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Abstract 

Production scheduling is a decision-making process that is used in manufacturing and 

service industries to achieve e ciency and minimize production cost. The goal with 

this research is to optimize the production and Scheduling of products of a beverage 

company by developing a model that displays the optimal production plan for a given 

planning horizon. The model is designed in a way that it can be implemented on any 

kind of Beverage Company: The model can also be implemented on di erent kind of 

production to make a production plan. A Mixed Linear Programming Model to 

support decision making is presented, in order to nd the optimal production plan, by 

maximizing the production and reducing cost. Data from Promasidor Ghana Limited 

was applied to the model. Results from the model were analyzed and sensitivity 

analysis was carried out. I found out that the mixed linear programming model is an 

e cient approach to solve a production planning and Scheduling problems. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

The challenge of improving production plan, manufacturing processes and scheduling 

has inspired many di erent researchers. For manufacturers, the task of meeting the 

ever rising demand, customer expectations and lowering production costs in an 

environment of more goods, more complexity, more alternatives and competition is 

placing great stress on the e ectiveness of planning of activities in the manufacturing 

process. Most companies have already adopted solutions with varying degrees of 

planning and scheduling skills. However, production managers admit that these same 

systems are becoming an old fashion, lacking the swiftness, exibility and sensitivity to 

manage the increasing complex production atmosphere. 

Due to government believe in private sector being the engine of economic growth, 

beverage companies have grown rapidly over the past twenty(20) years in Ghana and 

competition among companies is so high that planning and scheduling of resources 

must be pro cient for any of these companies to be pro table and able to survive 

competition. In modern manufacturing scheduling problems, it is of importance to e 

ciently utilize diverse resources. Treating set up times separately from processing 

times allows operations to be performed simultaneously and hence improve resource 

utilization. This is particularly important in modern production management systems, 

such as, Just-In-Time (JIT), and Optimized Production Technology (OPT). The 

advantages of reducing set up times include; reduced cost, increased production 

speed, increased output, reduced lead times, faster charge over, increased pro 

tability and customer satisfaction. Planning and scheduling of products, raw materials 

and labour are paramount to the pro tability of any beverage company in Ghana and 

any part of the world. 
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Production planning is one of the most important activities in a production factory. 

Production planning represents the heart beat of any manufacturing process. 

According to Cai et al.(2011), production plan considers resource capacities, time 

periods, supply and demand over a long planning horizon at a high level. Its decision 

then forms the input to more detailed, shorter-term functions such as scheduling and 

control at the lower level, which usually have more accurate estimates of supply, 

demand, and capacity levels. Hence, interaction between production planning and 

production scheduling/control is inevitable, not only because the scheduling/control 

decisions are constrained by the planning decisions, but also because disruptions 

occurring in the execution/control stage (usually after schedule generation) may a 

ect the optimality and/or feasibility of both the plan and the schedule. 

Mitchell (1939) discussed the role of production planning department, including 

routing, dispatching (issuing shop orders) and scheduling. Stevenson (2009) considers 

that in the decision making hierarchy, scheduling decisions are the nal step in the 

transformation process before actual output occurs. 

Manufacturing facilities are complex, dynamic, stochastic systems. From the 

beginning of organized manufacturing, workers, supervisors, engineers, and 

managers have developed many clever and practical methods for controlling 

production activities. Many manufacturing organizations generate and update 

production schedules, which are plans that state when certain controllable activities 

(e.g., processing of jobs by resources) should take place. Production schedules 

coordinate activities to increase productivity and minimize operating costs. A 

production schedule can identify resource con icts, control the release of jobs to the 

shop, ensure that required raw materials are ordered in time, determine whether 

delivery promises can be met, and identify time periods available for preventive 

maintenance (Herrmann, 2007). 
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1.1.1 PROFILE OF THE STUDY AREA 

In this research, Promasidor Ghana Limited, a beverage manufacturing company is 

used as a case study. Promasidor was founded in 1979 by Robert Rose, who left the 

United Kingdom in 1957 for Zimbabwe to pursue his African dream. As Chairman of 

Allied Lyons Africa for over 20 years, he travelled extensively across Africa and gained 

a unique and thorough knowledge of the food industry throughout the continent. In 

particular he noticed a lack of availability of the one highly nutritious product that the 

developed world takes for granted - milk. 

He realised that with technology in the manufacture of milk powders advancing 

rapidly, there was an exciting opportunity to provide milk powder in small portions 

that could be packaged in exible sachets. It was found that removing the animal fat 

from the milk and replacing it with vegetable fat allowed for a longer shelf life. This 

meant that for the rst time, milk powder could be distributed across the vast African 

continent, providing access to a ordable milk to everyone in Africa. 

Based on the extensive knowledge and expertise gained in manufacturing, packing 

and distributing products across Africa, the Group has expanded the range of 

Promasidor products. Their products are now purchased daily in their millions and 

have developed into strong brands across the African continent, with highly 

noticeable brand identities. 

However their market places are becoming more competitive as new products 

become available to consumers. They must therefore continue to o er high, 

consistent quality, value-for-money products and strive to satisfy the high standards 

that our consumers have come to expect from their products. 



 

4 

Beverage industries have grown quickly over the years in Ghana and competition 

among manufacturer is so high that planning and scheduling of resources must be e 

cient for any of these industries to be pro table and able to survive competition. 

However, in today’s manufacturing scheduling problems, it is of signi cance to e 

ciently utilize various resources. Treating set up times separately from processing 

times allows operations to be performed simultaneously and hence improve resource 

utilization (Okoli et al., 2012). 

The bene ts of reducing set up times include; reduced expenses, increased production 

speed, increased output, reduced lead times, faster charge over, increased 

competitiveness, increased pro tability and customer satisfaction. Planning and 

scheduling of products, machines, raw materials and labour are principal to the pro 

tability of any plastic industry in Ghana and the world at large. Production planning is 

one of the most important activities in a production factory. Production planning 

represents the beating heart of any manufacturing process. According to Veeke and 

Lodewijks (2005), production planning usually ful ls its functions by determining the 

required capacities and materials for these orders in quantity and time. 

Mitchell (1939) discussed the role of production planning department, including 

routing, dispatching (issuing shop orders) and scheduling. According to Stevenson 

(2009), in the decision making hierarchy, scheduling decisions are the nal step in the 

transformation process before actual output occurs. Wight (1984) puts the two key 

problems in the production scheduling as priorities and capacity . In other words, 

what should be done rst? Who should do it? The author observes that in 

manufacturing rms, there are multiple types of scheduling, including the detailed 

scheduling of shop order that shows when each operation must start and complete. 

A lot of researchers have done extensive work in developing e cient solution 

strategies, they include Grossman et al (2002), Maravelias and Sung (2008). 
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1.1.2 PRODUCT INFORMATION 

In Ghana, Promasidor commenced operations in 1999 and through dint of hard work, 

their range of products have become rm favorites among consumers. Cowbell, is their 

leading brand and has grown to include a number of well-received line extensions: 

Cowbell Co ee milk, Chocomalt, Sweet milk Strawberry, Mocha, Coconut, brand 

extensions. Miksi- a creamy, tasti alternative - is another o t’s popular milk powder 

brand as well as Loya milk powder, a fulll cream brand. The Promasidor group also 

markets Onga seasoning powders, which are available in a wide range of delicious 

avors ideally suited to Ghanaian tastes. 

The regular additions to the Cowbell product range are testament to the Group’s 

commitment to the provision of innovative and value-added milk products. It is this 

dedication to service and consistency that has contributed to the continual success 

of Cowbell as a brand and Promasidor as a whole. 

1.2 PROBLEM STATEMENT 

Scheduling and planning play a very important role in manufacturing. In industries, 

time, labour, maintenance and manufacturing cost should be planned in order to 

minimize cost and maximize total turnover. However, most manufacturing 

companies in sub-Saharan Africa do not employ optimization models in their planning 

and scheduling where Ghana is not an exception. It is of this reason why this research 

is undertaken to address some of the problems. The research seeks to address some 

of the problems faced by Promasidor as outlined below; 
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The company has no mathematical model which explains time spent in each 

sector of manufacturing 

Inaccurate estimation of supply 

Improper resource allocation 

Manufacturing companies engaged with the production of multi-items are invariably 

confronted with the problem of producing just enough of each item to satisfy 

demand, but at same time to maximize pro t in terms of production costs, inventory 

costs, man-power limitations, production time and demand pro le for the products. 

Usually the identi cation and manner of treatments of the associated production and 

sales constraints determine the extent of scheduling optimality. This becomes very 

necessary when output targets for both production and sales have been established 

as strict key performance indicators for the respective departments. Predominant 

production scheduling problems encountered belong to at least, one of the following: 

(i) Companies would always want to satisfy demand instantly, avoiding long term 

delivery schedules. The practice of turning away customers to make them come 

back later for supplies, causes losses of sales to competitors who may be 

located not far from work sites. 

(ii) When sales team have identi ed customers preferences to combination of speci 

c products, shortage of one product would eventually a ect sales pattern. This 

implies that production scheduling would need to be optimized in such a way 

to ensure su ciency of all product variants in the right proportions on stock. 

(iii) There is the need to establish a referenced benchmark to measure and analyse 

performance at end of the month. Knowledge of required optimal scheduling 

output will facilitate inventory control. 
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1.3 OBJECTIVES OF THE STUDY 

The main objectives of this study are: 

(i) To construct a mathematical model which provides optimal scheduling solution 

for production output under normal operational environment? 

