    | 84                | 3.5    |    | 0.6 | 2.1    | 31    | 65.1     | 108.5       |
| 5.877439  | 0.75 | 4.4080793 | 83.5              | 3.1    |    | 0.8 | 2.48   | 31    | 76.88    | 96.1        |
| 6.4803719 | 0.76 | 4.9250826 | 84                | 3.6    |    | 1.2 | 4.32   | 30    | 129.6    | 108         |
| 7.5817227 | 0.77 | 5.8379265 | 83                | 4      |    | 1.2 | 4.8    | 31    | 148.8    | 124         |
| 7.7118644 | 0.78 | 6.0152542 | 78                | 4.2    |    | 1.2 | 5.04   | 30    | 151.2    | 126         |
| 7.3900862 | 0.77 | 5.6903664 | 65                | 3.9    |    | 1.2 | 4.68   | 31    | 145.08   | 120.9       |
|           |      |           |                   | 7 97   |    |     |        | TOTAL | 1256.2   | 1620.6      |

| TABLE<br>4.13 | METHOD T            | HREE :             | PENMAN<br>METHOD | ATEBUBU         | LAT.7.55N | LON.2.3W      | ALT.122m     |       |
|---------------|---------------------|--------------------|------------------|-----------------|-----------|---------------|--------------|-------|
|               | Tm( <sup>0</sup> C) | RH mean<br>(%)     | ea mbar          | RH mean<br>/100 | ed mbar   | ea-ed<br>mbar | U2<br>km/day | f(U2) |
| J             | 27                  | 60.205             | 35.7             | 0.60205         | 21.493185 | 14.206815     | 115.7        | 0.58  |
| F             | 28.5                | 61.41              | 38.7             | 0.6141          | 23.76567  | 14.93433      | 139.95       | 0.65  |
| М             | 28.85               | <mark>66.56</mark> | 40               | 0.6656          | 26.624    | 13.376        | 151.3        | 0.67  |
| A             | 28.8                | 74.03              | 39.5             | 0.7403          | 29.24185  | 10.25815      | 155.75       | 0.68  |
| Μ             | 27.75               | 76.795             | 37.8             | 0.76795         | 29.02851  | 8.77149       | 142.4        | 0.65  |
| J             | 26.9                | 80.44              | 35.7             | 0.8044          | 28.71708  | 6.98292       | 133.5        | 0.62  |
| J             | 26.3                | 81.855             | 33.6             | 0.81855         | 27.50328  | 6.09672       | 142.2        | 0.65  |
| А             | 26.15               | 82.03              | 33.6             | 0.8203          | 27.56208  | 6.03792       | 151.3        | 0.67  |
| S             | 26.45               | 82.145             | 33.6             | 0.82145         | 27.60072  | 5.99928       | 133.5        | 0.62  |
| 0             | 26.95               | 79.12              | 35.7             | 0.7912          | 28.24584  | 7.45416       | 120.15       | 0.59  |
| Ν             | 27.15               | 74.675             | 35.7             | 0.74675         | 26.658975 | 9.041025      | 115.7        | 0.58  |
| D             | 26.7                | 70.47              | 35.7             | 0.7047          | 25.15779  | 10.54221      | 102.15       | 0.54  |

|           | (1-       |         |        |         |     |           |         |         |       |                    |             |            |
|-----------|-----------|---------|--------|---------|-----|-----------|---------|---------|-------|--------------------|-------------|------------|
|           | W)*f(U2)  |         |        |         |     |           |         |         |       |                    |             |            |
| 1-W       | *(ea-ed)  | R a mm/ | N      |         | n   | n/N       | 0.5*    | n/N     |       | 0.25+              | I           | ٦s         |
|           | mm/day    | day     |        |         |     |           |         |         | 0.    | 5*n/N              | mm/d        | lay        |
| 0.23      | 1.8951891 | 13.8    | 11.7   |         | 7.2 | 0.6153846 | 0.30769 | 923     | 0.557 | 76923              | 7.69615     | 538        |
| 0.22      | 2.1356092 | 14.6    | 11.8   |         | 7.6 | 0.6440678 | 0.3220  | 339     | 0.572 | 20339              | 8.35169     | 949        |
| 0.22      | 1.9716224 | 15.3    | 12     |         | 7.1 | 0.5916667 | 0.2958  | 333     | 0.545 | 58333              | 8.351       | 25         |
| 0.22      | 1.5346192 | 15.3    | 12.2   |         | 7.4 | 0.6065574 | 0.3032  | 787     | 0.553 | 32787              | 8.46516     | 39         |
| 0.22      | 1.2543231 | 15.2    | 12.4   |         | 6.9 | 0.5564516 | 0.27822 | 258     | 0.528 | 32258              | 8.02903     | 323        |
| 0.23      | 0.9957644 | 14.9    | 12.6   |         | 6   | 0.4761905 | 0.2380  | 952     | 0.488 | 30952              | 7.2726      | 619        |
| 0.24      | 0.9510883 | 15      | 12.5   |         | 4.3 | 0.344     | 0.1     | 172     |       | 0.422              | 6           | .33        |
| 0.24      | 0.9708975 | 15.3    | 12.3   |         | 3.3 | 0.2682927 | 0.1341  | 163     | 0.384 | 1463               | 5.8774      | 39         |
| 0.24      | 0.8926929 | 15.3    | 12.1   |         | 4.2 | 0.3471074 | 0.1735  | 537     | 0.423 | 35537              | 6.48037     | '19        |
| 0.24      | 1.0555091 | 15.1    | 11.9   |         | 6   | 0.5042017 | 0.2521  | 800     | 0.502 | 21008              | 7.58172     | 227        |
| 0.23      | 1.2060727 | 14      | 11.8   |         | 7.1 | 0.6016949 | 0.30084 | 175     | 0.550 | )8475              | 7.71186     | 644        |
| 0.23      | 1.3093425 | 13.5    | 11.6   |         | 6.9 | 0.5948276 | 0.2974  | 138     | 0.547 | 74138              | 7.39008     | 362        |
|           |           |         |        |         |     |           |         |         |       |                    | W*Rn +      | (1-        |
| Rns       | f(T)      | f(ed)   | f(n/N) |         | Rnl | Rn        |         | w       | v     | V*R n              | vv)i(02) (( | ea-<br>ed) |
| mm/day    |           |         | m      | m/day   | mm  | /day      |         |         |       |                    |             |            |
| 5.7721154 | 15.6      | 0.13    | 0.64   | 1.29792 | 4.4 | 741954    | 0.77    | 3.445   | 1304  | 5.340              | 3196        |            |
| 6.2637712 | 16.5      | 0.12    | 0.68   | 1.3464  | 4.9 | 173712    | 0.78    | 3.835   | 5495  | 5.971 <sup>-</sup> | 1587        |            |
| 6.2634375 | 16.5      | 0.12    | 0.64   | 1.2672  | 4.9 | 962375    | 0.78    | 3.897   | 0653  | 5.868              | 6877        |            |
| 6.348873  | 16.5      | 0.1     | 0.64   | 1.056   | 5.  | 292873    | 0.78    | 4.128   | 4409  | 5.663              | 0601        |            |
| 6.0217742 | 16.5      | 0.1     | 0.6    | 0.99    | 5.0 | 317742    | 0.78    | 3.924   | 7839  | 5.179 <sup>-</sup> | 1069        |            |
| 5.4544643 | 15.9      | 0.1     | 0.58   | 0.9222  | 4.5 | 322643    | 0.76    | 3.444   | 5209  | 4.4402             | 2852        |            |
| 4.7475    | 15.9      | 0.11    | 0.41   | 0.71709 | 4   | .03041    | 0.76    | 3.063   | 1116  | 4.014              | 1999        |            |
| 4.4080793 | 15.9      | 0.11    | 0.34   | 0.59466 | 3.8 | 134193    | 0.76    | 2.898   | 1986  | 3.869              | 0962        |            |
| 4.8602789 | 15.9      | 0.11    | 0.41   | 0.71709 | 4.1 | 431889    | 0.76    | 3.148   | 8236  | 4.041              | 5164        |            |
| 5.686292  | 16.1      | 0.11    | 0.55   | 0.97405 | 4.  | 712242    | 0.76    | 3.581   | 3039  | 4.6368             | 313         |            |
| 5.7838983 | 16.1      | 0.12    | 0.64   | 1.23648 | 4.5 | 474183    | 0.77    | 3.501   | 5121  | 4.707              | 5848        |            |
| 5 5425647 | 16.1      | 0.12    | 0.64   | 1 23648 | 13  | 060847    | 0.77    | 3 3 1 5 | 6852  | 1 6250             | 777         |            |

| RH(%)   | U2       | с           | ЕТо       |    | 1   | ETC       | No.of |    | ET c mm/  | ET o mm<br>/ |
|---------|----------|-------------|-----------|----|-----|-----------|-------|----|-----------|--------------|
| 0600hrs | m/s      |             | mm/day    | Kc |     | mm/day    | days  |    | month     | month        |
| 77      | 1.339    | 1.05        | 5.6073355 |    | 1.2 | 6.7288027 | 3     | 31 | 208.59288 | 173.8274     |
| 79      | 1.5965   | 1.1         | 6.5682746 |    | 0.8 | 5.2546197 | 2     | 28 | 147.12935 | 183.91169    |
| 84      | 1.751    | 1.1         | 6.4555564 |    | 0.5 | 3.2277782 | 3     | 31 | 100.06112 | 200.12225    |
| 88      | 1.8025   | 1.1         | 6.2293662 |    | 0.2 | 1.2458732 | 3     | 30 | 37.376197 | 186.88098    |
| 90      | 1.648    | 1.1         | 5.6970176 |    | 0.3 | 1.7091053 | 3     | 31 | 52.982264 | 176.60755    |
| 92      | 1.545    | 0.99        | 4.3958824 |    | 0.3 | 1.3187647 | 3     | 30 | 39.562942 | 131.87647    |
| 93      | 1.648    | 0.98        | 3.9339159 |    | 0.6 | 2.3603496 | 3     | 31 | 73.170836 | 121.95139    |
| 92      | 1.751    | 0.95        | 3.6756414 |    | 0.8 | 2.9405131 | 3     | 31 | 91.155906 | 113.94488    |
| 92      | 1.545    | 1.05        | 4.2435923 |    | 1.2 | 5.0923107 | 3     | 30 | 152.76932 | 127.30777    |
| 91      | 1.3905   | 1.03        | 4.7759174 |    | 1.2 | 5.7311009 | 3     | 31 | 177.66413 | 148.05344    |
| 90      | 1.339    | 1.04        | 4.8958882 |    | 1.2 | 5.8750659 | 3     | 30 | 176.25198 | 146.87665    |
| 87      | 1.1845   | 1.02        | 4.7175282 |    | 1.2 | 5.6610339 | 3     | 31 | 175.49205 | 146.24337    |
|         | U2 m/s = | Uday/Unight |           |    |     |           | TOTAL |    | 1432.209  | 1857.6038    |

| TABLE 4.14<br>BEREKUM |       | LAT.7.45<br>N | LON<br>2.59W | ALT.304 | m         |           |        |       |
|-----------------------|-------|---------------|--------------|---------|-----------|-----------|--------|-------|
| Months                |       | RH mean       | ea mbar      | RH mean | ed mbar   | ea-ed     | U2     | f(U2) |
|                       |       | (%)           |              | /100    |           | mbar      | km/day |       |
| J                     | 25    | 54.585        | 31.7         | 0.54585 | 17.303445 | 14.396555 | 115.7  | 0.58  |
| F                     | 26.6  | 58.25         | 35.7         | 0.5825  | 20.79525  | 14.90475  | 139.95 | 0.65  |
| Μ                     | 26.9  | 66.335        | 35.7         | 0.66335 | 23.681595 | 12.018405 | 151.3  | 0.67  |
| А                     | 26.5  | 73.805        | 35.7         | 0.73805 | 26.348385 | 9.351615  | 155.75 | 0.68  |
| Μ                     | 26    | 76.555        | 33.6         | 0.76555 | 25.72248  | 7.87752   | 142.4  | 0.65  |
| J                     | 25.25 | 80.39         | 31.7         | 0.8039  | 25.48363  | 6.21637   | 133.5  | 0.62  |
| J                     | 24.55 | 81.97         | 31.7         | 0.8197  | 25.98449  | 5.71551   | 142.2  | 0.65  |
| А                     | 24.55 | 81.085        | 31.7         | 0.81085 | 25.703945 | 5.996055  | 151.3  | 0.67  |
| S                     | 24.9  | 80.11         | 31.7         | 0.8011  | 25.39487  | 6.30513   | 133.5  | 0.62  |
| 0                     | 25    | 77.75         | 31.7         | 0.7775  | 24.64675  | 7.05325   | 120.15 | 0.59  |
| Ν                     | 25.4  | 74            | 31.7         | 0.74    | 23.458    | 8.242     | 115.7  | 0.58  |
| D                     | 24.8  | 64.555        | 31.7         | 0.64555 | 20.463935 | 11.236065 | 102.15 | 0.54  |

| 1-W       | *(ea-ed)  | R a mm/ | N      | n       | n/N       | 0.5*n/N   | 0.25+     | Rs                |              |
|-----------|-----------|---------|--------|---------|-----------|-----------|-----------|-------------------|--------------|
|           | mm/day    | day     |        |         |           |           | 0.5*n/N   | mm/day            |              |
| 0.26      | 2.1710005 | 13.8    | 11.7   | 7.2     | 0.6153846 | 0.3076923 | 0.5576923 | 7.6961538         |              |
| 0.24      | 2.325141  | 14.6    | 11.8   | 7.6     | 0.6440678 | 0.3220339 | 0.5720339 | 8.3516949         |              |
| 0.24      | 1.9325595 | 15.3    | 12     | 7.1     | 0.5916667 | 0.2958333 | 0.5458333 | 8.35125           |              |
| 0.24      | 1.5261836 | 15.3    | 12.2   | 7.4     | 0.6065574 | 0.3032787 | 0.5532787 | 8.4651639         |              |
| 0.24      | 1.2288931 | 15.2    | 12.4   | 6.9     | 0.5564516 | 0.2782258 | 0.5282258 | 8.0290323         |              |
| 0.26      | 1.0020788 | 14.9    | 12.6   | 6       | 0.4761905 | 0.2380952 | 0.4880952 | 7.272619          |              |
| 0.26      | 0.9659212 | 15      | 12.5   | 4.3     | 0.344     | 0.172     | 0.422     | 6.33              |              |
| 0.26      | 1.0445128 | 15.3    | 12.3   | 3.3     | 0.2682927 | 0.1341463 | 0.3841463 | 5.877439          |              |
| 0.26      | 1.016387  | 15.3    | 12.1   | 4.2     | 0.3471074 | 0.1735537 | 0.4235537 | 6.4803719         |              |
| 0.26      | 1.0819686 | 15.1    | 11.9   | 6       | 0.5042017 | 0.2521008 | 0.5021008 | 7.5817227         |              |
| 0.26      | 1.2428936 | 14      | 11.8   | 7.1     | 0.6016949 | 0.3008475 | 0.5508475 | 7.7118644         |              |
| 0.26      | 1.5775435 | 13.5    | 11.6   | 6.9     | 0.5948276 | 0.2974138 | 0.5474138 | 7.3900862         |              |
| Rns       | f(T)      | f(ed)   | f(n/N) | Rni     | Rn        | w         | W*R n     | W*Rn +(1-W<br>ed) | ')f(U2)*(ea- |
| mm/day    |           |         | 1.7    | mm/day  | mm/day    |           |           |                   |              |
| 5.7721154 | 15.6      | 0.17    | 0.64   | 1.69728 | 4.0748354 | 0.74      | 3.0153782 |                   | 5.1863787    |
| 6.2637712 | 16.1      | 0.13    | 0.68   | 1.42324 | 4.8405312 | 0.76      | 3.6788037 |                   | 6.0039447    |
| 6.2634375 | 16.1      | 0.11    | 0.64   | 1.13344 | 5.1299975 | 0.76      | 3.8987981 |                   | 5.8313576    |
| 6.348873  | 16.1      | 0.12    | 0.64   | 1.23648 | 5.112393  | 0.76      | 3.8854186 |                   | 5.4116022    |
| 6.0217742 | 15.9      | 0.12    | 0.6    | 1.1448  | 4.8769742 | 0.76      | 3.7065004 |                   | 4.9353935    |
| 5.4544643 | 15.6      | 0.12    | 0.58   | 1.08576 | 4.3687043 | 0.74      | 3.2328412 |                   | 4.23492      |
| 4.7475    | 15.6      | 0.12    | 0.41   | 0.76752 | 3.97998   | 0.74      | 2.9451852 |                   | 3.9111064    |
| 4.4080793 | 15.6      | 0.12    | 0.34   | 0.63648 | 3.7715993 | 0.74      | 2.7909835 |                   | 3.8354962    |
| 4.8602789 | 15.6      | 0.12    | 0.41   | 0.76752 | 4.0927589 | 0.74      | 3.0286416 |                   | 4.0450286    |
| 5.686292  | 15.6      | 0.11    | 0.55   | 0.9438  | 4.742492  | 0.74      | 3.5094441 |                   | 4.5914126    |
| 5.7838983 | 15.6      | 0.14    | 0.64   | 1.39776 | 4.3861383 | 0.74      | 3.2457423 |                   | 4.4886359    |
| 5.5425647 | 15.6      | 0.14    | 0.64   | 1.39776 | 4.1448047 | 0.74      | 3.0671554 |                   | 4.644699     |

| RH(%)   | U2     | с    | E To      |    |     | ETc       | No.of |    | ET c mm/  | ET o<br>mm/ |
|---------|--------|------|-----------|----|-----|-----------|-------|----|-----------|-------------|
| 0600hrs | m/s    |      | mm/day    | Кc |     | mm/day    | days  |    | month     | month       |
| 74      | 1.339  | 1.05 | 5.4456976 |    | 1.2 | 6.5348371 |       | 31 | 202.57995 | 168.81663   |
| 80      | 1.5965 | 1.1  | 6.6043392 |    | 0.8 | 5.2834713 |       | 28 | 147.9372  | 184.9215    |
| 87      | 1.751  | 1.1  | 6.4144934 |    | 0.5 | 3.2072467 |       | 31 | 99.424647 | 198.84929   |
| 90      | 1.8025 | 1.1  | 5.9527624 |    | 0.2 | 1.1905525 |       | 30 | 35.716575 | 178.58287   |
| 91      | 1.648  | 1.1  | 5.4289329 |    | 0.3 | 1.6286799 |       | 31 | 50.489076 | 168.29692   |
| 93      | 1.545  | 0.99 | 4.1925708 |    | 0.3 | 1.2577712 |       | 30 | 37.733137 | 125.77712   |
| 93      | 1.648  | 0.98 | 3.8328843 |    | 0.6 | 2.2997306 |       | 31 | 71.291647 | 118.81941   |
| 92      | 1.751  | 0.95 | 3.6437214 |    | 0.8 | 2.9149771 |       | 31 | 90.364291 | 112.95536   |
| 91      | 1.545  | 1.05 | 4.24728   |    | 1.2 | 5.096736  |       | 30 | 152.90208 | 127.4184    |
| 90      | 1.3905 | 1.03 | 4.729155  |    | 1.2 | 5.674986  |       | 31 | 175.92457 | 146.60381   |
| 90      | 1.339  | 1.04 | 4.6681814 |    | 1.2 | 5.6018177 |       | 30 | 168.05453 | 140.04544   |
| 82      | 1.1845 | 1.02 | 4.737593  |    | 1.2 | 5.6851115 |       | 31 | 176.23846 | 146.86538   |

TOTAL

1408.6562 1817.9521

| TABLE 4. | 15 EJURA                      | LAT.7.38W | LON<br>1.36W          | ALT.225 n | n.        |           |           |           |
|----------|-------------------------------|-----------|-----------------------|-----------|-----------|-----------|-----------|-----------|
| Months   | T m( <sup>0</sup> C)          | RH mean   | ea <mark>m</mark> bar | RH mean   | ed mbar   | ea-ed     | U2        | f(U2)     |
|          |                               | (%)       | _                     | /100      |           | mbar      | km/day    |           |
| J        | 26.85                         | 68.5252   | 35.7                  | 0.685252  | 24.463496 | 11.236504 | 115.7     | 0.58      |
| F        | 28.25                         | 67.29     | 37.8                  | 0.6729    | 25.43562  | 12.36438  | 139.95    | 0.65      |
| М        | 28.6                          | 72.79     | 40.1                  | 0.7279    | 29.18879  | 10.91121  | 151.3     | 0.67      |
| A        | <mark>28.15</mark>            | 77.719    | 37.8                  | 0.77719   | 29.377782 | 8.422218  | 155.75    | 0.68      |
| М        | 27.4                          | 78.2275   | 35.7                  | 0.782275  | 27.927218 | 7.7727825 | 142.4     | 0.65      |
| J        | 26.3                          | 81.52     | 33.6                  | 0.8152    | 27.39072  | 6.20928   | 133.5     | 0.62      |
| J        | 25.55                         | 83.6165   | 33.6                  | 0.836165  | 28.095144 | 5.504856  | 142.2     | 0.65      |
| A        | 25.3                          | 83.5175   | 31.7                  | 0.835175  | 26.475048 | 5.2249525 | 151.3     | 0.67      |
| S        | 25.8                          | 83.65     | 33.6                  | 0.8365    | 28.1064   | 5.4936    | 133.5     | 0.62      |
| 0        | 26.35                         | 82.569    | 33.6                  | 0.82569   | 27.743184 | 5.856816  | 120.15    | 0.59      |
| N        | 26.85                         | 80.15     | 35.7                  | 0.8015    | 28.61355  | 7.08645   | 115.7     | 0.58      |
| D        | 26.2                          | 75.1915   | 33.6                  | 0.751915  | 25.264344 | 8.335656  | 102.15    | 0.54      |
|          | (1-<br>W)*f <mark>(U2)</mark> |           |                       |           |           |           |           |           |
| 1-W      | *(ea-ed)                      | R a mm/   | N                     | n         | n/N       | 0.5*n/N   | 0.25+     | Rs        |
|          | mm/day                        | day       |                       |           |           |           | 0.5*n/N   | mm/day    |
| 0.23     | 3 1.4989496                   | 13.8      | 11.7                  | 7.2       | 0.6153846 | 0.3076923 | 0.5576923 | 7.6961538 |
| 0.22     | 2 1.7681063                   | 14.6      | 11.8                  | 7.6       | 0.6440678 | 0.3220339 | 0.5720339 | 8.3516949 |
| 0.22     | 2 1.6083124                   | 15.3      | 12                    | 7.1       | 0.5916667 | 0.2958333 | 0.5458333 | 8.35125   |
| 0.22     | 1.2599638                     | 15.3      | 12.2                  | 7.4       | 0.6065574 | 0.3032787 | 0.5532787 | 8.4651639 |
| 0.23     | 3 1.162031                    | 15.2      | 12.4                  | 6.9       | 0.5564516 | 0.2782258 | 0.5282258 | 8.0290323 |
| 0.24     | 0.9239409                     | 14.9      | 12.6                  | 6         | 0.4761905 | 0.2380952 | 0.4880952 | 7.272619  |
| 0.24     | 0.8587575                     | 15        | 12.5                  | 4.3       | 0.344     | 0.172     | 0.422     | 6.33      |
| 0.25     | 5 0.8751795                   | 15.3      | 12.3                  | 3.3       | 0.2682927 | 0.1341463 | 0.3841463 | 5.877439  |
| 0.24     | 0.8174477                     | 15.3      | 12.1                  | 4.2       | 0.3471074 | 0.1735537 | 0.4235537 | 6.4803719 |
| 0.24     | 0.8293251                     | 15.1      | 11.9                  | 6         | 0.5042017 | 0.2521008 | 0.5021008 | 7.5817227 |
| 0.23     | 3 0.9453324                   | 14        | 11.8                  | 7.1       | 0.6016949 | 0.3008475 | 0.5508475 | 7.7118644 |
| 0.24     | 1.080301                      | 13.5      | 11.6                  | 6.9       | 0.5948276 | 0.2974138 | 0.5474138 | 7.3900862 |

