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ABSTRACT
A Markov chain is a natural probability model for accounts receivable. If the transition
matrix of the Markov chain were known, forecasts could be done for future loans for each
state. The secondary data for this study was collected from a Ghana-based financial
institution that operates through 149 branches nationwide . The data was collected over a

span of two years from January 2010 to December 2011.

The objectives of the study are as follow:
(1) To obtain optimal loan allocdtioh ix palicy, this tould be used as guiding principle
on future allocation purpose.

(2) To forecast loan disbursement proportions.

This paper applies a Markov chain modgel to subprime loans that appear neither
homogeneous nor stationary to obtain optimal loan allocation mix policy, and forecast loan
disbursement proportions. Realizing its.importance Markov Chain Market Share model was
applied to inter temporal data of loan disbursements of the selected bank. |

By applying Estimate Transition Matrix, scope for probability-of lean switching among its
types was calculated to suggest-the probable mix of loan-portfolio. From the résults it was
suggested that the loan proportions.among va;:ious- types were as follows: Housing (19.40 %),
Others (29.30 %), Business (29.30 %) and Education (21.80 %). These proportions can be

taken as guideline percentage within the government norms for the priority sector.
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CHAPTER ONE
INTRODUCTION

1.0  Background of the Study

In the mid-80’s loan processing was mostly a manual process. Consumers filled out paper
applications and this information was entered into a proprietary machine provided by the
credit bureaus. The credit bureaus did not score or grade the applicant, but simply provided a
list of debts and payment history to the lender. The loan officer’s job was to review this

information and attempt to make an objective loan decision.

In the late 80’s the Fair Isaac Corporation (EICO) devised the FICO score in an effort to
predict a consumer’s likelihood to have a major derogatory event in the next two years.
Initially this was used sparingly butiover the'next 10 years the FICO score became the

guideline for credit decisions.

As credit decisioning became simpler, loan ongination began to be automated. Whereas

most lenders were typing loan contracts'in the'early 80s, by the early 90°s most were using

computers t{:jggepate loan-documents. As the 90°s eame to a close, ioan application
p_rEE:_»_e_s_g_iyg became more prevalent. Instead of simply reviewing paper applications for
making a loan decision, many lenders used a computer system to actually process the
application as well as create the loan documents. Today as the internet becomes a more
integral part of life, consumers are beginning to prefer to apply for loans electronically.

Automating the process In order to improve the customer experience and speed up the

process you need the right tools.

:. .
l';:,: tlll. w
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First, you need a secure method of receiving loan applications via the internet. Then you
need the ability to automatically retrieve the credit report and render a timely decision to the
customer. Once the decision has been rendered you need to originate the loan and produce
the loan documentation. Upon acceptance of the loan terms by the consumer the loan

information must be transferred to a loan servicing system.

The Kwik-Loan Solution Kwik-Loan Solves\this.problem Awith a comprehensive software
solution that handles all aspects of the loan process, from application to servicing. The Kwik-
App and Kwik Dealer modules handle the entry of consumer and dealer loan applications.
Once these applications are.submitted, Kwik-Decision takes over and renders an automatic

decision (approved, denied or pending) to.the applicant. -Manual decisions on pending

applications can be rendered viaithe Kwik-Manage module..Once a loan has been approved

the documents can be produced and ransferred electronically foreustomer acceptance. Then

-

-

they may be transferred tu’ﬂﬂy OS-system via Kwik-Connect or automatically

completed within the EnCompass SAAS solution.

About Compass Technologies Founded in 1999, and headquartered in Buford, GA, Compass
Technologies is an established leader in providing a total loan software solution to the loan

industry.



Jack Marinel Submitted on June 28, 2010

I presume the intent of the above opinion is to suggest that "assumable" loans would be a
viable financing alternative in today's real estate market.Yet, as a California real estate
licensee since 1978 I have somewhat of a different recall of the events that took place. See
Wellenkamp v. Bank of America; Invalidation of Automatically enforceable Due-on-sale
Clauses at http://www .jstor.org/pss/3480063

Many lenders had "due-on-sale clauses" in their trust deeds for years leading up to the
landmark decision by California Supreme Court in 1978.

In 1975 Cynthia Wellenkamp hired aftorney¥Hred Cranc'to tepresent her as a defendant in a
case where Bank of America was the plaintiffi, BofA attempted to enforce the due-on-sale
clause found in the trust deed signed by the prior owners Birdie, Fred and Dorothy Mans. Ms.
Wellkenkamp had not assumed the existingdoanybut merely took title to an owner occupied
home, "subject to" the $19;100 loan-from BefA. The case went all the way to the California

Supreme Court.

In 1978, the court ruled BofA could not justify calling thenote due and payable. One reason
was that BofA had more security for their 1oan than they did when they made the loan to the
original borrower and Ms. Welleakamp had kept the paymentsCurrent on the loan.

This ruling opened the flood gates in Califortifa for buyers to take title "subject-to" existing

R

loans. No formal loan assumption was required on loans from state chartered institutions.
Yet, the prior owner/borrower was still held ultimately responsibility for the promissory note
they had signed and responsible for any deficiencies.

The non-enforceability of the "due-on-sale clause" was overturned in 1982 when a federal

law entitled the "Garn/St. Germain" bill originated in the US Senate and was passed by



Congress. It put the enforceability back into the deeds of trust in California. This had a

serious dampening effect on the market.

FHA and VA loans allowed non-qualifiers to take loans "subject to" until the end of the
1980's. VA loans could be assumed by another Veteran who substituted their "V A eligibility"
which had the effect of releasing the original VA borrower from liability on the loan. A

simple "subject to" purchase did not release liability.

Today the "due-on-sale clause" is @hivel ahd welll Y& many buyers are taking title to
properties subject to existing liens. Why aren'tplenders automatically enforcing their right to
call the loan due and payable? It is simple. To do so they might have to initiate a foreclosure
action. If the new owner on title is currenton:their payments and the lender is receiving a

higher yield than today's historicallylow rates; why would a lender pursue such a course?

Ghana's economic well-being and recovery program were closely tied to significant levels
of foreign loans and assistance, especially from the World Bank and the International
Monetary Fund. Altogether, between 1982 and 1990 foreign and multilateral donors
disbursed a total of approximately USS$3.5 billion in offieial.development assistance; at the
. ey "f-—-’ 21 * .
same time, the country's external.debt reachied US$3:5 billion. By 1991, the largest bilateral
doners were Germany, the United States, Japan, and Canada, which together provided
Ghana with US$656 million in development assistance. The largest multilateral donors in

1991 included the European Community, the IMF, and the International Development

Association, which furnished almost US$435 million to Ghana.

In addition, the government obtained five IMF programs amounting to approximately US$1.6

billion: three standby loans, simultaneous Extended Fund Facility and Structural Adjustment



Facility loans, and an Enhanced Structural Adjustment Facility loan in 1988. The government
signed more than twenty policy-based program loans with the World Bank. The World Bank
also sponsored six consultative group meetings; the first, held in November 1983, resulted in
pledges of US$190 million. Between 1984 and 1991, almost US$3.5 billion more was raised

at five additional meetings.

In 1991 Ghana successfully raised the country's first syndicated loan in almost twenty years
in the amount of US$75 million. The loan's collateral was a proportion of the country's cocoa
crop. Special arrangements were madeé” to, erdsure that a Specific amount of the crop was
purchased using letters of credit. Then in March 1992, the IMF announced that following the
expiration of Ghana's third and final arrangementunder the Enhanced Structural Adjustment
Facility, Ghana needed no further IMF financing. Even so, the Ghanaian government asked
the IMF to monitor progress on the couniry's economic program and to continue policy

dialogue.

In early 1994, Ghana accepted the obligations of Article VIII of the IMF's Articles of
Agreement. According to the IMF; Ghana will no longer impose restrictions on payments and
transfers for current ' intemational fransactions or engage in discriminatory currency
arrangements or Efnultiple curseney—practice without “BIMF " approval. Ghana's decision

undoubtedly will enhance its image with for€igh investors and bankers.
—————'-'-'--_ :

Over the past one decade the banking industry in Ghana had gone through many structural
changes in terms of increase in branch network, provision of wide range of banking services
and acceleration of credit activities in different ways. The financial crisis in 1997-98 has
created a tremendous pressure in the banking sector which was sorted out by means of

consolidation process carried out by the Ghanaian Central Bank.



The Central Bank envisaged the merger schemes to combat the crisis and termed some of the

merged banks as anchor banks, to accelerate the economic growth. The survival of any

banking sector normally depends on their ability to improve their efficiency and effectiveness

in their product offerings. There are three main banking objectives:

(1) It has to ensure that its business should run as usual by ensuring that its debts do not

exceed its liability.

(2) The bank must maintain its liquidity; i.e. the bank should be able to meet withdrawals at

any given point of time.

(3) The bank has to generate profits, for the stockholders (profitability). Thus, the bank
should maintain an appropriate fund’s portfolie, for their survival and growth. The variance
of the actual loan sanctions and its allocation over a;period of 24 months in the retail bank
selected for the study revealed two important findings. Firstly, the loan allocation policy
adopted by the bank management is.suspeetingly based on non doecumented hybrid model.
Secondly, the switching of loan allocation from one type to another is also possible. These
two findings suggested that there should be a systematic. method of loan portfolio
management, in order to maximize the interest income of the bank. The current study
attempts to devise a loan al_lohcatinn policy.to different type-ofloans using Markov Chain
Market Shmel. Koéu,b;nd-aﬂd*&tokes (1980) suggested that Markov Chain application
in the business situation application is rich in terms of economics and policy implications. In
e

this study an attempt has been made to estimate the transition matrix using inter-temporal
data on loan disbursements. This provides the probability of loan switching among its state.
Simulation process was also ca;ied out to calculate the expected income of interest from all

loan types using the actual loan disbursement data and Markov proportions to evaluate the

superiority of Markov Chain approach.



Most of the study of probability has dealt with independent trials processes. These processes
are the basis of classical probability theory and much of statistics. Modern probability theory
studies chance processes for which the knowledge of previous outcomes influences
predictions for future experiments. In principle, when we observe a sequence of chance
experiments, all of the past outcomes could influence our predictions for the next experiment.
For example, this should be the case in predicting a student's grades on a sequence of exams
in a course. But to allow this much generality would make it very difficult to prove general

results.

In 1907, A. A. Markov began the study of an important new type of chance process. In this
process, the outcome of a given experiment can affect the outcome of the next experiment;

this type of process is called a Markov. chain:

1.1 Specifying a Markov Chain

We describe a Markov chain asfollows: We havea set of stafes, S = {s,,5,,...,5, } .

The process starts in ong ‘of these states and moves successively from one state to another.

-

Each move is called a step. £t chain is currentlyin state’s, , then it moves to state s, at the
next-step with a probability denoted by p, , and this probability does not depend upon which

states the chain was in before the current state.
The probabilities p, are called transition probabilities. The process can remain in the state it
is in, and this occurs with probability p,. An initial probability distribution, defined on S,

specifies the starting state. Usually this is done by specifying a particular state as the starting

state.



The transition matrix is called the “migration matrix" in Gupton et al. (1997) for Credit
Metrics. The estimation of the continuous time Markov chain transition probabilities is
introduced in Fleming (1978) and more recently in Monteiro et al. (2006). While the issue of
correlation between issuers discussed in that research may be applicable to a portfolio of
mortgages, a mortgage is a simple accounts receivable discrete-time Markov chain model
with no arbitrage or hedging opportunities that require more complicated model features. The
statistical problem of interest is to estimate the transitien matrix using a sample of observed
monthly loan movements between délifgiency states™Fhe estimation is complicated by the
frequent observation in studies that the Markev chain is neither homogeneous nor stationary.
Betancourt (2006) concluded repayment for Freddie-Mac data on prime mortgages was
neither homogeneous nor stationary, and estimated transition matrices produce poor
forecasts. This paper proposes two innovative estimation methods for the transition matrix

based on two observations that improve forecasting precision.