(ii) To link the proposed model solution to a case study area. 

(iii) To interpret the outcomes of the applied model in a case study, using sensitivity 

analysis for various changes in the model due to impact from ignored 

constraint. 

1.4 METHODOLOGY 

Over the years, various methods have been used to solve facility planning and 

scheduling problems. In this thesis we shall employ Mixed Integer Linear 

programming model for production planning for the following context: 

Multiple items with independent demand 

Multiple shared resources 

Linear costs 

Machine idle cost 

Mathematical Laboratory (Matlab) and TORA will be used for all the coding for the 

work. 

1.5 SIGNIFICANCE OF THE STUDY 

In this age of modernity, manufacturers need to make optimal use of the scarce 

resource available to their disposal. This is even more important in Africa where 

interest rate to companies are just not friendly at all to compete with the foreign 
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companies who gets access to loans at a very low rate. It is therefore necessary for 

industry players to employ operation researchers to plan their work schedule in order 

to save time, man hours, labour, energy, space, money etc. It is of these reasons why 

this research work is very relevant to the company under study, the government and 

the consuming public at large, since cutting down on high cost of manufacturing 

translate to lower unit price of the commodity. 

1.6 LIMITATIONS OF THE STUDY 

Africa being a developing continent has its own problems with regards to accessing 

information from one source or the other for research purposes. Ghana, one of the 

developing countries in Africa is not an exception to this problem. In our quest to 

obtain to obtain information for our research work, we encountered some challenges 

some of which are categorized below. 

 The right o ce to go for the required information 

 O cials not willing to give out information 

Deliberate attempt to frustrate the researcher by given you successive 

postponement to come for data 

 Lack of nancial support 

1.7 ORGAINSATION OF THE STUDY 

The study consists of ve chapters. Chapter one considered the background, statement 

of the problem and the objectives of the study. The justi cation, methodology, scope 

and limitations of the study were also put forward. In chapter two, we shall put 

forward adequate and relevant literature on production and transportation problem. 

Chapter three presents the research methodology of the study. Chapter four will 
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focus on data collection and analysis. Chapter ve, which is the last chapter of the 

study presents the summary, conclusions and recommendations of the study. 

1.8 SUMMARY 

In this chapter, we looked at production and the factors that are needed for 

production. We also looked at an overview of the problems facing the manufacturing 

industries in Ghana and how to solve some of these problems. The next chapter 

presents literature review on production management and transportation problem.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter, the various researches done in the area of study are discussed. It is 

categorized under historical aspect of production planning and scheduling, optimal 

production planning, optimal production scheduling and the various mathematical 

models applied in solving the problems to obtain optimality. The topic of production 

planning and scheduling has been widely researched over the years. Once using a 

mathematical approach to solving manufacturing scheduling problems, diverse 

techniques such as Constraint Programming (CP), Mixed Integer Linear Programming 

(MILP), Mixed Integer Non-Linear Programming (MINLP), or even a hybrid of CP and 

MILP formulations can be used, depending on the type of problem and solve discrete 

manufacturing scheduling problems more e ectively. Generally, MILP models are 

used when optimization is the main goal, and CP models are used when feasibility is 

the main concern. 

2.2 HISTORY OF PRODUCTION PLANNING AND SCHEDULING 

In this section, studies by various researchers on the history of production planning 

and scheduling are reviewed. Herman (2006) in this book titled Hand book for 

Production Scheduling describes the history of production scheduling in 

manufacturing facilities over the last 100 years. The author discussed the ways that 

production scheduling has been done is critical to analyzing existing production 

scheduling systems and nding ways to improve them. The tools used to support 

decision-making in real-world production scheduling are not only mentioned but also 

the changes in the production scheduling systems. This story goes from the rst charts 
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developed by Henry Gantt to advanced scheduling systems that rely on sophisticated 

algorithms. The book helps production schedulers, engineers, and researchers 

understand the true nature of production scheduling in dynamic manufacturing 

systems and to encourage them to consider how production scheduling systems can 

be improved even more. It does not only review the range of concepts and an 

approach used to improve production scheduling but also demonstrates their 

timeless importance. 

The challenge of improving production scheduling has inspired many di erent 

approaches as stated by Herman in this paper published in 2007, the Legacy of Taylor, 

Gantt, and Johnson: How to Improve Production Scheduling. This paper examines the 

key contributions of three individuals who improved production scheduling: 

Frederick Taylor, who de ned the key planning functions and created a planning o ce; 

Henry Gantt, who provided useful charts to improve scheduling decision-making, and 

S.M. Johnson, who initiated the mathematical analysis of production scheduling 

problems. The paper presents an integrative strategy to improve production 

scheduling that synthesizes these complementary approaches. Finally, the paper 

discusses the soundness of this approach and its implications on research, education, 

and practice. Another article published in 2007 by Hermann, a History of Decision-

Making Tools for Production Scheduling, elaborates how important production 

scheduling is in decision-making process that has embraced technology as computers 

and information systems became cheaper and easier to use. The history of 

production scheduling is not one of replacing human decision-makers with 

algorithms, however, this paper provides a historical perspective on the decision 

support tools that have been developed to improve production scheduling. 

In the next session, the various models used by various researchers are discussed. 
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2.3 MATHEMATICAL MODELS USED IN PRODUCTION 

PLANNING AND SCHEDULING 

In this session, some of the various mathematical models already used by previous 

researchers in this eld are analysed. 

Ashayeri (1996) presented a production and maintenance planning model for the 

process industry, developed a model to simultaneously plan preventive maintenance 

and production in a process industry environment, where maintenance planning is 

extremely important. The model schedules production jobs and preventive 

maintenance jobs, while minimizing costs associated with production, backorders, 

corrective maintenance and preventive maintenance. The formulation of the model 

is exible, so that it can be adapted to several production situations. The performance 

of the model is discussed and alternate solution procedures are suggested. 

Lippman et al. (1967) studied a model that minimizes the sum of production, 

employment smoothing, and inventory costs subject to a schedule of known demand 

requirements over a nite time horizon. The three instrumental variables are work 

force producing at regular-time, work force producing on overtime, and the total 

work force. Overtime is limited to be not more than a xed multiple of regular time. 

The idle portion of the work force and the levels of inventory are resultant variables. 

The authors postulated the following shape characteristics for the cost functions 

production costs are convex-like, smoothing costs are V-shaped, and holding costs 

are increasing, both the production and holding cost functions need not be 

stationary. In this paper, they provided upper and lower bounds on the cumulative 

regular-time plus overtime work force for any sequence of demand requirements. 

They also gave the form of an optimal policy when demands are monotone (either 

increasing or decreasing). Finally, they derived the asymptotic behavior of optimal 

policies when demands are monotone and the planning horizon becomes arbitrarily 
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long. All of these results, which convey information about the numerical values of 

optimal policies, given speci c demands and an initial level of inventory, depend only 

on the shape characteristics of the cost functions. 

Ramezanian (2010) considered a ow shop scheduling problem with bypass 

consideration for minimizing the sum of earliness and tardiness costs. They proposed 

a new mathematical modelling to formulate this problem. There are several 

constraints which are involved in their modelling such as the due date of jobs, the job 

ready times, the earliness and the tardiness cost of jobs, and so on. They applied 

adapted genetic algorithm based on bypass consideration to solve the problem. The 

basic parameters of this meta-heuristic are brie y discussed in this paper. Also a 

computational experiment is conducted to evaluate the performance of the 

implemented methods. The implemented algorithm could be used to solve large 

scale ow shop scheduling problem with bypass e ectively. 

eda (2008) proposed a similar mathematical model for permutation ow shop 

scheduling and job shop scheduling problems. The rst problem is based on a mixed 

integer programming model. As the problem is NP-complete, this model can only be 

used for smaller instances where an optimal solution can be computed. For large 

instances, another model is proposed which is suitable for solving the problem by 

stochastic heuristic methods. For the job shop scheduling problem, a mathematical 

model and its main representation schemes are presented. 

Pochet (2000) presented a lecture on mixed integer programming models and 

formulations for a speci c problem class, namely deterministic production planning 

problems. The objective is to present the classical optimization approaches used, and 

the known models, for dealing with such management problems. The rst production 

planning models in the general context of manufacturing planning and control 

systems are described and explained which sense most optimization solution 
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approaches are based on the decomposition of the problem into single-item sub-

problems. A study in detail of the reformulations for the core or simplest sub problem 

in production planning, the single-item uncapacitated lot-sizing problem, and some 

of its variants. Such reformulations are either obtained by adding variables to obtain 

so called extended reformulations or by adding constraints to the initial formulation. 

This typically allows one to obtain a linear description of the convex hull of the 

feasible solutions of the sub problem. Such tight reformulations for the sub problems 

play an important role in solving the original planning problem to optimality. A review 

of two important classes of extensions for the production planning models, 

capacitated models and multi-stage or multi-level models is done. For each, the 

classical modelling approaches used is described. 

