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A B S T R A C T   

This study outlines a probabilistic model based on artificial neural networks applied to the deeply-buried karsted 
carbonates of the Ordovician Yingshan Formation, which represent significant oil reservoirs in western China. 
The complexity of both rock type prediction and 3D facies modeling of paleokarst fillings, which are hosted 
within the cavities, drives the need to apply innovative techniques for identifying new oil plays. Due to the high 
heterogeneity of clastic fillings and patchy continuity of the karst patterns, physical evaluation of these reservoirs 
is extremely complex. We propose the Democratic Neural Networks Association (DNNA) as the probabilistic 
technique to solve these challenges. This technique simultaneously runs several artificial neural networks in 
parallel and combines seismic data and well logs. The resulting probable facies volume is expected to provide an 
appropriate distribution and delineation of clastic fillings (i.e., conglomerates, fine-grained sandstones, silt
stones, mudstone, dolomite fragments, and sparry calcarenite) and unfilled or empty spaces. This calculated 
volume is then used as a reliable input data to condition trend analysis on a very fine geological grid, in order to 
model the complex patterns in question. The static model obtained shows that, the probabilistic distribution of 
each filling has the same orientation as karst system. Likewise, spatial dimensions similar to the proposed 
analogue model of these patterns (vertical and horizontal scales) are delineated. Finally, we validated prediction 
results by comparing them with the interpreted karst facies of a well not initially considered in the 3D model. The 
results indicating that the DNNA technique proves to be a useful innovative tool for generating realistic de
pictions of fillings deposited within deeply-buried paleokarst.   

1. Introduction 

In recent years, artificial neural networks have undergone a renais
sance in oil and gas industry (Ali, 1994; Elshafei and Hamada, 2007; 
Alkinani et al., 2019). Many researchers have been inspired to report 
their results using different models with oil and gas exploration data 
(Elshafei and Hamada, 2007). Although various methods have been 
developed to speed up interpretation and improve prediction, significant 
challenges still exist, e.g., in seismic facies classification (Liu et al., 
2020). Several studies have approached rock facies classification using 
artificial neural networks with petrophysical features (well logs data) as 

input data (Hall, 2016; Chen and Zeng, 2018; Shashank and Mahapatra, 
2018; Chevitarese et al., 2020). In a similar vein, other researchers have 
combined these algorithms with seismic data to predict or interpret 
geometries of sediments elements, for examples Saggaf et al. (2003), 
Zhao (2018), Di et al. (2019), Boateng et al. (2020), Liu et al. (2020). 
Their conclusions include a fairly precise seismic facies characterization 
in siliciclastic environments. However, predicting paleokarst fillings 
hosted in deeply-buried carbonates, the seismic-based facies classifica
tion is not yet decisive. 

Many studies have used artificial neural networks tools to describe 
karst as oil reservoirs or aquifers (Lin et al., 2013; Kong-A-Siou et al., 
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2015; Chen and Zeng, 2018; Kovačević et al., 2020; Xin et al., 2020). 
These robust techniques have been running in oilfields to predict the 
morphology and continuity of the karst patterns. However, the karst 
fillings interpretation still represents a significant challenge due to 
limitations for successfully implementing of learning strategies from 
hard data samples of seismic data. In addition, the size of seismic volume 
and available well data (qualified population) are factors that can limit 
the training set in terms of diversity. Even though the seismic dataset 
permits the relative visualization of karst features, the resolution limits 
rock types’ discretization that fill these cavities. Therefore, it is difficult 
estimating and modeling the types of paleokarst fillings related to res
ervoirs. This complexity drives the need to apply recent and innovative 
techniques with a probabilistic approach to reduce geological uncer
tainty. This new study estimates the probabilistic distribution and 
spatial sorting of the lithofacies that compose the clastic paleokarst 
fillings in the karsted carbonates. We have opted to carry out this 
challenge after several tests using, the Democratic Neural Networks 
Association (DNNA) technique that combines well logs and seismic data 
(Hami-Eddine et al., 2015; De Ribet, 2016). 

