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ABSTRACT

There has been a number of fire outbreak cases recorded in the Atwima

Nwabiagya District that has brought about loss of lives of inhabitants and loss

of properties. Some routes within the district can be reconstructed into bitumen

roads so that fire attackers can traverse through the district in order to prevent

fire incidents. The main objective in this study is finding the minimum travel

distances and shortest paths from the Nkawie Fire Station to all other towns in

the district of Atwima Nwabiagya district in the Ashanti Region of Ghana.

Shortest path algorithms of various variants have been discussed with examples

in this study as well as review of abstracts of other related books and articles.

The linear programming approach was the method used. The primal and dual

models have been explained and dual model in which we maximize the source

node minus the destination node subject to an inequality constraints, was the

appropriate model used to write the constraints of the problem.

It was found out that as a destination is used in the objective function, the dual

algorithm proceeds to obtaining minimum distances to every other destination.

The Lindo 6.1 software was used to solve the maximization problem and the

results are found in the appendices of this study. There was an optimal distances

from Nkawie (NK) to all the towns in the district. The distance from Nkawie (NK)

to Mfensi (MF) was found to be 14.3km, that of Akropong(AK) was 21.1km etc.
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CHAPTER 1

INTRODUCTION

Imagine you wanted to travel from Kumasi in Ashanti Region to visit the

place Mankessim,in the Central Region, what is the fastest way to get there?.

Imagine you wanted to communicate with a friend abroad, what is the fastest

medium to use? Imagine you wanted to access a web page on the internet, which

routers should be used such that the necessary information is downloaded to your

computer faster?

These questions have something in common in that the optimal solution is the

shortest path between two points of a network: a transformation network, a social

network and a router network respectively. All roads may lead to Rome but we

wish to arrive as soon as possible.

In this study, the researcher is interested and wish to find the shortest

path from one given town (Nkawie) to another that passes through certain

specified intermediate communities in the same road network within the Atwima

Nwabiagya district. In some applications, one requires not only the shortest path

but also the second and third shortest paths. Three important shortest path

problems are elaborated as follows.

(i) How to determine the shortest path or distance from a single source or

point to a single destination. For example, from an ambulance station to

an accident scene.

(ii) How to determine the shortest path or distance from any source or point

to many destinations. An example can be sited here, supply of goods from

the warehouse to shops.
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(iii) How to determine the shortest path or distance from many sources or points

to a single destination. One example here is students coming from various

houses to a school.

An optimal solution can therefore be found to these shortest path problems using

some algorithms.

1.1 Background to the study

In establishing fire emergency response database, emergency preparedness

planning is an important issue that can impact people’s lives. If planned properly

and implemented quickly, it can save hundreds or thousands of human lives and

mitigate some of the economic losses in affected areas. However if planned poorly

or not implemented in a timely manner, the consequence can be dire and could

cost human live. Fokuo and Quaye-Ballard (2013). Thus an optimal solution

to the shortest path problem can help curtailing the loss of lives and contribute

immensely to the emergency preparedness planning.

Terminologies

1. Cost, distance, and weight are the capacities on each arc and are used

interchangeably in this study.

2. Graph Map: Let G1andG2 be graphs and f : G1 → G2 be a continuous

function. Then f is called a graph map, if

(i) for each vertex vεV (G1), f(v) is a vertex in V (G2)

(ii) for each edge eεE(G1), dim(f(e)) ≤ dim(e)

3. Arc and Edges as well as Nodes and Vertices are also used interchangeably

and mean the same.
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1.1.1 Shortest Path Problems

A shortest path problem is to find a path with minimum travel cost or distance

from one or more origins to one or more destinations through a network. Lim

and Kim (2005). Shortest path analysis is important because of its wide range of

applications in transportation. Naqi et al. (2010) stated that the shortest path

helps calculate the most optimal route, and optimal routing is the process of

defining the best route to get from one location to another. The best route could

be the shortest or fastest depending on how it is defined.

There are a wide variety of problems that go under shortest path problems.

These problems are classified according to the structure, assumptions made, the

type of data and the nature of solutions desired. There is also a classification of

the methods used to solve these problems. The structures are:

1. between a specified pair of nodes

2. between all pairs of nodes

3. from one origin to all other nodes or from all other nodes to a single

destination.

1.1.2 Shortest Path Algorithms

An algorithm is a procedure or formula for solving a problem. Shortest path

algorithm on the other hand is an algorithm designed essentially to find a path

of minimum lengths between two specified connected weighted graph. El-Zohny

and El-Morsy (2012).

However, this study discusses the fundamental algorithms designed to find

an optimal solutions to shortest path problems. The study talks of Dijkstra’s,

Bellman-Ford, Floyd-Warshall algorithms and the linear programming procedure

that are mostly applied in the study of shortest path problems

3



1.1.3 The District Fire Station

The district fire station has four departments. These are: Administration, Safety,

Operations and Rural Fires. The administration has the stores and accounts. The

role of the safety department is to give education on fire prevention to institutions

such as schools, churches, banks etc. Staff in the operations department are the

rescuers of fire accidents. Also known as the attackers. Rural fires department

deliver information and educate the public on how to avoid bush fires in the rural

areas.

1.2 Scope of the Study

The Atwima Nwabiagya District formerly the Atwima District is one of the

largest among the twenty-seven(27) political and administrative districts in the

Ashanti Region of Ghana. It is situated in the western part of the region and share

common boundaries with Ahafo Ano South and Atwima Mponua Districts(to

the west), Offinso municipal to the north, Amansie-West and Bosomtwe-Atwima

Kwanwoma Distircts to the south, Kumasi Metropolis and Kwabre Districts to

the East. There are about ninty (90) towns in the district.

Nkawie is the capital town of the district. It is about 20 minutes drive or 15

kilometers from Kumasi, the region’s capital city. Some of the desirable (non-

obnoxious) facilities that serve the entire district are hospitals, fire station and

police stations. Nkawie Fire Station is the only fire emergency facility serving

about 90 towns in the district.

For the purpose of this study, towns, roads and distances(km) are used to

denote the nodes, arcs and cost in the network respectively.
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1.3 Problem Statement

Since the year 2008, there has been thousands of fire incidents recorded across

the country which has caused untimely deaths and destruction of properties.

Recently, there has been number of fire outbreak cases recorded in the district.

Many of these towns in the district are farther away from the only fire station in

Nkawie and the main road is actually the commonest road known.

Fire Fighters/Officers need shortest paths and optimal routes to traverse in

order to arrive at a fire outbreak scene on time. Thus this study seeks to finding

an optimal solution using the Linear Programming Model that will minimize

travel cost and time to fire incidents to curtail loss of lives and properties in the

Atwima Nwabiagya District in the Ashanti Region.

1.4 Objectives of the study

The sole objectives of the study are:

• To determine the shortest paths from Nkawie fire station to all other towns

in the district in order to minimize travel-distance cost to fire incidents.

• To obtain minimum travel distance for each town in the district using Linear

Programming Approach.

1.5 Methodology

This section explains the methods and algorithms used in finding solutions to

the problem with illustrated examples. It also discusses other related algorithms

such as Prim’s and Kruska’s algorithms that discuss minimum connector.

Some are used when there are negative weights example of such algorithms

used are the Floyd Warshall and Bellman-Ford. However Dijkstra’s algorithm

5



solves the shortest path problem for a non-negative weight graph. The model

used is the linear programming dual model. The distances between towns used

in this study were collected from the Town and Country Plan Department in the

district assembly. Also, related papers that were summarized in the literature

review were cited from the internet. The Lindo 6.1 software was used to analyze

the data.

1.6 Significance of the study

This study would be helpful for a town to provide a properly planned and

organized optimal paths and the shorter distances for operation of the district’s

fire station as well as conducting further research regarding shortest path

problems. In Atwima Nwabiagya district where the District’s Fire Station is

situated, cases of fire outbreaks, and deplorable long distance and single-lane

routes are observed. After this study, the district will benefit greatly since more

people will patronize the usage of the optimal routes and the shortest path created

for the fire station through the district minimizing travel distance cost.

1.7 Limitations of the Study

The main limitations to this study are:

(i) Difficulties in accessing relevant information from the offices of the Atwima

Nwabiagya District Assembly-Nkawie.

(ii) Less availability of literature relating to shortest path problems on single

source to many destinations. Most of the related abstracts on shortest paths

were from a single source to a single destination.

(iii) Financial constraints since the study was mainly financed by the researcher.

6



1.8 Justification

As a developing country, the problem of poor road networks and safety and

emergency facilities like fire stations should be minimal. Thus, we can get

as numerous diverse roads which are traffic free to use other than the few

main streets in the regions of Ghana and Ashanti Region to be precise. The

department of Road Commission must adhere to creating similar shorter paths

by transforming narrow routes and some foot paths into feeder and tarred roads

for easy accessibility to destinations.

Fire outbreak is a major problem that has many hazardous and tragic effects

not only in the developing countries but also developed countries as well. In

Ghana, fire outbreak has become rampant since 2008 to date. It has caused

many untimely deaths and loss of properties. One sole reason to this effect is the

deplorable and congestion in our road routings especially in the urban areas.

In this study, we wish to take the opportunity to address the need for the

stakeholders to take into consideration, the reconstruction and conversion of

routes or even foot paths that could serve as an easy access to carrying out

services and humans into better tarred ones. In this case, travel time and cost

will be minimal.

1.9 Organization of the Study

The study is organized into five chapters of which each has been elaborated.

Each chapter explains a particular function to the study. Chapter one which

is the introduction talks about the general introduction to the thesis topic. It

identifies the background to the study in which the key phrases relating to the

thesis topic are defined.

7



The scope and methodology of the study which give the boundary or extent

of the research and brief history of the study area respectively. The problem

statement which defines the main problem at hand and what the study seeks to

find. Talking about the Objectives it seeks to achieve a an optimal solution to

the problem. Also explains the rationale and purpose of the study.

Chapter two is Literature Review which talks about the summary of the

abstracts of related books, articles, papers and journals. The next chapter

is Methodology. It explains the mathematical treatment, logical presentation,

formulation, models and variants

Analysis and Data Collection also follows and it explains how data was

collected, analyzed and organized and discussion of results. The last item in

this study is Summary, Conclusion and Recommendation.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, review of shortest path problems, algorithms and route network

planning from related papers,journals,articles and books written by different

authors are elaborated and their abstracts summarized.

2.1 Review of Shortest Path Problems

There are several impedance factors that can affect emergency services and

vehicle response times. They include distance, travel time, and traffic congestion

as a result of variations in traffic flow related to the time of day. Traffic congestion

is a major problem in urban areas and can disrupt emergency response. Panahi

and Delavar (2009).

According to the report of Szczesniak (2000), the report is concerned with the

shortest path problem, the theory behind it, implementation and application

Szczesniak (2000). The reports concentrates on two Shortest Path (SP)

algorithms where one algorithm finds one shortest path in a network with time

dependent costs of links in O(n+m) time, where n is the number of nodes, m is

the number of links in the network Szczesniak (2000). The second algorithm is a

combination of the first algorithm and the Dijkstra’s algorithm which also runs

in O(n+m)time Both algorithms are presented in the context of public transport

networks and implemented in C++ using Standard Template Library.

