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Abstract 
In this work, we extended the one dimensional generalization of integral 

transform to two dimensions. Thus, we introduce double Generalization of 

integral transform (DGIT), 

 

{0} ∪ R+, for solving partial differential equations (PDEs). 

In addition, the convolution, linearity, scaling and convergence properties of 

DGIT are established in this thesis. We then applied the DGIT to solve some PDEs 

which confirms the solutions of these PDEs obtained by using other integral 

transforms.  
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Chapter 1 

Introduction 

1.1 Background of Study 

Historically, the search for general methods for solving differential equations is 

believed to have begun when Newton (1964), classified the first order differential 

equations into three classes: 

1. dx dy = f(x) 

2. dx dy = f(x,y) 

3. x∂u∂x + y∂u∂x = u 

Newton expressed the right side of each of the equations in powers of the 

dependent variables and then assumed an infinite series as the solution. He then 

went ahead to determine the coefficients of the infinite series in Newton (1744). 

Other mathematicians such as Leibniz, Bernoulli, Euler and Lagrange have 

contributed immensely in finding ways of solving differential equations. The 

efforts of these great researchers have given rise to such classical methods for 

solving differential equations like Cauchy-Euler method, method of 

undetermined coefficients, variation of parameters, separation of variables and 

integrating factor method, which unfortunately, are limited in usage these days 

because to be able to use them, one has to search for an appropriate technique in 

order to obtain a solution thereby making them tedious and cumbersome to use. 

Currently, integral transforms are the main concern of mathematicians and 

scientist generally. The history of integral transforms is traced back to the 

celebrated works of Laplace (1820) and Fourier (1822). Laplace, in an attempt to 

solve a 
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probabilistic problem, introduce the Laplace transform. This transform has 

effectively been used in finding the solution of linear differential equations and 

integral equations. On the other hand, Fourier (1822), provided the modern 

mathematical theory of heat conduction, Fourier series, and Fourier integrals 

with applications. He later stumbled on the now famous Fourier transform and 

the inverse Fourier transform when he attempted to extend the Fourier Integral 

theorem which is defined on an finite interval to an infinite interval. 

Even though both the Laplace and the Fourier transforms have been discovered 

earlier in the nineteenth century, it was Heaviside (1899) who applied them in 

electrical engineering to solve ordinary differential equations of electrical 

circuits and systems and later developed it into modern operational calculus 

Integral transforms, are therefore, unique mathematical operation methods 

through which a real or complex-valued function is transformed into another class 

of function or sequence. 

The advantage of integral transforms over other classical methods is that it 

transforms a difficult mathematical problem to a relatively easy problem, which 

can easily be solved. In the study of initial-boundary value problem involving 

differential equations, for instance, the differential operators are replaced by 

much simpler algebraic operations, which can readily be solved. The solution of 

the original problem is then obtained in the original variables by the inverse 

transformation. 

1.2 Definitions of some terminologies and theorems 

In order to define the integral transform, we give some basic fundamental defini- 

tions: 



 

 

Definition 1. An Integral Transform is any transform T of a given function of 

the following form: 

 

where K(t,u) is the kernel, u is the transformed variable and t is the independent 

variable [Zill (2013)]. 

Definition 2. (Linear Operator) 

Let X and Y be two real (or complex) linear spaces, then a transformation T : X → 

Y is called a linear operator if the domain of T, DT , is a linear subspace of X, and if 

T(αx + βy) = αTx + βTy 

∀ x, y ∈ DT and all real (or complex) scalars α and β [Hoffman and Kunze 

(1971)]. 

Definition 3. (Linear Integral Operator) 

If f(t) and g(t) are continuous functions on domain Ω, then the integral operator 

T is said to be linear if 

 T(αf(t) + βg(t)) = αTf(t) + βTg(t) ∀f(t),g(t) ∈ Ω 

and α, β scalars [Kreyszig (1978)]. 

Definition 4. (Convolution Theorem) 

If f(t) and g(t) are piecewise continuous on [0,∞) and of exponential order, then 

 
is the convolution of the functions f and g [see Zill (2013)]. 

Definition 5. (Bounded Linear Operator) 

A linear operator T : Ω → Y is said to be bounded if there is a positive constant 

K such that 
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 kT(x)k ≤ Kkxk ∀ x ∈ Ω 

where K is the boundedness constant [ Knapp (2005) ] 

Definition 6. A Hilbert Space is a vector space Ω with an inner product hf,gi such 

that the norm defined by 

kfk = phf,gi 

turns Ω into a complete metric space [ Royden and Fitzpatrick (2010)]. 

Definition 7. (Convergence of Series) 

Let be the nth partial sum of the first n terms of a sequence, then 

its series converges if there exists a number ` such that for any arbitrarily ε > 0 , 

there is an integer N such that |Sn −`| ≤ ε for all n ≥ N [ Thomson et al. (2001)] 

Definition 8. (Euclidean Space) An euclidean space is a finite-dimensional vector 

space over the reals R, with an inner product h·,·i. 

Definition 9. (Linear Space) 

A linear space X over a field F is a set whose elements are called vectors and where 

two operations, addition and scalar multiplication, are defined: 

1. addition, denoted by +, such that to every pair x,y ∈ X there exists a vector x + 

y ∈ X and 

 x + y = y + x, x + (y + z) = (x + y) + z, ∀x,y,z ∈ X 

2. scalar multiplication of x ∈ X by elements k ∈ F, denoted by kx ∈ X, and 

 k(ax) = (ka)x, k(x+y) = kx+ky, (k+a)x = kx+ax, x,y ∈ X, k,a ∈ F 
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Definition 10. (Norm) 

Let X be a vector space over the field R of real numbers (or the field C of complex 

numbers). Then a norm on X is a function that assigns to each vector x ∈ X a 

real number x, satisfying the following four conditions: 

1. kxk ≥ 0 

2. kxk = 0 iff x = 0 

3. kαxk = |α|kxk for all x ∈ X, α ∈ R or (C) 

4. kx + yk ≤ kxk + kyk for all x,y ∈ X 

Definition 11. (Banach Space) 

A Banach space is a normed vector space (E,k · k ) that is complete, i.e., every 

Cauchy sequence in E is convergent, where E is equipped with the metric d(x,y) := 

x − y. 

Definition 12. (Riesz Representation Theorem) 

Let H be a Hilbert space. For any bounded linear functional f : H → K there is 

a unique y ∈ H such that  

 f(x) = hx;yi for all 

Moreover, kfkH∗ = kxkH. 