Mixed Integer Programming (MIP) has been used for optimizing production schedules 

of mines since the 1960s and is recognized as having signi cant potential for 

optimizing production scheduling problems for both surface and underground 

mining. The major problem in long-term production scheduling for underground ore 

bodies generally relate to the large number of variables needed to formulate a MIP 

model, which makes it too complex to solve. As the number of variables in the model 

increase, solution times are known to increase at an exponential rate. In many 

instances the more extensive use of MIP models has been limited due to excessive 

solution times. Nehring et al, (2010) reviewed in their paper, production schedule 

optimization studies for underground mining operations. It also presents a classical 

MIP model for optimized production scheduling of a sublevel stoping operation and 

proposes a new model formulation to signi cantly reduce solution times without 

altering results while maintaining all constraints. A case study is summarized 

investigating solution times as ve stopes are added incrementally to an initial ten 

stope operation, working up to a fty stope operation. It shows substantial 

improvement in the solution time required when using the new formulation 

technique. This increased e ciency in the solution time of the MIP model allows it to 
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solve much larger underground mine scheduling problems within a reasonable time 

frame with the potential to substantially increase the Net Present Value (NPV) of 

these projects. Finally, results from the two models are also compared to that of a 

manually generated schedule which showed the clear advantages of mathematical 

programming in obtaining optimal solutions. 

Lindholm et al. (2013) formulated an optimization model for the production 

scheduling problem at continuous production sites. The production scheduling 

activity produced a monthly schedule that accounted for orders and forecasted all 

products. The plan should be updated every day, with feedback on the actual 

production the previous day. The actual daily production may be lower than the 

planned production due to disturbances, e.g. disruptions in the supply of a utility. The 

work is performed in collaboration with Perstorp, a world-leading company within 

several sectors of the specialty chemicals market. Together with Perstorp, a list of 

speci cations for the production scheduling has been formulated. These are 

formulated mathematically in a mixed-integer linear program that is solved in 

receding horizon fashion. The formulation of the model aims to be general, such that 

it may be used for any process industrial site. Determination of the optimum 

production schedules over the life of a mine is a critical mechanism in open pit mine 

planning procedures (Gholamnejad & Moosavi, 2012). In this paper, a long-term 

production scheduling is used to maximize the net present value of the project under 

technical, nancial, and environmental constraints. Mathematical programming 

models are well suited for optimizing long-term production schedules of open pit 

mines. The two approaches to solving long-term production problems are: 

deterministic- and uncertainty- based approaches. Deterministic-based models are 

unable to deal with grade and geological uncertainties, which are two important 

sources of risk in mining industries. This may lead to discrepancies between actual 

production obtained by these algorithms and planning expectations. In this paper, a 

new binary integer programming model was developed for long-term production 
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scheduling that incorporates geological uncertainty within the orebody. Then, 

traditional and uncertainty-based models are applied to an iron ore deposit. Results 

showed that the uncertainty-based approach yields more practical schedules than 

traditional approaches in terms of production targets 

Xue et al.(2000) in their research titled An intelligent optimal production scheduling 

approach using constraint-based search and agent-based collaboration introduced an 

intelligent approach for identifying the optimal production schedule to satisfy 

product and manufacturing constraints. In this approach, product constraints are 

modeled using a feature-based product representation scheme. Manufacturing 

constraints are described as available resources including facilities and persons. 

Manufacturing requirements for producing the products, including tasks and 

sequential constraints for conducting these tasks, are represented as part of the 

product feature descriptions. The optimal production process and its timing 

parameter values are identi ed using constraint-based search and agent-based 

collaboration. The intelligent optimal production scheduling system was 

implemented using Smalltalk, an object oriented programming language. 

Kopanos et al.(2009) used a model their work on Optimal Production Scheduling and 

Lot-Sizing in Dairy Plants: The Yogurt Production Line that addresses the lot-sizing and 

production scheduling problem in a multiproduct yogurt production line of a real-life 

dairy plant. A new mixed discrete/continuous-time mixed-integer linear 

programming model, based on the de nition of families of products, is proposed. The 

problem under question is mainly focused on the packaging stage, whereas timing 

and capacity constraints are imposed with respect to the 

pasteurization/homogenization and fermentation stage. Packaging units operate in 

parallel and share common resources. Sequence-dependent times and costs are 

explicitly taken into account and optimized by the proposed framework. Several 

scenarios for a large-scale dairy plant have been solved to optimality using the 
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proposed model. Production bottlenecks are revealed, and several retro t design 

options are proposed to enhance the production capacity and exibility of the plant. 

In considering a manufacturing system in which a single consumable good is 

fabricated in a process that consists of stages in an uncertain environment. On each 

stage, there are a number of workstations that are assumed to have di erent 

operating parameters that are subject to failure, repair, and preventive maintenance 

which generate discrete jumps in the value of the state. A JustIn-Time manufacturing 

discipline is assumed for the workstations with running costs that include penalties 

for shortfall and surplus production. The formulation presented here for the optimal 

production scheduling for the manufacturing system requires extensions to the 

results of the LQGP problem with State Dependent Poisson Processes (SDPP) by the 

inclusion of coe cients for the dynamics and the costs that are parameterized by the 

value of the state. The cost functional used is fully quadratic which an enhancement 

for the LQGP problem (Westman et al., 2000) 

2.4 OPTIMAL PRODUCTION PLANNING 

This session concentrates on studies done mostly on optimal production planning. 

Production planning is meant to arrive at the framework of manufacturing operations 

during the period planned (Chandra Mouli et al., 2006). The aim in production 

planning is to determine the production capacity in terms of high level decisions such 

as production levels and product inventories for given marketing forecasts, and 

demands over a long time horizon ranging from several months up to a year. 

Zied et al. (2009) in their paper on an Optimal Production/Maintenance Planning 

Under Stochastic Random Remand, Service Level and Failure Rate dealt with the 

combination between production and maintenance plan for a manufacturing system 

satisfying a random demand. A jointly optimization is made in order to establish an 

optimal production planning and scheduling maintenance strategy showing the 
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machine degradation. The key of this study is to consider the in uence of the 

production rate on the degradation degree. A constrained stochastic production-

maintenance planning problem under hypotheses of inventory and failure rate 

variables, an optimal production plan and maintenance scheduling which minimizes 

the average total holding, production and maintenance costs was simultaneously 

proved. A numerical example is studied in order to apply the developed approach. 

Another paper addressed the problem of planning the usage of actuators optimally 

in an economic perspective. The objective is to maximize the pro t of operating a 

given plant during 24 hours of operation. Models of two business objectives are 

formulated in terms of system states and the monetary value of these objectives is 

established. Based on these and the cost of using the di erent actuators a pro t 

function has been formulated. The optimization of the pro t is formulated as an 

optimal control problem where the constraints include the dynamics of the plant as 

well as a requirement to reference tracking. A power plant is considered in this paper, 

where the fuel system consists of three di erent fuels; coal, gas, and oil (Kragelund et 

al., 2009). 

An Optimum Production Planning (OPP) Model for a robot-served machine in the 

make-to-order (MTO) industry is proposed to minimize the production cost under 

deterministic order quantity and deadline constraints (Lan et al., 2007). In this paper, 

the operational cost of the machine and the part handling robot, as well as the xed 

costs for both equipments and the product holding cost are considered 

simultaneously into the objective of the model. This study not only implements the 

Lagrange Method to resolve the production planning problem, but also provides a 

veri ed cost-related property of the Lagrange Multiplier for budget and/or cost 

forecasting under the deterministic market. Through the forecasted future demand, 

the step-by-step algorithm to reach the optimal production plan for the probabilistic 

market is then constructed. In addition, the versatility and adaptability of this study 
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are exempli ed through numerical simulation. This paper surely contributes the 

applicable solution to control a robot-served machine under certain market, as well 

as to plan the productivity of the machine and the robot in the forecasted future. 

Singh et al. (2013) discussed a practical oil production planning optimization problem. 

In this research, for oil wells with insu cient reservoir pressure, gas is usually injected 

to arti cially lift oil, a practice commonly referred to as Enhanced Oil Recovery (EOR). 

The total gas that can be used for oil extraction is constrained by daily availability 

limits. The oil extracted from each well is known to be a nonlinear function of the gas 

injected into the well and varies between wells. The problem is to identify the optimal 

amount of gas that needs to be injected into each well to maximize the amount of oil 

extracted subject to the constraint on the total daily gas availability. The problem has 

long been of practical interest to all major oil exploration companies as it has the 

potential to derive large nancial bene t. In this paper, an infeasibility driven 

evolutionary algorithm is used to solve a fty-six (56) well reservoir problem which 

demonstrates its e ciency in solving constrained optimization problems. Furthermore, 

a multi-objective formulation of the problem is posed and solved using a number of 

algorithms, which eliminates the need for solving the (single objective) problem on a 

regular basis. Lastly, a modi ed single objective formulation of the problem is also 

proposed, which aims to maximize the pro t instead of the quantity of oil. It is shown 

that even with a lesser amount of oil extracted, more economic bene ts can be 

achieved through the modi ed formulation. 

Mishra (2012) in his work on Optimal Production Planning When Final Demand is 

Stochastic and Inter-Related formulated the Input-Output Analytic framework, 

production (X) is related to nal demand (C) through the B [while B= INV(I-A), where A 

is the technical coe cients matrix and INV(.) means inverted (.)], such that X=BC. 

Generally, the elements of A and C are considered to be non-stochastic and un-

correlated with each other within A and C. While non-stochasticity of the elements 
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of A may be (more or less) justi able, it cannot be empirically justi ed for the elements 

of C. Due to complementarity and substitutability, the elements of C may be 

correlated. This consideration introduces stochasticity and correlatedness into the 

elements of X. In this paper we address the problem of obtaining optimal X when the 

elements of C are 

(stochastic and) correlated. 