The DNNA technique is an artificial method that associates multiple 
training cycles to generate lithological probabilities from the combina
tion of quantitative rock typing analysis at wells locations and in the 
seismic dataset (Hami-Eddine et al., 2015). Generally, this technique has 
been previously used to estimate lithological distributions related to 
siliciclastic and carbonates rocks (Hastie et al., 2009; Hami-Eddine et al., 
2015; De Ribet, 2016). The probabilistic approach of DNNA combines all 
seismic-related information to compute a probable facies volume (dis
tribution and propagation). As a different learning strategy, the DNNA 
technique simultaneously runs different neural networks trained with 
the same hard data set (Zhou and Goldman, 2004). This approach pro
vides the ability to handle associative neural networks’ training with a 
unique set of seismic data attributes that are not necessarily independent 
or paired with the well information (Hami-Eddine et al., 2015). Addi
tionally, this technique permits the supervised addition of soft data from 
the seismic dataset to improves the training (democratic contribution). 
The well information consists of discrete facies described from core and 
cutting samples and electrofacies logs processed from multi-regression 
analysis of selected well logs. 

Another objective in this investigation is building a geocellular 
model that considers an appropriate distribution of the clastic fillings 
inside and along cavities. Many authors have modeled karst features 
highlighting the differences between karst zones using robust techniques 
(Liu et al., 2008; Zhao et al., 2008; Lu et al., 2012; Li et al., 2016; Tian 
et al., 2016; Mendez et al., 2020 b). However, our 3D facies modeling 
proposal goes further and tries to simulate the lithological heterogene
ities in a probabilistic way. Using the most probable facies volume ob
tained from the DNNA technique and well information as input data in 
trend analysis, we can model the highly heterogeneous fillings can be 
modeled. We expect the resulting realization of the model to evaluate 
the reproduced trends and represent the correct spatial interaction be
tween different lithofacies. 

Generally, clastic paleokarst fillings consist of random deposits in the 
karst system of both siliciclastic and carbonates sediments transported 
by underground rivers and/or streams (Jin et al., 2015a; Li, 2017). For 
this case study, the fillings hosted within the Ordovician Yingshan 
Formation carbonates represent relevant deeply-buried reservoirs for oil 
and gas production in the Tahe oilfield, western China (Xiao et al., 2003; 
Chen and Wei, 2010; Yang et al., 2011; Zhao et al., 2014; Yu et al., 2018; 
Mendez et al., 2020a). Multi-dissolution stages and erosion produced the 
karst system in this area due to tectonic events in the middle Caledonian 
and late Hercynian orogenies (Chen et al., 2012; Li, 2017). The char
acteristic of these karsted carbonates can be visualized along the T74 
unconformity (Li, 2017). Different rock types filled some cavities during 
and after the karstification processes (Dell’OCa, 1961; Loucks and 
Anderson, 1985; Loucks, 1999, 2001; Jin et al., 2015a; 2015b; Tian 
et al., 2016, 2017). 

Furthermore, we take into account a recently reprocessed seismic 
dataset that improves the Paleozoic targets’ seismic resolution seismic 
resolution in the study area. This dataset provides users with enhanced 
comprehensive information on the stratigraphic features of the karst 
system. Finally, this entire workflow’s results represent a significant 
contribution to geoscientific knowledge on the geological character
ization of karsted carbonate reservoirs. 

2. Geological settings 

The study area covers 13.5 km2, with a total of 13 wells (TK210, 
TK211, T403, TK405, TK408, TK410, TK411, TK419, TK428, TK446, 
TK458H, TK476 and TK467) drilled in operating zones 2 and 4 of the 
Tahe oilfield within the Tarim Basin (Fig. 1). In this region, paleokarst 
fillings associated with clastic sediments were determined based on 
outcrops, wireline logs and core samples (Jin et al., 2015a; Tian et al., 
2016; Wu et al., 2018; Mendez et al., 2019). The study area is struc
turally located on the southwestern slope of the south-central Tabei 
uplift, an ancient tectonic structure where the deformation occurred in 
several periods mainly during the Caledonian and Hercynian orogeny 
(Chen and Wei, 2010; Li, 2017). During these orogenies, the paleo
morphology consisted of a karst landscape affected by multi-stages of 
karstification (Fig. 2). Processes related to meteoric waters and burial 
and hydrothermal activities produced by carbonate dissolution (Loucks, 
1999; He et al., 2010; Chen et al., 2012). 