| Rns       | f(T) | f(ed) | f(n/N) | Rnl     | Rn        | w |      | W*R n     | W*Rn +(1-W)f(U2)*(ea-<br>ed) |
|-----------|------|-------|--------|---------|-----------|---|------|-----------|------------------------------|
| mm/day    |      |       |        | mm/day  | mm/day    |   |      |           |                              |
| 5.7721154 | 16.1 | 0.12  | 0.64   | 1.23648 | 4.5356354 |   | 0.77 | 3.4924392 | 4.9913888                    |
| 6.2637712 | 16.3 | 0.12  | 0.68   | 1.33008 | 4.9336912 |   | 0.78 | 3.8482791 | 5.6163855                    |
| 6.2634375 | 16.5 | 0.1   | 0.64   | 1.056   | 5.2074375 |   | 0.78 | 4.0618013 | 5.6701136                    |
| 6.348873  | 16.3 | 0.1   | 0.64   | 1.0432  | 5.305673  |   | 0.78 | 4.1384249 | 5.3983887                    |
| 6.0217742 | 16.1 | 0.11  | 0.6    | 1.0626  | 4.9591742 |   | 0.77 | 3.8185641 | 4.9805951                    |
| 5.4544643 | 15.9 | 0.12  | 0.58   | 1.10664 | 4.3478243 |   | 0.76 | 3.3043465 | 4.2282873                    |
| 4.7475    | 15.9 | 0.11  | 0.41   | 0.71709 | 4.03041   |   | 0.76 | 3.0631116 | 3.9218691                    |
| 4.4080793 | 15.6 | 0.12  | 0.34   | 0.63648 | 3.7715993 |   | 0.75 | 2.8286995 | 3.703879                     |
| 4.8602789 | 15.9 | 0.11  | 0.41   | 0.71709 | 4.1431889 |   | 0.76 | 3.1488236 | 3.9662713                    |
| 5.686292  | 15.9 | 0.11  | 0.55   | 0.96195 | 4.724342  |   | 0.76 | 3.5904999 | 4.4198251                    |
| 5.7838983 | 16.1 | 0.11  | 0.64   | 1.13344 | 4.6504583 |   | 0.77 | 3.5808529 | 4.5261853                    |
| 5.5425647 | 15.9 | 0.12  | 0.64   | 1.22112 | 4.3214447 |   | 0.76 | 3.2842979 | 4.364599                     |

| RH(%)<br>600hrs | U2<br>m/s | с    | E To<br>mm/day | Kc | ١.  | E T c<br>mm/day | No.of<br>days | ET c mm/<br>month | ET o<br>mm/<br>month |
|-----------------|-----------|------|----------------|----|-----|-----------------|---------------|-------------------|----------------------|
| 75.375          | 1.339     | 1.05 | 5.2409583      | 11 | 1.2 | 6.2891499       | 31            | 194.96365         | 162.46971            |
| 79              | 1.5965    | 1.1  | 6.178024       |    | 0.8 | 4.9424192       | 28            | 138.38774         | 172.98467            |
| 85.75           | 1.751     | 1.1  | 6.237125       |    | 0.5 | 3.1185625       | 31            | 96.675437         | 193.35087            |
| 88.938          | 1.8025    | 1.1  | 5.9382276      |    | 0.2 | 1.1876455       | 30            | 35.629366         | 178.14683            |
| 89.125          | 1.648     | 1.1  | 5.4786546      |    | 0.3 | 1.6435964       | 31            | 50.951488         | 169.83829            |
| 89.75           | 1.545     | 0.99 | 4.1860044      |    | 0.3 | 1.2558013       | 30            | 37.67404          | 125.58013            |
| 89.563          | 1.648     | 0.98 | 3.8434318      |    | 0.6 | 2.3060591       | 31            | 71.487831         | 119.14638            |
| 89.125          | 1.751     | 0.95 | 3.518685       |    | 0.8 | 2.814948        | 31            | 87.263389         | 109.07924            |
| 90.25           | 1.545     | 1.05 | 4.1645848      |    | 1.2 | 4.9975018       | 30            | 149.92505         | 124.93754            |
| 90.688          | 1.3905    | 1.03 | 4.5524198      |    | 1.2 | 5.4629038       | 31            | 169.35002         | 141.12501            |
| 89.75           | 1.339     | 1.04 | 4.7072327      |    | 1.2 | 5.6486793       | 30            | 169.46038         | 141.21698            |
| 82.563          | 1.1845    | 1.02 | 4.4518909      |    | 1.2 | 5.3422691       | 31            | 165.61034         | 138.00862            |
|                 |           |      |                |    |     |                 | TOTAL         | 1367.3787         | 1775.8843            |

|                   |                       |               |           |             |         | TOTAL   | 1367.3787 | 1775.8843 |
|-------------------|-----------------------|---------------|-----------|-------------|---------|---------|-----------|-----------|
| TABLE 4.16 WENCHI |                       | LAT.7.75<br>N | LON 2.1 V | V ALT.340 m |         |         |           |           |
| Months            | T m ( <sup>0</sup> C) | RH mean       | ea mbar   | RH mean     | ed mbar | ea-ed   | U2        | f(U2)     |
|                   | 10                    | (%)           |           | /100        |         | mbar    | km/day    |           |
| J                 | 27.4                  | 49.5          | 35.7      | 0.495       | 17.6715 | 18.0285 | 115.7     | 0.58      |
| F                 | 29.75                 | 54            | 42.4      | 0.54        | 22.896  | 19.504  | 139.95    | 0.65      |
| Μ                 | 31.25                 | 65            | 44.9      | 0.65        | 29.185  | 15.715  | 151.3     | 0.67      |
| A                 | 30.55                 | 75.5          | 44.9      | 0.755       | 33.8995 | 11.0005 | 155.75    | 0.68      |
| М                 | 28.8                  | 79.5          | 40.1      | 0.795       | 31.8795 | 8.2205  | 142.4     | 0.65      |
| J                 | 27.2                  | 83            | 35.7      | 0.83        | 29.631  | 6.069   | 133.5     | 0.62      |
| J                 | 25.55                 | 84            | 33.6      | 0.84        | 28.224  | 5.376   | 142.2     | 0.65      |
| А                 | 25.75                 | 83.5          | 33.6      | 0.835       | 28.056  | 5.544   | 151.3     | 0.67      |
| S                 | 26.2                  | 84            | 33.6      | 0.84        | 28.224  | 5.376   | 133.5     | 0.62      |
| 0                 | 27.7                  | 83            | 37.8      | 0.83        | 31.374  | 6.426   | 120.15    | 0.59      |
| Ν                 | 28.2                  | 78            | 37.8      | 0.78        | 29.484  | 8.316   | 115.7     | 0.58      |
| D                 | 27.15                 | 65            | 35.7      | 0.65        | 23.205  | 12.495  | 102.15    | 0.54      |

| 1-W         | *(ea-ed)  | R a mm/ | Ν         | n       | n/N        | 0.5*n/N   | 0.25+          | Rs                           |
|-------------|-----------|---------|-----------|---------|------------|-----------|----------------|------------------------------|
|             | mm/day    | day     |           |         |            |           | 0.5*n/N        | mm/day                       |
| 0.22        | 2.3004366 | 13.8    | 11.7      | 7.2     | 0.6153846  | 0.3076923 | 0.5576923      | 7.6961538                    |
| 0.21        | 2.662296  | 14.6    | 11.8      | 7.6     | 0.6440678  | 0.3220339 | 0.5720339      | 8.3516949                    |
| 0.19        | 2.0005195 | 15.3    | 12        | 7.1     | 0.5916667  | 0.2958333 | 0.5458333      | 8.35125                      |
| 0.21        | 1.5708714 | 15.3    | 12.2      | 7.4     | 0.6065574  | 0.3032787 | 0.5532787      | 8.4651639                    |
| 0.21        | 1.1220983 | 15.2    | 12.4      | 6.9     | 0.5564516  | 0.2782258 | 0.5282258      | 8.0290323                    |
| 0.24        | 0.9030672 | 14.9    | 12.6      | 6       | 0.4761905  | 0.2380952 | 0.4880952      | 7.272619                     |
| 0.25        | 0.8736    | 15      | 12.5      | 4.3     | 0.344      | 0.172     | 0.422          | 6.33                         |
| 0.25        | 0.92862   | 15.3    | 12.3      | 3.3     | 0.2682927  | 0.1341463 | 0.3841463      | 5.877439                     |
| 0.24        | 0.7999488 | 15.3    | 12.1      | 4.2     | 0.3471074  | 0.1735537 | 0.4235537      | 6.4803719                    |
| 0.23        | 0.8720082 | 15.1    | 11.9      | 6       | 0.5042017  | 0.2521008 | 0.5021008      | 7.5817227                    |
| 0.22        | 1.0611216 | 14      | 11.8      | 7.1     | 0.6016949  | 0.3008475 | 0.5508475      | 7.7118644                    |
| 0.23        | 1.551879  | 13.5    | 11.6      | 6.9     | 0.5948276  | 0.2974138 | 0.5474138      | 7.3900862                    |
| Rns         | f(T)      | f(ed)   | f(n/N)    | Rnl     | Rn         | w         | W*R n          | W*Rn +(1-W)f(U2)*(ea-<br>ed) |
| mm/dav      | (1)       | (60)    |           | mm/day  | mm/day     |           |                | cu)                          |
| 5 7721154   | 16.1      | 0.15    | 0.64      | 1 5456  | 4 2265154  | 0.78      | 3 296682       | 5 5971186                    |
| 6 2637712   | 16.7      | 0.10    | 0.68      | 1 36272 | 4 9010512  | 0.70      | 3 8718304      | 6 5341264                    |
| 6 2634375   | 16.7      | 0.12    | 0.64      | 1.0816  | 5 1818375  | 0.10      | 4 1972884      | 6 1978079                    |
| 0.200 101 0 | 10.0      | 0.1     | 0.01      | 1.0010  | 0.1010010  | 0.01      | -              | 0.1010010                    |
| 6.348873    | 16.9      | 0.8     | 0.64      | 8.6528  | -2.303927  | 0.79      | 1.8201024      | -0.249231                    |
| 6.0217742   | 16.5      | 0.9     | 0.6       | 8.91    | 2.8882258  | 0.79      | -<br>2.2816984 | -1.1596001                   |
| 5.4544643   | 16.1      | 0.1     | 0.58      | 0.9338  | 4.5206643  | 0.76      | 3.4357049      | 4.3387721                    |
| 4.7475      | 15.9      | 0.11    | 0.41      | 0.71709 | 4.03041    | 0.75      | 3.0228075      | 3.8964075                    |
| 4.4080793   | 15.9      | 0.11    | 0.34      | 0.59466 | 3.8134193  | 0.75      | 2.8600645      | 3.7886845                    |
| 4.8602789   | 15.9      | 0.11    | 0.41      | 0.71709 | 4.1431889  | 0.76      | 3.1488236      | 3.9487724                    |
| 5.686292    | 16.1      | 0.9     | 0.55      | 7,9695  | -2.283208  | 0.77      | -<br>1.7580701 | -0.8860619                   |
| 5.7838983   | 16.3      | 0.1     | 0.64      | 1.0432  | 4,7406983  | 0.78      | 3.6977447      | 4.7588663                    |
| 5.5425647   | 16.1      | 0.12    | 0.64      | 1.23648 | 4.3060847  | 0.77      | 3.3156852      | 4.8675642                    |
|             |           | 610     |           | <-> 1   |            |           |                | ET o                         |
| RH(%)       | U2        | C       | ETo       | 100     | ETC        | No.of     | ET c mm/       | mm/                          |
| 0600hrs     | m/s       |         | mm/day    | Kc      | mm/day     | days      | month          | month                        |
| 68          | 1.339     | 1.05    | 5.8769745 | 1.2     | 7.0523694  | 31        | 218.62345      | 182.18621                    |
| 76          | 1.5965    | 1.1     | 7.1875391 | 0.8     | 5.7500313  | 28        | 161.00088      | 201.25109                    |
| 86          | 1.751     | 1.1     | 6.8175887 | 0.5     | 3.4087943  | 31        | 105.67262      | 211.34525                    |
| 92          | 1.8025    | 1.1     | 0.2741541 | 0.2     | 0.0548308  | 30        | 1.6449244      | -8.224622                    |
| 94          | 1 648     | 11      | -         | 03      | -0 382668  | 31        | -<br>11 862709 | -<br>39 542365               |
| 96          | 1.040     | 0.99    | 4 2953843 | 0.0     | 1 2886153  | 30        | 38 658459      | 128 86153                    |
| 96          | 1.040     | 0.00    | 3 8184794 | 0.0     | 2 2010876  | 31        | 71 023716      | 118 37286                    |
| 95          | 1.040     | 0.00    | 3 5002502 | 0.0     | 2.2310070  | 31        | 89 261406      | 111 57676                    |
| 06<br>30    | 1.751     | 1.05    | 4 146211  | 1.0     | 2.07 J4002 | 30<br>31  | 149 2636       | 124 38633                    |
| 50          | 1.040     | 1.05    |           | 1.2     |            | 50        | 173.2030       | -                            |
| 96          | 1.3905    | 1.03    | 0.9126438 | 1.2     | 1.0951726  | 31        | -33.95035      | 28.291958                    |
| 94          | 1.339     | 1.04    | 4.9492209 | 1.2     | 5.9390651  | 30        | 178.17195      | 148.47663                    |
| 84          | 1.1845    | 1.02    | 4.9649155 | 1.2     | 5.9578986  | 31        | 184.69486      | 153.91238                    |

TOTAL 11

*1148.913* 1304.3101

| TABLE4.17<br>ATEBUBU | METHOD FO           | OUR :      | THORNI       | HWA    | TE       | ATEBUBU      | LAT.7.55N | LON.2.3W   | ALT.122m |
|----------------------|---------------------|------------|--------------|--------|----------|--------------|-----------|------------|----------|
| Months               |                     | at Index   | DET          | Latitu | udo      | Monthly con  | sumptivo  | ET o mm    |          |
| WOITINS              | i i                 |            | cm           | facto  | r        | use.cm       | mm        | ,<br>month |          |
| J                    | 27                  | 12.9       | 14           |        | 1.1      | 15.4         | 154       | 140        |          |
| F                    | 28.5                | 14         | 15.1         |        | 0.92     | 13.892       | 138.92    | 151        |          |
| М                    | 28.85               | 14.2       | 14.3         |        | 1.03     | 14.729       | 147.29    | 143        |          |
| А                    | 28.8                | 14.2       | 15.3         |        | 1.02     | 15.606       | 156.06    | 153        |          |
| М                    | 27.75               | 14.1       | 14.6         |        | 1.07     | 15.622       | 156.22    | 146        |          |
| J                    | 26.9                | 12.8       | 13.8         |        | 1.04     | 14.352       | 143.52    | 138        |          |
| J                    | 26.3                | 12.4       | 12.2         |        | 1.07     | 13.054       | 130.54    | 122        |          |
| А                    | 26.15               | 12.1       | 12           |        | 1.06     | 12.72        | 127.2     | 120        |          |
| S                    | 26.45               | 12.5       | 12.3         |        | 1.02     | 12.546       | 125.46    | 123        |          |
| 0                    | 26.95               | 12.9       | 13.8         |        | 1.02     | 14.076       | 140.76    | 138        |          |
| Ν                    | 27.15               | 12.9       | 14.2         |        | 0.98     | 13.916       | 139.16    | 142        |          |
| D                    | 26.7                | 12.8       | 13.6         |        | 0.99     | 13.464       | 134.64    | 136        |          |
|                      | TOTAL               | 157.8      |              |        |          | TOTAL        | 1693.77   | 1652       |          |
|                      | BEBEKIIM            | 1 AT 7 45N | LON          |        | ALT 204  | ~            |           |            |          |
| 4.10                 | DERENUI             | Heat       | 2.397        |        | AL1.304  | m            |           | ET o       |          |
| Months               | T m <sup>o</sup> C  | Index      | PET          |        | Latitude | Monthly cons | sumptive  | mm/        |          |
|                      |                     | i          | cm           |        | factor   | use.cm       | mm        | month      |          |
| J                    | 25                  | 11.4       |              | 25     | 1.1      | 27.5         | 275       | 250        |          |
| F                    | 26.6                | 12.7       |              | 13.5   | 0.92     | 12.42        | 124.2     | 135        |          |
| Μ                    | 26.9                | 12.9       |              | 13.8   | 1.03     | 14.214       | 142.14    | 138        |          |
| A                    | 26.5                | 12.5       | ~            | 13.5   | 1.02     | 13.77        | 137.7     | 135        |          |
| М                    | 26                  | 12.1       |              | 13     | 1.07     | 13.91        | 139.1     | 130        |          |
| J                    | 2 <mark>5.25</mark> | 11.4       |              | 11.1   | 1.04     | 11.544       | 115.44    | 111        |          |
| J                    | 24.55               | 11.1       | 9            | 10.9   | 1.07     | 11.663       | 116.63    | 109        |          |
| А                    | 24.55               | 11.1       |              | 10.9   | 1.06     | 11.554       | 115.54    | 109        |          |
| S                    | 24.9                | 11.4       |              | 11     | 1.02     | 11.22        | 112.2     | 110        |          |
| 0                    | 25                  | 11.4       |              | 11     | 1.02     | 11.22        | 112.2     | 110        |          |
| Ν                    | 25.4                | 11.6       |              | 11     | 0.98     | 10.78        | 107.8     | 110        |          |
| D                    | 24.8                | 11.2       |              | 11     | 0.99     | 10.89        | 108.9     | 110        |          |
|                      | TOTAL               | 140.8      |              | _      |          | TOTAL        | 1606.85   | 1557       |          |
| TABLE                | E.IURA              | LAT 7 38W  | LON<br>1 36W |        | ALT 225  | n /          |           |            |          |
| 4.15                 | LUORA               | LATINGON   | 1.5011       |        | AL1.220  |              | -         | ET o       |          |
| Months               | T m <sup>o</sup> C  | Heat Index | PET          |        | Latitude | Monthly cons | umptive   | mm/        |          |
|                      |                     | i          | cm           | _      | factor   | use.cm       | mm        | month      |          |
| J                    | 26.85               | 12.9       | 251          | 13.7   | 1.1      | 15.07        | 150.7     | 137        |          |
| F                    | 28.25               | 13.8       |              | 12.1   | 0.92     | 11.132       | 111.32    | 121        |          |
| М                    | 28.6                | 13.7       |              | 13.6   | 1.03     | 14.008       | 140.08    | 136        |          |
| A                    | 28.15               | 13.7       |              | 14.9   | 1.02     | 15.198       | 151.98    | 149        |          |
| М                    | 27.4                | 13         |              | 14     | 1.07     | 14.98        | 149.8     | 140        |          |
| J                    | 26.3                | 11.4       |              | 12.2   | 1.04     | 12.688       | 126.88    | 122        |          |
| J                    | 25.55               | 11.6       |              | 11.4   | 1.07     | 12.198       | 121.98    | 114        |          |
| A                    | 25.3                | 11.5       |              | 11.2   | 1.06     | 11.872       | 118.72    | 112        |          |
| S                    | 25.8                | 11.9       |              | 11.6   | 1.02     | 11.832       | 118.32    | 116        |          |
| 0                    | 26.35               | 11.4       |              | 12.2   | 1.02     | 12.444       | 124.44    | 122        |          |
| N                    | 26.85               | 12.6       |              | 13.7   | 0.98     | 13.426       | 134.26    | 137        |          |
| D                    | 26.2                | 12.3       |              | 12     | 0.99     | 11.88        | 118.8     | 120        |          |

| TABLE  | TOTAL              | 149.8<br>LAT.7.75 |       |              | TOTAL        | 1567.28  | 1526        |
|--------|--------------------|-------------------|-------|--------------|--------------|----------|-------------|
| 4.20   | WENCHI             | N                 | LON 2 | .1W ALT.340m |              |          |             |
| Months | T m <sup>o</sup> C | Heat<br>Index     | PET   | Latitude     | Monthly cons | sumptive | ET o<br>mm/ |
|        |                    | i                 | cm    | factor       | use.cm       | mm       | month       |
| J      | 27.4               | 12.2              | 14.3  | 1.1          | 15.73        | 157.3    | 143         |
| F      | 29.75              | 15                | 15.9  | 0.92         | 14.628       | 146.28   | 159         |
| Μ      | 31.25              | 16                | 16.9  | 1.03         | 17.407       | 174.07   | 169         |
| А      | 30.55              | 15.4              | 16.5  | 1.02         | 16.83        | 168.3    | 165         |
| Μ      | 28.8               | 14.2              | 15.3  | 1.07         | 16.371       | 163.71   | 153         |
| J      | 27.2               | 13                | 14.2  | 1.04         | 14.768       | 147.68   | 142         |
| J      | 25.55              | 11.7              | 11    | 1.07         | 11.77        | 117.7    | 110         |
| А      | 25.75              | 11.8              | 12    | 1.06         | 12.72        | 127.2    | 120         |
| S      | 26.2               | 12.3              | 14.2  | 1.02         | 14.484       | 144.84   | 142         |
| 0      | 27.7               | 13.1              | 14.5  | 1.02         | 14.79        | 147.9    | 145         |
| Ν      | 28.2               | 13.8              | 14.9  | 0.98         | 14.602       | 146.02   | 149         |
| D      | 27.15              | 13                | 14    | 0.99         | 13.86        | 138.6    | 140         |
|        | TOTAL              | 161.5             |       |              | TOTAL        | 1779.6   | 1737        |

| TABLE 4.21 | WENCHI        |          | 1      | N. M.Y    |
|------------|---------------|----------|--------|-----------|
| Months     | Pot Eva ,ET o |          |        | ET c mm/  |
|            | mm / month    |          | Кc     | month     |
| J          |               | 184.1    | 1.2    | 220.92    |
| F          |               | 193.3    | 0.8    | 154.64    |
| М          |               | 171.3    | 0.5    | 85.65     |
| Α          |               | 123.9    | 0.2    | 24.78     |
| М          |               | 102.7    | 0.3    | 30.81     |
| J          |               | 82.2     | 0.3    | 24.66     |
| J          |               | 69.8     | 0.6    | 41.88     |
| Α          |               | 70       | 0.8    | 56        |
| S          |               | 75.5     | 1.2    | 90.6      |
| 0          |               | 82.9     | 1.2    | 99.48     |
| Ν          |               | 104.3    | 1.2    | 125.16    |
| D          | Z             | 130.6    | 1.2    | 156.72    |
| TOTAL      |               | 390.6    |        | 1111.3    |
|            | NOTE: No dat  | a availa | ble on | Potential |

Evapotranspiration for Atebubu, Berekum and Ejura.

