SEROPREVALENCE OF *TOXOPLASMA GONDII* INFECTION AMONG PREGNANT WOMEN IN THE ASUNAFO NORTH DISTRICT, BRONG-AHAFO REGION, GHANA

By CLEMENT EVANS ARYEE

A Thesis submitted to the School of Medical Science, the Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology in partial

fulfilment of the requirements for the degree of

MASTER OF SCIENCE

School of Medical Sciences, College of Health Sciences

AP3 Cak

November, 2015

DECLARATION

I hereby Declare that this submission is my own work towards the MSc and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text.

CLEMENT EVANS ARYEE		
(Student)	Signature	Date
Dr Alexander Yaw Debrah		
(Supervisor)	Signature	Date
Dr. T. B. Kwofie	W J SANE NO	
(Head of Department)	Signature	Date

DEDICATION

I dedicate this thesis to my dear wife Nana Adjoa Achiamaah Aryee and my lovely daughters Charlene Ampofo-Adu Gyamaah Aryee and Elizabeth Yeboah Aryee.

ACKNOWLEDGEMENTS

I first and foremost express my sincere gratitude to God Almighty. I could not have come this far without His grace and guidance. I glorify His name.

Secondly, I express my heartfelt appreciation to my supervisor Dr. Alexander Yaw Debrah of the Clinical Microbiology Department, SMS, KNUST for his continuous support, directions, counsels and patience through this journey.

Thirdly, I am very grateful to Mr. Albert Dompreh of the Serology Department, KATH, and the entire staff of the department for their immense support and contributions to this study.

Apart from the above mentioned personalities, I also want to acknowledge the support of Dr. Kwabena Kusi-Ofosuhene the medical superintendent of the Municipal Hospital, Goaso and his management and staff for allowing us use the facility as our research site.

I am also grateful for the assistance given to me during my sample collection by the laboratory staff especially Enock Adjetey and Francis Zakpo and the midwives at the antenatal care department.

Again, my greatest appreciation goes to all the pregnant women in the Asunafo North district who volunteered invaluable information to make the work a reality.

Apart from the aforementioned, I also thank my close friend Mr. William Agyemang Barning a mathematics tutor at Bechem Senior High School for his assistance in analysing the data obtained.

Furthermore, I cannot forget to acknowledge the support and contributions made by the staff and students of the Clinical Microbiology Department, SMS, KNUST.

Finally, I thank my family, friends and loved ones for their prayer, support and encouragements.

iv

TABLE OF CONTENTS

DECLARATION			 ii
DEDICATION			 iii
ACKNOWLEDGEMENTS			 iv
TABLE OF CONTENTS			 V
LIST OF TABLES			 viii
LIST OF FIGURES			 ix
LIST OF PLATES			 X
ABSTRACT			xi
	KVII	ICT	

CHAPTER ONE	1
INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.3 Justification	5
1.4 Objectives	
1.4.1 Main objective	6
1.4.2 Specific objectives	6

CHAPTER TWO	7
2.0 LITERATURE REVIEW	7
2.1 TOXOPLASMOSIS AND TOXOPLASMA GONDII	7
2.1.1 Epidemiology	7
2.1.3 Classification of <i>T. gondii</i>	
2.1.4 Genetic diversity of <i>T. gondii</i>	9
2.1.5 Morphology of <i>T. gondii</i>	10
2.1.5.1 Tachyzoites	11
2.1.5.2 Bradyzoites and tissue cysts	12
2.1.5.3 Oocysts	13
2.1.6 Life cycle of <i>T. gondii</i>	14
2.1.7 Transmission of <i>T. gondii</i>	17
2.1.8 Pathogenesis and clinical manifestations	19
2.1.9 Pregnancy and congenital toxoplasmosis	20
2.1.10 Diagnosis of T. gondii infection	22

2.1.10.1 Serological diagnosis	22
2.1.10.2 Molecular diagnosis	24
2.1.11 Treatment	25
2.1.12 Prevention and control	26

CHAPTER THREE	27
MATERIAL AND METHODS	27
3.1 Study Site	27
3.2 Study Design	27
3.3 Study Population	
3.4 Study Participants	28
3.5 Sample Size	28
3.6 Informed consent and Questionnaire administration	28
3.7 Sample Collection	28
3.7.1 Maternal Blood	28
3.8 Analyses of Samples	29
3.8.1 ELISA	29
3.8.1.1 Anti-Toxoplasma IgG Test	29
3.8.1.2 Anti-Toxoplasma IgM Test	
3.8.1.3 Cut-off Value	30
3.8.1.4 Calculation of specimen OD ratio	30
3.8.1.5 Assay Validation and Interpretation of results	
3.9 Data Analyses	31
AND A DESTRUCTION	
CHAPTER FOUR	32
RESULTS	32

4.1 Seroprevalence of Anti – T. gondii IgG and IgM	-32
4.2 General Characteristics of Study Participants	- 32

CHAPTER FIVE	- 39
DISCUSSION	- 39

CHAPTER SIX	42
6.1 CONCLUSIONS AND RECOMMENDATIONS	42

REFERENCES	-43
APPENDICES: APPENDIX Ia: Raw data of ELISA TEST RESULTS	- 56
APPENDIX Ib: Raw data of questionnaire matched with ELISA test results	-60
APPENDIX II: Questionnaire for pregnant women	-71
APPENDIX III: CONSENT FORM	-74

LIST OF TABLES

Table 4.1: Age distribution of respondents	33
Table 4.2: Distribution of the educational status of respondents	22
Table 4.3: Occupational distribution of respondents	34
Table 4.4: Distribution previous number of pregnancies of respondents	34
Table 4.5: Distribution of respondents' stage of pregnancy	35
Table 4.6: Seroprevalence of anti-T. gondii IgM among age groups	35
Table 4.7: Seroprevalence of anti-T.gondii IgM among age groups	36
Table 4.8: Relationship between stage occupation and anti-T gondii IgM	36
Table 4.9: Relationship between occupation and anti T gondii IgG	37
Table 4.10: Relationship between stage of pregnancy and anti T gondii IgG	37
Table 4.11: Relationship between stage of pregnancy and anti-T gondii IgM	38

LIST OF FIGURES

Figure 1: Schematic drawings of a tachyzoite (left) and a bradyzoite (right) of *T. gondii*.

The drawings are composites of electron micrographs. (Dubey et al., 1998) 11
Figure 2: T.gondii life cycle and pathogenesis (Source: Racaniello, 2010)17
Figure 3: Primary and secondary immunologic responses (Source: Sherris Medical

Microbiology)23	3
-----------------	---

LIST OF PLATES

Plate 1: Toxoplasma bradyzoites in tissue cyst (Source: Ferguson, 1987)13
Plate 2: A: Toxoplasma gondii sporulated oocyst in an unstained wet mount. B:
Toxoplasma gondii unsporulated oocyst in an unstained wet mount (Source: CDC,
2002)14
Plate 3: A girl with hydrocephalus due to congenital toxoplasmosis (Dubey and Beattie,
1988)21 KNUST

ABSTRACT

Toxoplasma gondii is the causative organism of toxoplasmosis and it can be acquired orally or congenitally. Congenital infection of neonates is found to be the cause of several neurological, brain and ophthalmic disorders later in life. The objectives of this study were to determine the seroprevalence of *T. gondii* among pregnant women attending antenatal clinic at Asunafo North district of the Brong-Ahafo region, Ghana.

One hundred and forty-six (146) pregnant women aged 16 to 40 years voluntarily took part in this study. Blood samples were collected and questionnaires were administered to them. ELISA test was done to detect anti-*T. gondii*IgG and IgM antibodies in their blood samples. The data collected was analysed using SPSS (Version 16). Analysis of the data collected showed 23.3% (34/146) and 67.8% (99/146) were positive for anti-*T. gondii*IgM and IgG respectively. Furthermore, a breakdown of the analysed data is as follows: 10.3% (15/146) tested positive for only anti-*T. gondii*IgM, 54.8% (80/146) also tested positive for only anti-*T. gondii*IgM and IgG.This gave a total prevalence of *anti-T gondii* antibodies tested to be 78.1% (114/146).This implies that 23.3% of the respondents were recently infected and 67.8% of the respondents were old infection.

Further studies need to be done to determine the rate of mother-to-child transmission of *T*. *gondii* infection in Ghana.

CHAPTER ONE

INTRODUCTION

1.1 Background

Toxoplasmosis is a zoonotic parasitic disease caused by the protozoan parasite *Toxoplasma gondii* (Dubey, 1998). The primary host of the parasite is the felid (cat) family but the parasite also infects most genera of warm-blooded animals, including humans (Dubey and Beattie, 1988). About 20% to 90% of the world's adult population in different regions are reported to have had contact with the parasite (Galván-Ramirez *et al.,* 1998). Though *Toxoplasma gondii* has been known as a potential human parasite for many years, it was only around 1969-70 that it was discovered as a coccidian parasite (Smyth, 1996). It is an obligate intracellular parasite and was first discovered in 1908 in a desert rodent, the Gondi rat (Dubey J.P, 2008).

Toxoplasma infection may be acquired orally or congenitaliy (Thulliez *et al.*, 1992). The disease is important for its serious implications in immuno-suppressed individuals including pregnant women (Halomen and Weiss, 2013). It also has severe consequences on foetuses in congenital transmission (Cenci-Goga *et al.*, 2011). Toxoplasmosis is asymptomatic and is often associated with short self-limiting illnesses in immunocompetent individuals (Halomen and Weiss, 2013). This is typical of both the acute and latent forms of the disease. The situation is however different in immunocompromised persons such as HIV/AIDS patients (Agyei and Lartey, 2004; Meisheri*et al.*, 1997), persons undergoing chemotherapy, organ transplant recipients, and sometimes in pregnant women in which the disease is usually deadly to their foetuses (Stepick-Biek *et al.*, 2002).

Transmission of the infection can be acquired (horizontal) or congenital (vertical) (Thulliez *et al.*, 1992). Toxoplasmosis can be acquired through the ingestion of oocysts shed in infected cats' faeces (Dubey, 2008). Other means of acquiring toxoplasmosis is ingesting soil, vegetables, and fruits contaminated with *T. gondii* oocysts, tachyzoites in unpasteurised milk, cysts in raw or undercooked infected meat (Dubey, 2008). Although beef and vegetables are potential sources of *T. gondii* infection, pork and lamb are known to be the most common sources of contamination (Boothroyd, 2009). Insects such as flies and cockroaches can also carry oocysts from cat faeces to food (Wallace, 1971). Needle stick injuries, cuts, blood transfusion and organ transplantation have also been mentioned as possible infection risk factors (Motoya *et al.*, 2004).

Congenital toxoplasmosis is a clinical state of the disease in the foetus that results from an acute primary infection acquired by the mother during pregnancy (Kaye, 2011). The mother-to-foetus transmission rates vary according to gestational age at the time of maternal infection (Stepick-Biek *et al.*, 2002) and the severity of congenital toxoplasmosis vary with the trimester during which infection is acquired (CDC, 2002). Maternal infection in the first trimester of gestation results in a transmission rate of 10-15%, which rises up to 68% in the third trimester (Thulliez *et al.*, 1992). This implies that maternal infections occurring early in pregnancy are less likely to be transmitted to the foetus than infections acquired later in pregnancy. This can result in severe consequences such as spontaneous abortion, still-birth, or the child may be born with some degree of abnormalities in the central nervous system including hydrocephalus, mental retardation and chorioretinitis(McAuley *et al.*, 1994; Guerina *et al.*, 1994). Toxoplasmosis can be prevented by washing vegetables and fruits before eating, and avoiding uncooked or improperly cooked

meat of infected animals (Dunn *et al.*, 1999). The practice of good personal hygiene should greatly be encouraged (Dunn *et al.*, 1999). The prevalence of *Toxoplasma gondii* infection in man varies depending on the alimentary habits, hygienic conditions, the presence of the definitive host (cat) and the climate (Walle *et al.*, 2013; Caballero-Ortega *et al.*, 2012; Dabritz and Conrad, 2010).

It is estimated that between 30% and 65% of all people worldwide are infected with toxoplasmosis (Tenter *et al.*, 2000). However, there is a large variation between countries; for example in France, the prevalence rate of total *T. gondii* antibodies lies at 88%, and in Germany, the Netherlands and Brazil, prevalence rates are around 80%, over 80% and 67% respectively. In Britain about 22% are carriers, and South Korea's rate is 4.3% (Zimmer, 2006).

Despite the above mentioned facts, early diagnosis of toxoplasmosis can help treat and manage the disease effectively (Garin and Eyles, 1958). Diagnoses in health centres usually involve anti-*Toxoplasma* antibody detection and parasite DNA detection (Araujo and Remington, 1990; Decoster *et al.*, 1988;Switaj *et al.*, 2005). Treatment regimen following diagnosis involves the use of anti-parasitic agents. Pyrimethamine and sulfadiazine have been known to be the best over the years (Remington *et al.*, 2006; Mui *et al.*, 2008).

Studies in Ghana however, show varying but high sero-prevalence values (51.2% to 92.5%) in humans, especially in pregnant women (Anteson *et al.*, 1978a; Anteson *et al.*, 1978b; Anteson *et al.*, 1980; Ayi *et al.*, 2005; Ayi *et al.*, 2009) and in animals (Arko-Mensah *et al.*, 2000; Van der Puije *et al.*, 2000). Ayi *et al.*,(2005) reported a high sero-prevalence of 89% among eye patients with eye lesions. Maternal toxoplasmosis as a risk factor for spontaneous abortion was investigated by Al-Hamdani and Mahdi(1997) and it was found to be more frequent in women with habitual abortion (18.5%) than in the

normal pregnancy group (5.9%). Furthermore, the study reported *Toxoplasma* antibodies were more prevalent in women having cats at home than in women who do not possess cats (Al-Hamdani and Mahdi, 1997). Toxoplasmic eye lesions in adults have been known to be a consequence of congenital infection at birth (McAuley *et al.*, 1994; Guerina *et al.*, 1994). A mother-to-child transmission risk of 38.4% was reported in 2012 in the Greater Accra region of Ghana (Kwofie *et al.*, 2012).

KNI I Z.

1.2 Problem Statement

Limited research has been conducted on toxoplasmosis in Ghana and the few conducted are in urban settings and southern parts of the country (Ayi *et al.*, 2005; Ayi *et al.*, 2009, Ayeh-Kumi *et al.*, 2010, Kwofi *et al.*, 2012). The seroprevalence of toxoplasmosis among pregnant women in the Asunafo North district has not been established. This study is the first ever conducted in the Brong-Ahafo Region which lies in the northern sector of the country and also for rural settings in future studies. Despite the fact that congenital *T. gondii* infections have potential significant health risks on the foetuses of women who acquire infection during pregnancy there is significantly high sero-prevalence among pregnant women in Ghana (Ayi *et al.*, 2009;Kwofi *et al.*, 2012), awareness of the disease among Ghanaians is very low; even among the educated group.

Generally, toxoplasmosis is mild for the mother as compared to the infected foetus (Kwofie *et al.*, 2012). Congenital toxoplasmosis could have serious socioeconomic and psychological effects on affected families (Kwofie *et al.*, 2012). The pain caused by the disease and the cost of care, especially with the case of hydrocephalus, mental retardation and even blindness could be very high (Kwofie *et al.*, 2012). Apart from the above mentioned risks, the psychological trauma of having miscarriage(s) or stillbirth(s) cannot

be overemphasized. This study and similar ones in future may inform policies makers to make it a policy to routinely screen pregnant women as part of their antenatal care and this will greatly reduce the rate of the congenital form of the disease.