Also, according to Wilson and Zwick (2013), they describe a new forward-

backward variant of Dijkstra’s and Spira’s single-source shortest paths (SSSP)

algorithms. While essentially all SSSP algorithm only scan edges forward and the
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new algorithm scans some edges backward. The running time of the algorithm

on a complete directed graph on n vertices with independent exponential edge

weights is O(n), with very high probability. They also found the expected running

time of the algorithm on complete graphs with independent exponential edge

weights in O (n2). Here they took the time windows into consideration.

In the book ’Fully Dynamic Output Bounded Single Source Shortest Path

Problem’, the authors consider the problem of maintaining the distances and the

shortest paths from a single source in either a directed or an undirected graph

with positive real edge weights, handling insertions, deletions and cost updates of

edges. They proposed fully dynamic algorithms with optimal requirements and

query time. They based their solution on a dynamization of Dijkstra’s algorithm.

Frigioni et al. (1996)

According to Sumit et al. (2011), a modified algorithm of single source shortest

path problem was presented in Graphics Processing Units (GPUs) using CUDA.

In their paper, they first modified the standard Bellman-Ford algorithm to

remove its drawbacks and make it suitable for parallel implementation, and then

implement it using CUDA.

Moreover, in the abstract of the paper Risk-averse shortest path problems, they

investigate routing policies for shortest path problems with uncertain arc lengths.

The objective of their book was to minimize a risk measure of the total travel

time. They use the conditional value-at-risk (CVaR) for where the arc lengths

(durations) have known distributions and the worst-case CVaR for where these

distributions are only partially described. Gavriel et al. (2012).

2.2 Review of Modified Shortest Path Algorithms

A shortest path algorithm applied to a routing problem in a transportation

network can calculate the path with minimal travel cost or least impedance from
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an origin to a destination. Depending on the type of cost, the shortest path can

be referred to as the shortest, fastest, or most optimal path or route. Stroetmann

(1997) addresses the correctness problem of an algorithm solving the constrained

shortest path problem. He defines a non deterministic form of the algorithm and

prove its correctness from a few simple axioms. He also shows that the abstract

algorithm can be regarded as a natural extension of Moore’s algorithm (Moore

1957) for solving the shortest path problem.

According to Eilam-Tzoreff (1998), the abstract discusses about disjoint

shortest paths problem. In which a graph G and K pairs of distinct vertices

(si, ti), when 1 ≤ i ≤ k is given, they find whether there exist k pairwise disjoint

shortest paths pi, between si and ti for all 1 ≤ i ≤ k . They consider both

directed and undirected graph.

In Porazilova (2005)’s paper, she describes the shortest path problem, its

classification and the best known algorithm. She introduces a new algorithms for

the Shortest Path problem and its acceleration suggested. Let ε be a real number

in (0,1), the path is called an (1 + ε)-approximation of the exactly shortest path

between two points if its cost is at most 1 + ε times the cost of the shortest path.

In this paper the relative error R of the approximative shortest path P is the ratio

between the shortest distance of the path from the final point and the length of

the path:

R = d(p,t)
length(p)

This paper shows an application of Least-Square Primal-Dual(LSPD) algorithm

to shortest path problems with non negative arc length is equivalent to

the Dijkstra’s algorithm. They also compare the LSPD algorithm with the

conventional primal-dual algorithm is solving shortest path problems and show

their difference due to degeneracy in solving the shortest path problems. Wang

(2008).
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According to Sinha (2004), they found the formulation of the shortest path

problem for graphs without a negative-weight cycle. This method is based on

the Bellman-Ford algorithm for computing shortest path. Given a graph G(V,E)

with edge weights w(u,v) and two vertices-source s and t destination t; The Linear

Programming(LP) formulation is as follows:

max xt

subject to 
∀(u, v) ∈ E xv ≤ xu + w(u, v),

xs = 0

(2.1)

It can be proved that, the constraints are satisfied if for all vertices v, xv is

substituted by the length of a shortest path from s to v. So, xt ≥ d when d is the

shortest distance of t from s. Conversely, considering any path (x, v1, v2, ..., vk, t)

of minimal length d from s to t. Then xv1 ≤ w(s, v1), xv2 ≤ xv1+ w(v1, v2) ≤

w(x, v1) + w(v1, v2) and so on. So, xt ≤ w(x, v1) + w(v1, v2) + ... + w(vk, t) = d.

Hence the optimal value of xt is equal to positive length of a shortest path from

s to t.

Again, in this abstract, the author discusses the shortest path problem as an

application of the theory of Metzler functions. This Metzler function is a function

which arises in some system of optimization problems. The paper seeks to derive

the Moore-Bellman-Ford algorithm for the shortest path problem. Masuzawa

(2013). This paper also presents the Saddle Vertex Graph (SVG) a novel solution

to the discrete geodesic problem. A geodesic path on the mesh is equivalent to a

shortest path on the SVG, which can be solved efficiently using the shortest path

algorithm eg. Dijkstra’s algorithm. Ying et al. (2013).

According to Guerrero et al. (2013), they introduce the Generalized Elementary

Shortest Path Problem (GESPP) where in addition to the features of the shortest

path problem, nodes belong to predefined non-disjoint clusters. The clusters could

be interpreted as groups of nodes with linking features.
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Moreover, another study considers the 2-Way Multi Modal Shortest Path

Problem (2WMMSPP). The goal of this paper is to find two multi modal paths

with total minimal cost, an outgoing path and also a return path Huguet et al.

(2013). This relates to this study in that, they all aim to achieving optimal

shortest paths that will minimize total distance cost.

In this paper, the authors propose shortest path algorithms that use A∗ search

in combination with a new graph-theoretic lower-bounding technique based on

landmarks and triangle inequality. The algorithms they use can compute optimal

shortest paths and work on any directed graph. They also give experimental

results and showing efficient of their new algorithms that outperform previous

algorithms. Peng (2013). Their algorithm was actually meant to work efficiently

on directed graphs.

In the abstract of "Dynamic Shortest paths minimizing travel times and costs"

by Ahuja et al. (2002), they studied how to determine a shortest path from a

specified node to all every other node in the network where arc travel times

change dynamically. The problems and objectives of their study was similar to

Dijkstra’s single source shortest path problems. They considered two problems

and these are: the minimum travel time walk problem which is to find a walk with

the minimum travel-time and the minimum-cost walk problem which is to find a

walk with the minimum weighted sum of the travel and excess travel time. Their

study showed that, the minimum-time walk problem is solvable for a network

known as FIFO while the minimum-cost walk problem is an NP-hard problem.

They also developed a polynomial time algorithm for the minimum-time walk

problem that arise in road networks with traffic lights.

In this paper, the author discusses the shortest path problem as an application

of the theory of Metzler functions. Metzler functions arises in various kinds of

system optimization problems such as the stable matching of two-sided markets
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and the α cores with games with punishment-dominance relation they derive the

Moore-Bellman Ford algorithm for the shortest path problem. Masuzawa (2013).

There has been several modifications of the shortest path algorithms for solving

shortest path problems in the above abstracts. In using LP model for such

problem, we find the primal dual,feasible dual and the restricted dual solutions.

The primal-dual model which was modified by Barnes et al. (2002) as "The Least

Square Primal-Dual Algorithm" was used in this study. The algorithm is primal-

dual algorithm for solving LP problems. Instead of minimizing the sum of the

Restricted Primal Problem(RPP) as does the original primal-dual algorithm PD,

LSPD tries to minimize the sum of the square of the infeasibilities. It can be

concluded that both LSPD and PD give the same solutions to an LP problem.

Wang (2008).

Morever, this paper concerns the shortest path problem for a network in which

arc costs can vary with time. They studied a corresponding linear program in

space measures and prove the existence of an optimal solution. They also defined

a dual problem and established strong duality results that show that, the value

of the linear program equals that of the dual problem and both solutions are

attained. Koch and Nasrabadi (2011)

2.3 Road Network Route Planning

Route Planning in a road networks is one of the many applications of shortest-

path computations. When an approximate graph model is defined, many

problems turn out to profit from shortest-path computations. The most general

formulations of the shortest path problem looks at a directed graph G = (V,E)

and a cost function c that maps edges to arbitrary real number costs. It turns

out that the most general problem is fairly expensive to solve. Thus we are

interested in various restrictions that allow simpler and more efficient algorithm:
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non-negativity edge costs and acyclic graphs. A route-planning algorithm requires

a city map and a lot of dexterity but no computer. Lay threads along the roads

on the city map. Make a knot wherever roads meet, and at your starting position.

Now lift the starting knot until the entire net dangles below it. When any tangles

and the threads have been successfully avoided nd the knots are thin enough so

that only tight threads hinders a knot from moving down, then the tight threads

define the shortest paths.

In this article, an algorithm to aid travelers’ route choice decisions in road

network with travel time uncertainty was proposed. The travel time of link is

assumed to be spatially correlated only to neighbouring links. The spatially

dependent reliable shortest path problem(SD-RSPP) was formulated as a multi

criteria shortest path-finding problem. Their results demonstrated that, the

size of the impact area would have a significant impact on both accuracy and

computational performance of the proposal solution algorithm. Chen et al.

(2012).

According to Delling et al. (2009), the authors developed methods that are

faster than that of Dijkstra’s. They gave an overview about the techniques that

enable ongoing research on more challenging variants such as dynamic networks,

time dependent and flexible objective functions of the problem.

The main objective of this thesis was to enhance and implement a principal

module in TRANSIMS, called the Route Planner Module. The purpose of the

Route Planner Module was to find time-dependent label-constrained shortest

paths for transportation activities performed by travelers in the system. There

are several variations of shortest path problems and algorithms that vary by

application, contexts, complexity, required data, and computer implementation

techniques. In general, these variants require some combination of a network

consisting of nodes and links. The problem then seeks a shortest path between one

or more origin-destination pairs.In this study, they also used the dual algorithm
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of LP.Kangwalklai (2001).

2.4 Summary

In this chapter, there were numerous algorithms and methods used in the research

of the papers, journals, articles and books written by theorists and authors. It

can be seen that, most of the algorithms and methods for instance Dijkstra and

linear programming were modified to suit the problem of their study. Some of

the abstracts discussed in the literature review have similarities in that, they

describe vertices as nodes, weight or cost as distances, used nonnegative weights

and weighted digraphs. The abstracts also have the common problem of the single

source shortest path problems in networks that is related to this study.
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CHAPTER 3

METHODOLOGY

This chapter discusses the shortest path problem in graph theory, the

shortest path variations and algorithms solving the shortest path problems with

illustrations. It also explains the linear programming approach to shortest path

problems.

3.1 Graph Theory

In graph theory, the shortest path problem is the problem of finding a path

between two nodes in a graph such that the sum of the weights of its constituent

edges is minimized. This is analogous to the problem of finding the shortest

path between two intersections on a road map. The graph’s nodes represent

intersections while the edges correspond to road segments, each weighted by the

length of its road segment.