2.5 OPTIMAL PRODUCTION SCHEDULING 

Jian et al.(2004) worked on Optimum Integrated Cast Plan for SteelmakingContinuous 

Casting Production Scheduling Using Improved Genetic Algorithm. 

In this paper, a planning method of cast for steelmaking continuous casting 

production scheduling in integrated production process is studied. The integrated 

cast plan model is established. A modi ed genetic algorithm with adaptive operator is 

proposed to solve the optimum integrated cast plan problem. Simulations have been 

carried out with practical data in steel and iron plant and the results show that the 

model and the solving method are very e ective. 

Mitsumori (1972) in his work on Optimum Production Scheduling of Multicommodity 

in Flow Line discusses how the applications of computer control in production 

factories have been extended from the control of mass and energy to the production 

control. The control at this level comprises the formulation and alteration of work 

schedules in accordance with the progress of work, and it may be called the control 

of information. This paper deals with the ow line which is the most fundamental 

production line in the factory and proposes and veri es the optimal scheduling 

method. In the case of producing multicommodities by a ow line, the optimum 

schedule is the one which satis es the demand for the respective products and 

minimizes the changeover loss. The branch-and-bound method is used to obtain an 



 

21 

optimum schedule. The geometrical characteristics of the region in which the feasible 

schedules exist are used for calculating the lower bound of the objective function for 

the subset of feasible schedules. 

Xue et al.(2004) deliberated on their piece, Optimum Cast Plan for 

SteelmakingContinuous Casting Production Scheduling. A planning method of cast for 

steelmaking continuous casting production scheduling in CIMS is studied. The cast 

plan model is established. An adaptive operator genetic algorithm is proposed to 

solve the optimum cast plan problem. The computation with practical data shows 

that the model and the solving method are very e ective. 

Agyepong-Mensah (2011) conducted a study in Ernest Chemists Limited 

(ECL), the study presented a production scheduling solution for a manufacturing rm, 

all in an attempt to cut down manufacturing cost and increase e ciency. The creation 

of an optimum production schedule requires the modelling of the scheduling 

problem as a balanced transportation problem. An important result upon the 

implementation of the model is the allocation of the optimum level of production 

necessary to meet a given demand at a minimum cost. The main objective of the 

study is to develop a quantitative model by which ECL and for that matter, 

manufacturing rms can meet their demand at a minimum cost. To achieve this 

objective the study adopted the quantitative approach in this research, by using a 

quantitative method to model the production problems of ECL as a balanced 

transportation problem, which can be solved using the simplex pivot method that 

makes it easy to nd the Initial Basic Feasible Solution (IBFS). A balanced transportation 

problem is where total supply equals total demand. To nd the basic feasible solution 

for the balanced transportation problem, the researcher used the Vogel’s 

Approximation Method (VAM), and then improved the IBFS to obtain optimality by 

using the Modi ed Distribution Method (MODI). 
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After collecting the necessary data for the study, with an interview guide, the 

researcher came out with the optimum production schedule for ECL by using the 

Quantitative Manager for windows statistical software. The research revealed that, 

the company incurred a regular production cost of GHS 6,095,844.00 and an overtime 

cost of GHS 3,371,832.00, giving a total production cost of GHS 9,467,676.00 for 

producing 695,311cartons of the Big Joe pain reliever for the year, which were not all 

demanded within the period under review, without the optimum production model. 

With the model, the company required 596,695 cartons, at the cost of GHS 

7,808,011.00, to meet its demand for the year instead. The researcher, therefore, 

recommends the usage of the proposed model to the management of Ernest 

Chemists Limited, to determine the optimum level of production to meet a given 

demand at a minimum cost. 

Pongcharoen et al. (2002) published in their journal, Determining Optimum Genetic 

Algorithm Parameters for Scheduling the Manufacturing and Assembly of Complex 

Products. In this journal, a Genetic Algorithm-based Scheduling Tool (GAST) has been 

developed for the scheduling of complex products with multiple resource constraints 

and deep product structure. This includes a repair process that identi es and corrects 

infeasible schedules. The algorithm takes account of the requirement to minimise the 

penalties due to both the early supply of components and assemblies and the late 

delivery of nal products, whilst simultaneously considering capacity utilisation. The 

research has used manufacturing data obtained from a capital goods company. The 

Genetic Algorithm scheduling method produces signi cantly better delivery 

performance and resource utilisation than the Company plans. Genetic Algorithm 

programs include a number of parameters including the probabilities of crossover 

and mutation, the population size and the number of generations. A factorial 

experiment has been performed to identify appropriate values for these factors that 

produce the best results within a given execution time. The overall objective is to use 

the most e cient Genetic Algorithm parameters that achieve minimum total costs and 
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minimum spread, to solve a very large scheduling problem that is computationally 

expensive. The results are compared to the corresponding plans produced by the 

collaborating company using simulation. It is demonstrated that in the case 

considered, the Genetic Algorithm scheduling method achieves on time delivery and 

a 63% reduction in costs. 

Amponsah et al. (2011) conducted a study in Accra, Ghana, that presented a 

production scheduling problem for a beverage rm based in Accra, all in an attempt to 

cut down manufacturing cost and increase e ciency. The creation of an optimum 

production schedule requires the modelling of the scheduling problem as a balanced 

transportation problem. An important result upon the implementation of the model 

is the allocation of the optimum level of production necessary to meet a given 

demand at a minimum cost. 

In 1973, Gruhl examined a quasi-optimal technique (’quasi’ in that the technique 

discards unreasonable optimums), realized by a dynamically evolving mixed integer 

program. It is used to develop regional electric power maintenance and production 

schedules for a two to ve year planning horizon per unit production, recovery and 

product grade. Once the relationship between the production rate and cost is 

established, dynamic-programming techniques can de ne the optimum production 

schedule (i.e. the production schedule that maximizes the present worth of the 

operation) for the life of the deposit. In general, the optimum production rate is not 

constant for the life of the deposit, but declines gradually as the deposit is being 

exhausted (Roman, 1971). 

Sivasubramanian et al. (2004) published a journal on Optimum Production Schedule 

and Pro t Maximisation Using the Concept: Theory of Constraints. They elaborated 

that the Theory of Constraints (TOC) is an example of a management philosophy built 

upon a limited number of assumptions and designed to provide a process of 
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continuous ongoing improvement. The assumption forming one foundation of TOC is 

that a system’s outputs are determined by its constraints. The assumptions forming 

another foundation are new de nitions for throughput, inventory and operating 

expense. These de nitions are designed to support the goal of the organisation, 

which, according to Goldratt, is to make money. TOC, previously referred to as 

Optimized Production Technology (OPT), is a production control methodology that 

maximises pro ts in a plant with a demonstrated bottleneck. The process used by TOC 

to determine product mix that will maximise pro tability is a very simple series of 

steps. In this article, a case study from an industry is considered to demonstrate how 

the application of concepts of TOC will maximise pro t for an organisation. This paper 

further explained how TOC plays a vital role in increasing performance through a 

limited number of assumptions designed to provide a continuous process of 

improvement, as emphasised in Total Quality Management (TQM). This paper also 

shows the steps involved in solving a typical TOC problem along with optimisation of 

resources for increased demand conditions. 

Houghton and Portougal (2001) presented an analytic framework for processing 

planning in industries where xed batch sizes are common. The overall optimum 

processing plan is shown to be located on an envelope between the optimum JIT plan 

and the optimum level plan. These concepts provide the framework for 

understanding the overall optimum plan, and the framework leads to an e cient 

heuristic. The approach is practical, illustrated by a case study from the food industry, 

which shows the place of overall optimum planning within the company’s planning 

system and its implications for company performance. In this studies, a mixed integer 

linear programming model approached is used. It considers both production planning 

and scheduling to obtain optimality. 

CHAPTER 3 
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METHODOLOGY 

In this chapter, mathematical programming is discussed. The various types of 

mathematical programming are stated with much emphasis on Mixed Integer 

programming problem. Formulation of the MILP and methods of solving MILP were 

also discussed. 

3.1 MATHEMATICAL PROGRAMMING 

Mathematical programming is one of the most widely used operation Research 

technique. A major feature of mathematical programming is that its models involve 

optimization, which helps management to come out with optimal policies in their 

quest to improve e ciency in their operations. 

Mathematical programming therefore, is used to nd the best or optimal solution to a 

problem that requires a decision or set of decisions about how best to use a set of 

limited resources to achieve a state goal of objectives. 

The application of mathematical programming has been so successful that their use 

has passed out of operational research departments to become an accepted routine 

planning tool. 

Steps involved in Mathematical Programming 

Conversion of stated problem into a mathematical model that abstracts all the 

essential elements of the problem. 

Exploration of di erent solutions of the problem. 

Finding out the most suitable or optimum solution. 

Types of mathematical programming. 

Linear programming 
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Quadratic programming 

Dynamic programming 

3.2 LINEAR PROGRAMMING 

Linear programming is a widely used mathematical modeling technique to determine 

the optimum allocation of scarce resources among competing demands. Resources 

typically include raw materials, manpower, machinery, time, money and space. 

The technique is very powerful and found especially useful because of its application 

to many di erent types of real business problems in areas like nance, production, sales 

and distribution, personnel, marketing and many more areas of management. 