Definition 13. (Fixed Point Theorem) 

x ∈ H 

An element x ∈ X is a fixed point of f : X 7→ X if f(x) = x 

1.3 Problem Statement 

There are many methods used in searching for solutions to differential equations 

with variable coefficients. The Cauchy-Euler method, for instance, transforms a 

linear differential equation into an algebraic equation with an appropriate 

substitution technique. But the problem with some of these classical methods is 
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that, there is no single substitution expression for a single type of differential 

equation, thereby making the use of these methods in searching for solution to 

differential equations more tedious and cumbersome. 

However, integral transformations, which has been the focus of mathematicians 

and scientists of late, have successfully been applied to finding solution of many 

differential equations. These integral transforms convert the partial differential 

equations with constant coefficient and boundary conditions into algebraic 

equation which is then converted back by its inverse operator to obtain the 

desired solution in a suitable functional space. 

1.4 Objectives of Study 

The general objectives of this thesis is as follows; 

1. To extend the Generalization of integral transform to a double 

generalization of integral transform (DGIT) 

2. To obtain the expression for partial derivatives using the double GIT 

3. To apply the double GIT for solving partial differential equations. 

1.5 Justification 

Most physical phenomena in science, engineering and social science undergo 

change with time. In an attempt to solve these physical problems led to 

mathematical models involving functions and their derivatives that gave rise to 

differential equations. 

Integral transforms, believed to have been invented by Euler within the context 

of second-order differential equation (DE) problems [see Deakin (1985)], are 

useful tools for solving problems involving differential equations, especially when 
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their solutions on the corresponding domains of definition are difficult to deal 

with using other classical methods of solving differential equations. 

For a given differential equation, defined on a domain, the application of a suitable 

integral transform allows it to be expressed in such a form that its mathematical 

manipulation is easier than the original one. In this way, if a solution on the 

transformed domain is found, then an application of the inverse integral 

transform will give the solution of the original, Klamkin and Newman (1961.). 

Integral transforms, therefore, convert a differential equation into an algebraic 

equation which in turn is easier to solve than using analytic methods. 

1.6 Methodology 

We introduce the analytic approach of transforming partial differential equations 

in an algebraic domain. We also capture the derivations of some functions in two 

variables as well as derivations of partial derivatives in chapter three. The 

quantitative method (figures) using Matlab will be used to plot the PDEs in three 

dimensions. 

1.7 Organization of Study 

The research is organized into five chapters. Chapter one contains the 

introduction. It also includes statement of the problem, objectives, justification 

and organization of the study. In chapter two, we review works which are related 

to double GIT. The third chapter contains the analytic results of the double GIT 

and its properties. This is followed by chapter four, which features the application 

of the double GIT to partial differential equations. Finally, in chapter five, we 

summarize the findings and give recommendations. 

Chapter 2 
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Literature Review 
Since its conception about two centuries ago, integral transforms have 

successfully been used for solving many problems in applied mathematics, 

mathematical physics, and engineering science. There are different types of 

integral transforms in literature that are used in solving differential equations. In 

this chapter we will summarize a few of these integral transforms. 

Laplace (as cited in Schiff (1999)), introduced the Laplace transform in an attempt 

to solve a statistical problem of chance. The Laplace converts differential 

equations to algebraic equations and then reconvert it back by means of its 

inverse operator to obtain the desired solution in a suitable functional space. 

Besides being different and efficient to traditional methods of solving differential 

equations like variation of parameters, integrating factor, and the method of 

undetermined coefficients, the Laplace transform method is particularly 

advantageous for input terms that are piecewise-defined, periodic or impulsive 

as well as being able to incorporate the boundary conditions from the beginning. 

The Laplace transform is obtained by using the kernel K(t,s) = e−st. Thus, for a 

given function f(t) defined for 0 ≤ t ≤ ∞, its Laplace transform is defined as 

  for s > 0, 

where F(s) is a complex-valued function of complex numbers. The Laplace 

transform maps a real function to a complex one. In this integral transform, the 

parameter s is assumed to be positive and large enough to ensure the integral 

converges. The fact is, in more advance applications, s tends to be complex and in 

such cases the real part of s must be positive and large enough to ensure 

convergence [see Stroud (2003)]. 

The Laplace transform of some elementary functions are tabulated below. 
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f(t) = L−1 {F(s)} 
F(s) = Lf(t) 

a 

e−at 

te−at 

t t2 

 

 

 

 

2 
s > 0 den 

sinat 

cosat 

 

 

Estrin and Higgins (1951) extended the Laplace transform to double Laplace 

transform in a real domain. They applied the double Laplace transform to solve 

problems in electrostatics and heat conduction. They observed that a double 

Laplace transform of a function f of two variables x,t is given as 

 

where, the improper integral converges and complex numbers. 

Coon and Bernstein (1953) observed the properties of the double Laplace 

transform including conditions for transforming derivatives, integrals and 

convolution. Dhunde et al. (2013) obtained some properties of double Laplace 

transform. 

They worked on the linearity property, change of scale, shifting property, double 

Laplace transform of partial derivatives and double Laplace transform of integral 

and a function multiplied or divided by xt. Dhunde and Waghmare (2014) 

presented the convergence, absolute convergence and uniform convergence of 

double Laplace transform and also used the double Laplace transform to solve 

Volterra Integro-Partial differential equation 
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Since its proposition, the double Laplace transform has been applied to many 

problems in physics, engineering and applied mathematics. Eltayeb and Kilic¸man 

(2008), applied a double Laplace transform to search for solution of wave 

equation, heat, and Laplace’s equations with convolution terms. They later in 

Eltayeb and Kili¸cman (2013) applied the double Laplace transform to solve the 

general linear telegraph and partial integro–differential equations. Elzaki (2012), 

on the other hand, proposed a new method by combining the double Laplace 

transform and modified variational iteration method to solve nonlinear 

convolution partial differential equations. 

Buschman (1983) also used the double Laplace transform to solve a problem on 

heat transfer between a plate and a fluid flowing across the plate. Lokenath 

(2016) dealt with the double Laplace transform and its properties with examples 

and applications to functional, integral and partial differential equations. He also 

proved several simple theorems dealing with general properties of the double 

Laplace transform and discussed the convolution of the double Laplace 

transform, its properties and the convolution theorem with a proof. 

In Dhunde and Waghmare (2017) the double Laplace transform method was used 

to find the solutions to a wide classes of equations in mathematical physics. With 

examples, they applied the double Laplace transform to the advection-diffusion 

equation, the linear dissipative wave equation, the reaction-diffusion equation, 

the Korteweg-de Vries (KdV) equation, the telegraph equation, the Euler-

Bernoulli equation and the Klein-Gordon equation. 