6

4

3

5

2

1

Figure 3.1: An undirected graph

Figure 3.1 is an undirected graph where all edges are bidirectional with no weights.

Now determining paths from node 6 to node 1,there are two paths in between

them and these are: (6,4,5,1) and (6,4,3,2,1).
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Figure 3.2: A directed graph

A directed graph (digraph), is a graph where the edges point in a direction. The

shortest path between a pair vertex A and F in this graph is (A→C→E→D→F).

The shortest path problem can be defined for these types of graphs, directed,

undirected or even mixed. For directed graphs, when consecutive vertices are

connected by an appropriate directed edge, it is required to be a path.

Thus for an undirected graph, a path is a sequence of vertices. P =

(V1, V2, ..., Vn) ∈ V × V × ... × V such that Vi is adjacent to Vi+1 for 1 ≤ i < n

and a path P is called a path of length n from V1 to Vn. Note that Vi and Vj

are variables; their numbering here relates to their position in the sequence and

needs not to relate to any canonical labeling of the veritices in a graph.

Now let ei,j be the edge incident to both Vi and Vj. Given a real-valued weight

function f : E −→ R and an undirected (simple) graph G, the shortest path

from V to V’ is the path P = (V1, V2, ..., Vn) where (v1 = V andVn = V ′) that over

all possible n minimize the sum
∑n−1

i=1 f(ei, i + 1) where each in the graph has

a unit weight or f : E −→ 1, this is equivalent to finding the path with fewest

edges. Some applications of this in a networking or telecommunications, this P

is sometimes called the min-delay path problem and usually tied with a widest

path problem.
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3.2 The Shortest Path Problem

It is essentially the problem of finding the shortest path between a pair of

vertices in a given graph and normally it is assumed the graph is connected so

that there is a path and the shortest one can be found. And often this problem

is stated in terms of edge weighted graph.

Edge weighted graph: It is basically a graph G together with a function called

α the weighted function which maps the edges of the graph to some numbers

called natural numbers. In this particular application we will think of them as

positive integers where N is the set of Natural numbers including 0. Any of these

numbers get assigned to each of the edges.

α : E(G)→ N.

s

a c d
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f
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h

i

j

k

l

p

1

3
5

7 6

6

4

1

2
4

4

1

3

1

7

2
1

1

2

2

Figure 3.3: A graph network

This is a graph on quite a few number of vertices every one of the edges on the

graph has been assigned with one of these natural numbers. For example, edge

ac has a weight of 7. The practical aspect of having a weighted edge graph like

this is that it can be thought of it as a transport network where maybe goods

are delivered along roads, these weights could represent either the distance or the

travel expenses of a particular road or the rate flow the amount of traffic one will

encounter.
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Now if the network of this graph actually represents communication network

where each of these vertices is either a tower or a computer and these edges

are given weights maybe based on the unreliability of the ability to pass on

information between nodes.

The weight of a particular edge is going to be called the length having the

weight function of a particular edge uv then α(uv) is called the length of edge uv.

Now considering a certain path on the graph, called p, as shown in the network,

the weight of this path is obtained by summing up the weight of individual edges.

Thus α(p) is the edge weight of the path p defined as α(p) =
∑

e∈p α(e) i.e. (sum

of all of the weights of the edges where e is an edge in the path p). This can also

be defined for any subgraph so notice that for any H of G, then the weight could

be defined as


for any H ⊆ G

α(H) =
∑

e∈H α(e)

 in the general form. (3.1)

In this particular example, it can be seen that α(p) = 3+1+2 = 6; and then

α(p)is known as the distance of the path p. The point is that, for a practical

application, the interest is in finding a path through a graph that has a minimum

weight over the entire path.

Given a connected graph G with weight function α,

α : E(G) −→ N , find for given u,v∈ V(G) find the minimum edge weight denoted

as dαG(u, v) = min(α(p)|p : u∗ −→ V )

3.3 Variations of shortest path problem

3.3.1 One-to-all shortest path problem

A weighted network (V,E,C) with node set V, edge set E and the weight set C

specifying weight Cij for the edges (i, j) ∈ E. We are also given a starting node
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s ∈ V . The one-to-all shortest path problem is the problem of determining the

shortest path from say node s to all the other nodes in the network.

The diagram below is a weighted digraph which is an example of a demonstration.

s

1 3

2

44
30

20

40

30

20

40

20
30

Figure 3.4: Illustration graph of one-to-all

The set of vertices are s,1,2,3 and 4 where s is the starting node. The set of edges

are: (s,1),(s,2),(s,3),(1,3),(1,4)(2,3),(2,4),(3,2),(3,4). From node s to node 1 the

weight is 20 units, s to 2 is 40 etc.

3.3.2 One-pair shortest path problem

This is a problem of finding the shortest path for a pair of vertices in a graph.

Consider the graph below, the problem is to find the shortest path from vertex

A to vertex D.
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initial vertex

final vertex

weight of edge

edge

Figure 3.5: Graph with loops and parallel arcs

Fig.3.5 is a weighted undirected graph with loops and parallel edges. Before the

shortest path can be found from A to D, these loops and parallel edges must be

removed.

Step 1: Remove all loops. Any edge that starts and end at the same vertex is a

loop.

B

A C

D

5

10

11

54

4

8 12

loop

loop

Vertices A and D have loops that have weights of 8 and 4 respectively. These

loops must be gotten rid of as stated by the procedure

22



Step 2: Remove all parallel edges between two vertices except the one with least

weight.

B

A C

D

5

10

11

54

12

parallel edgesparallel edges

In this graph, vertex A and C are connected by two parallel edges having weight

10 and 12 respectively, so 12 being the largest is removed and 10 is kept.

Step 3: Now below is the required graph to work with.

B

A C

D

5

10

11

54

Finding the shortest path from A to D, a shortest path table is created. As the

graph has four vertices, hence the table will have four columns. Column name is

the same as vertex name. Infinity has been assigned to the nodes B, C and D in

the first row. The minimum value formula would be used in the calculation.

Consider two vertices X(Source Vertex)and Y(Destination Vertex)and an

edge that directly connects them. Then the following formula is obtained:

Min(DestValue, MarkedValue + EdgeWeight) DestValue = The value in the

destination vertex (i.e., Y)column. MarkedValue = The value in the source vertex

(i.e., X) column. EdgeWeight = The weight of the edge that connects the source

(i.e., X) and the destination(i.e., Y) vertex.
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Min(DestValue, MarkedValue + EdgeWeight); for e.g. If DestValue = 10, Marked

value = 5 and Edge weight = 4 then Min(10, 5+4) = Min(10, 9) = 9. As 9 is

smaller than 10.

Marked A B C D
AX 0 ∞ ∞ ∞
BX 0 Min(∞, 0+5) Min(∞, 0+10) ∞

5 10
CX 0 5 Min(10, 5+4) Min(∞, 5+11)

9 16
DX 0 5 9 Min(16, 9+5)

14

Table 3.1: Summary of illustration of one-pair shortest path

Iteration 1: Now from the graph and table, Considering an edge between A and

B, source vertex = A, Destination vertex = B. DestValue = ∞, Marked

value = 0 and edge weight is 5.

Min(∞, 0+5) is written in column B. Solving Min(∞, 0+5) we get 5 as 5

is the smallest. Put 5 in column B.

Iteration 2: Now find the edge that directly connects vertex A and vertex C. The

edge of weight is 10 that directly connects A and C.

Considering an edge between A and C so, source vertex = A Destination

vertex = C. DestValue =∞, MarkedValue = 0 and edgeweight is 10. Thus

Min(∞, 0+10)is written in column C. Solving, we get 10. From the graph,

we find no such edge that directly connects vertex A and D so we write ∞

in the D column.

Iteration 3: Find the edge that directly connects vertex B and vertex C and that

is 4. Condering an edge between B and C so, source vertex = B, destination

vertex = C. Destvalue = 10, Markedvalue = 5, Edgeweight = 5. Solving,
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Min(10, 5+4) so write min(10, 5+4) in the column of vertex C. Solving, we

get 9

Iteration 4: Now find the edge that directly connects vertex B and vertex D.

Considering an edge between B and D so, source vertex = B, destination

vertex = D. DestValue = ∞, marked value = 5 and edgeweight = 11. We

therefore write Min(∞, 5+11)in column D. Solving, we get 16. Now that

third row is completely filled, we now find the smallest unmarked value in

the third row. It can be seen from the table that, the smallest unmarked

value in the third row is 9, so we mark it with square box.

Iteration 5: Find the edge that directly connects C and D. Considering an edge

between C and D, source vertex is C, destination vertex is D. Destination

Value = 16, Marked Value = 9, edgeweight = 5 so we write Min (16, 9+5)

in column D. Solving we get 14.

Now that the fourth row is filled we find the smallest unmarked value in

the fourth row and mark it with a square box.

This implies that there are two or more columns with the same smallest

unmarked value, then any can be chosen. This only denotes that there will

be more than one shortest path in the graph.

As final vertex D is marked so we will stop here. Since column D has the

marked value 14, it follows that the shortest path has the minimum weight

of 14.

By backtracking, the required shortest path which is A −→ B −→ C −→

D has been marked with blue in the figure below.

B

A C

D

5

10

11

54
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3.3.3 All-Pairs Shortest Path Problem

The shortest path between two nodes might not be a direct edge between them,

but instead involve a detour through other nodes. The all-pairs shortest path

problem requires that the shortest path distances between every pair of nodes in

the network is determined. Amponsah and Darkwah (2007).

3.4 Algorithms solving the shortest path

problems

3.4.1 Floyd Warshall Algorithm

Floyd Warshall’s algorithm is a graph analysis algorithm for finding shortest

paths in a weighted graph with positive or negative edge weights. The algorithm

in its recognized form was propounded by the three computer scientists Robert

Floyd, Bernard Roy and Stephen Warshall in 1962. It is an all-pairs shortest

path algorithm for weighted graphs. The algorithm compares all possible paths

through the graph between each pair of vertices.

Consider the graph G with vertices V numbered 1 through N; then consider

a function shortest Path(i,j,k) that returns the shortest possible path from i to

j. If w(i,j) is the weight of the edge between vertices i and j, the shortest path

(i,j,k+1) can be defined in terms of the following formula.

Shortest Path(i,j,k+1)=min(shortest path (i,j,k)),shortest

path(i,k+1,k)+shortest path(k+1,j,k). It works by first computing shortest path

(i,j,k) for all pairs for k=1, then k=2 e.t.c. This process continues until the

shortest path for all (i,j) pairs have been found.

The following illustrations depict Floyd-Warshall’s Algorithm. Consider the

weighted graph below
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Figure 3.6: Illustration graph of Floyd Warshall’s

Now two tables Distance Table(D) and Sequence Table(S) are drawn. They

can also be referred to as matrix. The D will hold distances between any two

vertices, whereas the S holds the name of the vertices that helps in finding the

shortest path between any two vertices.

If there are N vertices in a graph then N-1 iterations are observed. Also, for a

graph having N nodes, the Distance and Sequence tables will also have N of rows

and columns. In the Fig:3.6, the nodes are 4 hence 3 iterations are required.