In Ghana, despite the risk of toxoplasmosis to both mother and child, screening of pregnant women for *Toxoplasma* infection is not included in the free-of-charge antenatal care policy, due mainly to ignorance and lack of information. Such a lack of screening for risk of congenital toxoplasmosis predisposes countless newborns throughout the country to intra-uterine infection and development of mild to severe consequences, which could have been minimized by an early post-natal intervention. The neglect of toxoplasmosis as a disease of minimum or no public health importance has resulted in the ignorance of the public about the disease and its potential threats on the society.

1.3 Justification

Though some research has been conducted on *T. gondii* infection in Ghana, they were only sited in the coastal or southern parts of the country and the results have been generalised for the whole country despite differences in environmental conditions and population behaviour. Not much has been done to determine the real situation of the disease in the remaining two ecological zones of the country. This study will provide data on the prevalence of risk of *Toxoplasma* infection in pregnant women in the Asunafo North district of the Brong-Ahafo region of Ghana and its association with exposure to possible infection risk factors. Also the knowledge derived from this study will add up to existing information and enhance the prospects of policy formulation to routinely screen pregnant women and women of child bearing age for *Toxoplasma* infection to reduce the effects of the disease which could be pronounced in the later years of the child.

1.4 Objectives

1.4.1 Main objective

• To determine the prevalence of *Toxoplasma gondii* infection among pregnant women in the Asunafo North district.

1.4.2 Specific objectives

• To estimate the prevalence *T. gondii* infection among pregnant women in the Asunafo North district.

W CASH

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 TOXOPLASMOSIS AND TOXOPLASMA GONDII

2.1.1 Epidemiology

Toxoplasmosis is a zoonotic parasitic disease caused by the protozoan parasite *Toxoplasma gondii* (Dubey, 1998). The parasite infects most genera of warm-blooded animals, including humans, but the primary host is the felid or cat family (Dubey and Beattie, 1988). About 20% to 90% of the world's adult population in different regions is reported to have had contact with the parasite (Galván-Ramirez *et al.*, 1998). However, there are large variations in prevalence between and within different countries in animals and humans. The prevalence is directly proportional with age (Nester *et al.*, 2004).

Local fauna, environmental conditions, cultural habits, and social and economic patterns may influence human prevalence: in France, for example, around 88% of the population is carrier, probably due to a high consumption of raw and lightly cooked meat (Berger *et al.*, 2009). Germany, the Netherlands and Brazil have also shown to have high human prevalence of around 80%, over 80% and 67% respectively (Kortbeek, 1999).In Britain, about 22% are carriers and that of South Korea's rate is only4,3% (Lafferty, 2006).The Centre for Disease Control and Prevention noted that the overall seroprevalence in the United States as determined with specimens collected by the third National Health and Nutritional Assessment Survey (NHANES III) between1988 and 1994 was found to be 22.5%, with seroprevalence among women of childbearing age (15 to 44 years) to be15% (McQuillan*et al.*, 2004).West Africa might be widely endemic with human toxoplasmosis (Adou-Bryn et al., 2004) even though there has been no large scale survey to establish the prevalence. This accession is supported by case reports of probable toxoplasmosis infection (Watson and Zinsstag, 2000).Even though there has been no large scale survey to

establish the human prevalence of toxoplasmosis in Ghana, cross-sectional studies conducted in urban settings in the southern sector of the country suggest a higher prevalence (Ayi *et al.*, 2005; Ayi *et al.*, 2009; Ayeh-Kumi*et al.*, 2010).

2.1.2 A Historical Perspective

Though *Toxoplasma gondii* had been known as a potential human parasite for many years, its true nature as a coccidian was discovered only around 1969-70(Smyth, 1996). *T. gondii* is an obligate intracellular parasite (Roberts and Janovy, 2000) and was first discovered in 1908 in a desert rodent *Ctenodactylus gundii* by Nicolle and Manceaux (Nicolle and Manceaux, 1909). The parasite was named based on its morphology (mod. L. Toxo: arc or bow, plasma: life) and host (Nicolle and Manceaux, 1909).

The first human *T. gondii* infection was identified by three pathologists in an infant girl in New York, USA, in 1938 (Wolf *et al.*, 1939). The girl developed convulsive seizures when she was just three days old and lesions were noted in the maculae of both eyes through an ophthalmoscope. She died at one month old and an autopsy was performed. At post mortem, brain, spinal cord, and right eye were removed for examination. Free and intracellular *T. gondii* were found in lesions of encephalomyelitis and retinitis of the girl. In addition, viable *T. gondii* was isolated in animals inoculated with tissues from the girl. It was later found that the child became infected congenitally. Sabin (1942) made an extensive review of congenital toxoplasmosis and proposed that hydrocephalus or microcephalus, intracerebral calcification, and chorioretinitis are typical clinical signs of congenital toxoplasmosis. Prior to then, Sabin had reported toxoplasmosis in a six year old boy with the initials R. H. in Cincinnati, OH (Sabin, 1941). The strain isolated from the boy took its name after the initials (RH), hence becoming the famous RH strain. These events led to the discovery of other strains such as ocular toxoplasmosis (Sabin, 1941; Silveira *et al.*, 1988) and toxoplasmosis in other animals (Hartley and Marshall, 1957; Dubey and Beattie, 1988; Dubey, 2001).

2.1.3 Classification of T. gondii

Toxoplasma gondii is a member of the kingdom Protoctista, phylum Apicomplexa which consists of intracellular parasites that are characterised by polarized cell structure and a complex cytoskeletal and organelle arrangement at their apical end (Dubey, 1998). Other members of this phylum include the human pathogens *Plasmodium* (the causative agent of malaria) and *Cryptosporidium* as well as the animal pathogens *Eimeria* (the causative agent of chicken coccidiosis) and *Sarcocystis*.

T. gondii belongs to the class Conoidasidaea of which members are obligate intracellular parasites (they generally complete the sexual stage of their life cycles within a host's intestinal tract) and subclass Coccidiasina(Dubey, 1998). *T. gondii* belongs to order Eucoccidiorida (consists of parasites of humans, domesticated animals, wild animals, and birds) and the suborder Eimeriorina (includes many species that predominantly parasitize domestic animals, with few human parasites). It also belongs to the family Sarcocystidae (carry out a life cycle that requires more than one obligate host) (Dubey, 1998). *Toxoplasma* is one of the three well known genera; this genus requires a member of the *felidae* (Frenkel, 1970) to complete its sexual life cycle. Finally, it belongs to the species *gondii*; the only species in the genus *Toxoplasma* (Dubey, 1998).

2.1.4 Genetic diversity of *T. gondii*

The structure of *T. gondii* is highly clonal, despite a sexual phase in its life cycle (Howe and Sibley 1995; Sibley and Boothroyd, 1992; Sibley, 2003). Three major clonal types identified are types I, II, and III (Sibley, 2003). These were derived from recombination

between two highly similar ancestral lineages (Grigg *et al.*, 2001; Su *et al.*, 2003). Research shows that Type II strains are the causative agents of more than 70% of human cases of toxoplasmosis in the United States and France (Ajzenberg, 2002; Darde['], 1992; Howe and Sibley, 1995). Though Type II strains are relatively avirulent in mice they readily establish chronic infections which are characterized by tissue cysts that are highly infectious by the oral route in humans (Sibley, 2003; Su *et al.*, 2003).

Type I strains on the other hand, are more virulent and have a greater capacity to cross tissue barriers in vitro and in vivo (Su *et al.*, 2002, Sibley and Boothroyd, 1992; Barragan and Sibley, 2002).

2.1.5 Morphology of T. gondii

Toxoplasma gondii has three forms based on the developmental stages of its life cycle. These morphological forms are the tachyzoites (actively dividing Forms), bradyzoites (slowly dividing forms in tissue cysts) and oocysts (Dubey and Beattie, 1988). A detailed study of the various forms reveals the basic characteristic differences in their structures as shown in Figure 1.

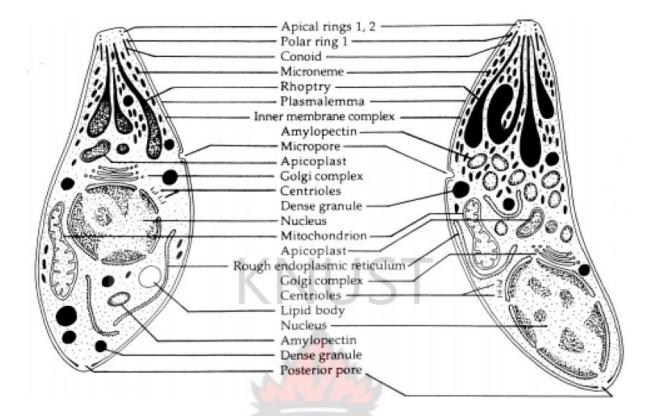


Figure 1: Schematic drawings of a tachyzoite (left) and a bradyzoite (right) of *T*. gondii. The drawings are composites of electron micrographs (Dubey *et al.*, 1998).

2.1.5.1 Tachyzoites

Frenkel(1973) described the stages of the parasite with observations he made on the behaviour of the parasite at each stage of development. The stage at which the parasite rapidly multiplied in any cell of the intermediate host and in the non-intestinal epithelial cells of the definitive host was described as the "tachyzoite" (tachos; speed in Greek). The tachyzoite is often crescent shaped, approximately 2mm by 6 mm (Fig. 1), with a pointed anterior (conoidal) end and a rounded posterior end. The internal structures of the tachyzoite consists of various organelles and inclusion bodies including a pellicle (outer covering), apical rings, polar rings, conoid, rhoptries, micronemes, micropore, mitochondrion, subpellicular microtubules, endoplasmic reticulum, golgi complex, ribosomes, rough and smooth endoplasmic reticula, micropore, nucleus, dense granules,

amylopectin granules (which may be absent), and a multiple-membrane-bound plastid-like organelle which has also been called a golgi adjunct or apicoplast (Dubey *et al.*, 1998).

2.1.5.2 Bradyzoites and tissue cysts

On the other hand, Frenkel used the term "bradyzoite" (brady; slow in Greek) to describe the stage of the parasite which multiplied slowly within a tissue cyst(Frenkel, 1973). Hundreds of crescent-shaped bradyzoites are enclosed by thin ($<0.5 \mu$ m thick) and elastic tissue cyst walls (Plate 1), each approximately 7 μ m by 1.5 μ m in size (Melhorn and Frenkel, 1980). The tissue cysts develop within the host cell cytoplasm and remain intracellular as the bradyzoites divide by endodyogeny (Ferguson and Hutchison, 1987). Tissue cysts vary in size; young tissue cysts may be as small as 5 μ m in diameter and contain only two bradyzoites, while older ones may contain hundreds of bradyzoites (Dubey *et al.*, 1998).

Bradyzoites are slightly structurally different from tachyzoites (Fig 1). They have a nucleus situated toward the posterior end, whereas the nucleus in tachyzoites is more centrally located. Bradyzoites are more slender than tachyzoites. Bradyzoites are less susceptible to destruction by proteolytic enzymes as compared to tachyzoites (Jacobs *et al.*, 1960). The prepatent period in cats after consumption of bradyzoites is shorter than that after consumption of tachyzoites (Dubey and Frenkel, 1967). Cysts are usually formed in neural tissues such as the eye and the brain, and the muscular tissues (Dubey and Frenkel, 1967).However, visceral organs including the lungs, kidneys, and liver can also be infected (Dubey and Frenkel, 1967). Intact tissue cysts probably do not cause any harm and can persist for the life of the host without causing a host inflammatory response (Dubey and Frenkel, 1967).

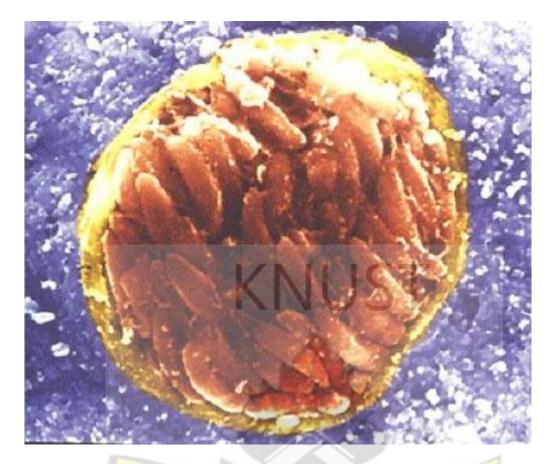


Plate 1: Toxoplasma bradyzoites in tissue cyst (Source: Ferguson, 1987)

2.1.5.3 Oocysts

Oocysts of *Toxoplasma gondii* are shed only in the faeces of their definitive hosts (domestic and wild felids) (Dubey and Beattie, 1988). Unsporulated oocysts are almost spherical (10mm by 12 mm in diameter) (CDC, 2002). Under the light microscope, the oocyst wall consists of two colourless layers (Plate 2A). Polar granules are absent but there are numerous sporonts in the oocyst. The oocyst does not survive in arid cool climates and can be destroyed by heating (Wilson and McAuley, 1999).

Under favourable environmental conditions such as aeration and temperature (4°C-37°C) sporulation takes place outside the cat within 1 to 5 days after excretion (Dubey and Beattie, 1988). Sporulated oocysts range between subspherical and ellipsoidal in shape (11 by 13 μ m in diameter) (CDC, 2002). Each oocyst contains two ellipsoidal sporocysts

which lack Stieda bodies (Plate 2A). Sporocysts measure 6mm by 8 mm (CDC, 2002). A sporocyst residuum is present but oocyst residuum is absent (CDC, 2002). Each sporocyst contains four sporozoites (CDC, 2002). After sporulation the oocysts become infectious and can retain its infectious state for approximately a year under favourable conditions i.e., in warm, moist soil (Dubey *et al.*, 1998).

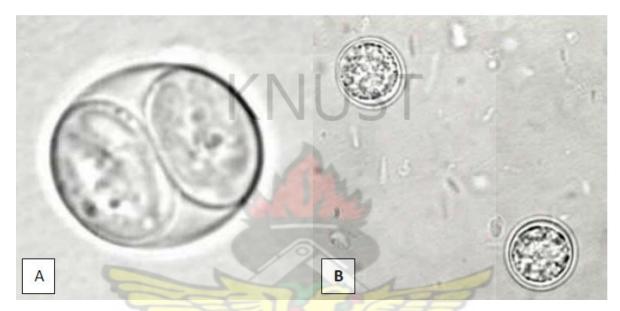


Plate 2A: *Toxoplasma gondii* unsporulated oocyst in an unstained wet mount.Plate2B:*Toxoplasma gondii* sporulated oocyst in an unstained wet mount(Source: CDC, 2002)

2.1.6 Life cycle of *T. gondii*

Toxoplasma gondii is capable of undergoing alternative generation (Dubey, 1998). Its life cycle consists of two phases, the sexual phase and the asexual phase (Dubey, 1998). The sexual phase takes place only in cats (both domestic and wild) and this makes cats the parasite's definitive host (Figure 2) (Dubey and Beatie, 1988). The asexual phase can take place in other warm-blooded animals including cats, mice, humans, and birds (Dubey and Beatie, 1988). These are called the intermediate host. Rodents are the typical intermediate hosts (Dubey and Beatie, 1988).

The definitive hosts of *T. gondii*(cats) become infected by ingesting sporulated oocysts or usually infected animals containing tachyzoites, bradyzoites or tissue cysts or by congenital infection (Dubey and Beatie, 1988).

Bradyzoites are released into the stomach and the small intestine by the action of proteolytic enzymes in the digestive tract (Jacobs *et al.*, 1960). The bradyzoites are transformed into tachyzoites through a process unknown asendodyogeny (Dubey, 1998). Endodyogeny is essentially a budding process in which two daughter cells are formed inside the original or mother cell, which is then consumed by the developing daughter cells (Sheffield and Melton, 1968).

