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ABSTRACT   

   

Social robots are gradually becoming an integral part of human livelihood and have 

achieved significant results in healthcare, education and entertainment. Recently, research 

has geared towards identifying ways that such robots can be harnessed in special needs 

education for children with autism spectrum disorder (ASD). Autistic children have 

deficits in social interaction, communication and often portray repetitive behaviours. 

Although technology-based intervention strategies for autistic children could promise 

great results, many autistic children from resource-constrained environments have been 

left behind due to the cost implications and technical requirements associated with 

robotassisted learning. This thesis focused on investigating the suitability of a humanoid 

robot as an assistive technology for Ghanaian children with autism and proposing 

strategies for personalization of robot-mediated learning sessions. An iterative prototyping 

approach was used to design and develop a novel low cost humanoid robot, RoCA, which 

has been used together with another robot Rosye in a series of empirical studies to assess 

the initial reaction of some autistic children towards the robots and the engagement levels 

of the children through longitudinal studies. Results from the preliminary and longitudinal 

studies indicated that the robot was able to engage some of the children in imitation and 

general tasks and also succeeded in persuading some children to perform the robot’s 

requests via multiple prompted cueing. The thesis also presents a deep fuzzy framework 

for personalized affective robot assisted learning in autistic childrobot interactions. This 

framework is based on a proposed deep learning model,  

SingleShot Emotion Detector (SED) and a fuzzy based engagement prediction engine 

which can use scores, IQ levels and task difficulty as input variables for estimating the  
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engagement levels of autistic children while interacting with social robots.  The  

framework was implem ented in the humanoid robot RoCA and another empirical study  

was conducted to evaluate the effects of the personalization approach provided by the  

deep fuzzy framework on learning gains in autistic child  –   robot interactions. Statistical  

significance of im proved learning gains associated with the deep fuzzy approach adopted  

by RoCA was confirmed by Mann Whitney tests. The thesis also investigated the  

behavioural intention of special needs teachers to use robots in the classroom to teach  

autistic children us ing Unified Theory of Acceptance and Use of Technology (UTAUT)  

as research model. The results indicated that performance expectancy, effort expectancy  

and social influence positively affect the behavioural intention of special needs teachers  

to use robots  to teach children on the autism spectrum.     
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CHAPTER 1   

INTRODUCTION   

   

Robots ranging from simple and easy to program systems such as Lego® Mindstorms™, 

to highly sophisticated humanoids are being integrated into educational, health, industrial, 

entertainment and household activities to enhance productivity. These robots typically 

vary in levels of intelligence and task delegations. Whereas some are used for highly 

complex procedures, others commonly known as social robots serve as assistive systems 

for stress relief and social interactions. Among the special group of people to benefit from 

social robotic systems are children living with autism spectrum disorder.   

Autism Spectrum Disorder (ASD), simply known as autism, is a neurological and 

developmental disorder that comprises multiple disorders and people diagnosed with this 

condition exhibit deficits in social interactions, motor skills impairments, language 

development delays and imagination problems (Cabibihan et al., 2013). This condition is 

termed a spectrum disorder because there is a range of uneven development in the areas 

of social communication and interaction (Fuentes et al., 2012). Autism is a lifelong 

condition; currently, 1% of people worldwide have been diagnosed with ASD and the 

disorder can occur among all races and ethnic groups (CDC, 2014). The causes of ASD 

are unknown and the condition cannot be cured. However, the way an autistic child is 

managed in the initial stages affects the behavioural characteristics that would transcend 
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into the child’s adulthood. Technological interventions such as robots are being researched 

upon as assistive technology to aid autistic people in their daily activities. Prior research  

e.g. Brian and Matarić (2012) and Cabibihan et al. (2013) suggest that autistic children 

may easily familiarize and interact with robots as compared to humans because robots are 

more predictable, deterministic and behave in the same way under similar set of 

conditions.   

   

  1.1  Problem Statement   

   

Several children with autism living in resource constrained environments are unable to 

access early behavioural interventions which could improve their conditions. This is 

largely due to inadequate technological aids, lack of trained expertise to handle these 

children and the financial implications of therapy sessions. Although there have been a 

few reported successes on using robots in autism therapy to support caregivers in their 

care for autistic children, more research needs to be conducted to ascertain how autistic 

children from diverse cultural backgrounds would respond to robotic technology 

considering the multifaceted nature of the disorder.   

Several studies have highlighted the diversified impact of cultural variables and individual 

differences on suitability, acceptance and effectiveness of technology (Baker & Hubona,   

2010; Ennis-Cole et al., 2013). In autism management, Pitten (2008), Tincani et al. (2009), 

Conti et al. (2015) and Cassio (2015) have indicated that culture and sociodemographic 

variables need to be incorporated in the design of technological interventions targeted at 
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managing the disorder.  Designing robots for autistic children requires a multidisciplinary 

approach involving the children, their caregivers, healthcare professionals and designers.  

A user-centered approach needs to be utilized to understand end user requirements, produce 

design solutions and evaluate these solutions in the natural setting. Currently, a few robotic 

systems for autistic children exist worldwide; more so, most of them are in the prototype 

stages and are not available to be public (Huijnen et al., 2017). The few on the market are 

costly and impractical for trials and long term studies in low to middle income countries.   

In some resource constrained countries, the knowledge and potentials of some children on 

the autism spectrum who have higher than average intelligence quotients and special 

abilities are being left untapped. Consequently, there is the urgent need for researchers to 

investigate how autistic children from such environments would perceive and react to 

robots as therapy partners and propose strategies for incorporating these assistive 

technologies into the classroom and clinical settings to augment the efforts of the limited 

skilled personnel.   

Scassellati et al. (2012) present that the amount of exposure (i.e. number of interaction 

sessions) significantly influences the effects of a robotic technology on a child with 

autism. This is because autistic children are sensitive to changes in their environment and 

their routines. Their initial reaction to a novel robot may differ from the behaviour the 

child may exhibit once the robot becomes familiar (Scassellati et al., 2012). However, 

most of the existing research geared towards this area are single-day interaction sessions.   

In order to assess whether the children’s attitudes and reactions towards social robot would 

be same, better or worse with time, longitudinal studies need to be undertaken to engage 
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the children in repeated interactions with robots. Furthermore, the growing number of 

research aimed at investigating the suitability of robots in autism have mainly utilized the 

Wizard-of-Oz (WOZ) approach where the robot is controlled unbeknownst to the child 

and performs pre-defined behaviours. This technique is limiting because it involves a lot 

of time, human effort and tends to be “boring” as a robot would not be able to adjust to 

real-time conditions in the environment. From the perspective of assistive technology, 

social robots ought to react appropriately and adapt to human needs and real-life scenarios.    

Currently, increasing autonomy in autistic-child robot interactions is an area of research 

which needs to be explored. In order to ensure naturalistic interactions and maximize 

learning gains, social robots need to move from the WOZ approach and be equipped with 

some intelligence to be able to detect affective states and engagement levels in real time 

autistic child – robot interactions (ACRI) in order to personalize learning sessions. 

However, autistic children are quite unpredictable hence modelling social robots to have 

exact knowledge of the interaction environment is unrealistic. Fuzzy logic is known for 

its ability to handle imprecision and uncertainty (Nazemizadeh et al., 2014) and may be 

suitable for controlling the behaviour of social robots in autism therapy. To achieve some 

level of autonomy and adaptability, machine learning and fuzzy computational models 

which utilize multimodal data such as affective states, personality traits, social context and 

physiological disposition could be developed to estimate emotional states and engagement 

levels of autistic children in real-time ACRI. Many existing facial emotion recognition 

(FER) systems are based on traditional machine learning algorithms which rely on hand 

crafted features.  These traditional models are known to generate a lot of output feature 
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sets (Bins & Draper, 2001). As such, extracting relevant features from each processing 

stage to the next requires a lot of computational resources, causes high latencies and often  
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i. adopt a participatory approach to design and develop a humanoid robotic assistive  

results in low accuracies for real time robotic applications. A challenge which st ill remains  

is to be able to accurately and speedily estimate autistic children’s affective state from low  

resolution cameras onboard social robots without the need for sophisticated cameras and  

devices such as Microsoft Kinect.    

Recently, convolutional ne ural networks (CNNs) have been used to achieve high level  

accuracy and speed of prediction in many computer vision tasks (Kahou et al., 2015).  

Therefore, it has become relevant to also investigate whether CNNs and fuzzy logic can  

contribute to the maximiza tion of learning gains in ACRI by accurately and speedily  

predicting the emotional states and engagement levels of autistic children during  

interaction sessions in order for social robots to readapt their behaviour accordingly to suit  

the children’s needs.     

    

  1.2     Aim    

    

The aim of this thesis is to explore the suitability of a humanoid robot as an assistive  

technology for Ghanaian children with autism and propose strategies for personalization  

of robot - mediated learning sessions.    

    

    

Specifically, this r esearch intends to:    
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technology for autistic children ii.   assess the reactions, engagement levels and learning  

gains of Ghanaian autistic children over extended interactio n periods with humanoid  

robots.    

iii.   propose a deep learning affect recognition model and a fuzzy - based engagement  

estimation framework to equip social robots with some level of autonomy to adapt their  

behaviour to suit individual autistic child’s needs.  iv.   assess the effects of robot behaviour  

personalization on learning outcomes in robot mediated teaching sessions for children  

with autism    

v.   investigate the behavioural intention of special needs teachers in autism management  

to use robots as assistive  technologies in the classroom    

    

  1.3     Research questions    

    

The research seeks to address the following questions:    

i.   Would Ghanaian children on the autism spectrum experience the effects of the  

uncanny valley during an initial encounter with a humanoid rob ot?    

    

ii.   Would an “unfamiliar” robot be able to continually engage Ghanaian autistic  

children in learning activities over an extended period of time?    

    

iii.   Can a convolutional neural network (CNN) trained on the custom datasets for  

affect detection perform accu rately and speedily in real - time ACRI?    
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iv. Would personalization of robot mediated learning sessions ensure increased learning 

gains as compared to a wizard-of-oz operated robot?   

   

v. Are special needs teachers who teach autistic children willing to use robots in the 

classroom?   

   

   

  1.4  Significance of study   

   

The United Nations report (United_Nations, 2019) on the 2019 World Autism Day 

celebrated on 2nd April with the theme “Assistive Technologies, Active Participation”, 

highlighted the challenges facing the autism community. The report indicated that 

although technological devices continually evolve, major barriers such as high costs, 

unavailability, lack of awareness and inadequate training continue to hinder the successful 

deployment and use of assistive technologies. More so, in developing countries, more than 

50% of the people with disabilities in need of assistive technologies are unable to access 

them (United_Nations, 2019).   

The unmet growing need for adaptive technological interventions in special needs 

education coupled with limited studies on robots for autism therapy in middle-to-low 

income countries motivated this research. The suitability of social robots to therapy and 

social development of children with autism from different ethnic and cultural backgrounds 

is an area which requires thorough investigation. Most of research geared towards this area 

have been undertaken in the Western world with barely any done in Africa. There is a 

saying that “if you know one child with autism, you only know one child with autism”.   
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This adage really emphasizes the diversity in autism manifestation among affected 

individuals. Therefore, personalization strategies tailored towards individual traits, 

learning abilities and affective states are key in managing the disorder. Robots have been 

identified as potential tools for autism therapy hence equipping these artificial agents with 

some intelligence could further enhance learning outcomes. This research intends to 

investigate how a humanoid robot can be incorporated into therapy interventions for 

autistic children in Ghana, where the skilled personnel and caretakers of these children are 

limited. When proven to be effective, low cost robots could serve as assistive technology 

to aid in therapy sessions to augment the efforts of caregivers in their quest to provide 

special education for these children who have unique abilities which are currently 

underdeveloped.   

   

  1.5  Organization of thesis   

   

The thesis is structured into six chapters. Chapter 1 provides a background to the study, 

problem statement, aims and significance of the study. Chapter 2 reviews existing 

literature on design considerations for social robotic systems, robots as assistive 

technology in autism therapy, machine learning as well as theoretical frameworks. Chapter 

3 focuses on the methodology for the co-design of the humanoid robot RoCA, the various 

child-robot interaction experiments conducted, the training of the convolutional neural 

network and development of the fuzzy-based engagement estimation framework. Chapter 

4 presents the implementation of the novel humanoid robot RoCA, results from the 
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preliminary and longitudinal studies involving the robot and some Ghanaian children with 

autism and the Singleshot emotion detector. The discussion of the results and implications  



 

11   

     

   

 

LITERATURE REVIEW   

of the research are presented in chapter 5. Chapter 6 presents the conclusion of the thesis  

and recommendations for future work.    
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This chapter elaborates on autism spectrum disorder, reviews existing research on robot 

mediated interventions in autism management and machine learning strategies for emotion 

recognition in human-robot interaction. Theoretical frameworks utilized in the research 

are also presented in this section.   

   

  2.1  Autism   

   

Autism Spectrum Disorder (ASD), simply known as autism, is a neurological and 

developmental condition that comprises multiple disorders and people diagnosed with the 

condition exhibit deficits in social interactions, language development delays and 

imagination problems (Cabibihan et al., 2013). ASD is described with the term “spectrum” 

because the skills, disabilities, symptoms and levels of impairments vary widely among 

individuals (MCA, 2012). Dr. Leo Kanner of Johns Hopkins Hospital presented the first 

clinical description of autism (Zimmerman, 2008). A child diagnosed with autism may 

live with the condition throughout his lifetime. Currently 1% of people in the world have 

been diagnosed with autism and the disorder can occur among people of all races, cultures 

and socioeconomic backgrounds. (CDC, 2014).   

Autism spectrum disorder is more prevalent in boys(1 in 42) than among girls(1 in 189) 

(Christensen et al., 2016). The prevalence rate of autism in America, Europe and Asia is 

between 1% and 2% (CDC C. f., 2016). However, studies on the epidemiology of ASD in 

Africa and other continents is limited and therefore, there is the need for empirical studies 
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in order to ascertain the magnitude of the problem in these regions (Bakare & Munir, 

2011).   

Currently, there are no medical tests that can detect autism; the disorder can be diagnosed 

by  pediatricians, psychologists and neurologists or in some cases a team comprising of 

these professionals (Boehm, 2016). Typically, children develop at varied paces. However, 

parents, caretakers and clinicians can monitor a child’s emotional, social and linguistic 

behaviours in order to ascertain the progress of a child towards developmental milestones 

required for his or her age. Developmental milestones of children within the first two years 

of life can be classified under social communication (social interaction, non-verbal 

communication, relationships and play) and cognitive behaviour (interest, routines, 

movements and sensory activities). Autistic children show deficits in meeting these 

milestones (Young & Jean, 2019).   

In a child’s first year, the absence of some behaviours such as smiling, eye contacts and 

gestures are usually red flags for autism (NIH, 2015). The emotions and facial expressions 

of autistic children may not match what they say; some are also not able to regulate their 

emotions and when frustration sets in, they may exhibit aggressive behaviours such as 

banging head, biting one’s self or pulling their hair (NIH, 2015). Factors which can 

contribute to the early diagnosis of ASD in children include symptoms severity, 

socioeconomic status and timely parental recognition of early signs and red flags for 

autism (Daniels & Mandell, 2014). With the increasing prevalence of ASD, there is the 

risk of over and under diagnosis and therefore autism rating scales such as Autism   



 

14   

     

   

Spectrum Rating Scales™ (ASRS™) (Sam & Naglieri, 2010) and Diagnostic and 

Statistical Manual of Mental Disorders, DSM V (APA, 2013) have been designed to assist 

in effective diagnosis of the condition. Although autism is a lifelong condition, early 

interventions and therapies can help to improve the skills and abilities of affected people.   

These interventions can make extraordinary differences in a child’s wellbeing and a small 

percentage can lose their diagnosis over time (Helt, 2008).   

   

  2.2  Autism in Ghana   

   

Ruparelia et al. (2016) report that there are children living with autism in Ghana. As with 

many countries on the African continent, people with autism were often given cold 

shoulders because the populace believed such conditions are caused by multivariate 

factors such as witchcraft, curse from God and other lesser gods or punishment as a result 

of what a person or his or her family members did. Until recently, children born with 

autism and their parents could be cast out of their society and totally ignored by their 

families (Anthony, 2011).   

   

Rural Integrated Relief Service Ghana (RIRSGH, 2010) reports that another organization, 

Autism In Ghana estimates 1 out of 87 children in Ghana under the age of 3 suffers this 

disorder and as in conformance with other statistics worldwide, the condition is more 

prevalent in boys than girls. The low level of knowledge and awareness about autism in 

Ghana contributes to the late diagnosis and pursuance of treatment options for affected 

children. Decades ago, educational facilities and training centers for children with special 
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needs were virtually non-existent. A few private autism centers have now sprung up over 

the country. The Government also owns special schools which accommodate children with 

varying disabilities including autism. However, it was difficult to find the official statistics 

on the number of autism centers in Ghana. Notwithstanding these developments, lack of 

skilled personnel, technological aids, inadequate funds and societal attitudes continue to 

hamper the provision of adequate care to people living with autism in Ghana.   

   

  2.3  Imitation and joint attention deficits in autism   

   

Imitation involves the ability of a person to mimic the behaviour or actions of another 

person. Basically, to imitate someone, you need to first of all observe what the person is 

doing and thereafter, repeat the person’s actions. Individuals with autism have difficulty 

and exhibit deficits in imitation skills (Biscaldi et al., 2015). The imitation ability of an 

autistic child is an important goal which has a correlation to the child’s language 

development, joint attention, play and social interaction skills (Lowry, 2016). More so, 

due to the fact that imitation serves as a learning and social function in infants, when 

children are taught imitation skills early, the tendency for their social skills to improve is 

also high (So et al., 2016). There are several ways to teach imitation to children with 

autism. However, research shows that these children find object imitation easier than 

imitating a human’s facial expression, gestures and sounds (Ingersoll, 2008). Objects such 

as scribble markers, lollipops, shake bells, toys and computing devices have been used to 

teach imitation to autistic children.    
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Joint attention (JA) skill refers to the ability of a person to share focus with another person 

on an object or event (Jenkins, 2019). This very important skill begins from 6 to 18 months 

in infants and as a person develops over the years, JA skills are refined (Lisa et al., 2015). 

Forms of JA include eye gaze, pointing to objects, making gestures and turning head to 

focus on an object. To exhibit joint attention, a child can initiate or respond to a JA task.   

For example: A child and parent are playing together, and the parent points and says “hello 

child, look at the sky. The child is able to look up to the sky and say “hello Mum I see the 

sky”. In this scenario, the parent initiated the joint attention task and the child responded  

to the task. The development of joint attention impacts significantly on language 

acquisition and socio-cognitive development of children (Akechi et al., 2011). The joint 

attention skill in an infant could differ from that of a toddler; more so, even children of 

the same age could exhibit differences in their joint attention skills (Mundy & Gomes, 

1998). The rate of development of JA skills could be influenced by factors including 

frequency of interaction between children and their caregivers, impairments like deafness 

and developmental disorders such as autism (Gernsbacher et al., 2008).   

   

  2.4  Social robots   

Among the promising interventions for managing autism are social robots. Social robots are 

usually (semi) autonomous mobile machines equipped with the capability to follow, interact 

and assist humans in daily activities (KPMG, 2016). Social robots can engage, help, interact 

with humans and other robots and respond to cues from their environment. They can be used 

as persuasive machines to influence the emotions and behaviour of humans. These robots have 

been adopted in various sectors such as entertainment, healthcare and education. A study by 
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Forlizzi and Bartneck (2004), proposed that a design centered approach needs to be adopted 

in the development of social robots capable of interacting with humans and their environment. 

In the field of social robotics, important foci of research include embodiment, personality, 

empathy, adaption and communication techniques (Hutson et al., 2011). The visual appeal of 

a robot plays a major role in the ability of the child to sustain interest in continuous interaction 

with the robot.   