Notations k = Iteration number Dk = Distance table in kth iteration Sk =

Sequence table in kth iteration dij = The distance between vertices i and j. i

= row number j= column number and k= iteration number.

Put ’-’ in cells having the same row and column name.

Now Fill the empty cells with the weight of the edges that directly connects each

pair of vertices.
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Fill in the cells Fill in the cells in the

with the following columns with the following

c12 and c21 with 2 column 2 with 2

c13 and c31 with 4 column 3 with 3

c14 and c41 with ∞ column 4 with 4

c23 and c32 with 1

c24 and c42 with 5

c32 and c23 with 1

c43 and c34 with 3

Iteration 0: k=0

D0 1 2 3 4
1 − 2 4 ∞
2 2 − 1 5
3 4 1 − 3
4 ∞ 5 3 −

Table 3.2: Distance Table

S0 1 2 3 4
1 − 2 4 ∞
2 1 − 3 4
3 1 2 − 4
4 1 2 3 −

Table 3.3: Sequence Table

Put ’-’ in cells having the same row and column name. Now Fill the empty

cells with the weights of the edges that directly connect each pair of vertices.

Copy the contents of row 1 and column 1 of table D0 in D1 and S0 in S1

Now fill the cells cij in distance table Dk using the following conditions.

Is dij > dik + dkj (in distance table Dk−1)? If Yes, then fill the cell cij in

Dk table with the value dik + dkj of Dk−1 table. If No then fill the cell cij

in Dk table with the value dij of Dk−1 table where Note that, we always fill
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the cell cij in Dk table with the smallest number.

For c23, For c24, For c34

i = 2, j = 3, k = 1 i = 2, j = 4, k = 1 i = 3, j = 4, k = 1

So from D0 table So from D0 table So from D0 table

dij = d23 = 1 dij = d24 = 5 dij = d34 = 3

dik = d21 = 2 dik = d21 = 2 dik = d31 = 4

dkj = d13 = 4 dkj = d14 =∞ dkj = d14 =∞

Is d23 > d21 + d13 Is d24 > d21 + d14 Is d34 > d31 + d14

Is 1 > 2 + 4 Is 5 > 2 +∞ Is 3 > 4 +∞

No No No

⇒ c23 = d23 = 1 ⇒ c24 = d24 = 5 ⇒ c34 = d34 = 3

Hence fill c23 and Hence fill c24 and Hence fill c34 and

c32 with 1 in D1 c42 with 5 in D1 c43 with 3 D1.

Iteration 1:k=1

D1 1 2 3 4
1 − 2 4 ∞
2 2 − 1 5

3 4 1 − 3

4 ∞ 5 3 −

S1 1 2 3 4
1 − 2 4 ∞
2 1 − 3 4
3 1 2 − 4
4 1 2 3 −

As k=2, Copy the contents of row-2 and column-2 of table D1 in D2 and

S1 in S2.
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For c13, For c14, For c43

i = 1, j = 3, k = 2 i = 1, j = 4, k = 2 i = 4, j = 3, k = 2

So from D1 table So from D1 table So from D0 table

dij = d13 = 4 dij = d14 =∞ dij = d43 = 3

dik = d12 = 2 dik = d12 = 2 dik = d42 = 5

dkj = d23 = 1 dkj = d24 = 5 dkj = d23 = 1

Is d13 > d12 + d23 Is d14 > d12 + d24 Is d43 > d42 + d23

Is 4 > 2 + 1 Is 5 > 2 +∞ Is 3 > 5 + 1

Y es Y es No

⇒ c13 = 2 + 1 = 3 ⇒ c14 = 2 + 5 ⇒ c34 = d34 = 3

Hence fill c13 and Hence fill c14 and Hence fill c34 and

c31 with 3 in D2 c41 with 7 in D2 c43 with 3 in D2.

Iteration 2:k=2

D2 1 2 3 4
1 − 2 3 7

2 2 − 1 5
3 3 1 − 3

4 7 5 3 −

S2 1 2 3 4
1 − 2 2 2

2 1 − 3 4
3 2 2 − 4

4 2 2 3 −

As k=3, Copy the contents of row-3 and column-3 of table D2 in D3 and

S2 in S3,
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For c12, For c14, For c24

i = 1, j = 2, k = 3 i = 1, j = 4, k = 3 i = 2, j = 4, k = 3

So from D2 table, So from D2 table, So from D0 table

dij = d12 = 2 dij = d14 = 7 dij = d24 = 5

dik = d13 = 3 dik = d13 = 3 dik = d23 = 1

dkj = d32 = 1 dkj = d43 = 3 dkj = d34 = 3

Is d12 > d13 + d32? Is d14 > d13 + d43? Is d24 > d23 + d34?

Is 2 > 3 + 1? Is 5 > 2 +∞? Is 5 > 1 + 3?

No Y es Y es

⇒ c12 = d12 = 2 ⇒ c14 = d14 = 3 + 3 ⇒ c24 = d42 = 1 + 3

Hence fill c12 and Hence fill c14 and Hence fill c24 and

c21 with 2 in D3 c14 with 6 in D3 c42 with 4 in D3.

Iteration 3: k=3

D3 1 2 3 4
1 − 2 3 6

2 2 − 1 4

3 3 1 − 3
4 6 4 3 −

S3 1 2 3 4
1 − 2 2 3

2 1 − 3 3

3 2 2 − 4
4 3 3 3 −

To find the distance and shortest path between every two nodes, follow the

summary table below.
Source Node(i) Destination Node(j) Distance(dij) in D3 Sequence Path(Sij) in S3

1 2 2 1−→2

1 3 3 1 −→ 2 −→ 3

1 4 6 1 −→ 2 −→ 3 −→ 4

2 3 1 2 −→ 3

2 4 4 2 −→ 3 −→ 4

3 4 3 3 −→ 4

Table 3.4: Summary of illustrations of Floyd Warshall’s
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3.4.2 Dijkstra’s Algorithm

Dijkstra’s algorithm, conceived by the Computer Scientist Edsger Dijkstra in 1956

and published in 1959, is a graph search algorithm that solves the single-source

shortest path problem for a graph with non-negative edge path costs. (that is

Cij≥ 0∀(i, j) ∈E)

In formal notation, intersection means vertex, road means edge and map means

graph. For a given source vertex in the graph, the algorithm finds the path with

lowest cost (i.e. the shortest path) between that vertex and every other vertex.

Although, Dijkstra originally only considered the shortest path between a given

pair of nodes, it can also be used for finding costs of shortest path from a single

vertex to a single destination vertex by stopping the algorithm once the shortest

path to the destination vertex has been determined.

For example if vertices of the graph represent cities and edge path costs

represent driving distances between pairs of cities connected by direct road,

Dijkstra’s algorithm can be used to find the shortest route between one city

and all other cities. As a result, this shortest path algorithm is widely used in

network routing protocols.

• Construct the network (or graph).

• Label the starting node with a 0 and put a box/circle around it.

• Look at each of the arcs connecting to the starting node and choose the

one of least value. Write the value next to the node it is connecting to and

draw a box around it.

• Temporarily label (number without boxes) all nodes connecting to the

permanent labelled (boxed) nodes with their distances from the starting

point.
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• Choose the temporary label of least value and box it.

• Repeat steps 4 and 5 until the destination node has a permanent label that

is the destination you are trying to reach.

• Retrace the shortest route backwards through the network back to your

start node.

Consider the undirected graph of Figure 3.7 below.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

Figure 3.7: Illustration graph of Dijkstra’s

Here the problem is to find the shortest path from the source node S to every other

vertex in the graph. Initialize the distance of the source to 0 and the distance to

all other vertices to ∞.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S ∞ ∞

∞ ∞ ∞

∞ ∞

Iteration 1: Starting with the source vertex S, relax edge SA, SC and SD. Relax

edge SA a path to A with a distance of 8 coming from the source vertex S.

Hence update A’s weight from ∞ to 8. Relax edge SC a path to C with

a distance of 6 coming from the source vertex S. Hence update C’S weight
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S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 7:D ∞

6:S 5:S ∞

∞ ∞

from ∞ to 6. Relax edge SD a path to D with a distance of 5 coming from

the source vertex S. Hence update D’s weight from ∞ to 5 and mark them

in blue as shown.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 8:S ∞

6:S 5:S ∞

∞ ∞

Iteration 2: Choosing the closest vertex D, relax edges DA, DC and DF. Relax

edge DA a path to A with a distance of 2 from vertex D. Adding 2 to the

current distance of D from the source of 5, there is a shorter distance 7 to

A than the one existing one by passing through Vertex D. Hence update

A’s weight from 8 to 7. Relax edge DC a path to C with a distance of 3

coming from Vertex D. Hence update C’s weight from ∞ to 3. Relax edge

DF a path to F with a distance of 4 coming from Vertex D. Adding 4 to

the current distance of D from the source of 5, we have 9. Hence update

F’s weight from ∞ to 9 and mark them with blue as shown.

Iteration 3 Choosing the next newest vertex C to the source, relax only edge CF

since edges CA and CD have been relaxed already. Vertex C has a distance

of 6 from the source and the remaining edge CF which gives a distance of

15 to F. This distance 15 is worse than the distance 9 vertex F already has
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so we maintain the 9 and mark C as done.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 7:D ∞

6:S 5:S ∞

9:D ∞

Iteration 4 Choosing the next vertex A to the source, relax only edge AE. Relax

edge AE a path to E with a distance of 1 from vertex A. Adding 1 to the

current distance of A of 7, find a shorter distance to E than the infinity.

Hence update E’s weight in the preceding vertex A from ∞ to 8.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 7:D ∞

6:S 5:S 8:A

9:D ∞

Iteration 5 Choosing the next newest vertex E, we relax edges EB and EG. Relax

EB a path to B with a distance of 6 from vertex E. Adding 6 to the current

distance of E from the source of 8 produces a shorter distance to A than

the infinity. Hence update B’s weight from ∞ to 14.

Now, it can be seen that, these predecessors’ values can be used to trace

the shortest path to any vertex. This is because B’s predecessor is E as E’s

predecessor is A, A’s predecessor is D and D’s predecessor is S. Hence the

backtracking gives: S −→ D −→ A −→ E −→ B.
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S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 7:D 14:E

6:S 5:S 8:A

9:D 9:F

Relax EG a path to G with a weight of 4 from vetex E. Adding 4 to the

current distance of E from the source of 8 produces 12. Hence update G’s

weight from ∞ to 12, a shorter distance than ∞.

S A B

C D E

F G

6

8

5

3

9 4

2 1 6

0

4

0:S 7:D 14:E

6:S 5:S 8:A

9:D 12:E

Iteration 6 Choosing the next newest vertex F, relax only edge FG. Relaxing FG

gives a path to G that is three (3) less than the existing one. Hence update

vertex G’s weight from 12 to 9 coming from vertex F.

Iteration 7 Next, move to vertex G and B which both have no edges to relax.