The strongest defense for Laplace transform, apart from being able to convert 

differential equations to algebraic form as stated above, is its ability to directly 

give the solution of differential equations with given boundary values without 

necessarily finding the general solution first and then evaluating from it the 

arbitrary constants. 
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The Fourier integral transform was introduced in a manuscript and a memoir in 

Fourier (1807) and Fourier (1811) respectively, deposited in the institute of 

France and later collected and expanded in a book about the analytic theory of 

heat in Fourier (1822). In modern notation, Fourier and inverse Fourier 

transform of a real-valued function over an interval (−∞,∞) are expressed as; 

 

This pair of equations is known today as the cosine fourier transform and the 

inverse cosine fourier transform, respectively. In a similar way, in his treatise ’The 

analytical Theory of heat’, Fourier derived the sine fourier transform and the 

inverse sine fourier transform [see Dominguez (2016)] as 

 

Papoulis (1962) introduced both the Fourier and inverse Fourier transform of a 

suitable function f(x), defined on the whole real line and is complex-valued as ; 

 

Clearly, both the Fourier transform and its inverse are linear integral operators 

with the forward transform taking an exponential kernel of K(t,s) = e−ixu. For any 

u ∈ R, integrating f(x) against e−ixu with respect to x produces a complex valued 

function of u, that is, the Fourier transform F(u) is a complex-valued function of u 

∈ R. 

In the application of the Fourier transform, especially in applied mathematics and 

electrical engineering, x represents a space variable in applied mathematics but 
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it is replaced by the time variable t in electrical engineering. Again in applied 

mathematics,  is a wavenumber variable where λ is the wavelength but k is 

replaced by the frequency variable ω = 2πν where ν is the frequency in cycles per 

second in electrical engineering. 

The Fourier transform is an ideal transform for analyzing time-varying signals in 

electrical engineering and seismology because of its ability to map a function or 

signal of time t to a function of frequency ω. The central philosophy behind 

Fourier transforms is that almost every imaginable signal can be broken down 

into a combination of simple waves. A complicated signal can be broken down 

into simple waves. This break down, and how much of each wave is needed, is the 

Fourier Transform. Fourier transforms (FT) take a signal and express it in terms 

of the frequencies of the waves that make up that signal. 

Fourier transforms are widely used in many fields of sciences and engineering, 

including image processing, power distribution system, geoscience, 

crystallography and quantum mechanics. Most modern technological advances 

like television, music CDs and DVs, cell phones, movies, computer graphics, and 

fingerprint analysis and storage, are, in one way or another, founded upon the 

many ramifications of Fourier theory. 

Ezhil (2017), applied the Fourier transform to identify the noise, distortion and 

interference present in the signal in a power distribution system. Gupta (2013), 

also discussed how Fourier Transform is used in cell phone networking and in 

Lenssen and Needell (2014), readers are introduced to a setup to understand how 

the Discrete Fourier Transform is used to analyze a musical signal for chord 

structure. 
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Unlike the Laplace and Fourier transforms that were introduced to solve physical 

problems, Mellin transform arose in a mathematical context. Riemann (1876) was 

the first to recognize the Mellin transform in a memoir on prime numbers in 

which he used it to study the famous Zeta function. Even though Cahen (1894) 

explicitly formulated the Mellin transform, it is Mellin (1896) and Mellin (1902) 

who gave its systematic formulation and inverse formula. Using the theory of 

special functions, Mellin developed applications to the solution of 

hypergeometric differential equations and to the derivation of asymptotic 

expansions. 

The Mellin transform and its inverse are derived from the complex Fourier 

transform and its inverse. Kang (1958) introduced the Mellin transform of a 

function and the inverse Mellin transformed as 

 

where M and M−1 are the Mellin transform and the inverse Mellin transform 

respectively and f(x), a real valued function defined on [0,∞). The Mellin 

transform has a polynomial kernel of xs−1 with transform variable s being a 

complex number. 

By changing the variable x = e−t shows that the Mellin integral transform is closely 

related to the Laplace transform and to a large extent the Fourier transform. 

Despite these connections, there are numerous applications where it is more 

convenient to directly operate with the Mellin transform instead of the Laplace or 

Fourier version. For instance, in complex function theory (i.e. asymptotes of 

Gamma-related functions), in number theory; when working on coefficients of 
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Dirichlet series, and in the analysis of harmonic sums algorithms, it is more 

convenient to directly operate in the Mellin transform 

Kropivsky and Ben-Naim (1994) extended the Mellin transform in one dimension 

to two dimensions in a study on fragmentation in two dimensions. The double 

Mellin transform is defined in Eltayeb and Kilic¸man (2007) as 

 

where, p and q are complex numbers. 

Watugala (1993) introduced the Sumudu integral transform for solving 

differential equations and control engineering problems. Even though it is 

relatively new, the Sumudu integral transform is one of the powerful integral 

transforms in literature, especially it’s scale and unit-preserving properties 

makes it a suitable transform for solving problems without resorting to a new 

frequency domain. 

Another very interesting fact about the Sumudu transform is that it is able to 

maintain the same Taylor coefficient for both the original function and its Sumudu 

transform with the only exception being the factor (see Zhang (2007)). It has a 

theoretical duality to the Laplace transform and this was shown in Belgacem et 

al. (2003). 

Kili¸cman and Eltayeb (2010) defined the Sumudu transform over the set of the 

functions 

 
by the formula below 
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The properties of the Sumudu transform were established by Asiru (2001) and 

subsequently applied to partial differential equations. There have been numerous 

other applications of the Sumudu transform. In Kadem (2005) for instance, the 

Sumudu transform was applied to the one-dimensional neutron transport. 

Atangana and Kilic¸man (2013) on the other hand applied the Sumudu integral 

transform to solve nonlinear fractional partial differential equations describing 

heat-like equation with variable coefficients. 

A. Kili¸cman and H. Eltayeb introduced the double Sumudu Transform method for 

solving linear second order partial differential equations with non-constant 

coefficient. Jean Tchuenche and Nyimvua (2007) defined double Sumudu 

transform of a function f(x,y); of two variables x,y ∈ R+ by 

 

where S2 indicates double Sumudu transform and f(x,y) a function which can be 

expressed as a convergent infinite series. The properties and relationship 

between the double Sumudu and double Laplace transforms were given in 

Kili¸cman and Eltayeb (2009). They also used the double Sumudu transform to 

solve wave equation in one dimension having singularity at initial conditions. 

Osman and Ali Bashir (2016) solved partial differential equation with variables 

coefficient by using the double Sumudu transform. 