COMPARISON OF VARIOUS METHODS OF CROP WATER REQUIREMENT DETERMINATION

| TOWNS                                     | ATEBUBU      | BEREKUM          | EJURA        | WENCHI   |   |
|-------------------------------------------|--------------|------------------|--------------|----------|---|
| METHODS                                   | mm           | mm               | mm           | Mm       |   |
| Blaney-Criddle                            | 880.46       | 1021.11          | 937.78       | 1127.04  |   |
| Radiation                                 | 1270.85      | 1235.44          | 1223.95      | 1256.2   |   |
| Penman                                    | 1432.209     | 1408.656         | 1367.379     | 1445.913 |   |
| Thornthwaite<br>Pan<br>Evapotranspiration | 1693.77      | 1606.85<br>-     | 1567.28<br>- | 1779.6   |   |
| Table<br>4.24                             | AVERAGE ANNU | AL RAINFALL (mm) |              |          | _ |
| TOWNS                                     | ATEBUBU      | BEREKUM          | EJURA        | WENCHI   |   |
| VALUES                                    | 1882.3       | 1116.1           | 1287.5       | 1236.5   |   |
## APPENDICES

| Atebubu Mean Monthly Rainfall (mm) |      |                    |       |       |                    |                     |              |                    |                     |       |       |       |  |
|------------------------------------|------|--------------------|-------|-------|--------------------|---------------------|--------------|--------------------|---------------------|-------|-------|-------|--|
| Year                               | Jan  | Feb                | March | April | Мау                | June                | July         | Aug                | Sept                | Oct   | Nov   | Dec   |  |
| 1976                               | 8.4  | 53.9               | 45.2  | 189.7 | 82.6               | 229.3               | 39.1         | 63.2               | 259.9               | 133.7 | 88.3  | 0.0   |  |
| 1977                               | 9.7  | 16.8               | 60.7  | 89.6  | 62.8               | 121.0               | 37.0         | 39.3               | 162.2               | 156.1 | 40.6  | 7.9   |  |
| 1978                               | 0.0  | 66.6               | 149.4 | 191.4 | 205.8              | 192.3               | 73.3         | 39.7               | 146.7               | 172.2 | 22.1  | 10.7  |  |
| 1979                               | 0.0  | 0.0                | 88.1  | 23.7  | 189.1              | 143.0               | 269.1        | 158.9              | 280.1               | 281.1 | 31.0  | 0.0   |  |
| 1980                               | 32.8 | 22.9               | 48.6  | 116.3 | 195.1              | 109.9               | 176.9        | 100.9              | 387.8               | 198.6 | 18.3  | 0.0   |  |
| 1981                               | 0.0  | 22.6               | 141.2 | 99.6  | 67.7               | 128.0               | 168.9        | 317.0              | 163.3               | 52.3  | 0.0   | 0.0   |  |
| 1982                               | 0.0  | 29.2               | 55.4  | 62.7  | 94.5               | 90.1                | 93.2         | 120.7              | 78.4                | 108.6 | 25.2  | 0.0   |  |
| 1983                               | 0.0  | 0.0                | 15.2  | 56.8  | 114.8              | 124.4               | 55.3         | 64.3               | 277.9               | 16.8  | 31.5  | 32.0  |  |
| 1984                               | 0.0  | 0.0                | 206.5 | 130.2 | 212.7              | 197.5               | 177.6        | 235.7              | 112.3               | 138.4 | 25.2  | 0.0   |  |
| 1985                               | TR   | 0.0                | 62.4  | 71.6  | 52.9               | 209.0               | 236.4        | 198.3              | 326.4               | 103.4 | 37.6  | 0.0   |  |
| 1986                               | TR   | 64.8               | 153.2 | 82.1  | 49.1               | 209.3               | 132.7        | 95.2               | 171.4               | 220.1 | 26.7  | 0.0   |  |
| 1987                               | TR   | 32.8               | 45.7  | 83.5  | 96. <mark>0</mark> | <mark>126</mark> .0 | 158.3        | 282.2              | 452.5               | 180.0 | 0.0   | 0.0   |  |
| 1988                               | 5.8  | 11.7               | 37.6  | 60.0  | 207.4              | 270.1               | 221.5        | 65.3               | 271.2               | 80.4  | TR    | 40.9  |  |
| 1989                               | 0.0  | 4.3                | 147.0 | 257.7 | 130.8              | 275.0               | 260.9        | 175.5              | 197.6               | 206.6 | 0.0   | 34.7  |  |
| 1990                               | 0.8  | 24.1               | 0.0   | 195.5 | 131.7              | 139.0               | 59.8         | 113.0              | 189.2               | 141.8 | 52.2  | 109.7 |  |
| 1991                               | 0.0  | 66.5               | 84.8  | 109.9 | 184.6              | 213.7               | 198.8        | 214.5              | 86.6                | 204.6 | 8.8   | 4.5   |  |
| 1992                               | 0.0  | 0.0                | 33.2  | 123.1 | 135.3              | 334.4               | 63.6         | 7.6                | 79.2                | 90.2  | 90.5  | 0.0   |  |
| 1993                               | 0.0  | 1.9                | 173.0 | 55.9  | 114.6              | 133.2               | 82.0         | 140.7              | 195.2               | 206.1 | 69.9  | 0.0   |  |
| 1994                               | TR   | 0.0                | 105.8 | 89.9  | 110.7              | 80.4                | 27.9         | 100.4              | <mark>138</mark> .0 | 259.4 | 3.0   | 0.0   |  |
| 1995                               | 0.0  | 1.0                | 28.9  | 175.4 | 135.9              | 167.7               | 221.2        | 162.5              | 234.3               | 105.0 | 10.0  | 48.7  |  |
| 1996                               | 1.0  | 84.4               | 94.0  | 69.1  | 313.0              | 355.1               | 179.7        | 124.4              | 243.3               | 212.9 | TR    | 1.0   |  |
| 1997                               | 51.1 | 0.0                | 42.3  | 203.4 | 183.0              | 182.2               | 129.7        | 155.2              | 318.4               | 173.2 | 9.8   | 18.6  |  |
| 1998                               | 1.3  | 26.9               | 13.0  | 141.3 | 102.1              | 346.4               | 103.3        | 127.4              | 107.1               | 316.6 | 47.5  | 71.2  |  |
| 1999                               | TR   | 30.1               | 116.8 | 312.5 | 236.7              | 113.7               | 167.2        | 227.4              | 295.8               | 254.7 | 16.0  | 0.0   |  |
| 2000                               | 51.5 | 0.0                | 130.9 | 221.1 | 167.5              | 185.2               | 230.0        | 240.7              | 220.3               | 67.0  | 27.0  | 0.0   |  |
| 2001                               | 0.0  | 0.0                | 3.0   | 188.1 | 223.2              | 217.9               | 277.4        | 64.3               | 169.3               | 41.5  | TR    | 1.7   |  |
| 2002                               | 3.0  | 2.4                | 24.8  | 80.2  | 247.6              | 192.5               | 431.9        | 123.8              | 243.0               | 229.0 | 31.5  | 7.1   |  |
| 2003                               | 7.0  | 19.9               | 43.9  | 174.2 | 90.1               | 195.3               | 69.2         | 89.0               | 193.3               | 152.5 | 103.9 | 5.0   |  |
| 2004                               | 22.6 | 1 <mark>3.5</mark> | 98.3  | 204.5 | 319.4              | 173.1               | 111.9        | <mark>286.3</mark> | 233.3               | 325.9 | 145.2 | 12.8  |  |
| 2005                               | 10.0 | 20.6               | 80.6  | 133.6 | 224.8              | 2925.0              | 192.8        | 140.0              | 348.7               | 97.4  | 38.6  | 0.0   |  |
| 2006                               | 54.5 | 51.4               | 94.3  | 106.4 | 252.0              | 170.0               | 82.6         | 76.1               | 288.5               | 259.8 | 27.4  | tr    |  |
| AVE                                | 21.2 | 15.4               | 68.0  | 158.3 | 217.8              | 579.9               | <b>199.4</b> | 145.7              | 242.3               | 167.6 | 62.3  | 4.4   |  |

## AVERAGE ANNUAL RAINFALL=1882.3 mm

| Year | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
|------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| 1976 | 33.9 | 35.5 | 35.2  | 34.2  | 33.3 | 31.4 | 30.5 | 30.8 | 31.9 | 31.7 | 32.7 | 32.3 |
| 1977 | 33.4 | 36.2 | 36.4  | 34.4  | 34.3 | 31.7 | 31.1 | 30.8 | 31.7 | 32.6 | 34.4 | 31.9 |
| 1978 | 33.8 | 36.1 | 34.5  | 34.1  | 33.5 | 32.3 | 31.5 | 32.4 | 32.6 | 32.5 | 33.1 | 32.7 |
| 1979 | 34.2 | 36.1 | 35.3  | 35.2  | 33.3 | 33.1 | 31.8 | 31.4 | 31.1 | 32.5 | 32.3 | 32.6 |
| 1980 | 32.8 | 36.3 | 33.9  | 32.6  | 33.4 | 32.5 | 31.8 | 30.8 | 31.3 | 32.0 | 33.6 | 33.4 |
| 1981 | 32.7 | 33.6 | 33.7  | 33.5  | 31.4 | 33.1 | 31.3 | 30.3 | 31.2 | 33.6 | 33.3 | 33.7 |
| 1982 | 33.9 | 33.3 | 33.7  | 33.1  | 33.3 | 33.9 | 32.9 | 32.5 | 33.5 | 33.5 | 31.9 | 33.2 |
| 1983 | 34.5 | 36.2 | 35.4  | 34.5  | 33.3 | 32.1 | 31.2 | 30.5 | 31.3 | 33.3 | 33.6 | 33.4 |
| 1984 | 33.6 | 33.5 | 33.1  | 33.3  | 33.2 | 33.3 | 33.2 | 33.3 | 31.3 | 33.2 | 33.2 | 33.3 |
| 1985 | 33.2 | 33.3 | 33.2  | 33.2  | 33.2 | 33.0 | 33.1 | 32.8 | 32.6 | 32.5 | 33.3 | 33.4 |
| 1986 | 34.6 | 36.2 | 35.9  | 34.9  | 33.1 | 32.8 | 31.1 | 31.3 | 33.2 | 33.4 | 33.6 | 33.4 |
| 1987 | 33.2 | 33.0 | 32.9  | 33.2  | 33.1 | 32.9 | 32.8 | 32.3 | 32.6 | 32.4 | 33.1 | 33.0 |
| 1988 | 33.3 | 33.4 | 33.3  | 33.3  | 33.2 | 33.2 | 33.0 | 33.1 | 31.2 | 32.7 | 34.1 | 34.3 |
| 1989 | 32.9 | 33.0 | 33.0  | 33.3  | 33.0 | 32.2 | 31.5 | 30.7 | 31.3 | 32.8 | 32.9 | 33.1 |
| 1990 | 35.3 | 33.0 | 32.5  | 32.5  | 32.8 | 32.4 | 31.4 | 29.6 | 28.8 | 29.3 | 29.6 | 31.2 |
| 1991 | 31.9 | 31.2 | 31.5  | 33.1  | 30.8 | 30.6 | 30.7 | 30.2 | 31.2 | 30.4 | 31.5 | 31.4 |
| 1992 | 32.2 | 37.1 | 32.8  | 32.8  | 31.4 | 30.2 | 28.3 | 28.5 | 29.6 | 30.9 | 31.8 | 33.3 |
| 1993 | 33.7 | 36.4 | 33.8  | 33.8  | 33.6 | 31.4 | 30.9 | 30.7 | 30.9 | 32.7 | 32.9 | 29.6 |
| 1994 | 33.4 | 36.4 | 35.2  | 35.7  | 34.2 | 32.5 | 31.4 | 32.1 | 31.0 | 32.1 | 33.9 | 34.1 |
| 1995 | 35.7 | 37.7 | 38.0  | 35.7  | 33.7 | 32.9 | 31.3 | 31.1 | 32.2 | 32.8 | 34.0 | 33.9 |
| 1996 | 35.9 | 36.8 | 36.1  | 34.8  | 34.2 | 31.9 | 31.2 | 31.0 | 31.3 | 32.3 | 33.7 | 33.9 |
| 1997 | 35.3 | 37.0 | 37.3  | 34.9  | 33.2 | 31.8 | 31.3 | 30.6 | 31.8 | 33.4 | 34.5 | 34.2 |
| 1998 | 36.1 | 38.2 | 39.4  | 36.2  | 35.0 | 32.5 | 30.7 | 30.9 | 31.6 | 32.8 | 34.8 | 34.2 |
| 1999 | 35.1 | 36.5 | 37.4  | 34.4  | 33.9 | 33.0 | 31.5 | 31.5 | 31.1 | 31.9 | 34.4 | 34.8 |
| 2000 | 35.4 | 35.9 | 37.4  | 34.4  | 34.3 | 32.0 | 30.4 | 29.9 | 30.4 | 32.1 | 34.1 | 33.6 |
| 2001 | 35.7 | 37.4 | 38.2  | 34.6  | 33.7 | 32.0 | 30.8 | 29.5 | 30.2 | 33.2 | 34.7 | 35.5 |
| 2002 | 35.3 | 37.8 | 37.1  | 35.5  | 33.6 | 32.2 | 31.1 | 30.2 | 31.1 | 31.9 | 33.7 | 34.0 |
| 2003 | 35.8 | 37.6 | 37.9  | 35.0  | 34.8 | 31.7 | 31.0 | 30.7 | 31.5 | 33.2 | 33.4 | 33.5 |
| 2004 | 34.7 | 36.6 | 36.3  | 35.0  | 33.2 | 31.7 | 30.8 | 30.3 | 31.4 | 33.1 | 33.4 | 33.9 |
| 2005 | 34.1 | 37.0 | 36.6  | 35.7  | 33.9 | 31.9 | 30.7 | 30.2 | 31.5 | 32.9 | 34.3 | 34.6 |
| 2006 | 35.7 | 36.2 | 35.9  | 37.2  | 33.4 | 32.5 | 31.3 | 30.8 | 31.1 | 32.8 | 34.0 | 34.3 |
| AVE  | 34.2 | 35.6 | 35.3  | 34.3  | 33.4 | 32.3 | 31.3 | 31.0 | 31.4 | 32.5 | 33.3 | 33.3 |
|      |      |      |       |       |      |      |      |      |      |      |      |      |

Atebubu Mean Monthly Maximum Temperature (°C)

| Year | Jan  | Feb  | March | April | Мау  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
|------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| 1976 | 18.4 | 22.3 | 22.3  | 22.0  | 22.4 | 21.3 | 20.9 | 21.4 | 21.7 | 22.2 | 21.5 | 19.6 |
| 1977 | 20.0 | 21.3 | 22.9  | 23.0  | 22.3 | 21.5 | 21.3 | 20.9 | 21.8 | 21.1 | 20.0 | 21.0 |
| 1978 | 20.7 | 21.3 | 21.8  | 21.9  | 21.7 | 21.5 | 21.1 | 21.0 | 21.1 | 21.4 | 20.8 | 21.3 |
| 1979 | 19.6 | 22.1 | 22.0  | 21.7  | 21.5 | 20.7 | 21.4 | 20.8 | 21.2 | 21.4 | 21.6 | 21.4 |
| 1980 | 21.3 | 21.3 | 21.4  | 21.6  | 22.3 | 21.5 | 20.5 | 21.4 | 21.5 | 21.1 | 21.1 | 20.1 |
| 1981 | 21.3 | 21.0 | 21.1  | 21.9  | 21.5 | 21.2 | 22.1 | 20.9 | 21.3 | 21.1 | 21.3 | 20.2 |
| 1982 | 20.4 | 21.1 | 21.0  | 21.3  | 21.1 | 21.3 | 21.3 | 20.8 | 21.3 | 21.4 | 20.9 | 21.4 |
| 1983 | 20.1 | 21.3 | 22.3  | 21.9  | 22.3 | 22.3 | 21.8 | 22.1 | 21.9 | 21.1 | 19.9 | 20.6 |
| 1984 | 21.0 | 21.1 | 21.3  | 21.0  | 21.1 | 21.0 | 20.9 | 21.0 | 21.8 | 20.9 | 21.0 | 20.9 |
| 1985 | 21.0 | 20.9 | 20.9  | 20.9  | 20.8 | 20.8 | 20.8 | 21.0 | 24.2 | 21.3 | 21.1 | 19.9 |
| 1986 | 19.3 | 21.2 | 22.8  | 22.6  | 20.8 | 20.8 | 21.4 | 21.3 | 21.1 | 21.0 | 21.2 | 19.9 |
| 1987 | 20.9 | 21.1 | 21.0  | 21.2  | 21.0 | 21.1 | 21.2 | 21.2 | 21.2 | 21.5 | 21.3 | 21.3 |
| 1988 | 21.3 | 21.0 | 21.0  | 21.0  | 20.3 | 21.0 | 21.0 | 21.1 | 21.3 | 21.3 | 21.2 | 20.1 |
| 1989 | 20.9 | 20.9 | 21.1  | 21.0  | 21.0 | 20.7 | 20.3 | 20.8 | 20.7 | 21.9 | 21.0 | 21.0 |
| 1990 | 19.6 | 21.0 | 20.3  | 20.3  | 21.0 | 20.5 | 19.6 | 19.4 | 19.5 | 21.3 | 21.1 | 20.0 |
| 1991 | 19.4 | 19.7 | 20.6  | 20.7  | 20.2 | 20.6 | 20.7 | 21.3 | 21.3 | 20.1 | 20.5 | 18.1 |
| 1992 | 17.0 | 22.1 | 22.2  | 21.9  | 21.5 | 20.6 | 20.2 | 20.2 | 20.4 | 20.2 | 19.4 | 18.4 |
| 1993 | 16.6 | 22.0 | 21.7  | 22.0  | 23.4 | 22.1 | 22.1 | 20.9 | 21.0 | 21.9 | 21.8 | 19.4 |
| 1994 | 18.4 | 19.7 | 21.3  | 23.3  | 23.1 | 21.9 | 22.2 | 22.5 | 22.7 | 22.2 | 20.8 | 17.4 |
| 1995 | 16.8 | 20.5 | 24.5  | 24.3  | 23.1 | 22.7 | 22.5 | 22.2 | 22.1 | 22.1 | 20.9 | 20.7 |
| 1996 | 21.0 | 22.6 | 24.0  | 23.8  | 23.4 | 22.6 | 22.1 | 22.2 | 22.2 | 21.8 | 20.2 | 21.4 |
| 1997 | 21.5 | 19.7 | 24.2  | 23.4  | 22.9 | 22.5 | 22.0 | 22.0 | 22.3 | 23.0 | 22.0 | 20.9 |
| 1998 | 19.5 | 22.9 | 25.1  | 24.1  | 24.3 | 23.0 | 22.9 | 22.1 | 22.3 | 22.4 | 22.4 | 20.8 |
| 1999 | 20.5 | 21.3 | 23.9  | 23.3  | 23.2 | 22.9 | 22.3 | 21.9 | 22.1 | 22.0 | 21.9 | 19.0 |
| 2000 | 21.2 | 19.3 | 23.5  | 23.8  | 23.4 | 22.7 | 21.9 | 22.0 | 22.7 | 22.5 | 22.3 | 19.6 |
| 2001 | 18.7 | 21.4 | 24.9  | 24.0  | 23.5 | 22.7 | 22.4 | 22.2 | 22.0 | 22.6 | 22.5 | 22.0 |
| 2002 | 19.9 | 21.7 | 23.6  | 22.5  | 21.5 | 20.5 | 20.4 | 20.1 | 19.9 | 19.7 | 19.2 | 15.0 |
| 2003 | 15.5 | 18.8 | 18.8  | 17.5  | 17.3 | 15.8 | 15.3 | 15.5 | 15.1 | 14.6 | 16.2 | 19.3 |
| 2004 | 21.3 | 23.5 | 24.4  | 24.5  | 24.0 | 23.1 | 22.1 | 22.8 | 22.5 | 22.7 | 22.6 | 22.8 |
| 2005 | 18.8 | 23.8 | 24.2  | 24.7  | 23.9 | 23.4 | 23.0 | 22.7 | 22.9 | 22.9 | 23.2 | 21.4 |
| 2006 | 22.7 | 24.2 | 24.4  | 24.8  | 23.8 | 23.7 | 23.4 | 23.2 | 22.9 | 23.1 | 21.6 | 19.5 |
| AVE  | 19.8 | 21.4 | 22.4  | 22.3  | 22.1 | 21.5 | 21.3 | 21.3 | 21.5 | 21.4 | 21.0 | 20.1 |
|      |      |      |       |       |      |      |      |      |      |      |      |      |

Atebubu Mean Monthly Minimum Temperature (°C)

| Year | Jan    | Feb    | March  | April  | Мау       | June      | July        | Aug       | Sept   | Oct    | Nov    | Dec    |
|------|--------|--------|--------|--------|-----------|-----------|-------------|-----------|--------|--------|--------|--------|
| 1991 | 94     | 96     | 98     | 97     | 95        | 96        | 98          | 97        | 92     | 98     | 99     | 94     |
| 1992 | 93     | 92     | 97     | 97     | 97        | 97        | 97          | 97        | 99     | 96     | 95     | 94     |
| 1993 | 90     | 92     | 95     | 93     | 93        | 94        | 92          | 93        | 95     | 90     | 89     | 94     |
| 1994 | 83     | 80     | 85     | 87     | 91        | 95        | 93          | 93        | 95     | 96     | 94     | 79     |
| 1995 | 72     | 67     | 86     | 91     | 95        | 95        | 98          | 96        | 96     | 93     | 93     | 92     |
| 1996 | 91     | 91     | 90     | 92     | 93        | 94        | 94          | 94        | 94     | 94     | 93     | 96     |
| 1997 | 82     | 70     | 80     | 91     | 94        | 96        | 97          | 94        | 95     | 96     | 96     | 90     |
| 1998 | 72     | 76     | 79     | 92     | 90        | 90        | 92          | 92        | 94     | 92     | 88     | 88     |
| 1999 | 82     | 80     | 84     | 92     | 94        | 92        | 94          | 94        | 94     | 96     | 93     | 90     |
| 2000 | 88     | 66     | 80     | 88     | 88        | 92        | 94          | 92        | 93     | 90     | 92     | 88     |
| 2001 | 72     | 68     | 80     | 86     | 88        | 92        | 92          | 92        | 94     | 90     | 89     | 87     |
| 2002 | 52     | 64     | 78     | 82     | 86        | 89        | 90          | 88        | 88     | 88     | 86     | 76     |
| 2003 | 70     | 82     | 76     | 84     | 84        | 88        | 88          | 88        | 88     | 88     | 88     | 94     |
| 2004 | 74     | 70     | 76     | 82     | 84        | 86        | 96          | 88        | 90     | 86     | 86     | 86     |
| 2005 | 62     | 82     | 84     | 84     | 84        | 85        | 87          | 86        | 86     | 84     | 85     | 81     |
| 2006 | 78     | 86     | 85     | 84     | 87        | 90        | 86          | 86        | 89     | 86     | 82     | 71     |
| 2007 | 62     | 74     | 77     | 80     | 85        | 87        | 86          | 88        | 89     | 86     | 87     | 83     |
| AVE  | 77     | 79     | 84     | 88     | 90        | 92        | 93          | 92        | 92     | 91     | 90     | 87     |
|      |        |        |        | Atebub | u Mean Me | onthly RH | l at 1500 l | hours (%) |        |        |        |        |
| Year | Jan    | Feb    | March  | April  | Мау       | June      | July        | Aug       | Sept   | Oct    | Nov    | Dec    |
| 1991 | 68     | 64     | 61     | 56     | 65        | 66        | 72          | 74        | 77     | 69     | 71     | 59     |
| 1992 | 53     | 61     | 67     | 82     | 78        | 78        | 85          | 88        | 78     | 73     | 58     | 57     |
| 1993 | 37     | 54     | 61     | 66     | 70        | 70        | 69          | 69        | 70     | 71     | 68     | 85     |
| 1994 | 63     | 55     | 56     | 63     | 64        | 67        | 62          | 58        | 74     | 70     | 53     | 40     |
| 1995 | 30     | 31     | 44     | 57     | 67        | 70        | 70          | 78        | 71     | 67     | 52     | 52     |
| 1996 | 40     | 45     | 50     | 60     | 64        | 70        | 70          | 72        | 70     | 66     | 52     | 56     |
| 1997 | 43     | 30     | 40     | 58     | 69        | 72        | 74          | 75        | 79     | 68     | 62     | 52     |
| 1998 | 34     | 38     | 38     | 64     | 60        | 70        | 74          | 76        | 74     | 71     | 62     | 59     |
| 1999 | 53     | 43     | 50     | 64     | 62        | 70        | 72          | 70        | 72     | 70     | 60     | 48     |
| 2000 | 48     | 30     | 42     | 62     | 62        | 66        | 70          | 72        | 73     | 64     | 57     | 44     |
| 2001 | 38     | 40     | 44     | 58     | 62        | 68        | 70          | 74        | 74     | 63     | 54     | 46     |
| 2002 | 26     | 26     | 44     | 52     | 62        | 65        | 68          | 70        | 68     | 66     | 58     | 46     |
| 2003 | 34     | 42     | 36     | 56     | 58        | 66        | 66          | 68        | 66     | 60     | 58     | 48     |
| 2004 | 40     | 40     | 46     | 56     | 64        | 68        | 72          | 70        | 70     | 64     | 64     | 62     |
| 2005 | 40     | 48     | 54     | 56     | 42        | 69        | 73          | 74        | 71     | 65     | 66     | 55     |
| 2006 | 53     | 56     | 56     | 56     | 67        | 69        | 69          | 68        | 73     | 70     | 55     | 50     |
| 2007 | 38     | 42     | 46     | 55     | 65        | 67        | 66          | 69        | 69     | 66     | 59     | 58     |
| AVE  | 43.412 | 43.824 | 49.118 | 60.059 | 63.588    | 68.882    | 70.706      | 72.059    | 72.294 | 67.235 | 59.353 | 53.941 |

