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Abstract 

This thesis seeks to locate students’ clinic at a central position among the students’ halls on the 

KNUST campus. The problem was considered to be a semi-obnoxious facility location problem 

and modelled as a Robust 1-center problem on a general network with demand weights. Robust 

1-centre problem seeks to minimize the maximum weighted distance necessary for students to 

access the student clinic. We focus on the halls of residence and population at the hall spanning 

over three academic years.  

We collected data on the road distance between the halls of residence together with total student 

population at the halls of residence on KNUST campus. 

We developed a solution approach based on the decomposition of the network into basic 

intervals. We employ some methods of solution including the Floyd Warshal, Local Centre and 

Regret Analysis, to enable us find a location to place the student clinic. 

 In the end, our method found a location on the road link between Republic Hall and 

Independence Hall at a distance 105m from Republic hall. The maximum weighted distance 

from the facility to the farthest node is 1,553,043 metres. 
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Chapter one 

 Introduction 

1.1  Historical Background of Hospitals in Ghana 

A Hospital can be defined as a place where people who are ill are looked after by medical 

practitioners. 

Until the era of Sir Frederick Gordon Guggisberg, the most illustrious British (Canadian born) 

colonial governor of the Gold Coast, nothing worth recognition in the area of public health 

infrastructure development for usage by indigenous Ghanaians had been done by any stakeholder 

or former Governor under the British rule spanning over 100 years. 

According to Buah (1980), Governor Guggisberg’s eight years of administration (1919-1927) 

were perhaps the most progressive years in the development of the Gold Coast. Besides other 

infrastructure such as railways and roads, he is remembered for constructing and establishing the 

Korle-Bu Teaching Hospital, the leading hospital in Ghana and one of the best in the west Coast 

of Africa.  Guggisberg also extended medical service to other towns to cater for the indigenous 

population. 

Before Governor Guggisberg, the few hospitals in the country were located in the bigger coastal 

towns/ cities such as Accra and Secondi- Takoradi which had substantial European populations. 

Secondi-Takoradi had the Harbour and other port facilities and, Accra was the seat of the British 

colonial administration. Indeed some of these hospitals were built exclusively for European 
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patients and were referred to as ‘European Hospitals’. Examples were the Ridge Hospital in 

Accra and the Takoradi hospital. 

In 1950, government hospitals throughout the country were less than 15, the rest were built and 

run by European missionaries who attached healing and education to conversion. Notable among 

these were the Catholic, Basel or Presbyterian and Methodist Missionaries.  For instance the 

Methodist built the Wenchi Hospital in 1951. (Acheampong, 1993) 

Attainment of independence on 6
th

 March 1957 saw the development of infrastructures including 

roads and hospitals. Between 1957-1966, provision of hospitals by the government brought about 

the construction and initiation of some major hospitals such as the Tamale Hospital in the 

Northern Region of Ghana. 

Health infrastructure development dwindled in the 1980s due to political and economic 

instability. In 1984 there was near collapse of the health care system. 

Donor inflows and some improvements within the economy in the last 18 years have resulted in 

the state of the art renovation of some major hospitals including; Ho, Cape Coast and Sunyani 

Regional Hospitals and Sogakope, Ada and Begoro District Hospitals. 

It should however be noted that public health infrastructure includes Hospitals, Clinics, 

Community Health Planning Services, Health Centers, Health Training Schools. Each of the ten 

regional capitals in Ghana has regional hospital, some also provide specialist services and some 

have health training institutions attached. The rest of the hospitals are found in the district 

capitals but some towns have hospitals and clinics. Some districts have more than one hospital 

whilst others have none. 
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1.2 Government Hospital Developments & Goals of the Ministry of Health 

The development of hospitals in Ghana has been in line with the aims and objectives of the 

Ministry of Health and the Ghana Health Service. The five main strategic pillars as enshrined in 

the second health sector five years programme of work: 2002-2006 is as follow;  

●To improve quality of health delivery. 

●To increase geographical access to health 

●To improve the efficiency of health services. 

●To foster partnership in improving health. 

●To improve financing of the health sector. 

The development of hospitals is crucial to the attainment of the goals of the government. To 

attain quality health delivery, there should be provision of well designed infrastructures for both 

patients and staff. (Oppong-Danquah, 2002)  

Similarly, geographical access will require proximity of location to the populace. As at 16
th

 

December, 2003 the total number of hospitals run by both the government and private sector was 

177.  

1.3 Historical Background of Hospitals on K�UST Campus 

The Kwame Nkrumah University of Science and Technology (KNUST) Hospital is a full -fledge 

100-bed hospital; second in status only to the Komfo Anokye Teaching Hospital (KATH) in the 
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Kumasi metropolis. It caters for about 150,000 people made up of staff, students and residents of 

the surrounding communities. 