Barnes (2016) introduced both the polynomial integral transform and the double 

polynomial integral transform to solve differential equations and partial 

differential equation with little computational effort. Due to its polynomial 

function kernel the polynomial integral transform ensures rapid convergence of 

solutions of differential equations The Polynomial Integral Transform of a 

function f(x), defined for x ≥ 1,x ∈ [1,∞) is given by the integral equation 
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The double polynomial integral transform of a function f(x,t) is 

Z ∞ Z ∞ 

 BxBt(f(x,t);(p,s)) = F(p,s) = f(lnx,lnt)x−p−1t−s−1dxdt 
 1 1 

The multiplicity relation between the polynomial integral transform and other 

transform were enumerated in Chaudhary et al. (2018). They showed the dual 

relation between the polynomial integral transform and other famous integral 

transforms. Specifically, they looked at the duality of the polynomial integral 

transform and the Natural transform, Sumudu transform, Fourier transform, 

Laplace transform and the Mellin transform. 

Khan and Khan (2008) first introduced the Natural transform, which used to be 

called N-transform. They applied this integral transform to search for the solution 

of fluid flow problem and the Maxwell’s equations. Later on this transform was 

applied to many other ordinary differential equations with integer order to find 

their solutions in Belgacem and Silambarasan (2012). 

Baskonus et al (2014) observed the natural integral transform, f(t) over a set of 

functions 

 

as: 

 
where N[f(t)] is the natural transform of the function f(t) and the variables u and 

s are the natural transform variables. 

The Natural integral transform is derived by taking the product of the Fourier and 

the Inverse Fourier transforms and then setting x > 0,f(x) = f(x)H(x)e−cx where 
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H(x) is the Unit step function defined as H(x) = 1,x ≥ 0 and 0;x < 0 and finally 

making the substitution . 

The specialty of Natural transform is that, with a slight change in variables, it can 

converge to either Laplace transform or Samudu transform. 

Kili¸cman and Omran (2017) extended the one dimensional Natural transform to 

two dimensional Natural transform including some of its properties. They also set 

a relation between the double Natural transform and double Laplace, double 

Sumudu transforms in addition to applying the double Natural transform to get 

the solutions of some general linear telegraphs, wave and partial 

integrodifferential equations. 

Kili¸cman and Omran (2017) defined the double Natural transform of a function 

f(x,y) as 

 

where x,y ∈ R+ 

The Hankel transform, a self-reciprocal transform, was constructed from the 

twodimensional Fourier transform with transition to polar coordinates and 

application of the integral representation of the Bessel functions [See Lokenath 

and 

Dambaru (2015)]. It is self-reciprocal because its inverse transform is just the 

Hankel transform again. 

The Hankel transform of order v of a function f(x) is defined as 

 
and gave its inverse as 

 R(v) > −1 

(as cited in Mathai et al. (2010)) 
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Another transform that is widely used in analyzing discrete signal and discrete 

linear time-invariant (LTI) system is the Z transform. It came out of a complicated 

method introduced by Gardner and Barnes in the early 1940s to solve linear, 

constant-coefficient difference equations by Laplace transform and later 

simplified and later simplified by W. Hurewicz in 1947 into the Z transform as 

seen today. 

Lokenath and Dambaru (2015) defines the Z transform of a sequence {f(n)} 

denoted by F(z) of a complex variable z as 

 

where Z is a linear transformation and can be considered as an operator mapping 

sequences of scalars into functions of the complex variable z(= rejw). Clearly, Z 

transform is a power series and it exists for only those values of z for which F(z) 

attains a finite value. 

The Z transform is used in many areas of applied mathematics as signal 

processing, control theory, economics and other fields. The infinite Z-transform 

technique, for instance, is used to derive the solutions of boundary-value 

problems characterized by linear difference equations such as discrete 

electrostatic field problems and ladder type networks. It is also used to analyze 

digital filters, simulate continuous systems and find frequency response. 

Hilbert (1912), introduced the Hilbert transform in his famous paper on integral 

equations but it is Hardy (1924) and Titchmarsh (1925) who simultaneously 

developed the properties of the Hilbert transform. The Hilbert transform is used 

in signal processing, fluid mechanics and in aerodynamics. This transform is able 

to extend real functions into analytic functions, an advantage it has over other 

signal processing transforms. 



 

19 

The Hilbert transform, denoted by fˆH(x), for a function f(t) defined on the real 

line −∞ < t < ∞ is given as 

H  

where x is real and the integral is treated like Cauchy principal value [see Saff and 

Snider (1976)]. and its inverse transform is given by 

 

The Hilbert transform of f(t) is the convolution of f(t) with the signal 1/πt. There 

is a relation between a real function f(t) and its Hilbert transform fˆ(t) in such a 

way that they together create a strong analytic signal which can be written with 

an amplitude and a phase, where the derivative of the phase can be identified as 

the instantaneous frequency. 

Titchmarsh (1967), gives a more classical treatment of the Hilbert transform with 

Kober (1943) giving further properties and its application 

The Legendre transform, named after Adrien-Marie Legendre, uses a Legendre 

polynomials Pn(x) as kernel of the transform. It is used to provide the connection 

between the Lagrangian L(q˙) and the Hamiltonian H(p) in classical mechanics. 

Churchill (1954) observed that, the Legendre transform of a function f(x) defined 

in −1 < x < 1 by the 

 

provided the integral exists and where Pn(x) is the Legendre polynomial of degree 

n(≥ 0). Also, the inverse Legendre polynomial is given by 
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Stieltjes transform is another transform that arises in many problems, especially 

in moment problems, in applied mathematics, mathematical physics, and 

engineering science . This transform was introduced by Stieltjes (1894) in a study 

on continued fractions. 

The Stieltjes transform of a function f(t) is defined by using the Laplace transform 

of F(s)= L f(t) with respect to s. That is, taking the Laplace transform of F(s), 

clearly give 

 

Now, interchanging the order of integration and evaluation the inner integral 

gives 

 

Therefore, Stieltjes transform of a locally integrable function f(t) is defined as 

 

where z is a complex variable in the cut plane |argz| < π [see Widder (1971)]. 

Lokenath and Dambaru (2015) gives some basic properties of the Stieltjes 

transform, its inversion theorem and some applications. Erd´elyi et al. (1954) 

gives the generalized Stieltjes transform and some basic properties of the Stieltjes 

transform. 

Another transform that is very effective in solving heat conduction problems in a 

semi-infinite medium with a variable thermal conductivity in the presence of a 

heat source within a medium is the Laguerre transform. The Laguerre transform 

uses a Laguerre polynomial as its kernel. 