Atebubu Mean Monthly RH at 0600 hours (%)

|      |             |       |       | Derei                |                      | WOITIN | Nannan (i |                     |       |       |       |      |
|------|-------------|-------|-------|----------------------|----------------------|--------|-----------|---------------------|-------|-------|-------|------|
| Year | Jan         | Feb   | March | April                | Мау                  | June   | July      | Aug                 | Sept  | Oct   | Νον   | Dec  |
| 1976 | 9.7         | 143.0 | 95.8  | 96.9                 | 257.7                | 143.4  | 38.9      | 24.0                | 67.3  | 246.4 | 81.8  | 0.0  |
| 1977 | 50.6        | 69.9  | 35.0  | 62.2                 | 137.6                | 137.3  | 3.8       | 59.3                | 142.8 | 193.8 | 0.0   | 0.0  |
| 1978 | 0.0         | 57.1  | 126.3 | 117.1                | 182.9                | 249.0  | 34.5      | 79.0                | 159.5 | 139.7 | 49.9  | 0.0  |
| 1979 | 0.0         | 0.0   | 75.5  | 68.8                 | 144.8                | 215.5  | 206.1     | 42.7                | 163.1 | 194.2 | 38.8  | 15.7 |
| 1980 | 0.0         | 57.4  | 44.6  | 94.4                 | 126.0                | 107.8  | 112.8     | 8.9                 | 233.4 | 114.6 | 19.6  | 0.0  |
| 1981 | 0.0         | 17.1  | 155.8 | 40.5                 | 110.2                | 114.5  | 81.6      | 87.2                | 134.7 | 187.1 | 0.0   | 0.0  |
| 1982 | 0.0         | 71.6  | 107.3 | 92.8                 | 138.0                | 61.0   | 90.8      | 31.9                | 35.0  | 163.3 | 7.3   | 0.0  |
| 1983 | 0.0         | 32.9  | 44.8  | 29.8                 | 210.0                | 199.4  | 27.2      | 95.5                | 135.5 | 136.7 | 48.1  | 61.0 |
| 1984 | 0.0         | 5.9   | 195.8 | 147.3                | 192.8                | 128.7  | 219.7     | 83.5                | 160.2 | 88.5  | 88.5  | 0.0  |
| 1985 | 10.3        | 15.8  | 134.5 | 53.8                 | 142.4                | 160.9  | 141.4     | 165.6               | 301.4 | 180.3 | 22.5  | 0.0  |
| 1986 | 64.8        | 112.3 | 115.2 | 90.4                 | 281.8                | 68.9   | 67.0      | 82.5                | 156.7 | 5.4   | 0.0   | 12.5 |
| 1987 | 27.4        | 116.2 | 19.8  | 100.0                | 133.7                | 79.2   | 209.3     | 272.1               | 248.7 | 17.0  | 0.0   | 0.0  |
| 1988 | 73.8        | 183.2 | 113.0 | 160.5                | 14 <mark>3.</mark> 8 | 145.6  | 43.7      | 169.2               | 70.0  | 21.7  | 4.8   | 0.0  |
| 1989 | 0.0         | 161.0 | 188.5 | 104.8                | 385.0                | 242.5  | 66.6      | 232.9               | 156.6 | 11.5  | 14.0  | 0.0  |
| 1990 | 35.5        | 0.0   | 193.9 | 72.3                 | 142.2                | 70.4   | 30.9      | 141.1               | 179.0 | 110.0 | 177.9 | 0.2  |
| 1991 | 40.7        | 180.6 | 101.4 | 175.3                | 116.7                | 191.7  | 91.8      | 103.5               | 49.0  | 10.5  | 15.2  | 0.0  |
| 1992 | 25.3        | 11.8  | 168.9 | 98.0                 | 100.5                | 62.2   | 7.0       | 244.3               | 76.8  | 86.5  | 0.0   | 0.0  |
| 1993 | 18.7        | 97.6  | 110.3 | 181.9                | 106.2                | 27.1   | 10.5      | 181.3               | 169.9 | 68.8  | 2.6   | 1.9  |
| 1994 | 1.9         | 22.7  | 51.9  | 87.3                 | 138.5                | 107.2  | 15.7      | 12.7                | 115.5 | 208.7 | 59.2  | 0.0  |
| 1995 | 0.0         | 13.6  | 79.1  | 232.4                | 240.2                | 105.5  | 111.9     | 110.7               | 166.4 | 204.8 | 5.0   | 20.2 |
| 1996 | Tr          | 182.6 | 82.9  | 124.3                | 107.0                | 219.2  | 113.3     | 63.2                | 45.5  | 154.8 | 20.3  | 3.1  |
| 1997 | 11.5        | 0.0   | 42.5  | 188.1                | 164.0                | 243.7  | 72.9      | 36.1                | 162.4 | 111.6 | 24.3  | 0.0  |
| 1998 | 24.8        | 25.5  | 65.9  | 233.1                | 39.3                 | 150.2  | 27.3      | 24.8                | 162.3 | 212.7 | 36.7  | 22.6 |
| 1999 | 42.8        | 34.6  | 145.1 | 143.3                | 145.9                | 124.5  | 72.1      | 85.0                | 125.2 | 124.1 | 59.4  | Tr   |
| 2000 | 54.6        | 0.0   | 71.5  | 185.5                | 127.7                | 155.1  | 76.4      | 105.8               | 137.5 | 94.7  | 47.6  | 0.0  |
| 2001 | 0.0         | 7.2   | 187.1 | 228.5                | 141.7                | 224.1  | 67.4      | 13.3                | 167.8 | 45.9  | 33.6  | 8.0  |
| 2002 | 28.4        | 11.7  | 149.6 | 323.1                | 116.8                | 130.2  | 142.9     | 60.5                | 74.8  | 212.1 | 69.3  | 43.9 |
| 2003 | 4.0         | 26.3  | 87.4  | 141.5                | 129.8                | 127.0  | 25.7      | 49.1                | 136.5 | 129.0 | 75.2  | 20.0 |
| 2004 | 68.2        | 54.4  | 90.7  | 21 <mark>1.</mark> 3 | 107.0                | 28.3   | 83.0      | 16 <mark>3.6</mark> | 268.8 | 199.5 | 51.8  | 6.7  |
| 2005 | 0.0         | 17.9  | 58.9  | 165.1                | 148.9                | 162.7  | 82.6      | 20.2                | 128.0 | 297.9 | 85.4  | 16.0 |
| 2006 | 56.8        | 28.3  | 115.5 | 138.8                | 223.9                | 171.8  | 77.8      | 1.7                 | 181.0 | 312.7 | 10.9  | 0.0  |
| AVE  | <u>21.7</u> | 56.7  | 105.0 | 135.1                | 157.5                | 140.5  | 79.1      | 92.0                | 145.5 | 138.2 | 37.1  | 7.7  |
|      |             |       | X     | WJ                   | SANE                 | NO     | 5         |                     |       |       |       |      |

Berekum Mean Monthly Rainfall (mm)

AVERAGE ANNUAL RAINFALL =1116.1 mm

| Year | Jan                 | Feb         | March | April | May  | June               | July | Aug                 | Sept        | Oct  | Νον  | Dec  |
|------|---------------------|-------------|-------|-------|------|--------------------|------|---------------------|-------------|------|------|------|
| 1976 | 31.9                | 32.3        | 32.6  | 31.7  | 31.1 | 29.0               | 27.3 | 27.2                | 28.6        | 28.1 | 29.8 | 30.0 |
| 1977 | 30.4                | 34.0        | 32.0  | 32.1  | 31.5 | 31.5               | 32.2 | 37.2                | 30.0        | 28.2 | 27.8 | 28.4 |
| 1978 | 29.4                | 29.8        | 29.5  | 29.5  | 29.4 | 28.6               | 27.7 | 29.3                | 30.8        | 29.4 | 28.9 | 29.4 |
| 1979 | 30.6                | 32.0        | 31.4  | 31.1  | 30.6 | 29.5               | 30.1 | 29.6                | 29.8        | 28.6 | 29.5 | 29.4 |
| 1980 | 29.4                | 32.0        | 31.4  | 31.1  | 30.7 | 29.7               | 29.3 | 30.8                | 29.8        | 29.0 | 29.8 | 30.0 |
| 1981 | 30.3                | 32.0        | 29.6  | 29.4  | 29.7 | 29.8               | 29.7 | 30.0                | 29.8        | 29.3 | 29.9 | 29.8 |
| 1982 | 29.8                | 29.5        | 29.7  | 29.5  | 29.6 | 29.4               | 30.0 | 29.8                | 30.4        | 29.8 | 29.3 | 29.8 |
| 1983 | 30.3                | 31.7        | 30.9  | 29.9  | 30.0 | 29.6               | 29.5 | 30.1                | 30.1        | 29.8 | 30.0 | 30.1 |
| 1984 | 30.3                | 30.6        | 29.7  | 30.2  | 30.4 | 30.5               | 30.0 | 29.7                | 29.8        | 29.7 | 29.4 | 30.0 |
| 1985 | 30.2                | 30.1        | 30.5  | 29.8  | 30.1 | 29.7               | 29.8 | 29.7                | 29.9        | 29.9 | 30.1 | 30.0 |
| 1986 | 30.1                | 30.5        | 30.2  | 30.4  | 29.8 | 29.7               | 29.6 | 30.3                | 29.1        | 28.9 | 29.4 | 29.7 |
| 1987 | 30.1                | 31.1        | 29.2  | 29.9  | 29.3 | 29.7               | 29.6 | 30.3                | 30.4        | 30.7 | 30.8 | 30.4 |
| 1988 | 32.5                | 35.6        | 33.1  | 32.6  | 32.2 | 30.1               | 28.7 | 27.9                | 28.8        | 31.1 | 32.4 | 31.7 |
| 1989 | 30.7                | 34.9        | 34.5  | 33.4  | 32.1 | 30.3               | 29.5 | 28.9                | 29.3        | 30.4 | 32.1 | 31.9 |
| 1990 | 32.9                | 34.9        | 36.5  | 33.3  | 31.8 | 30.9               | 28.2 | 28.0                | 29.5        | 30.8 | 31.5 | 30.9 |
| 1991 | 32.6                | 34.5        | 33.4  | 32.8  | 31.3 | 30.9               | 28.9 | 28.4                | 28.9        | 29.8 | 31.2 | 31.4 |
| 1992 | 32.8                | 35.3        | 35.3  | 33.6  | 31.9 | 30.7               | 28.1 | 28.0                | 29.5        | 30.3 | 30.9 | 31.4 |
| 1993 | 33.3                | 35.6        | 34.2  | 33.8  | 32.9 | 30.3               | 29.0 | 28.5                | 29.9        | 31.0 | 31.8 | 31.5 |
| 1994 | 33.2                | 35.1        | 34.9  | 33.0  | 32.5 | 30.4               | 29.1 | 29.4                | 29.7        | 30.3 | 31.8 | 32.7 |
| 1995 | 34 <mark>.</mark> 4 | 36.6        | 34.7  | 34.5  | 32.7 | 31.6               | 30.1 | 29.6                | <u>30.3</u> | 30.6 | 32.4 | 32.2 |
| 1996 | 34.0                | 33.8        | 33.0  | 33.5  | 32.8 | 30.3               | 29.0 | 29.5                | 29.5        | 30.1 | 32.8 | 31.8 |
| 1997 | 33.8                | 35.9        | 35.9  | 33.2  | 32.2 | 30.5               | 28.7 | 28.5                | 29.8        | 31.6 | 32.4 | 33.2 |
| 1998 | 34.9                | 36.0        | 37.5  | 34.3  | 33.4 | 31.4               | 29.4 | 30.0                | 29.7        | 30.7 | 32.6 | 32.0 |
| 1999 | 34.2                | 34.3        | 34.3  | 32.8  | 32.5 | 31.5               | 29.6 | 28.9                | 28.9        | 29.8 | 31.5 | 33.1 |
| 2000 | 33.5                | 35.0        | 36.5  | 33.3  | 32.2 | 29.8               | 28.5 | 27.7                | 29.7        | 30.6 | 32.0 | 32.2 |
| 2001 | 33.7                | 35.2        | 35.0  | 33.5  | 32.4 | 30.7               | 29.0 | 28.9                | 29.6        | 30.2 | 31.1 | 32.0 |
| 2002 | 32.7                | 34.3        | 33.9  | 33.2  | 32.2 | 30.6               | 29.1 | 28.7                | 29.8        | 30.3 | 31.6 | 31.7 |
| 2003 | 32.2                | 33.6        | 33.0  | 32.8  | 32.7 | 29.8               | 28.9 | 28.6                | 29.7        | 31.2 | 31.3 | 32.0 |
| 2004 | 33.0                | 34.7        | 33.8  | 31.9  | 31.2 | 30.1               | 28.2 | 28.1                | 29.4        | 30.6 | 31.0 | 30.9 |
| 2005 | 33.5                | 32.9        | 33.1  | 32.4  | 30.9 | 29.8               | 29.6 | 2 <mark>8.</mark> 9 | 29.7        | 30.1 | 31.1 | 30.6 |
| 2006 | 32.4                | 33.7        | 33.3  | 32.3  | 31.6 | <mark>3</mark> 0.3 | 29.2 | 29.1                | 29.6        | 30.3 | 31.2 | 31.3 |
| AVE  | 32.0                | <u>33.5</u> | 33.0  | 32.1  | 31.4 | 30.2               | 29.2 | 29.3                | 29.7        | 30.0 | 30.9 | 31.0 |
|      |                     |             |       |       |      |                    |      |                     |             |      |      |      |

Berekum Mean Monthly Maximum Temperature (°C)

| Year | Jan  | Feb  | March | April | May  | June | July | Aug                | Sept | Oct  | Nov  | Dec  |
|------|------|------|-------|-------|------|------|------|--------------------|------|------|------|------|
| 1976 | 15.3 | 19.8 | 20.8  | 21.6  | 21.3 | 21.3 | 20.1 | 19.4               | 20.2 | 20.6 | 19.9 | 16.8 |
| 1977 | 18.5 | 19.5 | 21.3  | 21.0  | 21.0 | 20.2 | 20.0 | 20.0               | 19.5 | 19.4 | 17.8 | 18.8 |
| 1978 | 19.6 | 18.4 | 17.7  | 18.0  | 18.9 | 17.6 | 18.3 | 17.8               | 17.5 | 17.7 | 17.2 | 17.8 |
| 1979 | 19.2 | 19.8 | 21.1  | 19.6  | 17.9 | 17.3 | 17.7 | 17.8               | 18.6 | 17.9 | 16.9 | 17.0 |
| 1980 | 17.2 | 20.3 | 21.1  | 21.3  | 18.6 | 18.5 | 18.2 | 17.6               | 18.4 | 18.8 | 17.9 | 18.2 |
| 1981 | 18.1 | 18.3 | 17.7  | 17.5  | 18.1 | 18.2 | 17.8 | 17.8               | 18.7 | 17.5 | 18.1 | 18.0 |
| 1982 | 16.8 | 17.6 | 17.3  | 17.5  | 17.7 | 17.8 | 18.0 | 17.4               | 17.4 | 17.0 | 17.2 | 18.9 |
| 1983 | 17.7 | 18.2 | 19.4  | 17.9  | 19.6 | 18.2 | 17.9 | 19.1               | 18.2 | 18.7 | 18.1 | 17.7 |
| 1984 | 18.0 | 17.8 | 17.6  | 18.2  | 17.9 | 17.6 | 17.9 | 18.2               | 18.1 | 17.8 | 18.9 | 17.7 |
| 1985 | 18.3 | 17.6 | 18.3  | 18.0  | 17.5 | 18.0 | 17.7 | 17.3               | 19.4 | 17.7 | 17.8 | 17.5 |
| 1986 | 17.6 | 18.5 | 19.3  | 20.8  | 21.2 | 20.9 | 19.8 | 19.6               | 20.1 | 19.3 | 19.7 | 18.3 |
| 1987 | 17.2 | 19.2 | 17.1  | 21.1  | 17.2 | 20.8 | 19.6 | 20.1               | 21.5 | 20.4 | 20.2 | 17.4 |
| 1988 | 14.1 | 20.1 | 22.2  | 22.4  | 21.9 | 21.6 | 20.7 | 20.7               | 21.0 | 21.4 | 21.7 | 17.3 |
| 1989 | 18.9 | 19.4 | 21.8  | 21.7  | 21.5 | 21.1 | 21.1 | 20.6               | 20.8 | 20.9 | 21.6 | 19.2 |
| 1990 | 19.5 | 18.6 | 22.6  | 22.1  | 21.9 | 21.5 | 21.0 | 20.8               | 21.3 | 21.0 | 21.4 | 19.8 |
| 1991 | 18.4 | 21.4 | 21.9  | 21.7  | 22.2 | 22.4 | 21.2 | 21.0               | 20.9 | 20.7 | 20.6 | 16.4 |
| 1992 | 15.6 | 20.4 | 22.1  | 22.0  | 21.8 | 21.1 | 20.4 | 20.0               | 20.4 | 21.3 | 19.8 | 19.1 |
| 1993 | 15.2 | 21.1 | 20.3  | 22.0  | 22.2 | 21.4 | 21.1 | 21.0               | 20.9 | 21.3 | 21.6 | 18.2 |
| 1994 | 18.2 | 21.0 | 22.1  | 21.7  | 21.9 | 21.5 | 20.9 | 21.0               | 21.6 | 21.1 | 19.8 | 17.4 |
| 1995 | 14.8 | 18.5 | 21.2  | 21.6  | 20.8 | 20.7 | 20.5 | 20.7               | 20.7 | 20.8 | 20.0 | 18.7 |
| 1996 | 19.2 | 20.6 | 21.2  | 21.4  | 21.6 | 21.0 | 20.5 | 20.8               | 20.6 | 20.2 | 19.4 | 19.8 |
| 1997 | 19.9 | 17.8 | 22.3  | 21.8  | 21.7 | 21.3 | 21.0 | 20.7               | 21.1 | 21.7 | 21.8 | 20.2 |
| 1998 | 18.3 | 20.6 | 22.9  | 22.8  | 22.4 | 21.3 | 21.4 | 20.8               | 21.4 | 21.4 | 21.8 | 20.3 |
| 1999 | 20.3 | 19.8 | 21.8  | 21.7  | 21.5 | 21.5 | 21.3 | 20.8               | 20.9 | 20.7 | 21.3 | 19.0 |
| 2000 | 20.7 | 17.9 | 22.5  | 22.0  | 22.2 | 21.5 | 20.9 | 20.8               | 21.3 | 20.9 | 21.7 | 19.7 |
| 2001 | 18.3 | 20.5 | 22.6  | 21.8  | 21.9 | 21.7 | 21.0 | 20.7               | 20.2 | 21.0 | 22.2 | 22.1 |
| 2002 | 19.2 | 20.9 | 22.4  | 22.5  | 21.6 | 20.8 | 20.8 | 20.1               | 20.3 | 20.9 | 20.8 | 18.5 |
| 2003 | 18.5 | 21.6 | 21.7  | 21.3  | 21.5 | 20.4 | 20.0 | 20.1               | 20.5 | 20.8 | 20.5 | 18.7 |
| 2004 | 18.7 | 20.4 | 20.7  | 20.9  | 20.8 | 20.0 | 19.7 | 19.9               | 19.7 | 20.3 | 20.5 | 20.9 |
| 2005 | 17.2 | 22.6 | 22.7  | 22.1  | 21.8 | 21.3 | 20.8 | 20.3               | 21.1 | 20.7 | 21.2 | 19.5 |
| 2006 | 20.4 | 21.5 | 21.2  | 21.9  | 20.8 | 20.0 | 20.7 | 20.4               | 20.6 | 20.5 | 19.7 | 17.7 |
| AVE  | 18.0 | 19.7 | 20.8  | 20.9  | 20.6 | 20.3 | 19.9 | 1 <mark>9.8</mark> | 20.1 | 20.0 | 19.9 | 18.6 |
|      |      |      |       |       |      |      |      |                    |      |      |      |      |