After about two to five asexual generations in the cat, a sexual generation of micro – (male) and macro – (female) gametes is also found throughout the small intestine mostly in the ileum 3 - 15 days of infection (Dubey *et al.*, 1998).Fertilization occurs and the zygote develops into a thick walled oocyst (Dubey *et al.*, 1998). Mature oocysts are discharged through the intestinal lumen in the cat's faeces by the rapture of intestinal epithelial cells (Dubey *et al.*, 1998). The oocysts become infectious after sporulation and can remain infectious for months even in cold and dry climates (Dubey, 1977).

The asexual life cycle occurs in all intermediate hosts; including humans and felines (Dubey *et al.*, 1998). Ingestion of tissue cysts or oocysts is followed by infection of the intestinal epithelial cell by bradyzoites or sporozoites respectively (Dubey *et al.*, 1998). Through the same process of endodyogeny, these become tachyzoites (Dubey, 1998). Tachyzoites enter host cells, mainly nucleated cells such as immature red blood cells, white blood cells, and macrophages by actively penetrating through the host cell plasmalemma or by phagocytosis (Bonhomme *et al.*, 1992). Upon entry into the host cell, the tachyzoite becomes ovoid and is surrounded by a parasitophorous vacuole (PV), which appears to be derived from both the parasite and the host cell (Dubey, 1998). Inside the

vacuole, the tachyzoite multiplies itself by endodyogeny until the infected cell is filled with parasites and bursts, releasing other tachyzoites which infect other cells and tissues (Dubey and Beatie, 1988; Barragan *et al.*, 2002). Infected cells distribute tachyzoites throughout the body via the blood or lymph first to the mysentric lymph nodes, followed by the liver and lungs (Figure 2) (Dubey and Beatie, 1988; Barragan *et al.*, 2002). As a response to host acquired immunity in immunocompetent persons, pseudocysts are formed enclosing tachyzoites that eventually differentiate into bradyzoites (Isrealski *et al.*, 1993). These cysts are found predominantly in tissues with low immuno-activity, such as the central nervous system and muscle tissues where they may reside for the life of the host, hence the name tissue cysts (Black *et al.*, 2000, Dubey and Frenkel, 1972).

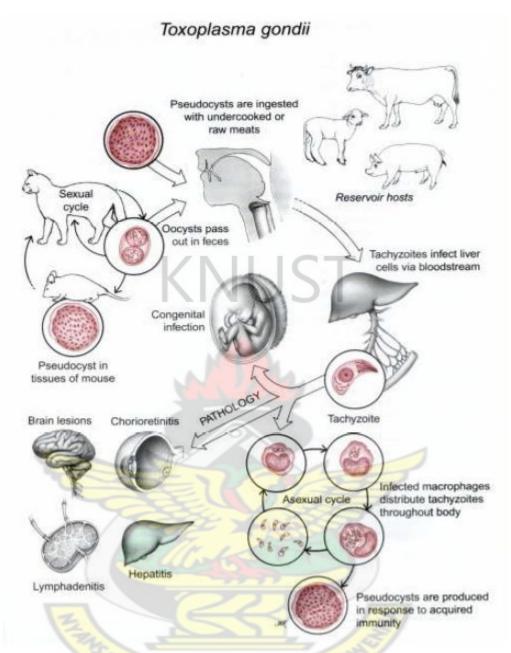


Figure 2: T. gondii life cycle and pathogenesis (Source: Racaniello, 2010)

2.1.7 Transmission of T. gondii

T. gondii is Transmitted by three principal routes: horizontally through tissue cysts and oocysts from cats and vertically (congenital). *Toxoplasma gondii* tissue cysts are transmitted horizontally to humans by the ingestion of infected raw or inadequately cooked meat such as pork, mutton, beef or that of any other warm-blooded animal (Dubey,

SANE NO

1994). One can also be infected through uncooked foods that have come in contact with infected meat (Dubey, 1994).

Apart from above route of infection, the parasite is also horizontally transmitted to humans when they inadvertently ingest oocysts that cats have passed in their faeces, either from a litter box or from soil (e.g., garden soil), on unwashed fruits or vegetables, or in unfiltered water (Remington *et al.*, 2001). The third route of transmission occurs when acutely infected pregnant women pass the infection vertically to the foetus in their womb. This can cause serious disease in the foetus (Remington *et al.*, 2001).

Transmission of the parasite is dependent on factors such as climate and rate of exposure to sources of T. gondii infection. Toxoplasma sero-positivity is reportedly higher in hot and humid climates (Feldman, 1974). Some parts of the world are therefore likely to have higher levels of toxoplasmosis prevalence than others. A high prevalence of 92.5% was reported for Ghana (Ayi et al., 2009), in France for example, around 88% of the population is carrier (Berger et al., 2009). Germany, the Netherlands and Brazil have also shown to have high human prevalence of around 80%, over 80% and 67% respectively (Kortbeek, 1999).In Britain, about 22% are carriers and that of South Korea's rate is only4.3% (Lafferty, 2006).The Centre for Disease Control and Prevention noted that the overall seroprevalence in the United States as determined with specimens collected by the third National Health and Nutritional Assessment Survey (NHANES III) between 1988 and 1994 was found to be 22.5%, with seroprevalence among women of childbearing age (15 to 44 years) to be15% (McQuillanet al., 2004). Some countries have reported high prevalence to T. gondii infection because of their level of exposure to the sources of infection. The very high seroprevalence of *Toxoplasma* in France is attributed to the eating of undercooked meat (Dubey, 1988). According to Krick and Remington, the frequency of T. gondii infection increases from 0.5% to 1.0% per year of age (Krick and Remington,

1973). Al-Hamdani *et al* reported in 1997 that the overall prevalence of antibodies gradually increases with age, reaching a peak value of 23.7% in the age group 35-45years (Al-Hamdani *et al.*, 1997).There is significant association between seroprevalence of *Toxoplasma gondii* antibodies and gender, with the male sex being at increased risk of *Toxoplasma gondii* seropositivity (Ayeh-Kumi, 2010).

2.1.8 Pathogenesis and clinical manifestations

Toxoplasma gondii infection is usually asymptomatic in both the definitive and intermediate hosts. In immunocompetent persons a powerful cell-mediated immune response develops against the tachyzoites to bring the infection under control. As a result, the tachyzoites go into the tissue cyst or bradyzoite stage (Gazzinelli *et al.*, 1993). Severe disease in humans is usually observed only in congenitally infected children and in immunosuppressed individuals, including patients with acquired immune deficiency syndrome (AIDS) (Dubey and Beatie, 1988).

The tachyzoite stage is responsible for tissue damage since there is often no toxin produced during *Toxoplasma gondii* infection (Remington *et al.*, 1995). Necrosis is therefore caused by intracellular multiplication of tachyzoites. The severity of clinical signs depends on the number of tachyzoites released, the ability of the host immune system to limit tachyzoites spread, and the organs damaged by the tachyzoites. Due to the ability of adult immunocompetent animals to control tachyzoites spread efficiently, toxoplasmosis is usually asymptomatic. However, in immunocompromised persons, particularly foetuses and persons with AIDS, tachyzoites spread systemically and cause interstitial pneumonia, myocarditis, hepatic necrosis, meningoencephalomyelitis, encephalitis, chorioretinitis, lymphadenopathy, and myositis (Remington *et al.*, 1995). Lymphadenitis is a common manifestation in humans. Infected nodes are tender and

discrete but not painful; the infection subsides in weeks or months. Other clinical signs include fever, malaise, fatigue, muscle pains, sore throat, headache, diarrhoea, cough, dyspnea, icterus, seizures, and death. *T. gondii* is also an important cause of abortions and stillbirths in humans and other intermediate hosts (Daffos *et al.*, 1988).

2.1.9 Pregnancy and congenital toxoplasmosis

The 2002 CDC report states that about 15% of women of childbearing age are immune to toxoplasmosis (CDC, 2002). Although pregnant women are not immunosuppressed in the classic sense, immunologic changes of pregnancy may induce a state of increased susceptibility to certain intracellular pathogens, including viruses, intracellular bacteria, and parasites (Daffos *et al.*, 1988).

Women infected with *T. gondii* infection before conception are with a rare exception of not transmitting the infection to their foetuses (Vogel *et al.*, 1996). Unfortunately, women infected with *T. gondii* during pregnancy can transmit the infection across the placenta to their foetuses. The undeveloped immune system of foetuses makes them highly venerable when their mothers become infected for the first time during pregnancy. The risk of congenital transmission is lowest (10–25%) when acute maternal infection occurs during the first trimester and highest (60–90%) when acute maternal infection occurs during the third trimester (Remington *et al.*, 2001; Foulon *et al.*, 1999; Dunn *et al.*, 1999).

However, the severity of disease is worse if infection is acquired in the first trimester (Remington *et al.*, 2001, Holliman, 1995). The overall risk of congenital infection from acute *T. gondii* infection during pregnancy is 20% to 50%. After infection of a pregnant woman, tachyzoites spread through the bloodstream to the placenta, causing cell destruction. Infection acquired during the first trimester may lead to spontaneous abortion, still birth, while infection acquired later during pregnancy is usually asymptomatic in the

neonate (Daffos *et al.*, 1988). Tachyzoites may also infect the foetus, causing damage in multiple organs (Guerina *et al.*, 1994). Congenitally acquired *T. gondii* often infects the brain and retina and can cause a wide spectrum of clinical disease. Mild disease may consist of slightly diminished vision, whereas severely diseased children may exhibit classical signs such as retinochoroiditis, hydrocephalus, convulsions, and intracerebral calcifications (Remington *et al.*, 1995). Hydrocephalus is the least common but most dramatic lesion of congenital toxoplasmosis (Plate 3). Ocular disease is the most common sequel (Georgie, 1994).

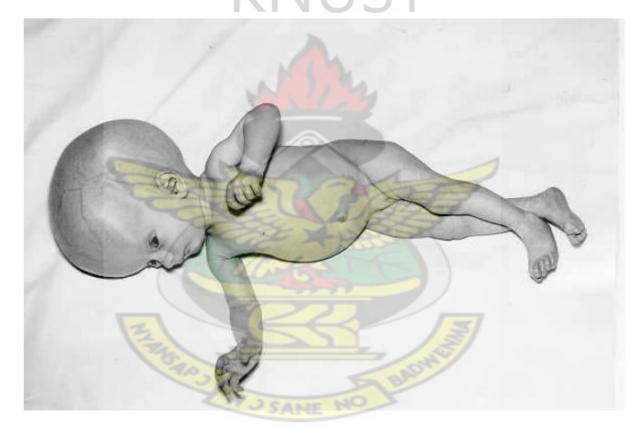


Plate 3: A girl with hydrocephalus due to congenital toxoplasmosis (Dubey and Beattie, 1988)

2.1.10 Diagnosis of T. gondii infection

It is very important to diagnosis *T. gondii* in pregnant women especially those who acquire their infection during gestation and in foetuses and new-borns who are congenitally infected (Thulliez *et al.*, 1992; Montoya, 2002; Remington *et al.*, 2001). Diagnosis can be done in the laboratory indirectly by serological methods and directly by polymerase chain reaction (PCR), hybridisation, and histological methods.

2.1.10.1 Serological diagnosis

There are diverse established serological tests for the diagnosis of *T. gondii* infection. Examples include Sabin-Feldman Dye Test, Indirect Flourenscent Antibody Test for IgG and/or IgM detection (IFA), Agglutination Test, Enzyme Immuno-assay(EIA), IgG-avidity for distinguishing between recent and acute infection and Enzyme Linked Immunosorbent Assay (ELISA). Immunoglobulin G (IgG) and ImmunoglobulinM (IgM), and in some cases, Immunoglobulin A (IgA) antibodies are measured for the detection of *T. gondii* (Aurojo and Remington, 1990; Decoster *et al.*, 1988). IgM are the first set of antibodies to appear when an infection occurs for the first time. They persist for a limited time, maybe six months, indicating an acute infection (Del Bono *et al.*, 1989). IgG titres rise shortly after IgM in a case of acute infection, but declines slowly afterwards and persists for a long time to build immunity against another future parasitemia (Figure3).

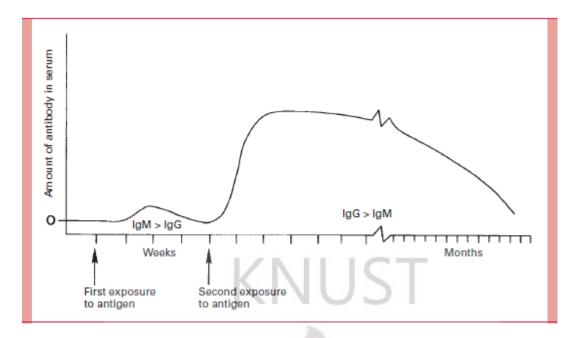


Figure 3: Primary and secondary immunologic responses (Source: Sherris *et al.*, 2004)

Diagnosis of acute toxoplasmosis is based on the demonstration of a significant increase in specific IgG antibody levels and/or the presence of specific IgMantibodies (Brooks *et al.*, 1987; Remington and Klein 1990). Serological tests on blood sample of a new born baby or of an umbilical cord can help detect a congenital infection or otherwise, although sometimes results can be ambiguous. IgG are passed from the mother to the baby through the placenta and could be of maternal origin. On the other hand, IgM cannot pass the placenta, so their presence in the baby is suggestive of an infection in the new-born. Nevertheless, not all infected babies produce IgM (Boyer, 1996). Thus the absence of IgM does not exclude congenital toxoplasmosis. In such a case, a follow-up is highly recommended. IgG-titres of maternal origin naturally decline in the first six months of a new-born baby. Persisting (or rising) IgG-titres prove congenital infection of the baby (Boyer, 1996). Therefore serological testing should be repeated until IgG turns negative,

exclusion of congenital toxoplasmosis cannot be confirmed until this is done (Trojovsky *et al.*, 1998).

2.1.10.2 Molecular diagnosis

The weak or lack of immunity in newly born babies and patients with immunodeficiency makes serological diagnosis impossible in such cases. The use of molecular diagnostic techniques is appropriate for such patients, as these techniques do not depend on the immunological status of the host (Switaj *et al.*, 2005). The presence of *T. gondii* in a biological sample can be diagnosed by molecular techniques aimed at detecting its genetic material. The sensitivity and specificity of PCR-based methods depend on an appropriate technique for isolation of genetic material (DNA) from samples, the characteristics of the DNA sequence chosen for amplification, and the parameters of the amplification reaction itself (Switaj *et al.*, 2005).

The sequence mostly used for detection of *T. gondii* the B1 gene which was first identified in 1989 by Burg *et al.*, (Burg *et al.*, 1989).The B1 gene has 35 copies in the genome. Although its function is not yet known, it is known to be very specific. Homan *et al* (2000) identified a 529-bp sequence, also specific for *T. gondii*, which has over 300 copies in the genome (85). A real time PCR amplification of the two sequences revealed a ten-fold specificity of the 529-bp sequence than the B1 sequence (Reischl *et al.*, 2003). Several other single-copy sequences, including the SAG1 SAG2, SAG3, SAG4, and GRA4 genes have been used as PCR targets (Pelloux *et al.*, 1998; Howe *et al.*, 1997; Rinder *et al.*, 1995). Su *et al.*,(2006)have also developed a set of markers which can provide a high resolution for the detection and genotyping of *T. gondii*. These markers are capable of distinguishing the three clonal lineages of *T. gondii* include SAG2, SAG3, BTUB and GRA6 among others. Dubey *et al.*,(2007)also developed a nested PCR-RFLP

protocol using these three way multilocus markers. The nested PCR gives higher resolution for the detection and genotyping of *T. gondii*. In their work with brain tissues of Arctic foxes in 2008 Prestrud *et al.*, (2008) confirmed the reproducibility of the protocol.