The first karstification stage in the middle Caledonian affected the 
Ordovician strata (Chen et al., 2012). This stage is described in three 
episodes designated as I, II and III (Chunyan, 2008; Chen et al., 2012; 
Tian et al., 2016), show in Fig. 2. The episode I occurred in the Middle 
Ordovician after the Yijianfang Formation deposition. In this episode, 
the stratigraphic unit was partially eroded, developing scattered syn
genetic pores by karstification (Jin et al., 2015a; Tian et al., 2016). 
Episodes II and III originated in the Upper Ordovician after the Lian
glitage (O3l) and Sangtamu (O3S) Formation depositions (Fig. 2), small 
cavities in Ordovician strata were produced (Li, 2017). In the early 
Hercynian stage, the last and more drastic karstification process 
occurred on the Ordovician carbonate platform, due to its long duration 
and widespread distribution (Tian et al., 2016; Chen et al., 2012; Li, 
2017). This process is the source of the main paleokarst elements 
identified in the study area (Changsong, 2011; Yang et al., 2011). At this 
late-stage, the karstification process includes the dissolution and trans
formation of the early-stage karstification attributes, to form complex 
karst features (Li, 2017; Tian et al., 2016). The developed karst zones 
then control hydrocarbon accumulation in the Tahe area (Zeng et al., 
2010). 

2.1. The Yingshan Formation carbonates and types of paleokarst fillings 

The Ordovician Yingshan Formation is the key stratigraphic unit and 
is generally composed of carbonates rocks such as grainstone and 
dolomitic limestone (Liu et al., 2008; Chen et al., 2012; Zhao et al., 
2014; Li et al., 2018, Fig. 2). We find these karsted carbonates in certain 
areas of the Tarim Basin. The karsted section of the Yingshan Formation 
is visible in the seismic reflection window between 3400 and 4000 ms. 
However, the key interval covers 118-ms (~250-m) between the seismic 
horizons of T74 and T76 unconformities (Chen et al., 2012). Within this 
time window, various patterns similar to karst geomorphology have 
been visualized (Fig. 3). The karst system represented here as cavities 
with tubular shapes and asymmetrical geometry are oriented structur
ally along the strike of several faults (Zeng et al., 2010; Zhang et al., 
2012). In these cavities, the clastic paleokarst fillings produced by me
chanical erosion or incision processes, such as underground rivers or 
streams (Zeng et al., 2010), were sedimented or deposited. The sedi
ments were sourced from the northwestern platform and subsequently 
consolidated in rock packages such as polymictic conglomerates, 
calcareous sandstones, siltstones, sparry calcarenite, and mudstones 
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(Zeng et al., 2010; Zhang et al., 2012; Tian et al., 2017; Wu et al., 2018). 
Fig. 4 shows several lithofacies. 

Fig. 5a shows an analogue model of these clastic fillings deposited in 
a paleocave with the following dimensions >5 m (width) x 3.2 m 
(height). Li et al. (2014) also observed cavities with approximate di
mensions of 16 m (wide) x 3.1 m (height). But in the outcrops, the fill
ings are usually composed of limestone blocks sub-rounded clasts larger 
than 3 cm radius and siliciclastic debris flows arranged in layers with 
sub-horizontal graded bedding. A conceptual model is shown in Fig. 5b 
(Loucks and Anderson, 1985; Loucks, 1999, 2001) for a better under
standing of the chaotic internal distribution of the fillings. Furthermore, 
Fig. 5c shows the vertical distribution diagram of fillings created using 
wireline logs of well TK604. The borehole image log shown in Fig. 5c 
displays the detected vertical lithological changes within the karst based 
on resistivity variations. However, the mudstone and dolomite lime
stone lithofacies are best recognized through cutting samples and well 
logs. In particular cases, unfilled paleocaves stand out in well logs and 
outcrops. 

On the other hand, clastic fillings exhibit frequent stacking and fining 
upward patterns in the well logs. These features match the sedimentary 
structures observed in outcrops, including graded bedding, which indi
cate the available accommodation space and sediment supply defines 
the cavity geometry (Mazullo and Chilingarian, 1996). In some in
stances, stacked patterns of calcarenites (mixed siliciclastic and car
bonates) are found above the epikarst carbonate, representing the 
consolidated sediments of weathered crust (Wu et al., 2018). 