Berekum Mean Monthly Minimum Temperature (°C)

| Year                                                                                                                                                 | Jan                                                                                                             | Feb                                                                                                                                                                                                                                                                                                                                                                             | March                                                                                                                               | April                                                                                                                                                                                                                                                                                                                 | Мау                                                                                                                                                                                                                                                                                                                                                                                                                                                                | June                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | July                                                                                                                                                   | Aug                                                                                                                                                                                                                                           | Sept                                                                                                                               | Oct                                                                                                             | Nov                                                                                                                         | Dec                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1990                                                                                                                                                 | 86                                                                                                              | 73                                                                                                                                                                                                                                                                                                                                                                              | 84                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                    | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95                                                                                                                                                     | 95                                                                                                                                                                                                                                            | 92                                                                                                                                 | 93                                                                                                              | 93                                                                                                                          | 86                                                                                                              |
| 1991                                                                                                                                                 | 84                                                                                                              | 91                                                                                                                                                                                                                                                                                                                                                                              | 92                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95                                                                                                                                                     | 95                                                                                                                                                                                                                                            | 94                                                                                                                                 | 94                                                                                                              | 92                                                                                                                          | 72                                                                                                              |
| 1992                                                                                                                                                 | 61                                                                                                              | 89                                                                                                                                                                                                                                                                                                                                                                              | 91                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                     | 94                                                                                                                                                                                                                                            | 94                                                                                                                                 | 94                                                                                                              | 83                                                                                                                          | 82                                                                                                              |
| 1993                                                                                                                                                 | 52                                                                                                              | 87                                                                                                                                                                                                                                                                                                                                                                              | 91                                                                                                                                  | 93                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95                                                                                                                                                     | 87                                                                                                                                                                                                                                            | 93                                                                                                                                 | 92                                                                                                              | 90                                                                                                                          | 70                                                                                                              |
| 1994                                                                                                                                                 | 61                                                                                                              | 81                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                    | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 94                                                                                                                                                                                                                                            | 94                                                                                                                                 | 91                                                                                                              | 88                                                                                                                          | 67                                                                                                              |
| 1995                                                                                                                                                 | 61                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92                                                                                                                                                     | 92                                                                                                                                                                                                                                            | 92                                                                                                                                 | 92                                                                                                              | 90                                                                                                                          | 84                                                                                                              |
| 1996                                                                                                                                                 | 86                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                              | 89                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 93                                                                                                                                                                                                                                            | 93                                                                                                                                 | 93                                                                                                              | 88                                                                                                                          | 92                                                                                                              |
| 1997                                                                                                                                                 | 83                                                                                                              | 53                                                                                                                                                                                                                                                                                                                                                                              | 81                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                     | 94                                                                                                                                                                                                                                            | 94                                                                                                                                 | 90                                                                                                              | 91                                                                                                                          | 86                                                                                                              |
| 1998                                                                                                                                                 | 61                                                                                                              | 75                                                                                                                                                                                                                                                                                                                                                                              | 78                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 93                                                                                                                                                                                                                                            | 95                                                                                                                                 | 91                                                                                                              | 90                                                                                                                          | 85                                                                                                              |
| 1999                                                                                                                                                 | 84                                                                                                              | 81                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 94                                                                                                                                                                                                                                            | 94                                                                                                                                 | 93                                                                                                              | 90                                                                                                                          | 74                                                                                                              |
| 2000                                                                                                                                                 | 84                                                                                                              | 59                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94                                                                                                                                                     | 93                                                                                                                                                                                                                                            | 94                                                                                                                                 | 92                                                                                                              | 94                                                                                                                          | 93                                                                                                              |
| 2001                                                                                                                                                 | 77                                                                                                              | 86                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92                                                                                                                                                     | 93                                                                                                                                                                                                                                            | 92                                                                                                                                 | 93                                                                                                              | 93                                                                                                                          | 91                                                                                                              |
| 2002                                                                                                                                                 | 71                                                                                                              | 85                                                                                                                                                                                                                                                                                                                                                                              | 91                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                    | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92                                                                                                                                                     | 91                                                                                                                                                                                                                                            | 93                                                                                                                                 | 91                                                                                                              | 89                                                                                                                          | 73                                                                                                              |
| 2003                                                                                                                                                 | 77                                                                                                              | 87                                                                                                                                                                                                                                                                                                                                                                              | 85                                                                                                                                  | 86                                                                                                                                                                                                                                                                                                                    | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90                                                                                                                                                     | 90                                                                                                                                                                                                                                            | 92                                                                                                                                 | 90                                                                                                              | 90                                                                                                                          | 84                                                                                                              |
| 2004                                                                                                                                                 | 85                                                                                                              | 79                                                                                                                                                                                                                                                                                                                                                                              | 84                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92                                                                                                                                                     | 92                                                                                                                                                                                                                                            | 93                                                                                                                                 | 92                                                                                                              | 91                                                                                                                          | 93                                                                                                              |
| 2005                                                                                                                                                 | 72                                                                                                              | 86                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                  | 88                                                                                                                                                                                                                                                                                                                    | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 94                                                                                                                                                                                                                                            | 63                                                                                                                                 | 91                                                                                                              | 90                                                                                                                          | 92                                                                                                              |
| 2006                                                                                                                                                 | 86                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                              | 89                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91                                                                                                                                                     | 90                                                                                                                                                                                                                                            | 91                                                                                                                                 | 90                                                                                                              | 88                                                                                                                          | 72                                                                                                              |
| 2007                                                                                                                                                 | 69                                                                                                              | 81                                                                                                                                                                                                                                                                                                                                                                              | 83                                                                                                                                  | 85                                                                                                                                                                                                                                                                                                                    | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99                                                                                                                                                     | 89                                                                                                                                                                                                                                            | 90                                                                                                                                 | 90                                                                                                              | 91                                                                                                                          | 84                                                                                                              |
| AVE                                                                                                                                                  | 74                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                              | 87                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                    | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93                                                                                                                                                     | 92                                                                                                                                                                                                                                            | 91                                                                                                                                 | 92                                                                                                              | <b>9</b> 0                                                                                                                  | 82                                                                                                              |
|                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                 |                                                                                                                             |                                                                                                                 |
|                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                     | Berekun                                                                                                                                                                                                                                                                                                               | n Mean Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nthly RH a                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 1500 hou                                                                                                                                             | ırs (%)                                                                                                                                                                                                                                       |                                                                                                                                    |                                                                                                                 |                                                                                                                             |                                                                                                                 |
| Year                                                                                                                                                 | Jan                                                                                                             | Feb                                                                                                                                                                                                                                                                                                                                                                             | March                                                                                                                               | Berekun<br>April                                                                                                                                                                                                                                                                                                      | n Mean Mo<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nthly RH a<br>June                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t 1500 hoι<br>July                                                                                                                                     | ırs (%)<br>Aug                                                                                                                                                                                                                                | Sept                                                                                                                               | Oct                                                                                                             | Nov                                                                                                                         | Dec                                                                                                             |
| Year<br>1990                                                                                                                                         | Jan<br>47                                                                                                       | <b>Feb</b><br>43                                                                                                                                                                                                                                                                                                                                                                | March<br>34                                                                                                                         | Berekun<br>April<br>55                                                                                                                                                                                                                                                                                                | <mark>n Mean Mo</mark><br>May<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                | nthly RH a<br>June<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                | t 1500 hou<br>July<br>74                                                                                                                               | irs (%)<br>Aug<br>74                                                                                                                                                                                                                          | Sept<br>72                                                                                                                         | <b>Oct</b><br>65                                                                                                | <b>Nov</b><br>64                                                                                                            | <b>Dec</b> 60                                                                                                   |
| Year<br>1990<br>1991                                                                                                                                 | Jan<br>47<br>44                                                                                                 | <b>Feb</b><br>43<br>51                                                                                                                                                                                                                                                                                                                                                          | March<br>34<br>57                                                                                                                   | Berekun<br>April<br>55<br>59                                                                                                                                                                                                                                                                                          | n Mean Mo<br>May<br>63<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                       | nthly RH a<br>June<br>65<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                          | t 1500 hou<br>July<br>74<br>73                                                                                                                         | irs (%)<br>Aug<br>74<br>73                                                                                                                                                                                                                    | <b>Sept</b><br>72<br>72                                                                                                            | <b>Oct</b><br>65<br>67                                                                                          | <b>Nov</b><br>64<br>61                                                                                                      | <b>Dec</b><br>60<br>38                                                                                          |
| Year<br>1990<br>1991<br>1992                                                                                                                         | Jan<br>47<br>44<br>31                                                                                           | <b>Feb</b><br>43<br>51<br>45                                                                                                                                                                                                                                                                                                                                                    | March<br>34<br>57<br>48                                                                                                             | Berekum<br>April<br>55<br>59<br>57                                                                                                                                                                                                                                                                                    | <u>Mean Mo</u><br>May<br>63<br>68<br>63                                                                                                                                                                                                                                                                                                                                                                                                                            | nthly RH a<br>June<br>65<br>68<br>66                                                                                                                                                                                                                                                                                                                                                                                                                                    | t 1500 hou<br>July<br>74<br>73<br>71                                                                                                                   | rs (%)<br>Aug<br>74<br>73<br>70                                                                                                                                                                                                               | Sept<br>72<br>72<br>72<br>72                                                                                                       | <b>Oct</b><br>65<br>67<br>65                                                                                    | <b>Nov</b><br>64<br>61<br>57                                                                                                | <b>Dec</b><br>60<br>38<br>58                                                                                    |
| Year<br>1990<br>1991<br>1992<br>1993                                                                                                                 | Jan<br>47<br>44<br>31<br>22                                                                                     | Feb<br>43<br>51<br>45<br>38                                                                                                                                                                                                                                                                                                                                                     | March<br>34<br>57<br>48<br>46                                                                                                       | Berekum<br>April<br>55<br>59<br>57<br>54                                                                                                                                                                                                                                                                              | Mean Mo<br>May<br>63<br>68<br>63<br>63<br>65                                                                                                                                                                                                                                                                                                                                                                                                                       | nthly RH a<br>June<br>65<br>68<br>66<br>71                                                                                                                                                                                                                                                                                                                                                                                                                              | t 1500 hou<br>July<br>74<br>73<br>71<br>76                                                                                                             | rs (%)<br>Aug<br>74<br>73<br>70<br>60                                                                                                                                                                                                         | Sept<br>72<br>72<br>72<br>72<br>57                                                                                                 | <b>Oct</b><br>65<br>67<br>65<br>61                                                                              | <b>Nov</b><br>64<br>61<br>57<br>58                                                                                          | <b>Dec</b><br>60<br>38<br>58<br>45                                                                              |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994                                                                                                         | Jan<br>47<br>44<br>31<br>22<br>41                                                                               | <b>Feb</b> 43 51 45 38 41                                                                                                                                                                                                                                                                                                                                                       | March<br>34<br>57<br>48<br>46<br>50                                                                                                 | Berekun<br>April<br>55<br>59<br>57<br>54<br>57                                                                                                                                                                                                                                                                        | n Mean Mo<br>May<br>63<br>68<br>63<br>63<br>65<br>58                                                                                                                                                                                                                                                                                                                                                                                                               | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69                                                                                                                                                                                                                                                                                                                                                                                                                        | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71                                                                                                       | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71                                                                                                                                                                                                  | Sept<br>72<br>72<br>72<br>57<br>70                                                                                                 | <b>Oct</b><br>65<br>67<br>65<br>61<br>70                                                                        | Nov<br>64<br>61<br>57<br>58<br>56                                                                                           | Dec<br>60<br>38<br>58<br>45<br>38                                                                               |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995                                                                                                 | Jan<br>47<br>44<br>31<br>22<br>41<br>31                                                                         | Feb           43           51           45           38           41           32                                                                                                                                                                                                                                                                                               | March<br>34<br>57<br>48<br>46<br>50<br>52                                                                                           | Berekun           April           55           59           57           54           57           54           57           55                                                                                                                                                                                       | Mean Mo<br>May<br>63<br>63<br>63<br>65<br>58<br>60                                                                                                                                                                                                                                                                                                                                                                                                                 | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66                                                                                                                                                                                                                                                                                                                                                                                                                  | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71                                                                                     | Aug<br>74<br>73<br>70<br>60<br>71<br>74                                                                                                                                                                                                       | Sept<br>72<br>72<br>72<br>57<br>70<br>69                                                                                           | <b>Oct</b><br>65<br>67<br>65<br>61<br>70<br>69                                                                  | Nov<br>64<br>61<br>57<br>58<br>56<br>58                                                                                     | Dec<br>60<br>38<br>58<br>45<br>38<br>54                                                                         |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996                                                                                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51                                                                   | Feb           43           51           45           38           41           32           54                                                                                                                                                                                                                                                                                  | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57                                                                                     | Berekun           April           55           59           57           54           57           54           57           54           57           54           57           54           57           54           57           55           57                                                                  | n Mean Mo<br>May<br>63<br>68<br>63<br>65<br>58<br>60<br>60<br>60                                                                                                                                                                                                                                                                                                                                                                                                   | nthly RH a<br>5<br>65<br>68<br>66<br>71<br>69<br>66<br>73                                                                                                                                                                                                                                                                                                                                                                                                               | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>71<br>71<br>74                                                                               | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>74<br>71                                                                                                                                                                                | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71                                                                                     | <b>Oct</b><br>65<br>67<br>65<br>61<br>70<br>69<br>68                                                            | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49                                                                               | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>54<br>56                                                             |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997                                                                                 | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42                                                             | Feb           43           51           45           38           41           32           54           23                                                                                                                                                                                                                                                                     | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41                                                                               | Berekun<br>April<br>55<br>59<br>57<br>54<br>57<br>55<br>57<br>55<br>57<br>58                                                                                                                                                                                                                                          | Mean Mo<br>May<br>63<br>63<br>63<br>63<br>65<br>58<br>60<br>60<br>60<br>60<br>64                                                                                                                                                                                                                                                                                                                                                                                   | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71                                                                                                                                                                                                                                                                                                                                                                                                      | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>71<br>74<br>71                                                                               | Aug           74           73           70           60           71           74           73                                                                                                                                                | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71                                                                               | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65                                                             | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61                                                                         | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51                                                             |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998                                                                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27                                                       | Feb           43           51           45           38           41           32           54           23           27                                                                                                                                                                                                                                                        | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36                                                                         | Berekun<br>April<br>55<br>59<br>57<br>54<br>57<br>55<br>57<br>58<br>58<br>58                                                                                                                                                                                                                                          | Mean Mo<br>May<br>63<br>68<br>63<br>65<br>58<br>60<br>60<br>60<br>64<br>59                                                                                                                                                                                                                                                                                                                                                                                         | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>71<br>70                                                                                                                                                                                                                                                                                                                                                                                          | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>74<br>71<br>74<br>71<br>70                                                                   | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68                                                                                                                                                                          | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71                                                                         | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>65                                                       | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57                                                                   | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49                                                       |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999                                                                 | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41                                                 | Feb           43           51           45           38           41           32           54           23           27           38                                                                                                                                                                                                                                           | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53                                                                   | Berekun<br>April<br>55<br>59<br>57<br>54<br>57<br>55<br>57<br>58<br>58<br>58<br>58<br>58<br>59                                                                                                                                                                                                                        | Mean Mo<br>May<br>63<br>68<br>63<br>65<br>58<br>60<br>60<br>60<br>64<br>59<br>62                                                                                                                                                                                                                                                                                                                                                                                   | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68                                                                                                                                                                                                                                                                                                                                                                                          | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71<br>74<br>71<br>70<br>69                                                             | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70                                                                                                                                                                    | Sept<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72                                                             | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70                                                 | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63                                                             | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>54<br>56<br>51<br>49<br>38                                           |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000                                                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45                                           | Feb           43           51           45           38           41           32           54           23           27           38           21                                                                                                                                                                                                                              | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36                                                             | Berekun<br>April<br>55<br>59<br>57<br>54<br>57<br>55<br>57<br>58<br>58<br>58<br>58<br>59<br>61                                                                                                                                                                                                                        | Mean Mo<br>May<br>63<br>68<br>63<br>65<br>58<br>60<br>60<br>60<br>60<br>60<br>60<br>62<br>63                                                                                                                                                                                                                                                                                                                                                                       | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68<br>71<br>70                                                                                                                                                                                                                                                                                                                                                                              | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>71<br>74<br>71<br>70<br>69<br>72                                                             | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70<br>73                                                                                                                                                              | Sept<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74                                                       | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68                                           | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57                                                       | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41                                           |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001                                                 | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30                                     | Feb           43           51           45           38           41           32           54           23           27           38           24           23                                                                                                                                                                                                                 | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45                                                       | Berekun           April           55           59           57           54           57           54           57           58           59           61           60                                                                                                                                                | Mean Mo           May           63           63           63           63           65           58           60           60           64           59           62           63           63                                                                                                                                                                                                                                                                     | nthly RH a<br>5<br>6<br>6<br>6<br>6<br>7<br>1<br>6<br>9<br>6<br>6<br>7<br>3<br>7<br>1<br>7<br>0<br>6<br>8<br>7<br>1<br>6<br>5                                                                                                                                                                                                                                                                                                                                           | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>74<br>71<br>74<br>71<br>70<br>69<br>72<br>70                                                 | Aug           74           73           70           60           71           74           73           68           70           73           73           73           73           73           73           73           73           73 | Sept<br>72<br>72<br>72<br>72<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70                                           | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61                                     | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>63<br>57                                           | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46                                     |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002                                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25                               | Feb           43           51           45           38           41           32           54           23           24           23           24           23           24                                                                                                                                                                                                    | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45<br>52                                                 | Berekun           April           55           59           57           54           57           54           57           58           58           59           61           60           61                                                                                                                      | Mean Mo           May           63           63           63           65           58           60           60           64           59           62           63           65           58           60           61           59           62           63           65           62                                                                                                                                                                          | nthly RH a<br>55<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68<br>71<br>65<br>65                                                                                                                                                                                                                                                                                                                                                                                | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>74<br>71<br>74<br>71<br>70<br>69<br>72<br>70<br>71                                           | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70<br>73<br>73<br>68<br>70<br>73<br>68                                                                                                                                | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68                                     | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61<br>64                               | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>63<br>57<br>63<br>60                               | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46<br>40                               |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2001<br>2002<br>2003                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25<br>29                         | Feb           43           51           45           38           41           32           54           23           27           38           24           23           24           23           24           23           27           38           24           23           24           23           27           40                                                     | March<br>34<br>57<br>48<br>46<br>50<br>52<br>41<br>36<br>53<br>36<br>45<br>52<br>40                                                 | Berekun           April           55           59           57           54           57           54           57           58           58           59           61           60           61           56                                                                                                         | Mean Mo           May           63           68           63           65           58           60           60           64           59           62           63           65           62           58                                                                                                                                                                                                                                                        | nthly RH a<br>55<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68<br>71<br>65<br>65<br>65<br>68                                                                                                                                                                                                                                                                                                                                                                    | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71<br>74<br>71<br>70<br>69<br>72<br>70<br>71<br>67                                     | Aug           74           73           70           60           71           73           68           70           68           69                                                                                                         | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68<br>68                               | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61<br>64<br>64                         | Nov<br>64<br>61<br>57<br>58<br>56<br>63<br>57<br>63<br>57<br>56<br>60<br>60<br>63                                           | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46<br>40<br>46                         |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2003                         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25<br>29<br>37                   | Feb           43           51           45           38           41           32           54           23           27           38           24           23           27           38           24           23           27           38           24           35                                                                                                         | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45<br>52<br>40<br>44                                     | Berekun<br>April<br>55<br>59<br>54<br>57<br>54<br>57<br>58<br>58<br>58<br>59<br>61<br>60<br>61<br>56<br>63                                                                                                                                                                                                            | Mean Mo           May           63           68           63           65           58           60           61           59           62           63           65           62           58           62           58           62           58           62           58           65                                                                                                                                                                          | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68<br>71<br>70<br>68<br>71<br>65<br>65<br>68<br>63                                                                                                                                                                                                                                                                                                                                          | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>71<br>74<br>71<br>70<br>69<br>72<br>70<br>71<br>67<br>72                                           | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70<br>73<br>68<br>69<br>71                                                                                                                                            | Sept<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68<br>68<br>68<br>69                   | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61<br>64<br>64<br>64<br>62             | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>56<br>60<br>63<br>61                               | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>40<br>46<br>40<br>46<br>56             |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005                 | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25<br>29<br>37<br>25             | Feb           43           51           45           38           41           32           54           23           27           38           24           23           27           38           24           35           38                                                                                                                                                | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45<br>52<br>40<br>40<br>44<br>40                         | Berekun           April           55           59           57           54           57           54           57           58           58           59           61           60           61           56           63           59                                                                               | Mean Mo           May           63           63           63           63           63           63           63           63           63           63           63           63           63           64           59           62           63           65           62           58           65           65           65           60                                                                                                                      | June           65           68           66           71           69           66           71           69           66           71           69           66           71           68           71           65           68           61           62           63           63           69                                                                                                                                                                      | t 1500 hou<br>july<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71<br>74<br>71<br>74<br>71<br>70<br>69<br>72<br>70<br>71<br>67<br>72<br>72<br>72<br>72 | Aug           74           73           70           60           71           74           73           68           70           68           69           71           73                                                                  | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68<br>68<br>68<br>69<br>62             | Oct<br>65<br>67<br>65<br>61<br>70<br>68<br>65<br>67<br>70<br>68<br>61<br>64<br>64<br>64<br>62<br>62             | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>63<br>57<br>63<br>60<br>63<br>61<br>61             | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46<br>40<br>46<br>56<br>52             |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006         | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25<br>29<br>37<br>25<br>40       | Feb           43           51           45           38           41           32           54           23           27           38           24           23           27           38           24           35           38           40           35           38           43                                                                                            | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45<br>52<br>40<br>44<br>40<br>44<br>53                   | Berekun           April           55           59           57           54           57           54           57           58           58           58           58           59           61           60           61           56           53           59           61           50           51           52 | Mean Mo           May           63           68           63           65           58           60           64           59           62           63           65           62           63           65           62           63           65           62           63           65           62           58           65           60           63                                                                                                         | nthly RH a<br>5<br>6<br>6<br>6<br>6<br>7<br>1<br>6<br>9<br>6<br>6<br>7<br>1<br>7<br>0<br>6<br>8<br>7<br>1<br>6<br>5<br>6<br>5<br>6<br>8<br>6<br>5<br>6<br>5<br>6<br>8<br>6<br>3<br>6<br>9<br>6<br>7<br>1<br>6<br>5<br>6<br>5<br>6<br>7<br>1<br>6<br>5<br>6<br>6<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71<br>74<br>71<br>70<br>69<br>72<br>70<br>71<br>67<br>72<br>72<br>72<br>66             | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70<br>73<br>68<br>70<br>73<br>68<br>69<br>71<br>71<br>63                                                                                                              | Sept<br>72<br>72<br>72<br>57<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68<br>68<br>68<br>69<br>62<br>68       | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61<br>64<br>64<br>62<br>62<br>66       | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>63<br>57<br>63<br>60<br>60<br>63<br>61<br>61<br>43 | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46<br>40<br>46<br>56<br>52<br>34       |
| Year<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007 | Jan<br>47<br>44<br>31<br>22<br>41<br>31<br>51<br>42<br>27<br>41<br>45<br>30<br>25<br>29<br>37<br>25<br>40<br>25 | Feb           43           51           45           38           41           32           54           23           24           23           27           38           24           23           27           38           24           23           27           38           24           38           24           33           35           38           43           35 | March<br>34<br>57<br>48<br>46<br>50<br>52<br>57<br>41<br>36<br>53<br>36<br>45<br>52<br>40<br>45<br>52<br>40<br>44<br>46<br>53<br>32 | Berekun           April           55           59           57           54           57           54           57           54           57           54           57           58           58           58           59           61           60           61           56           63           59           54 | Mean Mo           May           63           63           63           63           65           58           60           61           62           63           65           62           58           65           62           58           65           62           58           65           62           58           65           62           58           65           60           63           60           63           60           63           60 | nthly RH a<br>June<br>65<br>68<br>66<br>71<br>69<br>66<br>73<br>71<br>70<br>68<br>71<br>65<br>65<br>68<br>63<br>69<br>67<br>65                                                                                                                                                                                                                                                                                                                                          | t 1500 hou<br>July<br>74<br>73<br>71<br>76<br>71<br>76<br>71<br>71<br>70<br>69<br>72<br>70<br>71<br>67<br>72<br>72<br>66<br>67                         | rrs (%)<br>Aug<br>74<br>73<br>70<br>60<br>71<br>74<br>71<br>73<br>68<br>70<br>73<br>68<br>69<br>71<br>71<br>63<br>71                                                                                                                          | Sept<br>72<br>72<br>72<br>72<br>70<br>69<br>71<br>71<br>71<br>71<br>71<br>72<br>74<br>70<br>68<br>68<br>68<br>69<br>62<br>68<br>70 | Oct<br>65<br>67<br>65<br>61<br>70<br>69<br>68<br>65<br>67<br>70<br>68<br>61<br>64<br>64<br>62<br>62<br>66<br>65 | Nov<br>64<br>61<br>57<br>58<br>56<br>58<br>49<br>61<br>57<br>63<br>57<br>56<br>60<br>63<br>61<br>61<br>43<br>59             | Dec<br>60<br>38<br>58<br>45<br>38<br>54<br>56<br>51<br>49<br>38<br>41<br>46<br>40<br>46<br>56<br>52<br>34<br>46 |