R. A. Howard provides us with a picturesque description of a Markov chain as a frog jumping

on a set of lily pads. The frog starts on one of thepads and then jumps from lily pad to lily

pad with the appropriate tWﬂbilitie&
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1.2 Statement of the Problem

The survival of any banking sector normally depends on their ability to improve their
efficiency and effectiveness in their product offerings Berger, A.N., and G.F.Udel, (1996).
Luckett, D.G. (1984) explains that there are three main banking objectives.: (1) It has to
ensure that its business should run as usual by ensuring that its debts do not exceed its
liability. (2) The bank must maintain its liquidity; 1.e the bank should be able to meet
withdrawals at any given point of time. Finally, the bank has to generate profits for the
stockholders (profitability)[3]. Thus, thgrbank should mawntain an appropriate funds portfolio
for their survival and growth. The vananeé of the*actualdoan'sanctions and its allocation over
a period of 24 months in the retail bank seleeted for the study revealed two important
findings. Firstly, the loan allocation policy adopted by the bank management is suspectingly
based on non documented hybrid model. Secondly, the switching of loan allocation from one
type to another is also the bank loan portfolio of the sclected bank is composed of three main
strategic business possible. These two. findings suggested thatthere should be a systematic
method of loan portfolio management, in order to maximize the interest income of the bank.
The current study attempts.to devise a loan allocation pelicy to different type of loans using

Markov Chain M.@;ket Share:Model-operations namely Retail Banking, Business Banking and
Corporate Banking with an iﬁmham of39%., 28 %and 33% respectively as at January
2002._The Business Banking caters for small and medium-sized companies (paid up capital
up to GH¢1.0 million) and generally concentrates on business loan and trade financing
related to their business. The Corporate Banking, serves to the top-tier Ghanaian
conglomerates or corporate sector of listed or about to be listed in the Accra Stock Exchange
(ASE), in the form of loans such as revolving credits, huge capital expenditure loan, bridging
loan, multi-million project undertakings by way of either term loan, overdraft or floating rate

loan, and other package of trade finance. The retail banking emphasizes on individual



customer loans like housing, small business (to sole-proprietors, partnership or small size
companies with paid-up capital up to GH¢ 250,000) Education and miscellaneous loans such
as staff housing, trust receipt, and personal overdraft facilities. The latter miscellaneous loans
are classified as “other loan”. In the current study the focus was made only on retail banking
unit. The reason for selecting the retail banking was on two folds.

(1) The retail loan portfolio is usually greater than the other portfolios.

(2) Retail loan products are generally popular in branch banking networks.

1.3  Objectives of the study

The objectives of the study are as follow:

(1) To obtain optimal loan allocation mix policy, this could be used as guiding principle
on future allocation purpose.

(2) To forecast loan disbursement.proportions

1.4 Significance of the study

Any company in the business of making loans will require a forecast of future cash flows on
their loans. The demands pfﬁm.a foreeast-ate particularly heavy for companies who
securitize their loans. In essence, a group of loans is set aside in a trust. The cash own from
these loans (principal and interest) is used to support bonds sold to investors. The proper
valuation of these bonds will depend critically on the amount and timing of losses and
prepayments over the life of the loans. Securitized loans form an unchanging pool. These
pools are small enough to expect noticeable variation 1n loss and prepayment rates even

within a stable environment.

10



CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

Markov chains are related to Brownian motion and the ergodic hypothesis, two topics in
physics which were important in the early years of the twentieth century, but Markov appears
to have pursued this out of a mathethafical niotivatios, hifii€ly the extension of the law of

large numbers to dependent events.

Markov chain models have been used in advanced baseball analysis since 1960, although
their use is still rare. Each half-inning of a baseball game fits the Markov chain state when the
number of runners ‘and outs areeonsidered. During any at-bat,there are 24 possible
combinations of number ofouts and position of the runners. Markov chain models can be
used to evaluate runs created for beth individual players as well as a team. Markov chain
models have been used to analyze statistics for game situations such as bunting and base

stealing and differences when playing en grass.vsaastroturf.

—

Several app]ibiﬁﬁns have emm_mwiv: generating sequences of synthetic daily data
that_represent time series of climatic variable aggrieved to, e.g., a monthly time scale — a
procedure referred to as * stochastic disaggregation™ or “temporal downscaling”™ — for use
with hydrological or biological simulation models. These include: (a) predicting crop
production impacts of climate change scenarios; Meamns et al. (1996), Semenov and Barrow
(1997), Mavromatis and Jones (1998), (b) predicting crop yield based on seasonal climate
forecasts; Hansen and Indeje (2004), (c) analyzing crop yields variability using long-tem
monthly meteorological records where the original daily observations have been lost or are

LiIBRARY
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otherwise unavailable Boer et al. (2004), and (d) interpolating between station, e.g., to create

gridded daily meteorological time series data sets; Kittelet et’al. (2004).

The need to preserved key statistical properties of the historic daily time series justified the
use of a stochastic model in each of these applications. Crops respond not to climatic
averages, but to the dynamic nonlinear interactions between daily sequences of whether, soil
water, and nutrient balance. The statistical properties of rainfall are particularly important
because of its influence on processes, such as solute leaching, soil erosion and crop water
stress response, which depend on soil water balanceydynamies. Any biases in variability of

daily weather can seriously distort crop models*predictiorn.

Osborn and Hulme, (1997), study spatial averaging or interpolation of daily weather data

among stations that tends to distort day-to-day variability, biasing simulated crop response.

Hansen and Jones (2000), also study a particular probiém forpredicting crop response to the

soil water balance is the tendency for spatial averaging to increase the frequency of days with

rain and reduce the means intensity of rainfall-events. This distertion can result in ether

under-prediction due to reduced-dry spell duration, deWit-and van Keulen (1987), Carbone
e _f__,..-f-‘"_-___ﬂd “

(1993), Meams et all., (1996), were also of the same view.

-—--"""_-—-F

Mearan et al. (1995), Mavmmat:.i_s and Jones (1999), opines that the same challenge arises
when using the output of physically based global circulation models (GCMs) to predict crop
response to either climate change scenarios or predicted seasonal climate variations.
Although GCMs operate on sub-daily time steps, the spatial averaging the occurs within gnd

cells distorts the variability of daily whether sequences, generally resulting in too many

12



rainfall events, with too little rain per event, with too little rain per event, suggested in the
views of Goddard et al. (2001). Therefore, their predictions are typically aggregated into

monthly or seasonal (ie., 3 months) anomalies.

Wilks (1992), Katz (1996), Meamns et al. (1997), suggested two general approaches that are
used with stochastic weather generators to disaggregate monthsly climatic means into daily
realizations. Thes most common is to adjust the input parameters of the stochastic model to
match taget means or other statistics. Understanding the statistical properties of a stochastic
weather generato allows one to manipulatesits input pagameters to reproduce a wide range of
statistical properties of interest, such®as*mearns, vafiahe€s and the relative influence of the
number of stoms (i.e., frequency) and the type of storm (i.e., the intensity distribution ) on
total rainfall,, This approach has been applied to climate change impact studies and

disaggregation of seasonal climate forecasts.

Multivariate techniques—have been  underlined as suitable and’ powerful tool to find
hydrologically homogenous region or to classify meteorological data such as rainfall.
Principle component analysis, factor analysis and different cluster techniques have been used

to classify daily rainfall patterns and their relationship to atmospheric circulation.

Sevecs - 2

Romero—et al. (1999), classify rainfall into spatio-temporal pattern in Iran, Singh (1999),
classify flood and drought years and Stahl and Demuth (1999), classify streams flow drought.
They used cluster analysis for regionalization involves grouping ﬁf various observations and
variables into clusters, so that each cluster is composed of observations or variables with

similar characteristics such as geographical, physical, statistical or stochastic behavior.

13



Mosely (1981), used hierarchical cluster analysis on rivers in New Zealand and Tasker (182),
compared methods of difining homogenous regions including cluster analysis with a
complete linkage algorithm. Acerman (1985), and Acerman Sinclair (1986), concluded that
clustering has some intrinsic worth to explain the observed variation in data. Gottschalk
(1985), applied cluster and principal component aha]ysis to the territory of Sweden and found
that cluster analysis is an appropriate method to used on a national scale with heterogeneous

hydrogological regimes.

Nathan and McMahon (1990), performed hierarchical glusier-analysis for the prediction low
flow of rain characteristics in southeaster” Australid. “Fhey found that Ward method with a
similarity measure based on the squared Euelidean distance is the best method for-cluster

analysis.

Cox and Isham (1994), presented an“interesting classification of rainfall modé]s in three

types: empirical statistical models, dynamic models.and intermediate stochastic models. The

idea behind this classification 1s the-amount of _physical realism incorporated into the models

structure. In the empirical case, there is no attempt to incorporate physical modeling of the

atmosphere but to the empirical stochastic models-to the availablerdata. While the second

type of models are pure physieally-based models, the-third:group is a combination of both
B ’ff__________,._

method by which certan physical proeess of rainfall structure as for example, rain cells, rain

bands and cell clusters, are described with a stochastic approach.

—

Andrade et al (1998), Miranda and Andrade (1999), and Miranda et al, (2004), used concepts
of graph theory to analyze spatial patterns in time correlation function among rain events,
using recorded data from a set of stations in Northeast Brazil. In previous contributions they

investigated properties of rain events in this region with concept of statistical scale invariance
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within the data, which can be expressed in terms of temporal and spatial Hurst exponents.
The method they used herein is similar to that proposed for the analysis of brain activity
signals by Eguiluz et al ( 2005). Within this approach, non-local spatial dependence is

estimated by evaluating Pearson coefficient between time series of pairs of stations.

Le Cam (1961), in his fundamental work, propane models for spatial-temporal precipitation
based on stochastic point processes, this approach developed rapidly in the 1980’s through a
series of papers by Waymire et al. (1984), such models are based on a hierarchical structure
in which rainfall field occur in a tempopalgPoigsen progessyeain bands (storms) occur within
each field in a spatial Poisson proceSs (the' rate” of=which may reflect orography and
seasonality), and rain cells occur in each storm, clustering space and time. Typically the
cells, storms and field move: in thesimplest models, all components have a common
velocity. They assume stochastic stationarity in both time and space. Thus, in fitting the
models, they treat eachumonth scparately, and use data fot a relatively homogenous 6 spatial

region.

Reodriguez-Iturbe et al. (1987, 1988), generalize that the spatial =temporal models that they

developed were,;patial analogues-of-models that they,used successfully to represent the

temporal process of rainfall at a single rain gauge, investigation in Cox and Isham (1988).
—.-—-'-"—--_.--

The multi-site models similarly generalize the models the modes of Cox and Isham (199).

All of these models have the desirable feature that they preserve the structure of the single-

site models in their marginal properties.
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2.1 Markov Chain Model

Liu et al, (2009), and Markov chain has been widely applied in the disciplines of natural
science, engineering, economics and management. This approach has also been widely used

in drought forecasting, Lohani and Loganathan, (1997), Lohani et al, (1998).

Paulo and Pereira (2007) stated that the Markov chain modeling approach is useful in
understanding the stochastic characteristics of droughts and rainfall through the analysis of
probabilities for each severity class, times for reaching the non drought class from any
drought severity state, and residencestimes, in leach ‘drought class. They found that the
approach can be satisfactorily be used as a predictive tool for forecasting transitions among

drought severity classes up to 3 months ahead.

Lohani and Loganathan (1997) and Lohani et all. (1998) developed an early warning system
for drought management Uising the PDSI and the Markoy chain, in fwo climatic areas of
Virginia (U.S.A). The same approach-was-also adopted for developing a meteorological
droght/rainfall forecasting model by Liu et al. . (2009) in Lachahe catchment in northern
China. In their study, spatio-temporal distributions of PDSI were analyzed and forecasted by

Markov chain.

_'_'_'-_-__-F - [ W - "
Steinemann (2003) adopted six classes of severity, from wet to dry conditions, similar to
those PDSI. and used the Markov chain to characterize probabilities for drought class and

duration in a class. The results obtained were used to propose triggers for early-activating of

the drought preparedness plans at the basin scale.

Liu et al. (2009) demonstrated two advantages of the Markov chain technique for forecasting

drought and rainfall conditions. They were (1) the predictive performance increased greatly
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as the severity of drought increased, and (2) the predictive performance was always
satisfactory for drought state transitions, and the prediction performance as acceptable for the

successive and smooth states.
2.2 Spatial-temporal Models

Northrop (1996), generalized this model in the case where cells are elliptical rather than
circular (it is referred to as the elliptical cell Poisson process model (EPPM). EPPM is likely
to be more realistic, especially in the cases where banding is apparent in the radar images.
These cells are also identifiable by the€lliptical contaurs.of their spatial autocorrelation plots.
This model requires two extra parameter, the eccentricity and orientation of cells, which are

both assumed to be common to all cells.