3. Databases and methodology 

The workflow is carried out in the Geolog ™, SeisEarth®, and SKUA- 
GOCAD™ modules of the Paradigm Suite. A total of 10 wells with a suite 
of conventional wireline logs are available (TK211, T403, TK405, 
TK408, TK411, TK419, TK428, TK446, TK458H and TK476). To apply 
the DNNA technique, three poststack seismic attribute volumes are 
considered: acoustic impedance (P-wave data), relative acoustic 
impedance (RAI), and RMS amplitude (Fig. 6). These stratigraphic 
seismic attributes are selected according to the karst prediction studies 
carried out by Mendez et al. (2020 b). The main logs employed and 
calibrated in time are as follows: Gamma Ray (GR), Deep Resistivity 
(RD), Acoustic or Sonic (AC), Bulk Density (DEN), and Neutron (CNL). 
The Effective porosity (PHIE) and Permeability (Perm) curves are also 
considered in the processing of electrofacies logs. These last curves are 
calculated using the methods of Alberty (1994) and Morris and Biggs 
(1967), respectively. In addition, the discrete facies log obtained from 
sedimentological descriptions of core samples and FMI’s log features is 
available. We used this, to build a fine-scale geocellular grid that covers 
the followings dimensions, 10 × 10 m and 0.5 ms. Through the fine-scale 
geocellular grid is intended to capture the heterogeneities of fillings. The 
methodology for this study is divided into three stages: i) Computing 
electrofacies logs using Multi-Regression analysis; ii) Rock type predic
tion using the DNNA technique; and iii) 3D facies modeling. 

3.1. Computing electrofacies logs using multi-regression analysis 

The numerical combinations of wireline logs that reflect the physical 

Fig. 1. Geographical location of the study area covering 2 operational zones in the Tahe oilfield, Tarim basin, western China.  
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Fig. 2. Proposed stratigraphic column for the Tahe oilfield. Modified from Tian et al. (2016) and Mendez et al. (2020).  

Fig. 3. Shapes of paleocaves (yellow dashed line) delineated in a time slice of the RMS amplitude seismic volume. The image shows how the morphology of the 
Ordovician karst system is configured in the study area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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and compositional characteristics of a particular rock interval are 
required as input data in the DNNA workflow. Multi-regression analysis 
is used to determine the electrofacies logs that fit within the value range 
of the training data set of selected wireline logs (i.e., independent var
iables). The multi-regression analysis is defined in the following equa

tion: 

y=B1*x1 + B2*x2 + … + Bn*xn + A (1)  

where y is the discriminant facies (dependent variable); x1 and x2 are the 

Fig. 4. Different types of paleokarst fillings described in core samples; (a) T403–5537.6 m, the polymictic conglomerate fillings; (b) T615–5553.05 m, conglomerate 
fillings; (c) T615–5539.93 m, siltstone fillings; (d) T615–5557.84 m, calcareous sandstone fillings; and (b) S71–5504.4 m, conglomerate/calcarenite. 

Fig. 5. Paleokarst fillings model; (a) Photo from an analogue of paleocave filled by clastic rocks; (b) proposed conceptual model of paleokarst fillings within car
bonate host rock (modified from Loucks and Anderson, 1985; Loucks, 1999; 2001); (c) Diagram of the vertical distribution of the fillings described in well log. 
Modified from Mendez et al. (2019). 
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values of independent variables (well logs), and so on (xn); and A and B 
are coefficients, linked to each independent variable. 

Once the key curves are selected, they are trained and normalized in 
the petrophysical evaluation software (GEOLOG). The statistical distri
butions between curves of all selected wells are visualized in several 
cross plots. Then, the multi-regression analysis is applied to the data. 
The most representative electrofacies model is selected and then 
simplified based on the number of lithofacies defined from core and 
cutting sample descriptions. 

3.2. Rock type prediction using the DNNA technique 

A training set sample consist of pair variables, T = (xw, C), where xw 
is defined by a d-dimensional vector x and a weight w being high for 
hard data and low for soft data (Hami-Eddine et al., 2015); and C is the 
index of lithological facies. For this case study, the data that have large 
weight (highly reliable) are those extracted and combined of the 
selected seismic attributes from impedance and amplitudes paired with 
the well information (Hami-Eddine et al., 2015). This technique simul
taneously runs different neural networks to be trained with the same 

hard data set (Zhou and Goldman, 2004). A statistical process of stan
dardization is applied to the seismic attributes. Additionally, the intro
duction of soft data (democratic contribution) during the training 
process provides a stabilization effect on the result and reduces the 
bootstrap error rates. The soft data enriches the training data. The DNNA 
workflow is shown in Fig. 7. 