Debnath (1960) defines the Laguerre transform of a function f(x) defined in 

0 ≤ x < ∞ as 
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and the inverse Laguerre transform as 

 

where ) is the Laguerre polynomial of degree n(≥ 0) and of order α(> −1). 

When α = 0 the Laguerre transform and its inverse are respectively given by the 

pair of equations below 

 

where Ln(x) is the Laguerre polynomial of degree n and order 0 [see McCully 

(1960)]. 

Debnath (1964) introduced the Hermite transform with the Hermite polynomial 

Hn(x) as its kernel and also proved some of its basic operational properties. He 

defined the Hermite transform of a function F(x) over the interval −∞ < x < ∞ and 

its inverse by the integrals 

 

and 

 

 
respectively, where δn = √πn!2n. Dimovski and Kalla (1988) gives the extension of 

the convolution theorem of Hermite transform for odd numbers, first proved by 

Debnath (1968) to cover both odd and even functions. 
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The Jacobi transform was introduced by Debnath (1963) with applications to 

physical problems described by differential equations, including the problem of 

heat conduction in a finite domain with variable thermal conductivity. It uses a 

Jacobi Polynomial as its kernel. The Jacobi transform of a function F(x) defined in 

−1 < x < 1 is given by the integral 

, 

where ) is the Jacobi polynomial of order n. The Jacobi transform is a 

generalization of the Legendre and Gegenbauer transforms. In Debnath (1967), 

the author applied the Jacobi transform to search for the solution of partial 

differential equations 

Rognlie (1969) introduced the generalized integral transforms by using the 

method of generalizing an analytic function of a single complex variable to an 

analogous function of several complex variables, introduced by Carlson (1969). 

He created a generalized transform of 

 

where λ is a path of integration in the complex plane C1, φ is the kernel of the 

transform and the yi’s and x may be real or complex. He used this method to 

generalize the Fourier, Laplace and Stieltjes transforms to functions of several 

variables by replacing the kernel of the transform by the generalized kernel φ. 

For instance, he gives the generalized Fourier transform of a real variable and a 

complex variable as 

 

and 
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respectively. Rognlie (1969) also gives the operational Properties of the 

generalized transforms, relation of the generalized transforms to other 

transforms and applications of the generalized Laplace transform and the 

generalized Stieltjes transform. 

Barnes et al. (2018) introduced the generalization of integral transform (GIT) of 

the function f(t) for solving both differential and interodifferential equations. 

This transform generalizes integral transforms with exponential kernel. 

The generalization of integral transform of a function f(t) is 

 

Below is a table that shows the generalization of integral transform of some 

functions. 

f(t) = G−1 {F(s)} 
F(s) = Gf(t) 

a 

eat tn 

sinat 

cosat 

sinhat 

coshat 

 

 

 

 

 

 

 

Barnes et al. (2019) have extended the GIT to fractional GIT, for solving fractional 

differential equations. They established properties associated with fractional GIT 
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and also showed that the solution of fractional differential equations given by this 

method is unique. 

The fractional GIT of a function f(t) is given by 

Z ∞ 

 G{Dαf(t)} = u Dαe−ustf(ut)dt 
0 

n 

= u(α+1)sαG{f(t)} − Xu(α+2−k)s(α−k)f(k−1)(0) 

k=1 

However, one of the interesting feature of the GIT is its incapability for solving the 

differential equations in two dimensions. Thus, both the GIT and its fractional 

form cannot be used to ascertain the solution of partial differential equations 

(PDEs). In most practices in engineering and applied sciences, the problems are 

usually formulated in two or more dimensions which depict the actual 

mechanisms on the ground. For example, the flow of oil through the rock bearing 

oil is in three dimensions but not in one dimension. In this case, one have to 

consider the flow of oil in x−direction, y−direction, as well as z−direction. The 

formulation of flow of oil in one dimension is not only unrealistic, but also it does 

not provide the full underlying mechanisms in the understanding of the flow of 

oil through the bedrocks. Also, the problem of flow of traffic or the creation of 

traffic jams on roads is usually multi-dimensional. Since one have to consider the 

intensity of the traffic jam by vehicles with respect to various directions in which 

these cars are transversing.  
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Chapter 3 

The Double Generalization of Integral 

Transform 
The Generalization of Integral Transform, proposed by Barnes et al. (2018) solves 

ordinary differential and integro differential equations by converting these 

equations into the us domain and then reconverting the result by its inverse 

operator. 

However, the generalization of integral transform cannot solve partial differential 

and integro differential equations. It only solves differential equations in one 

dimension. In most practices, problems involving differential equations comes in 

two dimensions. It is of this reason that we extend the generalization of integral 

transform to double generalization of integral transform, for solving partial 

differential equations (PDEs). In addition, some of the properties of the double 

Generalization of Integral Transform will be provided in this chapter. Moreover, 

we will look at the convergence of the double GIT and its derivatives. 

To begin with, we state the following definitions of integral transforms that will 

enable us to achieve our results. 

Definition 14 (The Double Polynomial Integral Transform). Let f(x) be a function 

defined for x ≥ 1. Then the integral 

Z ∞ Z ∞ 

 BxBt(f(x,t);(p,s)) = F(p,s) = f(lnx,lnt)x−p−1t−s−1dxdt (3.1) 
 0 0 

is the double polynomial integral transform of f(x,t) for x,t ∈ (1,∞] provided the 

integral converges, [see, Barnes (2016)]. 



 

26 

Definition 15 (The Double Sumudu Integral Transform). If f(w,y) is a function 

which can be expressed as a convergent infinite series, then the double Sumudu 

transform of a function f(w,y);w,y ∈ R+ is 

  (3.2) 

where S2 indicates the double Sumudu transform, [see Jean Tchuenche and 

Nyimvua (2007)]. 

3.1 The Derivation of Double Generalization of 

Integral Transform 

In this section, we provide the double generalization of integral transform in 

Theorem 1 below. 

Theorem 1. Let f(x,y) be a function of two variables (w,y) ∈ {0} ∪ R+ then 

the double generalization of integral transform is 

Z ∞ Z ∞ 

 GxGy{f(x,y)} = F(s,p) = uv f(ux,vy)e−(usx+pvy)dxdy (3.3) 
 0 0 

where GxGy indicates the double generalization of integral transform and u and v 

the transformed variables. The double GIT exists provided the double integral in 

equation (3.3) exists. 