Northrop (1996), have investigated @ modified version of EPPM model, the temporal
clustering of cells is achieved-using a Bartlett-Lewis structure as above.’ Additionally, spatial
clustering is incorporated using a Neyman-Scott-type mechanism in which the displacements
of the cell origins from the storm eentre follow a bivariate distribution in a space. A range of
storm shapes (e.g. bands large masses) can be produced by variation of the parameters of the
spatial clustering distribution.. An important-modification tothe model of Cox and Isham

(188) is to haveati‘re storm E;entremtrviﬁg with the saméwelocity as the cells so that cells are

born within the existing structure of the storm. Two spatial clustering distributions are
e

considered.
1. A bivariate Gaussian (normal) distribution. They refer to the resulting model as the
Gaussian displacements spatial-temporal model (GDSTM):

2 A uniform distribution over a random ellipse. This gives rise to the random ellipse -

spatial-temporal model (RESTM)
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2.3 Multi-site Models

Kakou (1997), suggested that multi-site models are reasonably parsimonious in their
parameterization, requiring a single extra parameter, the cell duration scalar, for each new site
that is included in the study were considered. The cross-correlation function of the rainfall
intensity at a pair of were derived and has the implied functional form of the probability of a
cell hitting two sites. It turns out that, for individual storms, this probability decays
approximately exponentially with inter-site distance for sites which are well-separated and
which are not aligned along the direction of the storm’s-movement; for sites which are closer

together, the dependence is no longer expohential:

2.4 Single-site Model

The models described in the preceding sections were generalizations of models that have
been successfully to model the temporal evolution of rainfall at a single site. A first step
towards improving the performance of these models involves studying ways in which the

single-site models can be tmproved.

Rodriguez- Iturbe et al. (1987), s of the view that ongof the most obvious ways in which the
S ,.-"'"'-ﬂ-‘--_-—
basic single-site models can be extended-is-by allewing the different types of storm to occur
_F_—.-__.--'_ - Ll . #
so as to randomize the cell duration parameter between storms in this approach; storms have
a common structure but occur at different timescales. The main advantage of such models,
in practical terms, lies in their ability to reproduce well the observed probability of no rainfall
at various levels of aggregation. They have investigated an alternative to the randomization

of the cell duration parameter for single-site models, instead allowing for different types of

storm using an inverse relationship between the duration of an event and its intensity (the
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motivation being that intense convective event tend to be shorter-lived than shallower

stratiform systems.

Cowpetwait (1994), adopted an explicit functional form for the dependence between cell
depth and cell duration, it is possible to overcome the problems of over-parameterization
~ typically associated with attempts to model different cell types explicitly. Their work is
based on the Neyman-Scott and Bartlett-Lewspoint process models, Rodriguez-Iturbe et al.
(1987), which are modified to allow rain cells with stochastically dependent duration and

intensity, Kakou (1997)

2.5 Spectral method

The method of moments suffers from a number of disadvantages. In particular, the choice of
features to incorporate:into- the fitling procedure is subjective; and the parameter values
obtained can be quite sensitive to'the featiires used in the fitting hence model comparison can

be difficult.

Brillinger and Rosenblaft (1967), makes-incfficient use of available data, as only a few

summary statistics are used i .the-fitting. In an-aticmpt i0 overcome some of these
S—— _’_,_.--"-'-"—_-—

difficulties, a spectral method has been-developed-—This method uses the sample Fourier

coefficients rather thatn the original data, and makes use of the fact that, for large samples,

small collections of the Fourier coefficients have a joint distribution which is approximately

multivariate normal. This enables them to write down approximate likelihood functions for

the mode parameters in terms of small subsets of the sample fourier coefficients.

McCullagh and Nelder (1989), combined all approximate likelihood functions, an objective

function is defined which can be interpreted as a log quasi-likelihood, Chandler (1997). This
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ten provides a basis for objectives model comparison procedures using standard statistical
techniques such as likelihood ratio tests. The method has been developed for use in fitting
single-site and spatial-temporal models. The reliance on second-order properties is a
potential disadvantage in distinguishing between models whose main difference is in their

wet\dry interval properties. More details may be found in Chandler (1996b, 1997).

Chandler (1997), describe spectral method so far as been used extensively in the fitting of
single-site models, and some preliminary work on the fitting of spatial-temporal models has
also been done. The main area of intergstghasgbgen in the aiea of model comparison, as it is
here that the apparent objectivity of the method i8 pﬁrtieu‘arly useful. In the single-site case,
numerous different models have been fitted to data from the HYREX raingauge network.
Rogorous procedures for model comparison, such as likelihood ratio tests, are available
which allow for the different numbers of parameters in the models. We conclude that the
clustering models to the data 1s better than does the Poisson model; also that storms tend to be

asymmetric with more intense activity towards the beginning ofa storm than at the end.

2.6 Artificial Neural Network

French et al, (_1592}, used Nm;rks to estimate accurate information on rainfall as
essential-for the planning and management of water resources. Nevertheless, rainfall is one
of the most complex and difficult elements of the hydrology cycle to understand and to model
due to the complexity of the atmaspheric processes that generate rainfall and the tremendous

range of variation over a wide range of scales both in space and time.

Gwangeseob and Ana, (2001). DESCRIBED Neural networks as been an accurate rainfall

forecasting tool which is one of the greatest challenges in operational hydrology, despite
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many advances in weather forecasting in recent decades. Neural networks have widely
applied to model many of nonlinear hydrologic processes such as rainfall-runoff. Hsu et al.
(1950), Shamseldin (1997), stream flow, Zealand et al, (1999), stream flow, Zealand et al,
(1999), Campolo and Soldat (1999), Abrahart and See, (2000), groundwater management,
Rogers and Dwla, (1994), water quality simulaﬁun, Maier and Dandy (1996), Maier and

Dandy (1999), and rainfall forecasting.

French et al. (1992), employed a neural network to forecast two-dimensional rainfall, in
advance. Their ANN model used present rainfali datasgenerated by a mathematical rainfall
simulation model, as an input data. This work is;However,“limited in a number of aspects.
For example, there is a trade-off between thesnteractions and the training time which could

not be easily balanced.

The number of hidden.layers and hidden nodes seem insufficient, in comparison with the
number of input and output nodes, to reserve the higher order relationship needed for
adequately abstracting the process. Siill, it has been considered as the first contribution to

ANN’s application and established a new trend in understanding and evaluating the roles of

ANN in investigating complex geophysical processes,

L

Toth et al (2096), compared—shertstime rainfall prediction models for real-time flood

forecasting. Different structures of auto-regressive moving average (ARMA) models,
T aee.

artificial neural networks and nearest — neighbors approaches were applied for forecasting

storm rainfall occurring in the Sieve River basin, Italy, in the period 1992-1996 with lead

times varying form 1 to 6 h. The ANN adaptive calibration application proved to be stable

for lead times longer than 3 hours, but inadequate for reproducing low rainfall events.

Koizumi (1999), employed an ANN model using radar, satellite and weather-station data

together with numerical products generated by the Japan Meteorological Agency (JMA)
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Asian Spectral Model and the model was trained using 1 year data. It was found that the
ANN skills were better than the persistence forecast (after 3 h ), the linear regression
forecasting, and the numerical model precipitation prediction. As the ANN model was

trained with only 1 year data, the results were limited.

Luk et al. (2000), studied and indicated that ANN is a good approach and has a high potential
to forecast rainfall. The ANN is capable to model without prescribing hydrological
processes, catching the complex nonlinear relation of input and output, and solving without
the use of differential equations sited gnsu et al. (1995) French et al. (1992). In addition,
ANN could learn and generalize from®examples toprodece a*meaningful solution even when

the input data contain errors or is incomplete.

Luk et al. (2000), an artificial-neural network ANN which.s a mathematical model used for
data processing inspired by the bioelectrical networks in the brain comprised of neurons and
synapses. In an ANN, simple processing elements referred to as neurons are used to create
networks that are capable of learning to model complex system. For example introduction to

the structure and design of-Axtificial Neural-Networks the reader is referred to Hagan et al.

o
-

(1996). i N

Karunanithi et al., (1994) has done a number of studies into the application of ANN in the

field of rainfall-runoff modeling and flood forecasting sited in the work carried out by Lorrai

and Sechi, (1995); Campolo et al., (1999).

Hsu et al. (1995) compared ANN models with traditional black box models, concluding that

an ANN model is capable of giving superior performance over a linear ARMAX
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(autoregressive moving average with exogenous input) time series approach, which observed

time series of flow rate and rainfall are used as input.

Smith et al. (2004), has an alternative to the ANN, genetic programming (GP) strategy
introduced, and ANN can be considered for use in forecasting the error between the outputs
of physical rainfall runoff model and the observed runoff rates. A feed forward neural
network has been used for this purpose and was found to provide similar accuracy to GP. A
advantage of GP is that it is easier to use than an ANN approach in that it uses a function in

the forecasting stage rather than a complicated network @fneurens.

Gwangseob and Ana, (2001), developed an Artificial Networks (ANN), which perform
nonlinear mapping between inputs and/outputs, has lately provided alternative approaches to
forecast rainfall. ANN.were-first developed in the 1940s (Mc Culloch and Pitts, 1943) and
the development has experienced atenaissance with Hopfield’s effort Hopfield, (1982) in 5

iterative auto-associable neural networks.

Abraham et al. (2001)-used as artificial neural network with-sealed conjugate gradient
algorithm (ANN-CGA) "and evolving fuzzy neural netwotk (EfuNN) for predicting the
rainfall time series. In the stum.hly rainfall was used as input data for training model.
The _authers analyzed 87 years of rainfall data in Kerala, a state in the southern part of the
Indian Peninsula. The empirical results showed the neuro-fuzzy systems were efficient in
terms of having better performance time and lower error rates compared to the pure neural
network approach. In some cases, the deviation of the predicted rainfall from the actual

rainfall was due to a delay in the actual commencement of monsoon, El Ni no Southern

Oscillation (ENSO)
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Manusthiparom et al. (2003), has another study of ANN that relates to EI-Ni no Southern
Oscillation was done and the authors investigated the correlations between El-Nin o Southern
Oscillation indices, namely, Southern Oscillation Index (SOI), and sea surface temperature
(SST), with monthly rainfall in Chiang Mai, Thailand, and found that the correlations were
significant. For that reason, SOI, SST and historical rainfall were used as input data for
standard back-propagation algorithm ANN to forecast rainfall one year ahead. The study
suggested that it might be better to adopt various related climatic variables such as wind

speed, cloudiness, surface temperature and air pressure as the additional predictors.

Toth et a. (2000) compared short-tinte " ramfal=prediction models for real-time flood
forecasting. Different structures of auto-regressive moving average (ARMA) models,
artificial neural networks, and nearest=neighbors appreaches were applied for forecasting
storm rainfall occurring in the Sieve River basw, Italy, in the period 1992-1996 with lead
times varying form 1 to.6h. The ANN adaptive calibration application proved to be stable for

lead times longer than 3 h, but inadequate for reproducing low ramfall.

Koizumi (1999), has another application.which employed an ANN model using radar,

satellite, and weather-station data-tesether with numerical products generated by the Japan

Meteorological Agency (JMA) Asian Spectral Model for 1-year training data. Koizumi
LIRS

found that ANN skills were better than persistence forecast (after 3 h), the linear regression

forecasts, and numerical model precipitation prediction. As the ANN used only 1 year data

for training, the results were limited. The author believed that the performance of the neural

network would be improved when more training data became available. It is still unclear to

what extent predictor contributed to the forecast and to what extend recent observations

might improve the forecast.
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Coulibaly (2000) stated that ninety percent of ANN models applied in the field of hydrology
used the back propagation algorithm. This algorithm involves minimizing the global error by
using the steepest descent or gradient approach. The network weights and biases are adjusted
by moving a small step in the direction of the negative gradient of the error function during

each iteration. The Advantage of this algorithm lies in its simplicity.

In the study, ANN model was applied for each 75 rain gauge stations in Bangkok, to forecast

rainfall from 1 to 6 h ahead as forecast point.
2.7 Conceptual rainfall-runoff Models

Franchini and Galeati (1997), Conceptual rainfall-runoff models (CRRMs) have become a
basic tool for flood forecasting and for catchment basin management. These models permit
calculation of the runoff generated by precipitation events by similating the physical process
that affect the movement ‘of. water-over the through the soil. The accuracy of these
calculations depends both on'the structure of the model and on how the relevant parameters
are defined. CRRMs generally have a large number of parameters which, because of the
conceptual nature, cannot be measured directly and are therefore estimated on the basis of a
calibration process which invelves adjusting theirvalues so that the simulated discharges fit
the cﬂnesponding;gsefx*ed ldiWﬁ‘CEDSEly as possible. Measurement of the deviation
between the two series represents the objective function. Therefore, the purpose of the
b el

calibration is ultimately to find the values of the parameter so the CRRM which reduce this

deviation to a minimum or, in other words those values which minimize the objective

function.