Majority of the existing robots have physical shapes which can be categorized as: 

anthropomorphic, non-anthropomorphic or non-biomimetic. Anthropomorphic robots 

have humanlike shape and tend to exhibit some human characteristics. Developers of 

anthropomorphic robots do not necessarily aim at building artificial humans; rather, due 

to the robots’ close resemblance to humans, social interactions can easily be facilitated 

because humans like to interact the same way with machines as with other humans (Duffy, 

2003). However, when creating humanoid robots, designers ought to understand the 

effects of the uncanny valley phenomenon.   

The phrase “uncanny valley” was first proposed by Mori (1970). Uncanny valley is a term 

in human-robot interaction which suggests that robots which have close resemblance to 

humans are perceived as disgusting, unnerving, revulsive and creepy. Basically, any object 

which has near resemblance and exhibits human-like features has the tendency to elicit 

the uncanny valley effect in humans. Objects such as robots, humanlike dolls for children  
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The second category of robots according to classification by their shapes is  

and 3D computer animations could create an uncann y valley effect. However, the level to  

which people experience this eeriness varies among individuals based on factors such as  

pre - exposure to the object or familiarity with similar objects. This effect can be created or  

reduced by incorporating variations   in appearance, movement, voice and sounds.    

    

Figure 2.1 Mori’s illustration of the uncanny valley effect (MacDorman, et al., 2005)    

    

Figure 2.1 illustrates the process of occurrence of the uncanny valley effect.  As robots  

move very close to human like ness, they tend to be repulsive and undesired behaviours  

may be exhibited by people towards robots. The uncanny valley phenomenon is an  

important principle which needs to be considered when developing robots for human use  

because it could immensely impact  acceptance, user experience and interaction.    
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nonanthropomorphic robots.  These robots are designed to look more like animals and do  

not resemble humans. Non - anthropomorphic robot s are widely used as field and service  

robots. The third categories of robots, non - biomimetic robots, are those whose shapes do  

not resemble humans, animals or any biological creatures. The behaviour and  

functionalities of such robots are not firmly rooted   in biological principles. Figure 2.2  

show Nao, Keepon and Peekee robots which are examples of anthropomorphic,  

nonanthropomorphic and non - biomimetic robots respectively.    

       Nao    

Anthropomorphic robot    
    ( NaoRobotics, 2012)    

Keepon    

Non - anthropomorp hic robot    
( Kozima & Nakagawa, 2006)    

Peekee    

Non - biomimetic robot    
( Wany_Robotics,  2008) 

  

    

Figure 2.2  Anthropomorphic, non - anthropomorphic and biomimetic robots    

      

  2.5     Robots in Autism Therapy    

Robots can be used for repetitive tasks and can be prog rammed to behave in the same  

manner under the same set of conditions, making them likely good companions for autistic  

children who do not respond well to sudden changes in their environment (Cabibihan et  
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al., 2013; Brian et al., 2012; Robins et al., 2004). A robot functions in a limited number of 

ways and is quite predictable as compared to humans, hence the probability of the child 

being drawn to a robot is quite high. Robots in autism therapy can take on roles not limited 

to the following: therapeutic tool, playmate, social mediator, and model social agent 

(Dautenhan, 2003).   

Past research  by Dautenhahn & Billard (2002) and Robins (2005) indicate that socially 

assistive robots (SARs) promise to impact immensely in the therapeutic process, because 

autistic children easily familiarize and interact with  robot companions than humans. 

However, Scassellati et al. (2012) presents that the amount of exposure (i.e. number of 

interaction sessions) can significantly influence the effects of a robotic technology on a 

child with autism. This is because autistic children are sensitive to changes in their 

environment and their routines. Their initial reaction to a novel robot may differ from the 

behaviour the child may exhibit once the robot becomes familiar (Scassellati et al., 2012).   

   

Experiments presented in literature on robot mediated therapy for autism management are 

either single interaction sessions or longitudinal repeated exposures. Single session 

experiments enable researchers to determine the initial reaction of autistic children to 

social robots and the effects of robot designs on acceptance by these children. Examples 

of autistic child – robot single session interactions research are Michaud and Caron (2002), 

Stanton et al (2008), Werry et al. (2001), Kim et al. (2013), Robins et al. (2009), Valadão 

et al. (2016), Shamsuddin et al. (2012) and Scassellati (2005). Michaud and Caron (2002) 

conducted experiments involving a mobile robot, Roball and autistic children with results 

indicating that the robot caught the attention of the children. The outcome of a study by 



 

21   

     

   

Stanton et al. (2008) where autistic children interacted with a robotic dog AIBO suggests 

that the children spoke a lot more to AIBO as compared to a simple mechanical dog. Werry 

et al. (2001) report from a study that autistic children who interacted with both a robot and 

a non-animated toy had more physical contacts, interactions and eye gazes with the robot 

as compared to the toy. Kim et al. (2013) compared the effects of interactions of autistic 

children with a social dinosaur robot, PLEO, against interactions with a human or a 

touchscreen computer game. They observed that participants who interacted with the robot 

were more verbal during the interaction sessions as compared to the children paired with 

humans and the computer.   

Robins et al. (2009) report from an experiment that a social robot KASPAR was able to 

serve as a mediator between autistic children and adults present during interaction 

sessions. Another research by Valadão et al. (2016) indicate that the robot MARIA was 

able to elicit social skills in some autistic children and these children had more physical 

contact with the robot compared to the control group. More so, findings from a pilot study 

by Shamsuddin et al. (2012) in a single session child-robot interaction indicated that four 

out of the five autistic children used in the study portrayed less autistic behaviour with 

respect to communication when interacting with the robot Nao. An experiment conducted 

by Scassellati (2005)  with the ESRA robot programmed to perform a roughly 2 minutes 

short “script” indicated that the autistic children involved were happy and tolerated the 

robot really well as compared to a human instructor although the robot had no sensory 

interaction and learning capabilities.   
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Unlike single session experiments, repeated exposure of the children to a robot is likely to 

increase familiarity and reduce the influence of variables such as the “novelty effect” 

(Robins et al., 2004).Such studies are however susceptible to factors such as mood swings 

and conditions in the environment where the experiments take place. Longitudinal studies 

in autistic child-robot interactions have been performed over several weeks with typically 

a maximum of five interaction sessions per child (Scassellati et al., 2012). Some 

longitudinal studies of autistic child(ren)-robot interaction are Robins et al. (2004),   

Kozima et al. (2007), Duquette et al. (2008), Wainer et al. (2010) and Valentina (2017).   

   

Robins et al. (2004) discovered from repeated interactions that a social robot can be a 

salient mediator of joint attention in children with autism. Kozima et al. (2007) conducted 

interaction sessions among Keepon robot and autistic children for some years and realized 

that robots are likely to facilitate social interactions among children. Duquette et al. (2008) 

present that during multiple autistic child-robot interactions, the children paired with the 

robot Tito exhibited increase in shared focus attention as compared to those paired with a 

human instructor. Wainer et al. (2010)  report from a longitudinal study that, autistic 

children played more and regarded the robot KASPAR as a partner as compared to their 

play sessions with a human. A study by Valentina (2017) involving an autistic child and a 

social robot, IROMEC reported an increase in child-robot eye contact and interaction as 

compared to that of the interaction between the child and his teacher. The Aurora project 

also studied how mobile robots can serve as therapeutic tools to aid children on the 

spectrum (Dautenhahn & Iain, 2004).   
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Autistic children have joint-attention deficits and therefore some early proponents of robot 

assisted therapies for autism were geared towards improving joint-attention in autistic 

children (Robins et al., 2004). In the robot Keepon project, operators manipulated the 

robot to point to the direction of a child’s gaze or towards an object with the “hope” of 

catching the child’s attention (Kozima & Nakagawa, 2006). Other studies that aimed at 

improving joint attention of autistic children using robots are Robins and Dubowski   

(2006) and De Silva et al. (2009). Wainer at al. (2014) evaluated how a humanoid robot, 

KASPAR, can be used to facilitate the playing of games between pairs of children with 

autism. Detailed observations from their research showed that the autistic children 

exhibited improved social behaviours after a robot participated in a triadic game session 

among the pairs of autistic children.   

Although these single day and longitudinal studies indicate that robots could be valuable 

aids in autism therapy, little has been done in the area of harnessing social robots in the 

classroom to aid academic growth of autistic children. Huijnen et al. (2017) also confirm 

that social robots have still not been widely assessed in autism education in classrooms. 

Research needs to focus on how such robots can be used to teach social, academic 

imitation and joint attention skills to the children.   

More so, Thill et al. (2012) indicate that current research in robot assisted autism therapy 

needs to delve into how the workload on therapists can be reduced by equipping social 

robots with supervised autonomy. There is the need for high level robotic platform 

independent models which are capable of inferring the internal states of the children to be 

able to react appropriately (Thill et al. 2012). Due to the emergence of modern 
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technological advances such as deep learning, it is timely to research into how social 

robots can sense data from their interaction environment, model the data and readapt their 

behaviour accordingly to create a friendly learning environment in order to sustain the 

interest of the children.    

   

2.6  Impact of culture on acceptance of technological interventions for autism therapy   

   

People speculate that autism could be caused in children who come from highly intelligent 

families, by environmental factors and religious beliefs (Okeke, 2016) but many of these 

claims have not been verified. Research by Dyches at al. (2004) indicates that culture 

could play a major role in the diagnosis and treatment options for people on the autism 

spectrum. It is well known that autistic behaviour varies among individuals but there is 

currently limited knowledge on multi-cultural variations in autism manifestation (Dyches 

et al., 2004).   

Behaviours of children which may be considered red flags for autism in one country may 

be completely normal in other environments. Culture could also influence how autistic 

children interact with their families and outsiders. Similarly, the acceptance of treatment 

plans for people with autism by their family and autism care centers could differ based on 

religious beliefs about the etiology of autism, ethnic backgrounds and other cultural 

variables (Ennis-Cole et al., 2013). Therefore, it is important to factor in culture when 

designing technological interventions for autism therapy (Pitten, 2008; Cascio, 2015;  

Tincani et al., 2009). A study by Libin and Libin (2004) where subjects from America and 
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Japan interacted with a robotic cat indicated that the participants reacted to the robot 

differently and these variations could include factors such as cultural background. 

Rudovic et al. (2017) also identified variations in levels of engagement and task execution 

times among two groups of people from different cultures, specifically Asia(Japan) and 

Europe(Serbia) during their interactions with the robot Nao.   

Currently, most of the studies on robots in autism therapy have largely been focused on 

Europe and America. The autistic children who have partaken in robot mediated learning 

experiments are mostly from developed countries (Samadi & McConkey, 2011) such as   

UK (Wainer et al., 2010; Robins et al., 2004), USA (Stanton et al., 2008; Feil-seifer &  

Viterbi, 2009), Germany (Robins et al., 2009), Canada (Duquette et al., 2008) and Japan  

(Lee et al., 2012). A few have been undertaken in developing countries such as Brazil 

(Valadão, et al., 2016).   

Blacher and Mink (2004) point out that, cultural sensitivity should be considered when 

importing knowledge and cultural practices from one culture to another. Culture could 

also influence how people react to, accept and interact with technology. Interventions 

developed and experimented with autistic children in the Western world need to be tested 

with participants from diverse cultures and resource constrained environments rather than 

presuming that these technologies would be adequate for children with special needs from 

these areas. Consequently, there is the need for indigenous research on robot assisted 

therapy for children from developing countries in order to obtain information about 

cultural similarities, variations and parameters which could potentially account for 

acceptance or rejection of robots as partners in autism therapy. Research also needs to 



 

26   

     

   

throw more light on how pre-exposure to technological gadgets and other robots could 

influence the acceptance, engagement and learning outcomes of the use of robots in autism 

therapy.   

   

  2.7  Ethical concerns   

   

In human-robot interactions, ethical concerns are a paramount issue and therefore, 

Syamimi et al. (2014) recommends layers of research protocol which should be considered 

before commencing robot intervention programs in order to make adequate preparations 

and obtain consent from all the stakeholders involved. An ethical issue in robots for autism 

therapy lies in the degree of autonomy given to some robots (Coeckelbergh et al., 2015). 

The more autonomous a robot is, the less control humans have over its behaviour.   

Therefore, who bears responsibility for a robot’s action? Can parents trust the robots used 

in the therapy? Other ethical issues of concern are data privacy and security: will the data 

obtained from human-robot interaction be stored, how will the data be used and who will 

use the data?   

According to Coeckelbergh et al. (2015), stakeholders approve of using robots in therapy 

for children with ASD but prefer the activities of these robots are controlled to some extent 

by therapists. More so, parents, caretakers, therapists and all stakeholders need to be 

properly informed about the details on how information collected during therapy sessions 

would be handled. Researchers should also seek parental consent for the participation of 

their children at all stages of the research.   
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  2.8  Machine learning (ML)   

   

Machine learning is a sub field of computer science which involves equipping computers 

with the ability to emulate human intelligence by learning from experience without 

explicit programming (Naqa & Murphy, 2015). Machine learning techniques have been 

utilized in diverse fields such as computer vision, pattern recognition, medical sciences, 

email filtering and entertainment. Common machine learning algorithms include 

supervised learning, reinforcement learning and unsupervised learning (Ayodele, 2010). 

Supervised learning (SL) basically implies learning from examples; a supervised 

algorithm is supplied with a training set and a test set. Each training set consists of n 

ordered pairs (x1,y1), (x2,y2), … (xn,yn) where each xi is a measurement and yi denotes the 

label for that particular data point. The test set contains a set of m measurements without 

output labels: (xn+1, xn+2, …. Xn+m) (Learned-Miller, 2014). A common formulation of SL 

is in classification problems where the algorithm is required to learn a function mapping 

a vector into one out of several classes by looking at many input-output examples of the 

function (Ayodele, 2010). Examples of supervised learning algorithms in classification 

are neural networks, perceptron algorithms, support vector machines, decision trees, 

random forests and logistic regression (Ayodele, 2010). The type of supervised learning 

algorithm to use depends on the application domain and the nature of the dataset. For 

example, logistic regression is best suited for regression problems since it is more robust 

to noise and can also interpret output as probabilities (Bi & Jeske, 2010). However, logistic 

regression algorithms are not able to handle categorical features.    
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Decision trees can be used for both classification and regression tasks and are applicable to 

domains such as fault detection (Yang et al., 2009) and intrusion detection (Stein et al.,  

2005). Decision trees are less effective when working with continuous variables. Support 

Vector Machines (SVMs) are known to work well in non-linear classifications and 

complicated domains such as speech recognition (Zhang & Gales, 2012), remote 

homology (Muda et al., 2011) and texture classification (Anantrasirichai et al., 2013). 

SVMs have issues with noise, large datasets and choice of kernels.   

Neural networks are supervised learning algorithms which mimic the functioning of the 

human brain. Neural networks can learn on their own and do not require explicit 

programming. These networks are now being explored in natural language processing (Li 

et al., 2015), computer vision (Gopalaktishnan et al., 2017), financial predictions (de 

Oliveira et al., 2013) and visual recognition (Gu, et al., 2018). Neural networks are able 

to work well with limited data and often achieve accurate results.   

Reinforcement learning (RL) is another type of ML algorithm in which the learner is not 

explicitly told which actions to take but should be able to discover actions which yield the 

utmost reward (Sutton & Barto, 2015). RL is based on try and error where the learning 

algorithm begins with random actions (since there is no initial knowledge) and learns to 

perform the expected output (Ritschel, 2018). Reinforcement learning is being used in 

diverse areas such  as self-driving cars (Liang et al. 2018), industry automation (Meyes, 

et al., 2017) and health care (Gottesman, et al., 2018). Reinforcement learning requires a 

lot of training time and multiple iterations hence can be time consuming and less effective 

in some domains.   
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 In unsupervised learning, an algorithm is given inputs x1, x2, …xn without accompanying 

labeled data, target outputs or feedback from the environment (Lison, 2015). The 

algorithm then attempts to find patterns or grouping in data. These algorithms are best 

situated for instances where desired outcomes are unknown. Applications of such 

algorithms include clustering, anomaly detection and latent variable models.   

   

  2.9  Deep learning (DL)   

   

Deep learning is the new era of machine learning algorithms developed with aim of 

moving machine learning closer to artificial intelligence. DL algorithms are inspired by 

and mimic the behaviour of the human brain, by using multi-layered artificial neural 

networks to learn representations from data (LeCun et al., 2015). Artificial neural 

networks are one of the fastest performing and accurate machine learning algorithms. 

However, the amount of data supplied to a model directly impacts the model accuracy. In 

instances where datasets for training  deep learning models are limited, a new technique 

known as transfer learning can be applied (Weiss et al., 2016). Transfer learning is a 

technique in which knowledge gained from a learned environment is applied to a new 

environment (Weiss et al., 2016). In transfer learning, there is a source domain Ds with 

matching source tasks Ts. A target domain Dt also exists with target tasks Tt (Weiss et al.,  
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2016) .    

The objective of transfer learning is to improve the predictive function of the target f t (.)   

by using information from the source domain D s  and the so urce tasks 
  T s . Typically, D s ≠D t   

and T s ≠T t  ( Weiss et al.,  2016). 
  DL algorithms can be developed using supervised or  

unsupervised approaches. The success of machine learning algorithms also depends on  

selecting an architecture that best fits the problem domain (Miikkulainen et al., 201 7) .    

Some architectures are: convolutional neural networks (CNN), recurrent neural networks  

( RNN) and deep residual networks (DRN). Convolutional neural networks are known to  

produce remarkable results for computer vision tasks (Wootaek et al., 2016).    

    

2 .10   Building blocks of convolutional neural networks    

    

CNNs are deep learning algorithms whose architecture is inspired by the organization of  

the animal visual cortex (YamashitaRikiya et al., 2018). CNNs are feed - forward deep  

learning image classificatio n algorithms which can automatically learn spatial hierarchies  

of features. They consist of three layers namely: convolutional layers, pooling layers and  

fully - connected layers as shown in figure 2.3.    
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Figure 2.3 An overview of CNNs (YamashitaRikiya et  al., 2018)    

    

Convolution layers in CNN extract input features from an image by performing  

convolution operations. Convolution operations are linear mathematical operations. To  

execute a convolution, a filter or kernel is applied over an input data to comp ute a dot  

product called the feature map. The size of the feature map depends on the depth (number  

of filters used), stride (number of pixels by which the filter is strided over the input data)  

and zero padding (padding input matrix with zeros in order to  control the size of the feature  

map). Convolutions are very essential operations because they lead to sparse connections  

and parameter sharing.    In figure 2.4, a 4x3 matrix is convolved with a 2x2 filter using a  

stride of 1. The output is a 3x2 matrix.    
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filter is run over a 4x4 input matrix with stride=2. For each region, the maximum value is  

    

Figure 2.4  Convolution process in deep learning    

    

Rectified Linear Units (ReLUs) are non - linear activation functions performed after  

convolution operations. ReLUs increase non - linearity in CNN by replacing all negative  

values in the feature map with zer o.  Mathematically, the output of a ReLU is defined as  

ƒ(x) = max(0,x). Pooling, usually known as spatial spooling or down sampling reduces  

the dimensionality of the feature map while maintaining important information. Some  

types of pooling are max pooling   and average pooling. Average pooling calculates the  

average from each selected region of the input matrix and uses the derived averages to  

create a new matrix. Max pooling, the most preferred method, divides the input matrix  

into multiple regions and take s the maximum value from each region. In figure 2.5, a 2x2  
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sequences, localizing the objects, drawing bounding boxes around them and finally  

picked to create a new matrix of a smaller size.    

    

Figure 2.5 Example of max pooling    

    

The output of th e final pooling is converted into a 1 dimensional array of high level  

features and connected to Fully connected Layers (FCL). The FCL is a multilayer  

perceptron which does high level reasoning in order to predict a classification for the input  

data. There  can be one or more FCL’s in a CNN. The FCL takes each neuron from the  

previous layer and connects it to every neuron in the FCL. The FCL also contains a  

softmax activation function which assigns probabilities to each class in a multinomial  

class.   In human - robot interaction, robots could take better decisions if they know the kinds  

of objects in the interaction environment and their exact locations. For this reason, it is  

timely to explore object detection machine learning models for human - robot interaction.     