As its name implies, the linear programming model consists of linear objectives and 

linear constraints, which means that the variables in a model have a proportionate 

relationship. The linear programing technique can be said to have a linear objective 

function that is optimized (either minimized or maximized) subject to linear equality 

or inequality constraints and sign restrictions on the variables. Since its introduction 

in the late 1930s it has found practical application in almost all facets of businesses. 

A Linear Programming model seeks to maximize or minimize a linear function, 

subject to a set of linear constraints. The linear model consists of the following 

components: 

A set of decision variables 

An objective function 

A set of constraints 

3.2.1 DEFINITIONS 

Decision Variables (Xj): In mathematical programming models, the unknown 

quantities are assigned symbols, which are known as variables. Thus the decision 
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variables are symbols that represent quantities of a certain good or a production 

material that is either minimized or maximized in an LP model. 

Objective function: A decision variable is a quantity that the decision-maker controls. 

For example, the number of nurses to employ during the morning shift in an 

emergency room may be a decision variable in an optimization model for labor 

scheduling. Or a linear mathematical relationship describing an objective of the rm, 

in terms of decision variables - this function is to be maximized or 

minimized. 

Constraints: In mathematics, a constraint is a condition of an optimization problem 

that the solution must satisfy. There are several types of constraintsprimarily equality 

constraints, inequality constraints, and integer constraints. The set of candidate 

solutions that satisfy all constraints is called the feasible set. 

3.2.2 
ASSUMPTIONS OF THE LINEAR PROGRAMMING 

MODEL 

The assumptions of the linear programming model are; 

The parameter values are known with certainty. 

The objective function and constraints exhibit constant returns to scale. 

The continuity assumption: Variables can take any value within a given feasible 

range. 

The additivity assumption: There are no interactions between the decision 

variables. 

3.2.3 STEPS FOR DEVELOPING AN ALGEBRAIC LP MODEL 

The steps include; 

1. What decisions need to be made? De ne each decision variable. 
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2. What is the goal of the problem? Write down the objective function as a 

function of the decision variables. 

3. What resources are in short supply and/or what requirements must be met? 

4. Formulate the constraints as functions of the decision variables. 

3.2.4 GENERAL FORM OF LP MODELS 

The general linear programming model can be stated as: 

Minimize (Maximize) XCjXj 

Subject to AijXj ≤ Bi 

Where 

the jth row may be ” = ” or ” ≤ ” or ” ≥ ” Cj are 

known as cost coe cients. 

Xj are decision Variables. 

Aij are called structural coe cients. 

Bi is known as the resource value. 

3.2.5 LP TERMINOLOGY 

Restrictive line: A straight line corresponding to a constraint of the model. 

Vertex or extreme point: A point at which two restrictive lines are 

intersecting. 

Solution: Each combination of the decision variables’ values. 

Feasible solution: A solution satisfying all the constraints. 
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Non feasible solution: A solution not satisfying at least one of the 

constraints. 

Extreme point feasible solution: Is one of the vertexes of the feasible region. 

Neighboring feasible solutions: They are connected with an edge (boundary) of the 

feasible region. 

Feasible region: The (curved) region of feasible solutions formed by the restrictive 

lines. 

Basic solution (extreme point solution): A solution corresponding to a vertex (has 

non-zero variables equal to the number of the constraints) 

Non basic solution: A solution that is not on a vertex of the feasible region and can be 

feasible or non-feasible 

Basic feasible solution: A basic solution that corresponds to a vertex of the feasible 

region and e ectively all its variables are non-negative 

Slack value: Any excess of an available resource (constraint symbol > or <). Surplus 

value: Any "surpassing" of a requirement (constraint symbol < or >). 

Auxiliary variables: Variables that correspond to slack values and surplus values. 

Basic (non basic) variable: A non-zero (zero) variable in a solution that contains 

decision and auxiliary variables 
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Mandatory or active constraint: When the resource is

 completely consumed or there is no surplus (zero slack or surplus respectively) 

Non mandatory constraint: When a resource is not exhausted (<) or a requirement is 

being surpassed (>) (non-zero slack or surplus respectively) 

Optimal solution: The feasible solution of an extreme point that gives to the objective 

function the optimal value (maximum or minimum). The optimal solution can be only 

one, but there are cases with unlimited optimal solutions, no optimal solution, or the 

value of the objective function tends to in nity. In every case the amount of feasible 

solutions of the extreme point is nite. When a feasible solution of an extreme point 

is better than all its neighboring then this solution is the optimal. 

Optimal value: The value of the objective function that corresponds to the optimal 

solution. 

Infeasibility: Occurs when a model has no feasible point. 

Unboundness: Occurs when the objective can become in nitely large (max) or in nitely 

small (min). 

Alternate solution: Occurs when more than one point optimizes the objective 

function 

3.2.6 
METHODS OF SOLVING LINEAR PROGRAMMING PROBLEM 

There are two main types of solving linear programming problems. These are; 

Simplex Method 

Graphical method 
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A linear programming problem involving only two decision variables can be solved 

using a graphical approach however if the decision variables are more than two and 

the constraints are two or more, then the appropriate method to use is the Simplex 

Method. 

3.3 SIMPLEX METHOD 

The simplex method is a general mathematical solution technique for solving linear 

programming problems. In the simplex method, the model is put into the form of a 

table, and then a number of mathematical steps are performed on the table. These 

mathematical steps in e ect replicate the process in graphical analysis of moving from 

one extreme point on the solution boundary to another. However, unlike the 

graphical method, in which we could simply search through all the solution points to 

nd the best one, the simplex method moves from one better solution to another until 

the best one is found, and then it stops. 

3.3.1 SIMPLEX ALGORITHM 

The simplex method demonstrated in the previous section consists of the following 

steps. 

1. Transform the model constraint inequalities into equations. 

2. Set up the initial tableau for the basic feasible solution at the origin and 

compute the zj and cj − zj row values. 

3. Determine the pivot column (entering nonbasic solution variable) by selecting 

the column with the highest positive value in the cj − zj row. 

4. Determine the pivot row (leaving basic solution variable) by dividing the 

quantity column values by the pivot column values and selecting the row with 

the minimum nonnegative quotient. 
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5. Compute the new pivot row values using the formula new tableau pivot row 

values = old tableau pivot row valuespivot number 

6. Compute all other row values using the formula new tableau row values = old 

tableau row values - (corresponding coe cients in pivot column× corresponding 

new tableau pivot row values) 

7. Compute the new zj and cj − zj row 

8. Determine whether or not the new solution is optimal by checking the cj−zj 

row. If all cj − zj row values are zero or negative, the solution is optimal. 

If a positive value exists, return to step 3 and repeat the simplex steps. 

3.4 ILLUSTRATION 

At the Beaver Creek Pottery Company Native American artisans produce bowls (x1) 

and mugs (x2) from labor and clay. The linear programming model is 

formulated as; 

Maximize subject 

to 

Z = 40x1 + 50x2 

x1 + 2x2 ≤ 40 

4x1 + 3x2 ≤ 120 

x1,x2 ≥ 0 

We convert this model into standard form by adding slack variables to each constraint 

as follows 

Maximize Z = 40x1 + 50x2 + 0s1 + 0s2 subject to 

x1 + 2x2 + s1 = 40 

4x1 + 3x2 + s2 = 120 

x1,x2,s1,s2 ≥ 0 
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The slack variables, s1 and s2, represent the amount of unused labor and clay, 

respectively. 

The initial simplex tableau for this model, with the various column and row headings, 

is shown in table below. 

cj 

Basic 

variables 

Quantity 

    

x1 x2 s1 s2 

       

 

zj 

cj − zj 

     

    

The following list summarizes the steps of the simplex method tableau. 

1. First, transform all inequalities to equations by adding slack variables. 

2. Develop a simplex tableau with the number of columns equaling the number 

of variables plus three, and the number of rows equaling the number of 

constraints plus four. 

3. Set up table headings that list the model decision variables and slack variables. 

4. Insert the initial basic feasible solution, which are the slack variables and their 

quantity values. 

5. Assign cj values for the model variables in the top row and the basic feasible 

solution variables on the left side. 

6. Insert the model constraint coe cients into the body of the table. 

Following the above steps we have; 

cj Quantity 
40 50 0 0 
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Basic 

variables x1 x2 s1 s2 

0 
s1 

40 1 2 1 0 

0 
s2 

120 4 3 0 1 

 

zj 

cj − zj 

0 0 0 0 0 

40 50 0 0 

We select variable x2 as the entering basic variable because it has the greatest net 

increase in pro t per unit, and select s1 row as the pivot row. 

cj 

Basic 

variables 
Quantity 

40 50 0 0 

x1 x2 s1 s2 

0 
s1 

40 1 2 1 0 

0 
s2 

120 4 3 0 1 

 

zj 

cj − zj 

0 0 0 0 0 

40 50 0 0 

The same process is repeated until an optimal solution is gotten. Below is the tableau 

of the process. 

cj 

Basic 

variables 

Quantity 

40 50 0 0 

x1 x2 s1 s2 

50 
x2 

20 1/2 1 1/2 0 

0 s2 60 5/2 0 -3/2 1 

 

zj 

cj − zj 

1,000 25 50 25 0 

15 0 -25 0 

cj Quantity 
40 50 0 0 
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Basic 

variables 
x1 x2 s1 s2 

50 
x2 

20 1/2 1 1/2 0 

0 
s2 

60 5/2 0 -3/2 1 

 

zj 

cj − zj 

1,000 25 50 25 0 

15 0 -25 0 

cj 

Basic 

variables 

Quantity 

40 50 0 0 

x1 x2 s1 s2 

50 
x2 

8 0 1 4/5 -1/5 

40 x2 24 1 0 -3/5 2/5 

 

zj 

cj − zj 

1,360 40 50 16 6 

0 0 -16 -6 

The optimal solution is 

x1 = 24 bowls x2 = 8

 mugs 

Z = $1,360 pro t TYPES OF LINEAR PROGRAMMING MODEL 

Linear programming has the following types: 

Pure integer programming Model 

Binary 

Mixed Integer Programming Model 

PURE INTEGER PROGRAMMING MODEL 

A linear programming problem in which all the decision variables must have integer 

values is called a pure integer programming problem. Integerprogramming model is 
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one of the most important models in Management science. In certain LP problems 

fractional solutions are not realistic, one cannot produce 1 and half cars neither can 

one produce half a bottle of coke. Sometimes, all of the decision variables must have 

the value of either 0 or 1. Such problems are then called zero-one or binary 

programming problems. E.g. on and o of a switch. 