Berekum Mean Monthly RH at 0600 hours (%)

|      |      |      |       | E                   | jura Mear         | Monthly             | Rainfall (r | nm)                 |                     |       |       |       |
|------|------|------|-------|---------------------|-------------------|---------------------|-------------|---------------------|---------------------|-------|-------|-------|
| Year | Jan  | Feb  | March | April               | Мау               | June                | July        | Aug                 | Sept                | Oct   | Nov   | Dec   |
| 1976 | 1.3  | 47.7 | 122.7 | 103.3               | 204.7             | 220.1               | 27.9        | 49.2                | 123.0               | 148.8 | 116.4 | 0.6   |
| 1977 | 2.9  | 4.6  | 28.2  | 106.6               | 148.4             | 209.7               | 24.2        | 36.5                | 256.3               | 295.5 | 0.8   | 6.6   |
| 1978 | 0.0  | 56.0 | 229.5 | 137.3               | 246.3             | 131.2               | 85.7        | 28.6                | 278.9               | 146.5 | 63.7  | 17.1  |
| 1979 | 14.0 | 3.8  | 128.1 | 138.0               | 150.2             | 166.5               | 225.9       | 112.6               | 216.1               | 226.0 | 20.4  | 1.0   |
| 1980 | 3.1  | 33.3 | 122.7 | 88.0                | 247.0             | 181.6               | 184.5       | 70.3                | 162.2               | 294.2 | 74.4  | 0.0   |
| 1981 | 0.5  | 4.6  | 238.6 | 57.3                | 263.1             | 80.0                | 141.7       | 123.9               | 321.1               | 119.8 | 0.0   | 0.3   |
| 1982 | 0.0  | 59.9 | 89.6  | 114.5               | 114.5             | 162.5               | 40.2        | 59.5                | 116.0               | 186.2 | 46.3  | 17.6  |
| 1983 | 0.0  | 0.0  | 26.1  | 195.2               | 159.0             | 146.2               | 15.9        | 32.3                | 105.8               | 71.7  | 27.2  | 54.6  |
| 1984 | 0.0  | 11.2 | 150.2 | 117.9               | 180.0             | 152.8               | 196.3       | 180.9               | 168.7               | 127.5 | 0.0   | 0.0   |
| 1985 | 18.3 | 2.8  | 97.4  | 117.9               | 92.2              | 120.0               | 233.8       | 180.3               | 336.2               | 128.9 | 10.9  | 0.0   |
| 1986 | 0.0  | 23.4 | 204.9 | 164.9               | 253.5             | 211.6               | 199.0       | 62.1                | 174.8               | 224.1 | 23.5  | 0.0   |
| 1987 | 24.4 | 9.9  | 78.7  | 107.6               | 101.0             | 272.0               | 231.2       | 200.7               | 316.8               | 147.6 | 0.0   | 0.0   |
| 1988 | 0.0  | 32.8 | 80.5  | 100.4               | 206.8             | <mark>234</mark> .9 | 198.5       | 14.2                | 180.4               | 149.4 | 27.1  | 39.8  |
| 1989 | 0.0  | 3.1  | 142.8 | 155.7               | <mark>68.2</mark> | 372.8               | 270.3       | 100.5               | 225.3               | 174.7 | 7.8   | 6.3   |
| 1990 | 0.0  | 36.5 | 0.0   | 114.1               | 128.7             | 134.0               | 39.4        | 75.0                | 256.9               | 102.6 | 133.1 | 125.0 |
| 1991 | 0.0  | 55.1 | 121.9 | 143.9               | 218.3             | 183.9               | 96.7        | 17.9                | 185.2               | 182.4 | 0.8   | 1.3   |
| 1992 | 0.0  | 0.0  | 16.7  | 82.0                | 133.5             | 179.8               | 205.8       | 13.4                | 106.7               | 168.7 | 19.1  | 0.0   |
| 1993 | 0.0  | 57.9 | 105.8 | 110.2               | 176.9             | 154.5               | 16.3        | 109.0               | 339.3               | 260.8 | 0.0   | 1.0   |
| 1994 | 0.0  | 10.0 | 160.7 | 125.4               | 149.1             | 75.5                | 22.4        | 30.8                | 156.9               | 285.3 | 26.5  | 0.0   |
| 1995 | 0.0  | 2.3  | 69.7  | 153.6               | 117.6             | 153.2               | 193.1       | 76.3                | 326.6               | 171.2 | 40.7  | 164.7 |
| 1996 | 10.7 | 89.5 | 63.2  | 268.3               | 294.7             | 120.5               | 110.0       | 52.8                | 182.1               | 132.0 | 0.0   | 10.5  |
| 1997 | 55.5 | 0.0  | 81.7  | 189.0               | 276.7             | 207.2               | 89.7        | 85.2                | 237.5               | 206.9 | 4.3   | 0.0   |
| 1998 | 1.0  | 36.8 | 3.5   | 234.6               | 91.1              | 235.4               | 76.7        | 117.7               | 158.0               | 262.3 | 3.5   | 62.0  |
| 1999 | 15.9 | 27.9 | 217.0 | 223.5               | 79.6              | 163.9               | 187.6       | 122.7               | 142.4               | 167.2 | 42.9  | 0.0   |
| 2000 | 16.0 | 0.0  | 78.7  | 144.8               | 127.2             | 234.9               | 133.1       | 127.9               | 164.9               | 33.3  | 4.9   | 0.0   |
| 2001 | 0.0  | 0.0  | 97.1  | 248.1               | 123.1             | 142.5               | 88.3        | 29.2                | 282.7               | 105.2 | 7.6   | 0.0   |
| 2002 | 4.7  | 16.4 | 81.0  | 146.3               | 222.9             | 227.5               | 168.6       | 114.3               | 211.9               | 116.9 | 33.6  | 31.8  |
| 2003 | 4.3  | 80.9 | 108.8 | 154.3               | 108.0             | 265.6               | 35.8        | 27.0                | 239.6               | 137.4 | 155.7 | 7.5   |
| 2004 | 24.3 | 23.8 | 115.9 | 125. <mark>0</mark> | 289.5             | 72.5                | 115.5       | 215. <mark>2</mark> | <mark>198</mark> .1 | 180.7 | 80.7  | 15.5  |
| 2005 | 0.7  | 35.2 | 134.8 | 20 <mark>4.5</mark> | 133.4             | 94.8                | 46.5        | 9 <mark>8.</mark> 9 | 234.3               | 182.2 | 120.5 | 14.8  |
| 2006 | 32.7 | 23.9 | 66.4  | 54.8                | 383.7             | 167.9               | 79.4        | 8.7                 | 251.9               | 366.8 | 34.5  | tr    |
| AVE  | 7.4  | 25.5 | 105.3 | 142.8               | 177.1             | 176.6               | 121.9       | 83.0                | 214.7               | 177.5 | 36.4  | 19.3  |
|      |      |      |       |                     |                   |                     |             |                     |                     |       |       |       |

AVERAGE ANNUAL RAINFALL =1287.5 mm

|      | Jan                | Feb  | March | April | May                | June               | July | Aug               | Sept               | Oct  | Nov  | Dec  |
|------|--------------------|------|-------|-------|--------------------|--------------------|------|-------------------|--------------------|------|------|------|
| 1976 | 33.6               | 34.8 | 34.1  | 32.9  | 31.8               | 29.9               | 29.1 | 29.5              | 30.4               | 29.5 | 32.1 | 32.0 |
| 1977 | 33.1               | 35.4 | 36.6  | 34.0  | 32.6               | 30.5               | 29.6 | 29.5              | 30.3               | 31.0 | 32.8 | 32.0 |
| 1978 | 34.6               | 35.7 | 32.6  | 32.4  | 32.0               | 30.0               | 28.5 | 29.5              | 30.0               | 30.8 | 32.0 | 32.1 |
| 1979 | 33.9               | 34.9 | 33.1  | 34.0  | 32.5               | 30.4               | 30.5 | 28.9              | 30.3               | 31.3 | 32.5 | 32.2 |
| 1980 | 34.1               | 33.3 | 33.3  | 34.1  | 33.0               | 30.2               | 30.4 | 28.7              | 30.6               | 31.7 | 32.4 | 32.1 |
| 1981 | 33.8               | 33.4 | 33.6  | 33.7  | 33.6               | 30.1               | 30.4 | 28.6              | 30.8               | 31.8 | 32.6 | 31.9 |
| 1982 | 35.0               | 35.9 | 33.1  | 33.9  | 32.4               | 31.6               | 30.2 | 29.9              | 31.1               | 31.6 | 32.4 | 32.0 |
| 1983 | 34.6               | 33.8 | 33.8  | 34.0  | 32.2               | 31.3               | 30.4 | 29.6              | 30.9               | 31.8 | 32.2 | 32.3 |
| 1984 | 34.4               | 33.7 | 33.6  | 34.3  | 32.2               | 31.8               | 30.3 | 29.8              | 31.1               | 32.0 | 32.1 | 32.2 |
| 1985 | 33.9               | 34.8 | 35.0  | 32.3  | 33.4               | 31.6               | 29.9 | 30.3              | 30.6               | 32.0 | 32.9 | 32.0 |
| 1986 | 34.5               | 36.1 | 33.2  | 33.2  | 32.6               | 31.2               | 29.7 | 29.9              | 30.5               | 31.1 | 32.2 | 32.5 |
| 1987 | 34.5               | 36.1 | 35.8  | 34.9  | 32.7               | 31.4               | 29.5 | 30.0              | 30.6               | 31.5 | 32.4 | 32.6 |
| 1988 | 33.8               | 35.9 | 36.1  | 34.1  | 32.5               | 31.5               | 29.1 | 30.0              | 30.5               | 31.9 | 33.2 | 32.1 |
| 1989 | 33.8               | 35.6 | 34.9  | 33.9  | 33.2               | 31.4               | 30.3 | 29.5              | 29.7               | 31.2 | 33.7 | 33.2 |
| 1990 | 34.7               | 35.5 | 37.6  | 34.5  | 32.7               | 31.9               | 29.6 | 30.1              | 30.4               | 31.8 | 32.9 | 31.8 |
| 1991 | 33.4               | 35.6 | 34.6  | 34.0  | 32.5               | 32.2               | 30.8 | 30.5              | 31.5               | 31.2 | 32.7 | 32.7 |
| 1992 | 34.2               | 37.0 | 36.8  | 34.7  | 33.2               | 31.2               | 29.3 | 29.5              | 30.6               | 32.0 | 32.5 | 33.6 |
| 1993 | 34.6               | 36.2 | 34.2  | 34.6  | 34.4               | 31.9               | 30.5 | 29.3              | 30.0               | 32.2 | 32.7 | 32.2 |
| 1994 | 33.3               | 36.1 | 34.4  | 33.4  | 32.5               | 31.4               | 30.3 | 31.5              | 30.6               | 31.2 | 32.6 | 32.3 |
| 1995 | 3 <mark>3.4</mark> | 36.1 | 34.3  | 33.3  | 33.1               | 32.1               | 29.5 | 29.9              | <mark>31.</mark> 1 | 32.1 | 33.5 | 33.4 |
| 1996 | 33.8               | 33.6 | 33.8  | 33.1  | 32.8               | 31.9               | 30.1 | 30.3              | 30.9               | 32.6 | 32.8 | 33.4 |
| 1997 | 35.6               | 36.7 | 36.8  | 35.1  | 34.1               | 33.1               | 31.7 | 30.8              | 31.3               | 31.9 | 32.8 | 33.3 |
| 1998 | 33.9               | 34.1 | 35.2  | 34.6  | <mark>33</mark> .9 | 32.2               | 29.7 | 29.9              | 31.9               | 32.8 | 33.1 | 33.4 |
| 1999 | 34.1               | 35.6 | 36.4  | 34.9  | 33.8               | 31.9               | 29.8 | 30.2              | 31.7               | 32.6 | 33.3 | 32.2 |
| 2000 | 34.5               | 34.9 | 35.2  | 33.9  | 33.1               | 31.8               | 30.5 | 29.8              | 30.9               | 32.3 | 33.0 | 32.4 |
| 2001 | 34.7               | 36.3 | 35.3  | 33.6  | 33.4               | 32.3               | 30.6 | 29.3              | 30.4               | 32.5 | 33.1 | 31.7 |
| 2002 | 35.2               | 37.4 | 36.2  | 33.8  | 33.8               | 33.3               | 31.0 | 29.9              | 31.1               | 32.3 | 34.4 | 33.0 |
| 2003 | 34.4               | 35.6 | 36.9  | 34.3  | 34.2               | 31.6               | 31.1 | 31.4              | 31.5               | 32.7 | 33.1 | 32.8 |
| 2004 | 34.1               | 36.2 | 36.1  | 34.4  | 33.4               | 31.5               | 31.2 | 30.5              | 31.7               | 32.5 | 33.3 | 32.5 |
| 2005 | 34.4               | 36.7 | 36.7  | 35.9  | 34.4               | 31.5               | 30.9 | <mark>30.3</mark> | 30.9               | 33.2 | 34.2 | 33.9 |
| 2006 | 34.8               | 36.5 | 36.2  | 36.7  | 33.5               | <mark>3</mark> 2.6 | 31.8 | 30.0              | 30.6               | 32.0 | 33.3 | 34.8 |
|      | 34.2               | 35.5 | 35.0  | 34.1  | 33.1               | 31.5               | 30.2 | 29.9              | 30.8               | 31.8 | 32.9 | 32.6 |

Ejura Mean Monthly Maximum Temperature (°C)

| Year | Jan  | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Νον  | Dec  |
|------|------|------|-------|-------|------|------|------|------|------|------|------|------|
| 1976 | 21.8 | 22.1 | 22.7  | 22.6  | 22.5 | 21.3 | 21.2 | 21.0 | 21.9 | 21.6 | 21.0 | 19.8 |
| 1977 | 21.4 | 22.1 | 23.8  | 23.6  | 22.8 | 21.8 | 21.7 | 21.3 | 22.0 | 21.6 | 21.5 | 19.6 |
| 1978 | 21.0 | 23.0 | 22.6  | 22.3  | 22.3 | 21.7 | 20.8 | 21.4 | 21.4 | 21.6 | 20.8 | 21.7 |
| 1979 | 20.9 | 23.4 | 23.3  | 23.1  | 22.4 | 22.1 | 22.6 | 21.9 | 21.4 | 21.0 | 21.8 | 19.2 |
| 1980 | 22.0 | 22.4 | 22.6  | 23.4  | 22.4 | 21.9 | 21.8 | 21.5 | 21.8 | 21.6 | 21.5 | 18.7 |
| 1981 | 17.7 | 22.1 | 22.0  | 22.8  | 22.5 | 21.2 | 21.7 | 21.6 | 21.6 | 21.8 | 20.3 | 21.4 |
| 1982 | 19.1 | 22.6 | 22.9  | 23.1  | 22.0 | 22.5 | 22.1 | 21.7 | 22.3 | 21.9 | 21.5 | 20.0 |
| 1983 | 20.1 | 23.0 | 24.4  | 23.9  | 22.9 | 22.7 | 22.2 | 21.8 | 21.9 | 22.0 | 21.9 | 20.9 |
| 1984 | 20.9 | 22.8 | 23.1  | 23.5  | 22.4 | 22.0 | 21.6 | 21.5 | 20.9 | 21.0 | 21.6 | 21.4 |
| 1985 | 21.7 | 21.9 | 23.9  | 22.7  | 23.2 | 21.6 | 20.4 | 20.4 | 21.2 | 21.7 | 22.2 | 18.7 |
| 1986 | 20.1 | 23.5 | 23.0  | 23.2  | 23.3 | 22.0 | 21.7 | 21.3 | 21.9 | 21.5 | 21.5 | 18.4 |
| 1987 | 21.4 | 23.1 | 23.5  | 24.0  | 23.6 | 23.0 | 22.6 | 22.0 | 22.2 | 22.6 | 22.9 | 22.4 |
| 1988 | 21.3 | 23.3 | 23.8  | 23.9  | 23.6 | 23.3 | 20.3 | 20.0 | 20.9 | 21.0 | 21.6 | 19.9 |
| 1989 | 18.9 | 21.6 | 23.0  | 23.4  | 23.0 | 22.2 | 22.1 | 22.0 | 21.9 | 22.2 | 22.7 | 21.1 |
| 1990 | 21.9 | 21.6 | 24.7  | 23.8  | 23.2 | 22.6 | 22.0 | 21.9 | 21.8 | 21.9 | 22.5 | 21.1 |
| 1991 | 20.5 | 22.7 | 22.7  | 22.9  | 23.0 | 22.7 | 22.2 | 22.0 | 22.3 | 21.5 | 22.1 | 19.7 |
| 1992 | 19.0 | 22.6 | 24.2  | 23.6  | 22.8 | 22.2 | 21.5 | 21.2 | 21.1 | 21.7 | 20.4 | 20.1 |
| 1993 | 18.7 | 22.8 | 22.0  | 23.5  | 23.1 | 22.1 | 22.0 | 21.8 | 21.6 | 21.9 | 20.9 | 20.1 |
| 1994 | 19.7 | 22.5 | 23.2  | 23.0  | 22.5 | 22.2 | 22.3 | 22.3 | 22.6 | 22.1 | 21.6 | 18.5 |
| 1995 | 18.2 | 21.5 | 23.6  | 23.2  | 23.1 | 22.5 | 22.5 | 22.5 | 21.8 | 21.6 | 21.3 | 25.8 |
| 1996 | 21.9 | 22.3 | 22.1  | 22.4  | 22.4 | 22.6 | 21.1 | 21.2 | 20.9 | 20.5 | 19.0 | 20.9 |
| 1997 | 20.5 | 19.8 | 22.7  | 21.4  | 21.2 | 19.7 | 20.8 | 19.6 | 20.5 | 22.0 | 22.1 | 19.1 |
| 1998 | 20.7 | 19.5 | 24.8  | 24.7  | 21.2 | 20.5 | 20.9 | 19.9 | 20.4 | 21.7 | 21.6 | 21.2 |
| 1999 | 21.1 | 19.6 | 21.5  | 21.6  | 21.6 | 21.5 | 21.4 | 21.1 | 21.4 | 20.7 | 21.4 | 18.1 |
| 2000 | 20.4 | 19.4 | 22.5  | 21.7  | 21.7 | 21.6 | 20.6 | 20.7 | 21.3 | 21.3 | 21.4 | 19.5 |
| 2001 | 20.3 | 13.2 | 21.6  | 21.4  | 21.9 | 21.9 | 21.8 | 22.0 | 21.8 | 22.6 | 22.7 | 23.2 |
| 2002 | 18.4 | 18.7 | 18.6  | 19.5  | 20.3 | 19.6 | 16.3 | 15.3 | 14.6 | 15.4 | 15.7 | 13.0 |
| 2003 | 13.7 | 17.1 | 17.5  | 17.2  | 17.0 | 15.7 | 15.4 | 15.8 | 15.7 | 15.9 | 15.5 | 14.0 |
| 2004 | 15.3 | 17.1 | 18.6  | 17.1  | 16.3 | 15.4 | 15.0 | 15.1 | 15.5 | 16.5 | 16.1 | 17.0 |
| 2005 | 10.8 | 17.5 | 16.6  | 17.1  | 16.9 | 16.0 | 15.3 | 15.9 | 15.8 | 16.0 | 16.5 | 16.8 |
| 2006 | 16.1 | 16.8 | 17    | 17.3  | 15.6 | 15.7 | 22.9 | 22.6 | 22.5 | 22.6 | 22.1 | 21.5 |
| AVE  | 19.5 | 21.0 | 22.2  | 22.2  | 21.7 | 21.1 | 20.9 | 20.7 | 20.8 | 20.9 | 20.8 | 19.8 |
|      |      |      |       |       |      |      |      |      |      |      |      |      |

Ejura Mean Monthly Minimum Temperature (°C)

|      |        |                  |        | Ejura              | a Mean Mo            | onthly RH           | at 0600 ho | ours (%) |        |         |        |         |
|------|--------|------------------|--------|--------------------|----------------------|---------------------|------------|----------|--------|---------|--------|---------|
| Year | Jan    | Feb              | March  | April              | Мау                  | June                | July       | Aug      | Sept   | Oct     | Nov    | Dec     |
| 1991 | 84     | 92               | 90     | 90                 | 93                   | 93                  | 91         | 93       | 92     | 93      | 92     | 80      |
| 1992 | 69     | 73               | 81     | 86                 | 89                   | 90                  | 92         | 92       | 92     | 90      | 85     | 87      |
| 1993 | 55     | 86               | 84     | 87                 | 87                   | 88                  | 91         | 91       | 91     | 92      | 91     | 82      |
| 1994 | 78     | 81               | 88     | 88                 | 92                   | 92                  | 90         | 89       | 93     | 90      | 86     | 60      |
| 1995 | 50     | 65               | 80     | 90                 | 91                   | 90                  | 92         | 91       | 94     | 94      | 92     | 88      |
| 1996 | 89     | 87               | 88     | 89                 | 89                   | 90                  | 92         | 93       | 93     | 94      | 94     | 96      |
| 1997 | 92     | 78               | 91     | 96                 | 87                   | 91                  | 89         | 86       | 91     | 90      | 89     | 80      |
| 1998 | 55     | 79               | 76     | 86                 | 92                   | 95                  | 93         | 91       | 91     | 88      | 89     | 90      |
| 1999 | 88     | 76               | 91     | 91                 | 90                   | 91                  | 90         | 89       | 90     | 90      | 89     | 67      |
| 2000 | 81     | 61               | 84     | 87                 | 87                   | 91                  | 91         | 92       | 91     | 87      | 88     | 80      |
| 2001 | 79     | 55               | 88     | 91                 | 89                   | 91                  | 93         | 92       | 93     | 93      | 92     | 88      |
| 2002 | 72     | 78               | 84     | 87                 | 87                   | 87                  | 86         | 86       | 88     | 92      | 91     | 82      |
| 2003 | 75     | 83               | 83     | 84                 | 86                   | 87                  | 85         | 87       | 88     | 88      | 89     | 78      |
| 2004 | 80     | 81               | 81     | 90                 | 89                   | 84                  | 84         | 84       | 88     | 92      | 91     | 92      |
| 2005 | 71     | 98               | 93     | 90                 | 91                   | 88                  | 84         | 85       | 86     | 91      | 92     | 90      |
| 2006 | 88     | 91               | 90     | 91                 | 87                   | 88                  | 90         | 85       | 83     | 87      | 86     | 81      |
| AVE  | 75.375 | 79               | 85.75  | 88.9375            | 89 <mark>.125</mark> | <mark>89</mark> .75 | 89.5625    | 89.125   | 90.25  | 90.6875 | 89.75  | 82.5625 |
|      |        |                  |        | Ejura              | a Mean Mo            | onthly RH           | at 1500 ho | ours (%) |        |         |        |         |
| Year | Jan    | Feb              | March  | April              | May                  | June                | July       | Aug      | Sept   | Oct     | Nov    | Dec     |
| 1995 | 50     | 53               | 60     | 66                 | 69                   | 74                  | 78         | 75       | 76     | 74      | 75     | 73      |
| 1996 | 68     | 65               | 63     | 67                 | 66                   | 65                  | 72         | 73       | 73     | 72      | 67     | 67      |
| 1997 | 61     | 48               | 51     | 64                 | 70                   | 70                  | 75         | 74       | 75     | 74      | 70     | 63      |
| 1998 | 49     | 54               | 49     | 61                 | 69                   | 77                  | 79         | 79       | 77     | 74      | 69     | 69      |
| 1999 | 67     | 56               | 63     | 67                 | 69                   | 73                  | 76         | 76       | 74     | 74      | 70     | 54      |
| 2000 | 67     | 49               | 64     | 65                 | 66                   | 72                  | 83         | 79       | 80     | 77      | 71     | 62      |
| 2001 | 55     | 40               | 60     | 68                 | 69                   | 73                  | 77         | 80       | 78     | 72      | 67     | 75      |
| 2002 | 56     | 58               | 61     | 69                 | 70                   | 73                  | 83         | 87       | 83     | 79      | 70     | 71      |
| 2003 | 62     | 60               | 56     | 70                 | 69                   | 77                  | 76         | 75       | 75     | 74      | 73     | 69      |
| 2004 | 66     | 62               | 65     | 72                 | 74                   | 76                  | 77         | 79       | 76     | 74      | 73     | 71      |
| 2005 | 70     | 61               | 64     | 66                 | 69                   | 77                  | 78         | 80       | 81     | 75      | 71     | 72      |
| 2006 | 69     | <mark>6</mark> 1 | 62     | 63                 | 72                   | 73                  | 78         | 78       | 77     | 74      | 71     | 68      |
| AVE  | 61.667 | 55.583           | 59.833 | 66 <mark>.5</mark> | 69.333               | 73.292              | 77.667     | 77.909   | 77.045 | 74.455  | 70.545 | 67.818  |
|      |        |                  |        |                    |                      |                     |            |          |        |         |        |         |