    

2.11   Object detection    

    

Object detection is a computer vision technology which involves the process of detecting  

the presence of objects (e.g. cat, dog, human face, book) in digital images and video  
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classifying the objects (Zhao et al., 2019). Application areas of object detection include  

video surveillance, image retrieval, self - driving cars and security systems. Every object  

has its unique and salient features that char acterize and differentiate it from other objects    

( Fernandez Robles,  2016 ) . Object recognition is an extended form of image classification.  

Whilst image classification usually classifies an image as belonging to one out of many  

classes with or without loca lization, object detection algorithms recognize multiple  

objects, localize them with bounding boxes and generate the predicted class of each object  

( Agarwal,  2011 )   , an example shown in figure 2.6.    

    

Figure 2.6 Differences between image classification an d object detection (Agarwal, 2011)    

    

There are two main approaches to object detection using convolutional neural networks,  

namely the one - stage methods and two - stage methods. In the two - stage method, region  

proposal networks are used to generate region p roposals in the first stage and another  

network is used to make the final prediction. Models such as Region - Based Fully  



 

35   

     

   

Convolutional Neural Networks (R-FCN) (Dai et al., 2016), Fast-Region-based 

Convolutional Neural Networks (Fast-RCNN) (Girshick, 2015) and Faster-RCNN (Ren 

et al., 2015) are all two stage methods. The one-stage methods are simple and involve 

making a fixed number of predictions on a grid. Examples of single-stage object detection 

algorithms are You-Only-Look-Once (YOLO) (Redmon et al., 2016) and Multibox 

SingleShot Detector (SSD) (Liu et al., 2016). The one-stage methods do not make use of 

region proposals and as a result, they are usually faster than the two stage methods 

(Soviany & Ionescu, 2018). Hence, for some application domains which require fast 

realtime processing of data, one stage object detection methods may be preferred due to 

their speed of task execution.   

   

In human-robot interaction, one-stage object detection algorithms can be of more 

advantage because these algorithms can detect the presence and exact location of objects 

at a faster rate. In an application area such as robot assisted learning for autistic children, 

an object detection algorithm can help a robot to know the objects in the interaction 

environment so as to take appropriate actions if a child is close to a “dangerous” or 

inappropriate object. Similarly, a fast object detection algorithm can predict the emotional 

states of autistic children and the robot can utilize that information to decide on the next 

action to take.   

   

The standard metrics used by image classification algorithms such as True Positive Rate 

(TPR), False Positive Rate (FPR) and Receiver Operating Characteristic (ROC) curve may 

not apply to object detection because object detection algorithms may identify many 
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objects of different classes in an input image. More so, the object detection model needs 

to be able to calculate both localization and classification accuracies and losses. As a 

result, Average Precision (AP) is the principal metric used to rate the accuracy of many 

object detection algorithms (Padilla et al., 2020).    

   

Average Precision is calculated based on precision and recall by identifying true positives 

and false positives (taking into consideration intersection over union (IoU)) as well as 

false negatives. In object detection, true negatives do not apply because every part of the 

image which does not contain an object is a negative (Padilla et al., 2020). Precision can 

be calculated by dividing the total number of true positives by all detections while recall 

is the total number of true positives divided by all ground truths. To get the average 

precision of a class, also known as area under the precision-recall curve, precision and 

recall values for the class have to be plotted on a graph. The mean average precision is 

calculated by finding the mean of the sum of all the average precisions of the classes   

(Henderson & Ferrari, 2016).   

   

2.12 Machine learning in robot assisted diagnosis and therapy   

   

Traditionally, autism is diagnosed by health professionals by observing behavioural 

characteristics of a person. Recently, focus has been placed on research towards 

diagnosing and providing interventions for autism via machine learning (ML). Much of 

this effort has been geared towards ML strategies to diagnose autism (Thabtah, 2017).   

Crippa et al. (2015) developed a supervised machine learning (SML) algorithm to classify 

children with low functioning autism based on upper limb movement.  Other SML 
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algorithms to predict autism are based on brain regional cortical thickness (Yun, et al., 

2010), multi-parametric magnetic resonance imaging data (Zhou et al., 2014)  and face 

processing abnormality (Wenbo et al., 2016).   

Notwithstanding, in robot mediated therapy sessions for children with autism, machine 

learning methods could be used to model and predict the affective states and behaviour of 

autistic children during interactions. These predictions can further guide social robots to 

deliver personalized interventions to meet the needs of each child. To achieve the required 

speed, latency and power efficiency of machine learning implementations for humanrobot 

interactions, deep learning, a new area of machine learning which utilizes artificial neural 

networks needs to be explored due to the deficiencies associated with the traditional 

machine learning approaches.   

   

2.12.1 Affect recognition in human robot interaction (HRI)   

   

Affect is a physiological term used to describe a person’s emotion. Automatic detection 

and classification of human affect ensures “natural” bi-directional communication and 

enriches human computer interaction (McColl et al., 2016). In special needs education for 

children with autism who may exhibit deficits in verbal communication, a robot as a 

therapy partner can be used to sense nonverbal cues from a child and predict his or her 

affective state in order to readjust the intervention when necessary (Liu et al., 2008).   

Facial expressions play a pivotal role in social interactions and can be used to infer a 

person’s emotional state or intention (Levi & Hassner, 2015).  Automatic facial emotion 

recognition (FER) in unconstrained environments  such as human-robot interactions still 
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remain an interesting problem in computer vision (Mollahosseini et al., 2015). Automatic 

detection of emotions is challenging due to computational requirements (Wimmer et al.,   

2008), technological constraints and real-time processing of detected affective states 

(Castellano et al., 2010). Data collected by a robot during interactions is also liable to 

noise such as occlusions and varied illumination (Rouast et al., 2019). More so, just like 

humans typically do, social robots need to be able to combine multisensory data picked 

from the environment and interpret them in order to infer affective states as well as 

engagement levels in order to readapt their behaviour accordingly.   

In human-robot interaction, majority of the FER systems proposed for robots have been 

based on traditional feature extraction and machine learning techniques. Giorgan and 

Ploeger (2011) extracted Gabor features from faces and used two machine learning 

algorithms SVM and Adaboost for emotion classification system to be used by domestic 

robots. Alonso-Martin et al (2013) used OpenCV to detect faces and two third party 

software systems SHORE and CERT for a FER system running on the robot Maggie. Cid 

et al. (2013) used Gabor filters as feature extractor and a dynamic Bayesian network as 

classifier for a robot Muecas to detect people’s emotions. Leo et al. (2015) also proposed  

a FER system based on HOG descriptor and support vector machines (SVM) for 

deployment on the Robokind™ R25 robot. Lui et al. (2017) developed a FER system 

based on 2D Gabor filters, LBP and extreme learning classifier for Nao robot.   

The traditional algorithms reviewed are based on shallow learning or handcrafted features 

such as local binary patterns (Shan et al., 2009), Scale Invariant Feature Transform (SIFT) 

(Lowe, 1999), Histograms of oriented gradients(HOG) (Dalal & Triggs, 2005) and 



 

39   

     

   

nonnegative matrix factorization (Zhi et al., 2011) which require extensive computations 

making them unsuitable for real time human-robot interaction applications. More so, 

traditional machine learning algorithms such as SVMs are known to predict emotions for 

images captured in controlled lab experiments but have poor generalizability to 

spontaneous images captured in the wild (Mollahosseini et al., 2015).   

For challenging domains where multiple sources of noise are likely to exist, emotion 

recognition is currently being tackled via deep neural networks (Zhang et al., 2015; Li & 

Deng, 2018; Cheng et al., 2018). Although deep learning has produced excellent tasks in 

other application domains, challenges still remain in deep learning for facial emotion 

recognition. Existing facial emotion recognition systems based on CNN follow a similar 

pattern as the traditional FER systems by separating the face detection and feature 

extraction/classification modules. For example, Mayya and Radhika (2016) detected faces 

via OpenCV and performed feature extraction using a deep CNN on the CK+ and JAFFE 

datasets for emotion classification. Yu and Zhang (2015) detected faces and classified 

emotions via ensemble of face detectors and classifiers. This approach of using separate 

modules for face detection and classification is also not suitable for embedded systems 

and robots due to the computational resource constraints. Insufficient facial expressions 

dataset is a major problem which could cause overfitting in deep learning architectures for 

human-robot interactions.   

While object detection has achieved significant speed and accuracy in domains such as 

airplane detection (Chen et al., 2018), ship detection (Wang et al., 2018), indoor 

environmental perception for robots (Wang, et al., 2019) and object grasping (Fang & 
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Zheng, 2019), object detection is yet to be applied to real time affect recognition by social 

robots in autistic child-robot interactions.    

   

2.12.2 Personalization of autistic child-robot interactions   

   

Every child with autism has his or her unique abilities and weaknesses. Ideally, 

individualized education plans which incorporate the specific needs of each child are best 

suited for them. Applying this principle to robot mediated learning in autism, it is 

imperative for interaction scenarios for social robots to be personalized based on the needs 

of each child. More so, robots need to be able to sense data such as the emotional states 

and engagement levels of the children during the interaction sessions to be able to 

streamline the activity sessions in real-time to maximize learning gains. Not much work 

has been done on applying deep learning emotion recognition systems to enhance robot 

mediated therapy for ASD. The few emotion recognition systems targeting this area have 

been based on traditional machine learning algorithms using datasets of typically 

developing people and audio (Leo et al., 2015; Kim et al., 2017).   

Current challenges which remain are lack of or inadequate domain specific datasets which 

consequently results in low prediction accuracies of the FER systems for human-robot 

interaction. To address the problem of limited domain specific dataset of facial 

expressions, uneven distribution of images, latency issues and computational inefficiency, 

this thesis proposes a SingleShot emotion detector based on transfer learning on SSDLite, 

an object detection algorithm to predict the emotional states of an autistic child during 

ACRI sessions. The proposed model, SingleShot emotion detector is a CNN algorithm for 
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face localization and classification of facial expressions. Unlike traditional emotion 

recognition systems which separate face detection and classification pipelines making 

them less suitable for robotic applications due to their high latency, coupling and low 

frames per second(FPS), the proposed model combines face detection and classification 

into a single pipeline in order to provide high frames per second(FPS), low latency and 

efficient power usage for real-time emotion detection tasks.  The proposed model would 

be deployed on a humanoid robot and evaluated in real time to assess the effects of 

personalization based strategy on learning outcomes.   

More so, in order to maximize learning gains, social robots need to be able to detect the 

engagement levels in real time autistic child – robot interactions (ACRI). Based on a 

child’s current affective state and the estimated engagement level of a child, the robot can 

then personalize the learning sessions.  Engagement estimation in autistic child –robot 

interaction has not received much attention from researchers (Feng et al., 2017). Current 

engagement estimation models are typically based on unisensory modalities such as facial 

images (Rudovic et al., 2018), head pose (Anzalone et al., 2015) and body movements  

(Colton et al., 2009).   

Due to the multifaceted nature of the disorder, the combination of multimodal data such 

as affective states, IQ levels, learning progress and physiological disposition would better 

estimate engagement levels of autistic children in real-time. Due to the high level of 

uncertainty and unpredictability of children on the autism spectrum, this thesis also 

proposes and evaluates the application of fuzzy logic technology (a technique known to 
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work accurately in uncertain and imprecise environments) using multiple crisp inputs to 

engagement estimation in autistic – child robot interactions.   

   

2.12.3 Behavioural intention of special needs teachers to adopt robotic assistive 

technology   

   

The successful integration of robots in educational settings require maximum support from 

teachers (Mubin et al., 2013). However, much emphasis has been placed on the design of 

social robots for people with special needs without addressing the perceptions of the 

teachers about robots and factors which could influence their behavioural intention to 

adopt robots in educational settings. The behavioural intention of people towards 

technology could be motivated by the perceived benefits as well as psychological 

determinants (Wu, 2009).   

User acceptance could also be influenced by sociodemographic variables such as culture, 

age, gender, educational background and previous technological experience (Crabbe et al., 

2009; Jain & Rekha, 2017). The general stereotype is that younger people are more likely 

to accept technology than older people (Flandorfer, 2012) but research by Mitzner et al 

(2010) contradicts this claim. With respect to gender, Flandorfer (2012) indicates that men 

appreciate technological devices more as compared to women. A person with higher 

educational background or previous technological experience is likely to accept new 

technological device with ease as compared to someone with very little education who is 

unfamiliar with modern technology (Koç et al., 2016).   
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Research towards social acceptance of robots can be conducted in the laboratory setting or 

in the “wild” (in the natural environment).  However, due to the fact that these robots are 

going to assist users on a personal level in everyday life, experiments geared towards 

understanding variables influencing social acceptance need to be carried out in the natural 

setting (Weiss et al., 2010 ). It is difficult to come across studies focusing on how people 

in developing countries perceive robotic assistive technology. It is therefore important to 

utilize a multicultural approach to investigate how demographic factors influence the 

perception and behavioural intentions of teachers to incorporate robots in special needs 

education.   

   

2.12.4 Technology acceptance modeling frameworks   

   

Two of the well-established theoretical frameworks for modelling the willingness of 

people to use new technology are Technology Acceptance Model, TAM (Davis, 1989) and 

Unified Theory of Acceptance and Use of Technology(UTAUT) (Venkatesh et al.,   

2003). TAM proposes that two main determinants, Perceived Usefulness (PU) and  

Perceived Ease of Use (PEOU) influence acceptability of new technology. PU is defined 

by Davis as “the degree to which a person believes that using a particular system would 

enhance his/her job performance” (Davis, 1989). PEOU is the “degree to which an 

individual believes that using a particular information technology system would be free of 

effort” (Davis, 1989). Humans are social factors and as such their environments tend to 

impact on their beliefs and choices. As such, TAM has been criticized for its simplicity 

and failure to incorporate the characteristics of individuals and their cultural backgrounds  
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(Jiang et al., 2010). Extensions to TAM such as TAM2 (Venkatesh & Davis, 2000) and 

Unified Theory of Acceptance and Use of Technology(UTAUT) (Venkatesh et al., 2003) 

have been proposed to address the criticisms.   

Unlike TAM, UTAUT places emphasis on how social constructs and norms influence 

people’s acceptance of technology. The UTAUT framework (figure 2.7) consists of four 

principal independent variables: performance expectancy (PE), effort expectancy(EE), 

social influence(SI), and facilitating conditions(FC) (Venkatesh et al., 2003). Venkatesh 

et al (2003) identifies four variables: age, gender, experience and voluntariness of use as 

the moderators of the principal variables (Venkatesh et al., 2003). Behavioural intention 

is the dependent variable. PE and EE in UTAUT can be mapped to PU and PEOU in TAM 

respectively (Yogesh et al., 2011). Social influence is defined as the degree to which the 

beliefs of family, colleagues or peers would influence a person’s decision to adopt 

technology (Venkatesh et al., 2003). Venkatesh et al. (2003) define facilitating conditions 

as “the degree to which an individual believes that organisational and technical 

infrastructure exists to support the use of a system”.   
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Figure 2.7 The UTAUT Model (Venkatesh et al., 2003)    

Conti et al. (2017), Heerink et al. (2006), De Ruyter et al. (2005) have used UTAUT  

framework to investiga te factors influencing acceptability of robots but none of these  

studies were conducted with people from developing countries.    

    

2.13   Theoretical Framework    

    

This thesis has been motivated and guided by some theories originating from autism  

research name ly theory of constructivism, scaffolding theory and theory of the mind. The  

theory of constructivism, a learning theory which deals with the way people learn, acquire  

and process knowledge could be applied to artificial intelligence. According to Piaget’s  

theory of constructivism, children learn, acquire and reconstruct knowledge by  

manipulating physical artifacts, observing their behaviour and interacting with their  

environment (Piaget, 1974). This research seeks to find out whether Ghanaian children on  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjGuKqlg5DgAhXKI1AKHXtsCOEQjRx6BAgBEAU&url=https://www.researchgate.net/figure/UTAUT-model-Venkatesh-et-al-2003_fig2_281372264&psig=AOvVaw3n5QK1CXzqiIZzstBwYB83&ust=1548749391774038
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjGuKqlg5DgAhXKI1AKHXtsCOEQjRx6BAgBEAU&url=https://www.researchgate.net/figure/UTAUT-model-Venkatesh-et-al-2003_fig2_281372264&psig=AOvVaw3n5QK1CXzqiIZzstBwYB83&ust=1548749391774038
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the autism spectrum can learn and acquire new knowledge from the robot through play, 

observation and interaction sessions.   

Scaffolding theory can also be applied in human-robot interaction studies (Robins et al., 

2005). Scaffolding refers to manipulating robot behaviour during HRI studies to suit the 

emotional and cognitive states of the people involved in the interaction. By so doing, the 

possibility of a child being stressed, agitated and uncomfortable would be minimized. This 

research also intends to investigate whether manipulating the robot to personalize learning 

sessions using multivariate parameters can sustain the interest of the children in the robot 

interaction sessions and maximize learning gains.   

According to Pedersen (2018), “Theory of mind (ToM) is the ability to recognize and 

attribute mental states: thoughts, perceptions, desires, intentions, feelings to oneself and 

to others and to understand how these mental states might affect behaviour”. This theory 

helps humans to understand why people are likely to act in a certain way and it also helps 

us to predict how people may act under given circumstances. For example, Ama puts her 

school bag on the dining table and goes outside to play. Her mother arrives home shortly 

afterwards, picks Ama’s bag and put in a wardrobe in Ama’s room. Ama finishes playing 

and goes to the dining table to look for her school bag so she can take her homework book. 

Ama falsely thinks her bag is still on the dining hall table because she does not know that 

her mother moved it. This scenario implies that Ama has theory of the mind based on her 

knowledge (she knows she kept her bag on the dining hall table) and beliefs.   
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From the age of 4, children start to develop theory of the mind and therefore they are likely 

to understand that a person is acting in a certain way due to a false belief and not the reality 

(Kloo et al., 2010). However, children with developmental delays such as autism may later 

or never develop theory of the mind (Barron-Cohen, 2000). ToM plays a major role in a 

child’s mental and social development and has also been linked to the ability to understand 

one’s own and other’s behaviour, false-beliefs, hold meaningful conversations with 

people, resolve conflicts and understand the needs of others. Children on the autism 

spectrum have varying levels of deficits in ToM; they may not know that people have their 

own plans, beliefs and thoughts and would experience difficulty in understanding the 

emotions and attitudes of others (Rastall, 2016).   

The inability of an autistic child to develop theory of the mind affects their social 

interaction with humans. ToM can also be linked to how people experience the uncanny 

valley phenomenon i.e. the tendency to be revulsive, feel creeped out and disgusted by 

objects which have close resemblance to humans. Therefore, it is crucial to investigate 

whether an autistic child who may or may not exhibit deficits in ToM would experience 

the uncanny valley effect during an interaction session with a humanoid assistive 

technology such a social robot. The results obtained would better inform design choices 

in terms of appearance for the construction of robots for use by children on the autism 

spectrum.   

   

2.14 Conclusion   
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Whereas the benefits of social robots can be enormous, there are many factors hampering 

the successful implementation of robots in autism therapy. There is limited research on 

the categories of shapes, sizes and features of robots that would appeal most to children 

with autism, for e.g. would an autistic child prefer a humanoid to a non-humanoid robot, 

or vice versa? Would a child prefer to play with a robot smaller than or bigger than him? 

Would a child be more stimulated by a moving robot or a stationary robot?  Another 

feature which is seemingly missing from most of the robots for autism is the ability to 

incorporate adaptive inference models which can readapt the robot’s behaviour to suit the 

children’s affective states, cognitive abilities and behaviour. Most of the research 

undertaken in the area of robots for autism therapy has produced more of qualitative data 

than quantitative making it difficult to statistically assess the progress of the participants 

over time. Comprehensive review presented in Diehl et al. (2012) indicate that the number 

of participants in previous robot mediated therapy experiments ranged from 1 to 16.   