Proof: Comparing the kernels in equations (3.1) and (3.2), we obtain 

x−(s+1)t−(p+1) = e−(sw+py) 

 x−(s+1)t−(p+1) = e−sw · e−py (3.4) 
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Comparing the transformed variable s on both sides of equation (3.4), we obtain 

x−(s+1) = e−sw 

lnx−(s+1) = lne−sw 

−(s + 1)lnx = −sw 

 

 (3.5) Also, we can see from equation (3.4) that 

t−(p+1) = e−py 

lnt−(p+1) = lne−py 

−(p + 1)lnt = −py 

 ⇒  (3.6) 

Also, we can see from equations (3.1) and (3.2) that 

 

But 

 

Therefore 

  (3.7) 

Substituting equations (3.5) - (3.7) into equation (3.1) yields 
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Setting  and , we obtain 

Z ∞ Z ∞ 

 GwGy{f(w,y)} = uv f(uw,vy) · e−suw · e−pvy · dwdy 
 0 0 

Z ∞ Z ∞ 

 GxGy{f(x,y)} = F(s,p) = uv f(ux,vy) · e−(sux+pvy) · dxdy (3.8) 
 0 0 

3.2 Convergence of the Double Generalization of 

Integral Transform 

To show the convergence of the double generalization of integral transform for 

(x,y) ∈ {0} ∪ R+, we state the lemmas which are relevant in proving the existence 

of double GIT. 

Theorem 2. Let ϕ(x,y) be a function of two variables continuous in the positive 

quadrant of the wy-plane. If the integral 

  (3.9) 

converges at p = p0, s = s0 then the integral (3.9) converges for p > p0, s > s0 Proof 

Before we prove Theorem 1, we state the following lemmas: 

Lemma 1. If the integral 

  (3.10) 

converges at s = s0, then the integral (3.10) converges for s > s0 Proof : 

Setting 
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  0 < x < ∞ (3.11) 

Clearly α(x,0) = 0 and lim α(x,y) exists because integral  
y→∞ 

converges at s = s0. 

From the first fundamental theorem of calculus 

αy(x,y) = e−usx0ϕ(x,y) 

Choose ε1 and R1 so that 0 < ε1 < R1. 

 

 

Using the integration by parts, we have 

 

Z R1 

 e−usxϕ(x,y)dx = e−(s−s0)uR1α(R1,y) − e−(s−s0)uε1α(ε1,y) 
ε1 

Z R1 

 +(s − s0) e−(s−s0)uxα(x,y)dx. 
ε1 

Now let ε1 → 0 and R1 → ∞. If s > s0, then 

  (3.12) 

The theorem is proved if the integral on the right converges. By using the Limit 

test for convergence, we have 
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= 0 × [ lim α(x,y)] = 0 =< +∞ x→∞ 

Therefore, the integral on the right of (3.12) converges for s > s0. Hence the 

integral  converges for s > s0. 

Lemma 2. If (a) integral 

  (3.13) 

converges fo s ≥ s0 and (b) integral 

  (3.14) 

converges at p = p0, then the integral (3.14) converges for p > p0. 

Proof: Let 

  0 < y < ∞ (3.15) 

Therefore β(0,s) = 0 and lim β(y,s) exists because integral  
y→0 

converges at p = p0. 

It can be seen from (3.14) that βy(y,s) = e−p0vyh(y,s). We choose ε2 and R2 so that 0 

< ε2 < R2. 

Z R2 Z R2 

 e−pvyh(y,s)dy = e−pvye−p0vyβy(y,s)dy 
 ε2 ε2 

Z R2 

 = e−(p−p0)vyβy(y,s)dy 
ε2 

Z R2 

 = [e−(p−p0)vyβ(y,s)]Rε22 − e−(p−p0)vy[−(p − p0)]β(y,s)dy 

ε2 
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Z R2 

 e−pvyh(y,s)dy = e−(p−p0)vR2β(R2,s) − e−(p−p0)vε2β(ε2,s) 
ε2 

Z R2 

 +(p − p0) e−(p−p0)vyβy(y,s)dy 
ε2 

Now let ε2 → 0 and R2 → ∞. If p > p0, then 

  for p > p0. (3.16) 

The theorem is proved if the integral on the right converges. By using the limit 

test for convergence, we have 

 

Therefore, integral on the right of (3.16) converges for p > p0. Hence the integral 

 converges for p > p0 

It follows from Theorem 1 that: 

 

 ∴  (3.17) 

where . 

By Lemma 3.3.2, integral 

 

converges for s > s0. 

We can also see from Lemma 3.3.3 that, the integral 

 

converges for p > p0. 
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Therefore, the integral in RHS of (3.17) converges for p > p0,s > s0. 

Hence the integral 

 

converges for p > p0, s > s0. 

3.3 Existence of a Double Generalization of Integral 

Transform 

In this subsection, we show that a double generalization of integral transform 

exists for w,y ∈ [0,∞)×[0,∞). Notwithstanding, we show that the double GIT exists 

for all w,y ∈ [0,∞) × [0,∞) 

Theorem 3. Let f(x,y) be a continuous function in every finite intervals (0,X) and 

(0,Y ) and of exponential order (eaux+bvy), then the double generalization of integral 

transform of f(x,y) exists for all s and p provided Re s > a and Re p > b 

Proof: Since the function f(x,y) is of exponential order, then any scalars a,b ∈ R;a > 

0, b > 0,x,y ∈ [0,∞) × [0,∞), there exists a positive constant K such that for all x > X 

and y > Y 

|f(x,y)| ≤ Keaux+bvy 

We observe that 

 f(x,y) = O(eaux+bvy) as x → ∞,y → ∞ 

Thus lim e−αux−βvy = K lim e−(α−a)uxe−(β−b)vy = 0 α > a,β > b x→∞,y→∞ x→∞,y→∞ 

We can see that 
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 ∴  for Res > a,Rep > b (3.18) 

It follows from (3.18) that: 

, 

∀ Re s > a, Re p > b 

 ⇒ F(s,p) = 0 

Hence, f(x,y) exists for all s and p 

3.4 Convolution Theorem of the double generalization 

of integral transform 

In this section, we show that the double GIT operator convolve with two functions 

f(x,y) and g(x,y). Thus, the finding is summarized in Theorem 4. 

Theorem 4. Let f(x,y) and g(x,y) be double generalization of integral 

transformable. Then double generalization of integral transform of the double 

convolution of the functions f(x,y) and g(x,y), 

 

is given by 

 ) (3.19) 

Proof: By using the definition of the double generalization of integral transform 

and double convolution, we have 
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Hence 

 

let α = x − ζ and β = y − η and using the valid extension of upper bound of integrals 

to x → ∞ and y → ∞, it yields 

 

where both f(x,y) and g(x,y) have zero value for x < 0 and y < 0, it then follows with 

respect to the lower limits of integration that 

 

 ⇒  

3.5 Properties of the Double Generalization of Integral 

Transform 

Next, we present some properties of a double generalization of integral 

Transform. 