| Year | Jan  | Feb   | March             | April               | Мау                 | June         | July  | Aug         | Sept  | Oct   | Nov   | Dec  |
|------|------|-------|-------------------|---------------------|---------------------|--------------|-------|-------------|-------|-------|-------|------|
| 1976 | 0.0  | 110.0 | 97.2              | 198.7               | 134.5               | 235.7        | 61.3  | 56.7        | 128.0 | 169.3 | 94.0  | 0.0  |
| 1977 | 38.1 | 23.1  | 13.3              | 120.0               | 159.3               | 82.1         | 99.3  | 146.8       | 196.3 | 272.7 | 4.2   | 3.6  |
| 1978 | 0.0  | 19.1  | 144.1             | 108.2               | 110.0               | 221.4        | 154.8 | 21.8        | 151.8 | 152.8 | 52.7  | 3.3  |
| 1979 | 8.4  | 0.0   | 65.5              | 113.5               | 91.7                | 167.3        | 244.7 | 69.4        | 192.0 | 284.8 | 45.7  | 0.3  |
| 1980 | 27.8 | 31.0  | 37.1              | 195.4               | 78.1                | 138.5        | 191.2 | 45.0        | 222.2 | 194.0 | 97.2  | 2.3  |
| 1981 | 0.0  | 3.8   | 229.7             | 106.4               | 123.1               | 60.9         | 141.7 | 147.4       | 238.7 | 251.3 | 12.6  | 0.0  |
| 1982 | 0.0  | 23.0  | 129.7             | 179.4               | 118.7               | 63.1         | 144.2 | 67.0        | 103.2 | 153.8 | 9.2   | 0.0  |
| 1983 | 0.0  | 7.9   | 12.6              | 137.2               | 264.4               | 112.5        | 19.0  | 4.3         | 145.1 | 124.7 | 0.3   | 21.3 |
| 1984 | 0.0  | 0.5   | 205.5             | 213.4               | 186.0               | 143.4        | 224.1 | 214.0       | 148.6 | 112.4 | 53.1  | 0.0  |
| 1985 | 9.9  | 1.9   | 131.6             | 176.4               | 116.3               | 131.1        | 237.0 | 186.1       | 243.3 | 169.8 | 70.1  | 0.0  |
| 1986 | 4.2  | 11.0  | 116.8             | 164.7               | 102.6               | 114.4        | 100.3 | 109.9       | 178.3 | 219.8 | 47.5  | 0.0  |
| 1987 | 0.0  | 24.2  | 132.4             | 34.1                | 144.4               | 116.6        | 134.0 | 156.9       | 297.8 | 201.5 | 8.8   | 0.4  |
| 1988 | 10.4 | 54.5  | 179.8             | 96.6                | 107.4               | 155.7        | 166.5 | 77.7        | 225.2 | 121.2 | 14.6  | 0.0  |
| 1989 | 0.0  | 0.0   | 166.7             | 159.0               | 158.2               | 347.0        | 208.2 | 157.5       | 214.9 | 274.4 | 20.1  | 20.3 |
| 1990 | 3.0  | 29.0  | 0.0               | 124.5               | 10 <mark>1.5</mark> | 156.8        | 35.3  | 93.8        | 284.2 | 144.9 | 89.8  | 96.5 |
| 1991 | 0.0  | 42.9  | 118.5             | 189.6               | <mark>344.</mark> 1 | 92.3         | 170.7 | 158.0       | 116.8 | 119.7 | 35.3  | 20.4 |
| 1992 | 3.2  | 21.6  | 33.8              | 184.4               | 250.7               | 154.8        | 103.1 | 13.5        | 267.5 | 110.3 | 142.8 | 0.0  |
| 1993 | 0.0  | 19.1  | 283.0             | 92.7                | 186.4               | 139.2        | 73.0  | 28.6        | 247.9 | 75.0  | 53.5  | 14.2 |
| 1994 | 0.0  | 2.0   | 103.7             | 80.9                | 116.2               | 119.3        | 19.7  | 87.7        | 90.8  | 206.6 | 37.7  | 0.0  |
| 1995 | 0.0  | 1.9   | 76.8              | 232.3               | 163.5               | 177.9        | 115.8 | 117.6       | 290.6 | 145.6 | 16.9  | 33.7 |
| 1996 | 0.0  | 94.4  | 66.8              | 202.4               | 198.1               | 177.8        | 90.8  | 138.6       | 82.5  | 74.5  | 1.8   | 28.0 |
| 1997 | 0.0  | 0.0   | 121.8             | 93.2                | 183.7               | <u>153.0</u> | 74.2  | 78.0        | 99.7  | 197.6 | 18.3  | 0.0  |
| 1998 | 2.1  | 10.4  | 2.0               | 207.5               | 156.5               | 205.8        | 25.7  | 57.7        | 174.4 | 157.0 | 40.1  | 13.5 |
| 1999 | 2.4  | 37.2  | 193.7             | 192.5               | 160.5               | 111.0        | 113.0 | 105.8       | 101.5 | 188.3 | 82.9  | TR   |
| 2000 | 49.2 | 0.0   | <mark>31.8</mark> | 153.2               | 135.9               | 294.0        | 170.4 | 73.6        | 90.4  | 138.6 | 49.7  | 0.0  |
| 2001 | 0.0  | tr    | 77.4              | 137.6               | 171.5               | 152.4        | 45.5  | 46.4        | 184.6 | 150.2 | 20.4  | 1.0  |
| 2002 | 5.2  | 18.6  | 111.7             | 172.2               | 190.9               | 191.9        | 298.2 | 49.5        | 106.6 | 195.3 | 65.9  | 7.0  |
| 2003 | 14.3 | 101.1 | <mark>54.8</mark> | 196.9               | 128.9               | 208.1        | 108.2 | 67.9        | 232.6 | 161.1 | 96.7  | 25.8 |
| 2004 | 30.1 | 28.3  | 15.5              | 304.8               | 86.8                | 63.4         | 116.7 | 173.5       | 202.0 | 187.9 | 128.7 | 12.0 |
| 2005 | 61.1 | 6.1   | 67.1              | 158.5               | 231.5               | 128.8        | 133.2 | 49.5        | 114.8 | 248.1 | 80.0  | 51.5 |
| 2006 | 9.4  | 45.6  | 86.1              | 13 <mark>9.5</mark> | 174.8               | 119.7        | 50.7  | 51.2        | 195.7 | 299.1 | 23.8  | 0.0  |
| AVE  | 9.0  | 25.6  | 100.2             | 157.0               | 157.3               | 152.8        | 124.9 | <u>92.0</u> | 179.6 | 177.5 | 48.9  | 11.8 |

Wenchi Mean Monthly Rainfall (mm)

AVERAGE ANNUAL RAINFALL =1236.5 mm

| Year | Jan                | Feb  | March | April              | May  | June | July | Aug               | Sept | Oct  | Nov  | Dec  |
|------|--------------------|------|-------|--------------------|------|------|------|-------------------|------|------|------|------|
| 1976 | 33.8               | 35.8 | 36.8  | 35.7               | 33.0 | 30.0 | 29.8 | 29.4              | 30.6 | 30.6 | 33.0 | 34.1 |
| 1977 | 34.7               | 35.6 | 36.6  | 36.1               | 33.3 | 31.3 | 29.7 | 28.8              | 30.3 | 33.3 | 35.6 | 34.2 |
| 1978 | 35.4               | 37.8 | 36.2  | 34.5               | 33.5 | 30.9 | 28.5 | 30.0              | 30.6 | 31.7 | 33.6 | 35.1 |
| 1979 | 35.8               | 37.0 | 36.8  | 36.9               | 32.7 | 30.0 | 29.3 | 29.6              | 30.6 | 32.8 | 35.1 | 34.0 |
| 1980 | 35.6               | 36.4 | 37.6  | 35.7               | 31.2 | 32.5 | 30.0 | 29.2              | 30.7 | 32.4 | 33.5 | 32.5 |
| 1981 | 34.0               | 37.2 | 36.5  | 35.6               | 33.3 | 32.0 | 29.8 | 29.7              | 30.7 | 34.0 | 35.5 | 36.0 |
| 1982 | 34.3               | 35.6 | 35.9  | 33.9               | 34.3 | 31.2 | 30.1 | 30.0              | 30.8 | 32.8 | 32.9 | 34.0 |
| 1983 | 31.8               | 37.2 | 38.3  | 36.8               | 33.7 | 31.0 | 30.0 | 29.8              | 30.7 | 34.5 | 35.3 | 35.3 |
| 1984 | 34.6               | 36.5 | 36.9  | 36.2               | 34.1 | 32.3 | 30.2 | 29.6              | 30.3 | 32.6 | 35.1 | 33.3 |
| 1985 | 35.3               | 34.4 | 36.8  | 34.9               | 33.8 | 32.3 | 29.0 | 29.1              | 29.5 | 33.7 | 35.7 | 33.1 |
| 1986 | 34.3               | 37.2 | 37.7  | 36.7               | 34.8 | 33.3 | 29.7 | 29.2              | 30.1 | 32.6 | 34.1 | 33.3 |
| 1987 | 35.6               | 37.9 | 37.6  | 37.5               | 35.6 | 32.1 | 30.4 | 29.7              | 31.1 | 32.3 | 35.6 | 34.4 |
| 1988 | 34.2               | 37.3 | 38.6  | 36.1               | 35.1 | 31.1 | 29.5 | 29.7              | 30.3 | 33.9 | 35.3 | 33.3 |
| 1989 | 33.3               | 35.1 | 36.3  | 36.7               | 35.7 | 31.6 | 30.1 | 29.2              | 30.3 | 32.6 | 36.1 | 34.4 |
| 1990 | 33.9               | 36.1 | 38.4  | 36.7               | 34.4 | 32.1 | 29.7 | 30.0              | 31.0 | 34.4 | 35.9 | 35.1 |
| 1991 | 35.5               | 38.0 | 38.4  | 35.6               | 31.6 | 32.0 | 29.9 | 29.3              | 31.6 | 32.4 | 35.0 | 34.2 |
| 1992 | 33.2               | 37.1 | 38.3  | 37.3               | 33.6 | 30.7 | 29.6 | 29.3              | 30.7 | 33.9 | 33.8 | 35.7 |
| 1993 | 33.7               | 37.3 | 36.8  | 3 <mark>6.1</mark> | 34.5 | 33.0 | 30.3 | 30.0              | 30.6 | 33.3 | 35.6 | 34.9 |
| 1994 | 34.6               | 37.0 | 38.2  | 36.9               | 34.0 | 31.6 | 30.1 | 29.6              | 30.8 | 31.6 | 34.7 | 33.9 |
| 1995 | 34.3               | 36.7 | 38.1  | 36.1               | 34.0 | 32.4 | 30.2 | 29.6              | 31.2 | 33.1 | 35.1 | 35.0 |
| 1996 | 36.3               | 37.7 | 37.4  | 35.8               | 24.3 | 31.6 | 30.5 | 29.7              | 30.0 | 32.8 | 34.9 | 35.7 |
| 1997 | 36 <mark>.2</mark> | 35.8 | 37.3  | 34.8               | 34.1 | 31.0 | 30.4 | 30.4              | 31.1 | 32.8 | 34.7 | 34.9 |
| 1998 | 34.7               | 37.9 | 38.9  | 37.4               | 34.6 | 32.7 | 30.8 | 29.4              | 29.8 | 32.8 | 35.7 | 34.9 |
| 1999 | 35.2               | 35.2 | 37.7  | 36.0               | 35.0 | 32.2 | 29.7 | 29.2              | 29.8 | 31.9 | 35.3 | 34.6 |
| 2000 | 34.7               | 34.7 | 37.8  | 36.4               | 33.9 | 31.5 | 30.1 | <mark>30.0</mark> | 30.1 | 32.9 | 35.7 | 34.4 |
| 2001 | 35.6               | 37.0 | 38.9  | 37.1               | 34.7 | 31.9 | 31.0 | 29.5              | 30.4 | 34.5 | 36.1 | 36.8 |
| 2002 | 34.8               | 37.5 | 39.1  | 36.4               | 34.5 | 32.0 | 31.1 | 29.6              | 30.8 | 32.8 | 35.5 | 35.1 |
| 2003 | 35.8               | 37.9 | 38.2  | 36.3               | 34.5 | 30.6 | 30.2 | 29.8              | 30.8 | 33.4 | 34.9 | 35.1 |
| 2004 | 35.7               | 36.9 | 37.0  | 35.6               | 33.2 | 31.6 | 29.9 | 29.7              | 30.8 | 34.5 | 35.3 | 36.2 |
| 2005 | 34.0               | 38.0 | 38.4  | 36.4               | 34.4 | 31.8 | 30.2 | 29.8              | 31.6 | 33.7 | 36.1 | 36.2 |
| 2006 | 33.1               | 34.1 | 33.8  | 33.2               | 30.9 | 30.1 | 28.9 | 28.5              | 29.0 | 30.0 | 31.3 | 32.5 |
| AVE  | 34.6               | 36.6 | 37.5  | 36.0               | 33.6 | 31.6 | 30.0 | 29.6              | 30.5 | 32.9 | 34.9 | 34.6 |
|      |                    |      |       |                    |      |      |      |                   |      |      |      |      |

Wenchi Mean Monthly Maximum Temperature (°C)

| Year | Jan                | Feb  | March | April | May  | June | July | Aug  | Sept | Oct  | Nov  | Dec  |
|------|--------------------|------|-------|-------|------|------|------|------|------|------|------|------|
| 1976 | 19.4               | 22.3 | 24.0  | 24.2  | 23.6 | 21.8 | 21.9 | 21.3 | 21.4 | 21.5 | 20.9 | 18.1 |
| 1977 | 20.8               | 21.2 | 24.1  | 25.5  | 23.5 | 22.3 | 21.6 | 21.4 | 21.6 | 21.5 | 19.5 | 18.9 |
| 1978 | 19.8               | 23.5 | 24.9  | 24.5  | 23.7 | 22.4 | 21.6 | 21.9 | 21.6 | 21.9 | 20.8 | 19.7 |
| 1979 | 21.0               | 21.6 | 24.9  | 25.6  | 23.6 | 22.5 | 21.9 | 22.1 | 21.9 | 22.6 | 22.0 | 19.2 |
| 1980 | 21.5               | 26.4 | 24.9  | 25.2  | 22.1 | 23.4 | 22.3 | 22.0 | 22.3 | 22.3 | 21.6 | 18.2 |
| 1981 | 18.3               | 23.1 | 24.3  | 25.2  | 23.9 | 22.1 | 22.3 | 22.1 | 22.1 | 23.1 | 21.2 | 19.7 |
| 1982 | 18.7               | 22.2 | 24.3  | 22.7  | 24.3 | 22.9 | 20.8 | 22.2 | 22.1 | 22.3 | 20.5 | 18.8 |
| 1983 | 17.2               | 23.3 | 25.2  | 25.8  | 24.2 | 22.8 | 21.5 | 22.5 | 21.7 | 22.9 | 21.6 | 19.7 |
| 1984 | 19.8               | 21.8 | 26.0  | 25.4  | 24.3 | 23.1 | 21.9 | 21.2 | 22.4 | 22.6 | 21.7 | 18.4 |
| 1985 | 21.0               | 24.0 | 26.3  | 25.1  | 24.2 | 23.2 | 21.6 | 21.8 | 21.4 | 22.7 | 21.7 | 18.4 |
| 1986 | 18.5               | 23.4 | 25.2  | 25.7  | 24.5 | 23.0 | 21.9 | 21.6 | 21.9 | 22.3 | 20.3 | 18.2 |
| 1987 | 20.9               | 24.0 | 25.1  | 26.2  | 25.2 | 23.4 | 22.9 | 22.3 | 23.1 | 22.8 | 21.3 | 20.1 |
| 1988 | 20.1               | 23.0 | 26.7  | 25.9  | 25.1 | 22.8 | 21.7 | 22.2 | 22.0 | 22.8 | 21.4 | 18.9 |
| 1989 | 18.1               | 21.0 | 24.1  | 25.1  | 24.0 | 22.2 | 22.0 | 21.9 | 21.1 | 21.8 | 21.2 | 19.8 |
| 1990 | 20.5               | 21.8 | 24.0  | 25.8  | 24.1 | 22.9 | 22.0 | 21.6 | 21.5 | 22.6 | 22.8 | 21.7 |
| 1991 | 20.7               | 24.2 | 26.1  | 24.9  | 23.4 | 23.8 | 22.3 | 21.9 | 22.1 | 21.4 | 20.9 | 19.3 |
| 1992 | 19.0               | 22.6 | 25.0  | 25.1  | 23.0 | 21.7 | 21.1 | 20.8 | 20.6 | 21.6 | 19.4 | 18.4 |
| 1993 | 17.3               | 21.0 | 22.1  | 22.5  | 22.7 | 22.4 | 21.9 | 21.6 | 21.9 | 22.8 | 23.3 | 20.3 |
| 1994 | 20.2               | 23.1 | 25.2  | 25.9  | 24.1 | 22.9 | 22.4 | 22.4 | 22.3 | 22.1 | 20.7 | 19.0 |
| 1995 | 18.9               | 22.0 | 25.8  | 25.3  | 24.2 | 23.5 | 22.6 | 22.4 | 22.5 | 22.9 | 21.3 | 21.2 |
| 1996 | 21.4               | 24.0 | 25.7  | 25.3  | 24.8 | 23.0 | 22.5 | 21.9 | 21.9 | 22.4 | 20.0 | 20.2 |
| 1997 | 21. <mark>6</mark> | 21.5 | 24.8  | 24.8  | 23.9 | 22.7 | 22.2 | 22.5 | 22.7 | 23.1 | 22.2 | 20.3 |
| 1998 | 20.3               | 24.1 | 25.7  | 26.8  | 25.5 | 23.8 | 23.4 | 22.4 | 22.4 | 23.1 | 22.3 | 20.9 |
| 1999 | 21.3               | 22.0 | 25.6  | 25.3  | 24.2 | 23.2 | 22.5 | 22.3 | 21.7 | 22.6 | 22.8 | 19.4 |
| 2000 | 22.5               | 20.7 | 24.8  | 25.2  | 24.1 | 22.7 | 22.3 | 22.2 | 21.9 | 22.6 | 22.6 | 19.2 |
| 2001 | 19.9               | 21.3 | 25.5  | 25.6  | 24.4 | 22.8 | 22.9 | 22.3 | 22.2 | 23.6 | 22.8 | 21.4 |
| 2002 | 21.0               | 22.9 | 26.9  | 25.4  | 24.6 | 23.4 | 22.9 | 22.0 | 22.3 | 23.0 | 22.2 | 20.1 |
| 2003 | 21.0               | 24.6 | 25.2  | 25.3  | 24.4 | 22.6 | 22.5 | 22.5 | 22.3 | 23.4 | 22.8 | 20.2 |
| 2004 | 21.3               | 23.7 | 24.9  | 25.0  | 24.4 | 22.6 | 22.0 | 21.8 | 21.7 | 22.8 | 22.5 | 22.3 |
| 2005 | 20.6               | 25.7 | 26.5  | 25.6  | 24.3 | 23.0 | 22.4 | 21.8 | 22.2 | 22.8 | 22.3 | 21.4 |
| 2006 | 22.2               | 23.0 | 22.7  | 22.9  | 21.7 | 22.0 | 21.8 | 21.5 | 21.5 | 21.6 | 21.4 | 20.6 |
| AVE  | 20.2               | 22.9 | 25.0  | 25.1  | 24.0 | 22.8 | 22.1 | 21.9 | 21.9 | 22.5 | 21.5 | 19.7 |
|      |                    |      |       |       |      |      |      |      |      |      |      |      |

Wenchi Mean Monthly Minimum Temperature (°C)

| Year | Jan | Feb | March | April | Мау | June | July | Aug | Sept | Oct | Nov | Dec |
|------|-----|-----|-------|-------|-----|------|------|-----|------|-----|-----|-----|
| 1976 | 73  | 89  | 92    | 94    | 96  | 97   | 95   | 95  | 97   | 97  | 95  | 90  |
| 1977 | 92  | 83  | 80    | 86    | 94  | 95   | 94   | 94  | 96   | 97  | 93  | 83  |
| 1978 | 88  | 89  | 92    | 94    | 96  | 97   | 95   | 96  | 97   | 98  | 93  | 97  |
| 1979 | 94  | 83  | 84    | 92    | 94  | 97   | 96   | 96  | 97   | 98  | 96  | 83  |
| 1980 | 94  | 85  | 90    | 91    | 94  | 96   | 96   | 97  | 97   | 97  | 97  | 80  |
| 1981 | 64  | 89  | 90    | 94    | 95  | 95   | 96   | 96  | 97   | 97  | 93  | 96  |
| 1982 | 55  | 80  | 85    | 93    | 94  | 97   | 97   | 96  | 97   | 97  | 96  | 77  |
| 1983 | 29  | 71  | 75    | 92    | 87  | 95   | 97   | 95  | 97   | 97  | 95  | 83  |
| 1984 | 59  | 86  | 88    | 92    | 89  | 95   | 96   | 96  | 96   | 96  | 96  | 86  |
| 1985 | 68  | 88  | 89    | 89    | 93  | 95   | 96   | 95  | 96   | 97  | 97  | 93  |
| 1986 | 61  | 87  | 91    | 92    | 94  | 96   | 95   | 96  | 97   | 97  | 93  | 69  |
| 1987 | 79  | 85  | 89    | 91    | 92  | 96   | 97   | 96  | 97   | 97  | 95  | 79  |
| 1988 | 58  | 63  | 89    | 93    | 94  | 95   | 96   | 95  | 97   | 97  | 95  | 73  |
| 1989 | 53  | 41  | 87    | 92    | 94  | 96   | 97   | 96  | 98   | 98  | 95  | 85  |
| 1990 | 75  | 55  | 81    | 91    | 94  | 96   | 95   | 95  | 97   | 97  | 96  | 91  |
| 1991 | 79  | 91  | 90    | 92    | 97  | 96   | 96   | 97  | 97   | 97  | 97  | 76  |
| 1992 | 46  | 76  | 85    | 94    | 96  | 96   | 96   | 95  | 97   | 97  | 92  | 90  |
| 1993 | 45  | 82  | 81    | 91    | 95  | 97   | 96   | 96  | 96   | 97  | 95  | 79  |
| 1994 | 67  | 74  | 87    | 93    | 95  | 96   | 94   | 94  | 96   | 97  | 90  | 64  |
| 1995 | 37  | 66  | 86    | 92    | 96  | 96   | 96   | 96  | 97   | 96  | 92  | 87  |
| 1996 | 94  | 87  | 90    | 93    | 95  | 97   | 97   | 97  | 97   | 96  | 91  | 96  |
| 1997 | 86  | 47  | 77    | 92    | 94  | 96   | 95   | 96  | 96   | 95  | 95  | 82  |
| 1998 | 56  | 67  | 73    | 90    | 93  | 96   | 95   | 94  | 96   | 96  | 94  | 85  |
| 1999 | 81  | 71  | 90    | 92    | 95  | 95   | 96   | 94  | 96   | 96  | 95  | 77  |
| 2000 | 83  | 47  | 81    | 91    | 94  | 95   | 96   | 95  | 96   | 95  | 94  | 80  |
| 2001 | 67  | 63  | 87    | 92    | 94  | 95   | 95   | 95  | 96   | 95  | 95  | 91  |
| 2002 | 57  | 69  | 88    | 92    | 93  | 95   | 96   | 95  | 96   | 95  | 95  | 77  |
| 2003 | 68  | 86  | 85    | 93    | 93  | 95   | 95   | 94  | 95   | 95  | 94  | 83  |
| 2004 | 76  | 72  | 78    | 94    | 94  | 94   | 95   | 96  | 96   | 95  | 95  | 94  |
| 2005 | 55  | 86  | 90    | 93    | 93  | 95   | 95   | 95  | 95   | 95  | 95  | 90  |
| 2006 | 84  | 88  | 91    | 91    | 94  | 95   | 94   | 94  | 95   | 95  | 90  | 78  |
| AVE  | 68  | 76  | 86    | 92    | 94  | 96   | 96   | 95  | 96   | 96  | 94  | 84  |
|      |     |     |       |       |     |      |      |     |      |     |     |     |