A lot of the autistic child- robot experiments undertaken were conducted over a short period of 

time. This could be due to the fact children with autism are classified under  

“protected groups” and as a result, obtaining consent to engage them in long term studies 

is difficult. There is the need for large scale long term longitudinal studies involving more 

autistic children in order to obtain rich quantitative data for analysis. Another issue of 

concern is the fact that people feel that robots may take over the jobs of humans and 

therefore, people are reluctant to accept assistive technologies. Perhaps, a more worrying 

factor is the tendency of autistic children to become emotionally attached to these robots  

(Coeckelbergh et al., 2016).   
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Due to the high cost of purchasing or hiring existing robots in autism therapy, autism 

centers in developing countries may not be able afford them for experiments. More so, 

assembling, building, programming and controlling social robots are difficult tasks which 

require high level of skills and expertise. The acceptance, effectiveness and successful use 

of robots as assistive technologies in ASD therapy depends on many factors such as the 

design, mobility, capabilities and appeal of the robot (Michaud et al., 2007). Hence it is 

vital for researchers to adopt a participatory-design approach involving practitioners, 

teachers and the children to investigate the social norms of the target environment, needs, 

challenges, capabilities and expectations of the end users in order to design and develop 

useful tools to aid their activities.   

Having identified these gaps in robot mediated therapy for autism management, this thesis 

focuses on addressing some of the challenges discussed.  Specifically, the research seeks 

to explore the suitability of a humanoid robot as an assistive technology for Ghanaian 

children with autism and propose strategies for personalization of robot-mediated learning 

sessions. The objectives involve adopting a participatory design approach involving the 

caregivers, health care professionals and the children to develop a humanoid robot to aid 

in the teaching sessions and create appropriate interaction scenarios for robot mediated 

learning sessions.   

As part of the research objectives, a preliminary study would be performed to evaluate the 

initial reaction of some Ghanaian autistic children towards an unfamiliar robot. 

Longitudinal studies would be conducted to assess the reactions, engagement levels and 
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learning gains of Ghanaian autistic children over extended interaction periods with 

humanoid robots. A deep learning model for detecting emotional states of Ghanaian  
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autistic children would be developed and trained on two custom datasets, one containing  

images o f typically developing Ghanaians and the other containing images of autistic  

children depicting various emotions. A fuzzy - based engagement prediction model would  

also be proposed to autonomously estimate the engagement levels of the children in real  

time A CRI. The emotion detector and fuzzy - based models would be incorporated into the  

developed social robot and tested in real - time autistic child - robot interaction sessions in  

order to assess the performance of the models and the effects of personalized intera ctions  

on learning outcomes in a classroom setting.    

    

    

    

    

    

    

    

    

CHAPTER 3  

  

    

METHODOLOGY      
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In this chapter, an elaboration of the methodology, design and data collection methods 

utilized in the research are presented. This thesis aimed at exploring the suitability of a 

humanoid robot as an assistive technology for Ghanaian children with autism and 

proposing strategies for personalization of robot-mediated learning sessions. The two 

main methodological approaches adopted were participatory design and experimental 

research. Most of the research undertaken in the area of robots for autism therapy has 

produced more of qualitative data than quantitative, making it difficult to statistically 

assess the progress of the participants over time. Hence an experimental research approach 

was adopted to collect both quantitative and qualitative data to derive comprehensive 

knowledge and data which can be used for further research. The main phases of the 

research involved:   

i. Preliminary and longitudinal empirical autistic child-robot interactions using the 

humanoid robot Rosye ii. Novel robot RoCA’s requirements elicitation, interaction 

scenarios specification and iterative robot development iii. Development of the 

Singleshot Emotion Detector (SED) based on transfer learning iv. Development of a 

fuzzy-based engagement prediction model   

v. Integrating the SED and the fuzzy models into the developed robot and  

conducting experiments to assess the effects of personalization on learning gains.   

vi. Investigating the behavioural intention of Ghanaian special needs teachers in autism 

therapy to adopt robotic assistive technology   

Two different humanoid robots, Rosye and RoCA were used in the research process.  
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Rosye is a simplistic multi - coloured adult - size humanoid robot while RoCA  is a childlike  

robot. After the preliminary and longitudinal studies, the caregivers suggested that it  

would be more appropriate to use a child - sized robot in order for the children to see it as  

a playmate and also due to colour sensitivity issues, a neutr al coloured robot was preferred  

for future studies. Based on this information and consultation with some stakeholders, a  

participatory - design approach was adopted to elicit requirements of a new robot from  

stakeholders, produce the design solutions and eva luate the proposed designs in the  

classroom setting.     

The developed social robot for children with autism has been named RoCA ( Ro bot for    

C hildren with  A utism). RoCA was programmed in C# using Visual Studio 2017 IDE and  

Ez - Script using Ez - Builder. Figure 3 .1  indicates the methodological structure of the entire  

research process.    
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Figure 3.1 methodological structure of the research process    

    

    

    

3.1   Preliminary and longitudinal empirical autistic child - robot interactions using  

Wizard of Oz (WOZ) approac h    
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Two WOZ experiments were conducted in the first phase of the research.   

• The first experiment investigated the effects of the uncanny valley 

phenomenon and the ability of the humanoid robot to engage the children in 

imitation games and general activities through multiple verbal prompts.   

• The second experiment was a longitudinal study to observe the reaction and 

assess the engagement levels of the autistic children in their interaction 

sessions with a robot for a maximum of eight sessions on different days.   

   

3.1.1 Experimental Research Approach   

   

The approach used in this phase was experimental empirical research.  Empirical research 

is a scientific method of investigation which enables an experimenter to acquire 

knowledge, gain direct experience, report on observations and present findings from a 

field experiment (Roth, 2007).  It is suitable for research when specific research questions 

need to be addressed. Empirical research was used because the nature of research 

questions indicated that, field experiments needed to be conducted to be able to assess the 

effects of the uncanny valley phenomenon, impact of longitudinal interactions and 

effectiveness of the deep-fuzzy engagement estimation framework during autistic child – 

robot interactions. In autism management, there is a saying that” if you know one person 

with autism, you only know one person with autism”. This adage implies that, no two 

people on the autism spectrum have the same set of characteristics and therefore, 

individualized therapies are better suited for them.   
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With this in mind, the experiments were conducted using the single subject design 

approach. Single subject design is a quantitative method which involves studying in details 

the behaviour of a small number of participants and each individual serves as his or her 

own control during the experiment (Alnahdi, 2013). This strategy enabled the 

individualization and assessment of the effects of robot mediated interventions on each 

individual. A “within-subject approach” was utilized to expose each participant to the two 

treatment conditions i.e. performing the imitation game and providing responses to tasks 

in the general activity session.  A mixed method approach was utilized to collect both 

quantitative and qualitative data.   

   

3.1.2 Case study   

   

The experiments were conducted in two schools for children with autism in the Greater   

Accra region namely Autism Awareness Care and Training Center and HopeSetters 

Autism Center. Both centers are privately funded and rely on the fees paid by parents and 

the benevolence of philanthropists to run the institutions. In both schools, the children are 

taken through academics and social skills training, occupational, art and speech therapy 

as well as independent living skills. In one of the schools, each child is assigned a care 

giver, who guides the child through a unique curriculum developed for the child based on 

his or her abilities. In the other school, a group of children are assigned to a care giver who 

takes the children through various lessons. At the Autism Awareness Care and Training 

Center, the experiments were conducted in the sensory room. A sensory room is any room 

which has been filled with materials with varying stimuli such as soft balls, colours and 
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lights to provide a safe environment for children with special needs to interact and explore 

with minimal risks. At HopeSetters Autism Center, the sessions took place at a general 

office.   

   

3.1.3 Demographic information of the study participants   

   

Invitation and consent forms were sent to parents of twenty (20) children with autism. Out 

of this number, fifteen parents agreed for their children to participate in the experiments. 

The inclusion criterion was children between the ages of 9 and 17, who had been 

previously diagnosed with autism.  Fifteen children (n=15) who are on varying levels of 

autism spectrum participated in the preliminary experiment. Out of this number, three (3) 

were girls and twelve (12) were boys; mean age was 12.4 and standard deviation 2.47. 

Eight (8) of the children attended school at HopeSetters Autism Center and seven (7) of 

the children schooled at Autism Awareness Care and Training Center.   

In the longitudinal studies, the participants were seven (7) children all of whom were from 

Autism Awareness Care and Training Center. Two (2) of them were girls and the 

remaining five (5) were boys. The mean age was 10.4 and standard deviation was 1.6. The 

number of participants in the empirical studies was minimal to be able to study the 

behaviour of the children in much details in correspondence with most single subject 

experiments usually called small-n designs. For the purposes of privacy and anonymity, 

the names of the participants have been pseudonymized.   
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3.1.4   Robotic platform    

    

The adult sized humanoid robot, Rosye was  used to conduct the WOZ preliminary and  

longitudinal studies. Rosye (figure 3.2)   is a simplistic robot equipped with accessories  

such as ultrasonic sensor, led lights and speakers.    

    

Figure 3.2 The humanoid robot Rosye    

    

3.1.5   Experimental Script    

    

The   same experimental script was used in the preliminary and longitudinal studies. Each  

child - robot interaction session took place in either the sensory room or the general office  

depending on the Autism Center. The sensory room had many toys and playful obje cts  

which in a way were “distractions” to the experiment. However, in final deployment, the  

robot is likely to be situated in classrooms where there would also be other objects and  
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humans. Therefore, a decision was made to determine whether the children would be able 

to focus on the robot despite the “distractions” in the room. The participants were 

accompanied by their caregivers; the presence of the caregivers provided a reassuring 

environment for the children. There was no fixed time for each child-robot interaction 

session. As a result, the children had the opportunity to interact with the robot as long as 

they felt comfortable and the sessions ended only when all the tasks had been completed. 

However, it was planned that a session would be brought to an end when a child became 

aggressive or felt uncomfortable.   

The flowchart in figure 3.3 depicts the various stages involved in each child-robot 

interaction session. Each session followed a sequence of activities beginning with a quiet 

phase followed by an introduction, musical interlude, six imitation tasks, musical 

interlude, five general activity tasks and a concluding session. The robot was remotely 

controlled (WoZ) via a computer by the researcher and the instructions delivered by the 

robot were pre-recorded. Before any activity session, the robot informed the child of the 

tasks to be performed and at the end of the session, the robot also prompted the child. This 

principle adopted by the robot is in line with the protocols used in their classroom sessions 

where the children are prompted at the beginning and end of every activity session.   
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Figure 3.3 The seven stages involved in each child - robot interaction session    

    

Stage 1: Quiet Phase     

The robot was off as the child is ushered into the room in or der to observe whether the  

child would draw towards the robot, keep his or her distance or even express displeasure.    

The robot remained off for 30 seconds after which it was turned on by the researcher.    

Stage 2: Introduction     

The LED lights around the ro bot’s eyes and mouth were turned on and the robot spoke for  

the first time.  Robot vocal(RV) 1 :  “Hello, my name is Rosye. I am a robot”.    

    

    

Quiet Phase   

Introduction   

Music   

Imitation tasks   

Music   

General activities   

Conclusion   
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Stage 3: Musical Interlude   

 

At the third stage, the robot asked the child his or her name and told the child it was   going  

to sing a song.    

RV 2 :  What is your name?    

RV 3 :  Hello “ name of child ”, I am going to sing a song for you    

RV 4 :  Robot sang a popular local song and danced along using hand and neck movements  

RV 5 :  Music time is finished    

    

Stage 4: Imitation tasks     

After playing the music, the robot led the child through physical exercise sessions. The  

sessions were meant to teach the children imitation skills. Robot raised its left, right and  

both hands up and down and encouraged the children to do same.    

RV 6 :  It  is exercise time!    

RV 7 :  Left hand up    

Action: Robot raised its left hand up    

    

RV 8 :  Left hand down    

Action: Robot put its left hand down    

    

RV 9 :  Right hand up    

Action: Robot raised its right hand up    

    

RV 10 :  Right hand down    

Action: Robot put its right   hand down    

    

RV 11 :  Both hands up    
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Action: Robot raised both hands up   

 
Robot repeated RV 16 till the child turned his or her attention towards the robot or aborted  

    

RV 12 :  Both hands down    

Action: Robot put both hands down    

    

RV 13 :  Exercise time is finished    

Stage 5: Musical Interlude     

After the imitation tasks, robot played music while moving  its hands and neck    

RV 14:  Robot sang another popular local song    

RV 15 :  Music time is finished    

    

Stage 6: General Activities (GA)     

In the General Activity session (GA), a task was evaluated as completed when a child  

turned to look at the robot or the obj ect the robot is pointing at or performed the robot’s  

request depending on the scenario. The robot was operated to deliver every instruction  

three times and if the child did not respond by the third prompt, task was aborted. The  

robot rewarded a child for  good work done by saying “ good job ! ”    

GA task 1     

Just before the activity session, each child was given a toy to play with. The robot tried to  

shift the attention of the child from the toy towards the robot. The robot mentioned the  

child’s name.    

RV 16 :  “ H ello name_of_child ”    
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RV 23: Hello my friend, we are done for today. You have done so well. Good job. Bye bye.   

the task when the child did not turn by the third prompt.    

GA task 2    

Whereas some of the children have speech, others are nonverbal. The robo t asked the  

children the question “how are you” because almost all the children are able to respond to  

this question using speech or sign language.    

RV 17: “ Hello “ name of child”   how are you”?    

GA task 3    

Robot tried to shift the attention of the child tow ards a ball on the floor.    

RV 18 :  (“name_of_child”), take the ball (while robot pointed to the ball)    

GA task 4    

Robot then asked the child to give the ball to it.    

RV 19 :  Hi (“name_of_child”), give me the ball    

GA task 5    

Robot asks of a child’s name.    

RV   20 :  What is your name?    

Stage 7: Conclusion     

Robot then informed the child the playtime and interaction session had ended.    
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3.1.6 Data Collection and Analysis   

   

The data collection strategy utilized in the preliminary and longitudinal experiments 

involved direct observations and video recordings. Due to the nature of the experiments, 

relying on only direct observations as the data collection technique would have posed 

challenges in recalling the behaviour of each child during the experiment at the data 

analysis stage. With the consent of the parents, all the interaction sessions were video 

recorded. Video recordings facilitated capturing of complex interactions simultaneously 

and provided access to multiple views of the recordings. Analysis of the recorded data was 

done by visual inspection of the video of each child-robot interaction session and 

subsequently, statistical methods were used to model the results. Each participant’s data 

was analysed and plotted in order to make judgements about his or her response to the 

robot intervention on the first day, and for the participants in the longitudinal studies, their 

reaction to the robot over time. Each task had a score of one when correctly done by a 

child and a score of zero when task was not completed.    

The specific metrics used in the preliminary experiment were:   

i. prompt level at which task (imitation and general activity) was done: task done at first 

prompt, second prompt, third prompt or task not done.   

ii. The number of times each child touched a specific part of the robot: eyes, neck, mouth, 

hand, shoulder, midsection and head   

   

The metrics used during the data analysis of the longitudinal study were:   
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i. The imitation and general activity score per day for all the sessions (at most eight) ii. The 

frequency of physical contact with the robot measured over all the sessions iii.  

Comparison of the children’s responses to both tasks (imitation and general activity) against the 

number of times each child touched the robot.   

After the preliminary and longitudinal studies, a novel humanoid robot was developed.   

Sections 3.2 and 3.3 outline the robot design and development process.   

   

3.2 Participatory design of RoCA, a humanoid robotic assistive technology for children 

with autism   

   

More often, educational technological systems are developed without pedagogical 

consultations and planning with target users. Consequently, teachers are “forced” to adapt 

their teaching strategies towards the capabilities of developed systems. Although some 

recent studies have highlighted the potential suitability of robots in autism therapy, 

research gaps yet to be considered include selection of appropriate software, hardware and 

robot designs and development of relevant interaction scenarios. Research on robot 

enhanced therapy for children with autism is still in infancy as most of the robots 

developed are in the prototype stages. There is still room for vast consultation between 

artificial intelligence systems developers and stakeholders in autism therapy.   

   

The robot, Rosye which was used in the preliminary and longitudinal study is an adult 

sized multi-coloured robot with limited functionality. Feedback from the two WOZ 

studies indicated that for long term autistic child-robot interaction studies, the physical 
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embodiment of the robot needs to appeal to the children as a playmate rather than an adult 

teacher. More so, due to colour sensitivity in autism, the colour of the robot needed to be 

neutral to minimize sensory issues. Through series of consultations with the caregivers 

and stakeholders, it was decided that a smaller neutral coloured robot would be more 

appropriate for long term interactions considering the nature of the disorder.   

   

To address this problem of robotic technology mismatch and end user expectations, a 

participatory design research approach was utilized to develop a social robot with and for 

children with autism. Through observations and interviews, the strengths and weaknesses 

of the children which could influence the design of the robot were identified. The 

knowledge gathered from the requirements analysis phase was incorporated into the 

design of the low cost robot RoCA which can be deployed especially in resource 

constrained environments which have pressing need for assistive technologies for children 

with autism.   

   

3.2.1 Requirements Elicitation   

   

In human-computer interaction, interviews, direct observations and surveys can be used 

as requirement elicitation techniques to understand the concerns, expectations, attitudes 

and needs of people who may interact with assistive technologies. The two elicitation 

techniques utilized to gather the requirements for the design of robot were direct 

observations and interviews. Some Autism Centers in Accra and the special school in 

Kumasi were visited on numerous occasions to familiarize with the children and their 

dayto-day classroom activities and play sessions. The visits also afforded the opportunity 
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to observe the children and their teachers in their daily teaching sessions and to collect 

data which was useful in the design and construction of the robot. Interaction sessions 

were also held with some of the children who were verbal and could sustain conversations. 

Open-ended questions were presented to various stakeholders (teachers, psychologists, 

parents and other caregivers) in autism care during one-on-one interview sessions.   

During the visits, it was realized that some of the children could exhibit unpredictable, 

aggressive and self-injurious behaviours. Others had sensory issues with touch, colour and 

light. These factors informed the choice of hardware and software resources for the robot 

development. The requirements elicitation phase ended with the establishment of 

functional specifications for the development of a child-sized humanoid robot RoCA. The 

robot needed to be equipped with motion capabilities, sound, camera, recording 

capabilities and adequate lighting.    

Aside the functional requirements, non-functional requirements were specified as follows:   

i. Appearance: The robot should provide a simplistic visual appeal to the children. 

The colours, lights and materials used in building the robot need to be user- 

friendly to the autistic children.   

ii. Safety, Security and Usability: The software controlling the robot should be 

programmed to provide a safe and conducive environment for the children and 

their care givers. An authentication scheme should be provided to ensure 

authorized control of the robot. The interface for controlling the robot should be 

easy to use.   
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iii. Energy: The robot should be developed with electronic components which 

provide efficient use of power supply and generate very little heat.   

   

3.2.2 Interaction scenarios specification   

   

The choice of scenario media (text, images. videos or live interaction) could influence the 

responses of people towards robots (Xu et al., 2015). Robots which enact scenarios 

familiar to people are likely to gain acceptance as compared to those which portray 

arbitrary behaviours. A user-centered approach was adopted to engage teachers of the 

autistic children in the co-creation of activity scenarios which were used in the interaction 

sessions. Scenarios presented by the robot were streamlined to encompass activities from 

their learning sessions and their play sessions (imitation game).   

   

  3.3  Iterative robot redesign, development and prototyping   

   

Based on the accrued requirements, the structure of RoCA was decided on as a naturalistic 

embodied humanoid because biologically inspired robots are usually appealing to humans 

and are able to blend into the environment quite easily. Appropriate hardware and software 

were selected to serve as building blocks for the robot development and control.   

   

   

3.3.1 Hardware approach   

   

In selecting materials for the construction of the robot, factors considered were: the 

properties of the materials (strength, toughness, and density), suitability, costs and 

availability. The materials chosen for the robot development are as follows:   
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i. Electronic components: The electronic components used were EZ-B v4/2, servos, 

camera, jumper cables, multicoloured LEDs, speaker and 16V batteries ii. Polystyrene: 

Polystyrene is a light-weight, recyclable and inexpensive foam with a closed-cell 

structure making it difficult for water to permeate. It also provides thermal insulation 

thereby reducing the amount of heat transferred among the various components of the 

robot.   

iii. Lacquer: To achieve a good waterproof robot, lacquer was applied on the moulded 

polystyrene.   

iv. Supergrip: Supergrip is a water-resistant contact adhesive glue that can bind together a 

wide variety of materials such as leather, polystyrene, paper and rubber.   