Duan et al. (1992;1993; 1994), have presented a global optimization method called SCEUA .
applied to the Sacramento model, Brazil and Hudlow (1981), Solomatine (1995), with

reference to the TANK model, Sugawura et al. (1983), has evaluated applicability of a
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scheme based on the combined used of clustering, random sampling and random covering
techniques. A possible alternative to these approaches is offered by the use of a genetic
algorithm (GA), Holland (1975), Goldberg (1989), which is being used increasingly in the
field of industrial design, Davis (1991) and in hydrology-hydraulic engineering. The GA
applications described in the literature focus upon ﬁvo topics, in particular; the calibration of

hydraulic and hydrological models an water resources management optimization problems.

Wang (1991), and Franchini (1996), also suggest a two step procedure which associates the
GA with local-search optimization téchbfiigues] for a4 subsequent “fine-tuning’ process. In
water resource management the applicatioh address th&"optimization of aquifer monitoring
systems, Cienawsky et al. (1995), Wagner (1995),.and their utilization, McKinney and Lin

(1994) the containment and recovery of polluted aquifers.

Rogers and Dowla, (1994)promogated the management of reservoir systems sited in Ritzel et
al, (1994) and Esat and Hall (1994)." The problem are addressed in complex single and

multiple objective contexts and produce results which appear yery promising.

Whitley and Hanson (1989), also suggested combined ways with other Artificial Intelligence
methods (Neural Qﬁtwnrks') as. inwRogers and Dowla (1994). < However, in all these
applications the ferm “GA” indfmm";ﬁ_aTgarilmn that.can be formulated in very many ways,
David (1991), Michalewics (1992). It is interesting therefore to judge how the different GA
structures affect the ability to find the region encompassing the optimum solution in the

specific field of CRRM calibration, while considering that another different algorithm will

perform the subsequent “fine-tuning™ process.

Hendrickson et al. (1988), analyze the characteristics of sequential use of two algorithms, the
first based on the Pattern Search (SP) method, Hooke and Jeeves (1961), which 1s a direct

search method, and the second (fine-tuning) based on the Newton method. This sequences, is
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shown to be a fairy good tool, primarily for the PS characteristics that make it less susceptible
to irregularity of the response surface, thus less easily trapped on a local minima, and

therefore, more efficient in the early stage of optimization.

Ibbirt and Donnel (1971), said; Conceptual rainfall-runoff models usually consist of a number
of parameters. Most of the parameters have to be calibrated by examining the estimated and
the measured discharge series. The use of function optimization method for calibrating
rainfall-runoff models has been studied by Johnson and Pilgrim (1976), Jupta and Sorooshian
(1985), Hendrickson et al. (1988). Theyfo@nd fhat the standard optimization methods can be
easily fooled into declaring convergence far sh6éft of the true optima because of high
dimensionality and irregularities contained gin the objective function response such as

multiple optima, unsmoothness, discontinuity, elongated ridges, flat plateaus and so on.

2.8 Explanatory models for forecasting

The use of explanatory models in business forecasting doesmot have such a long history as

the use of time series methods.

Pardoe (2006) Linear regression modeling is now. widely used-where a variable to be

forecast is mudeli_é;i as lineaug_mhinatiun of potential input” variables: An interesting

application of regression model to forecasting.is-given by Byron & Ashenfelter (1995) who

.
use a simple regression model to predict the quality of a Grange wine using simple weather

variables. However, it is far more common for regression modeling to be used to explain

historical variation than for it to be used for forecasting purposes.

Hyndman & Fan( 2009). In some domains, the use of nonparametric additive models for

forecasting is growing here the model is often of the form
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]
Zf}' (xj;t) + et;
j=1

where fj 1s a smooth nonlinear function to be estimated non parametrically.

Hanssens et al. (2001) In advertising, there is a well-developed culture of using distributed
lag regression models such as yf =) a 1 jxt-j + et ;

where xf denotes advertising expenditure in monthf,0 <a <1 and a > 0.

2.8.4 Markov Chain and Loan
Ait-Sahalia, (1999), “Do Interest "Rates Really Follow Continuous-Time Markov
Diffusions?” Examines whether interest rates follow a diffusion process (continuous time
Markov process), given that only discrete-time’ intcrest rates are available. Based on the
extended period 1857 to 1995, this work finds that neither short-term interest rates nor long-
term interest rates follow: Markov processes, but the slope of the yield curve is a univariate
Markov process and a diffusion proecss.

= P a4
Wai-Ki CHING, Li-Min LI, Tang LE-Shu-QintZHANG,(-2007), In this paper, they propose a
new multivariate Markov chain model for modeling multiple categorical data sequences.
They then test the proposed model with synthetic data and apply it to practical sales demand
data. | o
Stefan Waner (1995-2004)
A Markov chain, named for Andrey Markov, is a mathematical system that undergoes -
transitions from one state to another (from a finite or countable number of possible states) in

a chain like manner. It is a random process endowed with the Markov property: the next
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state depends only on the current state and not on the past. Markov chains have many

applications as statistical model of real-world processes.

Formally, a Markov chain is a discrete (discrete-time) random process with the Markov
property. Often, the term "Markov chain" is used to mean a Markov process which has a
discrete (finite or countable) state-space. Usually a Markov chain would be defined for a
discrete set of times (i.e. a discrete-time Markov chain) although some authors use the same
terminology where "time" can take continuous values. Also see continuous-time Markov
process. The use of the term in Markdv,€hlin MdnteCérlo nicthodology covers cases where
the process is in discrete-time (discrete algorithm steps) with a continuous state space. The

following concentrates on the discrete-time discretesstate-space case.

A "discrete-time" random process means a system which is in a certain state at each "step”,
with the state changing randoemly between steps.The steps are often-thought of as time, but
they can equally well refer torphysieal distance or any other discrete measurement; formally,
the steps are just the integers or natural numbers, and the random process is a mapping of
these to states. The Markov property states that the conditional probability distribution for the
system at the next step (and in fact at all-future steps) given its current state depends only on

the current statma_ﬁf the system,. ahd=aét additionally‘on, the state of the system at previous

steps.

A= e

Since the system changes randomly, it is generally impossible to predict the exact state of the
system in the future. However, the statistical properties of the system's future can be

predicted. In many applications it is these statistical properties that are important.

The changes of state of the system are called transitions, and the probabilities associated with

various state-changes are called transition probabilities. The set of all states and transition
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probabilities completely characterizes a Markov chain. By convention, we assume all

possible states and transitions have been included in the definition of the processes, so there

is always a next-state and the process goes on forever.

A famous Markov chain is the so-called "drunkard's walk", a random walk on the number
line where, at each step, the position may change by +1 or —1 with equal probability. From
any position there are two possible transitions, to the next or previous integer. The transition
probabilities depend only on the current position, not on the way the position was reached.
For example, the transition probabilities”ffom [5 o 4 afid 516 6 are both 0.5, and all other
transition probabilities from 5 are 0. These probabilities are independent of whether the

system was previously in 4 or 6.

Another example is the dietary habits of a creature who cats only grapes, cheese or lettuce,

and whose dietary habits conform to the following rules:

« It eats exactly once a day.
« Ifit ate cheese yesterday, it will not today.
o It will eat lettuge or grapes with equal probability.
« If it ate grapes yestéiﬂay, it will eat grapes today_ withsprobability 1/10, cheese with
pmbabiii-t; 4/10 and lcm ;wbahility- S710.
it ate lettuce yesterday, it will not eat lettuce again today but will eat grapes with

probability 4/10 or cheese with probability 6/10.

This creature's eating habits can be modeled with a Markov chain since its choice depends

solely on what it ate yesterday, not what it ate two days ago or even farther in the past. One
statistical property that could be calculated 1s the expected percentage, over a long period, of

the days on which the creature will eat grapes.
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A series of independent events—for example, a series of coin flips—does satisfy the formal
definition of a Markov chain. However, the theory is usually applied only when the

probability distribution of the next step depends non-trivially on the current state.

Thyagarajan and Saiful Maznan Bin Mohamed,(2005). They found out that variance analysis
of actual loan sanctions with the non-documented method of loan allocation of the selected
retail bank, over a period of 24 months, revealed that there is a scope to improve their income
earnings. Realizing its importance Markovi Chail MarKet Share model was applied to inter
temporal data of loan disbursements of the selected bank. By applying Estimate Transition
Matrix, scope for probability of loan switching ameng its types was calculated to suggest the
probable mix of loan portfolio. From the results it was suggested that the loan proportions
among various types were as follows: Housing (32.0 %), Others (28.1 %), Business (20.0 %)
and Education (19.7 %). These propertionscan be taken as guideline percentage within the
government norms for the priority sector. Simulation studies were also done to calculate the
expected income of interest using Markov proportions and compared with the actual interest

earnings to prove the superiority of the model.

-
S

Howard (1966) showed that dynamic. progtamiming based on the Markov process has
applicatierr in a wide variety of situations, including maintenance and repair, financial

portfolio balancing, inventory and production control, equipment replacement, and directed

marketing. —

If the decision involves not only selection among alternatives but also determination of

timing, a static decision model is inadequate.
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Ahn and Kim (1998) formulated the action-timing problem with Bayesian updating and
derived decision rules based on the observation or information. They used sequential
Bayesian revision for the action-timing problem and demonstrated its value using simulation.
Their work provides a decision rule based on the information or observation at each stage,
rather than on the revised belief. They consider only two alternatives: “accept” the current

observation or “reject” in favor of another observation.
There have been many studies about the value of improving forecast accuracy.

Murphy and Ehrendorfer (1987) explofed the relationship between the quality and value of
imperfect forecasts. They used the Brier score as a measure of forecast accuracy, but they
found that a scalar measure such as the Brier score.cannot completely and unambiguously
characterize the quality of the imperfect foreeasts. Their research showed the relationship
between forecast accuracy and forecast valuestepresented by a multi-valued fum‘:tiun——an

accuracy/value envelope.

Mjelde et al. (1993) used a structure called a “forecast matrix™ to represent various scenarios
for climate forecast quality. A stochastie dynamic programming model was used to obtain the

expected value of the various 'scenarios. They attempted to quantify forecast quality through

two measures: entropy and variafee-of the forecast, They shewed that the entire structure of

the forecast format interacts to determine the economic value of that system.
e

Considine et al. (2004) examined the value of hurricane forecasts to oil and gas producers
rather than the general population. Unlike the general population, the producers of crude oil
and natural gas in the Gulf of Mexico respond to the threat of hurricanes by evacuating
offshore drilling rigs and temporarily ceasing production. The researchers estimated the value

of existing as well as more accurate hurricane forecasting information to show the value of

improving forecast accuracy L1BRARY
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They used a probabilistic cost-loss model to estimate the incremental value of hurricane
forecast information for oil and gas leases in that area over the past two decades. Their
research showed that forecast value dramatically increases with improvements in accuracy.
They simulated a 50% improvement in 48-hr forecast accuracy, which they assumed would
double the strike probability given a strike forecast, to 0.60. They used a critical threshold of
the forecast of weather conditions important to the rig operator at the drilling location, such

as wind speed and wave height, to distinguish a strike forecast from a no-hit forecast.

Regnier and Harr (2006) deal with the!d3eision*to‘prépare’foran oncoming hurricane using a
discrete Markov model of hurricane travel that is derived from historical tropical cyclone
tracks and combined with the dynamicideeision model.to estimate the additional value that
can be extracted from existing forecasts by anticipating updated forecasts. They used variable
hurricane preparation cost, whichis defined as 2 fraction ‘of the maximum loss, increasing
linearly or exponentially after a eritical lead-time. They used a discrete Markov model for
multi-period decision making with respect to-a sequence of more than two forecasts with
improving accuracy for.a.single evenl. Simulation was wsed to compare the expense in

different cases.

L 2
Czajkowski (2007) developed a dynamic modeliof hurricane evacuation behavior in which a
hotisehold’s evacuation decision is framed as an optimal stopping problem where every
potential evacuation time prior to the actual hurricane landfall presents the household with
the choice either to evacuate or to wait one more period for a revised hurricane forecast.
Czajkowski used a Markov Chain to represent the revision of hurricane status and used a

state variable named “risk index” for the transition matrix. Since the risk index primarily

reflects the mean of forecasted intensity of the hurricane, it contains little information about

the uncertainty of the forecast.
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Regnier (2008) viewed the hurricane evacuation problem from the perspective of public
officials with the authority to order hurricane evacuation. She used a stochastic model of
storm motion derived from historic tracks to show the relationship between lead-time and
track uncertainty for Atlantic hurricanes, using a discrete Markov model. She showed that
being able to tolerate no more than a 10% probability of failing to evacuate before a striking
hurricane (a false negative) implies that at least 76% of evacuations will be false alarms. She
also showed that reducing decision lead-times from 72 to 48 hours for major population
centers could save an average of hundreds of millions of dollars for the region surrounding

each target in evacuation costs annuallyhassuming 460 miles of coastline evacuated.

