

Retrieval of Trace Gas Concentrations from Lunar Occultation Measurements with SCIAMACHY on ENVISAT

L.K. Amekudzi, K. Bramstedt, A. Rozanov, H. Bovensmann, and J.P. Burrows

UNIVERSITÄT BREMEN

Outline

- Occultation with SCIAMACHY
- Nighttime NO_y Chemistry
- Lunar Occultation Retrieval Method
 - Major Retrieval and Validation Results
- Summary and Conclusions
- Acknowledgements

17/09/2007

UNIVERSITÄT RRFMFN

SCIAMACHY:

- - Moon pointing mode

- Lunar occultation
- Measurements in all orbit (50°N 70°N)

- Sun scanning mode
- Solar occultation (Poster P6)
- 0.2-1.5nm spectral resolution 8 channels

nadir, limb, lunar+solar occultation

imaging spectrometer 240-2400nm

50

100

1.50

200

250 300 Days of the year

350

- Measurements are performed 6-8 days in a month and 4-8 month in a year
- Measurements are highly variable
- •Most measurements in March, April, and May

Nighttime Stratospheric NO_v Chemistry

- > Nighttime NO_X is in the form of NO₂ and NO₃
- > NO_X are important in middle stratosphere ozone chemistry
- Implies long-term trend in stratospheric ozone loss and NO_X budget can be studied by simultaneous measurements ozone, NO₂, and NO₃
- This can be achieved using lunar and stellar occultation methods

Retrieval Method

- Forward model : SCIATRAN 2.1
- P,T (ECMWF), a priori trace gases (MPI data base)
- Retrieval: Optimal estimation with Twomey-Tikhonov regularisation
- Using SCIAMACHY data Level 1b version 5.04/6.02
- ✤ Retrieved trace gases O₃, NO₂, and NO₃
- Ozone and NO₂ are retrieved simultaneously
- Interfering gases are modelled and fitted (e.g. For NO₃; O₃, O₂ and H₂O are fitted)
- The Differential cross section O₂ and H₂O are calculated using ESFT method (Buchwitz et. al, 2000)

SCIAMACHY Channels 3 and 4 (Lunar Spectra)

•Spectral fitting windows

- NO₂: 430 460 nm
- O₃: 520 580 nm
- NO₃: 615 670 nm

fe

- The diamond points: modelled contribution and solid line measurement contribution
- Very good spectral fits are generally obtained (16-42km for NO₂ and 16-45 for NO₃)

fe

Spectral residual are less than 0.5%

Retrieval Results: Ozone

- 2003 results are zonal mean for measurement between March to June
- 2004 results between Dec. to June.

10

Retrieval Results: NO₂

• 2003 results are zonal mean for measurement between March to June

fe

• 2004 results between Dec. to June.

11

Retrieval Results:NO₃

- 2003 results are for measurements between March to June
- 2004 results, Jan. to April.

Validation Results: Ozone and NO₂

Instruments	max. Dist./time	# NO ₂	# 0 ₃	Data quality	Reference
HALOE (v19)	1000 km 12 hrs	65	154	6-12% (25-60 km) 10-15% (25-42km)*	Brühl et al.,1996 Randall et al.,2002

- NO₂ data quality (*)
- NO₂ compared to sunrise measurements of HALOE/SAGEII only
- Coincidences with HALOE are in 2003-2005, SAGE II in 2004 only, and POAM in 2003 and 2004

fe

SCIA-HALOE O₃ Validation

fe

- Photochemical correction (Bracher et al. 2005) was applied to scale HALOE/SAGE II results to SCIAMACHY SZA
- The model nighttime error is less than 14%

The rmd mainly between -20% to +5% between 25 – 40 km

fe

The rms of bias is 4-16% and uncertainty is 1 - 6%

Summary of validation results

Ozone validation

Instruments	rmd (%)	rms(%)	Altitude(km)
HALOE	0 to +15	5 – 25	20 – 45
SAGE II	-15 to +15	6 –20	20 – 45
POAM III	-8 to +2	12 –20	24 – 43

NO₂ validation

iup

Instruments	rmd(%)	rms(%)	Altitude(km)
HALOE	-16 to +3	4 –16	25 – 38
SAGE II	-9 to +7	10 – 17	22 – 39

ife

In JASR, Amekudzi et

al. 2007

- NO₃ retrieved compared with simple and full photochemistry model outputs
- The altitude range considered is 22 40 km and latitude: 59°S 65°S

- Current results compared with previous and simple model results
- Error bars: 25% and 35% retrieval errors for v2.2 and 2.1 respectively
- Model assumed steady state condition for NO₃ formation

Summary and Conclusions

- The retrieval results (O₃, NO₂ and NO₃) from SCIAMACHY lunar occultation for 2003 2007 are presented.
 - The accuray of the retrieved profiles have been verified.
 - O₃ results show very good agreement with the other instruments (HALOE, SAGE II and POAM III) between 22 and 45 km.
 - □ NO₂ results using photochemical correction model show very good agreement with HALOE and SAGE II instruments (25-42)
 - NO₃ profiles comparisons with model calculations show promising results with accuracy less 30%
 - Reprocessing of complete dataset and validation activities are still in progress

Acknowledgements

We are thankful to the following institutions:

- ESA for providing SCIAMACHY level-1 data
- HALOE team at Hampton University and NASA LaRC for providing the HALOE level-2 data
- SAGE II team at NASA LaRC for providing SAGE II data
- German Ministry of Education and Research (BMBF), the DLR-Bonn, Unversity of Bremen and the State of Bremen for funding

$$Y_{s} = \int_{\Omega} \int_{\Delta\lambda} I_{0} S(\lambda,\lambda') F(\omega) e^{-\tau(h_{i},\lambda')} d\lambda' d\omega$$

Optimal Estimation equation

$$Y = K (x - x_{\circ}) + \varepsilon$$

Optimal Estimation solution is given as

 $x_{i+1} = x_0 + \left(K_i^T S_y^{-1} K_i + R \right)^{-1} K_i^T S_y^{-1} \\ \left(Y - Y_i + K_i \left(x_i - x_0 \right) \right)$

ENVISA

(1)

(2)

(3)

17/09/2007

- Very good agreement between 20-45 km with rmd within -15% to 15%
- The rms of bias 6% 20% and uncertainty < 2%

Very good agreement (24 - 43 km): The rmd -8% to +2%.

fe

The rms of bias within 12 - 20% and uncertainty < 4%.