Wenchi Mean Monthly RH at 0600 hours (%)

| Year | Jan | Feb | March | April | Мау | June | July | Aug | Sept | Oct | Nov | Dec |
|------|-----|-----|-------|-------|-----|------|------|-----|------|-----|-----|-----|
| 1976 | 33  | 46  | 50    | 61    | 67  | 73   | 69   | 69  | 69   | 75  | 65  | 47  |
| 1977 | 49  | 29  | 35    | 49    | 60  | 69   | 65   | 72  | 72   | 69  | 56  | 43  |
| 1978 | 30  | 39  | 53    | 63    | 66  | 71   | 72   | 70  | 70   | 71  | 61  | 57  |
| 1979 | 49  | 28  | 36    | 52    | 62  | 70   | 75   | 73  | 73   | 71  | 68  | 44  |
| 1980 | 50  | 35  | 51    | 55    | 65  | 71   | 73   | 75  | 76   | 74  | 70  | 48  |
| 1981 | 26  | 43  | 50    | 65    | 67  | 63   | 76   | 74  | 73   | 71  | 59  | 55  |
| 1982 | 20  | 34  | 47    | 63    | 69  | 70   | 74   | 73  | 70   | 67  | 57  | 35  |
| 1983 | 15  | 30  | 28    | 67    | 68  | 71   | 73   | 76  | 71   | 64  | 56  | 49  |
| 1984 | 27  | 35  | 49    | 67    | 68  | 70   | 70   | 69  | 72   | 69  | 59  | 55  |
| 1985 | 32  | 36  | 52    | 68    | 67  | 69   | 72   | 73  | 73   | 70  | 67  | 52  |
| 1986 | 39  | 23  | 49    | 57    | 64  | 67   | 71   | 73  | 75   | 70  | 62  | 38  |
| 1987 | 36  | 37  | 42    | 53    | 60  | 68   | 71   | 74  | 73   | 69  | 60  | 42  |
| 1988 | 27  | 27  | 53    | 61    | 62  | 69   | 72   | 73  | 72   | 67  | 60  | 33  |
| 1989 | 20  | 20  | 45    | 59    | 63  | 74   | 73   | 75  | 76   | 72  | 61  | 49  |
| 1990 | 34  | 29  | 27    | 57    | 65  | 67   | 73   | 70  | 75   | 70  | 67  | 59  |
| 1991 | 37  | 41  | 53    | 62    | 71  | 69   | 73   | 75  | 73   | 72  | 67  | 48  |
| 1992 | 24  | 34  | 41    | 58    | 68  | 72   | 77   | 71  | 73   | 68  | 61  | 50  |
| 1993 | 20  | 30  | 46    | 56    | 67  | 73   | 74   | 74  | 74   | 69  | 66  | 41  |
| 1994 | 25  | 29  | 41    | 59    | 64  | 72   | 66   | 65  | 71   | 75  | 56  | 27  |
| 1995 | 14  | 20  | 44    | 59    | 66  | 69   | 73   | 76  | 72   | 72  | 57  | 54  |
| 1996 | 42  | 45  | 49    | 58    | 63  | 71   | 73   | 74  | 73   | 70  | 48  | 56  |
| 1997 | 40  | 17  | 31    | 56    | 65  | 73   | 72   | 73  | 75   | 72  | 62  | 45  |
| 1998 | 27  | 31  | 28    | 57    | 64  | 70   | 72   | 68  | 69   | 71  | 62  | 47  |
| 1999 | 30  | 33  | 50    | 60    | 64  | 68   | 71   | 70  | 71   | 73  | 69  | 37  |
| 2000 | 41  | 24  | 34    | 55    | 59  | 69   | 71   | 74  | 72   | 69  | 63  | 38  |
| 2001 | 23  | 20  | 40    | 61    | 64  | 67   | 70   | 71  | 70   | 69  | 63  | 46  |
| 2002 | 24  | 28  | 49    | 61    | 67  | 68   | 75   | 73  | 72   | 71  | 65  | 39  |
| 2003 | 28  | 40  | 43    | 61    | 51  | 69   | 69   | 69  | 71   | 69  | 67  | 47  |
| 2004 | 35  | 35  | 39    | 61    | 67  | 68   | 72   | 74  | 72   | 68  | 68  | 62  |
| 2005 | 28  | 43  | 51    | 59    | 63  | 71   | 73   | 73  | 72   | 67  | 65  | 52  |
| 2006 | 40  | 42  | 50    | 56    | 67  | 69   | 69   | 66  | 70   | 72  | 55  | 33  |
| AVE  | 31  | 32  | 44    | 59    | 65  | 70   | 72   | 72  | 72   | 70  | 62  | 46  |
|      |     |     |       |       |     |      |      |     |      |     |     |     |

Wenchi Mean Monthly RH at 1500 hours (%)

|      |                    |     |       | wench | wontiny | wind Spee |      |     |      |     |     |     |
|------|--------------------|-----|-------|-------|---------|-----------|------|-----|------|-----|-----|-----|
| Year | Jan                | Feb | March | April | Мау     | June      | July | Aug | Sept | Oct | Nov | Dec |
| 1976 | 2.9                | 3.8 | 1.4   | 4.1   | 2.3     | 2.7       | 2.4  | 5.0 | 5.0  | 4.6 | 4.7 | 2.5 |
| 1977 | 2.0                | 2.5 | 4.9   | 3.2   | 3.7     | 3.3       | 3.4  | 3.9 | 2.8  | 3.9 | 2.9 | 2.2 |
| 1978 | 2.8                | 3.0 | 2.6   | 2.7   | 3.0     | 2.2       | 1.9  | 3.6 | 3.9  | 3.4 | 4.0 | 3.6 |
| 1979 | 2.7                | 2.4 | 5.0   | 5.0   | 4.6     | 4.7       | 4.6  | 4.2 | 4.8  | 4.3 | 3.5 | 2.8 |
| 1980 | 2.4                | 2.8 | 4.5   | 3.7   | 2.3     | 2.6       | 3.8  | 4.1 | 3.3  | 4.1 | 2.9 | 3.2 |
| 1981 | 2.8                | 3.9 | 2.9   | 2.2   | 2.9     | 2.5       | 2.0  | 2.4 | 2.4  | 1.8 | 2.0 | 1.6 |
| 1982 | 2.8                | 3.3 | 3.8   | 3.8   | 3.4     | 3.2       | 3.4  | 3.6 | 2.8  | 2.6 | 2.5 | 3.3 |
| 1983 | 3.0                | 2.9 | 1.4   | 4.2   | 5.3     | 4.7       | 5.3  | 4.5 | 4.5  | 4.4 | 4.9 | 3.3 |
| 1984 | 2.6                | 1.8 | 4.1   | 3.3   | 4.1     | 2.9       | 3.2  | 3.0 | 3.7  | 3.1 | 3.2 | 2.7 |
| 1985 | 2.7                | 3.7 | 2.3   | 2.1   | 2.3     | 2.8       | 2.9  | 2.9 | 2.3  | 1.9 | 1.7 | 1.5 |
| 1986 | 3.0                | 3.3 | 2.7   | 2.8   | 3.6     | 2.2       | 0.2  | 1.4 | 2.6  | 2.2 | 1.7 | 1.8 |
| 1987 | 2.2                | 3.6 | 2.9   | 3.1   | 2.9     | 2.5       | 3.0  | 3.1 | 1.8  | 2.8 | 2.8 | 2.5 |
| 1988 | 1.9                | 3.2 | 5.0   | 4.5   | 4.0     | 3.7       | 5.1  | 5.3 | 4.1  | 3.3 | 3.9 | 3.1 |
| 1989 | 3.6                | 3.8 | 5.0   | 4.8   | 4.7     | 4.2       | 4.3  | 4.7 | 3.3  | 2.9 | 2.8 | 2.7 |
| 1990 | 3.9                | 4.9 | 4.6   | 6.9   | 5.0     | 4.6       | 5.6  | 5.3 | 4.1  | 4.3 | 3.9 | 3.7 |
| 1991 | 3.4                | 5.0 | 4.7   | 4.6   | 3.6     | 3.1       | 3.8  | 4.5 | 2.9  | 2.9 | 2.9 | 2.3 |
| 1992 | 4.0                | 3.4 | 4.6   | 4.8   | 4.1     | 4.4       | 4.9  | 4.5 | 3.2  | 2.8 | 2.2 | 2.1 |
| 1993 | 3.6                | 4.0 | 4.2   | 4.4   | 3.8     | 3.9       | 4.7  | 4.4 | 3.0  | 2.9 | 2.9 | 2.3 |
| 1994 | 3.2                | 4.0 | 4.8   | 4.4   | 3.8     | 3.8       | 5.0  | 4.9 | 3.7  | 2.9 | 2.5 | 2.8 |
| 1995 | 2.7                | 3.2 | 4.3   | 3.5   | 3.0     | 3.0       | 3.7  | 3.3 | 3.1  | 2.3 | 2.0 | 2.9 |
| 1996 | 2.8                | 3.4 | 3.5   | 3.1   | 3.2     | 4.3       | 3.1  | 3.2 | 3.2  | 2.7 | 2.4 | 2.9 |
| 1997 | 2 <mark>.</mark> 9 | 2.7 | 3.8   | 3.8   | 3.4     | 3.1       | 3.1  | 3.0 | 2.7  | 2.3 | 2.4 | 2.3 |
| 1998 | 2.7                | 2.8 | 2.8   | 3.4   | 2.9     | 2.4       | 2.9  | 2.8 | 2.4  | 2.0 | 1.8 | 1.9 |
| 1999 | 2.2                | 2.6 | 3.3   | 2.9   | 2.6     | 2.3       | 2.8  | 2.9 | 2.5  | 2.0 | 2.0 | 1.7 |
| 2000 | 2.5                | 2.6 | 2.7   | 2.9   | 2.5     | 2.3       | 2.3  | 2.1 | 2.0  | 1.7 | 1.6 | 1.5 |
| 2001 | 1.7                | 2.2 | 2.8   | 2.4   | 2.2     | 2.3       | 2.4  | 2.4 | 2.0  | 1.7 | 2.1 | 1.6 |
| 2002 | 1.8                | 2.1 | 2.7   | 2.5   | 2.3     | 2.3       | 1.6  | 2.0 | 1.8  | 1.7 | 1.4 | 1.5 |
| 2003 | 1.7                | 2.1 | 2.0   | 2.3   | 2.2     | 2.1       | 2.2  | 2.2 | 1.6  | 1.3 | 1.4 | 1.4 |
| 2004 | 1.4                | 1.6 | 2.1   | 2.2   | 2.1     | 1.9       | 1.6  | 2.0 | 1.3  | 1.5 | 1.3 | 1.6 |
| 2005 | 1.8                | 1.9 | 2.1   | 2.3   | 2.1     | 1.9       | 2.0  | 2.2 | 1.8  | 1.7 | 1.8 | 1.3 |
| 2006 | 1.6                | 2.3 | 2.9   | 3.0   | 2.4     | 2.3       | 2.4  | 3.0 | 3.0  | 2.1 | 1.7 | 1.8 |
| AVE  | 2.6                | 3.1 | 3.4   | 3.5   | 3.2     | 3.0       | 3.2  | 3.4 | 3.0  | 2.7 | 2.6 | 2.3 |
|      |                    |     |       |       |         |           |      |     |      |     |     |     |

Wenchi Monthly Wind Speed (knots)

| Year | Jan | Feb | March | April | Мау | June | July | Aug | Sept | Oct | Nov | Dec |
|------|-----|-----|-------|-------|-----|------|------|-----|------|-----|-----|-----|
| 1976 | 7.2 | 8.4 | 6.6   | 7.8   | 6.6 | 6.1  | 4.9  | 3.0 | 4.1  | 6.2 | 7.7 | 6.7 |
| 1977 | 7.3 | 7.6 | 6.0   | 7.1   | 7.2 | 6.9  | 4.8  | 3.2 | 4.3  | 6.3 | 7.3 | 7.9 |
| 1978 | 8.7 | 6.0 | 7.6   | 7.3   | 6.9 | 5.2  | 4.5  | 2.9 | 4.8  | 5.2 | 6.7 | 6.5 |
| 1979 | 7.4 | 7.1 | 7.6   | 7.6   | 6.3 | 5.9  | 4.4  | 2.4 | 4.4  | 6.4 | 7.2 | 6.0 |
| 1980 | 6.6 | 7.6 | 7.3   | 7.5   | 7.3 | 5.2  | 4.5  | 3.9 | 3.8  | 6.2 | 7.2 | 5.6 |
| 1981 | 5.6 | 8.4 | 7.7   | 7.8   | 7.1 | 5.5  | 5.1  | 2.5 | 4.7  | 5.4 | 6.0 | 6.1 |
| 1982 | 7.2 | 7.4 | 6.2   | 6.9   | 6.9 | 6.2  | 4.4  | 3.7 | 3.6  | 5.6 | 6.7 | 7.5 |
| 1983 | 7.0 | 8.3 | 7.9   | 7.6   | 6.4 | 6.5  | 4.2  | 3.3 | 4.2  | 5.9 | 6.3 | 7.1 |
| 1984 | 8.1 | 8.1 | 7.7   | 7.8   | 7.4 | 5.6  | 4.5  | 3.5 | 4.1  | 5.5 | 7.1 | 7.3 |
| 1985 | 7.0 | 7.4 | 6.5   | 7.1   | 7.2 | 5.8  | 5.2  | 3.7 | 3.7  | 5.9 | 6.6 | 8.0 |
| 1986 | 7.4 | 7.6 | 7.9   | 6.7   | 7.3 | 6.0  | 4.6  | 3.5 | 4.6  | 4.7 | 6.7 | 7.7 |
| 1987 | 8.0 | 8.1 | 6.8   | 7.7   | 6.8 | 6.8  | 3.9  | 2.9 | 4.4  | 6.4 | 6.3 | 6.6 |
| 1988 | 7.8 | 7.9 | 7.2   | 6.8   | 5.8 | 6.9  | 4.1  | 3.7 | 3.9  | 6.9 | 7.5 | 6.8 |
| 1989 | 6.8 | 8.3 | 6.9   | 7.2   | 6.4 | 5.5  | 3.8  | 3.8 | 3.7  | 6.6 | 7.1 | 7.5 |
| 1990 | 7.1 | 7.5 | 7.7   | 7.1   | 7.3 | 6.6  | 3.5  | 3.0 | 3.8  | 6.3 | 7.4 | 7.2 |
| 1991 | 7.6 | 7.6 | 6.6   | 7.4   | 6.3 | 6.9  | 4.8  | 3.2 | 4.2  | 5.2 | 6.0 | 6.0 |
| 1992 | 5.3 | 7.4 | 6.0   | 6.7   | 6.6 | 5.2  | 2.6  | 2.9 | 4.1  | 6.4 | 6.7 | 6.2 |
| 1993 | 7.2 | 8.0 | 7.6   | 7.8   | 7.2 | 5.9  | 3.4  | 2.4 | 4.3  | 6.2 | 7.3 | 6.7 |
| 1994 | 7.3 | 6.3 | 7.6   | 7.1   | 6.9 | 5.2  | 4.3  | 3.9 | 3.8  | 5.4 | 8.0 | 7.9 |
| 1995 | 8.7 | 8.4 | 7.3   | 7.3   | 6.3 | 5.5  | 4.3  | 2.5 | 4.3  | 5.6 | 7.4 | 6.5 |
| 1996 | 7.4 | 7.6 | 7.7   | 7.6   | 7.3 | 6.2  | 4.9  | 3.7 | 4.1  | 5.9 | 7.4 | 6.0 |
| 1997 | 6.6 | 6.0 | 6.2   | 7.5   | 7.1 | 6.5  | 4.8  | 3.3 | 4.3  | 5.5 | 7.8 | 5.6 |
| 1998 | 5.6 | 7.1 | 7.9   | 7.8   | 6.9 | 5.6  | 4.5  | 3.5 | 4.8  | 5.9 | 7.7 | 6.1 |
| 1999 | 7.2 | 7.6 | 7.7   | 6.9   | 6.4 | 5.8  | 4.4  | 3.7 | 4.4  | 4.7 | 7.3 | 7.5 |
| 2000 | 7.0 | 8.4 | 6.5   | 7.6   | 7.4 | 6.0  | 4.5  | 3.5 | 3.8  | 6.4 | 6.7 | 7.1 |
| 2001 | 8.1 | 7.4 | 7.9   | 7.8   | 7.2 | 6.8  | 5.1  | 2.9 | 4.1  | 6.9 | 7.2 | 7.3 |
| 2002 | 7.0 | 8.3 | 6.8   | 7.1   | 7.3 | 6.5  | 4.4  | 3.7 | 5.2  | 6.2 | 7.2 | 8.0 |
| 2003 | 7.7 | 7.9 | 7.7   | 7.5   | 8.2 | 5.2  | 4.8  | 3.7 | 4.7  | 7.3 | 7.6 | 8.0 |
| 2004 | 7.3 | 6.7 | 5.7   | 6.6   | 6.8 | 6.0  | 3.5  | 3.5 | 4.6  | 6.9 | 7.5 | 6.0 |
| 2005 | 6.8 | 6.7 | 7.0   | 7.3   | 7.4 | 4.7  | 3.2  | 2.9 | 4.8  | 7.4 | 7.1 | 7.5 |
| 2006 | 7.4 | 8.0 | 7.4   | 7.9   | 6.5 | 6.3  | 4.5  | 3.6 | 3.9  | 5.6 | 7.9 | 7.5 |
| AVE  | 7.2 | 7.6 | 7.1   | 7.4   | 6.9 | 6.0  | 4.3  | 3.3 | 4.2  | 6.0 | 7.1 | 6.9 |
|      |     |     |       |       |     |      |      |     |      |     |     |     |

Wenchi Monthly Duration of Bright Sunshine (hours)

|      |                     |       |       |                     | WENCHI              |       |              |      |                    |              |               |              |
|------|---------------------|-------|-------|---------------------|---------------------|-------|--------------|------|--------------------|--------------|---------------|--------------|
| Year | Jan                 | Feb   | March | April               | Мау                 | June  | July         | Aug  | Sept               | Oct          | Nov           | Dec          |
| 1976 | 178.3               | 151.1 | 144.0 | 112.5               | 93.9                | 75.9  | 75.4         | 79.3 | 81.6               | 66.9         | 89.4          | 123.2        |
| 1977 | 126.5               | 194.6 | 201.3 | 157.5               | 118.1               | 87.1  | 85.5         | 70.8 | 77.6               | 81.5         | 111.9         | 138.3        |
| 1978 | 179.4               | 183.9 | 133.8 | 106.3               | 101.8               | 79.3  | 68.0         | 74.2 | 79.3               | 78.1         | 103.5         | 118.1        |
| 1979 | 131.0               | 201.9 | 184.5 | 147.3               | 113.6               | 79.8  | 68.0         | 72.0 | 74.8               | 80.4         | 83.8          | 136.1        |
| 1980 | 56.8                | 156.4 | 145.7 | 137.3               | 113.1               | 79.8  | 68.0         | 65.8 | 72.5               | 77.0         | 82.1          | 122.6        |
| 1981 | 198.0               | 168.2 | 149.6 | 106.3               | 93.9                | 101.8 | 61.3         | 64.1 | 72.0               | 86.6         | 109.1         | 109.1        |
| 1982 | 218.3               | 194.6 | 164.3 | 105.8               | 101.6               | 86.3  | 67.5         | 66.9 | 71.4               | 87.8         | 108.0         | 164.8        |
| 1983 | 108.8               | 125.1 | 112.3 | 87.3                | 73.6                | 59.0  | 49.4         | 49.3 | 52.9               | 55.8         | 68.8          | 91.2         |
| 1984 | 226.1               | 156.3 | 147.1 | 109.2               | 93.2                | 94.0  | 77.2         | 63.5 | 82.3               | 86.4         | 91.4          | 102.0        |
| 1985 | 180.8               | 155.6 | 148.3 | 106.3               | 96.3                | 101.8 | 65.3         | 64.1 | 72.0               | 84.6         | 107.6         | 110.0        |
| 1986 | 245.2               | 244.3 | 187.3 | 127.3               | 102.3               | 88.9  | 77.4         | 71.2 | 77.8               | 84.3         | 117.3         | 109.8        |
| 1987 | 156.3               | 166.3 | 156.3 | 124.0               | <mark>115</mark> .3 | 82.3  | 75.4         | 69.4 | 74.3               | 84.3         | 134.9         | 104.9        |
| 1988 | 165.6               | 255.6 | 210.9 | 127.7               | <mark>99.8</mark>   | 77.6  | 69.8         | 71.4 | 74.6               | 88.9         | 106.9         | 125.4        |
| 1989 | 219.9               | 221.3 | 253.1 | 147.4               | 112.5               | 78.9  | 69.2         | 81.3 | 79.3               | 81.0         | 112.3         | 143.4        |
| 1990 | 175.7               | 184.2 | 160.3 | 124 <mark>.4</mark> | 103.7               | 83.8  | 71.6         | 70.0 | 75.2               | 83.6         | 103.7         | 125.7        |
| 1991 | 165.9               | 174.9 | 146.3 | 115.3               | 87.8                | 84.9  | 73.1         | 65.3 | 77.1               | 75.4         | 87.8          | 132.2        |
| 1992 | 203.1               | 196.9 | 176.6 | 129.9               | 95.1                | 74.3  | 56.3         | 68.6 | 78.2               | 86.1         | 105.8         | 122.6        |
| 1993 | 219.9               | 209.3 | 160.3 | 138.9               | 98.4                | 78.8  | 65.8         | 64.1 | 79.3               | 95.6         | 101.3         | 150.2        |
| 1994 | 20 <mark>8.1</mark> | 218.3 | 183.9 | 128.3               | 110.8               | 80.4  | 84.9         | 88.3 | 82.1               | 82.1         | 115.9         | 196.3        |
| 1995 | 246.4               | 245.3 | 185.1 | 128.8               | 104.1               | 89.4  | 73.7         | 70.3 | 78.2               | 84.4         | 115.3         | 119.3        |
| 1996 | 157.5               | 163.1 | 157.5 | 125.4               | 115.3               | 84.9  | 75.4         | 69.8 | 75.4               | 87.2         | 140.1         | 113.1        |
| 1997 | 167.1               | 258.2 | 210.9 | 127.7               | 100.1               | 75.9  | 69.2         | 71.4 | 70.3               | 88.9         | 106.9         | 125.4        |
| 1998 | 227.3               | 223.3 | 253.1 | 147.4               | 112.5               | 86.6  | 69.2         | 83.3 | 79.3               | 81.0         | 110.8         | 143.4        |
| 1999 | 199.1               | 192.9 | 157.5 | 126.4               | 123.8               | 81.9  | 66.9         | 74.6 | 74.9               | 82.3         | 112.3         | 125.6        |
| 2000 | 197.0               | 206.6 | 179.1 | 129.3               | 105.2               | 82.1  | 70.6         | 72.6 | 77.0               | 84.7         | 110.0         | 135.4        |
| 2001 | 196.9               | 206.3 | 176.8 | 127.6               | 104.3               | 76.3  | 65.6         | 71.7 | 76.4               | 84.3         | 108.6         | 136.4        |
| 2002 | 215.4               | 223.3 | 164.3 | 110.8               | 93.4                | 74.9  | 66.5         | 63.0 | 70.3               | 80.4         | 95.6          | 158.6        |
| 2003 | 200.3               | 168.2 | 172.7 | 117.6               | 112.5               | 78.8  | 74.3         | 74.0 | <mark>8</mark> 1.0 | 87.2         | 93.4          | 135.6        |
| 2004 | 173. <mark>8</mark> | 201.9 | 185.1 | 111.4               | 88.9                | 83.8  | 64.7         | 61.9 | 74.8               | 88.3         | 90.0          | 139.2        |
| 2005 | 196.7               | 169.3 | 151.9 | 120.9               | 104.1               | 74.8  | 63.6         | 60.8 | 72.6               | 92.8         | 95.1          | 117.6        |
| 2006 | 165.9               | 176.1 | 149.1 | 129.9               | 94.5                | 85.5  | 7 <u>6.5</u> | 77.6 | 77.1               | 81.6         | 114.2         | 172.7        |
| AVE  | <u>18</u> 4.1       | 193.3 | 171.3 | 123.9               | 102.7               | 82.2  | 69.8         | 70.0 | 75.5               | <u>8</u> 2.9 | <u>10</u> 4.3 | <u>130.6</u> |

## POTENTIAL EVAPOTRANSPIRATION (mm) FOR