2.1.11 Treatment

Research on *T. gondii* has identified some chemotherapeutic agents that can restrict the growth of actively proliferating parasites which destroy cells and tissues and thereby, preventing damage to the brain and eye (Garin *et al.*, 1985, Araujo *et al.*, 1992, McLeod *et al.*, 1992; Derouin, 2001; Remington *et al.*, 2006; Meneceur *et al.*, 2008).

Pyrimethamine and sulfadiazine have been the main drugs administered for the treatment of toxoplasmosis (Garin *et al.*, 1985). Pyrimethamine interferes with the conversion of folic acid to folinic acid through dihydropteroate synthase (DHPS), whereas sulfadiazine interferes with the formation of folic acid from para-amino benzoic acid (Meneceur *et al.*, 2008). Human beings unlike *T.gondii* can utilize exogenous folinic acid for their cells (Meneceur*et al.*, 2008). The combined therapy of pyrimethamine and sulfadiazine has been seen to be much more active than either pyrimethamine or sulfadiazine alone and has been the "gold standard" to which other antimicrobial agents (single or combine) have been compared (Remington *et al.*, 2006; Mui *et al.*, 2008).

In 1958, Garin and Eyles discovered spiramycin as an antitoxoplasmic agent in mice (Garin and Eyles, 1998). Spiramycin has since been used as a prophylactic in women during pregnancy to reduce transmission of the parasite from mother to foetus. This is because it is non-toxic and does not cross the placenta (Garin and Eyles, 1998).

25

2.1.12 Prevention and control

Knowledge about the life cycle of *T. gondii* has aided in the prevention and control of *T. gondii* infection (Frenkel, 1973). Though *T. gondii* infection can be transmitted through various routes, the exposure risk of toxoplasmosis can be minimized by improved personal and environmental hygiene, meat processing standards and health education (Dunn *et al.*, 1999). Research reveals that *T. gondii* oocysts in infected meat can be killed when frozen to a temperature of about -20°C, heated to about 70°C or exposure to gamma radiation (Frenkel *et al.*, 1970). The information is being used by regulatory bodies to control the spread of infection through public education.

Several general sanitation and food safety measures are considered in the control of *Toxoplasma* infection. Among these are, proper hand washing, especially, after handling or having contact with a cat and its litter box, raw meat, fresh unwashed fruits and vegetables and soil, and before eating. Proper treatment of fruits and vegetables before eating is highly encouraged. All fruits and vegetables eaten raw should be well washed and peeled off before eating them. Drinking of treated water should be ensured.

Routine diagnosis of pregnant women is paramount in managing and controlling congenital infection. In other parts of the world (USA, Germany and France) immunisation of babies against *T. gondii* infection is a norm (Araujo, 1994).

WJ SANE NO

26

CHAPTER THREE

MATERIAL AND METHODS

3.1 Study Site

The antenatal clinic at the Municipal Hospital, Goaso in the Asunafo North district of Brong-Ahafo was the study site. The Municipal Hospital is the main referral hospital in the district; and also for the newly created Asunafo South district and part of the Western region. The site is in the northern sector of Ghana and is rural hence is appropriate for my problem statement.

3.2 Study Design

The study was a cross-sectional one involving screening of pregnant women during their antenatal care. Approval and Ethical clearance was obtained from the Committee on Human Research Publication and Ethics, SMS KNUST. Permission for the study was also obtained from the authorities at the Municipal Hospital, Goaso. Study participants were recruited based on informed consent. Questionnaires were administered to seek personal information, toxoplasmosis related knowledge, and exposure to *Toxoplasma* infection risk factors. Maternal venous blood was taken from volunteer pregnant women. The blood samples were processed appropriately and tested for *T. gondii* IgM and IgG using ELISA technique. The results were entered into computer data processing software and analysed appropriately according to the study objectives.

3.3 Study Population

The study population consisted of pregnant women attending antenatal clinic during the study period.

3.4 Study Participants

The study participants consisted of self-volunteered pregnant women within the study population. The participants were recruited prospectively and consecutively.

3.5 Sample Size

A hundred and seven pregnant women or more was required in this study for the crosssectional screening. This number, based on the previous prevalence of 92.5% reported by

Ayi et al in 2009, was generated using the formula:

N= $[Z^{2}(P)(1-P)]/(Error)^{2}$

Where N= Sample size, Z= 1.96, Error= 5%, P= 92.5%

 $N = [(1.96)^{2}(0.925)(1-0.925)]/(0.05)^{2}$ N = [(3.8416)(0.925)(0.075)]/(0.0025) N = 0.66511/(0.0025) N = 106.6044 $N \approx 107$

3.6 Informed consent and Questionnaire administration

Written consent was sought after the study had been explained to the participants and closed-ended questionnaires administered by the interviewer method following informed consent.

3.7 Sample Collection

3.7.1 Maternal Blood

About 3ml venous blood samples were drawn from participant's arm using sterile disposable hypodermic vacutainer needles and tubes. Serum was obtained by centrifugation of venous blood at 14000 rpm for 20 min and stored at -80°C until further use.

3.8 Analyses of Samples

3.8.1 ELISA

Commercial anti-*Toxoplasma* antibodies detection Enzyme Linked Immunosorbent Assay (ELISA) kits (CTK Biotech, Inc, USA) was used to detect IgG and IgM antibodies qualitatively from the serum samples according to manufacturer's instructions.

3.8.1.1 Anti-Toxoplasma IgG Test

Ninety-six well antigen-coated Microtitre plates provided in the kits was removed and allowed to attain room temperature. ELISA plate maps were designed and samples were dispensed into the wells according to the plate maps. All sample-designated wells were filled with 100µl of sample diluent and 10µl of each sample respectively. Positive and negative controls designated wells were filled with 100µl of positive and negative controls respectively. Plates were rocked for about twenty seconds to mix the samples.

Covered plates were incubated at 37°C for 30min. Plates were then washed five times with wash buffer (PBS with Tween 20) and excess liquid absorbed using an absorbent material. Wells were then filled with 100µl of Horse Radish Peroxidase (HRP)-anti human IgG conjugate. Covered plates were then incubated for another 30 min at 37°C. 100µl of TMB substrate were added to each well. Covered plates were incubated at 37°C for 30min in darkness. The reaction was stopped by adding 100µl of stop buffer to each well. The plates were then read for absorbance at a wavelength of 450nm against the blank well within 15 minutes after adding the stop solution using the Spectrophotometer, Multiskan assent (Thermo systems).

3.8.1.2 Anti-Toxoplasma IgM Test

The Procedure was the same for the anti- *Toxoplasma* IgG test, as per manufacturer's instructions.

3.8.1.3 Cut-off Value

The cut-off value was set using the formula: 0.15 + N. where N is the mean optical density

(OD) of the negative controls, as instructed by the manufacturer.

3.8.1.4 Calculation of specimen OD ratio

The OD ratio of each specimen was calculated by dividing the OD value by the cut-off value as provided by the manufacturer and shown below:

Specimen OD ratio = Specimen OD

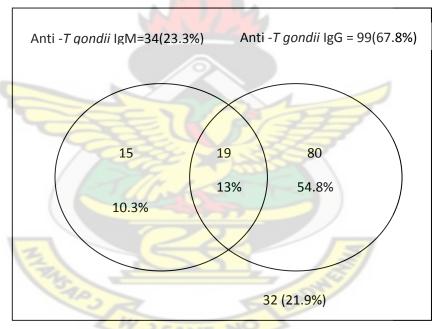
Cut-off Value

3.8.1.5 Assay Validation and Interpretation of results

The mean OD of the Toxo IgG and IgM positive controls must be $\geq 1.00/0.80$ respectively (required by international standards). The mean OD of the Toxo IgG and IgM negative controls also must be ≤ 0.10 (required by international standards). Once these requirements are met the results were considered valid and interpreted as follows: Positive samples were those whose specimen OD ratios were greater than or equal to 1.0 while samples with specimen OD ratio less than 1.0 were considered negative.

3.9 Data Analyses

A descriptive statistical analysis of the serological data in relation to the demographic data collected was done using SPSS (Statistical Package for Social Scientists) version 16 software.



CHAPTER FOUR

RESULTS

4.1 Seroprevalence of Anti – T. gondii IgG and IgM

ELISA test conducted on respondents' blood samples to detect anti-*T. gondii*IgM and IgG showed 23.3% (34/146) and 67.8% (99/146) were positive respectively (Figure 4). A breakdown of the analysed data was as follows: 10.3% (15/146) tested positive for only anti-*T. gondii*IgM, 54.8% (80/146) also tested positive for only anti-*T. gondii*IgG and 13% (19/146) tested positive for both anti-*T. gondii*IgM and IgG. This gave a total prevalence of anti-*T gondii* antibodies testing positive to be 78.1% (114/146) (Figure 4).

RESPONDENTS = 146(100%)

Figure 4: Venn diagram illustration of anti-T gondii anti-bodies prevalence

4.2 General Characteristics of Study Participants

A total of one hundred and forty six (146) women aged 16 to 40 years were involved in the study. The results showed 17.1%(25/146), 37.7%(55/146), 19.2%(28/146),

14.4%(21/146), and 11.6%(17/146) were in the age brackets 16-20, 21-25, 26-30, 31-35, and 36-40 respectively(Table 4.1).

Age ranges	Frequency	Percent
16-20	25	17.1
21-25	55	37.7
26-30	28	19.2
31-35	21	14.4
36-40	17	11.6
Total	146	100.0

 Table 4.1: Age distribution of respondents

Analysis of the data collected showed 56.2% (82/146) had attained elementary school, 28.8% (42/146) had no formal education, 11% (16/146) had some second cycle education, and 4.1% (6/146) had tertiary education (Table 4.2).

Table 4.2:	Distribution	of the educatio	onal status of	respondents

Educational status	Frequency	Percent
ELEMENTARY	82	56.2
NO FORMAL EDUC.	42	28.8
SECOND CYCLE EDUC.	16	11.0
TERTIARY EDUC.	6	4.1
Total	146	100.0

Regarding their employment, the results revealed that 44.5% (65/146) were farmers, 22.6% (33/146) were traders, 5.5% (8/146) do some kind of office work, 12.3% (18/146) also are vocationally employed and 15.1% (22/146) were unemployed (Table 4.3).

Occupation	Frequency	Percent
FARMING	65	44.5
OFFICE WORK	8	5.5
TRADING	33	22.6
VOCATIONAL JOB	18	12.3
UNEMPLOYED	22	15.1
Total	146	100.0
		12

 Table 4.3: Occupational distribution of respondents

Of the total population 88.4% (129/146) were multi-gravid (Table 4.4).

Table 4.4: Distribution previous number of pregnancies of respondents

Previous number of		150
pregnancy	Frequency	Percent
0	SAN 17	11.6
1	40	27.4
2	23	15.8
3	27	18.5
Above 3	39	26.7
Total	146	100.0

The results also showed that 24.7% (36/146), 41.6% (61/146) and 33.6% (49/146) of the respondents were in their first, second and third trimester of pregnancy respectively (Table 4.5).

Trimester of respondent's					
pregnancy	Frequency	Percent			
First trimester	36	24.7			
Second trimester	61	41.8			
Third trimester	49	33.6			
Total	146	100.0			

Table 4.5: Distribution of respondents' stage of pregnancy

The seroprevalence of anti-T gondii IgM and IgG among age groups of the participating pregnant women are shown in Table 4.6 and Table 4.7 respectively with the 21-25 age group range having the highest prevalence of T. gondii antibodies tested.

Table 4.6: Seroprevalence of anti-T. gondii IgM among age groups

13				1
AGE		anti- <i>T gondii</i> IgG		
	1 M	NEGATIVE	POSITIVE	Total
	16-20	20	5	25
	21-25	38	17	55
	26-30	26	2	28
	31-35	15	6	21
	36-40	13	4	17
Total		112	34	146

AGE		anti- <i>T gondii</i> IgG			
		NEGATIVE	POSITIVE	Total	
	16-20	12	13	25	
	21-25	20	35	55	
	26-30	4	24	28	
	31-35	5	16	21	
	36-40	6	11	17	
Total		47	99	146	
			\cup		

Table 4.7: Seroprevalence of anti-T. gondii IgG among age groups

Of the actively infected respondents 41.2% (14/34), 8.8% (3/34), 17.6 (6/34), 20.6% (7/34), and 11.8% (4/34) were farmers, office workers, traders, unemployed and vocationally employed respectively (Table 4.8).

	anti-T go	ndii IgM	
OCCUPATION	NEGATIVE	POSITIVE	Total
Farming	51	14(41.2)	65
Office work	5	3(8.8)	8
Trading	27	6(17.6)	33
Unemployed	15	7(20.6)	22
Vocational	14	4(11.8)	18
Total	112	34(100)	146

*percentage in parenthesis

Of the respondents who had past infection, 48.5% (48/99) were farmers, 6.1% (6/99) were office workers, 22.2% (22/99) were traders, 11.1% (11/99) were unemployed and 12.1% (12/99) do some kind of vocational job (Table 4.16).

Occupation		anti T go	ndii IgG	
		NEGATIVE	POSITIVE	Total
	Farming	17	48(48.5)	65
	Office work	2	6(6.1)	8
	Trading	11	22(22.2)	33
	Unemployed	11	11(11.1)	22
	Vocational	6	12(12.1)	18
Total		47	99(100)	146

Table 4.9: Relationship between occupation and anti T gondii IgG

It was also observed that respondents in their second trimester of pregnancy recorded the highest percentage of *T. gondii* infection (Table 4.10 and Table 4.11).

Table 4.10: Relationship	between stage of	pregnancy and ant	i <i>T gondii</i> IgG

STAGE OF CURRENT PREGNANCY		ondii IgG POSITIV	
	VE	Е	Total
1 st trimester	9	27	36
2 nd trimester	23	38	61
3 rd trimester	15	34	49
Total	47	99	146

STAGE OF CURRENT	DECNANCY	anti-T gon	dii IgM	
STACE OF CORRENT	FREUNANC I	NEGATIVE	POSITIVE	Total
	1 st trimester	26	10	36
	2 nd trimester	46	15	61
	3 rd trimester	40	9	49
Total		112	34	146

Table 4.11: Relationship between stage of pregnancy and anti-T gondii IgM

CHAPTER FIVE

DISCUSSION

Though acquisition of *Toxoplasma gondii* infection by pregnant women during gestation and its effects on both the mother and the foetus is preventable, it still remains the cause of tragic disease in the newborn (Remington et al, 2006). The aim of this study was to determine the seroprevalence of anti-T. gondiiIgM and IgG among pregnant women in the Asunafo North district of the Brong-Ahafo region, Ghana. An anti-T gondii IgG seroprevalence value of 67.8% (99/146) was found among the pregnant women. This seroprevalence value is lower compared to the 73.6% IgG prevalence reported by Ayi et al(2009) among pregnant women in the Greater Accra region but greater than the 37.6% value reported by Kwofieet al(2012)also among pregnant women in their third trimmest of pregnancy in the Greater Accra region of Ghana. The seroprevalence of 67.8% anti-T gondiiIgG among pregnant implies that this high percentage have had T. gondii infection in the past. The presence of anti-T gondii IgG antibodies in the sera of the pregnant women may also indicate latent infections, and therefore signifying the potential reoccurrence of the disease condition among the pregnant women putting their foetuses at risk. The study also recorded 23.3% (34/146) anti-*T gondii* IgM seroprevalence among the pregnant women. This implies that 23.3% of the pregnant women have had a recent infection. The very high seroprevalence of active infection could be as a result of primary infection or a reactivated past infection (especially, in the 54.8% that tested positive for both anti-T. gondii IgG) which is reported to occur in immuno-compromised individuals. However, antibodies, particularly IgM may not rise during reactivation of the encysted form of the parasite (Holliman, 1995). The presence of anti-T gondii IgM strongly suggests the presence of parasite antigens in the circulatory system of the pregnant women, implying possible presence of parasites, specifically tachyzoites, also in their circulatory system. Although prepregnancy *Toxoplasma* infection status of the pregnant women is not known, it could be deduced from the combination of antibodies detected and age of pregnancy that 6.9% (10/146) in their first trimester could have acquired the infection up to 3 months before conception or during pregnancy.