Theorem 5. (Linearity Property) 
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The double generalization of integral transform is a linear operator. 

Proof: Suppose f(x,y) and h(x,y) are double generalization of integral 

transformable functions and α1 and α2 are real constants, then 

GxGy [α1f(x,y) + α2h(x,y)] =  

 ∴ GxGy [α1f(x,y) + α2h(x,y)] = α1Gxy(f(x,y)) + α2Gxy(h(x,y)) 

as required. 

Theorem 6. (Inverse Operator) 

The Inverse double generalized integral transform is also a linear operator. 

Proof: Taking the inverse integral transform of both sides of equation (3.20), we 

have 

α1f(x,y) + α2h(x,y) = Gxy−1(α1f(x,y) + α2h(x,y)) 

= Gxy−1(α1f(x,y)) + Gxy−1(α2h(x,y)) = Gxy−1 

(α1F(u,v) + α2H(u,v)) 

where Gxyf(x,y) = F(u,v) and Gxyh(x,y) = H(u,v), respectively. 

Theorem 7. (Heaviside Unit Step Function) 

If the double generalized integral transform of a function f(x,y) exists, then 

 Gxy {f(x − η,y − θ)H(x − η,y − θ)} = e−suη−pvθGxyf(x − η,y − θ) (3.20) 



 

36 

where H(x,y) is a Heaviside unit step function defined by H(x − η,y − θ) = 1, when 

x > η and y > θ; and H(x − η,y − θ) = 0, when x < η and y < θ. 

Proof: By definition, we have 

Z ∞ Z ∞ 

 {f(x − η,y − θ)H(x − η,y − θ)} = uv e−usx−pvyf(x − η,y − θ) × 
 0 0 

H(x − η,y − θ)dxdy 

for x > η and y > θ, we have 

 

Putting α = x − η and β = y − θ, gives 

 

Theorem 8. (Periodic Function) 

If the double generalized integral transform of the function f(x,y) exists where f(x,y) 

is a periodic function of periods a and b, that is f(x + a,y + b) = f(x,y) ,∀x,y then 

  (3.21) 

Proof: By definition, 

Z ∞ Z ∞ 

Gxy{f(x,y)} = uv f(x,y)e−(usx+pvy)dxdy 
 0 0 

 Z a Z b Z ∞ Z ∞ 

 = uv f(x,y)e−(usx+pvy)dxdy + uv f(x,y)e−(usx+pvy)dxdy 
 0 0 a b 
By setting x = α + a and y = β + b in the second double integral, we have 

Z a Z b 

GyGx{f(x,y)} = uv f(x,y)e−(usx+pvy)dxdy 
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0 0 Z ∞ Z ∞ 

 + uve−(asu+bpv) f(α + a,β + b)e−(αsu+βpv)dαdβ 
 a b 

Z a Z b 

 = uv f(x,y)e−(usx+pvy)dxdy 

0 0 Z ∞ Z ∞ 
 + uve−(asu+bpv) f(α,β)e−(αsu+βpv)dαdβ 
 a b 

Z a Z b 

 = uv f(x,y)e−(usx+pvy)dxdy + e−(asu+bpv)Gxy{f(x,y)} 
 0 0 

This implies that 

 

Z a Z b 

 Gwy{f(x,y)}(1 − e−(asu+bpv)) = uv f(x,y)e−(usx+pvy)dxdy 
 0 0 

Z a Z b 

 Gxy{f(x,y)} = uv[1 − e−(asu+bpv)]−1 f(x,y)e−(usx+pvy)dxdy 
 0 0 

This proves the theorem of double generalized integral transform of a periodic 

function 

Theorem 9. (First Shifting Property) 

If GyGx {f(x,y)} = F(s,p) then  where 

a and b are constants. 

Proof: From equation (3.3), we can see that: 

Z ∞ Z ∞ 

 uv eaux+bvyf(x,y)e−(usx+pvy)dxdy 
 0 0 

 Z ∞ Z ∞ 

 uv e−(pvy−bvy) f(w,y)e−(usx−aux)dxdy 
 0 0 

 Z ∞ Z ∞ 

 uv e−(p−b)vy f(x,y)e−(s−a)uxdxdy 
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0 0 F(s − a,p − b) Theorem 10. (Change of Scale Property) 

If GyGx {f(x,y)} = F(s,p) then  where a 

and b are constants. 

Proof: From equation (3.3) 

  (3.22) 

We put r = auw and t = bvy in equation (3.23) where r and t takes the limit from 0 

to ∞. Hence, we get 

 

Now, we apply the double Generalization of Integral transform on some special 

functions as follows: 

1. Let f(x,y) = 1 for x > 0 and y > 0, then 

 

2. Let f(x,y) = eax+by. where a, b are constants, then 

 

3. Let f(x,y) = ei(ax+by). where a, b are constants, then 

 
consequently, 
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4. Let f(x,y) = cosh(ax + by),where a, b are any constants, then 

 

Similarly we can obtain 

 

3.6 The Double Generalization of Integral Transform 

of Derivatives 

In this subsection, we present the Double Generalization of Integral Transform of 

derivatives of the function f(x,y) with respect to x,y . The double generalization of 

integral transform is defined as 

 

and the double generalized integral transform of second partial derivative with 

respect to w is of the form 

 
By using integration by parts to compute the integral inside the brackets, we have 

  (3.23) 

By taking the generalization of integral transform with respect to y for equation 

3.23, we get double generalized integral transform of the form 
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 (3.24) 

Similarly, the double generalization of integral transform of  is given by 

 

Again by using integration by parts to compute the integral inside the brackets, 

we have 

  (3.25) 

Finally, by taking the generalization of integral transform with respect to x for 

equation 3.23, we get double generalization of integral transform of the form 

  (3.26) 

Also the double generalization of integral transform of second partial derivative 

with respect to x and y is of the form 

 
By definition 
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which gives 

 

Hence the double generalization of integral transform of derivative yields the 

equations below; 

 ) (3.27) 

 0) (3.28) 

 

  (3.30) 

  (3.31) 
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3.7 Double Generalization of integral transform of 

double integral 

We now find the double GIT of a double integral. 