MIXED INTEGER PROGRAMMING PROBLEM 

A problem in which only some of the decision variables must have integer values is 

called a mixed-integer programming problem. The model is therefore mixed . When 

the objective function and constraints are all linear in form, then it is a Mixed Integer 

Linear Program (MILP). 

3.5 MIXED INTEGER LINEAR PROBLEM MODEL 

GENERAL FORM 

The general linear programming model can be stated as: 

Minimize (Maximize) X CjXj  

Subject to AijXj ≤ Bi  

.  Xj ≥ 0, Xj ∈ Z for some j 

Where 

the jth row may be ” = ” or ” ≤ ” or ” ≥ ” Cj are 

known as cost coe cients. 

Xj are decision Variables. 

Xj0s are integers 

Aij are called structural coe cients. 

Bi is known as the resource value. 
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3.5.1 METHODS OF SOLVING MILP 

Whereas the simplex method is e ective for solving linear programs, there is no single 

technique for solving integer programs. Instead, a number of procedures have been 

developed, and the performance of any particular technique appears to be highly 

problem-dependent. Methods to date can be classi ed broadly as following one of 

three approaches: 

(i) Enumeration techniques, including the branch-and-bound procedure. 

(ii) Cutting-plane techniques. 

(iii) Group-theoretic techniques. 

3.5.2 BRANCH AND BOUND 

The branch and bound method is a solution approach that can be applied to a number 

of di erent types of problems. The branch and bound approach is based on the 

principle that the total set of feasible solutions can be partitioned into smaller subsets 

of solutions. These smaller subsets can then be evaluated systematically until the best 

solution is found. When the branch and bound approach is applied to a mixed integer 

programming problem, it is used in conjunction with the normal noninteger solution 

approach. The IP problem is rst solved as an LP problem by relaxing the integrality 

conditions. If the resultant solution (the continuous optimum) is an integer, the 

problem is solved; otherwise, a tree search is performed. 

THE BRANCH AND BOUND ALORITHM 

The steps of the branch and bound method for determining an optimal integer 

solution for a maximization model (with ≤ constraints) can be summarized as follows. 
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1. Find the optimal solution to the linear programming model with the integer 

restrictions relaxed. 

2. At node 1 let the relaxed solution be the upper bound and the roundeddown 

integer solution be the lower bound. 

3. Select the variable with the greatest fractional part for branching. Create two 

new constraints for this variable re ecting the partitioned integer values. 

The result will be a new ≤ constraint and a new ≥ constraint. 

4. Create two new nodes, one for the ≤ constraint and one for the ≥ constraint. 

5. Solve the relaxed linear programming model with the new constraint added at 

each of these nodes. 

6. The relaxed solution is the upper bound at each node, and the existing 

maximum integer solution (at any node) is the lower bound. 

7. If the process produces a feasible integer solution with the greatest upper 

bound value of any ending node, the optimal integer solution has been 

reached. If a feasible integer solution does not emerge, branch from the node 

with the greatest upper bound. 

8. Return to step 3. For a minimization model, relaxed solutions are rounded up, 

and upper and lower bounds are reversed. 

ILLUSTRATION 

The owner of a machine shop is planning to expand by purchasing some new 

machines presses and lathes. The owner has estimated that each press purchased 

will increase pro t by $100 per day and each lathe will increase pro t by $150 daily. 

The number of machines the owner can purchase is limited by the cost of the 

machines and the available oor space in the shop. The machine purchase prices and 

space requirements are as follows. 

 Required  

Machine Floor Space(ft2) Purchase Price 
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Press 15 $8,000 

Lathe 30 4,000 

The owner has a budget of GHc 40,000 for purchasing machines and 200 square feet 

of available oor space. The owner wants to know how many of each type of machine 

to purchase to maximize the daily increase in pro t. The model below is formulated 

from the problem above; 

maximize Z = 100x1 + 150x2 subject to 

8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 x1,x2 ≥ 

0 and integer where x1 = 

number of presses x2= 

number of lathes 

We solve the problem using the branch and bound method by rst solving the problem 

as a regular linear programming model without integer restrictions (i.e., the integer 

restrictions are relaxed). Thus using the Simplex method to solve the problem. 

The linear programming model for the problem and the optimal relaxed solution 

is maximize Z = 100x1 + 150x2 subject to 

8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 

x1,x2 ≥ 0 

and 

x1 = 2.22, x2 

= 5.56 

Z = 1,055.56 

The branch and bound method employs a diagram consisting of nodes and branches 

as a framework for the solution process. 
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This node has two designated bounds: an upper bound (UB) of 1,055.56 and a lower 

bound (LB) of 950. The lower bound is the Z value for the rounded down solution, x1 

= 2 and x2 = 5; the upper bound is the Z value for the relaxed solution, x1 = 2.22 and 

x2 = 5.56. The optimal integer solution will be between these two bounds. 

X2 = 5.56 is the greatest fractional part; thus, x2 will be the variable that we will branch 

on. The following constraints are developed and added to the constraints of the main 

equation 

x2 ≤ 5 x2 

≥ 6 

Below is the three diagram. 

 

First, the solution at node 2 is found by solving the following model with the 

constraint x2 ≤ 5 added. 

maximize Z = 100x1 + 150x2 subject to 

8,000x1 + 4,000x2 ≤ 40,000 
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15x1 + 30x2 ≤ 200 

x2 ≤ 5 x1,x2 ≥ 0 

The optimal solution for this model with integer restrictions relaxed (using the 

Simplex method) is 

x1 = 2.5 x2 

= 5 

Z = 1,000 

The solution at node 3 is found by solving the model with x2 ≥ 6 added. 

maximize Z = 100x1 + 150x2 subject to 

8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 

x2 ≥ 6 x1,x2 ≥ 0 

The optimal solution for this model with integer restrictions relaxed is 

x1 = 1.33 x2 

= 6 

Z = 1,033.33 

Since neither of the decision variables at node 2 and 3 are all integers, an optimal 

solution is not found yet. We branch on from node 3 since its giving us the highest 

value of Z. 

At node 3, x1 = 1.33 has the largest fractional part, it’s the decision variable we will 

branch on. Two new constraints are formed, 

x1 ≤ 1 x1 

≥ 2 

Below is a tree diagram representing the solution procedure; 
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Now we solve the model at node 4 with x1 ≤ 1 constraint added to constraints 

of the model.  

maximize subject 

to 

Z = 100x1 + 150x2 

8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 

x2 ≥ 6 x1 ≤ 1 

x1,x2 ≥ 0 

The optimal solution for this model with integer restrictions relaxed is 

x1 = 1 x2 

= 6.17 

Z = 1,025 

Next, we solve the model at node 5 with the constraint x2 ≥ 2 added to the 

model.  

maximize Z = 100x1 + 150x2 

subject to 

8,000x1 + 4,000x2 ≤ 40,000 
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15x1 + 30x2 ≤ 200 

x2 ≥ 6 x1 ≥ 2 

x1,x2 ≥ 0 

There is no feasible solution for this model. Therefore, no solution exists at node 

5. 

 

At node 4 x2 = 6.17 is having the greatest fractional part, so it’s the decision variable 

on which we will branch. Two new constraints are formed 

x2 ≤ 6 x2 

≥ 7 

Below is a tree diagram representing the solution procedure; 
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Now we solve the model at node 6 with x1 ≤ 6 constraints added to constraints 

of the model.  

maximize subject 

to 

Z = 100x1 + 150x2 

8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 

x2 ≥ 6 x1 ≤ 1 x2 

≤ 6 x1,x2 ≥ 0 

The optimal solution for this model with integer restrictions relaxed is 

x1 = 1 x2 

= 6 

Z = 1,000 

Next, we solve the model at node 7 with the constraintx2 ≥ 7 added to the model. 

maximize Z = 100x1 + 150x2 subject to 
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8,000x1 + 4,000x2 ≤ 40,000 

15x1 + 30x2 ≤ 200 

x2 ≥ 6 x1 ≤ 1 x2 

≥ 7 x1,x2 ≥ 0 

There is no feasible solution for this model. Therefore, no solution exists at node 

7. 

 

The optimal solution is therefore at node 6. 