None of the many contributors to the dynamic aetion-timing decision problem has considered
the optimal investment decision based on the improvement of track and intensity forecasts
and of evacuation speed. By modeling these factors, we will derive the optimal investment

policy.

Bastos, (2009). With the advent.of the new Basel Capital Accerd, banking organizations are
invited to estimate credit'risk capital requirements using an internal'ratings based approach.
In order to be compliant with /t}is’agpjnach institutions_must estimate the expected loss-
given-default, the fraction of the credit-exposiire that 1S lost if the borrower defaults. This
——'-"'"-.-_'__ . ' . - .
study evaluates the ability of a parametric fractional response regression and a nonparametric
regression tree model to forecast bank loan credit losses. The out-of-sample predictive ability
of these models is evaluated at several recovery horizons after the default event. The out-of-

time predictive ability is also estimated for a recovery horizon of one year. The performance

of the models is benchmarked against recovery estimates given by historical averages. The

results suggest that regression trees are an interesting alternative to parametric models in

modeling and forecasting loss-given-default. LIBRARY
KWAME NKRUMAH
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J. Scott Armstrong and John U. Farley, (1969) Ehrenberg's sweeping criticism of Markov
brand switching models, highlights many shortcomings of these models for aggregate
analysis of consumer behavior. While it has been pointed out that some of his criticisms are
not entirely correct, one of Ehrenberg's themes is unquestionably valid. The models tend to
break down empirically due to violations of important Markovian stability assumptions. A
situation in which the assumptions of the model appear less restrictive is short-run forecasting

of store choice behavior of individual familiesh

Hyun-cheol and Paul Choi(2010). In their paper, Hyun-cheol and Paul Choi reviewed the
area of upstream information sharing insupply chain management for the current challenges
and future research opportunitics for modeling research. Information sharing in supply chain
management has become a very much studied area in operations management field. Although
downstream information sharing has been widely studied over a decade or so, upstream
information sharing has not been studied widely. Therefore, we reviewed the current

mathematical modeling or-analytical literaturéin upstream information sharing to identify the

-

relevant issues and potential research-deas.

-
Terwiesch et al,( 2006). Forecast sharing in a supply chain using linear price contracts often

leads to inefficiencies as the buyer has an incentive to inflate demand forecasts to ensure
sufficient supply. Recent research in supply chain contracting has focused on one-shot
relationships, and has identified various contracts that align incentives in the supply chain and

induce the buyer to reveal forecast information truthfully. In this paper, Justin, Morris, Teck

and Christian investigate the effect of having an infinitely repeated supplier relationship in
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achieving supply chain coordination. They analyze a capacity game with forecast sharing
under information asymmetry. They establish conditions under which a buyer operating with
a linear price contract reveals demand information truthfully with his supplier, who in turn
allocates system-optimal capacity, both assuming that their business relationship is long-term.
They show that 1n a repeated forecast sharing game coordination can be achieved when the
industry is stable, both parties value their long-term relationship, and over-forecasting is easy

to detect.

Swanson et al, (2004). In this paper Michael, Philip andyNerman discuss the current state-
of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for
economic and financial time series. teview theoretical and empirical issues, including
predictive density, interval and point evaluation and model selection, loss functions, data-
mining, and aggregation. In-addition,. they argue that although the evidence in favor of
constructing forecasts using«non-lincar medels is rather spatse, there is reason to be
optimistic. However, much remains to be done. Finally, we outline a variety of topics for
future research, and discuss a number of areas which have received considerable attention in

the recent literature, bufwhere. many questions.remain.

=

— e .__'_._'_,.—"-'-.-.--.-_

Timmermann et al, (2004). This paper provides a general framework for forecasting time
i

series subject to discrete structural breaks. Hashem ,Davide and Allan propose a Bayesian

estimation and prediction procedure that allows for the possibility of new breaks over the

forecast horizon, taking account of the size and duration of past breaks (if any) by means of a

hierarchical Markov chain method. Predictions are formed as weighted averages of scenarios

with different numbers of breaks by integrating over the hyper parameters from the meta

distributions characterizing the stochastic break point process. In an application to US
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Treasury bill rates, we end that the proposed Bayesian regime averaging procedure leads to
better out-of-sample forecasts than alternative methods that ignore breaks, particularly at long
horizons.

Nikolaos Demiris, (2004). This thesis is concerned with statistical methodology for the
analysis of stochastic SIR (Susceptible—Infective—Removed) epidemic models. They adopt
the Bayesian paradigm and they developed suitably tailored Markov chain Monte Carlo
(MCMC) algorithms. The focus is on methods that are easy to generalize in order to
accommodate epidemic models with complex population structures. Additionally, the models
are general enough to be applicable to @a'wide range of infegtiqus diseases. They introduce the
stochastic epidemic models of interest and thes MCMC methods they shall use and they
review existing methods of statistical sinference for epidemic models. They develop
algorithms that utilise multiple precision arithmetic to overcome the well-known numerical
problems in the calculation-of the“final size distribution for the-generalised stochastic
epidemic. Consequently, They:used these exact results to evaluate the precision of asymptotic
theorems previously derived in the literature. They also use the exact final size probabilities
to obtain the posterior distribution of the threshold parameter R,. They proceed to develop
methods of statistical inference for an epidemie model with twoleyels of mixing. This model
assumes that th&pﬁﬁulatinn i§ partiiencd into subpopulations-and permits infection on both
local (within-group) and global (population-wide) scales. They adopt two different data

i

augmentation algorithms. The first method introduces an appropriate latent variable, the final
severity, for which they have asymptotic information in the event of an outbreak among a

population with a large number of groups. In the last part of this thesis we use a random

graph representation of the epidemic process and they impute more detailed information

about the infection spread.
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Jouchi Nakajima and YuKki Teranishi,(2009). To investigate the banking sector integration
across euro area countries in terms of loan interest rate stickiness, we estimate structural loan
rate curves for 12 euro area countries using time-varying regressions with stochastic
volatility. Our results show that the loan rates are sficky to a policy interest rate in all
countries for all loan maturities, the degree of stickiness differs across the countries, and the
degree of difference is more prominent for longer loan maturities. For short-term loans, the
loan rate stickiness decreases and for intermediate- and long-term loans the loan rate
stickiness converge to average levels during the sample periods. Banking integration in the
euro area is not yet complete, but theézdegrée of heterogengity in the loan rate stickiness

decreases.
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CHAPTER THREE

METHODOLOGY

3.1 Introdution
3.2 Markov Probability Model: The probability of switching a loan disbursement from loan

type i to loan type j is a conditional probability and can be represented by the transition

matrix P = [ p{._,]such thatz p; =1. Indices i refer to the number of loan type. For example
j=1

P, represents the probability of a change in loan disbursement from business to housing in
the next period of time. While pf\représgnts the probability of no change in loan

disbursement for loan type i. The stochastic model used to explain the loan disbursement

behavior is a Markov Chain with finite number of states {£} Markov process {X,} with
discrete time 7 such that p, ; in general represents the probability of the process moving from

state 7 at time ¢- 1 to state j at timie z. In this study we assume that the loan disbursement for
type i in the next period ¢ (month). is only determined by the loan disbursement at the
preceding period #-1. In other words, the *history” of loan disbursement before time t-1 does

not influence the future loan disbursement. This is known as a first order time dependency. In

statistical notation it is represemed by P (Y, = j| X, X,..4 = i)=P(X, =jlX.=i)
-— f,.,--""'"'——-___

Furthermore, it is also assumed that the underlying variable that are responsible for the
SFnA,

generation of loan disbursement do not change overtime, such that the transition probability

has a stationary property i.e. P(X, =i| X, = i)= p;(t+1) = p; forallt.

Furthermore, the probability relations Z p;,=land 0<p, ;< 1 must also be satisfied
=1
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3.3 Estimation of Probability Transition Matrix: The estimation of the probability
transition matrix plays a major and crucial role in the study of a Markov process. If a process
that follows a known probability distribution, the estimation can be made with less difficult.

For micro economic data that traces the movement from any given state to another states, the

estimation procedure follows that of a multinomial distribution, that is p, =— where n, is

i
the number of time the process moves from state 7 to state j and »n, is the number of time the
process is in state i. However for the macro economic data the estimation procedure is quite
tedious. Among the several techniqués consitlered, Bdyesian estimation is the best, but
among the non Bayesian, they proposed the follewing ranking: maximum likelihood (MLE),

weighted least squares, unweighted restricted least square, minimum absolute deviation and

the unrestricted least square estimator. In this study, however, the estimation of the transition

matrix is made by usingthe unweighted. ordinary least square techniques.

Following Lee, et al (1965), the first order conditional probability can be rewritten as

P(5, = ) = 3 P(x, ~gxm =1) = =415 = DB =)

Or

q; (Qa%'q', (t-1)p,; ,whereg; (.) and p(.) represent the unconditional probability. Ifg,
i=l

is replaced by the observed proportiony ., then the sample observation may be assumed to

be generated by the following stochastic relation.

¥ ()= iy: (t-1)p,; +u; (1)

i=1

Or

40



Y,=X,P+U; WhereY, X , and P, are defined as follows. Y, is a vector of proportion for
loan type j . X with (#~1) components X ; 1s a matrix of proportion with dimension of (7 -1)

by m.P, is a probability vector (P

.—,j,l’=1,2,3,...,m).Uj is a vector of random error.

Similarly, for all 7 and j the possible movements of the process are described in the following

equation. Y = XP+U ,
SReT =Y .Y P =[P BB\ U =[U.U, U]
and X is a block diagonal matrix with X, = X, =...X . Thus the above equation 1s used to

estimate P by the ordinary least squaréy(QLS) techmique’subject to the non negativity and

equality constraints; i.c.

min[U'U = (Y - XP)'(Y - XP) ] such that GP=IP20. WhereG =[I,,1,,...,,] and I, is
the identity matrix. This-optimization preblemean be solved by the quadratic programming
routine provided that (XX is non-singular. Under this formulation however, the error

terms are not uncorrelated, thus P (the estimated P ) is an unbiased but consistent estimator

of P.

3.4 Formal definition .
— e _‘_'_,—"-—.’-*'_'_‘_

A Markov chain is a sequence of random variables Xj, X, Xj, ... with the Markov property,
i igaliee

namely that, given the present state, the future and past states are independent. Formally,

Pr(XnH:x/Xl :xl!XZZ'xz"“’X" =xn)=Pr(X”,fo_ =% ).

The possible values of X; form a countable set § called the state space of the chain.
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Markov chains are often described by a directed graph, where the edges are labeled by the

probabilities of going from one state to the other states.

3.5 Variations

o Continuous-time Markov processes have a continuous index.
« Time-homogeneous Markov chains (or stationary Markov chains) are processes

where

PI'(XH+1 — ‘1:|X11 = y) — pl'(}{ﬂ — .171..)(.'.;1-1 —_ y)

for all n. The probability of the transition is independent of n.

e A Markov chain of order m (or a Markov chain with memory 1) where m is finite,

1s a process satisfying
PI(XH — Inljfu—l [ < :Eﬂ-flj-'}(n-—ﬁ =Tp—2y---; }ll o :El)

- pr(Xn 13 -Tnl -'rﬂ—'l = Tn—1, Xﬂ—2 = dp—geeie , -‘X'Jl"-l?l == xn—m) for n > m
In other words. the future state depends ofithe past m states. "It is possible to construct

a chain (]f,,; from (X,) whieh-hag the 'classical"Markoy property as follows:

Let ¥, = (X, Xucis oo Xp-m+1), the ordered m-tuple of X values. Then Y, is a Markov
liwisd

chain with state space S™ and has the classical Markov property.

e An additive Markov chain of order m where m 1s finite, 1s where

PT(XH —_ «Tann—l = zn—l-an—? =Tn-2y--- 3X1 e :El) = Z f(In'.lIn—ﬂ r)
=1

for n > m.
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Example 1

If a Markov system is in state i, there is a fixed probability, p,, of it going into state j the

next time step, and is called a transition probability.