It was used as a hardener and protective surface coating of the robot.   

v. Plexiglas: Illuminating material used for the robot’s face vi. Skimming Plaster: Applied 

over the robot to give it a smooth feel vii. Sol and Chuva: Rubbered paint from Coral and 

Dulux applied on the robot to give it the whitish colour viii. Magic dry erase: Final 

coating applied on the robot to provide a glossy and dryerase surface   
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3.3.2   Robot Construction method    

    

RoCA is a full body 1210mm tall humanoid robot running on two 32 - bit ARM Cortex  

processors. It has been equipped with EZ - B v4/2 Wifi robot controller, 16V DC battery,  

l oudspeakers, microphones, a wireless camera and customizable multicoloured LED lights  

to provide visual appeal to the children. The body of RoCA is made from polystyrene, a  

light weight, rigid but moldable material with the ability to maintain stability. T he physical  

structure of RoCA, which is easy to assemble and disassemble, is composed of a  

humanlike head, a neck, upper body with two arms and lower body containing wheels and  

continuous rotation servos at the base to drive the robot. Each arm of the robo t consists of  

a shoulder with 1 degree of freedom (dof). In consultations with experts, the robot has  

been designed to look simple in order to appeal to the children on the autism spectrum.  

The construction phase of the robot began with the specification o f the conceptual view  

of RoCA shown in figure 3.4.    
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compartments were created in the robot to allow cables to pass through and joints to fit  

    

Figure 3.4 Conceptual drawing of RoCA    

    

The construction approach used in the development of the robot was the “scratch - build”  

strategy. The robot body was carved out of the major raw material, polyst yrene foam  

according to the required dimensions. Polystyrene sheets were pieced together to achieve  

the required width and thickness and the sheets were cut into sections and separated;  

representing the different parts of the robot.  The actual shapes were   molded starting from  

the base, upper body, chest, neck and head. Sanding was performed on the molded robot  

parts in order to achieve the required smoothness level. Hardening agents were applied to  

the outer surface of the molded parts to achieve the right   sturdiness. Holes and  
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3.3.3 Software Approach   

   

together. Figure 3.5 depicts the structural molding process using polystyrene.    

    

Figure 3.5 Structural molding process of RoCA    

    

Surface fini shing was completed by applying Sol and Chuva and magic dry erase. Molded  

parts were joined together to form one complete unit and the electrical components were  

fixed into the robot. Servo motors were mounted at the movable joints; neck, left and right  

ar ms and base. Cables were then carefully passed through the holes and compartment from  

all the joints to the main control board located at the base of the robot. All the electronic  

components were tested to ensure no breaks in the cabling.    
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The brain of RoCA is EZ-B v4/2, a wifi robot controller which can be manipulated via a 

computer or mobile phone. This robot controller is more powerful and faster than Arduino. 

With the EZ-B v4/2, most of the controlling programs reside on a computer instead of the 

memory onboard the microcontroller hence the robot can be programmed to execute 

complex tasks without worrying about storage limitations. EZ-B v4/2 has 3 I²C  

(InterIntegrated Circuit) ports, 3 UARTs (Universal Asynchronous Receiver/Transmitter),  

24 multi-use servo/digital/serial ports and 8 analog ports. Two Integrated Development 

Environments (IDE), EZ-Builder and Visual Studio 2017 were used as platforms to 

program the EZ-B v4/2 using Ez-Script and C# respectively. The minimum system 

requirements needed to be able to install EZ-Builder are: Windows 8.1 minimum, Intel 

Pentium or AMD 64 or 32 Bit, 1.8 GHz CPU, 6 GB RAM and 200 MB free drive space.   

   

3.4  Development of the Singleshot Emotion Detector (SED) based on transfer learning   

   

After the robot development phase, the next research undertaken was the development of 

a novel deep learning based emotion detection system for autistic children. In this section, 

a description of the datasets, preprocessing strategies, training, testing and evaluation 

metrics for the proposed Singleshot emotion detection model are presented. In hardware 

systems especially for robots, there are technical constraints that have to be considered.   

Autonomous robots have limited computing power, limited onboard memory, low latency 

requirements and power efficiency requirements.   
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The proposed emotion detection approach, SingleShot Emotion detector (SED) was 

developed to classify emotions of autistic children based on images captured from a live 

video streamed by the robot’s camera. Unlike traditional emotion recognition systems 

which separate face detection and classification pipelines making them less suitable for 

robotic applications due to their high latency, coupling and low frames per second(FPS), 

the proposed model combines face detection and classification into a single pipeline in 

order to provide a fast and reliable emotion prediction system. SED was implemented in 

Tensorflow, an open-source library written in Python and C++.   

   

3.4.1 Architecture of the proposed SingleShot emotion detector   

   

Object detection systems such as faster-RCNN and YOLO are computationally intensive 

(Liu, et al., 2016) for robots and would consequently be slow for real-time autistic 

childrobot interactions. SSD is a CNN known for its speed and accuracy in object detection   

(Liu, et al., 2016). The proposed emotion prediction model adopts transfer learning on 

SSDLite, a mobile friendly version of SSD. The architecture of SSD is a base network of 

stacked convolutions of decreasing size, followed by SSD layers (conv. 6, conv. 7, conv. 

8, conv. 9, conv. 10, conv. 11) and prediction layers (Liu, et al., 2016). The main difference 

between SSD and SSDLite is that, all regular convolutions in SSD are replaced with 

depthwise convolutions followed by 1*1 projections in SSDLite architecture.   For a 

normal convolution operation with input data of size Df * Df * M, where Df * Df is the 

size of the image and number of channels, M (3 for an RGB image). Suppose there are  N 

filters/kernels of size Dk * Dk * M, a normal convolution performed with these parameters 
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results in an output size of Dp * Dp * N. For the number of filters, N, each filter has to 

slide vertically and horizontally Dp times, hence the total number of multiplications for a 

regular convolution is N * Dp2 * Dk2 * M.    

   

With depthwise separable convolutions, the process is broken down into two, namely, 

depth-wise convolutions and point-wise convolutions  (Sandler et al., 2018). In depthwise 

convolutions, convolutions are applied to a single channel at a time unlike regular 

convolution operations which are applied to all M channels at once  (Sandler et al., 2018). 

In depth-wise convolutions, the kernel size is Dk * Dk * 1. In instances when there are M 

channels, M filters are required hence the size of the output generated will be Dp * Dp * 

M. Dk * Dk multiplications will be performed for a single convolution operation. The 

filter would have to be slided Dp * Dp times across all the M channels, hence the total 

number of multiplications will be M * Dk2 *Dp2.    

   

In the second stage of depthwise separable convolutions, pointwise convolutions are 

performed. Pointwise convolutions apply 1*1 convolution operations on the M channels 

using a filter size of 1* 1 * M. If the number of filters are N, the output size becomes          

Dp * Dp *N. A single convolution operation would require 1*M multiplications with filter 

being slided Dp*Dp times. The total number of multiplications for a pointwise operation 

will be M * Dp2 * N. The total number of multiplications for a depthwise separable 

convolution is the sum of depth wise convolution multiplications and point wise 

convolution multiplications (M * Dk2 * Dp2 + M * Dp2 * N). This means that, depthwise 

separable convolutions are computationally less expensive and uses fewer parameters 
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compared to regular convolutions, hence making them more suitable for deployment on 

mobile devices, robots and embedded systems. This is why the proposed Singleshot 

emotion detector (SED) adopts transfer learning on SSDLite which uses depthwise 

separable convolutions instead of regular convolutions.   

   

SSDLite uses MobileNetV2 as feature extractor. MobileNetV2 contains an initial 

connected layer with 32 filters, followed by 19 inverted residual bottlenecks (for memory 

efficient computations), Relu6 activation function and a kernel size of 3x3 (Sandler et al., 

2018). The inverted residual with linear bottleneck layers take as an input a 

lowdimensional compressed representation which is first expanded to high dimension and 

filtered with a lightweight depthwise convolution (Sandler et al., 2018). The features are 

subsequently projected back to a low-dimensional representation with a linear convolution  

(Sandler et al., 2018). This architecture adopted by MobileNetV2 makes it suitable for 

mobile applications because it reduces significantly the amount of memory needed to 

perform operations  (Sandler et al., 2018).   

   

The proposed model, SED adopts transfer learning on SSDLite model to two custom 

datasets generated in the course of the research. Transfer learning was used to facilitate 

the training process since pre-trained weights of the SSDLite model have learnt salient 

features in objects and therefore, minimizing the objective loss function with respect to 

the new dataset would take less time and less data to reach a desired accuracy. The first  
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3.4.2 Datasets   

   

layers of most CNNs extract low level features common to many tasks. Therefore, all the  

layers except the final layer of SSDLite were frozen and the final layer was retrained using  

the  custom datasets. A two stage fine - tuning approach was adopted to first of all, train the  

model on the GHANED dataset consisting of 532 images of some Ghanaians expressing  

both “acted” and “in the wild” emotions followed by training on a custom dataset of  

a utistic children, ACD consisting of 287 facial expressions of autistic children collected  

during the preliminary and longitudinal ACRI sessions. According to Ng et al. (2015),  

supervised fine tuning on relevant facial expression datasets before training on   small target  

datasets lead to high accuracy.     

Figure 3.6 depicts the development process undertaken to derive the proposed system.    

    
Figure 3.6  Development process of the proposed SingleShot Emotion Detector    

    



 

78   

     

   

Emotion recognition systems sometimes face challenges in multicultural scenarios since 

emotions are likely to vary by culture (Quiros-Ramirez & Onisawa, 2015) or may lose 

some meaning across cultures (Elfenbein & Ambady, 2002). Existing FER systems have 

not been trained on facial expressions of children with autism and therefore those models 

would perform poorly in autism domain specific applications. A goal of the research was 

to develop a FER system for the humanoid robot, RoCA for use in robot mediated therapy 

for Ghanaian children on the autism spectrum. As such, two datasets GHANED and 

autistic children’s dataset (ACD) were collected. GHANED dataset contains images of 

some Ghanaians depicting six emotional classes: happy, sad, anger, fear, neutral and 

surprise.  ACD dataset contains facial expressions of autistic children which were 

collected during the preliminary experiments and the longitudinal studies. Table 3.1 and 

3.2 present a summary of the datasets and the number of labels per class. Sample images 

from the GHANED dataset are shown in figure 3.7.   

Table 3.1 Overview of the GHANED and ACD datasets   

   Number of labels             

Dataset   Happy   Sad   Fear   Surprise   Neutral   Anger   Total   

GHANED   92   87   88   90   89   86   532   

ACD   50   47   43   49   50   48   287   
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Figure 3.7 Sample images from the GHANED dataset    

3.4.3   Preprocessing of facial expressi ons data    

    

The training images were annotated in Pascal Visual Object Classes(VOC) format. In the  

Pascal VOC (figure 3.8), the annotation consists of the training folder name, file name,  

path to the file, bounding box coordinates and size of the image (wi dth, height and depth)  

compiled in an XML file.    



 

81   

     

   

 

  

Figure 3.8 Sample XML file of containing an image labelled according to the Pascal VOC  

format    

    

    

3.4.4   Training    

    

The training of the images was done on a Tesla - K80 cloud - based Graphics Processing    

Unit ( GPU) with Jupyter Notebook installed. The images together with their Pascal VOC  

annotations were converted into Tensorflow records. Tensorflow records are datasets  

converted into binary format in order to reduce the size of datasets so as to increase the  

speed of the training process. The tensorflow records were then fed into a training script  

provided by the object detection API. The training process was run for 4700 epochs with  

a batch size of 8. Random flip and random crop data augmentation techniques w ere applied  

    

Width, height and    
depth of the image       

Class of the image       

Minimum horizontal and    
vertical coordinates of the    
rectangle       

Maximum horizont   al and    
vertical coordinates of    the    
rectangle       
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to the data during the training phase. Tensorboard was used to visualize the training process and 

monitor performance of the model over the epochs.    

   

3.4.5 Performance evaluation of the SingleShot Emotion Detector   

   

The proposed model was evaluated using mean Average Precision (mAP), a common 

metric for evaluating object detection algorithms. Average Precision is based on precision 

and recall where precision measures the “false positive rate” or the ratio of true object 

detections to the total number of objects that the classifier predicted” and recall measures 

the ““false negative rate” or the ratio of true object detections to the total number of 

objects in the data set” (Arlen, 2018).  Mean Average Precision or mAP score is calculated 

by taking the mean of the interpolated average precisions over all classes (Henderson & 

Ferrari, 2016). The model was also evaluated in a human-robot interaction scenario where 

the robot RoCA was programmed to readapt teaching sessions based on the emotional 

states and engagement levels of autistic children.   

   

   

3.5 Fuzzy-based engagement prediction framework for robot-mediated learning for 

children with ASD   

   

The first two empirical studies were conducted via the Wizard-of-Oz approach where the 

robot was controlled unbeknownst to the children. Feedback obtained from the children 

and their caregivers indicated that, although the children reacted well with the robot, 

further improvements could be made. In a multi-diversified area such as autism 

management, social robots need to be able to act as interaction agents which can  
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Figure 3.9 The proposed deep fuzzy robot behaviour adaptation framework   

   

personalize their behaviour based on individual profiles, affective states and learning  

progress. One key strategy which was identified was to equip the robot with some level of  

autonomy to be   able to detect the affective states and engagement levels of the autistic  

children during real - time interactions in order to readjust the learning process accordingly.    

To this end, a personalized interactive framework (figure 3.9) which utilizes the  

Sing leShot motion Detector (SED) model and a fuzzy inference system (FIS) to foster  

sustained and meaningful long - term autistic child - robot interaction sessions has been  

proposed. This framework was illustrated and assessed by integrating the SED model and  

the   FIS system programmed in C# as a plugin into RoCA in order to assess the effects of  

personalization on learning gains.    
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classes of the localized faces are then sent to a file which logs the predicted emotional classes.    

The SingleShot Emotion Detector (SED) presented in sectio n 3.4 was modelled as a plugin  

using Visual Studio 2017 and then it was integrated into RoCA’s custom software  

interface control which was programmed with Ez - Builder. To be able to stream live videos  

from the robot’s camera to the SED model, the camera dev ice and HTTP Server were  

started in Ez - Builder. The HTTP Server makes sure that applications can access the  

robot’s camera via a URL. The URL of the robot’s camera was configured in the deep  

learning model and live image streams were sent from the robot to   the SED model using  

OpenCV. Figure 3.10 indicates a snapshot of the codes responsible for capturing live feeds  

from the robot’s camera.    

    

Figure 3.10 codes which capture live feeds from the robot’s camera    

    

After the frames from a live video feed were  taken by the camera onboard the robot and  

fed into the SED model, the model performs a singleshot object localization and  

classification of the facial expression in the received input images. The inferred emotional  
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The fuzzy logic reasoning model, a component of the proposed framework, is an artificial 

intelligence enabled algorithm which equips the robot with the ability to reason and react 

appropriately to individual child’s needs. Fuzzy logic is a robust approach for dealing with 

uncertainties and deriving conclusions based on imprecise, ambiguous and noisy data. The 

proposed fuzzy robot behaviour adaptation framework shown in figure 3.9 consists of 

three linguistic input variables and one output variable, where each variable has a set of 

membership functions derived from triangular membership function equation.   

The inference engine of the fuzzy controller consists of 27 rules for measuring engagement 

which were derived together with some caregivers of children with autism. Output from 

the fuzzy inference system is combined with the highest aggregated predicted emotional 

class and the deep fuzzy activity selection engine suggests to the teacher the appropriate 

action to take if the child’s predicted engagement is low or average. The proposed fuzzy 

based engagement prediction inference system was implemented in C# and is composed 

of four components namely: fuzzifier, knowledge base, inference engine and defuzzifier.   

   

3.5.1 Determination of crisp input variables and crisp output variables   

   

The fuzzy-based framework has three crisp inputs (linguistic variables) i.e. the score of a 

child at a specified time point in the learning session, task difficulty and IQ level. The 

engagement level of the child is the crisp output variable. Figure 3.11 shows the interface 

of the fuzzy controller integrated into the control system of RoCA, where the linguistic  
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variables and their fuzzy values are set by the domain experts   ( teachers).    

    
Figure 3.11 Fuzzy - logic controller settings for linguistic variables and fuzzy values    

    

3.5.2   Fuzzification    

    

In the fuzzification stage, fuzzy sets were constructed for the input and output variables.  

Although there are many other fuzzi fiers such as trapezoid, singleton and Gaussian,   

triangular membership functions were used since they are easily to transfer to  

microcontrollers (Moslehi, 2011).    A triangular membership function can be represented  

as shown in figure 3.12.     
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3.5.3 Rule evaluation and Defuzzification   

   

Mamdani inference approach was used to map the three input variables (IQ, score and task 

difficulty) into one output variable (engagement) using IF … THEN rules. For example, 

If score= low and IQ=low and task difficulty=easy THEN “not engaged”. The output from 

the rule evaluation is always a fuzzy set. In the defuzzification step, the output was 

converted into a crisp value for use by the robot. Defuzzification techniques include center 

of gravity, center of sums and max criterion. Center of gravity was chosen as the 

defuzzification technique because it is computationally efficient (Djam et al., 2011) and 

most prevalent of all the other approaches (Owoseni & Ogundahunsi, 2016).   

   

  3.6  Evaluation of the deep fuzzy robot behaviour adaptation framework   

   

An empirical study was conducted using two different setups of RoCA robot; RSEDFuzzy 

setup where the robot equipped with the SED model and the fuzzy inference engine 

operated semi-autonomously and the RWOZ setup where the robot was operated 

manually. In the RSEDFuzzy setup, the robot used factors such as the highest predicted 

emotional state, scores and task difficulty to deliver personalized lessons to children.  For 

example, if the emotional states logged into the SED model indicates that a child is sad 

and the score of the child at a specified point in time is low but the task difficulty level is 

easy, it means that the robot needs to take an action (for example, play music or change 

the lesson) which can help re-engage the child. On the other hand, when the robot run 

using the RWOZ mode, the robot did not take into account any factors into consideration 

but just went on delivering the lessons till the sessions were over.   
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The aim of the empirical research was to assess the effects of RSEDFuzzy based 

personalization on learning gains in autistic children as compared to RWOZ random 

operated robot (a robot operated manually using wizard-of-oz). The research question that 

had to be addressed was: Would the scores of the ASD children in a “fruit learning lesson” 

be higher in teaching sessions with RSEDFuzzy based personalized robot than a wizard 

of oz operated robot? The independent variables were: RSEDFuzzy and RWOZ and the 

dependent variable was the scores for the tasks.   

Twelve autistic people (11 males and 1 female) aged eleven to twenty-six who have been 

diagnosed with ASD and are enrolled at Garden City Special School in Kumasi 

participated in the study. A randomized controlled research design was adopted in the 

study; Six participants were randomly assigned to RSEDFuzzy group and the other six 

were assigned to the RWOZ group. The mean age in the RSEDFuzzy group was 18.0 and 

standard deviation was 5.4. The mean age in the RWOZ group was 16.7 and the standard 

deviation was 5.5. A Mann-Whitney U test was performed to test for significance in age 

difference between the RSEDFuzzy group and RWOZ groups. The results obtained, U=16 

and P=0.747 indicated that there was no significant difference between the ages of the 

children in the two groups.   

   

  3.7  Experimental Setup   

   

The experiments were conducted in the computer laboratory of the Garden City Special  

School using the humanoid robot RoCA. Each child had nine interaction sessions with the 

robot, resulting in a total of 108 interaction sessions. For each group, the study began with 
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two pretest lessons (same for each group), five training sessions and two immediate posttests. 

All the children were accompanied to the experimental room by a teacher. The robot 

provided rewards by saying “good job” and used multiple verbal prompts when necessary. A 

tablet was fixed on RoCA to play video recordings of selected fruits. Two tables were placed 

beside RoCA with banana on top of one and apple on the other.   