Theorem 11. If Gxy {f(x,y)} = F(s,p) and 

  (3.32) 

then 

  (3.33) 

Proof: We denote  

By the fundamental theorem of calculus 

 hy(x,y) = f(x,y) (3.34) 

and 

 h(x,0) = 0 (3.35) 

Taking the double GIT of equation (3.34), we get 

GxGy {hy(x,y)} = GxGy {f(x,y)} 

 

 

Taking the single GIT of equation (3.35) gives H(s,0) = 0 
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 ⇒  (3.36) 

From equation (3.32) 

 

Again, by fundamental theorem of calculus 

 gx(x,y) = h(x,y) (3.37) 

and 

 g(0,y) = 0 (3.38) 

Taking double GIT of equation (3.37), we get 

GxGy {gx(x,y)} = GxGy {h(x,y)} 

 
Taking the single GIT of equation (3.38) gives G(0,p) = 0 

 ⇒ (us)G(s,p) = H(s,p) 

From equation (3. 
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⇒  
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Chapter 4 

Illustration of the Double Generalization of 

Integral Transform 
In this section, we apply the double generalization of integral transform (DGIT) 

method to partial differential equations. 

Example 1: We obtain the solution of the following partial differential equation, 

 fx = 2fy + f, f(w,0) = e−3x for x > 0,y > 0. 

Taking the double generalization of integral transform (DGIT) of both sides gives 

Gxy[fx] = Gxy[2fy + f] 

 ⇒ usF(s,p) − uF(0,p) = 2vpF(s,p) − 2vF(s,0) + F(s,p) 

 0) (4.1) 

Putting the initial condition  into equation (4.1) 

gives 

 

Taking the inverse of the double generalization of integral transform of equation 

(4.2) gives 

 

is the solution of the PDE in the Example 

Example 2: fyy = kfxx, f(x,0) = sinπx, f(0,y) = 0, f(1,y) = 0, 0 < x < 1, y > 0 

Taking the double GIT of both sides, we have 
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Gxy[fy] = kGxy[fxx] 

 ⇒ vpF(s,p) − vF(s,0) = k[(us)2F(s,p) − u2sF(0,p) − uFx(0,p] 

Putting the conditions f(0,y) = 0 ⇒ F(0,p) = 0 and f(x,0) = sinπx 

 gives 

 

 

 

Taking the inverse of the double generalization of integral transform of both sides 

of equation 4.3, we have 

 
Putting the boundary condition f(1,y) = 0 ⇒ F(1,p) = 0 and taking limit as x → 1 

gives 

f(x,y) = sinπxe−kπy 

Example 3: Consider the following wave equation , where , 
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for positive x and y with the following boundary conditions 

 

if 0 ≤ y ≤ 2π 
, lim w(x,y) = 0, (y ≥ 0) and the initial 

x→∞ 0 otherwise 

conditions  

Applying the double GIT on the wave equation gives 

 

Substituting the boundary condition w(x,0) = 0 which ⇒ W(s,0) = 0 and = 0 

which ⇒ Wy(s,0) = 0 into the above equation we obtain 

 

 ∴ ) (4.4) 

Now, W(0,p) = Gy [w(0,y)] = Gy [f(y)] = F(y) and 

 
Thus 

 

We can see from equation (4.4) that: 
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Applying Gx−1 of both sides of the above equation, we obtain 

 ) (4.5) 

where  and  

Since lim w(x,y) = 0 when y ≥ 0 then x→∞ 

 

This implies that A(p) = 0 in (4.5) because c > 0, so that for every fixed positive 

vp vp the function e c 

increases as x increases. 

 ⇒  

But if A(p) = 0 ⇒ c = vp and  

Therefore from equation (4.5) 

−vpx 
 W(x,p) = e c F(p) (4.6) 

Taking Gy−1, of both sides of (4.6) from the second shift theorem, we get 

 

i.e and zero 
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otherwise 

Example 4: Suppose we are given the non-homogeneous telegraph equation that 

is given as 

wxx(x,y) − wyy(x,y) − wy(x,y) − w(x,y) = −2ex+y 

with boundary conditions 

(4.7) 

 w(0,y) = ey, wx(0,y) = ey 

and initial conditions 

(4.8) 

 w(x,0) = ex, wy(x,0) = ex (4.9) 

By applying the double generalization of integral transform on equation (4.7) 

and single generalization of integral transform on equations (4.8) and (4.9), we 

obtain  (4.10) 

Taking double inverse of the generalization of integral transform of equation 

(4.10), gives 

w(x,y) = ex+y 

Example 5: Considering the Volterra Integro Partial Differential Equation below, 

  (4.11) 

Subject to the initial conditions: 

 f(x,0) = ex and f(0,y) = ey (4.12) 

Applying double GIT to equation (4.11) we get 
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and single GIT of equation (4.12) we get 

  and  (4.14) 

Substituting (4.14) into (4.13) we have 

 

(4.15) By taking the double inverse GIT of equation (4.15), we obtain the 

solution of (4.11) as follows 

f(x,y) = ex+y 

Example 6: We consider the wave equation below 

 fxx(x,y) − fyy(x,y) = 3(e2x+y − ex+2y), x,y ∈ R+ (4.16) 

with boundary conditions  
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f(0,y) = ey + e2y, 

and initial conditions 

fx(0,y) = 2ey + e2y, (4.17) 

f(x,0) = e2x + ex, fy(x,0) = e2x + 2ex, (4.18) 

Taking double Generalization of Integral transform of equation (4.16) and single 

Generalization of Integral transform of conditions (4.17) and (4.18), we get 

 

 ⇒  (4.19) 

Taking double inverse Generalization of Integral transform of equation (4.19), we 

get the following solution 

f(x,y) = e2x+y + ex+2y 

Chapter 5 

Conclusion Summary and Recommendations 

5.1 Conclusion 

We have introduced the double generalization of integral transform (DGIT) of a 

function f(w,y) 

 

We have also established some of the properties of the double generalization of 

integral transform such as linearity, convolution, step function and double 

generalization of integral transform for derivatives. 
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The illustration of the double generalization of integral transform to some partial 

differential equations confirms the solutions obtained using other integral 

transforms. 

We have also shown that, the following equations are the expression for partial 

derivatives using the double GIT; 

 

 

 

 

 

5.2 Recommendations 

Researchers and students can extend the double generalization of integral 

transform to fractional double generalization of integral transform. 

Researchers and students can also extend the double generalization of integral 

transform (DGIT) to p − DGIT and q − DGIT  
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Appendix A 

Summary of Double GIT for some functions 

f(x,y) F(s,p) = Gxyf(x,y) 
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a 

eax+by 

sin(ax+by) 

cos(ax+by) 

sinh(ax+by) 

 

 

 

 

 

cosh(ax+by)  

 