A Markov system can be illustrated by means of a state transition diagram, which is a

diagram showing all the states and transition probabilities.

The matrix P whose ijth entry is p, is called the transition matrix associated with the system.

The entries in each row add up to 1. Thus,[for in§tange, a2 42 transition matrix P would be

set up as in the following figure.

To
. pll pl: Arrows Ongmating 1n SEe |
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From . 0.4 0 0.6
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-

-

Distribution Vectors and Powers.ofsheTransition Matrx

Example 2

A simple example is shown in the figure 3.1 below, using a directed graph to picture the state
transitions. The states represent whether the economy is in a bull market, a bear market, or a
recession, during a given week. According to the figure, a bull week is followed by another
bull week 90% of the time, a bear market 7.5% of the time, and a recession the other 2.5%.

From this figure it is possible to calculate, for example, the long-term fraction of time during

43



which the economy is in a recession, or on average how long it will take to go from a

recession to a bull market.
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FIGUER 3.1Transition Diagram

A finite state machine can be used as a representation of a Markov chain. Assuming a
sequence of independent and identically distributed input signals (for example, symbols from
a binary alphabet chosen by coin-tosses), if the machine is in‘state y at time n, then the

probability that it moves to state x at time 7 + 1 depends only on the current state.

3.6 Markov chains

_'__—_F_—-_-. . . : o E [ .
The probability of going from state i to state j in # time steps 18

Py = Pr(Xa=j| Xo=1)
and the single-step transition 1s
Pij = PI'(X1 -_'—j l Xg = E)

For a time-homogeneous Markov chain:
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Pf;l) Pr(Xpim =7 | X =1),4
pij = Pr(Xpp =7 | Xi =14).

The n-step transition probabilities satisfy the Chapman-Kolmogorov equation, that for any &

such that 0 < k <n,

k —k)
th SRy ol (?;
Tres

where § is the state space of the Markov chain.

The marginal distribution Pr(X, = x)/i€ the\distribution over states at time n. The initial

distribution is Pr(Xp = x). The evolution of the process through one time step is described by

Pr(X,=j) =) p- Priis =1 Zp,f;] Pr(Xq =17}

res TES

Example 3

Trees in a forest are assumed in this simple model to fall into four age groups: b(k) denotes
the number of baby trees-in the forest (age group 0-15 years) at a given time period £;
similarly y(k),m(k) and of k) denotc the number of young trees (16-30 years of age), middle-
aged trees (age 31-45), and old’ miar than-45 years of age), respectively. The length of

one time-period is 15 years.

How does the age distribution change from one time period to the next? The model makes the

following three assumptions: =

+ A certain percentage of trees in each age group dies.

Surviving trees enter into the next age group; old trees remain old.

Lost trees are replaced by baby trees.
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Note that the total tree population does not change over time.

3.7 Calculating the Expected Number of Steps to Absorption

The number of times, starting in state 1, you expect to visit state j before absorption is the ij‘]1
entry of Q.

To obtain information about the time to absorption in an absorbing Markov system, we first
calculate the fundamental matrix Q.

The total number of steps expected befére absorption €quals the total number of visits you
expect to make to all the non-absorbing states. This 1s the sum of all the entries i the i" row
of Q.

The product QT gives the probabilities of winding up in the different absorbing states. For
instance, if the i row of QT is [x vy 'z t], then'starting in state i, there is a probability x of
winding up in the first absorbing state, a probability y of winding up.mm the second absorbing

state, and so on.

A state j is said to be accessible from a state i (wrilten i — j)if a system started in state i has
a non-zero probability of ftansitioning into.state/ at some point,/Fermally, state j is accessible

from state i if there-exists an integer7=0 such that
— . : (n)
Pr(X, =j|Xo=1)=pi; >0.
Allowing n to be zero means that every state is defined to be accessible from itself.

A state i is said to communicate with state j (written i <> j) if both i — j and j — i. A set of
states C is a communicating class if every pair of states in C communicates with each other,

and no state in C communicates with any state not in C. Tt can be shown that communication
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in this sense 1s an equivalence relation and thus that communicating classes are the
equivalence classes of this relation. A communicating class is closed if the probability of

leaving the class is zero, namely that if 7 is in C but j is not, then j is not accessible from i.

That said, communicating classes need not be commutative, in that classes achieving greater
periodic frequencies that encompass 100% of the phases of smaller periodic frequencies, may
still be communicating classes provided a form of either diminished, downgraded, or

multiplexed cooperation exists within the higher frequency class.

Finally, a Markov chain is said to be irreducible if its state space is a single communicating

class; in other words, if it is possible to get to anyustate from any state.
3.8 Periodicity

A state i has period & if any return to state i must occur in multiples of % time steps. Formally,

the period of a state is defined'as
k = ged{n : Pr(Xap—11Xe=1)> 0}

(where "ged" is the greatesticommonsdivisor). Note that even.though a state has period £, it
may not be possible to reach the-stat€m & steps. For example; suppose it is possible to return

to the state in {6, 8, 10, 12, ...} time steps; k would be 2, even though 2 does not appear in
e slaio 1

this list.

If k = 1, then the state is said to be aperiodic: returns to state 7 can occur at irregular times.

Otherwise (k> 1), the state is said to be periodic with period &.

It can be shown that every state in a communicating class must have overlapping periods with

all equivalent-or-larger occurring sample(s).
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It can be also shown that every state of a bipartite graph has an even period.

3.8.1 Recurrence

A state i 1s said to be transient if, given that we start in state 7, there is a non-zero probability

that we will never return to i. Formally, let the random variable 7; be the first return time to

state i (the "hitting time"):

T; = inf{n > 1: X,, = i| X, =i}.
Then, state i is transient if and only if:

Prili = oo) > 0.

If a state i is not transient (it has finite hitting time with probability 1), then it is said to be
recurrent or persistent. Alfhiough the hitting time is-finite, it need not have a finite

expectation. Let M; be the expccted return time,

Then, state i is positive recurrent-if A7 is finite; otherwise; staie is null recurrent (the

terms non-null persistent mdﬁmisteﬂt are-also-used, respectively).

u___.--_——-_ - . .
It can be shown that a state is recurrent if and only if

pt= oo i

n=>0

A state i is called absorbing if it is impossible to leave this state. Therefore, the state 7 is

absorbing if and only if

48



Pi =1 &HdpijZUfori#j.
3.8.2 Ergodicity

A state i is said to be ergodic if it is aperiodic and positive recurrent. If all states in an

irreducible Markov chain are ergodic, then the chain is said to be ergodic.

It can be shown that a finite state irreducible Markov chain is ergodic if it has an aperiodic
state. A model has the ergodic property if there's a finite number N such that any state can be
reached from any other state in exactly &V steps.|In case ©f a fully-connected transition matrix
where all transitions have a non-zero probability, this condition is fulfilled with N=1. A

model with just one out-going transition per state cannot be ergodic.
3.8.3 Steady-state analysis and limiting distributions

If the Markov chain is a time-homogeneous Markov chain, so that the process is described by
a single, time-independent matrix py, thén the veetor 7ris called a stationary distribution (or
invariant measure) if its entries’; are non-negative and sum to 1 and if it satisfies

i = Z TiPigw

1ES™
I .___J-'"__--_F

An irreducible chain has a stationary distribution if and only if all of its states are positive
e

recurrent. In that case, 7 is unique and is related to the expected return time:

Further, if the chain is both irreducible and aperiodic, then for any 7 and j,
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Note that there is no assumption on the starting distribution; the chain converges to the

stationary distribution regardless of where it begins. Such 7z is called the equilibrium

distribution of the chain.

If a chain has more than one closed communicating class, its stationary distributions will not
be unique (consider any closed communicating class in the chain; each one will have its own
unique stationary distribution. Any ofi¢hese“willlexten@sto 4 stationary distribution for the
overall chain, where the probability outside the class is set to zero). However, if a state j is
aperiodic, then

my _ 1

A8.Pii

and for any other state 7, let f;; be the probability that the chain eVer visits state j if it starts at {,

W) Jii.

n—oc” W Mf

If a state 7 is peﬁﬁ?ﬁé with peri uﬂ;?ﬂen_ the limit

S
,}_ﬂ}gg Pii

does not exist, although the limit

. kn-+4
1]111 gi it
Nn—00

does exist for every integer r.
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3.8.4 Steady-state analysis and the time-inhomogeneous Markov chain

A Markov chain need not necessarily be time-homogeneous to have an equilibrium

distribution. If there is a probability distribution over states 7rsuch that

=2, i Pr(Xnp1 =j | Xa = 1)

1ES

for every state j and every time » then 2t i§'an equilibrium distribution of the Markov chain.
Such can occur in Markov chain Monte Carlo (MCMC) methods in situations where a
number of different transition matrices are used, because cach is efficient for a particular_ kind

of mixing, but each matrix respects a shared equilibrium distribution.

3.8.5 Finite state space

If the state space is finite, the transition probability. distribution can be represented by a

matrix, called the transition matrix, with the (i, ))th element of P equal to

s -
Pij = PI‘(\HH =j | Xa= i).
s

Since each row of P sums to one and all elements are non-negative, P is a right stochastic

matrix.

0 W
1“]%“51“' ﬂt” A S 1
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3.8.6 Time-homogeneous Markov chain with a finite state space

If the Markov chain is time-homogeneous, then the transition matrix P is the same after each

step, so the k-step transition probability can be computed as the k-th power of the transition

matrix, P~

The stationary distribution =« is a (row) vector, whose entries are non-negative and sum to 1,

that satisfies the equation

T = nP.

In other words, the stationary distribution 7 ig"a normalized (meaning that the sum of its

entries is 1) left eigenvector of the transition matrix associated with the eigenvalue 1.

Alternatively, ® can_be viewed as“a fixed” point of the linear (hence cdntinuuus)
transformation on the -unit simplex associated to the matrix P. As any continuous
transformation in the unit simplex has a fixed point, a stationary distribution always exists, -
but is not guaranteed to be unique, in general. However, if the Markov chain is irreducible
and aperiodic, then there is.a unique stationary distribution 7. Additionally, in this case Pt

converges to a rank=one matrix'in which each row is the stationary distribution 7, that is,
! _Ff.--"'_'_—'—-

lim P* = P

s k—=co

where 1 is the column vector with all entries equal to 1. This is stated by the Perron-
Frobenius theorem. If, by whatever means, limi—sc P* is found, then the stationary

distribution of the Markov chain in question can be easily determined for any starting

distribution, as will be explained below.
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For some stochastic matrices P, the limit s.-llfgc £ does not exist, as shown by this example:

ALl
) -
Because there are a number of different special cases to consider, the process of finding this

limit if it exists can be a lengthy task. However, there are many techniques that can assist in

finding this limit. Let P be an nxn matrix, and define Q=limi .. P*.

It is always true that

QP = Q.

Subtracting Q from both sides and factoring then yields

QP -1,)= On

where I, is the identity matrix of size n,.and 0, 1s the Zero-matrix of size nxn. Multiplying
together stochastic matrices always yields another stochastic matrix, so Q must be a

stochastic matrix. It is sometimes sufficient to use the matrix equation above and the fact that

Q is a stochastic matrix to selvefor Q.
SE— -ﬂ_'_.‘—f'-!-—_-—_

Hﬁr@ggmethod for doing so: first, define the function f(A) to return the matrix A with its

right-most column replaced with all 1's. If [f{P — I,)]" exists then

Q = f(0nn)[f(P =T

One thing to notice is that if P has an element P;; on its main diagonal that is equal to 1 and

the ith row or column is otherwise filled with O's, then that row or column will remain
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unchanged in all of the subsequent powers P*. Hence, the ith row or column of Q will have

the 1 and the 0's in the same positions as in P.

3.5.7 Reversible Markov chain

A Markov chain is said to be reversible if there is a probability distribution over states, =,

such that
; PI'(.XH+1 =] | X, =1)= m; Pr( X,y =1| X, =7)

for all times n and all states / and ;. "Wsi'.':conﬁiﬁqu!is also known as the detailed balance
condition (some books refer the local balance equation). With a time-homogeneous Markov
chain, Pr(X,+1 =/ | X, = i) does not change with time n and it can be written more simply as

py. In this case, the detailed balance equation can be written more compactly as
TiPij = ?ijj,' p
Summing the original equation over i gives

fIXﬂ=j)

i

Z‘ﬂ' Pl‘(\".}.l -Jl '\.,,-—I}—Zﬂ' PI’ \-n+l

-

Zadll > o —HJZPT(Yn+i

|

IIXn=j)=ﬂ'J,

R ! ; ] - '
50, for reversible Markov chains, 7 is always a steady-state distribution of Pr(X,+) =J | X, = 1)

for every n.