The first two sessions were pre-test lessons to test the knowledge of the children on 

identification of two fruits, apple and banana. Before each session, the name of the child 

was entered in a textbox on the robot control system. RoCA introduced itself by saying   

“Hello + name of child” my name is RoCA. We are going to study fruits today. “name of 

child, take the apple on the table” If the child picked the correct fruit, the child was given 

a score and the robot asked the child to give the fruit to his or her teacher. The same 

procedure was repeated for the other fruit i.e. banana. Anytime the robot asked a question, 

it waited for the child to be scored (by clicking good job if the task was done correctly). 

If the good job button was not clicked after ten seconds, the robot repeated the instruction 

again and waited for the “good job button click” or another fifteen seconds to deliver the 

final prompt after which it moved on to another question. After the question and answer 

session, the robot played and danced to a local song after which it told the child the session 

was over.   
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In sessions 3 to 7, RoCA used video modelling techniques and interaction sessions to teach 

the children to identify apple and banana and showed them how to eat the fruits. The 

lessons were restricted to two fruits in order to avoid sensory overload which is typical in 

autistic children. The sessions always began with RoCA mentioning the child’s name and 

informing them of the lesson. E.g. Hello +name of child, today we are going to learn 

fruits. A picture of the specific fruit e.g. apple was displayed on the tablet fixed on the 

robot. RoCA mentioned the name of the fruit and a short video of the fruit was shown on 

the tablet. RoCA then pointed and turned head to the direction of the specific fruit lying 

on the table and mentioned the name of the fruit again. RoCA instructed “name of child” 

take “name of fruit”. Rewards or multiple verbal prompts were used when necessary. The 

same procedure was repeated for the other fruit. Finally, the robot sang a song and ended 

the interaction session.   

In the RWOZ group, the robot operated in a non-adaptive mode where it delivered learning 

sessions without considering the emotional state, child’s learning progress and task 

difficulty level. In the RSEDFuzzy group, RoCA acted as an adaptive agent which 

personalized learning sessions based on the inputs supplied to the deep-learning model 

and fuzzy-based engagement prediction engine (aggregated emotional state, learning 

progress, IQ and task difficulty).   

The last two sessions were conducted as post-tests to assess the children on the knowledge 

gained after the teaching sessions. The script delivered by RoCA in these two sessions 

were similar to the script used in sessions 1 and 2. In the pre-test and post test lessons, 

each task had a score of 5 when performed correctly by the child. Figure 3.13 shows the  
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robot control interface used to select and  allocate marks for each child.    

    

    

Figure 3.13 Control interface for pre - test and post - test lesson on fruits    

    

3.7.1   Data analysis    

    

The pre - test and post - test results of this study were analysed in SPSS. A Mann Whitney  

test was conducted to test for s ignificant difference between the pre - test scores for both  

groups. The same test was used to examine the significant difference in the post - test scores  

for both groups. Mann Whitney test was used because it is a non - parametric and  

distribution free test su itable for small sample sizes and small test scores. The results of  

this study are presented in chapter 4 section 4.5.    
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3.8 Behavioural intention of special needs teachers to adopt robots as assistive  

 

technology in the classroom    

    

Towards the end of the   entire research, a survey was conducted to investigate the  

behavioural intention of teachers to adopt robotic assistive technology in special needs  

education for children with autism. This survey was based on the UTAUT model proposed  

by Venkatesh et al (2 003)  and aimed to study the impact of performance expectancy(PE),  

effort expectancy(EE), social influence(SI) and facilitating conditions(FC) on the  

behavioural intention of special needs teachers in autism therapy to adopt robots in the  

classroom.    

3.8.1   Hypotheses    

    

The hypotheses tested were follows:    

H1: Performance expectancy will positively influence caregivers’ behavioural intention to  

accept social robots in special needs education    

H2: Effort expectancy will positively influence the behavioural in tention of caregivers to  

accept social robots in special needs education    

H3: Social influence will positively affect the behavioral intention of caregivers to accept  

robots in special needs education    

H4:   Facilitating conditions will  positively affect the   behavioral intention of caregivers to  

accept robots in special needs education    
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3.8.2 Instruments   

   

The data collection method utilized in this experiment was survey. Questionnaires were 

developed based on the instruments proposed by Venkatesh et al. (2003) in the Unified   

Theory of Acceptance and Use of Technology (UTAUT) framework, to understand the 

underlying factors which would influence special needs teachers’ willingness to accept 

robots as assistive technologies. Four independent variables performance expectancy(PE), 

effort expectancy(EE), social influence(SI) and facilitating conditions(FC) were 

identified. The dependent variable was behavioural intention (BI).   

The participants had to indicate their level of agreement to twenty-three research 

statements in the questionnaire on a five-point Likert scale: totally disagree (1), disagree 

(2), undecided (3), agree (4) and totally agree (5). These questionnaires were administered 

to fifty (50) caregivers of children with autism. The questionnaire was sectioned into two 

parts: the first collected information on the demographics of the participants and the 

second part elicited information on the relationships among the dependent and 

independent variables. There were four questions relating to performance expectancy, four 

questions relating to effort expectancy, three questions directed at social influence, three 

questions for facilitating conditions and one question targeting behavioural intention. The 

questions asked in the aforementioned categories are as follows:   

   

Performance Expectancy (PE)   

PE 1: Robots would be useful in special needs education   

PE 2: Robots would help accomplish teaching tasks more quickly   

PE 3: Robots can increase productivity during school hours   
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PE 4: Robots will make it easier   for me to do my job    

    

    

    

    

Effort Expectancy (EE)    

EE 1:  I would find a robot easy to operate    

EE 2: It would be easy for me to learn how to use a robot    

EE 3: Using a robot in my work environment would be easy     

EE 4:  My teaching sessions using the robo t would be clear and understandable    

    

Social Influence (SI)    

SI 1: My working environment support the use of robots    

SI 2: I would use the robot if people who are important to me think that I should use robot  

for teaching.    

SI 3: I would use robots if peo ple who influence my behaviour think that I should use  

robots    

    

Facilitating Conditions (FC)    

FC 1: I have the required knowledge to operate a robot    

FC 2:  Operation costs will encourage the use of robots    

FC 3: A specific person should be available for a ssistance with robot operation difficulties    
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Behavioural intention (BI)   

I intend to use robots in special needs education in future   

   

3.8.3 Data analysis   

   

A reliability analysis was conducted for each item in every construct i.e. PE, EE, SI, and   

FC using Cronbach’s alpha in order to ascertain consistency in the survey results. Multiple 

regression analysis was performed in SPSS software to examine the relationship among 

the UTAUT constructs. The results of this survey are presented in section 4.6.   

  3.9  Informed consent    

   

Consent forms were given to the three Schools as well as the parents of the children 

involved in the study. All the processes involved in the experiment were explained to them 

and they gave their consent for the research. Children with autism are classified under 

protected groups and it is important to maintain confidentially of the data collected. 

Therefore, the names of all the participants have been pseudonymized in this thesis.   

In this chapter, the participatory design process for the robot design and development 

involving the selection of appropriate software and hardware platforms have been 

presented. The various steps undertaken in conducting the empirical studies, the singleshot 

emotion detector and fuzzy inference system have also been described. In chapter four, 

the results of the preliminary and longitudinal studies as well as the implementation details 

of the humanoid robot RoCA, results and evaluation of the emotion detector are presented.   
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CHAPTER 4   

 

IMPLEMENTATION   

   

This chapter reports on the results of the research activities undertaken. Two wizard-ofoz 

experiments were conducted to assess the initial reaction of some autistic children to a 

humanoid robot and their reaction to the robot over an extended period. Afterwards, a 

participatory design research strategy was used to design and develop a humanoid robot 

RoCA and another empirical study was conducted to assess the effects of personalization 

on robot-mediated learning gains. A survey was also conducted to investigate the 

behavioural intention of special needs teachers to adopt robots in the classroom setting.   

   

   

4.1  Preliminary observations from interactions among Ghanaian autistic children and 

Rosye, a humanoid robotic assistive technology   

   
The preliminary experiment investigated the effects of the uncanny valley phenomenon 

on the initial autistic child-robot interaction sessions and the ability of a humanoid robot 

Rosye to engage the children in imitation games and general activities. Fifteen (15) autistic 

children from two Autism Centers participated in this single day experiment. A summary 

of information on the participants are presented in table 4.1. The names of the participants 

have been pseudonymized due to privacy reasons.   

Table 4.1 Gender, age and speech capabilities of participants   
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4.1.1 Quantitative results from the imitation game   

 
   

    
In some cases, the robot had to repeat th e instructions multiple times before the children  

responded. Figures 4.1 and 4.2 presents the scores of the children per prompt levels.    

    

  

Figure 4.1 Responses of children to imitation tasks per prompt levels    

    
ImTDaP1: Imitation tasks done at first pro mpt    

ImTDaP2: Imitation tasks done at second prompt    

ImTDaP3: Imitation tasks done at third prompt    

ImTND: Imitation task not done    
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first or second prompts; none of the children performed an imitation task at the robot’s  

  

Figure 4.2 total number of imitation tasks (done and not done) per child    

    

Im: Imitation    

    

From figure 4.2,  it is observed that 8 out of the 15 autistic children successfully imitated  

all the 6 actions of the robot during the imitation game. 5 children did not imitate any of  

the robot’s actions. 1 child imitated only two of the robot’s actions and 1 child imitat ed  

just one action. In all, the robot engaged in 90 imitation tasks with all the children (15  

children and six imitation games for each child). Out of the 90 tasks, 40 were completed  

by the children at the first prompt given by the robot, 11 tasks were com pleted at the  

second prompt and the remaining 39 of the tasks were not performed at all. In figure 4.1,  

it is observed that, all the children who performed the imitation tasks did so at either the  
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third prompt. In all, 56.7% of the imitation tasks were successfully completed.    

    

4.1.2   Quantitative results from the general activity game    

    
Based on the personality and mood, some children on the autism spectrum may not en gage  

in communication or respond to requests from their parents, caregivers and to a more  

severe extent unfamiliar people. Rosye was programmed to deliver five individualized  

instructions to each child (by referring to each child by name). Out of the 75 ge neral  

activity tasks, 35 of them were successfully performed by the children at the robot’s first  

prompt, 4 tasks were completed at the second prompt and 8 tasks were completed at the  

third prompt, unlike the imitation game where no tasks were performed at   the third prompt.  

The number of GA tasks which were not performed was 28. Figures 4.3 and 4.4 present  

results from the general activity sessions.    

  

Figure 4.3 Responses of children to the general activity tasks per prompt    

GATDP1: General activity tasks  done at first prompt    
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GATDP2: General activity tasks done at second prompt    
GATDP3: General activity tasks done at third prompt    
GATND: General activity task not done    

    

    

  

      Figure 4.4 total number of general activity tasks (done and not done) per child     

From figure 4.4, it is observed that 4 out of the 15 children performed all the 5 general  

activity tasks, 2 of them completed 4 tasks, 3 children did 3 tasks, 5 did 2 tasks and only  

1  child did not do any of the general activity tasks. Compared to the im itation tasks, the  

number of children who did not do any of the general activity tasks is lesser (1 child) than  

the number that did not do any of the imitation tasks (5 children).    

    

Table 4.2 Total number of responses for each general activity task    
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Autistic children easily concentrate and get stuck on objects of interest. During the 

interactions involving Rosye and the children, it was necessary to determine whether the 

children would like the physical appearance of the robot, get close to it and subsequently 

learn from it. Therefore, the experiments were carefully designed to begin with a quiet 

phase so as to observe the initial reaction of each child upon entry into the experimental 

room. Specifically, the effects of the uncanny valley phenomenon on the child-robot 

interactions were observed. Although Rosye is a humanoid robot, its features have been 

carefully designed to reduce its resemblance to human beings. From the video recordings, 

only 1 female child out of the 15 children expressed visible signs of fear upon seeing the 

robot for the first time. All the other children did not feel creeped out by the appearance 

of the robot; some smiled, touched and hugged it. This observation is backed by data in 

table 4.3 which presents the various parts of the robot touched by each child and the total 

number of times the children touched the robot.   

In all, the robot was touched 193 times during the 15 child-robot interaction sessions. 

Whereas some of the children were more interested in engaging the robot in the imitation 

and general activities, others found delight in touching various parts of the body.  Some 

children on the autism spectrum are sensitive to touch and therefore they may not like 

touching objects or also dislike being touched by objects or people. The high scores for 

“touch” indicated that the children were not intimidated by the look of the robot.   

   

Table 4.3 Analysis of the number of times each child touched specific parts of Rosye   

   Number of times child touched the robot’s specific parts   Total   
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Child   Eye

s   

Nec

k   

Mout

h   

Han

d   

Shoulder   Midsecti

on   

Hea

d   

numb

er of 

times 

child 

touch

ed 

Rosye   

John   0   0   2   13   5   0   3   23   

James   0   0   0   0   0   0   0   0   

Kofi   0   0   0   2   2   0   2   6   

Ama   0   0   0   8   1   6   3   18   

Yaw   4   4   7   2   5   3   4   29   

Akwa

si   
1   1   1   19   5   1   4   32   

Afia   0   0   0   0   0   0   0   0   
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Ike   0   0   0   4   

 

2   0   6   

Vida   0   0   0   0   0   0   0   0   

0     
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Peter   0   0   0   0   0   1   1   2   

Paul   0   1   0   1   2   2   0   6   

Luke   0   0   1   23   2   7   2   35   

Osei   0   0   0   0   0   0   0   0   

Sarfo   0   0   0   8   2   3   0   13   

Manu   0   0   1   15   2   0   5   23   

Total   5   6   12   95   26   25   24   193   
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Table 4.4  Brief overview of results from the preliminary study   

   Total number of tasks done per 

prompt   

Total number of 

tasks done  

(all three  

prompts)   

Total number of 

tasks not done   

Tasks   1st prompt   2nd prompt   3rd   

prompt   

Imitation   40   11   0   51   39   

General 

Activity   

35   4   8   47   28   

   

Table 4.4 shows that the total number of tasks done in the imitation and general activities 

are higher than the total number of tasks not done. 56.7% of the imitation tasks were 

successfully completed by the children whereas the percentage of imitation tasks not done 

was 43.3%.  For the general activity tasks, 62.7% were successfully completed while 

37.3% of the tasks were not done. The repetitive capabilities of the robot would make it a 

beneficial assistive technology for caregivers of children with autism who may get tired 

or frustrated repeating instructions to the children multiple times.   

   

Results from the single day study indicated that the robot was able to engage some of the 

autistic children in imitation and general activity games and also succeeded in persuading 

some “uncooporating” children to perform the robot’s requests by giving several prompts. 

This preliminary experiment served as a baseline for investigating and assessing the 

responses and engagement levels of the children to the robot during the subsequent 

longitudinal studies.   
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4.2 Longitudinal study of interactions among Ghanaian autistic children and Rosye, a 

humanoid robot   

   

The reaction of children on the autism spectrum towards play objects could be 

unpredictable; an object which was once their favourite could irk them on a different day. 

In the preliminary study, the attitudes and responses of the children towards an unfamiliar 

robot were assessed. Feedback from the children and their caregivers indicated that the 

robot appealed to and encouraged the children to participate in the imitation and general 

activity tasks. These positive reactions were quite surprising because according to the 

caregivers, most of these children seldom approach strangers (human beings) and get close 

to them like they did to the robot during an initial encounter.   

The preliminary study (section 4.1) established a baseline (initial reaction of the children 

towards a novel humanoid robot). To investigate the effects of the “diminishing novelty 

effect”, longitudinal studies were undertaken to assess whether their attitudes and 

reactions to the robot would be same, better or worse with time. Seven (7) autistic children, 

all of whom were from Autism Awareness Care and Training Center and had already 

partaken in the first experiment partook in experiment 2. Five (5) of them were males and 

the other two (2) were females. Six (6) of the children were verbal and one (1) was 

nonverbal. Five (5) of the children had the tendency to ignore their own names when called 

and all the children sometimes ignored instructions irrespective of who was issuing them. 

The mean age was 10.43 and standard deviation 1.62. The experiments were structured as 

individualized child-robot interaction sessions and the duration of each interaction session 

was flexible to accommodate each child’s needs.  The experimental script played by the  
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robot was the same as the script used in experiment 1 as per the request   of the caregivers.    

A total of four hundred and two minutes twenty - six seconds (402m 26s) of video  

recordings containing interactions of the autistic children with the robot over eight  

sessions were analysed. Some of the children were absent at school on  certain days and  

therefore missed a few experimental sessions. The results gathered from each autistic  

child - robot interaction was scored as follows: Each task (both imitation and general  

activity) had a score of 1 when it was done correctly by the child a nd a score of zero (0) if  

the child failed to correctly perform the task after three prompts. Quantitative and  

qualitative results of each child - robot interaction are presented as follows.    

Child 1: James    

James is a nine (9) year old male child with autis m. He follows instructions given by his  

caregiver but finds it difficult to approach, interact with and obey instructions from  

unfamiliar people. His responses to the imitation tasks were consistent except in the  

seventh session. Figure 4.6 depicts the pat tern of the responses of James in both imitation  

and general activity tasks.    
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Figure 4.6 Pattern of the responses of James in both imitation and general activity tasks    

    

James’s scores for the imitation and general activity tasks were 44 out of a maximu m of  

48  and 32 out of a maximum score of 40 respectively. James touched the robot one  

hundred and forty - two (142) times, the highest recorded value compared to the number of  

times the other children had physical contact with the robot. After two interactio n sessions,  

James became familiar with the routine of the games presented by the robot. For instance,  

he learnt the pattern of the actions in the imitation games and was able to follow the robot  

quickly in those tasks. Similarly, in the general activity ga mes, he also learnt that after the  

robot asks him to take the ball, the next instruction would be for him to hand over the ball  

to the robot. As a result, in some of the sessions, he picked the ball when instructed by the  

robot and then handed it over to t he robot (without being told to do so).    
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Ama also familiarized with the robot over time and from the third session onwards,  

Child 3: Ama    

Ama is  a thirteen - year - old verbal female with autism. She is calm, likes to smile and easily  

approaches strangers. She however sometimes fails to follow instructions. She partook in  

the experiment for seven sessions. She was able to reciprocate the robot’s imitat ion actions  

from the fourth to the seventh sessions. Ama had a score of ten (10) out of the maximum  

of forty - two (42) for the imitation tasks over seven sessions. For the general activity tasks,  

she scored twenty - six (26) out of thirty - five (35) marks. Fig ure 4.8 depicts the pattern of  

responses of Ama to the imitation and general activity tasks over seven sessions.    

  

Figure 4.8 Scores of Ama in the imitation and general activity tasks 
  
  

The frequency of her physical contact with the robot reduced as the se ssions progressed  

over the days. Ama touched the robot forty - five times during her interactions over seven  

sessions. She sometimes repeated the robot’s instructions instead of performing them; this  

trait is called echolalia, a common characteristic of some   children on the autism spectrum.  
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whenever the caregiver informed her it was time to play with robot, she left her classroom  

for the experimental room without anyone directi ng her.    

Child 4: Kofi    

Kofi is a thirteen (13) year old child with autism. He is verbal and like other children on  

the spectrum, he sometimes ignores instructions. He consistently performed all the  

imitation and general activity tasks and touched various  parts of the robot up to the fourth  

session after which there was a decline in his responses. In all the sessions, he would draw  

closer to the robot, touch its parts and return to a corner of the room to play with other  

toys. However, it was observed that  even when his attention seemed to be off the robot,  

he was actually listening to it. Especially for the general activity tasks, he answered some  

of the questions (while he was still playing with an object) and for the tasks which required  

actions, he somet imes got up to perform the needed action. Figure 4.9 depicts the pattern  

of responses of Kofi to both imitation and general activity tasks.    
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the robot. His responses to the general activity tasks varied over the days. Figure 4.10  
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the pattern of responses of Yaw to the imitation and general activity tasks. His overall  



 

118   

     

   

 
imitation nor the general activity tasks but spent forty-one minutes nine seconds dancing  

score for touching the robot was sixty - eight (68).    