Thus the iterations end here and the shortest distances from the single-

source S to every other vertex in the illustration graph are obtained and

summarized in Table 3.5.
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Source vertex Destination vertex Path Total Distance

S A S→D→A 7

S B S→D→A→E→B 14

S C S→C 6

S D S→D 5

S E S→D→A→E 8

S F S→F 9

S G S→G 9

Table 3.5: Summary of illustrations of Dijkstra’s

3.4.3 Bellman-Ford Algorithm

Bellman-Ford algorithm is a single source shortest path algorithm which also

works on negative edge weights. While Dijkstra’s algorithm assumes all

edges have nonnegative weights, Bellman-Ford algorithm solves the single-source

shortest path problem in general case in which edge weights can be negative.

Given (G,w,s) a function of the directed weighted graph below, we initialize all the

vertices to ∞ and set the source vertex to zero and relax the edges accordingly.
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Bellman-Ford (G,w,s)

Initialize single− source(G, s) Initialize Single− Source (G, s)

fori = 1to for each vertex v ∈ G.V

for each edge (u, v) ∈ G.E v.d =∞

Relax (u, v, w) v.π = nil

for each edge (u, v) ∈ G.E source.d = 0

ifv.d > u.d+ w(u, v) Relaxation for each adjacent vertex

return false Relax(u, v, w)for

(report that a negative− weight cycle exists) each vertex v ∈ G.Adj[u]

return True ifv.d > u.d+ w(u, v)

v.d = u.d+ w(u, v) v.π = u

S

A

T

C

B

5

-2

6

7

-3

9

-4

8

7

2

0

∞

∞

∞

∞

Figure 3.8: Illustration graph with negative weights

Iteration 1: Starting from node S, relax edges SA and SB and update A from ∞

to 7 and B from ∞ to 6 since v.d > u.d + w(u, v) and mark A and B with

their predecessor node S.

Iteration 2: Choosing node B, relax edges BT and BC and update C to 5+6=11
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and T to 6-4= 2. Mark C and T with their new predecessor node B.

Iteration 3: Choosing node A, relax edge AC and update C from 11 to 7-3=4

and mark C with its new predecessor node A. Node T is not updated here

since 7+9=16 is more than 2 it already obtained from B.

Iteration 4: Choosing node C, relax again edge CB because, the idea is to obtain

the minimal value. Hence update B from 6 to 4-2=2 and write down B’s

newest predecessor C.

Iteration 5: Now need to relax and update edge BT from 2 to 2-4=-2.

Therefore, the shortest path and distance from S through all other nodes

in the graph has been obtained. S−→A−→C−→B−→T and the shortest

distance is -2.

S A B C T

d[v] 0 ∞,7 ∞,6,2 ∞,11,4 ∞,2,-2

π[v] S S , C B , A B, B

Table 3.6: Summary of illustrations of Bellman-Ford’s

3.5 Linear Programming (LP) Approach

Linear Programming is mathematical programming where the equations are

linear equations in a set of variables that model a problem. It is the ultimate

practical problem-solving model that encompasses shortest paths, network flows,

minimum spanning trees(MST), assignments, transportation etc.

Also, it depicts theoretically and practically efficient techniques for solving

large-scale problem and because of its efficiency was chosen to be the appropriate

model for this study. Linear Programming model has three main components

and they are:

1. Objective Function: These also describes a criterion that we wish to either

minimize (e.g. cost or distance) or maximize (e.g. profit or gain)
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2. Decision Variables: These describe the choices under the researcher’s

control.

3. Constraints: They describe the limitations that restrict the choices for

decision variables.

3.5.1 Linear Programming in Single-Source Shortest Path

Problem

The formulation is similar to that of the linear programming of shortest path

problems. The objective is to find the shortest path from node s to all other

nodes t ∈ V s.

Min
∑

(i,j)∈A

cijxij,

subject to ∑
(i,k)∈A

xi,k −
∑

(j,i)∈A

xj,i = −1 ∀ i 6= s

∑
(s,i)∈A

xsi = n− 1,

0 ≤ xij ≤ n− 1, ∀ (i, j) ∈ A

(3.2)

It can be seen from the linear model below that, a flow is sent from s, which has

supply n-1, to every other node, each with demand one (1) Hochbaum (2001).

3.5.2 Linear Programming Formulation

A linear programming formulation finds the shortest path from say node s to

node t in a given graph.

Given a directed graph (V,E) with source node s, target node t, and cost or

weight or distance cij for each edge (i,j) in E, consider the program with variable

xij. G = (V,E), cij : (i, j) ∈ E, cij ≥ 0∀(i, j) where s and t are the distinguished

nodes and V is the set of vertices or nodes and E the set of edges.
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Let for each edge xij be the flow on edge (i,j). Flow balance in each node

(Nonnegative weights)

xij = 1 if arc (i,j)∈ P or is in the shortest path and

xij = 0 otherwise.

Min
∑

(i,j)∈E

cijxij,

subject to
∑

j:(j,i)∈E

xji −
∑

j:(i,j)∈E

xij =


−1, i = s

0, i 6= s, t ∀ i ∈ V

1, i = t

(3.3)

Primal Problem:

Min
∑

(i,j)∈A

cijxij,

subject to∑
j

xsj = 1

∑
j

xij −
∑
j

xji = 0, i 6= s, t,

−
∑
j

xjt = −1,

xij ≥ 0

(3.4)

A is the node arc incidence matrix

A =



(i, j)

1

0

−1


The column in the matrix has only two entries 1 and -1 and the dual constraints

become the transpose of the matrix A. The i for 1 and j for -1 implies that, as
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node i is enters node j leaves.

Dual Constraints:

Max πs − πt,

subject to

πi − πj ≤ cij, ∀(i, j) ∈ E, i, j 6= t

πi ≥ 0, πi ≤ 0, πt = 0

(3.5)

Since cij ≥ 0, we can choose πi = 0 ∀ i as a starting dual-feasible solution, choose

J as

J = (i, j) : πi − πj = dij, where J is the set of admissible arcs. Add up the primal

constraints except the last one to obtain

−
∑

j xjt = 1. This implies that the last constraint will always be satisfied by a

feasible solution for (P).

In discussing the dual constraints for an LP, we can also elaborate some properties

of the duality.

• LP dual has variables ui for each node i ∈ V and it can be interpreted as

the length of path from node s to node i.

• LP dual constraints are difference constraints.

• Linear Programming is bounded below if and only if there is no negative

length cycle.

• LP optimality conditions corresponds to the usual path optimality

condition. In that, given

d(j) = label on node j,
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optimality means

d(j)− d(i) ≤ length of (i, j)

and the solution

xj = d(j).

⇒ xj − xi = d(j)− d(i) ≤ length of (i, j) = bij.

• We can also deduce that the LP formulation has the integralty property,

i.e. 0-1 solutions naturally ?.

Restricted Primal(RP):

Min
∑
i 6=t

xai

subject to ∑
j

xsj + xas = 1

∑
j

xij −
∑
j

xji + xai = 0, i 6= s, t

xij ≥ o, (i, j) ∈ J.

xij = 0(i, j) /∈ J.

(3.6)

Restricted Dual(DR):

Max π̄s

subject to

π̄i − π̄j ≤ 0(i, j) ∈ J,

π̄t = 0,

π̄i ≥ 0, π̄i ≤ 0

π̄i ≤ 1 ∀ i, i 6= t

(3.7)
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One can find an optimal solution for DR without solving the RP. The idea is

that all the restricted dual variables for DR must be less or equal to 1. So the

maximum value can only be 1. Start with π̄s = 1 and all other π̄i = 1 if (s,i)

is an admissible arc. But π̄t = o, π̄i = 0 if node t is reachable from node i via

admissible arcs for all other nodes π̄i = 1. This is the feasible solution for DR. If

t is reachable from j, (i, j) ∈ J . ⇒ π̄i = 0 = π̄j ⇒ π̄i − π̄j = 0 (i, j) ∈ J and i is

not reachable from s and t is not reachable from j.

The dual variable πi for each node i corresponds to a distance label from node i

to node t (thus πt = 0) and the reduced cost cπij for each edge (i,j) is cij −πi +πj.

Given an initial feasible dual solution π, (we can use π because cij ≥ 0 for each

edge (i,j)) for all-1-dual, we first identify a set of admissible arcs, denoted by

Â = (i, j) ∈ E : cij ≥=. Let Ĝ = (N, Â) denote the admissible graph, which

contains all the nodes in N but only arcs in Â. Wang (2008)

s

i j

t

admissible arc

Here the admissible arcs are not enough to give a path from s to t.

Now modifying the dual solution gives,

π + θπ̄ ≤ c, θ > 0

(i, j) ∈ E, πi − πj + θ(π̄i − π̄j) ≤ cij

As long as π̄i − π̄j ≤ 0, no need to worry since θ has to be positive.

Now to compute θ when π̄i − π̄j > 0,

θ ≤ cij − (πi − πj)
π̄i − π̄j

,

π̄i − π̄j > 0

(3.8)
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θ = Min
cij − (πi − πj)

π̄i − π̄j
= clk − (πl − πk)

where

π̄i − π̄j > 0

whenever this is positive it implies π̄i − π̄j is 1

πl − πk + θ(π̄l − π̄k) = clk

⇒ (l, k) ∈ J. if an (i, j) ∈ J,

(3.9)

then (i,j) will always continue on J. Then there is the need to update π + θπ̄.

s

1

2

3

4

t

2

1

3

5

1

2

3 2

4

1

1

1

1

1

0

Figure 3.9: Illustration graph of LP method

Specifically, the problem can be viewed as if every node other than t sends one

unit of flow to satisfy the demand (n-1) of node t in a way that minimizes the

total transportation cost Wang (2008).

Restricted Dual solutions:

Let J be the set of admissible arcs, V̂ be the set of admissible nodes, π be the

initial feasible dual solution, π̄ be the restricted dual solution and θ is the positive

parameter that modifies the feasible dual solution. Also J̃ be the set of all possible

arcs connecting the chosen node. Then the following iterations will be needed to

find the shortest path of the above graph using linear programming.
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Maximize πs

subject to

πs − π1 ≤ 2 π2 − π4 ≤ 1

πs − π2 ≤ 1 π3 − πt ≤ 2

π1 − π3 ≤ 3 π2 − π3 ≤ 5

π1 − π2 ≤ 3 π4 − π3 ≤ 2

π1 − π3 ≤ 3 π4 − πt ≤ 4

πt = 0, πi ≥ 0, πi ≤ 0.