3.6 SENSITIVITY ANALYSIS 

Sensitivity analysis is the study of how the uncertainty in the output of a 

mathematical model or system (numerical or otherwise) can be apportioned to di 

erent sources of uncertainty in its inputs or its technique used to determine how di 

erent values of an independent variable will impact a particular dependent variable 

under a given set of assumptions. This technique is used within speci c boundaries 

that will depend on one or more input variables. Sensitivity analysis is a way to predict 
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the outcome of a decision if a situation turns out to be di erent compared to the key 

prediction(s). 

Sensitivity analysis can be useful for a range of purposes, including 

Testing the robustness of the results of a model or system in the presence of 

uncertainty. 

Increased understanding of the relationships between input and output 

variables in a system or model. 

Uncertainty reduction: identifying model inputs that cause signi cant 

uncertainty in the output and should therefore be the focus of attention if the 

robustness is to be increased (perhaps by further research). 

Sensitivity analysis using the simplex method. While this is not as e cient or quick as 

using the computer, close examination of the simplex method for performing 

sensitivity analysis can provide a more thorough understanding. 

3.6.1 ILLUSTRATION 

Lets consider the problem below. 

maximize Z = 160x1 + 200x2 subject to 

2x1 + 4x2 ≤ 40 

18x1 + 18x2 ≤ 216 

24x1 + 24x2 ≤ 240 

x1,x2 ≥ 0 The optimal simplex tableau is given below. 

cj 

Basic 

variables Quantity 

160 200 0 0 0 

x1 x2 s1 s2 s3 
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Table 3.1: Optimal simplex tableau 

SENSITIVITY ANALYSIS OF DECISION VARIABLES 

Here, sensitivity analysis is performed to determine the range over which cj can be 

changed without altering the optimal solution. The coe cients in the objective 

function will be represented symbolically as cj (the same notation used in the simplex 

tableau). Thus, 

c1 = 160 

c2 = 200 

First, lets consider a ∆ change for c1. This will change the c1 value from c1 = 160 to c1 

= 160 + ∆. Because c1 is a decision variable the simplex tableau changes with respect 

to the change in c1. The transformed simplex tableau is represented below. 

 

The solution shown in Table above will remain optimal as long as the cj −zj row values 

remain negative. Thus, for the solution to remain optimal 

−20 + ∆/2 ≤ 0 

cj 

Basic 

variables 

Quantity 

160 + ∆ 200 0 0 0 

x1 x2 s1 s2 s3 

200 
x2 

8 0 1 1/2 -1/18 0 

160 + ∆ x1 4 1 0 -1/2 1/9 0 
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and 

−20/3 − ∆/9 ≤ 0 

Both of these inequalities must be solved for ∆. 

−20 + ∆/2 ≤ 0 

∆/2 ≤ 20 

∆ ≤ 40 

and 

−20/3 − ∆/9 ≤ 0 

−∆/9 ≤ 20/3 

−∆ ≤ 60 

∆ ≥−60 

Thus ∆ ≤ 40 and ∆ ≥ −60. But c1 = 160 + ∆; therefore, ∆ = c1 − 160. 

Substituting ∆ = c1 − 160 into these inequalities yields 

∆ ≤ 40 

c1 − 160 ≤ 40 c1 

≤ 200 

and 

∆ ≥−60 c1 − 

160 ≥−60 c1 ≥ 

100 

Therefore, the range of values of c1 over which the solution basis will remain optimal 

is 

100 ≤ c1 ≤ 200 
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Secondly, lets consider a ∆ change in c2 so that c2 = 200 + ∆. The e ect of this change 

in the nal simplex tableau is shown in Table below. 

 

The solution shown in table above will remain optimal as long as the cj −zj row values 

remain negative. Thus, for the solution to remain optimal 

−20 − ∆/2 ≤ 0 

and 

−20/3 + ∆/18 ≤ 0 

Solving these inequalities for ∆ gives 

−20 − ∆/2 ≤ 0 

−∆/2 ≤ 20 

∆ ≥−40 

and 

−20/3 + ∆/18 ≤ 0 

−∆/18 ≤ 20/3 

cj 

Basic 

variables 

Quantity 

160 200 + ∆ 0 0 0 

x1 x2 s1 s2 s3 

200 + ∆ x2 
8 0 1 1/2 -1/18 0 

 160 x1 4 1 0 -1/2 1/9 0 
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∆ ≤ 120 

Thus ∆ ≥ −40 and ∆ ≤ 120. But c2 = 200 + ∆; therefore, ∆ = c2 − 200. 

Substituting ∆ = c2 − 200 into these inequalities yields 

∆ ≥−40 c2 − 

200 ≥−40 c2 ≥ 

160 

and 

∆ ≤ 120 c2 − 

200 ≤ 120 c2 ≤ 

320 

Therefore, the range of values of c2 over which the solution basis will remain optimal 

is 

160 ≤ c2 ≤ 320 

The ranges for both objective function coe cients are as follows. 

100 ≤ c1 ≤ 200 

160 ≤ c2 ≤ 320 

However, these ranges re ect a possible change in either c1 or c2, not simultaneous 

changes in both c1 and c2. 

SENSITIVITY ANALYSIS OF CONSTRAINTS 

To demonstrate the e ect of a change in the quantity values of the model constraints, 

we will again use the example we use previously 

maximize Z = 160x1 + 200x2 subject to 

2x1 + 4x2 ≤ 40 

18x1 + 18x2 ≤ 216 
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24x1 + 24x2 ≤ 240 

x1,x2 ≥ 0 

The purpose of sensitivity analysis of constraints is to determine the range for qi over 

which the optimal variable mix will remain the same and the shadow price will remain 

the same. 

As in the case of the cj values, the range for qi can be determined directly from the 

optimal simplex tableau. As an example, consider a ∆ increase in the number of labor 

hours. The model constraints become 

2x1 + 4x2 ≤ 40 + 1∆ 

18x1 + 18x2 ≤ 216 + 0∆ 

24x1 + 24x2 ≤ 240 + 0∆ 

The changes in the quantity column (constraints) are represented as the coe cients in 

the s1 column of the simplex tableau below 

cj 

Basic 

variables 

Quantity 

160 200 0 0 0 

x1 x2 s1 s2 s3 

0 
s1 40 + 1∆ 2 4 1 0 0 

0 s2 216 + 0∆ 18 18 0 1 0 

0 s3 240 + 0∆ 24 12 0 0 1 

 

zj 

cj − zj 

0 0 0 0 0 0 

160 200 0 0 0 

This process will carry through each subsequent tableau, so the s1 column values will 

duplicate the changes in the quantity column in the nal tableau. 

cj 

Basic 

variables 

Quantity 

160 200 0 0 0 

x1 x2 s1 s2 s3 

200 
x2 8 + ∆/2 0 1 1/2 -1/18 0 
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160 x1 4 − ∆/2 1 0 -1/2 1/9 0 

0 
s3 48 + 6∆ 0 0 6 -2 1 

 

zj 

cj − zj 

2240 + 20∆ 160 200 20 20/3 0 

0 0 -20 -20/3 0 

Recall that a requirement of the simplex method is that the quantity values not be 

negative. If any qi value becomes negative, the current solution will no longer be 

feasible and a new variable will enter the solution. Thus, the inequalities 

8 + ∆/2 ≥ 0 4 

− ∆/2 ≥ 0 

48 + 6∆ ≥ 0 

are solved for ∆ 

8 + ∆/2 ≥ 0 

∆/2 ≥−8 

∆ ≥−16 

4 − ∆/2 ≥ 0 

−∆/2 ≥−4 

∆ ≤ 8 

and 

48 + 6∆ ≥ 0 

6∆ ≥−48 

∆ ≥−8 

Thus ∆ ≥−16, ∆ ≤ 8 and ∆ ≥−8. But q1 = 40 + ∆; therefore, ∆ = q1 − 40. 

Substituting ∆ = q1 − 40 into these inequalities yields 

∆ ≥−16 q1 − 

40 ≥−16 q1 ≥ 

24 
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∆ ≤ 8 

q1 − 40 ≤ 8 q1 

≤ 48 

∆ ≥−8 

q1 − 40 ≥−8 q1 ≥ 

32 

Summarizing these inequalities, we have 

24 ≤ 32 ≤ q1 ≤ 48 

The value of 24 can be eliminated, since q1 must be greater than 32; therefore the 

optimal range is 

32 ≤ q1 ≤ 48 

As long as q1 remains in this range, the present basic solution variables will remain 

the same and feasible. However, the quantity values of those basic variables may 

change. In other words, although the variables in the basis remain the same, their 

values can change. 

To determine the range for q2 the s2 column values are used to develop the ∆ 

inequalities 

8 − ∆/18 ≥ 0 

4 + ∆/9 ≥ 0 

48 − 2∆ ≥ 0 

The inequalities are solved as follows. 

8 − ∆/18 ≥ 0 

−∆/18 ≥−8 

∆ ≤ 144 
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4 + ∆/9 ≥ 0 

∆/9 ≥−4 

∆ ≥−36 

and 

48 − 2∆ ≥ 0 

−2∆ ≥−48 

∆ ≤ 24 

Thus ∆ ≤ 144, ∆ ≥−36 and ∆ ≤ 24. But q2 = 216+∆; therefore, ∆ = q2−216. 