Montoya and Remington(2008) advised that if serological test results suggest a recently acquired infection, an effort should be made to determine whether the infection was likely acquired during gestation or shortly before conception in order to determine if the foetus is at risk. This implies that 6.9% (10/146) of the respondents who were in their first trimester of pregnancy stand 10% -15% risk of transmitting the infection congenitally with severe consequences to their foetus and this risk will rise up to 68% in the third trimester of pregnancy (Thulliez *et al.*, 1992)

Congenital infection of the feotus occurs if the mother acquires acute infection during pregnancy. An acute infection may result from a primary infection or re-activation of latent (chronic) infection in any case of immuno-depression (Luft and Remington, 1992; Isrealski and Remington, 1993). In a situation where the women got infected before the pregnancy, the presence of tissue cysts still poses a high risk of congenital transmission by increasing the chances of re-activation, i.e., the release of bradyzoites (which will later be transformed into tachyzoites) into the bloodstream, worsened by a suppression of one's immune system.

Follow-up on babies born to these mothers for about a year could help to really conclude on infectivity, as was done and published by Trojovsky *et al* (1998). They followed up on babies with anti-*T. gondii*IgG at birth for about a year. Babies that turned sero-negative eventually were declared negative while those that remained sero-positive were declared positive and treated. It is only through adequate follow-up screening that congenital transmission can be excluded (Trojovsky *et al.*, 1998).The prevalence of 78.1% observed indicates that most cases of newborns with toxoplasmosis will be detected. The high prevalence of toxoplasmosis may be due to consumption of undercooked meat, poor hygienic practises associated with food handling (Jones J.L. *et al.*, 2007) and soil contamination in Ghana (Afonso*et al.*, 2008). The distribution of toxoplasmosis is known to increase according to age (Nester E.W. *et al.*, 2004). However, in this study no significant association existed between the various age groups for IgG(P = 0.086) and IgM (P = 0.174). The p-value for the association between age and prevalence was greater than 0.05 (p>0.05) hence the conclusion that there is no significant association between age and prevalence of *Toxoplasma gondii* antibodies.

CHAPTER SIX

6.1 CONCLUSIONS AND RECOMMENDATIONS

This study has revealed that at least a third of the participating pregnant women have T. gondii infection. Most importantly, it has given a description of the T. gondii infection among pregnant women in the northern sector of Ghana and rural settings. These results indicate high risk of congenital transmission of T. gondii in Ghana and also provide baseline data for future work ascertain the rate of mother-to-child transmission in Ghana. The p-value for the association between age and prevalence was greater than 0.05 (p>0.05) hence the conclusion that there is no significant association between age and prevalence of *Toxoplasma gondii* antibodies. It would be appropriate to replicate this study in other districts of Ghana. Considering the outcome and health implications of this investigation, there is the need for further studies to determine the prevalence of toxoplasmosis among groups of people such as pregnant women and women of child bearing age, people living with HIV and AIDS, blood donors and the general population. It must be mentioned however that some of the cases negative for IgM antibodies may be early infections with very low levels of antibody response. It must also be noted that by being based on antibody detection, the assays performed in this study may have shown false negatives. Hence, seroprevalence analyses could be a low estimate of disease burden. Polymerase Chain Reaction (PCR) may be a more accurate method in delineating the infection rate.

REFERENCES

- Adou-Bryn KD, Ouhon J., Nemer J., Yapo C.G, Assoumou A., (2004).Serological survey of acquired toxoplasmosis in women of child-bearing age in Yopougon (Abidjan, Côte d'Ivoire). BullSoc Pathol Exot 97(5):345 – 348
- Afonso E., Lemoine M., Poulle M., Ravat M., Romand S., Thulliez P., Villena I, Aubert D., Rabilloud M., Riche B., (2008). Spatial distribution of soil contamination by *Toxoplasma gondii*in relation to cat defecation behaviour in an urban area. Int JParasitol 38(8-9):1017 1023
- Agyei, A. and Lartey, M. (2004).Spectrum of Opportunistic Infections Causing Death in Patients with AIDS in Ghana: Correlation of Clinical Diagnosis with Autopsy Results. *Conf Retrovir Opportunistic Infect 11, 8-11 (abstract no 574).*
- Ajzenberg, D., Cogne´, N., Paris, L., Bessieres, M. H., Thulliez, P., Fillisetti, D., Pelloux, H., Marty, P. and Darde, M.L. (2002).Genotype of 86 *Toxoplasma gondii* isolates associated with human congenital toxoplasmosis and correlation with clinical findings. *J Infect Dis.* 186:684–689.
- Al-Hamdani, M.M., Mahdi, N.K.,(1997).Toxoplasmosis among women with habitual abortion. *East MedHlth J.* 1997; 3 (2): 310-15.
- Anteson, R.K., Sekimoto, S., Furukawa, S. and Quakyi, I.A. (1978b). Studies on Toxoplasmosis in Ghana II. The Prevalence of Toxoplasmosis in a Group of Pregnant Women and their Neonates. A preliminary report. *Ghana Med J* 17, 203-206.
- Anteson, R.K., Sekimoto, S., Furukawa, S., Takao, Y. and Nyanotor, M.A. (1980). Studies on Toxoplasmosis in Ghana IV. Further Evidence of Congenital Diseases caused by *Toxoplasma gondii* Infections. *Ghana Med J.* 25, 146-148.

- Anteson, R.K., Sekimoto, S., Furukawa, S., Tkao, Y. and Nyanotor, M.A. (1978a). Studies on toxoplasmosis in Ghana I. The prevalence of Toxoplasma antibodies as measured by the haemagglutination (Eiken) test. *Gh. Med. J.* 17:147-149.
- Araujo, F.G., and Remington, J.S. (1990).IgA antibodies for diagnosis of acute congenital and acquired toxoplasmosis.*J Infect Dis* 162, 270-273.
- Araujo, F.G., Prokocimer, P., Lin, T., Remington, J.S. (1992). Activity of clarithromycin alone or in combination with other drugs for treatment of murine toxoplasmosis. *Antimicrob Agents Chemother*; 36:2454–2457.
- Arko-Mensah, J., Bosompem, K.M., Canacoo, J., Wastling, M., and Akanmori, B. D. (2000). The Seroprevalence of Toxoplasmosis in Pigs in Ghana, *Acta Tropica*, 76 (1),27-31.
- Ayeh-Kumi P. F., Opoku A.G., Kwakye-Nuako G., Dayie N.T.K.D., Asmah R.H., Obeng Nkrumah N., Lartey M., Sagoe A., Attipoe M.I., Osafo K.A., Kretchy J.P., (2010).Sero-prevalence of toxoplasmosis among patients visiting the Korle-Bu Teaching Hospital, Accra, Ghana.RIF 1(3):147 150
- Ayi, I., Akao, N., Bosompem, K.M., Akafo, S.K., Clarke, J., Nyador, L., Apea-Kubi, K. and Fujita, K. (2005). Development of Membrane-Bases Tests for the Detection of Urinary Antigens and Antibodies in Human Toxoplasmosis: Preliminary Studies in Ghanaian Patients. *Acta Tropica* 93, 151-159.
- Ayi, I., Edu, S.A.A., Apea-Kubi, K.A., Boamah, D., Bosompem, K.M.& Edoh, D. (2009).Sero-Epidemiology of Toxoplasmosis amongst Pregnant Women in the Greater Accra Region of Ghana. *Ghana Med J* 43 (3): 107–114.
- Barragan, A., and Sibley, L.D. (2002). Trans epithelial migration of *Toxoplasma gondii* is linked to parasite motility and virulence. *J Exp Med* 195:1625–1633.

- Berger F, Goulet V, Le Strat Y, Desenclos JC (2009). Toxoplasmosis among pregnant women in France: Risk factors and change of prevalence between 1995 and 2003. Rev Epidemiol Sante Publique 57(4):241 – 248
- Black, M.W., and Boothroyd, J.C. (2000).Lytic cycle of *Toxoplasma gondii*. *Microbiol mol biol rev* vol. 64, No. 3 pp. 607–623.
- Bonhomme, A., Pingret, L., and Pinon, J.M. (1992).Review: *Toxoplasma gondii* cellular invasion. *Parasitologia* 54:31–43.
- Boothroyd, J.C. (2009).Toxoplasmosis. In: Moselio S. *Encyclopedia of Microbiology*. 3rd ed. Oxford: Elservier; 2009. p. 732-43.
- Boyer, K.M. (1996).Diagnosis and treatment of congenital toxoplasmosis.Adv Pediatr Infect Dis 11, 449-67.
- Brooks, R.G., Mccabe, R.E. and Remington, J.S. (1987). Role of serology in the diagnosis of toxoplasmic lymphadenopathy. *Rev infect Dis*, 9: 1055-1062.
- Burg, J.L., Grover, C.M., Pouletty, P. and Boothroyd, J.C. (1989).Direct and sensitive detection of a pathogenic protozoan, *Toxoplasma gondii*, by polymerase chain reaction. *J Clin Microbiol* 27: 1787–1792.
- Caballero-Ortega, H., Uribe-Salas F.J., Conde-Glez, C.J., Cedillo-Pelaez, C., Vargas-Villavicencio, J.A., Luna-Pastén, H., *et al.* (2012). Seroprevalence and national distribution of human toxoplasmosis in Mexico: analysis of the 2000 and 2006 National Health Surveys. Trans R Soc Trop Med Hyg, 106 (11): 653-659.
- Cenci-Goga, B.T., Rossitto, P.V., Sechi, P., McCrindle, C.M., Cullor, J.S.(2011).Toxoplasma in animals, food, and humans: an old parasite of new concern. Foodborne Pathog Dis 2011; 8(7): 751-62.
- Centers for Disease Control and Prevention (2002).CDC Recommendations Regarding Selected Conditions Affecting Women's Health.*MMWR* 2000; 49(RR-2):57-75.

- Cheriis J.S., James J.C., Frederick C.N., Lawrence W.D., James J.P., John J.M., Stanley F., Murray R..R., (2004). An introduction to infectious diseases. 1st edn. Pp 130
- Dabritz, H.A., Conrad, P.A. (2010). Cats and Toxoplasma: implications for public health. Zoonoses Public Health57(1): 34-52.
- Daffos, F., Forestier, F., Capella-Pavlovsky, M., Thulliez, P., Aufrant, C., Valenti, D., And Cox, W. (1988). Prenatal management of 746 pregnancies at risk of congenital toxoplasmosis.*N.Engl.J.Med.* 31:271-5.
- Darde´, M.L., Bouteille, B., and Pestre-Alexandre, M. (1992).Isoenzyme analysis of 35 *Toxoplasma gondii* isolates and the biological and epidemiological implications.J *Parasitol* 78:786–794.
- Decoster, A., Darcy, F. and Caron, A. (1988).IgA antibodies against P30 as markers of congenital and acute toxoplasmosis. *Lancet*, 2: 1104-1107.
- Del Bono, V., Canessa, A., and Bruzzi, P. (1989).Significance of specific immunoglobulin *J clin Microbiol*, 27: 2133-2135.
- Derouin, F. (2001). Anti-toxoplasmosis drugs. Curr Opin Investig Drugs; 2:1368-1374.
- Dubey, J.P. (1977). Toxoplasma, Hammondia, Besnoitia, Sarcocystis, and other tissue cyst-forming coccidia of man and animals, p. 101–237. In J. P. Kreier (ed.), Parasitic protozoa, 3rd ed. Academic Press, Inc., New York, N.Y.
- Dubey, J.P. (1994). Toxoplasmosis. A VMA, 189:166-170.
- Dubey, J.P. (1998).Reexamination of resistance of *Toxoplasma gondii* tachyzoites to pepsin digestion.*J. Parasitology* 116:43–50.
- Dubey, J.P. (2001).Oocyst shedding by cats fed isolated bradyzoites and comparision of infectivity of bradyzoites of the VEG strain *Toxoplasma gondii* to cats and mice. J *Parasitol*, 87:215–219.

- Dubey, J.P. (2007). The history and life cycle of Toxoplasma gondii. In: Weiss, L.M., Kim, K. (Eds.), *Toxoplasma gondii*. The Model Apicomplexan: Perspectives and Methods. Academic Press, New York, pp. 1–17.
- Dubey, J.P. (2008). The History of Toxoplasma gondii The First 100 Years. J. Eukaryot Microbiol, 55(6): 467–475.
- Dubey, J.P. and Beattie, C.P. (1988).Toxoplasmosis of Animals and Man. CRC Press, Boca Raton, FL. p. 1–220.
- Dubey, J.P., and Frenkel, J.K. (1972).Cyst-induced toxoplasmosis in cats.J *Protozool*.19:155–177.
- Dubey, J.P., and Frenkel, J.K. (1976). Feline toxoplasmosis from acutely infected mice and the development of *Toxoplasma* cysts. *J. Protozool.* 23:537–546.
- Dubey, J.P., Lindsay, D.S. and Speer, C.A. (1998).Structures of *Toxoplasma gondii* Tachyzoites, Bradyzoites, and Sporozoites and Biology and Development of Tissue Cysts. . *Clin Microbiol Rev*, 11(2):267–299.
- Dubey, J.P., Miller, N.L. and Frenkel, J.K. (1970a). Characterization of the new fecal form of *Toxoplasma gondii.J Parasitol*, 56:447–456.
- Dubey, J.P., Miller, N.L., and Frenkel, J.K. (1970b). The *Toxoplasma gondii* oocyst from cat feces. *J Exp Med*, 132:636–662.
- Dunn, D., Wallon, M., Peyron, F.,*et al.* (1999).Mother-to-child transmission of toxoplasmosis: Risk estimates for clinical counselling. Lancet 353:1829–1833.
- Feldman, H. A. (1974).Toxoplasmosis: an overview. Bulletin of the New York Academy of Medicine 50, 110- 127.