Iteration 1: Dual: π =(0, 0, 0, 0, 0) J = {∅} V̂ = {t}

π̄=(1,1,1,1,1) J̃={(3,t), (4,t)} θ = min(c3t, c4t)

⇒ θ = min(2, 4) = 2

Iteration 2: Dual: π = π + θπ̄ (i.e. modified π), π = (2, 2, 2, 2, 2) J = {3,t}

V̂={t,3} π̄ = (1, 1, 1, 0, 1) J̃ = {(1, 3), (2, 3), (4, 3)}

θ = min(c13, c23, c43) ⇒ θ = min(3, 5, 2) = 2

Iteration 3: Dual: π = π+θπ̄ (i.e. modified π), π = (4, 4, 4, 2, 4) J = {(3,t),(4,3)}

V̂={t,3,4} π̄ = (1, 1, 1, 0, 0) J̃ = {(1, 3), (2, 3), (2, 4)}

θ = min(c13, c23, c2,4) ⇒ θ = min(3, 5,−1) = -1

Iteration 4: Dual: π = π + θπ̄ (i.e. modified π), π = (5, 5, 5, 2, 4) J

={(3,t),(4,3),(2,4)}

V̂={t,3,4,2} π̄ = (1, 1, 0, 0, 0) J̃ = {(s, 1), (s, 2), (1, 2)}

θ = min(cs2, c12) ⇒ θ = min(1, 3) = 1
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Figure 3.10: Summary graph of LP method

The iteration ends here since the new restricted dual solution becomes 0,

and the last admissible arc is from node s to node 2. The optimal solution

for the primal solution is obtained. The optimal path from s to t consists

of s −→ 2 −→ 4 −→ 3 −→ t and the total length will be 1 + 1 + 2 +

2 = 6 . The restricted primal and restricted dual focus on building a path

between a node and the destination node t.

3.6 Other Network Problems

3.6.1 Minimum Connector

The aim of minimum connector problems is to find the spanning tree of

minimum weight. One practical problem could be that, suppose there is a

collection of cities which need to be connected by a system of railway lines.

The question is how must the system be constructed in such a way that, the cost

is minimal regardless of the passengers’ inconveniences? The aim of minimum

connector problems is to find the spanning tree of minimum weight. Two methods

for solving this problem are Prim’s algorithm and Kruskal’s algorithm which both

produce minimum spanning trees.

Lemma
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Given a network (G,φ), the weight of a subgraph H ⊂ G can be defined to be

φ(H) =
∑

e∈E(H)

φ(e) (3.10)

φ(e) > 0.

The problem is that, given two vertices u0, v0 ∈ V (G), find a uov0-path of smallest

weight. Here, a network of minimal cost is constructed.

Observations

• The solution must be connected

• The solution should contain no cycles, for if there were any cycles, one of

the edges could be removed to get a smaller cost. Thus every edge must be

a bridge. Glickenstein (2012).

A tree is a connected undirected graph with no simple circuits or cycles. An

undirected graph is a tree if and only there is a unique simple path between any

of its vertices. A spanning tree is a subgraph that contains all the vertices in the

original graph and is also a tree. A graph may have many spanning trees. On

connected graph G=(V,E), a spanning tree must have the following properties;

1. it must be a connected subgraph

2. it must be acyclic(i.e. no cycles formed)

3. it is a tree in which number of its edges is one less than the number of its

vertices (i.e. |E| = |V | − 1) and last but not least,

4. it must contain all vertices of G

A graph can have several trees for example,
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A
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However, a tree that encloses at any edge forming a loop or cycle is not a spanning

tree. Examples are:

A

B

C

D

F
E

Figure 3.11: A tree with a loop

Figure 3.11 is not a spanning tree since the nodes BCED form a cycle or loop.

Amponsah and Darkwah (2007).

3.6.2 Minimum Spanning Tree

This is the spanning tree of minimum cost for a given graph. Then it can be

induced that, a minimum connector is also a spanning tree with minimum length

or weight or cost. The number of edges in a minimum spanning tree is always

one less than the number of vertices

Below is an example of a connected graph and one of its minimum spanning trees.

A

B

D

C

5

1

7

3

4

2

A

B

D

C

1

2 3

Figure 3.12: Complete graph and Minimum spanning tree

It can be seen that if we add the costs of the minimum spanning tree, we get

1+2+3=6 which will definitely be lesser than the overall total of the original

graph.
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Prim’s Algorithm

Prim’s algorithm finds the minimum spanning tree for a connected weighted

undirected graph. This algorithm was independently developed by the computer

scientist Robert C. Prim in 1957.

In Prim’s algorithm, we are not concerned with distance from say node s to

node t, the focus is on selecting the next smallest cost edge that connects to the

current set of reachable nodes.

Matrix formulation of Prim’s algorithm

Step 1: Label the column corresponding to the start vertex with a 1. Delete the

row corresponding to that vertex.

Step 2: Ring the smallest available value in any labeled column.

Step 3: Label the column corresponding to ringed vertex with a 2, etc. Delete

the row corresponding to that vertex.

Step 4: Repeat steps 2 and 3 until all rows have been deleted.

Step 5: Write down the order in which edges were selected and the length of the

minimum spanning tree.

Suppose a company is installing a system of cables to connect all towns in a

region. The weights in the network below show the distances in kilometers. The

question is, what is the least amount of cable needed? Amponsah and Darkwah

(2007).

Iteration 1: Choosing a starting vertex say A. Delete the row A. Look for the

smallest entry in column A.
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A B C

D E

F

8

10

14

12 1315

20 14

12

1

A B C D E F

A ∞ 8 ∞ 10 ∞ ∞

B 8 ∞ 14 12 ∞ ∞

C ∞ 14 ∞ 15 13 ∞

D 10 12 15 ∞ 12 20

E ∞ ∞ 13 12 ∞ 14

F ∞ ∞ ∞ 20 14 ∞

A

Iteration 2: AB is the smallest edge joining A to the other vertices. Put edge AB

into the solution. Detlete row B and look for the smallest entry in columns

A and B.

1 2

A B C D E F

B 8 ∞ 14 12 ∞ ∞

C ∞ 14 ∞ 15 13 ∞

D 10 12 15 ∞ 12 20

E ∞ ∞ 13 12 ∞ 14

F ∞ ∞ ∞ 20 14 ∞

A B
8
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Iteration 3: AD is the smallest edge joining A and B to the other vertices. Put

edge AD into the solution. Delete row D. Look for the smallest entry in

columns A, B and D

1 2 3

A B C D E F

C ∞ 14 ∞ 15 13 ∞

D 10 12 15 ∞ 12 20

E ∞ ∞ 13 12 ∞ 14

F ∞ ∞ ∞ 20 14 ∞

A B

D

8

10

Iteration 4: DE is the smallest edge joining A, B and D to the other vertices.

Put edge DE into the solution. Delete row E. Look for the smallest entry

in the columns A, B, D and E.

1 2 3 4

A B C D E F

C ∞ 14 ∞ 15 13 ∞

E ∞ ∞ 13 12 ∞ 14

F ∞ ∞ ∞ 20 14 ∞

A B

D E

8

10

12

Iteration 5: EC is the smallest edge joining A, B, D and E to the other vertices.

Put edge EC into the solution. Delete row C. Look for the smallest entry

in the columns A, B, D, E and C.
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1 2 5 3 4

A B C D E F

C ∞ 14 ∞ 15 13 ∞

F ∞ ∞ ∞ 20 14 ∞

A B

D
E

C
8

10

12

13

Iteration 6: EF is the smallest edge joining A, B, D, E and C to the other vertices.

Put EF into the solution.

1 2 5 3 4 6

A B C D E F

F ∞ ∞ ∞ 20 14 ∞

A B

D
E

C

F

8

10

12

13

Now all vertices have been connected into the spanning tree. The number

of edges is five in the spanning tree which is one less than the number of

vertices in the original diagram. The minimum length needed for the work

would be 8+10+12+13+14 = 57km.

Kruskal algorithm

This algorithm seeks to find an edge of the least possible weight that connects

any two trees in the forest. It was propounded by another computer scientist

Joseph Kruskal in 1956.

Unlike Prim’s algorithm which only grows one tree, Kruskal algorithm grows a

collection of trees (a forest). And it continues until the forest merges to a single

tree. The following steps illustrate Kruskal algorithm on a graph.

Step 1: Arrange all edges in a list(L) in a non decreasing order.
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Step 2: Select edges from L, and include that in set T, avoid cycle.

Step 3: Repeat step 3. until T becomes a tree that covers all vertices

The solution to the cable problem that has already been stated is determined by

using Kruskal’s algorithm.

Edge(L) Weight MST Edge(T) Weight

AB 8 AB 8

AD 10 AD 10

BC 14 − −
CE 13 CE 13

DC 15 − −
DE 12 DE 12

DF 20 − −
EF 14 EF 14

Table 3.7: Summary of illustration of Kruskal’s

A −→ B = 8 D −→ E = 12

A −→ D = 10 C −→ E = 13

∗B −→ D = 12 ∗B −→ C = 14

D −→ C = 15 E −→ F = 14

Note

BD will not be chosen since if forms a cycle with A and B.

BC will not be chosen since it also forms a cycle with A, B, D and E.

The weights in the last column are added, 8+10+12+13+14 = 57. Therefore

the least amount of cable needed for the towns would be 57km.
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It can be concluded that although the two algorithms gave the same solution,

Kruskal’s algorithm is faster than Prim’s algorithm. Thus, the solution is

formulated into the spanning tree below .

A B C

D E

F

8

10

14

12 1315

20 14

12

A B

D
E

C

F

8

10

12

13

The edges that are in the solution are marked with blue.

3.7 Summary

This chapter discussed shortest path problems, algorithms, methods and other

related network problems that seek to minimize travel cost. Each of the

algorithms stated was demonstrated with graphs and iterations and through all

that, the optimal solutions were obtained.
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CHAPTER 4

DATA COLLECTION, ANALYSIS AND

RESULTS

This chapter describes the collection, methods and presentation of analysis of

data followed by a discussion of the research findings. The findings relate to

research objectives that guided the study.

4.1 Data Collection

The distances between towns and the topographical map of the district were

collected from the District Planning and Co-ordinating Unit Office of the Atwima

Nwabiagya District Assembly.

Table 4.1: Summary of Lengths and condition of Road Types in the District

Road Type Length Good Fair Bad
(km) km % km % km %

Bitumen Roads 109.50 56.90 94.52 24.50 3.66 28.10 1.83

Gravelled Roads 157.00 23.70 41.80 37.20 29.14 96.10 29.10

Total 266.50 80.60 67.29 61.70 16.80 124.20 17.56

Source: Survey by DPCU, 2014

Table 4.1 is the summary of the road type and conditions and the total length

of each type in the district. There are two types and these are: bitumen(tarred

roads) and gravelled(un tarred roads).

The total length(in km) of bitumen roads is 109.50 whereas that of gravelled

roads is 157.0 and the total distance of both road types is 266.50 km. However,

the percentage of roads that are good is about 67.29% while that of the bad roads
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is about 17.56%.

Figure 4.1: Atwima Nwabiagya District Map

Figure 4.1 shows the topographical map of about 94 towns or communities.
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4.1.1 Network System and Codes of Communities of the

district
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Figure 4.2: Network representation of Atwima Nwabiagya District
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This network system was created from the district map. It is made up of nodes,

arcs and distances; the nodes are the towns, the arcs are the paths between any

two towns and the weight on them are the distances. The red node denotes the

starting node that is Nkawie(Nk).

Table 4.2: Towns and their codes

(a) Table 1

(b) Table 1

Table 4:2 shows the several communities within the district which has been

put in chronological order. Each community has been assigned a code for easy
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identification.

4.1.2 Data for the problem

Table 4.3: Distances between towns

Source: Survey by DPCU, 2013

Table 4.3 shows the distances in kilometers from one town to another town.