Substituting ∆ = q2 − 216 into these inequalities yields 

∆ ≤ 144 q2 − 

216 ≤ 144 q2 ≤ 

360 

∆ ≥−36 q2 − 

216 ≥−36 q2 ≥ 

180 

∆ ≤ 24 q2 − 

216 ≤ 24 q2 ≤ 240 Summarizing these 

inequalities, we have 

180 ≤ q2 ≤ 240 ≤ 360 

The value of 240 can be discarded, since its smaller than 320; therefore the optimal 

range is 

180 ≤ q2 ≤ 360 

As long as q2 remains in this range, the present basic solution variables will remain 

the same and feasible. However, the quantity values of those basic variables may 
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change. In other words, although the variables in the basis remain the same, their 

values can change.  
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

This chapter presents model formulation and analysis of the model. 

4.1 PLANNING AND SCHEDULING MODEL 

The production planning model is developed for addressing medium range time 

horizon decisions. The objective of the production planning model is to minimize the 

production costs. Production costs are inventory costs and set up costs of end 

products, intermediate products, inventory cost of by-products and recovered raw 

materials and cost of fresh materials. Scheduling decisions determine start time and 

completion time of a job on each machine. The production plan imposes constraints 

on the scheduling model. We now provide the formulation of the production 

model/scheduling model for a milk production caompany. 

Decision variables 

X(i,j) produced quantity of product i at shift j. 

1. j = number of shifts 

2. i = number of independent products. 

Yi = 1 if product i is produced at shift j. 0 otherwise. 

Parameters 

Ci,j = cost of producing milk product type i at shift j 

Si,j = Selling price of milk product type i SP = 

Total amount of bulk milk(kg) 
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Di = The customer’s demand of milk product type i 

CPj = The capacity of the packaging machine at shift j 

Tj = total available machine time at shift j 

Ti,j = required production time of product i at shift j 

Pi = The size of milk product type i FC = 

Fixed Cost 

Objective Function 

  (4.1) 

subject to 

X 

 PiXi,j ≤ CPj (4.2) 

X 

 Xi,j ≥ Yi,jDi (4.3) 

X 

 Xi,jTi,j ≤ Yi,jTj (4.4) 

 Xi,j ≥ 0 and  integer (4.5) 

The objective function (4.1) seeks to maximize the net pro t. 

Constraint (4.2) states the capacity of the packaging machine per shift. Constraint 

(4.3) states that the number of milk produced per day can supply the customer’s 

demand for each milk product type. 

Constraint (4.4) states the time of the packaging machine per shift. 

Constraint (6) is speci cation of the decision variables. 

4.2 CASE STUDY 

Promasidor Ghana Limited produces 3 milk products consisting of plain powdered 

milk imported from Indonesia. The plain bulk milk weighs 3600kg . Each day consist 
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of 3 shifts that are 8 hours each. The capacity of the packaging machine at each shift 

is 750kg. 

The table below represents summary of the production details. 

 
weight Production time Demand cost per shift Selling price 

Product 1 200g 8s 5000pcs [0.25 0.25 0.27] 0.35 

Product 2 300g 11s 2250pcs [0.38 0.38 0.40] 0.46 

Product 3 500g 18s 1000pcs [0.80 0.80 0.84] 0.90 

Table 4.1: summary of production options 

Fixed cost = 7,600GHc per month 

4.2.1 MODEL 

The model below is based on daily operations of the company. 

Maximize  

Subject to 

8X1,1+ 

8X2,1+ 

8X3,1+ 

11X1,2+ 18X1,3 ≤ 

11X2,2+ 18X2,3 ≤ 

11X3,2+ 18X3,3 ≤ 

 

80 ∗ 60 ∗ 60  

80 ∗ 60 ∗ 60 time constraint. 

 

80 ∗ 60 ∗ 60 

0.2X1,1+ 

0.2X2,1+ 

0.2X3,1+ 

0.3X1,2+ 0.5X1,3 

0.3X2,2+ 0.5X2,3 

0.3X3,2+ 0.5X3,3 

 

≤ 750  

≤ 750 production capacity constraint. 

 

≤ 750 
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 demand constraint. 

4.2.2 MODEL ANALYSIS AND RESULT DISCUSSION 

TORA is used to solve the model above. The decision variables are being transformed 

so that the TORA software could be used. 

X1,1 = x1, X1,2 = x2, X1,3 = x3 

X2,1 = x4, X2,2 = x5, X2,3 = x6 

X3,1 = x7, X3,2 = x8, X3,3 = x9. 

 

Figure 4.1: Typical TORA window showing the problem formulated 
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Figure 4.2: Feasible Solutions of Branch and Bound Method 

From the solution produced by the TORA Software package 

x1 = X1,1 = 2148 x2 = X1,2 = 1056 x3 = X1,3 = 0 

x4 = X2,1 = 1961 x5 = X2,2 = 1192 x6 = X2,3 = 0 

x7 = X3,1 = 1247 x8 = X3,2 = 2 x9 = X3,3 = 1000 

Best max Objective value = 730.62 

The company operates 6 days a week. Hence net pro t is 6*4*730.627,600. At the end 

of the month the net pro t is 9,934.88GHc when the proposed model is used in the 

scheduling and production process. 

To operate at optimum level during shift 1 production only 2148 pcs of 

product 1 and 1056 pcs of product 2 has to be produced. Product 3 must not be 

produced at shift 1 at all. Product 3 is not produced due to production capacity 

constraint and products 1 and 2 have the most pro t per pack. 
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At shift 2, only 1961 pcs of product 1 and 1192 pcs of product 2 has to be produced. 

Product 3 must not be produced at shift 1 at all. Product 3 is not produced due to 

production capacity constraint and products 1 and 2 have the most pro t per pack. 

At shift 3, 1247 pcs of product 1, 2 pcs of product 2 and 1000 pcs of product 3 has to 

be produced. 

4.3 SENSITIVITY ANALYSIS 

 

Table 4.2: Sensistivity analysus window from TORA Software 

At shift 1, the decision variables x1, x2, x3 has [0.10 0.09 .07] as maximum objective 

function coe cients respectively. Thus holding all other things constant, a 0.01 

increase in x2 will not a ection the solution whilst 0.01 increase in x3 will reduce the 

contribution of the x3 component by 0.01. The minimum objective coe cient of x1 is 

0.09 and this change will not have any e ect on the solution. The minimum objective 

function coe cient of x3 is -in nity because x3 is not produced at shift 3 at all. Hence 

this change in objective function coe cient cannot a ect the solution. Shift 1 and 2 has 

the same production plan therefore what ever happens at shift 1 just repeats itself at 

shift 2. 
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At shift 3, the decision variables x7, x8, x9 has [0.08 0.06 .20] as maximum objective 

function coe cients respectively. A n upward adjust in any of the decision variables 

here does not a ect the optimality of the solution. x8 also has a minimum of in nity 

since only 2 pcs are produced. Hence a change in that direction does a ect the 

solution. 

Constraints 1 and 2 have a RHS range of [746.25 776.25] and [746.25 in nity]. A change 

in the RHS of any of these two constraints does not a ect the dual price. Thus there is 

no change in the dual price. Constraint 3 has a RHS range of [678.25 770.00]. A RHS 

change in this range results in 0.40 change in the dual price. 

Constraints 4 and 5 have a RHS range of [−∞ 5356.25] and [1200 2400]. A change in 

the RHS of any of these two constraints will a ect the dual price 0.0 and -0.05 

repectively. Thus there is no change in the dual price in the case of constraint 4. 

Constraint 6 has a RHS range of [600 1142.50]. A RHS change in this range results in -

0.15 change in the dual price. 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, we investigated production planning and scheduling model formulation 

and its application to a beverage company. We argued that these problems need 

clear-cut models that capture the relevant aspects of production, and e cient 

algorithms to nd their close-to-optimal solutions in a reasonable time. The branch 

and bound Algorithm was adopted to solve the model which yields highly accurate 

results. 
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5.1 SUMMARY OF FINDINGS 

At the end of our simulations we found out the more pcs of product 1 can be 

produced given the necessary constraints. Thus to maximize pro t, 263 more pcs of 

product 1 should be produce. This falls in line with the demand of product 1. Product 

1 has the highest demand among all products and has the highest pro t margin per 

pack. 

The least amount of products happens at shift 3. This is true because shift 3 has the 

highest cost of operation/production. Only 2 pcs of Product 2 and 1247 pcs of product 

2 are produced at shift 3. This few amounts are only produced at shift 3 due to 

production capacity constraints at shifts 1 and 2. 

Given the low demand of product 3, more resources should be channeled into the 

production of products 1 and 2 since the return the most pro t. 

5.2 CONCLUSIONS 

At the end of this thesis we have come up with the following conclusions; 

A generalized scheduling and production model was developed. This model can 

be adopted in most beverage industries as its captures the essential elements 

of a typical production and scheduling problem. The model is MILP one that 

can be solved with the legendary branch and bound algorithm. 

We report implementation of the production planning and scheduling models 

in a real life case of a beverage company in Ghana. The results of the models 

indicate substantial savings over the actual company performance. Sensitivity 

analysis on the results is provided evaluate various production plans and 

schedules. 
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5.3 RECOMMENDATIONS 

We recommend that beverage companies in Ghana adopt the generalized 

model for scheduling and production planning to help boost their pro t 

margins. 

In line with the ndings of this research and ndings necessary attention must be 

paid to the production of products at each shift. Since the cost of production 

at some shifts are higher than others. The results from the production and 

Scheduling model must be adhered to strictly. 

We also recommend Promasidor Ghana Limited to increase the production 

capacity of shifts 1 and 2 and discard shift 3 all together since only few products 

are produced and then cost of production is also the highest. 
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