If the Markov chain begins in the steady-state distribution, i.e., if Pr(Xy=1i)=m;, then

Pr(X, = i) = m, for all n and the detailed balance equation can be written as

Pr(xn = §, Xn+1 _J) kb PI‘( Xat+1= i, Xn = J)



The left- and right-hand sides of this last equation are identical except for a reversing of the

time indices n and n + 1.

Reversible Markov chains are common in Markov chain Monte Carlo (MCMC) approaches
because the detailed balance equation for a desired distribution 7 necessarily implies that the
Markov chain has been constructed so that « is a steady-state distribution. Even with time-
inhomogeneous Markov chains, where multiple transitions matrices are used, if each such
transition matrix exhibits detailed balance with the desired @ distribution, this necessarily

implies that & is a steady-state distributigh ofith¢ Marko¥ chain.
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4.0 Introduction

DATA ANALYSIS AND RESULTS

CHAPTER FOUR

This chapter presents the data obtained and the analyses in accordance with the methods

discussed under chapter three above.

4.1 Data Collection

The secondary data for this study was collected from a Ghana-based financial institution that

operates through 149 branches nationwide ,The data yas.collected over a span of two years

from January 2010 to December 2011.

Table 4.0 represents the type of loan and its code

Housing

Business

Education

Others

HDusing

HS

BS

ED

oT

HS

Table 4.1: The data of loandisbursement for the four loan types for the'24 months

(GHg¢’000)
HS BS ED OT Total

Jan—10 | 7.226,494.79 | 826,61640 | 783,045.1015,948216.54 | 14,784,372.83
Feb—10 | 8.656332.62 | 689,18280. | 725,801.807 [ 1:335422.51 | 11.406,739.43
Mar 10 | 7.288,007.10 |..813,588.42° | 733,785.62" [MI;3125145:29 | 10,147,526.43
Apr—10 | 6.337,540.65 |\ 631,652.39 | 7AL,857.26 -|.3,425,462.72 | J11,186,513.02
May 10 | 7,341,855.50 | B41.73252_ |« 750,017:69—|-1;254,735. 57 10,188,341.28
Ton—10 | 7,643,286.00 | 753.841.80, [-758,267.80 | 3,122;536.51| 12,277,932.20
TI—10 | 6.527.476.56 | 871064650 M765,608:83—1,145,67839 | 9,311,72846
Aug—10 | 8,583,72000 | 763,826.65 | 303,30172—2,234225.72 | 12,175,274.99
Sept10—7.581,795.88 | 757,55625 | 599,436.74 | 3,444,788.33 12,383,577.20
Oct_10 | 8,665.316,74 | 798,74638 | 605431.10 | 2,423,539.58 | 12,493,033.80
Nov—10 | 8,874,476.00 | 825,618.28 | 61148542 |3,221,562.27 13,533,141.97
Dec—10 | 7.754.482.21 | 877.943.65 | 617,600.27 | 5442,167.86 14,692,193.99
Jan—11 | 7.651,183.32 | 1,986,735.76— 856,491.50 5432,578.28 | 15,926,988.86
Feb—11 | 0.274,627.25 | 856,554.34 | 1,415487.60 | 2,326,843.80 13,873,512.99
Mar 11 | 8.757.641.70 | 2,985,783.34 | 1,112,173.90 | 3,674,454.32 16,530,053.26
Apr—11 | 674221731 | 2,495,637.32 | 915,116.78 | 4,332,656.86 14,485,628.27
May 11 | 7,846,211.66 | 3,445,631.62 | 935,706.91 4332,567.35 | 16,560,117.54
Tun— 11 | 6.861.662.81 | 699,894.64 | 95676031 | 3,872,861.45 12,391,179.21
TI—11 | 8.849,728.50 | 2,133,541.63 | 97828742 | 3,256,573.64 15,218,131.19
Aug—11 | 9,441,881.13 | 1,332,546.75 | 1,000,298.89 4,453,783.25 | 16,228,510.02
Sept11 | 7,795,643.32 | 934,670.96 | 1,022,805.61 324549524 | 12,998,615.13
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Oct—11 | 8,421,902.48 | 2,185,925.85 | 1,045,818.74 | 4,456,555.66 | 16,110,202.73
Nov—11 | 8,226,575.53 | 1,356,545.23 | 1,069,349.66 | 5,334,765.58 | 15,987.236.00
Dec—11 | 7,652,362.62 | 2,422,356.17 | 1,093,410.03 | 5,284,861.52 | 16.452.990.34

4.2 Data Processing

4.3 Estimating the Transition Probability Matrix for the Loan Portfolio: Following the

estimation procedure discussed earlier in chapter three, we need to define the appropriate

vectors and matrix. Since y, () is defined as a proportion of loan type j, at time ¢, then the

actual loan disbursements have to be ¢hanged intowproportions This can be done by dividing

the individual actual loan disbursement by the total actual loan disbursement for each time 7 .

Table 4. 2 shows the Proportion y;(t) ofloan Disbursement for each type of Loan for a given

months (j) of loan disbusement

t HS BS ED OT
Jan—10 0.4888 0.0559 0.0530 0.4023
Feb — 10 0.7589 0.0604 0.0636 0.1171
Mar — 10 0.7182 0.0802 0.0723 0.1293
Apr—10 0.5691 0.0567 0.0666 0.3076
May — 10 0.7206 0.0826 0.0736 0.1232
Jun - 10 0.6225 0.0614 0.0618 0.2543
Jul—10 0.7010 010936 0.0823 0:1230
Aug — 10 0.7050 0.0627 0.0487 0:1835
Sept— 10 0.6122 0.0612 0.0484 0.2782
Oct—10 0.6936 0.0639" .| "0.0485 0.1940
Nov — 10 0.6558 0.06180—] 0.0452 0.2380
Dec — 10 0.5278 0.0598 0.0420 0.3704
Jan—11 0.4804 0.1247 0.0538 0.3411
Feb — 131 0.6685 0.0617 0.1020 0.1677
Mar —11 0.5298 0.1806 0.0673 0.2223
Apr—11 0.4654 0.1723 0.0632 0.2991
May —11 0.4738 0.2081 0.0565 0.2616
Jun—11 0.5538 0.0565 0.0772 0.3125
Jul—11 0.5815 0.1402 0.0643 0.2140
Aug — 11 0.5818 0.0821 0.0616 0.2744
Sept—11 0.5997 0.0719 0.0787 0.2497
Oct— 11 0.5228 0.1357 0.0649 0.2766
Nov —11 0.5146 0.0849 0.0669 0.3337
Dec—-11 0.4651 0.1472 0.0665 0.3212
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According to the Bank where data was collected, the transition probability is calculated by
1 . .
= where N is the total number of directed arrows leaving a node (state). From this formula

it is possible to calculate, for example, the transition probability of a state (HS) moving to

another state (BS) is 1/4.

Pes.as = /2 =0.50, Pgs.ys = %=0.250, Pgs.¢p = ¥%=0.250, Pgs.or = %=0.250
Phs-as = 0, Pus.ns = 3=0.3333, Pys.ep = ¥4=0.3333, Pys.or = ¥2=0.3333
Pep-s = 0, Pep.us = %4=0.3333, Pep.gp = %4=0.3333, Pep.or = %4=0.3333
Por-ss = %=0.50, Por-us = #40.250, Botco 3 ORgr.of = %=0.250
In the table 4.2 below both the rows and columns represent the transition states. The

movement is done from row to column across the table. The values in the table represent the

transition probabilities.

Table 4.2 Transition Probability Values

BS “<HS ED oT

BS 0.500 | 0.250¢ | 0:250- | 0,250
P= |HS 0.0 |0.3333[0.3333|0.3333
ED |0.0 |0.333310.3333|0.3333

oT 0.500 | 0:250° | 0.0 0:250
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Figure 4.1: Pictorial Representation of the Transition Probability Matrix

4.4 Transition Probability Matrix: The transition probability matrix for the loan portfolio is
given in Table 4.2 while Figure 4.1 is/its pictorial representation. The transition probability
matrix shows that the probability of loan switching from business to other loan is quite high
(0.500) while loan switching from housing to educationis low(0.3333). Probability of no
loan switching is quite low for education loan (0.3333) it is the same for other loan (0.3333).
Loan switching from housing to business, education {o business and other to education cannot
be made in one time period due towits zero probability. Loan swilching to housing loan 1s
relatively the same from other WSE’;) but-retatively fow from other loan (0.250). The
interpretation of this probability values should be made cautiously. Firstly, the probability
value gives us the indication of loan switching. [t may actually affect the switching or it may

not be. If it affects the switching then the probability value gives the probability of switching.

Secondly, the probability value also indicates that if a bank receives a loan application (say a

housing loan), then if its allocation is still available, then there is no switching. Otherwise,

loan switching is made. The probability value gives the probability of 0.250 no switching,
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0.250 of switching to business loan, 0.250 of switching to education loan and 0.250 of
switching to other loan. Other probability values should be interpreted accordingly.
The pictorial representation indicates the switching of loan derived from the transition

probability matrix. A directed arch represents the non zero probability of switching from one

type to another type.

4.5 Stationarity/Homogeneity of The Process: For useful application of the Markov process
in particular to business and economie groblems, one has. to further investigate the
stationarity of the process. By statiohafity it“meant that the underlying factors that are
responsible for the generation of the data dosfmot change significantly over the sampling
period (data collection time) and the forecast periods. This could be verified by analyzing the

trend of the backcast proportion of the loan disbursements.

The following matrix opcration 1s use to estimate thevalues of the backcast proportion or one

period forecast proportion of the individual type of loan disbursement.

X (t +1) = X(H)P where X (t + 1)iand X(z)-are vectors of the Backcast proportion and the
actual proportion for all past values oLt respectively.

-

S ”_‘--4"-'-_-—-_'__
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(0.7589 0.0604 0.0636 0.1171)
0.7182 0.0802 0.0723 0.1293

(0.2483 0.2603 0.2310 0.2603 )
0.2542 0.2766 0.2403 0.2727

0.5691 0.0567 0.0666 0.3076 0.2961 0.2602 0.1833 0.2602
0.7206 0.0826 0.0736 0.1232 0.2418 0.2630 0.2322 0.3076
0.6225 0.0614 0.0618 0.2543 0.2828 0.2602 0.1967 0.1232
0.7010 0.0936 0.0823 0.1230 02368 0.2646 0.2338 0.2543
0.7050 0.0627 0.0487 0.1835 0.2680 0.2592 0.2133 0.1230
0.6122 0.0612 0.0484 0.2782 0.2922 0.2591 0.0484 0.2591
0.6936 0.0639 0.0485 0.1940 0.2704 0.2593 0.0485 0.2593
0.6558 0.0610 0.0452 0.2380 0.2830 0. 0.0452 0.2588
(0.250 0.250 0.250 0.250 ) el gto
0.5278 0.0598 0.0420 0.3704 0.3172 0.2584 0.0420 0.2584
0.0 0.3333 0.3333 0.3333
0.4804 0.1247 0.0538 0.3411 |* =1 0.2907 0.1795 0.0538 0.1795
0.0 0.3333 0.3333 0.3333
0.6685 0.0617 0.1020 0.1677 0.2510 0.2634 0.1020 0.2634
, (0.50040250, 0.0 0.250"
0.5298 0.1806 0.0673 0.2223 | 0.2436 0.2706 0.0673 0.2706
0.4654 0.1723 0.0632 0.2991 0.2659 0.2687 0.1939 0.2687
0.4738 0.2081 0.0565 0.2616 0.2493 0.2720 0.2066 0.2720
0.5538 0.0565 0.0772 0.3125 0.2947 0.2611 0.2293 0.2611
0.5815 0.1402 0.0643 0.2140 0.2524 0.2670 0.2135 0.2670
0.5818 0.0821 0.0616 0.2744 0.2827 0.2619 0.1933 0.2619
0.5997 0.0719 0.0787 0.2497 0.2748 0.2625 0.2001. 0.2625
0.5228 0.1357 0.0649 0.2766 0.2690 0.2666 0.1975 0.2666
0.5146 0.0849 0.0669 0.3337 0.295510.2626 0.1791 0.2626
L0.4651 0.1472 0.0665 0.3212) \ (0.2769 0.2677 0.1874 0.2677)

Table 4.3 gives the value of actual and backcast proportions of the loan disbursements.