Figure 4.11 Scores of Yaw in the imitation and general activity tasks    

    

Child 7: Afia    

Afia is a nine - year - old fema le child with autism. She is verbal, sometimes ignores name,  

instructions, yells for no reason and has difficulty sustaining attention to tasks. She  

expressed visible signs of fear upon sighting the robot for the first time but surprisingly,  

she always wan ted to come to the experimental room. She never drew close to the robot  

and got scared when the robot began the imitation tasks. From session 2 onwards, she  

stayed afar and danced to songs played by the robot. She was neither able to do any of the  
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imitation tasks were presented by the robot to the children. The total score for the imitation 

tasks completed by the children was one hundred and thirty-one (131) whereas number of 

imitation tasks not done was one hundred and fifty-one (151), indicating that the number 

of tasks which were not done slightly outweighed the number of tasks completed. The 

robot presented two hundred and thirty-five (235) general activity tasks to the children. 

Out of this number, one hundred and thirty-five (135) tasks were successfully completed 

while the remaining hundred tasks were not done by the children. As opposed to the 

overall imitation results, the children performed better in the general activity tasks.   

The patterns of responses of the children to the imitation, general activity tasks and the 

frequency of physical contact with the robot during the longitudinal studies have been 

presented in this section. Some of the children learnt from and became familiar with the 

robot’s activities and therefore were able to request actions from the robot via speech or 

sign language. During the course of interactions, the children exhibited a few of the autistic 

traits they usually exhibit in their classrooms when being taught by the caregivers.   

   

  4.3  RoCA, a humanoid robotic assistive technology for children with autism   

   

4.3.1 Features of RoCA   

   

i. Communication and robot control: The robot has an integrated wifi and an embedded 

webserver which enables remote control via a computer or a mobile phone.   

ii. Movement: The robot is able to raise both left and right hands up and down as well  
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The robot can be controlled in two modes: Autonomous and Wizard-of-Oz (WoZ). In  

as turn neck left, right, up and down. De grees of freedom (DoF): Head  –   2 , left arm  

-   

1 , right arm  –   1 .    

iii.   Speech functionalities    

a.   Voice output: The robot outputs sound with the aid of inbuilt speakers.  

Prerecorded sounds can be played by the robot. Output of sounds by the robot  

in real time is pos sible by speaking directly into the microphone of the computer  

or the mobile phone being used to control RoCA.    

b.   Speech processing    

Through speech recognition functionality, the robot can be controlled by giving  

voice commands. Selected words or phrases pic ked up by the microphone can be  

analysed and the appropriate action(s) can be performed by the robot. RoCA can  

produce human voice through a speech synthesis module where words or phrases  

typed into the robot software control interface can be read out by t he robot.    

iv.   Colour detection: The robot is equipped with a camera that has been configured to  

detect multiple colours.    

v.   Video streaming and live capturing of events: The robot’s camera can record its  

environment and send live video streams over wifi to a re mote computer.    

vi.   Modes of control    
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the WoZ mode, the care giver of the child can manually operate the robot and control  

the various modalities such as sound, movement and lighti ng. The caregiver can also  

select the various lessons to be delivered by the robot, repeat lessons or stop lessons  

when necessary. When put in autonomous mode, the robot can perform a pre - specified  

script which can include a combination of modalities such  as movement, music and  

teaching lessons. The robot can also be instructed to sense the affective states of the  

children and decide on the appropriate activity to perform in order to sustain the  

interest of the children. In this mode, the robot always seeks   the consent of the  

caregiver by means of a message prompt on the screen of the controlling interface,  

before changing lessons. Figures 4.14 and 4.15 indicate the front, back of RoCA and  

its motion capabilities.    
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Figure 4.14 Front and back view of RoCA    

        

    

    

    

    

    

    

              

  Both hands down    Left hand up            
Right hand up 
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  Hands forward         

      

    

Figure 4.15 Motion capabilities of RoCA    

    

    

    

    

    

    

4.3.2   Technical specifications of RoCA    

    

The technical specifications of RoCA are listed in tab les 4.5 and 4.6.    

Table 4.5  Technical specifications of RoCA     

    Raise your head   

Turn head left and right   
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Figure 4.16 Ez - Bv4/2 port layout    

    

4.3. 3   RoCA’s Software Control System    

    

The robot was programmed using two IDEs: Ez - Builder and Microsoft Visual Studio 2017  

using the EZScript and C# programming languages respectively. The multi - tab custom  

interface for the robot which contains the motion, l essons, exercises, emotion detection  

and fuzzy inference modules. Figure 4.17 shows a screenshot of the custom robot control  

interface.    



 

128   

     

   

 
detected faces. The proposed model combines face detection and classification into a  

  

Figure 4.17 Custom RoCA robot control interface.    

  4.4     SingleShot Emotion Detector for Social Robots    

    

In autistic - child robot interactions, the issue of fast real time and accurate analysis of the  

child’s facial expressions picked by low resolution cameras onboard social robots still  

persist. Traditional emotion recognition systems separate face detection and classifi cation  

pipelines making them less suitable for robots due to their exhaustive computational  

requirements, high latency, coupling and low frames per second(FPS). This thesis  

proposes a novel emotion recognition model, SingleShot emotion detector (SED) based   

on transfer learning for deployment on social robotic systems. In the proposed approach,  

object detection is treated as a classification problem where a single CNN is able to detect  

human faces, localize the face with bounding boxes and predict the emotio nal states of the  

    

Connection to robot via Wifi       Multi   -   tab custom interface developed in    
Visual Studio C# to control t he robot       
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single pipeline in order to provide high frames per second(FPS) and low latency for  

realtime emotion detection tasks in ACRI. The SED worked accurately o n both high  

resolution and low resolution cameras. The developed emotion recognition model was  

first tested on a computer using its inbuilt web cam. Figure 4.18 depicts sample facial  

expressions taken from different angles by a PC webcam and their predicte d classes given  

by the SED model. The localization is represented by bounding box coordinates and the  

classification is indicated by the predicted class of the emotional expression in the input  

image i.e. happy, sad, neutral, surprised, angry or fear. Figu re 4.19 also shows some  

predictions by the model fed with images from the low resolution camera onboard RoCA.    
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Figure 4.18 Sample facial expressions taken by a PC webcam and their predicted classes  

given by the SED model    

    

After obtaining the desired ac curacy, the model was integrated into RoCA robot which  

has a low resolution camera and the second evaluation of the model was performed.    
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Figure 4.19 Sample images taken from the low - resolution camera onboard RoCA and their  

predicted classes    

    

4.4.1   Ev aluation metrics    

    

Mean average precision (mAP) is a widely used technique to measure the accuracy of  

object detection models. mAP ranges from 0 to 1; a higher mAP indicates that the model  

is better at detecting multi classes. mAP of the SED model was aut omatically calculated  

by the Tensorflow object detection API and mAP of 0.93 was achieved (table 4.7). The  

total loss for the trained model was 0.16.    
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In table 4.7, the sum of the average precisions for all the emotional classes is 5.58. Hence  

    

Figure 4.20 Total loss for the trained SED model    

    

Table 4.7 mAP for the SingleShot emotion detector    

Emotional Classes    Average Precision (AP) at    

IOU  0.5   

Neutral    0.98     

Happy    1.0     

Sad    0.83     

Fear      0.92   

Surprised    1.0     

Angry      0.85   

Total AP      5.58   

mAP (total AP of all emotional classes/6)    0.93     
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The research question was: Would the scores of the ASD children in a “fruit learning  

the mean average precision of the Singleshot emotion detector is 0.93. The average  

precisions for the classes neutral, happy, sad, fear, surprised, angry are 0.98, 1.0, 0.83,    

0.92 , 1.0 and 0.85 respectively.    

    

    

4.5   Effects of personalization on learning outcomes in robot mediated therapy for  

autistic children    

    

The third experiment investigated the effects of personalization on learning outcomes in  

robot - mediated learning. The robot RoCA was programmed to w ork with two different  

setups, personalized robot and a non - personalized robot. When the robot operated in a  

non - personalized mode, the robot delivered the instructions to the children without  

considering factors such as aggregated emotional state, task di fficulty and IQ level. In the  

personalized robot setup, the robot was able to consider factors such as the emotional state  

of the child (calculated by finding the most dominant emotional class logged to a file by  

the SED model) and task difficulty. The rob ot then used the available information to  

decide on the next appropriate action to take. The robot operating in the personalized mode  

ensured that each child’s learning sessions could be interspersed with appropriate tasks  

depending on prevailing situation s.    
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was no significant difference in the pre-test scores between the two groups, U=13.0,  

lesson” be higher in the RSEDFuzzy based personalized robot group than a group  

learning with a wizard of oz operated robot?    

Before the learning sessions, the inputs   to the fuzzy logic controller were set in the fuzzy  

control interface (figure 3.8). Participants engaged in a total of 108 “fruits learning”  

lessons with RoCA, with 9 interaction sessions per child.  Each lesson had four tasks to  

be completed by the child ren:    

    

i.   Take apple ii.   Give the apple to  

your teacher iii.   Take banana iv.   Give  

the banana to your teacher    

    

In order to measure the effects of personalization on learning outcomes, the initial  

knowledge of the children on the fruits were assessed in t he pre - test phase and the  

knowledge gained after the learning sessions were assessed using post - tests. In the pretest  

and post test lessons, each task had a score of 5 when performed correctly by the child.  

Statistical significance of learning gains betwee n the RSEDFuzzy and RWOZ groups were  

determined by Mann - Whitney tests. Table 4.7 presents the pre - test and post - test scores of  

the children in the two groups.    

    

From table 4.7, the difference between the aggregated pre - test scores for both groups is  

20 . A   Mann Whitney test performed on the pre - test scores for both groups indicated that  
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Data was collected from caregivers of some Ghanaian autistic children. The reliability of  

  12       0     5   

Aggregated RWOZ test scores      20       40   

    

    

4.6   Behavioural intention of special needs teachers to adopt robots as assistive  

technology in the classroom    

    

The perceptions and behavioural intentions of the caregive rs of autistic children to adopt  

robots in classrooms were investigated through a survey.    

    

4.6.1   Hypothesis    

The hypotheses tested were as follows:    

H1: Performance expectancy will positively influence teachers’ behavioural intention to  

accept social rob ots in special needs education    

H2: Effort expectancy will positively influence the behavioural intention of teachers to  

accept social robots in special needs education    

H3: Social influence will positively affect the behavioral intention of teachers to ac cept  

robots in special needs education    

H4:   Facilitating conditions will  positively affect the behavioral intention of teachers to  

accept robots in special needs education    

    

4.6.2   Results    
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Table 4.14 Model summary, performance expectancy and behavioural intention   
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Model    R    R Square    Adjusted R Square    Std. Error of   the  

Estimate    

1     .128 
a     .016     - .048       1.492   

    

The R square value of the model summary in table 4.20 indicates that facilitating  

conditions contributed 16% to the total variation observed on behavioural intention of  

special needs teachers to use robots t o teach autistic children in the classroom.    

    

    

    

    

CHAPTER 5  

  

  DISCUSSION    

This chapter focuses on addressing the research questions from the various experiments  

and discussions on the implications of this research.    

    

5.1     Preliminary observations from  interactions among Ghanaian autistic children  

and Rosye, a humanoid robotic assistive technology    

    

Whereas typically developing children start to develop theory of the mind (ToM) from age  

4  (Kloo et al., 2010), autistic children may or may never develop T oM (Barron - Cohen,    
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2000). Children with autism may not understand other people’s emotions and intentions 

due to deficits in ToM. The inability of autistic children to develop ToM affects their social 

interactions with humans and other entities. ToM can also be linked to how people 

experience the uncanny valley phenomenon. A research question that needed to be 

addressed was: “How would the Ghanaian children on the autism spectrum experience the 

effects of the uncanny valley phenomenon during their initial encounter with a humanoid 

robot Rosye?   

From the findings of the empirical study (section 4.1.3) indicate that out of the 15 children, 

only 1 female child expressed signs of fear upon seeing the robot for the first time. All the 

other children were not creeped out by the robot; some smiled, touched and hugged it.  

Whereas some of the children were more interested in engaging the robot in the imitation 

and general activity games, others found delight in touching various parts of the body 

multiple times.   

Based on observations and findings from the preliminary experiment, the effects of the 

uncanny valley during the Ghanaian autistic children and robot interaction was minimal. 

In the case of Rosye, although it is humanoid, its features have been crafted in order for it 

not to have striking resemblance to humans and that could have contributed to the results 

obtained. This finding is in line with research by Ueyama (2015) which suggests children 

with autism do not resonate the uncanny valley effect.   

Imitation plays a vital role in cognitive development and social communication. Typically 

developing children are able to acquire new skills through imitation of adults and young 
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ones. Children with autism exhibit imitation skills deficits and as such, they find it difficult 

to socially communicate, learn and interact with others. If an autistic child is taught imitation 

skills, there is likely to be improvement in his or her cognition and social development. A 

current challenge lies in identifying suitable strategies to teach imitation to these children. 

This thesis probed the effectiveness of robot-mediated imitation practice for Ghanaian 

children with autism. One of the goals was to test whether a humanoid robot can engage the 

children in imitation games.   

The results indicate that more than half of the participants achieved a 100% imitation 

response score, indicating they successfully imitated all the six actions performed by the 

robot. One-third of the children did not imitate any of the robot’s actions and a few 

imitated some of the robot’s behaviour. Although mixed results were obtained, these 

results suggest that some Ghanaian autistic children are likely to respond to robotmediated 

imitation practice. These results are very encouraging and provide new level of   

“hope” for Ghanaian caregivers who many at times struggle to catch the attention of autistic 

children during imitation sessions.   

Some children on the autism spectrum exhibit unusual reactions to strange objects and 

may resist changes in their routines. Others may experience sensory sensitivities to light, 

sound, touch, smell and taste. The interaction scenarios for the general activity tasks were 

carefully designed to investigate whether the children would listen to and obey instructions 

from the robot. A deliberate decision was made to individualize each interaction session 

by enabling the robot to refer to each child by name. From table 4.4, it is observed that 13 
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out of the 15 children responded (either verbal, walking towards the robot or turning to 

look at the robot) when the robot called each child by name, making it obvious that the 

children acknowledged the presence of the robot.   

Another notable observation was the fact that, two of the non-verbal children responded 

to “how are you” using sign language. More than half of the children also mentioned their 

names to the robot. Among the general activity tasks was one which was meant to elicit 

joint attention behaviours from the children. This was GA task 3, “name of child + take 

the ball”. The robot pointed to a ball lying at a corner of the experimental room and it was 

expected of the children to look in the same direction (i.e. share a common focal point), 

and then go and pick up the ball. 8 out of the 15 children successfully completed this task 

indicating the success of the robot in eliciting joint attention behaviours from majority of 

the children. Overall, a higher cumulative score was recorded for the general activity tasks 

as compared to the imitation game. Rosye was able to serve as a communicative partner 

to these children, hence it could potentially server as a tool to aid in teaching social 

interaction and joint attention skills to autistic children.   

Whereas some children on the autism spectrum may learn new skills easily, others often 

require multiple trial sessions and prompts. The non-intrusive verbal prompting strategy 

adopted by the robot proved to be effective. It is observed from figures 4.1 and 4.3 that 

some children were able to respond correctly to tasks after multiple prompts. This finding 

is in line with research by Bishop et al. (2019) which suggests that prompting is an 

effective intervention for children with ASD irrespective of their cognitive levels and 
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communicative abilities. Humans have the tendency to easily experience mood swings and 

frustrations when they are made to repeat stuff multiple times. In contrast, a robot can 

behave in the same way limitlessly without changing emotions or getting tired. For 

children with ASD who may require several prompts in order to perform a task or learn a 

skill, social robots could be suitable aids for caregivers. The repetitive capabilities of the 

robot make it a beneficial assistive technology for caregivers of children with autism who 

may get tired or frustrated repeating instructions to the children multiple times.   

   

   

5.2 Longitudinal study of interactions among Ghanaian autistic children and Rosye, 

a humanoid robot   

   

The patterns of responses of the children to the imitation, GA tasks and the frequency of 

physical contact each child had with the robot in the longitudinal empirical study have 

been presented in sections 4.2. Consolidated data on the performance of the children in 

the imitation game indicates that the over an extended period, the number of tasks which 

were not done were slightly more than the number of tasks successfully completed by the 

children. On the other hand, for the GA tasks, the number of them completed successfully 

outweighed the number of tasks which were not done.   

For many children involved in this experiment, continuous exposure to the robot had a 

positive impact on them. Three of them who scored high during their interaction with 

Rosye in the first session exhibited similar levels of engagement and enthusiasm over the 

subsequent days. One child was able to engage in the imitation tasks from the fourth 
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session onwards. Another child did not response to the imitation task after the third session 

but responded to a few in the last session. Only one child showed disinterest and would 

not engage the robot over the sessions. The child who was initially scared of the robot 

overcame her fears and improved by smiling and dancing to songs played by the robot on 

subsequent sessions. These findings are in line with research by Scassellati et al. (2012), 

which indicates that the frequency of autistic child-robot interactions can have an impact 

on learning outcomes. From the longitudinal study undertaken, it can be observed that the 

children benefitted from extended interaction periods and confirms similar research by  

Robins et al. (2004), Kozima et al. (2007), Duquette et al. (2008), Wainer et al. (2010) and 

Valentina (2017).   

The children also touched various parts of the robot multiple times during their interaction 

sessions and affection (hugging, smiling) was shown by a few of the children to the robot.   

Some of the children learnt from and became familiar with the robot’s activities and 

therefore were able to request actions from the robot via speech or sign language. These 

results have indicated that children on the autism spectrum can through repeated 

interactions with social robots. During the course of interactions, the children exhibited 

few of the autistic traits they usually express in their classrooms when being taught by the 

caregivers.   

To effectively function as an assistive technology to the children, a social robot should 

among other things be able to entertain, engage and more importantly teach the children 

new skills. Therefore, the research also sought to find out whether apart from responding 
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to instructions posed by the robot, the children would be able to pick up new skills and 

also learn from the robot. Presenting the robot to the children over the extended interaction 

period and repeating the same tasks in this timeframe afforded the children the opportunity 

to become familiar with the robot. From the third session onwards, the pattern of hand 

movements made by the robot were picked by some children and they could follow 

through the imitation exercises easily.   

For some of the children, they realized that the next task after “take the ball” was to give 

the ball to the robot. As a result, whenever these children were asked by the robot to take 

the ball, they would take it and hand it over to the robot even before the robot instructed 

them to do so. A few took notice of the experimental room and would come there 

themselves as soon as their caregivers told them it was time to play with robot. These 

indications have provided some evidence that some of the children learnt from the robot 

as a result of continuously engaging with it.   

   

  5.3  Prediction of emotions from facial expressions of autistic children   

   

In human-robot interaction, knowing and understanding human’s affective state is crucial 

for sustained long term interactions. Although facial emotion recognition, FER, has 

improved over the years, there are still setbacks hindering their successful deployment on 

social robots. Significant weaknesses in existing FER systems include low accuracy 

levels, lighting conditions and lack of datasets for relevant application domains. A lot of 
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these FER systems need high end and costly GPUs for real-time deployment making them 

unsuitable for robotic applications and embedded systems.   

Deploying deep learning FER algorithms for autistic child-robot interactions is a good 

idea. However, the problem lies in the unavailability of relevant datasets especially for 

protected groups like autistic children. The proposed system takes a new approach towards 

predicting emotional expressions of autistic children. The proposed SED model presents 

a new approach to FER for robotic systems by applying object detection to classify 

emotions of autistic children according to six emotional classes. This approach, addresses 

the issue of data deficiency, more accurate and fast real time predictions for use in robot 

enhanced therapy for children with autism.   

In the proposed model, transfer learning has been performed on SSDLite to derive a new 

model for the target domain due to the sparsity of datasets. Knowledge in the form of 

weights and feature maps previously learnt in SSDLite were used to train the SED model 

on very small datasets to prevent over fitting and achieve the desired results in a shorter 

period of time. Since the SED model is based on SSDLite which uses depthwise separable 

convolutions and mobileNetv2 as feature extractor, it is optimized to ensure successful 

integration on social robots. The mAP achieved for the six emotional classes was 93%,  a 

better accuracy than Liu et al.(2008) and Krupa et al. (2016) who obtained 82.9% and 90% 

accuracy respectively using physiological signals to classify emotions of autistic children 

with Support Vector Machines. The proposed model also outperforms an emotion 

recognition system for autistic children by Smitha and Vinod (2015) with an accuracy of   
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82.3% using images with Principal component analysis.   