Figure 4.3 shows the matrix representation of the from-to matrix with distances

(in km) of the towns It is a (94x94) matrix of 94 rows and 94 columns starting from

the source node. From the chart, the distance from Nkawie(Nk) to Kyereyaase

(Ky) was recorded to be 3.8 km and Ahodwo(Ah) to Afrancho(Ac1), 2.3 km etc.
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4.1.3 Assumptions

1. All roads are assumed to be good.

2. The approach to the data given in this study is not by hypothesis testing

but by observations and research questions.

3. Time bounds method is not used.

4.2 Methods and Presentation of Analysis

The LP Dual model in equation(3.4) discussed for SPP in chapter three would be

applied here. The objective function of the SPP will be to minimize the distance

traveled from the starting node to all other nodes.

4.2.1 Model for the Problem

Max πt − πs,

subject to

πj − πi ≤ cij,∀ (i, j) ∈ E, i, j 6= t

πi ≥ 0, πi ≤ 0, πs = 0

where,

πs is the dual variable for the starting node s,

πt is the dual variable for the destination node t,

πi is the dual variable corresponding to the constraint for node i in equation(3.2),

πj is the dual variable corresponding to the constraint for node j in equation(3.2) and

cij is the cost ie the distance between node i and node j

Thus in finding the shortest path from the single source s to the single destination

t, the dual model will proceed to determine the shortest path and distances to
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all the other destinations in the graph. Kangwalklai (2001).

4.2.2 Formulation of the Problem

4.2.3 Dual objective function and constraints

Max TA−NK

subject to

AW −NK ≤ 2.5 AK −KF ≤ 2.3 KP − PS ≤ 1.7

NR−NK ≤ 3.8 TB − AK ≤ 2.7 ND −KP ≤ 2.7

NP −NK ≤ 0.2 NS − TB ≤ 2.1 OB −ND ≤ 2.7

TS −NK ≤ 0.8 MF −NS ≤ 2.5 ND − AK ≤ 3.0

WS − TS ≤ 2.5 BU −MF ≤ 7.0 ES −OB ≤ 2.0

GB − TS ≤ 3.5 NY −KY ≤ 2.3 ES − AK ≤ 2.3

SM −WS ≤ 2.7 AE −NY ≤ 3.1 OR− ES ≤ 0.2

SD − SM ≤ 2.7 NU − AE ≤ 4.2 BO −OR ≤ 2.7

KB − SD ≤ 2.5 NB −NU ≤ 2.5 EO −KP ≤ 2.5

AY −KB ≤ 1.8 AP1−NB ≤ 1.5 EO −KU ≤ 3.5

AP −KB ≤ 0.6 BY −NB ≤ 0.4 AN −KU ≤ 2.5

NN − AP ≤ 1.8 AH1−BY ≤ 0.4 BU − AN ≤ 1.5

NR−NP ≤ 3.6 SP −NY ≤ 2.5 BU −MB ≤ 4.0

FE −NR ≤ 2.0 KM −NY ≤ 3.5 MB −BW ≤ 3.5
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SB − FE ≤ 1.0 KM − AE ≤ 3.0 AS1− EO ≤ 3.5

NM − AW ≤ 1.3 AI1−KM ≤ 4.2 AA− AS1 ≤ 1.5

KY −NK ≤ 3.8 AS −KM ≤ 3.5 NT − AA ≤ 1.4

AF − AW ≤ 2.7 AS − AI1 ≤ 2.0 AC − AA ≤ 2.5

NE −KY ≤ 1.5 AU − AS ≤ 2.0 AN1− AC ≤ 1.6

AF −NE ≤ 2.5 MF − AU ≤ 1.5 KB1−NT ≤ 1.5

MM − AF ≤ 2.5 MF −NE ≤ 9.0 AW1−KB1 ≤ 2.1

BG−MM ≤ 1.5 EO −KP ≤ 2.5 AW1− EO ≤ 1.5

SE −BG ≤ 1.0 BS − AH ≤ 2.0 MB − AW1 ≤ 3.5

MK − SE ≤ 2.3 AC1− AH ≤ 2.3 BK −MB ≤ 3.5

AB −MK ≤ 1.5 AG− AC1 ≤ 3.9 BK −BW ≤ 3.7

AM − AB ≤ 0.2 SK −BS ≤ 4.0 FF −BK ≤ 7.0

MY − AM ≤ 2.3 AB1− SK ≤ 0.8 AI −BK ≤ 8.0

KF −MY ≤ 2.3 PS − AB1 ≤ 2.5 AF1−BK ≤ 7.8

AM1− FF ≤ 4.3 AT − AR ≤ 2.1 WP − AD ≤ 3.5

AO − AM1 ≤ 0.2 WF −OF ≤ 2.5 TA−WP ≤ 2.5

KK − AO ≤ 1.5 AT −WF ≤ 1.5 BH1− TA ≤ 3.8

OF − AF1 ≤ 2.3 OH − AR ≤ 0.4 BH −BH1 ≤ 2.5

AT − AF1 ≤ 1.5 AD −OH ≤ 4.2 Y B −BH1 ≤ 1.5

AR− AF1 ≤ 0.2 WP −OH ≤ 3.5 MS − Y B ≤ 3.2

4.2.4 Computational procedure

The objective function and constraints were formulated using the dual LP model.

The computer brand used for running the model was Toshiba that has 2.20 GHz,

750GB hard disk drive capacity and installed memory (RAM)of 4.00 GB(3.88

GB). Lindo 6.1 software was used to obtain the o.
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4.3 Analysis of Findings

4.3.1 Interpretation of Results

The "LP optimum found at step 1" means that the optimal solution was found

in iteration 1 of the initial tableau. Since the objective is to minimize costs from

Nkawie(NK) to all other towns, iterations were done for quite a number of towns

before the last town Tanokrom(TA).

Thus the optimum value of 51.70 km is the minimized distance from NK to

TA while that of the other towns are all found in second column of the results

in appendix A. The constraints are written based on the graph network of the

district map.

4.3.2 Results and Findings

Table 4.4: Summary table of results

Optimal Value/
Source Destination Shortest Distance(km) Shortest Path

NK SB 6.8 NK→NR→FE→SB

NK NR 6.1 NK→NR

NK TS 0.8 NK→TS

NK AB 14 NK→AW→AF→MM→BG→SE→MK→AB

NK WS 3.3 NK→TS→WS

NK GB 4.3 NK→TS→GB

NK SM 6.0 NK→TS→WS→SM

NK AK 21.1 NK→AW→AF→MM→BG→SE
→MK→AB→AM→MY→KF→AK

NK AN 22.3 NK→KY→NE→MF→BU→AN

NK AY 13.0 NK→TS→WS→SM→SD→KB→AY

NK FE 5.8 NK→NR→FE

NK MF 14.3 NK→KY→NE→MF
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Table 4.5: Summary table of results

Optimal Value/
Source Destination Shortest Distance(km) Shortest Path

NK SD 8.7 NK→TS→WS→SM→SD

NK BU 21.3 NK→KY→NE→MF→BU

NK MM 7.7 NK→AW→AF→MM

NK BO 27.0 NK→AW→AF→MM→BG→SE→MK →AB→AM
→MY→KF→AK→ES→OR→BO

NK KM 9.6 NK→KY→NY→AE→KM

NK AU 15.1 NK→KY→NY→KM→AS→AU

NK NN 13.6 NK→TS→WS→SM→SD→KB→AP→NN

NK KF 18.8 NK→AW→AF→MM→BG→SE
→MK→AB→AM→MY→KF

NK FF 35.8 NK→KY→NE→MF→BU→MB→BK→FF

NK AP 11.8 NK→TS→WS→SM→SD→KB→AP

NK KB 11.2 NK→TS→WS→SM→SD→KB

NK AW1 28.8 NK→KY→NE→MF→BU→MB→AW1

Sample of the solutions in Appendix A have been selected and tabulated in

Table 4.5 and 4.3. It was found out that, the distances from the source town NK

to the immediate destinations such as NR and TS remained the same and were

not minimized, since there are no intermediate nodes.

The shortest distance or optimal value from Nkawie(NK) to Akropong(AK)

was found out to be 21.1km and the shortest or sequence path was

NK→AW→AF→MM→BG→SE→MK→AB→AM→MY→KF→AK. Instead of

taking the path NK→KY→NY→AE→KM→AS →AU→MF→NS→TB→AK

that would yield a bigger value of 26.5km.
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4.4 Summary

The optimal distances and paths have been determined. Unfortunately, there is

no established work in the field of shortest distances and paths within the district

and therefore there cannot be any form of comparison with the results obtained

in Appendix A. The next chapter of the research discusses the conclusion and

recommendations made to all stakeholders.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This chapter discusses the conclusions and recommendations made based on the

analysis in chapter four.

5.1 Conclusion

As discussed earlier the purpose for this study was to find an optimal distance

and shortest path from Nkawie Fire Station to all towns of Atwima Nwabiagya

District. In order to achieve this objective, a connected graph with distances

between pairs of nodes was created out of the district map.

The LP dual model was the appropriate method applied to minimize the

distances and to determine the shortest paths.The findings in this study provide

a minimized travel-cost shown in the Appendices.

5.2 Recommendations

1. The office of the district fire service should employ the findings of this study

to avert the shortest path problems they encounter in their operations.

2. Critical examination of this study is allowed for the purpose of further

studies in the area of shortest path problems.
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RESULTS

LP OPTIMUM FOUND AT STEP      1

        OBJECTIVE FUNCTION VALUE

        1)      51.70000

  VARIABLE        VALUE          REDUCED COST
        TA        51.700001          0.000000
        NK         0.000000          0.000000
        AW         2.500000          0.000000
        NR         3.800000          0.000000
        NP         0.200000          0.000000
        TS         0.800000          0.000000
        WS         3.300000          0.000000
        GB         4.300000          0.000000
        SM         6.000000          0.000000
        SD         8.700000          0.000000
        KB        11.200000          0.000000
        AY        13.000000          0.000000
        AP        11.800000          0.000000
        NN        13.600000          0.000000
        FE         5.800000          0.000000
        SB         6.800000          0.000000
        NM         3.800000          0.000000
        KY         3.800000          0.000000
        AF         5.200000          0.000000
        NE         5.300000          0.000000
        MM         7.700000          0.000000
        BG         9.200000          0.000000
        SE        10.200000          0.000000
        MK        12.500000          0.000000
        AB        14.000000          0.000000
        AM        14.200000          0.000000
        MY        16.500000          0.000000
        KF        18.799999          0.000000
        AK        21.100000          0.000000
        TB         9.700000          0.000000
        NS        11.800000          0.000000
        MF        14.300000          0.000000
        BU        21.299999          0.000000
        NY         6.100000          0.000000
        AE         6.600000          0.000000
        NU        10.800000          0.000000
        NB        13.300000          0.000000
       AP1        14.800000          0.000000
        BY        13.700000          0.000000
       AH1        14.100000          0.000000
        SP         8.600000          0.000000
        KM         9.600000          0.000000
       AI1         8.800000          0.000000
        AS        10.800000          0.000000
        AU        12.800000          0.000000
        BS        17.299999          0.000000
        AH        15.300000          0.000000
       AC1        13.000000          0.000000
        AG        16.900000          0.000000
        SK        21.299999          0.000000
       AB1        22.100000          0.000000
        PS        24.600000          0.000000
        KP        26.299999          0.000000
        ND        24.100000          0.000000
        OB        21.400000          0.000000
        ES        23.400000          0.000000
        OR        23.600000          0.000000
        BO        26.299999          0.000000
        EO        28.799999          0.000000
        KU        25.299999          0.000000
        AN        22.799999          0.000000
        MB        33.799999          0.000000
        BW        33.599998          0.000000
       AS1        23.799999          0.000000
        AA        25.299999          0.000000
        NT        26.700001          0.000000
        AC        27.799999          0.000000
       AN1        29.400000          0.000000
       KB1        28.200001          0.000000
       AW1        30.299999          0.000000
        BK        37.299999          0.000000
        FF        44.299999          0.000000
        AI        45.299999          0.000000
       AF1        45.099998          0.000000
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       AM1        48.599998          0.000000
        AO        48.799999          0.000000
        KK        50.299999          0.000000
        OF        47.400002          0.000000
        AT        46.599998          0.000000
        AR        45.299999          0.000000
        WF        49.900002          0.000000
        OH        45.700001          0.000000
        AD        49.900002          0.000000
        WP        49.200001          0.000000
       BH1        55.500000          0.000000
        BH        58.000000          0.000000
        YB        57.000000          0.000000
        MS        60.200001          0.000000