- Ferguson, D.J.P., and Hutchison, W.M. (1987). An ultrastructural study of the early development and tissue cyst formation of *Toxoplasma gondii* in the brains of mice.*Parasitol Res* 73:483-49.
- Foulon, W., Villena, I., and Stray-Pedersen, B.(1999).Treatment of toxoplasmosis during pregnancy: A multicenter study of impact on fetal transmission and children's sequelae at age 1 year. Am J Obstet Gynecol 180:410–415.
- Frenkel, J.K. (1973). Toxoplasma in and around us. *Bio Science*, 23:343–352.
- Frenkel, J.K., Dubey, J.P., and Miller, N.L. (1970). *Toxoplasma gondii* in cats: fecal stages identified as coccidian oocysts. *Science*, 167:893–896.
- Galván-Ramirez M.L., Guillen-Vargas C., Saavedra-Duran R., Islos Rodriguez, A.(1998).Analysis of *Toxoplasma gondii* antigens with sera from toxoplasmosis patients. *Rev Soc Brasil Med Trop*, 31: 271-7.
- Garin, J.P., and Eyles, D.E. (1958).Le traitement de la toxoplasmose experimentale de la souris par la spiramycine. La Presse Me´dicale, 66:957–958.
- Garin, J.P., Brossier, N., Sung, R.T.M., and Moyne, T. (1985).Effect of pyrimethamine sulfadoxine (Fansidar) on an avirulent cystogenic strain of *Toxoplasma gondii* (Prugniaud strain) in white mice.*Bull Soc Pathol Exot Filiales*; 78:821–824.
- Gazzinelli, R.T., Denkers, E.Y., and Sher, A. (1993).Host resistance to *Toxoplasma gondii*: model for studying the selective induction of cell-mediated immunity byintracellular parasites. *Infect Agent Dis* 2:139, 1993.

Georgie, V.A. (1994). Management of toxoplasmosis. Drugs 48:179.

Grigg, M.E., Bonnefoy, S., Hehl, A.B., Suzuki, Y., and Boothroyd, J.C.(2001). Success and virulence in *Toxoplasma* as the result of sexual recombination between two distinct ancestries. *Science* 294:161–165.

- Guerina, N., Hsu, H., Meissner C., Maguire J., Lynfield R., Stech-enberg B.(1994).Neonatal serologic screening and early treatment for congenital *Toxoplasma gondii* infection.*N Engl J Med*; 330(26): 1858–63.
- Halonen, S.K., Weiss, L.M.(2013). Toxoplasmosis.Handb Clin Neurol; 114: 125-145. Hartley, W.J., and Marshall, S.C. (1957).Toxoplasmosis as a cause of ovine perinatal mortality.N Z Vet J, 5:119–124.
- Holfels, E., McLeod, R. (1994). Early and longitudinal evaluation of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago collaborative treatment trial. *Clin Infect Dis* 18: 38-72.
- Holliman, R.E. (1995).Congenital toxoplasmosis: prevention, screening and treatment. J Hosp Infect 30:179–190.
- Homan, W.L., Vercammen, M.,De Braekeleer, J., and Verschuern, H. (2000).Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in *Toxoplasma gondii*, and its use for diagnostic and quantitative PCR.Int J Parasitol; 30: 69–75.
- Howe, D.K., and Sibley, L.D. (1995).*Toxoplasma gondii* comprises three clonallineages: correlation of parasite genotype with human disease. *J Infect Dis* 172:1561–1566.
- Howe, D.K., Honore, S., Derouin, F., and Sibley, D.L. (1997).Determination of genotypes of *Toxoplasma gondii* strains isolated from patients with toxoplasmosis. J Clin Microbiol 35:1411–1414.
- Israelski, D.M., and Remington, J.S. (1993). Toxoplasmosis in non-AIDS immunocompromised host. *Curr Clin Top Infect Dis 13*: 322-56.
- Jacobs, L., Remington, J.S., and Melton, M.L. (1960). The resistance of the encysted form of *Toxoplasma gondii*. J Parasitol 46:11-21.

- Jones J.L., Kruszon-Moran D., Sanders-Lewis K., Wilson M., (2007). Toxoplasma gondii infection in the United States, 1999-2004, decline from the prior decade. Am J Trop Med Hyg77:405 – 410
- Kaye, A. (2011). Toxoplasmosis: diagnosis, treatment, and prevention in congenitally exposed infants. Journal of Pediatric Health Care; 25: 355-64.
- Kortbeek LM (1999).Toxoplasmosis in the Netherlands. NedTijdschr Klin Chem 24: 65 70
- Krick, J.A., and Remington, J.S. (1973).Toxoplasmosis in the adult an overview.N. *Engl. J. Med.* 298: 550–3.
- Kwofie, D.K., (2012). Risk assessment of mother-to-child transmission of Toxoplasma gondii among pregnant women in the Greater Accra Region. Dis 41: 1 74
- Lafferty K.D. (2006). Can the common brain parasite *Toxoplasma gondii* influence human culture? Proc Biol Sci273(1602):2749–2755
- McAuley, J., Boye, K.M., Patel, D., Beckman, J., Schey, W., Stein, L., Wolters, C., Johnson, D., Meier, P., Mack, D.G., Mets, M., Boyer, K., Swisher, C., Withers. S., Holfels, E., McLeod, R.(1994).Early and longitudinal evaluation of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago collaborative treatment trial. *Clin Infect Dis*; 18: 38-72.
- McLeod, R., Mack, D., Foss R., Boyer, K., Withers, S., Levin, S., Hubbel, J. (1992).Levels of pyrimethamine in sera and cerebrospinal and ventricular fluids from infants treated for congenital toxoplasmosis. *Antimicrob Ag Chemother*; 36:1040–1048.
- McQuillan G, Kruzson-Moran D, Kottin B, Curtin L, Lucas J,Kington R (2004). Racial differences in seroprevalence of 6infectious diseases in the United states: data from NHANESIII, 1988-1994. Am J Public Health 94(II):1952 1958

- Meisheri Y.V., Mehta S., Patel U., (1997).A prospective study of seroprevalence of Toxoplasmosis in general population and in HIV patients in Bombay. JPGM 43(4):93-97
- Melhorn, H., and Frenkel, J.K. (1980).Ultrastructural comparison of cysts and zoites of *Toxoplasma gondii*, *Sarcocystsis muris*, and *Hammondia hammondi* in skeletal muscle of mice.J Parasitol 66:59 - 67.
- Meneceur, P., Bouldouyre, M.A., Aubert, D., Villena, I., Menotti, J., Sauvage, V., Garin, J.F., and Derouin, F. (2008). In vitro susceptibility of various genotypic strains of *Toxoplasma gondii* to pyrimethamine, sulfadiazine and atovaquone. *Antimicrob Ag Chemother*; 52:1269–1277.
- Montoya, J.G.(2002). Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis 185:S73–82.
- Montoya, J.G., and Liesenfeld O. (2004). Toxoplasmosis. The Lancet; 363:1965-1976.
- Mui, E.J., Schiehser, G.A., Milhous, W.K., Hsu, H., Roberts, C.W., Kirisits, M., Muench, S., Rice, D., Dubey, J.P., Fowble, J.W., Rathod, P.K., Queener, S.F., Liu, S.R., Jacobus, D.P., McLeod, R.(2008). Novel triazine JPC-2067- B inhibits *Toxoplasma gondii in vitro* and *in vivo*. *PLoS Negl Trop Dis*; 2:e190.
- Nester EW, Anderson DG, Pearsall NN, and Nester MT (2004). Microbiology: a human perspective. 4th edn. McGraw Hill,New York. pp 755-757
- Nicolle, C., and Manceaux, L. (1909).Sur un protozoaire nouveau du gondi. C. R. Seances Acad Sci, 148:369–372.
- Pelloux, H., Guy, E. and Angelici, M.C. (1998). A second European collaborative study on polymerase chain reaction for *Toxoplasma gondii* involving 15 teams. *FEMS Microbiol Lett* 165: 231–237.

- Prestrud, K.W., Asbakk, K., Fuglei, E., Mork, T. and Tryland, M. (2008).Direct highresolution genotyping of Toxoplasma gondii in arctic foxes (Vulpes lagopus) in the remote arctic Svalbard archipelagoreveals widespread clonal Type II lineage.*Vet Parasitol* 158: 121-128Halonen SK, Weiss LM. Toxoplasmosis.Handb Clin Neurol 2013;114: 125-145.
- Reischl, U., Bretagne, S., Kruger, D., Ernaut, P. and Costa, J.M. (2003).Comparision of two DNA targets for the diagnosis of toxoplasmosis by real time PCR using fluorescence resonance energy transfer hybridization probes. *BMC Infect Dis* 3: 7.
- Remington, J. S., McLeod, R., Thuilliez, P., and Desmonts, G. (2001). Toxoplasmosis, p. 205–346.
- Remington, J.S., and Klein, J.O. (1990).Infectious Diseases Of The Fetus And The Newborn Infant. Philadelphia, W.B. Saunders, P. 89-195.
- Remington, J.S., McLeod, R., Thulliez, P., and Desmonts, G. (2006). Toxoplasmosis. In: Remington, J. S. & Klein, J. O. (ed.), Infectious Diseases of the Fetus and Newborn Infant. 5th ed. W. B. Saunders, Philadelphia, PA.p. 947–091.
- Remington, J.S., McLeond R., and Desmonts G. (1995).Infectious Diseases of the Foetus and Newborn Infant. Philadelphia: W.B. Saunders Company
- Rinder, H., Thomschke, A., Darde, M.L. and Loscher, T. (1995).Specific DNA polymorphism discriminate between virulence and non-virulence to mice in nine *Toxoplasma gondii* strains. *Mol Biochem Parasitol* 69: 123–126.
- Roberts, L.S., and Janovy, J. (2000).Foundations of Parasitology, 6th ed. McGraw -Hill Companies, 647.

Sabin, A.B. (1941). Toxoplasmic encephalitis in children. J Am Med Assoc, 116:801-807.

Sabin, A.B. (1942).Toxoplasmosis. A recently recognized disease of human beings. *Adv Pediatr*, 1:1–53.

- Sheffield, H.G., and Melton, M.L. (1968). The fine structure and reproduction of *Toxoplasma gondii.J. Parasitol.* 54:209–226.
- Sibley, L. D., and Boothroyd, J.C. (1992). Virulent strains of *Toxoplasma gondii* comprise a single clonal lineage. Nature (London) 359:82–85.
- Sibley, L. D., and Boothroyd, J.C. (1992). Virulent strains of *Toxoplasma gondii* comprise a single clonal lineage. Nature (London) 359:82–85.
- Sibley, L.D. (2003). Recent origins among ancient parasites. Vet Parasitol. 115:185–198.
- Silveira, C., Belfort, R., Burnier, M., and Nussenblatt, R. (1988). Acquired toxoplasmic infection as the cause of toxoplasmic retinochoroiditis in families. *Am* JOphthalmol, 106:362–364.
- Smyth, J.D. (1996). Animal Parasitology. Cambridge University Press, 534.
- Stepick-Biek, P., Thulliez, P., Edwards, M.E. (2002).Fungal and protozoan infections. In AA Fanaroff, RJ Martin (eds) Neonatal-Perinatal Medicine, Diseases of Fetus and Infant, 7th ed., Mosby, St Louis, p. 745-755.
- Su, C., Evans, D., Cole, R.H., Kissinger, J.C., Ajioka, J.W., and Sibley L.D. (2003).Recent expansion of Toxoplasma through enhanced oral transmission. *Science* 299:414–416.
- Su, C., Howe, D.K., Dubey, J.P., Ajioka, J.W., and Sibley.L.D. (2002).Identification of quantitative trait loci controlling acute virulence in *Toxoplasma gondii*.*Proc Natl Acad Sci USA* 99:10753–10758.
- Su, C., Zhang, X., and Dubey, J.P. (2006).Genotyping of *Toxoplasma gondii* by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. *Int. J. Parasitol.* 36, 841–848.

- Switaj, K., Master, A., Skrzypczak, M., and Zaborowski1 P. (2005).Recent trends in molecular diagnostics for *Toxoplasma gondii* infections. *Clin Microbiol and Inf*, 11-3, Pp 171-176.
- Tenter, A.M., Heckeroth, A.R., and Weiss, L.M. (2000).*Toxoplasma gondii*: from animals to humans. *Int J Parasitol* 30: 1217-158.
- Thulliez, P., Daffos, F. and Forestier, F. (1992).Diagnosis of *Toxoplasma* infection in the pregnant woman and the unborn child: current problems. *Scand J Infect Dis Suppl* 84:18–22.
- Trojovsky, A., Fast, Ch., Lercher, A., Pertl, B., Gratzl, R., Vander-Möse, A., Rosegger, H. (1998).Congenital Toxoplasmosis despite a well-established program for screening?*Mitt Österr Ges Tropenmed Parasitol*, 20:71-78.
- Van der Puije, W.N.A., Bosompem, K.M., Canacoo, E.A., Wastling, J.M. and Akanmori,
 B.D. (2000). The Prevalence of Anti-*Toxoplasma gondii* Antibodies in Ghanaian sheep and goats. *Acta Tropica*, 76(1), 15-20.
- Vogel, N., Kirisits, M., and Michael, E. (1996).Congenital toxoplasmosis transmitted from an immunologically competent mother infected before conception. *Clin Infect Dis* 23:1055–1060.
- Wallace, G.D. (1971). Experimental Transmission of *Toxoplasma gondii* by Filth Flies.*Am J Trop Med Hyg* 20, 411-413.
- Walle, F., Kebede, N., Tsegaye, A., Kassa, T. (2013).Seroprevalence and risk factors for toxoplasmosis in HIV infected and non-infected individuals in Bahir Dar, Northwest Ethiopia. Parasit Vectors6(1): 15.
- Watson P.A., Zinsstag J., (2000). Is screening for Toxoplasmosisappropriate in West Africa? Trop Doct 30(1):51 52

- Wilder, H.C. (1952).Toxoplasma chorioretinitis in adults. A M A Arch Ophthalmol, 48:127–136.
- Wilson, M., and McAuley, J.M. (1999).Toxoplasma. In: Murray PR, ed. Manual of clinical microbiology. 7th ed. Washington, D.C.: American Society for Microbiology.1374-82.
- Wolf, A., Cowen, D.,& Paige, B. (1939).Human toxoplasmosis: occurrence in infants as an encephalomyelitis verification by transmission to animals. Science, 89:226– 227.