In this study, we also apply the method proposed by Hami-Eddine 
et al. (2015) to validate the quality of output through the bootstrapping 
method. The bootstrap error computes by taking the “0.632+” estimator 
which is proposed by Hastie et al. (2009) and Hami-Eddine et al. (2015): 

Êrr
(.632+)

= (1 − ω̂)err + ω̂Êrr
(1)

(2)  

where, err is the misclassification rate; ω̂ is a weighting factor: ω̂ =
0.632/(1–0.368R)̂; R̂ is the relative overfitting error: 

R̂ =
(

Êrr
(1)

− err
)/

(γ̂ − err) (3)  

Fig. 6. The seismic attribute volumes selected for the DNNA processing technique: a) Acoustic Impedance, b) RAI; and c) RMS amplitude.  
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γ̂ =
∑C

i=1
P̂i(1 − q̂i ) (4)  

where, γ̂ is the no-information rate; P̂i the proportion of responses; yj 

corresponding to i; q̂i is the computed proportion of predictions f̂ l(xi)

equaling i, and “C” represents the number of classes. However, the value 
Err is the bootstrap error only for predictions from bootstrap samples 
that do not contain the xi observation. 

Êrr
(1)

=
1
N

∑N

i=1

1
|C− i|

∑

j∈C− i

1 − δ
yif̂ l (Xi)

, (5)  

where, C− i corresponds to set of indices of bootstrap samples that do not 

contain observation i; |C− i| is the number of such samples; f̂ l(xi) is the 
class prediction made by the network trained with the l th bootstrap set; 
and yi is the expected answer. After implementation, the efficiency of the 
bootstrap error is evaluated from 0 to 100%. 

To classify based on the most likely facies and, therefore, propagate 
neural network properties over the entire area of interest, we use a 
probabilistic version of K nearest neighbor algorithm (non-parametric). 
In this version, the weighting function is a Gaussian. The combination of 
K nearest neighbor algorithm with a Gaussian approach enables to 
calculate the distance between data points based on probability esti
mations (Specht, 1990; Hami-Eddine et al., 2015). The weight used for 
each neighboring point is weight = e-distance. This algorithm is 
expressed by the following equation: 

P(c|y) =

1
nkc

∑nkc
i=1 exp

(

−
y− xc 2

(i)
2σ2

)

∑C
j=1

1
nkj

∑nkj
i=1 exp

(

−
y− xj 2

(i)
2σ2

), (6)  

where P(c|y) is the probability that y belongs to class c; nkc is the number 
of codebook vectors of class c in the k -size neighborhood; σ is a 
smoothing parameter, and xc

(i) is the i th nearest training sample of class c 

to y. This algorithm allows us to determinate the probabilities associated 
with each filling facies. 

As the current computation is dot by dot processing, this investiga
tion applies a structural smoothing to the probability volume using 
external Dip/Dip Azimuth attributes. It means, for each sample of the 
trace a dip-consistent plane which intersects the trace at that sample is 
constructed. This Dip-Steering processing has been adapted in order to 
use linear interpolation to track the seismic event. In addition, the 
smoothing filter used is the uniform mean. 

3.3. 3D facies modeling 

A geocellular grid in time is implicitly constructed between seismic 
horizons of the T74 and T76 unconformities (karsted interface) with the 
upscaled data from 10 wells located within the study area. Structural 
interpretation features are also considered in this model by evaluating 
their relationships with distribution fillings. After pairing the markers 
with the unconformity surfaces (horizons) and defining the fault in
tersections, the 3D structural model is generated in the software. That is, 
the framework skeleton of the carbonate platform is built. 

Subsequently, we computed a geostatistical simulation using the 
Sequential Gaussian Simulation method (SGS). This method is a 
commonly used technique in oil and gas industry to simulate a subse
quent grid point using the conditional distribution of observed variables. 
With SGS, data is first transformed to a Gaussian distribution so that the 
stationary histogram is Gaussian or normal. The simulated value at any 
given point is sampled from a Gaussian probability distribution. 
Furthermore, we condition the simulation to hard data, in this case, to 
the probable facies volume obtained from the DNNA technique. Through 
a stochastic process, this data is assigned to variables related to filling 
facies within grid as secondary input in the software trend analysis. This 
input allows generating a probabilistic volume that orients and propa
gates each facies in question. In this way, we condition the trends of 
fillings to adequate hard data. Finally, we compare the predicted and 
modeled facies. We do this by using the facies interpreted in those wells 
that were not considered in the workflow for validation of the predicted 

Fig. 7. Description of DNNA training steps for rock type prediction. Modified from Hami-Eddine et al. (2015).  
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results. 

4. Results 

The results obtained from rock type prediction and 3D facies 
modeling for each clastic filling are described below. Furthermore, we 
present addition the minor step by step procedures that were performed 
to estimate the electrofacies logs and build the geocellular grid. The 
realization shown is the closest to the analogue model. 