       ROW   SLACK OR SURPLUS     DUAL PRICES
        2)         0.000000          0.000000
        3)         0.000000          0.000000
        4)         0.000000          0.000000
        5)         0.000000          0.000000
        6)         0.000000          0.000000
        7)         0.000000          0.000000
        8)         0.000000          0.000000
        9)         0.000000          0.000000
       10)         0.000000          0.000000
       11)         0.000000          0.000000
       12)         0.000000          0.000000
       13)         0.000000          0.000000
       14)         7.200000          0.000000
       15)         0.000000          0.000000
       16)         0.000000          0.000000
       17)         0.000000          0.000000
       18)         0.000000          1.000000
       19)         0.000000          0.000000
       20)         0.000000          1.000000
       21)         2.600000          0.000000
       22)         0.000000          0.000000
       23)         0.000000          0.000000
       24)         0.000000          0.000000
       25)         0.000000          0.000000
       26)         0.000000          0.000000
       27)         0.000000          0.000000
       28)         0.000000          0.000000
       29)         0.000000          0.000000
       30)         0.000000          0.000000
       31)        14.100000          0.000000
       32)         0.000000          0.000000
       33)         0.000000          0.000000
       34)         0.000000          1.000000
       35)         0.000000          0.000000
       36)         2.600000          0.000000
       37)         0.000000          0.000000
       38)         0.000000          0.000000
       39)         0.000000          0.000000
       40)         0.000000          0.000000
       41)         0.000000          0.000000
       42)         0.000000          0.000000
       43)         0.000000          0.000000
       44)         0.000000          0.000000
       45)         5.000000          0.000000
       46)         2.300000          0.000000
       47)         0.000000          0.000000
       48)         0.000000          0.000000
       49)         0.000000          0.000000
       50)         0.000000          1.000000
       51)         0.000000          0.000000
       52)         0.000000          0.000000
       53)         0.000000          0.000000
       54)         0.000000          0.000000
       55)         0.000000          0.000000
       56)         0.000000          0.000000
       57)         0.000000          0.000000
       58)         4.900000          0.000000
       59)         5.400000          0.000000
       60)         0.000000          0.000000
       61)         0.000000          0.000000
       62)         0.000000          0.000000
       63)         0.000000          0.000000
       64)         0.000000          0.000000
       65)         0.000000          0.000000
       66)         0.000000          1.000000
       67)         0.000000          1.000000
       68)         0.000000          1.000000
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       69)        16.500000          0.000000
       70)         3.300000          0.000000
       71)         8.500000          0.000000
       72)         0.000000          0.000000
       73)         0.000000          0.000000
       74)         0.000000          0.000000
       75)         0.000000          0.000000
       76)         0.000000          0.000000
       77)         0.000000          0.000000
       78)         0.000000          1.000000
       79)         0.000000          1.000000
       80)         0.000000          1.000000
       81)         0.000000          0.000000
       82)         0.000000          0.000000
       83)         0.000000          0.000000
       84)         0.000000          1.000000
       85)         0.000000          0.000000
       86)         0.000000          0.000000
       87)         0.000000          0.000000
       88)         0.000000          0.000000
       89)         0.000000          0.000000
       90)         0.000000          1.000000
       91)         0.800000          0.000000
       92)         0.000000          0.000000
       93)         4.800000          0.000000
       94)         0.000000          1.000000
       95)         0.000000          0.000000
       96)         0.000000          1.000000
       97)         4.200000          0.000000
       98)         0.000000          1.000000
       99)         0.000000          0.000000
      100)         0.000000          0.000000
      101)         0.000000          0.000000
      102)         0.000000          0.000000

 NO. ITERATIONS=       1

STATISTICS AND RANGE(SENSITIVITY ANALYSIS)

STATIISTICS

ROWS=    102 VARS=     88 INTEGER VARS=      0(      0 = 0/1)  QCP=     0
 NONZEROS=    305 CONSTRAINT NONZ=    202(    202 = +-1) DENSITY=0.034
 SMALLEST AND LARGEST ELEMENTS IN ABSOLUTE VALUE=   0.200000        9.00000
 OBJ=MAX, NO. <,=,>:    101      0      0, GUBS <=    51 VUBS >=      0
 SINGLE COLS=     15 REDUNDANT COLS=       0

SENSITIVITY ANALYSIS
 
RANGES IN WHICH THE BASIS IS UNCHANGED:

                           OBJ COEFFICIENT RANGES
 VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE
                   COEF          INCREASE         DECREASE
       TA        1.000000         0.000000         1.000000
       NK       -1.000000         0.000000         INFINITY
       AW        0.000000         0.000000         0.000000
       NR        0.000000         0.000000         0.000000
       NP        0.000000         0.000000         0.000000
       TS        0.000000         0.000000         0.000000
       WS        0.000000         0.000000         0.000000
       GB        0.000000         0.000000         0.000000
       SM        0.000000         0.000000         0.000000
       SD        0.000000         0.000000         0.000000
       KB        0.000000         0.000000         0.000000
       AY        0.000000         0.000000         0.000000
       AP        0.000000         0.000000         0.000000
       NN        0.000000         0.000000         0.000000
       FE        0.000000         0.000000         0.000000
       SB        0.000000         0.000000         0.000000
       NM        0.000000         0.000000         0.000000
       KY        0.000000         0.000000         1.000000
       AF        0.000000         0.000000         0.000000
       NE        0.000000         0.000000         1.000000
       MM        0.000000         0.000000         0.000000
       BG        0.000000         0.000000         0.000000
       SE        0.000000         0.000000         0.000000
       MK        0.000000         0.000000         0.000000
       AB        0.000000         0.000000         0.000000
       AM        0.000000         0.000000         0.000000
       MY        0.000000         0.000000         0.000000
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       KF        0.000000         0.000000         0.000000
       AK        0.000000         0.000000         0.000000
       TB        0.000000         0.000000         1.000000
       NS        0.000000         0.000000         1.000000
       MF        0.000000         0.000000         1.000000
       BU        0.000000         0.000000         1.000000
       NY        0.000000         0.000000         0.000000
       AE        0.000000         0.000000         0.000000
       NU        0.000000         0.000000         0.000000
       NB        0.000000         0.000000         0.000000
      AP1        0.000000         0.000000         0.000000
       BY        0.000000         0.000000         0.000000
      AH1        0.000000         0.000000         0.000000
       SP        0.000000         0.000000         0.000000
       KM        0.000000         0.000000         0.000000
      AI1        0.000000         0.000000         1.000000
       AS        0.000000         0.000000         1.000000
       AU        0.000000         0.000000         1.000000
       BS        0.000000         0.000000         1.000000
       AH        0.000000         0.000000         1.000000
      AC1        0.000000         0.000000         1.000000
       AG        0.000000         0.000000         0.000000
       SK        0.000000         0.000000         1.000000
      AB1        0.000000         0.000000         1.000000
       PS        0.000000         0.000000         1.000000
       KP        0.000000         0.000000         1.000000
       ND        0.000000         0.000000         0.000000
       OB        0.000000         0.000000         0.000000
       ES        0.000000         0.000000         0.000000
       OR        0.000000         0.000000         0.000000
       BO        0.000000         0.000000         0.000000
       EO        0.000000         0.000000         1.000000
       KU        0.000000         0.000000         1.000000
       AN        0.000000         0.000000         1.000000
       MB        0.000000         0.000000         1.000000
       BW        0.000000         0.000000         1.000000
      AS1        0.000000         0.000000         1.000000
       AA        0.000000         0.000000         1.000000
       NT        0.000000         0.000000         1.000000
       AC        0.000000         0.000000         0.000000
      AN1        0.000000         0.000000         0.000000
      KB1        0.000000         0.000000         1.000000
      AW1        0.000000         0.000000         1.000000
       BK        0.000000         0.000000         1.000000
       FF        0.000000         0.000000         0.000000
       AI        0.000000         0.000000         0.000000
      AF1        0.000000         0.000000         1.000000
      AM1        0.000000         0.000000         0.000000
       AO        0.000000         0.000000         0.000000
       KK        0.000000         0.000000         0.000000
       OF        0.000000         0.000000         0.000000
       AT        0.000000         0.000000         0.000000
       AR        0.000000         0.000000         1.000000
       WF        0.000000         0.000000         0.000000
       OH        0.000000         0.000000         1.000000
       AD        0.000000         0.000000         0.000000
       WP        0.000000         0.000000         1.000000
      BH1        0.000000         0.000000         0.000000
       BH        0.000000         0.000000         0.000000
       YB        0.000000         0.000000         0.000000
       MS        0.000000         0.000000         0.000000

                           RIGHTHAND SIDE RANGES
      ROW         CURRENT        ALLOWABLE        ALLOWABLE
                    RHS          INCREASE         DECREASE
        2        2.500000         2.600000         2.500000
        3        3.800000         INFINITY         3.800000
        4        0.200000         7.200000         0.200000
        5        0.800000         INFINITY         0.800000
        6        2.500000         INFINITY         3.300000
        7        3.500000         INFINITY         4.300000
        8        2.700000         INFINITY         6.000000
        9        2.700000         INFINITY         8.700000
       10        2.500000         INFINITY        11.200000
       11        1.800000         INFINITY        13.000000
       12        0.600000         INFINITY        11.800000
       13        1.800000         INFINITY        13.600000
       14        3.600000         INFINITY         7.200000
       15        2.000000         INFINITY         5.800000
       16        1.000000         INFINITY         6.800000
       17        1.300000         INFINITY         3.800000
       18        3.800000        14.100000         2.600000
       19        2.700000         2.600000         5.200000
       20        1.500000         2.300000         2.600000
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Figure 5.1: From
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Figure 5.2: From
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