Fig.4.2 to 4.5 show the trend of actual and backeast proportion.
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Table 4.3 Actual and Backcast Proportion of Loan Disbursement

Housing Business Education Others

Month Actual | Backcast Actual | Backcast Actual | Backcast Actual | Backcast
Jan-10 | 0.4888 | _ 0.0559 | _ 0.0530 | _ 0.4023 | _
Feb-10 | 0.7589 | 0.2483 0.0604 | 0.2603 0.0636 | 0.2310 0.1171 | 0.2603
Mar 10 | 0.7182 | 0.2542 0.0802 | 0.2766 0.0723 | 0.2403 0.1293 | 0.2727
Apr-10 | 0.5691 | 0.2961 0.0567 | 0.2602 0.0666 | 0.1833 0.3076 | 0.2602
May-10 | 0.7206 | 0.2418 0.0826 | 0.2630 0.0736 | 0.2322 0.1232 | 0.2630
Jun—-10 | 0.6225 | 0.2828 0.0614 | 0.2602 0.0618 | 0.1967 0.2543 | 0.2602
jul-10 | 0.7010 | 0.2368 0.0936 | 0.2646 0.0823 | 0.2338 0.1230 | 0.2646
Aug-10 | 0.7050 | 0.2680 0.0627 | 0.2592 0.0487 | 0.2133 0.1835 | 0.2592
Sept-10 | 0.6122 | 0.2922 0.0612 | 0.2591 0.0484 | 0.1895 0.2782 | 0,2591
Oct-10 | 0.6936 | 0.2704 0.0639 | .2893 dloass (02108 0.1940 | 0.2593
Nov-10 | 0.6558 | 0.2830 0.0610 | @.2588 00452 | (41998 0.2380 | 0.2588
Dec-10 | 0.5278 | 0.3172 0.0598 | 0.2584 0.0420 | 0.1658 0.3704 | 0.2584
Jan-11 | 0.4804 | 0.2907 0.1247 | 0.1795 0.0538 | 0.1795 0.3411 | 0.1795
Feb-11 | 0.6685 | 0.2510 0.0617 | 0.2634 8 [ 0.2020 | 0.2217 0.1677 | 0.2634
Mar-11 | 0.5298 | 0.2436 0.1806 | 0.2706 0.0673 | 0.2150 0.2223 | 0.2706
Apr-11 | 0.4654 | 0.2659 0.1723 | 0.2687 0:0632 | 0.1939 0.2991 | 0.2687
May-11 | 0.4738 | 0.2493 0.2081 | 0:2720 0.0565 | 0.2066 0.2616 | 0.2720
Jun—11 | 0.5538 | 0.2947 0.0565 | 0:2611 0:.0772 | 0.2293 03125 | 0.2611
Jul-11 | 0.5815 | 0.2524 0.1402 |'0,2670 0.0643 | 0.2135 92140 | 0.2670
Aug-11 | 0.5818 | 0.2827 0.0821 [0.2619  {0.0616 |.0.1933 0.2744 | 0.2619
Sept-11 | 0.5997 | 0.2748 0.0719 | 0:2625 0.0787 | 0.2001 0.2497 | 0.2625
Oct-11 | 05228 | 0.2690 | 0.1357 | 0.2666 0.0649 | 0.1975 0.2766 | 0.2666
Nov-11 | 0.5146 | 0.2955 0.0849..|.0.2626 00669 | 0.1791 0.3337 | 0.2626
Dec-11 | 0.4651 | 0.2769 0.1472 | 0.2677 0.0665 | 0:1874 0.3212 | 0.2677

It is observed ffﬁm Table 4.3 that-fre tousing loan proportion-has a decreasing trend while

the proportions of business, education and other loans has an increasing trend. The same

phenomenon is also basically observed for the backcast proportion. Though the trend for the

actual and backcast proportion seems to be consistent, the actual proportion in particular the

other loan has a fluctuating movement. However for the Backcast proportion, the trend is

quite smooth which connotes a stable trend. Thus one would conclude that the estimated

transition matrix produces a stable trajectory which will imply homogeneity. Had the trend

for the backcast proportion exhibit an -rratic movement, then one would obviously conclude
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that the underlying factors that are responsible for the generation of the data had changed the

loan process significantly.

Figure 4.2 shows that the actual housing loan proportion has a decreasing trend while the
backcast proportion seems to be consistent. However for the Backcast proportion, the trend is

quite smooth which connotes a stable trend.
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Nov—11

Figure 4. 2: Housing Loan: Actual and Backeast Proportion
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Figure 4.3 shows that the actual Business loan proportion has a increasing trend while the
backcast proportion seems to be consistent. However for the Backeast proportion, the trend is

quite smooth which connotes a stable trend.
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quite smooth which indicate.a stable trend.
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Figure 4.4: Education Loan — Actual and Backcast Proportion

|
Figure 4. 3; Business Loan=Actual and Backcast Portiolio .
Figure 4.4 the actual Education loan proportion seems to has a decreasing trend while the
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Figure 4.5 shows that the actual housing loan proportion has a increasing creasing trend while
the backcast proportion seems to be consistent. the Backcast proportion, shows that the trend

is quite smooth and a stable.
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Figure 4.5: Other Loan — Actual and Backeast Proportion

4.6 Steady State Distribution and The First Passage Time: The long term proportion of
the loan disbursements is indicate by steady state distribution’ of proportion of the loan
disbursements which in turn be used to-estimate the optimal loan portfolio mix.

In this study, the estimated steady state distribution _is'given as follows:

N ,.f‘""'__—'_
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From table 4.2 in section 4.2

P =

Since P™ tends to a limit as n be

to a stationary state. That is im P" =

(0.250 0.250 0.250 0.250 )

\

0.0 0.3333 0.3333 0.3333
0.0 0.3333 0.3333 0.3333
0.500 0250 0.0 0250

(0.250 0.250 0.250 0.250 )
0.0 0.3333 0.3333 0.3333
0.0 0.3333 0.3333 0.3333
(0.500 0250 0.0 0.250

2

0.0 0.3333 0.3333 0.3333
0.0 0.3333 0.33330.3333

(0250 0250 0250 02507

0.0 0.3333 0.3333 0.3333

n—rxa

(0.500 0.250 ©:0- 02507

(0.250 0.250 0.25Q_ 0,250 Y
0.0 0.3333 0.3333 0:3333-

0500-0250 00 0250

comes large, it implies that the

(0.1875 0.2915 0.229 0.2915)
0.1665 0.305 0.2218 0.305
0.1665 0.305 0.2218 0.305
| 0.250 0.2708 0.2083 0.2708

0:1946 0:2918-0.2188-0:2918
0.1944 0.2914 0.2185 0.2914
0.1944 0.2914 0.2185 0.2914
(0.1947 0:2914 0:2188 0.2918 )

£6.1946-0.2918-0.2188 0:2918 )
| 01944 0.2914:0.2185-0:2914
= 10194410.2914.0:2185 0.2914
0.1947 0.2914 02188 0.2918,

long term probabilities tend

(0.194 0.291 0.218 0.291)

0.194 0.291 0.218 0.291

0.194 0.291 0.218 0.291 LIBRARY
KWAME NKRUMAH

(0.194 0.291 0.218 0.291) «wIVERSITY OF SCIENCE & TECHNO
KUMAS |

s BS ED OT

=194 0291 0.218 0.291
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This means that in the long run, the housing loan will be 19.4% of the total loan, 29.1% for
the business loan, 21.8% for the education loan and 29.1% for the other loan. This

information also indirectly indicates the relative importance of the various loan type, besides

the information on the first passage time.

4.7 Forecast on Loan Disbursement Proportion: One of the advantages of using a Markov
model in analyzing the loan portfolio mix, besides understanding its basic characteristic is its

ability to make forecast on the proportion. Forecasting the monthly proportion of all loan

types is again based on the following relation ) (&d NS X @) P* where )A( (T +7 ) and

X(T) are vector of forecast proportion for T period abead and actual proportion respectively.

For example ;;i’ ( 25) is a vector of forecast proportion for January 2012. Table 4 gives the
vector of monthly foreeast proportion for the year 2012. The forecast pruportion' for the
housing loan is at 19.5% for January 2012 while the proportion for business, education and
other loans is at 29.2%, 21.8% and 29.2% respectively. The forecast Proportions remain the
same for the rest year 2012 of the.months for the housing loan is forecasted to drop at a level
of 34.66% in February 2012 and finally settled-downrat 32.05% in July 2012 onwards.

Below is a sample calculation of “the. forecast. Table.4:5 gIves forecast of monthly loan
— g,

proportion for the year 2012.

—_-—-""-.—._

(0.4804 0.1247 0.0538 0.3411) (0.194 0.291 0218 0.291) (0.194 0.291 0.218 0.291)
0.6685 0.0617 0.1020 0.1677 | |-0.194 0.291 0218 0.291| |0.194 0.291 0.218 0.291
0.5298 0.1806 0.0673 0.2223 | | 0.194 0.291 0218 0291 | |[0.194 0.291 0.218 0.291
|0.4738 0.1723 0.0632 0.2991) 0.194 0.291 0218 0291 |0.194 0.291 0.218 0.291)
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Table 4.5: Forecast of Monthly Loan Proportion for the Year 2012

Loan Type

t | Month Housing | Business | Education | Other

1 | January 0.194 0.291 0.218 0.291

2 | February | 0.194 0.291 0.218 0.291

3 | March 0.194 0.291 0.218 0.291

4 | April 0.194 | 0.291 0.218 0.291
5 | May 0.194 | 02% 0.218) $0.291
6 | June 0.194 |0.291 0218 0.291
7 | July 0.194 | 0.291 0.218 0.291

8 | August |0.194 | 0291 " 10218 0.291

9 | September | 0.194 0.291 0.218 0.291

10 | October | 0.194 0.291 0.218 0.291

11 | November | 0.194 0.291 0.218 0.291

12 | December-0.194 | 0:291 0218 0291

e e i

-

4.8 Discussion
The_trend for the forecast proportion 1s marginally an upward trend for the business,

education and other loan types. Business loan proportion for the year 2012 1s forecasted at

29.1%. For education and other loan, the corresponding forecast is at 21.8% and 29.1%

respectively. One obvious observation is that, the forecasted proportions for individual loan

remains the same. This phenomenon is to be expected as Markov Chain model is a short term

forecasting model. The forecast values discussed above give the policy maker an indication

on the average proportion of different types of loan. In practice forecasts have to be updated
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as current data are available, and it is recommended that at the beginning of a month forecasts
could be made when the previous month data are known. This will further improve the
accuracy of the forecasts. Moreover if forecasts on the total allocation for retail banking loan
is available, one would easily compute the individual loan allocation using the updated

proportion forecasts. The major findings of this study are as follows:

1. The implicit characteristic of the disbursement process derived from the transition
probability matrix shows that loan switehing is possibles iagthe retail banking unit. The
existence of non absorbing loan further'indicates'that-the-aggrogate loan disbursement data is
the best proxy of the individual movement of Joan disbursement among its type. Non zero
probability values of switching from any loan type to business loan indicate that business
loan allocation is not fully utilized. Thus signifying that business loan is of less important to

retail banking

2. The rate of convergence to the equilibrium state is the measurement of how fast the
process reach its equilibrivm statc. One would analyze the behaviour of the loan proportion
forecasts as given in Table 3:-Itus observed. that the forecast.proportions beginning January

—— _._-__,._--—"___' .
2012 for all loan types are the same. Oiie-would-view., matured loan demand process as the

abitity of the bank to declassify the loan disbursement according to its types. Thus, shorter
period means that the bank is able to declassify it without much difficulty.

3. This study further stimulates the expected income on interest by using the Markov

proportions and the forecast on the value of loans in each type. It had been proved that loan.

allocation using Markov proportions yields higher expected income on interest and

considered superior to the existing policy.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The main aims of the study are to estimate the transition matrix using a sample of observed
monthly loan movements between delinquency states and to obtain optimal loan allocation
mix policy, which could be used as guiding principle on future allocation purpose.

The steady state transition matrices and the steady state probability vectors were computed
for each loan type.

The discussions can be concluded in the following lines that among the four types of loans,
housing loan is expected to constitute 19.4. % of the retail banking. This is followed by other

type 29.1%, business loan 21.8 % and education-lean.29.1%.

5.2 Recommendations

It is recommended that, this work could be helpful to business organizations, Agro industries

and Agricultural insurance companies, In thisway they wold be able to advice their stake

holders or clients as to what fime to invest ornotto invest.
The bank should train the more STaif onl how_to use compuier software for calculating loans.

The bank should employ at least on mathematician to work on loan calculations.
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