4.1. Electrofacies logs result using multi-regression analysis 

In the karsted carbonate intervals, we identified a total of 8 facies 
that were organized in the following order: limestone (host rock), silt
stone, grained-fine sandstone, conglomerate, siliciclastic–carbonate 
mixture, mudstone, dolomite, and unfilled or empty. Moreover, the GR, 
RD, CNL, DEN, AC, PHIE and Perm curves were selected for the Multi- 
regression analysis training set, based on their responses or deflections 

in karst interval. Then, these curves were effectively trained and 
normalized using petrophysical software. Through multiple cross charts 
computed the relationships between the different curve values (Fig. 8). 
The outcome of multi-regression analysis is simplified and adjusted to 
the 8 previously described lithofacies facies (Fig. 9). The resulting model 
is calculated the electrofacies log showing each facies. 

4.2. Rock type prediction using the DNNA technique 

After the electrofacies logs processing, they were paired with three 
selected seismic attributes (acoustic impedance, RAI, and RMS ampli
tude) which form our own hard data. Fig. 10 shows the result of 
developed training dataset. It was run on 6 neural networks with the 
selected hard data undergoing 30 interactions. Table 1 shows population 
repartition values for each facies or class obtained from the training set. 
Fig. 10 highlights a predicted log output calculated from reconstruction 
rates applied to well T403. The output is in agreement with the upscaled 
facies log. This figure also displays the maximum probability associated 

Fig. 8. Clustering associated with the dependent variable values through several cross plots.  
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with the predicted facies log. It demonstrates high confidence in the 
prediction and the computed probability of traces per defined classes. 

Moreover, for quality control of the DNNA predictive capabilities, 
the results are promising according to the low calculated bootstrap 
(training) error and rate classification. The obtained values are around 
0.05 and 93.41%, respectively. The reconstruction rates matrix and 
summary of results is displayed in Table 2. The prediction quality 
outcome is satisfactory with good reconstruction rates at wells. 

Nevertheless, some thin beds could not be reconstructed with their exact 
thicknesses. Detailed facies differentiation of paleokarst fillings using 
the DNNA training was possible. 

Following the classification process, the probability of facies distri
bution was calculated to generate the probabilistic volume. In this case, 
each value at a given position corresponds to the most probable facies 
predicted. Fig. 11 shows an improved outcome by applying structural 
smoothing to the facies probabilistic volume, refining the details of 

Fig. 9. Simplified result of multi-regression analysis applied to well logs. The colors of PAT track are showed according to prior clustering. In this figure, we relate 
the simplified result with each type of filling facies (COL track). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 10. The reconstruction rate of well T403. The tracks along the wellbore indicate the following: (1) Facies log; (2) Upscaled facies log; (3) Facies predicted; (4) 
Extracted seismic traces of involve poststack attributes; (5) The associated maximum probability with predicted facies log; and (6) Probability of traces per 
defined classes. 

Table 1 
Training set population repartition. 
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Table 2 
Reconstruction rates matrix. 

Fig. 11. The improvement obtained by applying structural smoothing in the facies probabilistic volume. It is evident that the technique eliminates all those features 
that are not related to paleokarst or noise. 
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filling patterns. 
The outcome is displayed on a time slice in Fig. 12. In this figure, 

clastic fillings are patchily distributed owing to the influence of paleo
topography of karst systems by keeping the same trajectories as the 
cavities. These lithofacies agree with the karst elements recognized in 
seismic attribute on the same time slice. The unfilled cavities (empty) 
outputs were very scarce due to their low probability in the DNNA 
computed. Consequently, this probabilistic analysis cannot be conclu
sive for this type of karst feature. 

A cross section generated from the probable facies volume in the 
northeast–southwest direction (Fig. 13) shows that the sorting or in
ternal configuration of fillings within chambers can observed in detail. 
The figure highlights mudstone facies interbedded with siltstone and 
mixed siliciclastic and carbonate. These predicted facies were validated 
by the well logs. However, we observe that the lateral continuity is 
weak, which is likely related to the rock type (e.g., limestones) and low 
seismic resolution. The features described in this cross section were also 
directly observed on with the seismic amplitude attribute. This shows 
the capacity of the DNNA technique to capture the discrete fillings. In 
addition, heterogeneous facies (i.e., calcarenite) at the upper sections 
were recognized and associated with weathering crust. 