   

5.4 Effects of personalization on learning outcomes in robot mediated autism therapy   

   

Experiment 3 aimed at empirically testing the effects of a personalized affect-aware and 

fuzzy-based engagement prediction model on learning gains in autistic child-robot 

interactions. The research question was: Will the scores of the ASD children in a “fruit 

learning lesson” be higher in the RSEDFuzzy based personalized robot group than a 

group learning with a wizard of oz operated robot?   

The absence of significant difference in the pre-test scores for the RSEDFuzzy and RWOZ 

groups indicated that all the children began experiment 3 with similar knowledge on the 

two fruits, apple and banana. The post test scores for both groups confirmed an increase 

in learning gains. Some children who previously could not identify any of the fruits were 

able to do so while other children who scored low in the pre-test improved their 

performance in the post test. These results further support the results from experiment two 

of this thesis and research conducted by Duquette et al. (2008), Wainer et al. (2014) and 

Valentina (2017) which suggest that autistic children would benefit from longitudinal 

repeated lessons with robots. From table 4.7, although both groups recorded an increase 

in learning gains, a Mann Whitney test confirmed that the learning gains were higher in 

the RSEDFuzzy group which received personalized interactions from the robot. These 

results indicate that, creating rapport and sustaining engagement is crucial in autistic child  

– robot interactions. The affect aware and fuzzy based approach adopted by the robot led  
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to the co-operation, prolonged bi-directional communication and increased engagement in 

the RSEDFuzzy group.   

The main contribution to knowledge in this thesis is the proposed personalization 

framework to be deployed on and used by robots for autistic child – robot interaction 

sessions. This framework consists of a novel SingleShot emotion detector and a 

fuzzybased engagement estimation system programmed in Python and C# respectively. 

The framework has been evaluated on a humanoid robot RoCA by undertaking numerous 

autistic child – robot interaction sessions and results have confirmed that, when lessons 

are personalized, autistic children are likely to learn at a faster rate. Many other works on 

robot – mediated learning for autistic children typically used a single day session (Valadão 

et al. (2016); Kim et al. (2013); Shamsuddin et al. (2012); Robins et al. (2009); Stanton et 

al (2008)) or wizard-of-oz based longitudinal studies (Valentina (2017); Wainer et al. 

(2010); Duquette et al. (2008); Kozima et al. (2007); Robins et al. (2004)). More so, data 

from this research can further help researchers to conduct more studies on appropriate 

robot-mediated interventions for autistic children in resource constrained environments.   

   

5.5 RoCA, a humanoid robotic assistive technology for children with autism   

In the participatory robot design process, the stakeholders were actively involved in the 

requirement elicitation, design, identification of interaction scenarios and evaluation of 

the robot. This approach sought to contribute towards addressing a gap in autism research 

where social robots have been designed and developed for the children instead of being 
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co-designed with them (Aslam et al., 2019). Unlike other social robots like Nao, Kaspar 

and Probo which were designed before being used for autism therapy, the participatory 

design approach adopted in this research has provided several advantages.   

The contributions of the teachers gathered from the interviews and group discussions were 

influential in shaping the robot development process. For a domain like autism 

management, the choice of hardware and software for technological systems is very 

crucial due to ethical reasons and the fact that some of the children are likely to exhibit 

very aggressive behaviours. For the prototype of RoCA robot, the main body was carved 

out of polystyrene foam because it is low cost and less fragile. Significant differences can 

also be observed between Rosye and RoCA robots. Rosye is an adult humanoid robot 

whose outer coating consists of multiple colours. Through the various discussions with 

stakeholders, a decision was made to reduce the height of the robot to half the height of 

an average adult and also give it a neutral colour i.e. white. Children with autism more 

often learn through play and as such a smaller robot may likely to appeal more to them as 

compared to an adult which some children could find intimidating. However, this assertion 

also needs to be investigated further in future studies. From the first and second Wizard of 

Oz experiments, it was observed that only one child felt intimidated by the robot while all 

the others were comfortable around it, although the robot was of adult size.   
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The results of these experiments bring to light the fact that, one approach may not work 

for all the children. From the research, it has been identified that for robots to be 

successfully deployed and serve their purpose as assistive technologies in special needs 

education, three main factors have to be considered: scaffolding, adequate training for the 

teachers who would use the robot and associated costs. The results from this study 

reiterates the need for robots to be scaffolded and given different appearances and voices 

(mechanical, childlike or adult) based on the preferences of the child. These findings are 

in line with research by Robins et. al (2005) who opined that scaffolding is necessary in 

human-robot interaction. For instance, during a discussion with one occupational therapist 

who works with autistic children, she said “there is this particular autistic child I know.  

He would not do any work unless you bring a particular picture of an animal close to 

him”. Such a child may respond well to the robot when pictures of the animal are wrapped 

around the robot or frequently displayed on the robot screen.   

   

5.5 Behavioural intentions of special needs teachers to adopt robots as assistive 

technologies in special needs education   

   

Apart from scaffolding, the one other major factor on which the successful deployment of 

robots depend is the behavioural intention of the teachers to adopt the robots in the 

classroom. The results from the behavioural intention survey conducted (section 4.6) 

depict the state of robot technology adoption in special needs autism education in Ghana.  

More than half of the survey participants indicated that they did not use technological 

devices in the classroom; a few of the teachers indicated they use phones and computers 
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in the classrooms. None of the teachers had ever used a robot in the classroom for a 

teaching session. These results suggest that, Ghana is behind with regards to technology 

adoption in special needs education for autism management as compared to the Western 

world. Despite possible benefits associated with robot mediated therapy for autism, ethical 

issues which could arise include undesired attachment to robots, limited human contact, 

loss of privacy and loss of jobs.   

In order to devise strategies for overcoming these concerns, the survey respondents were 

asked which level of autonomy they wanted social robots to have. From the responses,   

68% of them preferred a semi-autonomous robot, 18% preferred an autonomous robot and 

14% preferred a WoZ controlled robot. The low responses derived for the WoZ are not 

surprising because operating a robot in this mode indirectly means the teacher’s attention 

would most of the time be on the robot instead of the child; and this would be an 

undesirable situation. The surveyed responses highlight that the teachers prefer the robots 

to have supervised autonomy where the teachers would have control over the robot and 

can intervene when necessary. The UTAUT model was also empirically tested using data 

collected from the teachers of autistic children to investigate the factors influencing their 

behavioural intention to adopt robots in special needs education. The findings indicated 

that performance expectancy (PE), effort expectancy (EE) and social influence (SI) 

significantly influences the behavioural intention of teachers to adopt robots in special 

needs education.   
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The responses from the survey (section 4.6.2) revealed the teachers agree that robots 

would be useful in special needs education by increasing productivity, efficiency and 

effectiveness. It was found that PE positively influences behavioural intention with 

p=0.03, F=4.738 and R square=0.296. Therefore, teachers who have high PE are likely to 

use robots in special needs education. This study is in line with research by Wong (2015)  

and Zalah (2018) who also have presented that teachers feel technology can enhance 

teaching and learning activities.   

According to UTAUT, people’s willingness to use technology depends on effort 

expectancy, that is how easy it would be for them to use it. The survey results for effort 

expectancy p=0.025, R square=0.216 and F=3.092 indicates that effort expectancy 

significantly influences behavioural intention. The teachers think it would be easy for them 

to learn to use, operate and deliver teaching sessions with the robot although more than 

half of the respondents indicated they had not used a robot before and do not have 

computer science or IT background. This is a beckoning call to human-computer 

interaction experts to adopt participatory design in the development of technologies for 

special needs education in order to ensure long term acceptability and ease-of-use. These 

results are consistent with research by Nair & Das (2012) which state that perceived ease 

of use influences behavioural intention to use information technology in teaching.   

According to the results, social influence with p=0.001, F=6.628 and R square=0.302 

significantly influences behavioural intention. This finding is in line with research by 

Radovan & Kristl (2017) who found positive relationships between social influence and 
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behavioural intention. This means that the decision of the teachers to use robots may be 

influenced by the people around them. Facilitating conditions focused on the roles that 

external factors such as availability of training experts to assist the teachers with the robot 

usage and the operation costs of robots in Ghana would play in the willingness to adopt  
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robots. Autistic children in reso urce constrained environments are likely to benefit from  

assistive technologies but more often, the associated costs with their purchase continue to  

hinder their deployment. The survey results p=0.857, R square=0.016 and F=0.255  

indicates that currently, f acilitating conditions in Ghana do not support usage of robots in  

special needs education. The teachers were of the view that they do not have the required  

knowledge to operate a robot. More so, the costs involved in robot mediated therapy may  

hamper the e ffective use of robots. However, they were willing to learn and operate the  

robots in the classroom if the necessary infrastructure is provided. These results suggest  

that, for robots to be successfully deployed in Ghana, the teachers have to be trained to   be  

able to use them and also the costs associated with the deployment and maintenance should  

be on a low side.    
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CHAPTER 6  

  

    

CONCLUSION, RECOMMENDATION AND  

FUTURE WORK    
    

Children on the autism spectrum are special groups of p eople who have unique learning  

needs and require extra support and care. Currently, there is mounting evidence on the  

suitability of technology - based interventions for such children. However, research has  

proven that adaptability, cultural backgrounds, cos ts and ease of use play a crucial role in  

the efficiency, acceptance and effective use of technology. Therefore, researchers ought  

to focus on approaches which are aimed at investigating the capabilities, challenges and  

needs of people with special needs w ho are often under - represented in the design of  

assistive technologies.    

This thesis adopted a participatory design approach to investigate the suitability of a  

humanoid robot as an assistive technology for Ghanaian autistic children and propose  

strategies   for personalization of robot - mediated learning sessions using deep learning and  
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fuzzy logic. Numerous child-robot interaction experiments have been conducted over 

several months with children living with autism, having varying levels of cognitive, verbal 

and social dis(abilities). These experiments aimed at evaluating the impact of social robots 

and the effects of personalization strategies on the improvement of communication, social 

skills and joint attention skills of autistic children. A humanoid robot Rosye was used in the 

first two experiments: to investigate the initial reaction of some Ghanaian autistic children 

to an “unfamiliar” robot and secondly to assess the reaction and engagement levels of the 

children in interactions with the robot over an extended period of time.   

Feedback from the first two experiments, information gathered from numerous visits to 

some autism centers and inputs from health care professionals and psychologists guided 

the development of the novel robot RoCA and the specification of interaction scenarios 

for the robot-mediated learning sessions.  RoCA is equipped with wifi, ultrasonic sensor, 

speakers and a camera. It has motor and verbal skills, emotion detection, speech synthesis 

and speech recognition modules and a desktop interface for controlling the robot.   

This thesis also addressed the issue of fast and accurate emotion prediction for autistic 

child-robot interaction. A transfer learning approach to emotion detection based on object 

detection has been introduced to address the issue of the sparsity of datasets in autism 

domain. This approach of using object detection in emotion classification is 

computationally efficient even with small datasets and also achieves fast frames per 

second and low latency.   
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RoCA was equipped with the proposed SingleShot Emotion Detector and a fuzzy-based 

engagement prediction model to semi-autonomously adapt the child-robot interactions to 

suit each child’s needs. The personalized RoCA system used the SED model to detect the 

affective states of the autistic children and the fuzzy-inference to predict the estimated 

engagement levels of the children in order to adapt the learning sessions. A Mann-Whitney 

test performed to assess statistical significance of learning gains associated with 

personalized robot-mediated learning confirmed that the SED model and the fuzzyinference 

system collaboratively enhanced learning gains more than a wizard-of-oz operated robot.   

The main contributions of the thesis are as follows:   

i. development of a framework consisting of a novel SingleShot emotion detector and 

fuzzy-based engagement prediction inference system for personalized robotassisted 

learning for autism management ii. assessment of the reaction and engagement levels of 

some Ghanaian autistic children over extended interaction periods with a humanoid robot 

iii. assessment of the effects of personalization on learning outcomes in robotmediated 

learning iv. design and development of a low cost humanoid robotic assistive technology, 

RoCA for autistic children   
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The humanoid appearance and design of the robot seemed to have contributed to the 

enthusiasm expressed by the children since they saw it as “similar” to them. The robots 

were also able to persuade some “non-cooperating” children to respond to instructions via 

multiple prompted cueing. Presenting the robot to the children continuously enabled them 

to familiarize and learn from it as the sessions went by. Findings from this thesis suggest 

that most of the children have engaged and responded well to the robots. However, due to 

variability in autism manifestation among individuals, there is the need for robot and 

software customization to cater for individual preferences. Children with autism learn 

through repetition and consistency and robots are better situated to deliver the same tasks 

over and over again without getting tired or bored. As a result, robots can be promising 

tools to supplement the efforts of caregivers of autistic children. Robots for use in autism 

therapy need to be cost effective and easy to use by professionals and caregivers of these 

children with minimal IT background. With this cost effective robot which has been 

developed, more studies can be conducted to investigate diverse ways the robot can assist 

the children with other academic, life skills and sensory activities. Results from this thesis 

serves as a contribution to knowledge in research on robots in autism therapy, majority of 

which have been done in the developed countries.   

   

  6.1  Future work   

   

The findings of this research are restricted to classroom based interactions. In future, more 

studies could be conducted to investigate the efficacy of social robots for the autistic 
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children in clinical settings using standard therapy practices such as Applied Behaviour 

Analysis and Discrete Trial Training. More so, due to the unpredictable nature of children 

on the autism spectrum, it is proposed that future works could look at how ensemble 

machine learning models which utilize facial emotions, audio and body posture can be 

utilized to predict the emotional states of the children. There is the need for researchers to 

also devote effort towards collecting datasets of autistic children to be able develop 

relevant machine learning applications to suit the needs of the children and their  
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care givers.    

  The experiments presented in this thesis were only conducted in three schools in Greater  

Accra Region and Kumasi. This research needs to be extended to other parts of the country  

and more children can be added to the study in order to assess the  effects of the robot  

intervention. Research can also focus on how factors such as age, IQ level and preexposure  

to technological devices can influence the categories of shapes, sizes and features of robots  

that would appeal most to children with autism.     
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8. Comparison of the children’s responses to both tasks (imitation and joint 
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C.   Pipeline.config file details    

model {   ssd {      

num_classes: 6      

image_resizer {        

fixed_shape_resizer {          

height: 300         width:  

300     

       }     

     }     

     feature_extractor {        

type: "ssd_ mobilenet_v2"        

depth_multiplier: 1.0        

min_depth: 16    

       conv_hyperparams  {           

regularizer {    

           l2_regularizer {             weight:  

3.9999998989515007 e - 05     

           }           

}     

         initializer {            

truncated_normal_in itializer {              

mean: 0.0             stddev:  

0.029999999329447746     

           }     

         }     

         activation: RELU_6          

batch_norm {           decay:  

0.9997000098228455             

center: true    

           scale: true    
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          epsilon: 0.0010000000474974513   

 

           train: true    

         }     

       }     

       use_depthwise: true    

     }     

     box_coder {        

faster_rcnn_box_coder {          

y_scale: 10.0         x_scale:  

10.0          height_scale: 5.0    

         width_scale: 5.0    

       }     

     }     

      matcher {       argmax_matcher {          

matched_threshold: 0.5          

unmatched_threshold: 0.5          

ignore_thresholds: false          

negatives_lower_than_unmatched: true    

         force_match_for_each_row: true    

       }     

     }     

     similarity_calculat or {    

       iou_similarity {    

       }     

     }     

     box_predictor          { 

convolutional_box_predictor {    

         conv_hyperparams  {             

regularizer {    

             l2_regularizer {               weight:  

3.9999998989515007 e - 05     

             }             

}     

           initializer {              

truncated_normal_initializer {                

mean: 0.0    

               stddev: 0.029999999329447746    
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            }   

          }   
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      }   

           activation: RELU_6            

batch_norm {             decay:  

0.9997000098228455                

center: true             scale: true    

             epsilon:  0.0010000000474974513               

train: true    

           }     

         }     

         min_depth: 0         max_depth:  

0           

num_layers_before_predictor: 0          

use_dropout: false           

dropout_keep_probability:  

0.800000011920929           

kernel_size: 3         box_code_size: 4          

apply_sigmoid_to_scores: false    

         use_depthwise: true    

       }     

     }     

     anchor_generator {        

ssd_anchor_generator {          

num_layers: 6           min_scale:  

0.20000000298023224     

         max_scale: 0.949999988079071          

aspect_ratios: 1.0         aspect_ratios:  

2.0          aspect_ratios: 0.5          

aspect_ratios: 3.0    

         aspect_ratios: 0.33329999446868896    

       }     

     }     

     post_proce ssing {        

batch_non_max_suppression {          

score_threshold: 9.99999993922529e - 09           

iou_threshold: 0.6000000238418579          

max_detections_per_class: 100    

         max_total_detections: 100    
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       score_converter: SIGMOID    

     }     

     normalize_loss_by_num_matches: true    

     loss  {         

localization_loss {    

         weighted_smooth_l1 {    

         }     

       }         

classification_loss {          

weighted_sigmoid {    

         }     

       }     

       hard_example_miner {          

num_hard_examples: 30 00          iou_threshold:  

0.9900000095367432          loss_type:  

CLASSIFICATION          

max_negatives_per_positive: 3          

min_negatives_per_image: 3    

       }     

       classification_weight: 1.0    

       localization_weight: 1.0    

     }     

   }  } train_config {     

batch_size: 16    

data_augmentation_options {    

     random_horizontal_flip {    

     }     

   }     

   data_augmentation_options {    

     ssd_random_crop {    

     }     

   }    optimizer {      

rms_prop_optimizer {        

learning_rate {    

         exponential_decay_learning_rate               { 

initial_learning_rate: 0.004000000189989805    

           decay_steps: 10000    
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           decay_factor: 0.949999988079071    

         }     

       }     

       momentum_optimizer_value:  

0.8999999761581421        decay: 0.8999999761581421        

epsilon: 1.0    

      }     

   }     

   fine_tune_checkpoint:"/home/object - detection -   

template/models/ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt 

"   num_steps: 4700   fine_tune_checkpoint_type: "detection"    

}   

train_input_reader  

{    label_map_path:    

"/home/Tensorflow/workspace/tra ining_demo/annotations/labelmap.pbtxt"    

tf_record_input_reader {    

     input_path: "/home/Tensorflow/train.tfrecord"    

   }  } eval_config {    

num_examples: 1    

max_evals: 1    

   use_moving_averages: false    

}   

eval_input_reader  

{    label_map_path:    

"/home/Tensor flow/workspace/training_demo/annotations/labelmap.pbtxt"    

shuffle: false   num_readers: 1   tf_record_input_reader {    

     input_path: "/home/Tensorflow/eval.tfrecord"    

     }   

}     

    

D.   Linguistic variables and fuzzy values     

Parameter    Linguistic variables    F uzzy values    

Score    Low    0<   <30     
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3.   What is your highest level of education?    

o 

  
Senior High School (SHS)  o 

  Tertiary (1 st   Degree)    

o 

  
Tertiary(Postgraduate)    

    

4.   Do you use technological devices at work when caring for children with autism?  

o 
  Yes  o 

  No    

If yes, p lease list the gadgets you use    

______________________________________________________________________    

    

5.   Have you operated a robot before?  o 
  Yes  o 

  No    

In some countries such as UK and Germany, research conducted indicates that children  

with autism are dra wn towards technology. As a result, they people have developed robots  

which are being integrated into classrooms and clinical settings to serve as assistive  

technology for caregivers. In my research, I wish to gather information on the features  

caregivers  of these special children would like to be incorporated into a robot which is  

going to be developed for children with autism. Pictures of some of the robots for children  

with autism are shown below.    

  

6.   I would prefer a robot for children with autism to be  designed to look like    

………………….  

o 
  Human  o 

  

Animal    
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Yours Sincerely,    

    

Ros e - Mary Mensah    

    

Consent form    

I    _______________________________,    give    permission    for    my  

  child _____________________ to participate in this study.    

    

Date: ______________    