APPENDICES: APPENDIX Ia: Raw data of ELISA TEST RESULTS

ELISA WORKSHEET 1 (anti T gondii IgG)

	1	2	3	4	5	6	7	8	9	10	11	12
А	BLANK	002	010	018	026	034	042	050	058	066	074	082
	OD=0.062	OD=0.117	OD=2.365	OD=2.241	OD=2.189	OD=1.729	OD=0.892	OD=1.991	OD=1.237	OD=0.564	OD=2.066	OD=1.158
		NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE
В	POSITIVE	003	011	019	027	035	043	051	059	067	075	083
	CONTROL	OD=1.826	OD=2.935	OD= 1.431	OD=2.425	OD=1.389	OD=0.569	OD=1.40 <mark>9</mark>	OD=2.060	OD=2.591	OD=2.688	OD=0.163
	OD=1.569	POSITIVE	POSITIVE	POSITIVE	POSIVE	POSITIVE	NEGATIVE	POSITIV <mark>E</mark>	POSITIVE	POSITIVE	POSITIVE	NEGATIVE
С	NEGATIVE	004	012	020	028	036	044	052	060	068	076	084
	CONTROL	OD=0.635	OD=2.336	OD=1.959	OD=1.241	OD=1.799	OD=1.946	OD=1.870	OD=2.423	OD=0.693	OD=2.66	OD=1.160
	OD=0.193	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIV <mark>E</mark>	POSITIVE	NEGATIVE	POSITIVE	POSITVE
							<u> </u>					
D	CALIBRATOR1	005	013	021	029	037	045	053	061	069	077	085
	(0.1IU/ml)	OD=1.311	OD=2.423	OD=1.929	OD=2.154	OD=2.365	OD=0.483	OD=2.079	2.048	OD=1.930	1.747	OD=1.159
	OD=0.125	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE
Е	CALIBRATOR2	006	014	022	030	038	046	054	062	070	078	086
	(32IU/ml)	OD=0.362	OD=2.106	OD=1.097	OD=2.211	OD=1.067	OD=2.396	OD=2.309	OD=2.396	OD=0.184	OD=2.008	OD=0.153
	OD=0.791	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POITIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	NEGATIVE
F		0.07	015	0.22	0.01	0.20	0.17	055	0.62	071	070	0.07
F	CALIBRATOR3	007	015	023	031	039	047	055	063	071	079	087
	(100IU/ml)	OD=0.317	OD=2.309	OD=1.034	2.447	2.049	OD=0.491	OD=0.472	OD=0.695	OD=0.728	OD=0.425	OD=0.152
C	OD=0.814	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
G	CALIBRATOR4	008 OD 1 721	016 OD 1262	024	032	040	048	056	064 OD 0.500	072	080 OD 2.022	088 OD 0.162
	(300IU/ml)	OD=1.731	OD=1.363	OD=0.449	2.200 POSITIVE	OD=2.230	OD=2.357	OD=0.664	OD=0.590	OD=0.299	OD=2.922	OD=0.163
тт	OD=1.146	POSITIVE 009	POSITIVE 017	NEGATIVE 025	033	POSITIVE	POSITIVE 049	NEGATIVE	NEGATIVE	NEGATIVE 073	POSITIVE 081	NEGATIVE 089
Н	001 1.579	009 OD=2.621	017 OD=1.338	025 OD=2.797	033 OD=1.200	041 OD=2.357	049 OD=1.865	057 OD=1.428	065 OD-0.605	073 OD=2.144	OD=0.161	OD=0.166
	POSITIVE	OD=2.621 POSITIVE	OD=1.558 POSITIVE	OD=2.797 POSITIVE	POSITIVE	OD=2.557 POSITIVE	POSITIVE	OD=1.428 POSITIVE	OD=0.695 NEGATIVE	OD=2.144 POSITIVE	NEGATIVE	NEGATIVE
	FUSITIVE	FUSHIVE	FOSITIVE	FOSITIVE	FUSITIVE	FOSITIVE	FUSITIVE	FUSITIVE	NEGATIVE	FOSITIVE	NEGATIVE	NEGATIVE

ELISA WORKSHEET 2 (anti T gondiiIgG)

	1	2	3	4	5	6	7	8	9	10	11
А	BLANK	091	099	107	115	123	131	139			
	OD=0.035	OD=2.011	OD=1.461	OD=1.397	OD=0.157	OD=0.199	OD=1.078	OD=0.701			
		POSITIVE	POSIVE	POSITIVE	NEGATIVE	NEGATIVE	POSITIVE	NEGATIVE			
В	POSITIVE	092	100	108	116	124	132	140			
	CONTROL	OD=2.268	O D=0.274	OD=1.067	OD=1.432	OD=1.237	OD=0.399	OD=1.313			
	OD=2.316	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE			
С	NEGATIVE	093	101	109	117	125	133	141			
	CONTROL	2.755	O D=0.263	OD=0.213	OD =0.579	OD=0.694	OD=1.117	OD=1.388			
	0.077	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE	POSITIVE			
D	CALIBRATOR1	094	102	110	118	126	134	142			
	(0.1IU/ml)	OD=3.014	OD=1.337	OD=0.323	OD=1.095	OD=1.138	OD=0.389	OD=1.286			
	OD=0.075	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE			
Е	CALIBRATOR2	095	103	111	119	127	135	143			
	(32IU/ml)	OD=2.376	OD=1.367	OD=0814	OD=1.244	OD=1.193	OD=0.782	OD=1.306			
	OD=1.366	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE			
F	CALIBRATOR3	096	104	112	120	128	136	144			
	(100IU/ml)	OD=2.621	OD=0.519	OD=1.357	OD=0.377	OD=0.216	OD=0.319	OD=1.192			
	OD=1.806	POSITIVE	NEGATIVE	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE			
G	CALIBRATOR4	097	105	113	121	129	137	145			
	(300IU/ml)	OD=1.106	OD=0.309	OD=0.179	OD=1.018	OD=1.245	OD=1.204	OD=1.162			
	OD=1.929	POSITIVE	NEGATIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITVE			
Η	090	098	106	114	122	130	138	146			
	OD=0.166	OD=1.141	OD=1.204	OD=1.254	OD=0.821	OD=1.305	OD=1.286	OD=1.181			
	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE			
				scw cal	ANE NO						

ELISA WORKSHEET 3(anti T gondiiIgM)

	1	2	3	4	5	6	7	8	9	10	11	12
А	BLANK	005	013	021	029	037	045	053	061	069	077	085
	OD=0.031	OD=0.628	OD=0.286	OD=0.507	OD=0.312	OD=0.325	OD=0.285	OD=0.476	OD=0.481	OD=0.582	OD=0.503	OD=0.105
		NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
В	POSITIVE	006	014	022	030	038	046	054	062	070	078	086
	CONTROL	OD=0.578	OD=0.305	OD=0.306	OD=0.323	OD=0.610	OD=0.730	OD=0.590	OD=0.544	OD=0.186	OD=0.630	OD=0.603
	OD=1.139	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
С	NEGATIVE	007	015	023	031	039	047	055	063	071	079	087
	CONTROL	OD=0.578	OD=0.515	OD=0.721	OD=0.351	OD=0.408	OD=0.307	OD=0.436	OD=0.399	OD=0224	OD=0.455	OD=0.737
	OD=0.073	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
D	CALIBRATOR	008	016	024	032	040	048	056	064	072	080	088
	(0.1IU/ml)	OD=0.377	OD=0.041	OD=0.670	OD=0.764	OD=0.313	OD=0.433	OD=0.316	OD=0.390	OD=0352	OD=0.608	OD=0.575
	OD=0.558	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
Е	001	009	017	025	033	041	049	057	065	073	081	089
	OD=0.593	OD=.566	OD=0.628	OD=0.531	OD=0.384	OD=0.819	OD=0.602	OD=0.707	OD=0.349	OD=0451	OD=0.887	OD=0.883
	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE
F	002	010	018	026	034	042	050	058	066	074	082	090
	OD=0.859	OD=0.694	OD=0.330	OD=0.478	OD=0.340	OD=0.731	OD=0.190	OD=0.109	OD=0.728	OD=1.091	OD=0.785	OD=1.998
	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE	NEGATIVE	POSITIVE
G	003	011	019	027	035	043	051	059	067	075	083	091
-	OD=0.789	OD=0.531	OD=0.376	OD=0.638	OD=0.510	OD=1.993	OD=0.533	OD=0.430	OD=0.720	OD=0.091	OD=1.098	OD=0.553
	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE	NEGATIVE
							1000					
Н	004	012	020	028	036	044	052	060	068	076	084	092
	OD=0.449	OD=0.486	OD=0.567	OD=0.496	OD=0.816	OD=1.801	OD=0.448	OD=0.501	OD=0.454	OD=0.307	OD=0.105	OD=0.387
	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	POSITIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE	NEGATIVE

ELISA WORKSHEET 4 (anti T gondiiIgM)

	1	2	3	4	5	6	7	8	9
А	BLANK	096	103	110	117	124	131	138	145
	OD=0.004	OD=0.795	OD=1.100	OD=1.018	OD=1.042	OD=1.210	OD=1.004	OD=1.065	OD=1.383
		NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE
В	POSITIVE	097	<u>104</u>	111	118	125	132	139	146
	CONTROL	OD=0.692	OD=1.628	OD=0.866	OD=1.345	OD1.020	OD=0.664	OD=1.722	OD=1.015
	OD=1.139	NEGATIVE	POSITIVE	NEGATIV	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	POSITIVE
~		000	105	E	110	10.6	100	1.40	
С	NEGATIVE	098	105	112	119	126	133	140	
	CONTROL	OD=0.738	OD=0.841	OD=0.747	OD=1.071	OD=0.636	OD=1.192	OD=1.268	
	OD=0.073	NEGATIVE	NEGATIV	NEGATIV	POSITIVE	NEGATIV	POSITIVE	POSITIVE	
D		000	E	E	100	E	124	1.4.1	
D	CALIBRATO	099	106	113 OD 1 010	120	127	134 OD 1.026	141 OD 1.027	
	\mathbf{R}	OD=0783	OD=0.791 NEGATIV	OD=1.910 POSITIVE	OD=0.665 NEGATIV	OD=0.755 NEGATIV	OD=1.926 POSITIVE	OD=1.027 POSITIVE	
	(0.1IU/ml) OD=0558	NEGATIVE	E	POSITIVE	E	E	POSITIVE	POSITIVE	
Е	093	100	107	114	121	128	135	142	
L	OD=0.638	OD=1.293	OD=0.748	OD=0.645	OD=1.985	OD=1.934	OD=0.854	OD=1.375	
	NEGATIVE	POSITIVE	NEGATIV	NEGATIV	POSITIVE	POSITIVE	NEGATIVE	POSITIVE	
	NLOITIVL	TODITIVE	E	E	TODITIVE	TODITIVE		I ODITIVE	
F	094	101	108	115	122	129	136	143	
	OD=0.721	OD=0.800	OD=1.198	OD=1.134	OD=1.244	OD=1.153	OD=0.802	OD=0.633	
	NEGATIVE	NEGATIVE	POSITIVE	POSITIVE	POSITIVE	POSITIVE	NEGATIVE	NEGATIV	
								Е	
G	095	102	109	116	123	130	137	144	
	OD=0.750	OD=0.699	OD =1.490	OD =1.650	OD=0.517	OD =0.411	OD=1.364	OD=0.605	
	NEGATIVE	NEGATIVE	POSITIVE	POSITIVE	NEGATIV	NEGATIV	POSITIVE	NEGATIV	
				100	E	E		Е	
				N	UMBER PO	SITIVE=34			

ID	AGE	EDUCATION	OCCUPATION	PNP	NS/A	SPP	PCH/N	HRM	MEATC	PREPM	TYPEM	KC	TK	VEGC	PREPV	IgM	IgG
1	40	O' LEVEL	FARMER	>3	0	7 to 9	yes	yes	yes	cooked till soft	pork, mutton,beef, chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
2	16	ELEMENTARY	STUDENT	0	0	4 to 6	yes	yes	yes	cooked till soft	mutton,beef, chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
3	18	ELEMENTARY	vocational	1	1	1to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	yes	Mutton, beef	yes	cooked	NEGATIVE	POSITIVE
4	31	ELEMENTARY	MARKET WOMAN	>3	1	7 to 9	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
5	25	ELEMENTARY	UNEMPLOYED	3	0	7 to 9	No	yes	yes	cooked till soft	pork, mutton, beef, chicken	yes	Mutton, beef	yes	cooked	NEGATIVE	POSITIVE
6	16	ELEMENTARY	STUDENT	1	0	7 to 9	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
7	22	ELEMENTARY	TRADER	2	2	1 to 3	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
8	20	NO FORMAL EDU	FARMER	2	0	4 to 6	No	yes	yes	cooked till soft	pork, mutton,beef, chicken	yes	Mutton, beef	yes	cooked	NEGATIVE	POSITIVE
9	35	ELEMENTARY	FARMER	>3	0	1 to 3	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
10	33	NO FORMAL EDU	TRADER	>3	0	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	yes	Mutton, beef	yes	cooked	NEGATIVE	POSITIVE
11	18	ELEMENTARY	STUDENT	0	0	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
12	20	ELEMENTARY	FARMER	1	0	7 to 9	yes	yes	Yes	cooked till soft	mutton,beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
13	29	ELEMENTARY	AGRO INDUSTRY	3	0	1 to 3	No	No	Yes	cooked till soft	mutton, beef, chicken	yes	mutton	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
14	31	SECONDARY	MARKET WOMAN	1	0	1 to 3	No	yes	yes	cooked till soft	pork, mutton,beef, chicken	yes	Mutton	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE

APPENDIX Ib: Raw data of questionnaire matched with ELISA test results

					0		N			cooked	mutton,	N			Fresh,		
15	23	NO FORMAL EDU	FARMER	>3	0	4 to 6	No	yes	yes	till soft	beef, chicken	No	NA	yes	steamed, cooked	NEGATIVE	POSITIVE
				>3	0		No	No	yes	cooked	mutton, beef,	No	NA	yes	Fresh, steamed,	NEGATIVE	POSITIVE
16	29	ELEMENTARY	FARMER			7 to 9			•	tough/soft	chicken			-	cooked		
		NO FORMAL		3	0		No	yes	yes	cooked	Beef,	No	NA	yes	Fresh, steamed,	NEGATIVE	POSITIVE
17	20	EDU	FARMER	5	0	4 to 6	110	yes	yes	till soft	chicken	110	1471	yes	cooked	REGRITTE	TODITIVE
				1	0			1.7		cooked	mutton, beef,		Mutton,			NEGATIVE	POSITIVE
18	24	ELEMENTARY	FARMER	1	0	1 to 3	yes	yes	yes	tough/soft	chicken	yes	beef, chicken	yes	cooked	NEGATIVE	POSITIVE
									LA C	55	pork,						
				>3	0		yes	yes	yes	cooked tough/soft	mutton, beef,	No	NA	yes	cooked	NEGATIVE	POSITIVE
19	38	ELEMENTARY	FARMER			4 to 6				tough/soft	chicken						
											pork,						
				2	0		yes	yes	yes	cooked till soft	mutton, beef,	No	NA	yes	cooked	NEGATIVE	POSITIVE
20	23	ELEMENTARY	FARMER			7 to 9					chicken						
				>3	0		yes	NOS	Vac	cooked	mutton, beef,	No	NA	yes	cooked	NEGATIVE	POSITIVE
21	40	ELEMENTARY	FARMER	/5	U	4 to 6	yes	yes	yes	till soft	chicken	110	NA	yes	COOKCU	NEORITVE	TOSITIVE
				1	1	9	No	A.	N	cooked	mutton, beef,	No	NA		1 4	NEGATIVE	POSITIVE
22	21	ELEMENTARY	STUDENT	1	1	1 to 3	NO	yes	yes	till soft	chicken	INO	NA	yes	cooked	NEGATIVE	POSITIVE
							1.2		X	cooked	mutton,						
23	18	ELEMENTARY	UNEMPLOYED	0	0	4 to 6	No	No	yes	till soft	beef, chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>	pork,						
		NO FORMAL		0	0	_	No	No	yes	cooked till soft	mutton, beef,	No	NA	yes	cooked	NEGATIVE	NEGATIVE
24	19	EDU	FARMER			4 to 6				thi soft	chicken						
						~	5				pork,		pork,				
				3	3		NO	yes	yes	cooked till soft	mutton, beef,	yes	mutton, beef,	yes	steamed	NEGATIVE	POSITIVE
25	30	TERTIARY	TEACHER			1 to 3	Z	WS	SANE	NO	chicken		chicken				
		NO FORMAL		2	2		No	yes	yes	cooked	mutton, beef,	No	NA	yes	cooked	NEGATIVE	POSITIVE
26	18	EDU	vocational	2	2	1 to 3	110	yes	yes	till soft	chicken	110	1123	yes	COOKCU	THEOMINE .	TOSTITVE

27	24	ELEMENTARY	UNEMPLOYED	1	0	7 to 9	No	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	Mutton	yes	cooked	NEGATIVE	POSITIVE
28	29	ELEMENTARY	FARMER	>3	0	4 to 6	yes	yes	yes	cooked till soft	pork, mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
29	25	ELEMENTARY	FARMER	2	0	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
30	29	ELEMENTARY	FARMER	>3	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
31	25	ELEMENTARY	FARMER	>3	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
32	25	NO FORMAL EDU	vocational	1	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
33	30	NO FORMAL EDU	FARMER	>3	2	7 to 9	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
34	28	NO FORMAL EDU	FARMER	>3	1	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
35	30	NO FORMAL EDU	FARMER	>3	0	7 to 9	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
36	26	NO FORMAL EDU	FARMER	>3	2	7 t <mark>o 9</mark>	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
37	27	TERTIARY	TEACHER	3	2	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
38	29	ELEMENTARY	FARMER	3	1	7 to 9	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
39	35			2	0	4 to 6	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE

40	37	ELEMENTARY	FARMER	>3	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
41	35	ELEMENTARY	TRADER	>3	0	7 to 9	yes	yes	yes	cooked tough/soft	Beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
42	18	ELEMENTARY	vocational	1	1	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
43	23	NO FORMAL EDU	FARMER	3	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
44	23	NO FORMAL EDU	FARMER	1	1	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
45	22	NO FORMAL EDU	FARMER	2	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
46	33	NO FORMAL EDU	FARMER	3	1	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
47	22	ELEMENTARY	FARMER	2	2	4 to 6	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
48	25	SECONDARY	FARMER	3	0	1 to 3	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
49	23	NO FORMAL EDU	FARMER	3	1	7 to 9	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
50	19	SECONDARY	TRADER	0	0	1 to 3	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
51	34	NO FORMAL EDU	FARMER	>3	1	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
52	28	ELEMENTARY	vocational	3	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE

53	20	ELEMENTARY	UNEMPLOYED	0	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
54	24	ELEMENTARY	TRADER	1	1	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
55	22	NO FORMAL EDU	FARMER	2	0	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
56	35	NO FORMAL EDU	vocational	>3	0	7 to 9	yes	yes	yes	cooked tough/soft	chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
57	28	NO FORMAL EDU	vocational	>3	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
58	18	NO FORMAL EDU	FARMER	1	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
59	22	ELEMENTARY	vocational	0	0	1 to 3	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
60	22	NO FORMAL EDU	MARKET WOMAN	1	0	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
61	21	NO FORMAL EDU	FARMER	3	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
62	40	NO FORMAL EDU	FARMER	>3	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
63	32	NO FORMAL EDU	FARMER	2	0	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
64	38	ELEMENTARY	TRADER	>3	1	1 to 3	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
65	25	NO FORMAL EDU	FARMER	2	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
66	28	NO FORMAL EDU	TRADER	2	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE

67	24	NO FORMAL EDU	FARMER	2	2	4 to 6	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
68	28	ELEMENTARY	TRADER	2	0	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
69	26	TERTIARY	OFFICE WORK	2	2	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
70	37	ELEMENTARY	FARMER	>3	0	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
71	23		FARMER	2	0	7 to 9	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
72	18	SECONDARY	STUDENT	0	0	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
73	22	SECONDARY	STUDENT	0	0	1 to 3	No	yes	yes	cooked tough/soft	pork, mutton,beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
74	23	ELEMENTARY	TRADER	0	0	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
75	24	ELEMENTARY	TRADER	2	1	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
76	23	ELEMENTARY	vocational	1	1	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
77	24	ELEMENTARY	TRADER	3	0	1 to 3	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
78	25	TERTIARY	OFFICE WORK	1	0	7 to 9	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
79	24	ELEMENTARY	TRADER	1	1	7 to 9	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE

80	27	SECONDARY	TRADER	1	0	7 to 9	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
81	28	ELEMENTARY	FARMER	3	1	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
82	27	TERTIARY	OFFICE WORK	1	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
83	24	ELEMENTARY	UNEMPLOYED	1	0	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	steamed	POSITIVE	NEGATIVE
84	28	NO FORMAL EDU	FARMER	1	1	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
85	26	ELEMENTARY	FARMER	3	0	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
86	24	ELEMENTARY	vocational	1	0	4 to 6	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
87	23	NO FORMAL EDU	MARKET WOMAN	3	0	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
88	37	ELEMENTARY	FARMER	>3	0	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
89	36	NO FORMAL EDU	FARMER	>3	0	4 to 6	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
90	21	SECONDARY	UNEMPLOYED	0	0	7 to 9	yes	yes	yes	cooked till soft	Beef, chicken	yes	chicken	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
91	30	ELEMENTARY	FARMER	>3	0	7 to 9	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE

92	25	NO FORMAL EDU	FARMER	3	0	4 to 6	yes	yes	yes	cooked till soft	mutton, beef, chicken	yes	mutton	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
93	24	SECONDARY	UNEMPLOYED	1	1	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
94	31	NO FORMAL EDU	FARMER	3	0	7 to 9	yes	yes	yes	cooked till soft	chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
95	40	SECONDARY	FARMER	>3	1	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
96	21	ELEMENTARY	vocational	3	0	1 to 3	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
97	30	NO FORMAL EDU	vocational	3	0	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
98	37	ELEMENTARY	MARKET WOMAN	>3	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	chicken	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
99	24	ELEMENTARY	MARKET WOMAN	1	1	7 to 9	yes	No	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
100	20	ELEMENTARY	UNEMPLOYED	1	0	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
101	23	ELEMENTARY	MARKET WOMAN	1	0	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
102	32	ELEMENTARY	MARKET WOMAN	3	0	7 to 9	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
103	24	SECONDARY	UNEMPLOYED	1	1	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
104	40	ELEMENTARY	FARMER	>3	0	4 to 6	No	yes	yes	cooked till soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
101	24	ELEMENTARY	MARKET WOMAN	2	1	4 to 6	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE

106	26	NO FORMAL EDU	MARKET WOMAN	2	0	7 to 9	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
107	28	NO FORMAL EDU	MARKET WOMAN	2	0	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
108	24	ELEMENTARY	MARKET WOMAN	1	0	1 to 3	yes	yes	yes	cooked till soft	pork, mutton, beef, chicken	yes	mutton	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
109	24	SECONDARY	OFFICE WORK	0	0	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	steamed, cooked	POSITIVE	NEGATIVE
110	23	ELEMENTARY	vocational	0	0	4 to 6	yes	yes	yes	cooked till soft	pork, mutton, beef, chicken	yes	Mutton, beef, chicken	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
111	20	ELEMENTARY	UNEMPLOYED	1	0	4 to 6	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
112	19	ELEMENTARY	STUDENT	0	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
113	24	ELEMENTARY	TRADER	3	1	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
114	25	ELEMENTARY	FARMER	2	0	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
115	25	ELEMENTARY	FARMER	3	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
116	20	ELEMENTARY	STUDENT	1	1	7 to 9	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
117	18	ELEMENTARY	STUDENT	0	0	4 to 6	No	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE

118	27	TERTIARY	OFFICE WORK	0	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
119	37	NO FORMAL EDU	FARMER	>3	0	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	pork, mutton, beef, chicken	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
120	35	ELEMENTARY	TRADER	>3	1	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
121	31	ELEMENTARY	TRADER	1	0	4 to 6	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
122	31	ELEMENTARY	vocational	1	0	1 to 3	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	Mutton, beef, chicken	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
123	19	ELEMENTARY	STUDENT	1	0	7 to 9	No	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	NEGATIVE
124	32	NO FORMAL EDU	FARMER	2	0	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	yes	beef	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
125	20	ELEMENTARY	STUDENT	1	1	1 to 3	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
126	35	ELEMENTARY	TRADER	3	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	mutton, beef	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
127	39	ELEMENTARY	TRADER	3	3	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	yes	Mutton, beef, chicken	yes	Fresh, steamed, cooked	NEGATIVE	POSITIVE
128	39	ELEMENTARY	FARMER	>3	1	1 to 3	No	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
129	22	SECONDARY	FARMER	>3	2	4 to 6	yes	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
130	18	ELEMENTARY	MARKET WOMAN	1	1	7 to 9	yes	yes	yes	cooked till soft	chicken	No	NA	yes	cooked	NEGATIVE	POSITIVE
131	23	SECONDARY	FARMER	1	1	7 to 9	yes	yes	yes	cooked tough/soft	beef	yes	chicken	yes	fresh and raw	POSITIVE	POSITIVE
132	23	ELEMENTARY	vocational	2	2	7 to 9	yes	yes	yes	cooked tough/soft	chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
133	40	NO FORMAL EDU	FARMER	>3	1	7 to 9	yes	yes	yes	cooked tough/soft	chicken	No	NA	yes	cooked	POSITIVE	POSITIVE

10.1				1	0	7 to	No	yes	yes	cooked		yes	mutton	yes	steamed	POSITIVE	NEGATIVE
134	22	ELEMENTARY	OFFICE WORK		-	9		J ***	J ***	tough/soft	mutton	J		<b>J</b> * *			
135	30	ELEMENTARY	FARMER	3	0	7 to 9	yes	yes	yes	cooked tough/soft	chicken	No	NA	yes	cooked	NEGATIVE	NEGATIVE
136	18	SECONDARY	UNEMPLOYED	1	0	7 to 9	No	yes	yes	cooked till soft	chicken	No	NA	yes	steamed	NEGATIVE	NEGATIVE
137	27	ELEMENTARY	FARMER	>3	0	1 to 3	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
138	35	ELEMENTARY	MARKET WOMAN	>3	0	1 to 3	No	yes	yes	cooked tough/soft	mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	POSITIVE
139	17	ELEMENTARY	FARMER	0	0	4 to 6	yes	yes	yes	cooked tough/soft	pork, mutton, beef, chicken	No	NA	yes	Fresh, steamed, cooked	POSITIVE	NEGATIVE
140	25	NO FORMAL EDU	vocational	1	1	7 to 9	yes	yes	yes	cooked till soft	beef	No	NA	yes	cooked	POSITIVE	POSITIVE
141	31	ELEMENTARY	FARMER	3	1	7 to 9	yes	yes	yes	cooked till soft	mutton, beef, chicken	No	NA	yes	cooked	POSITIVE	POSITIVE
142	24	ELEMENTARY	FARMER	1	0	1 to 3	yes	yes	yes	cooked till soft	chicken	No	NA	yes	fresh. Steamed, cooked	POSITIVE	POSITIVE
143	31	NO FORMAL EDU	FARMER	>3	0	4 to 6	No	yes	yes	cooked till soft	mutton, chicken	No	NA	No	NA	NEGATIVE	POSITIVE
144	38	NO FORMAL EDU	FARMER	>3	0	4 to 6	No	No	yes	cooked till soft	mutton	No	NA	yes	cooked	NEGATIVE	POSITIVE
145	33	ELEMENTARY	vocational	>3	0	4 to 6	No	No	yes	cooked till soft	pork, mutton, beef, chicken	No	NA	yes	steamed	POSITIVE	POSITIVE
146	23	SECONDARY	MARKET WOMAN	1	0	1 to 3	No	No	yes	cooked till soft	mutton, chicken	yes	mutton	yes	cooked	POSITIVE	POSITIVE



# **APPENDIX II: Questionnaire for pregnant women**

# SEROPREVALENCE OF TOXOPLASMA GONDII INFECTION AMONG

## PREGNANT WOMEN IN THE ASUNAFO NORTH DISTRICT OF BRONG-

## AHAFOREGION

### QUESTIONNAIRE FOR PREGNANT WOMEN

Kindly provide the needed information in the questionnaire below. You may tick the appropriate box or boxes (_) as indicated. Thank you.

# PART A: PERSONAL INFORMATION

ID No:.:...... Date:...../....... (dd/mm/year)

- 2. Area of residence: ...... Duration at residence: .....
- 4. Educational background
  - □ No formal education
  - □ Elementary
  - □ Secondary/Vocational
  - □ Tertiary (Polytechnic, university, etc)
  - □ Other (specify): .....
- 5. Where do you work?
  - $\Box$  Office (bank, school, etc)
  - □ Hospital (labour ward, theatre, accident/emergency centre, blood bank)
  - □ Hospital (records, OPD, nurse/mid-wife/theatre, wards)
  - □ Slaughter House

- ☐ Market (sell vegetables, raw meat)
- □ Vocational Centre (carpentry, fitting mechanic)
- □ Other (specify).....

## PART B: TOXOPLASMOSIS-RELATED INFORMATION

- 6. Have you ever heard of "Toxoplasma or Toxoplasmosis"?  $\Box$  Yes  $\Box$  No
- 7. Have you ever been tested for *Toxoplasma* infection?  $\Box$  Yes  $\Box$  No

If your answer to Question (Qu.) 7. is "No", please skip Qu. 8, 9 and 10. Go to Qu. 11 If "Yes", please answer Qu. 8, 9 and 10 before continuing with Qu. 11

8. When was the test conducted?

 $\Box$  3 to 6 months ago  $\Box$  Up to a year ago  $\Box$  More than a year ago

□ Other (specify).....

9. What was the result? Positive Negative No idea

10. If positive, did you receive any treatment? 🗌 Yes 🗌 No

11. Would you like to be tested for *Toxoplasma* infection during this pregnancy?
□ Yes □ No

12. How many pregnancies have you had before the current pregnancy? None (this is my first)

 $\Box$  One  $\Box$  Two  $\Box$  Three  $\Box$  More than three

13. Have you ever had a stillbirth, spontaneous abortion(s) [miscarriage(s)]?□ Once □ Twice □ Three times or more □ Never

14. How old is your current pregnancy?

 $\Box$  1 to 3 months  $\Box$  4 to 6 months  $\Box$  7 to 9 months

15. Do you own a cat or have cats in your house or your neighbourhood? $\Box$ Yes $\Box$ No
If "Yes" to Qu. 15, please answer Qu. 16. If "No" skip Qu. 16
16. Do you have a sand box for your cat? $\Box$ Yes $\Box$ No
17. Have you ever handled raw meat from pig, sheep, goat or cow? $\Box$ Yes $\Box$ No
18. Do you eat meat?  Yes No, I am a vegetarian
If your answer to Qu. 18 is "No" please skip and go to Qu. 21
19. In which form do you often eat your meat?
□Cooked but tough □Cooked till soft □Cooked tough or soft
20. Which meat do you eat? (Please choose as many as applicable.) □ Pork □ Goat meat/mutton □ Beef □ Chicken □ No idea □ Others (specify)
21. Do you eat khebabs? 🗆 Yes 📄 No
If yes, what type do you enjoy most?
□Pork □ Goat meat/mutton □ Beef □ Chicken □ No idea
□ Others (specify)
22. Are you a lover of vegetables? Yes No
23. In what state do you prefer your vegetables before eating them? □ Fresh and raw □ Steamed □ Cooked
24. Will you allow a blood sample to be taken from you the purpose of this study? $\Box$ Yes $\Box$ No

Thank you very much

#### **APPENDIX III: CONSENT FORM**

#### **CONSENT FORM**

#### Statement of person obtaining informed consent:

I have fully explained this research to	and
have given sufficient information about the study, including that on procedures, risks	and
benefits, to enable the prospective participant make an informed decision to or not	t to
participate.	

DATE: _____

NAME:

### Statement of person giving consent:

I have read the information on this study/research or have had it translated into a language I understand. I have also talked it over with the interviewer to my satisfaction.

I understand that my participation is voluntary (not compulsory).

I know enough about the purpose, methods, risks and benefits of the research study to decide that I want to take part in it.

I understand that I may freely stop being part of this study at any time without having to explain myself.

I have received a copy of this information leaflet and consent form to keep for myself.

NAME:_____

DATE:	SIC	GNATURE/TH	IUMB	PRINT:		
		KN	U.	ST		
Statement of	person witnessing	consent (Pro	cess fo	r Non-Literate	e Parti	cipants):
Ι		(Name	e of W	itness) certify t	hat inf	ormation given
to						<b>,</b> .
(Name of Participant), in the local language, is a true reflection of what I have read from the study Participant Information Leaflet, attached.						
WITNESS'	SIGNATURE	(maintain	if	participant	is	non-literate):
		SANE				