4.3. 3D facies modeling of clastic fillings and host rock 

Once the most probable facies volume is computed, a grid is con
structed for the study area. In Fig. 14, we display the workflow that 
involve the construction phases for a fine-scale geocellular grid (i.e., 
faults and horizons modeling). This process involves, an interpreted 
structural model formed by 11 faults (between strike-slip and reverse 
faults) with very fine layering. For this case study, 7 of the 8 facies 
interpreted from the fillings and the host rock were picked in well logs 
and upscaled into the simulation grid. The proportion of each upscaled 
facies is shown in the histogram of Fig. 15. 

Subsequently, the probability of clastic filling facies was estimated 
using the prior probable facies model as input data. This robust method 
combines estimated seismic attribute volumes and populates the 
occurrence of the facies, cell by cell in accordance with karst 
morphology (Fig. 16). Particularly, those facies with higher probability 
in the data analysis, for example limestone, conglomerates, mixed car
bonates – siliciclastic, and siltstones were clearly delineated in both 
horizontal and vertical direction. It is evident that the probability of 
occurrence of limestone is the highest (>0.8) due to it being the host 
rock (Fig. 16). The high probability of mixed carbonates – siliciclastic 
specifically in the upper part is consistent with deposition characteris
tics. In contrast, the probability occurrence of shale, dolomite, and 

Fig. 12. The most probable facies volume obtained using the DNNA technique in rock type prediction. In this slice, we show the good reconstruction of clastic filling 
facies in accordance with the karst morphology. 

Fig. 13. Showing a cross section oriented north – south obtained from probable facies volume.  
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Fig. 14. Simple workflow covering the following components: (a) 11 faults that involve the fault modeling; (b) horizon model at T74 unconformity level; and (c) 3D 
structural model outcome. 

Fig. 15. Proportion histogram of upscaled facies statistically computed in the geocellular grid.  
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Fig. 16. Probabilities volume by facies obtained from trend data analysis.  
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sandstone facies was only conditioned in those regions very close to the 
well data. 

After conditioning the fillings facies and using the SGS geostatistical 
method, a first realization is processed and shown in a cross section 
(Fig. 17). Fig. 17 highlights good vertical delineation and spatial dis
tribution of paleokarst fillings according to karst morphology (i.e., caves 
and sinkholes) within the fine-scale geocellular grid. 

Fig. 18 displays two slices showing the top and intermediate sections 
of the model with the detailed main features of clastic fillings in a 
geocellular grid. Even the computed facies get the same patchy distri
bution of lithofacies patterns visualized in the probable facies volume. 
Particularly, Fig. 17a highlights similar geometries to river channels 
which are associated with the sedimentation of mixed carbonate and 
siliciclastic at top of model. This agrees with proposed models by several 
researchers on epikarst deposits (Jin et al., 2015a; Wu et al., 2018). In 
addition to Fig. 17b, the fillings that are hosted within paleocaves 
(run-off subzone) have been modeled in accordance with patterns and 
shapes interpreted in seismic dataset. 

5. Discussion 

5.1. DNNA versus previous models/results 

Artificial neural networks and 3D facies modeling are significant 
methods for addressing complex problems related to geosciences 
(Elshafei and Hamada, 2007; Alkinani et al., 2019). We integrated these 
methods to obtain increasingly realistic realizations of the karst system 
in Ordovician carbonate reservoirs. To this end, we have computed a 
probable facies volume obtained from the DNNA technique. This volume 
provides a spatial distribution of the highly heterogeneous clastic 
paleokarst fillings hosted in the cavities. 

Moreover, we have followed a similar workflow proposed by Mendez 
et al. (2019) to predict paleokarst fillings in a nearby area. However, we 
have considerably improved the patterns predictions by using more core 
samples descriptions and other curves as input in the multi-regression 
analysis (e.g., total porosity and permeability). The lithology distribu
tion analysis of clastic filling facies performed in the 10 available wells 
permitted the discrimination by lithofacies of fillings. Total porosity 
(PHIT) and permeability (Perm) curves were added to the feature set and 
improved the statistical distribution of electrofacies logs. 

In summary, the application of the DNNA technique for rock type 
prediction demonstrated promising results in computing facies pro
portions in a voxel despite the high heterogeneity of fillings. The low 
value of the bootstrap (training) error and the high percentage rate of 
classification (around 0.05 and 93.41%, respectively), suggests that the 

data used fulfilled the basic requirements for an effective evaluation. 
However, we can increase this percentage if there were more data from 
wells. Moreover, the DNNA technique identified important siltstones or 
fine-grained sandstone patterns surrounding the main faults which 
could be excellent hydrocarbons reservoirs due to their structural posi
tions. We also observed some gaps in the continuities of conglomerate or 
breccia fillings in the probable facies volume. This observation is 
because, in some instances, these fillings have the same seismic response 
as the carbonate host rock. The empty facies also indicate underesti
mation in the most probable facies volume, due to their low resolution in 
seismic dataset and well logs. Therefore, this facies with a <0.001% 
proportion could not be modeled without negatively impacting the 
results. 

Despite the limited scope of data, there was a coherent prediction of 
the shallowest lithofacies which have good continuity (i.e., mudstone 
and mixed carbonate– siliciclastic). The geometry of mixed carbo
nate–siliciclastic fillings related to calcarenites clearly matches with the 
geometry of rivers on the platform or underground streams in the cav
ities (Zeng et al., 2010). On the other hand, the DNNA technique did not 
reveal any feature related to collapsed cavities with fillings (Loucks and 
Anderson, 1985; Loucks, 1999, 2001). The DNNA’s probabilistic 
approach represents a starting point for estimating many other rock 
properties (i.e., porosity, permeability, fluids flow, etc.). 

5.2. Reliability of facies model 

Concerning the 3D modeling, the fine-scale geocellular grid was 
constructed with the spatial dimensions 10 × 10 × 1 m because this was 
the minimum dimension that the software permitted for the computa
tion on the simulation grid. Nevertheless, we considered that the spatial 
dimensions should be smaller around 5 × 5 × 1 m, according to the 
analogue model. The 3D facies model computed using the SGS algorithm 
respected the proportions of each facies calculated from the most 
probable facies volume. The low probabilities of dolomite and sandstone 
facies result from the poor occurrence of these rocks in interpreted well 
logs. 

The 3D model outputs are relatively consistent with the conceptual 
model proposed for the study area where the paleocaves and fillings 
maintain the same orientation as the main striking faults (Fig. 18). 
Therefore, a sound understanding of the platform’s tectonic dynamic 
evolution could determine how the cavities were first generated. The 
sediment sourcing that dominants from the northwestern-southeastern. 
The lateral and vertical lithofacies changes of the fillings show similar 
characteristics with the sorting observed in analogue cavity model 
(Fig. 5a). Finally, this last observation supports studies (Tian et al., 

Fig. 17. Geocellular grid populated by the filling facies in which highlights a good correlation with conceptual model of sinkholes and caves.  
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2016; Mendez et al., 2020 a) propose that fillings occur 
solution-enlarged fractures in carbonates. 

5.3. Model validation 

For validation, we compare the predicted and modeled facies to the 
facies interpreted along the wellbore of well TK411 (Fig. 19). In Fig. 19, 
we observed a significant correlation between the interpreted and pre
dicted facies (correlation percentage around 73.6%; tracks 2 and 3, 
respectively), demonstrating the DNNA technique’s effectiveness. 
However, we also detect that the technique overestimated the mixed 

carbonate-siliciclastic facies (green color) in karsted interval. This defect 
is related to similar features that the facies mentioned above have with 
the siltstone lithofacies (light brown color). 

6. Conclusions 

We demonstrated that the DNNA technique probabilistically pre
dicted the distribution and sorting of clastic fillings hosted within car
bonates in accordance with well data and seismic datasets. The total 
porosity (PHIE) and permeability (Perm) measurements combined with 
other features improved our predictions’ accuracy. The result obtained 

Fig. 18. Two slices showing the results from the static model: a) upper section where the highest proportion of mixed carbonate – siliciclastic facies is noted; b) 
intermediate section in which the logical distribution of paleokarst facies is denoted. 
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from the probable facies volume was used to construct the facies 
modeling based on the accurate delineation of the clastic fillings’ pat
terns. Trend analysis supports the estimation of each facies or class 
obtained. In this way, this technique allows for the improvement of the 
facies modeling to generate a more realistic realization of the models. 

Finally, the resulting 3D model highlights the occurrence of large 
patches of siltstone or fine-grained sandstone fillings in regions near the 
main faults, east of the study area. These fillings are sometimes quite 
attractive patterns for optimizing oil exploitation in the area, due to 
their good physical characteristics (i.e., porosity and permeability). The 
characteristics related to connectivity and distribution of patterns are 
still a complex issue to evaluate. However, the predicted and modeled 
facies correctly honored the prior geological interpretation. 
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