It is the medical arm of KNUST. It is located in the northwest part of the University campus and 

stretches along the Kumasi-Accra express wav. It was originally started in 1952 for the College 

of Technology as a dressing station. 

In 1972, the female, children and male wards were constructed to enable the hospital receive 

more in-patients. The out-patient department and the theatre were added in 1973. The maternity 

ward was initially an isolated ward which was later converted for maternal purposes. In 1997, the 

hospital acquired ultramodern X-Ray equipment. 

According to the quarterly newsletter of the University Hospital, ( J Ebu-Sakyi, 2007) the 

KNUST Hospital was primarily set up to cater for the health needs of staff, their dependents and 

students of the University. However, it has now extended its services to the general public and 

provides health services to about 30 surrounding communities with a rapidly increasing 

population. Thus the KNUST Hospital is ranked as a District Hospital. 

The University Hospital offers services in general care as well as specialist services. The vision 

of the hospital is to become a leading University Hospital with wider scope, general and 

specialist services comparable to renowned medical centers in Ghana and to make the KNUST 

Health Services a centre of excellence for quality health care, teaching and research. 

The KNUST Hospital has a dental clinic which is well equipped with modern equipment. It was 

opened in June, 2005 with the objective of providing oral health care for students, staff, their 

dependants and the general public. 
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Currently the dental clinic is manned by a senior dental surgeon and three assistants. The ranges 

of services provided include the following; 

 • Filling (cosmetics, amalgam, indirect) 

 •Extractions 

 •Scaling, polishing. 

In 2006 alone, about three thousand people were treated at the clinic. 

The KNUST Hospital started the operation of the NHIS for staff and dependants on 1
st
 of March, 

2007. Like every institution, the KNUST Hospital faces a number of challenges including: 

•Increasing student population 

•Inadequate medical personnel e.g. Doctors and Nurses. 

• Irregular University subvention. 

• Inadequate computers to support network. 

• Inadequate physical infrastructure  

1.4 Background Study 

In other to ease the pressure on the facilities available at the KNUST Hospital, which was 

serving so many people at a time, a Students’ clinic was established on the 2
nd

 of April, 2007 to 

enhance the health care delivery of students of the University. The clinic is located opposite the 

Ceramics Department, College of Arts and Social Sciences. The facilities at the clinic comprise 

of medical records unit, a Dispensary and a mini-laboratory, among others. The Clinic has a 
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standby generator to generate power in case of any power outage. The student clinic project was 

commissioned by the vice chancellor of KNUST, Prof. K. K Adarkwa. (J Ebu-Sakyi, 2007) 

1.5  Problem Statement 

Student clinic at consulting rooms 1 and 4 was moved from the main Hospital due to congestion 

at the hospital and resulting tension created among students. 

The university authorities did not take the student demography into consideration while locating 

the student clinic 

1.6 Objective 

1. To locate a central site that will satisfy the location of the halls of residence and the student 

population. 

 2. To make recommendations to the university authorities.  

1.7 Thesis Organisation 

In the first chapter we look at a brief history of Hospitals in Ghana and KNUST. 

In the second chapter, we have literature review. 

In chapter three, we shall consider the data, its analysis and discussions. 

In chapter 4, we have conclusion and recommendation. 
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CHAPTER   2 

 LITERATURE REVIEW 

 I�TRODUCTIO� 

In management, decision makers have to decide on the location of facilities for private and 

public service while emphasizing on accessibility of the people to these facilities. Examples of 

facilities are Schools, Hospitals, and Ambulance Services. Decision on location is based on a 

number of factors: it includes Physical, Economic, Social, Environmental or Political factors. 

In the case of most medical emergencies, the risk of loss of life increases with respect to time or 

distance. Location problem is concerned with the location of one or more facilities in some 

space, so as to optimize some specified criteria. Often these criteria are linked with costs of 

providing optimal access for the customers of the facility in question. This does not necessarily 

follow however when facilities produce some undesirable or obnoxious effect. Here the risk to 

the local population far overweighs any benefit of close placement of the facility 

In this modern society, the number of facilities available to the population often defines the 

quality of life. Dry-cleaner, garages, fire stations, football stadia, can be considered as physical 

entities that provide service. These facilities can be classified into three categories: desirable 

(non-obnoxious), semi-obnoxious and obnoxious.  

 2.1 �on- Obnoxious Facilities 

Most services are provided by desirable or non-obnoxious facilities. There are facilities that 

bring comfort to customers and are pleasant in the neighbourhood.They may include 
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supermarkets, warehouses, shops, garages, banks etc. As the customer needs access to the facility 

providing service, it is beneficial if these facilities are sited close to the customers who need their 

services 

2.2 Semi- Obnoxious Facilities 

Sometimes a facility that requires a high degree of accessibility provides a negative or 

undesirable effect. For example, a football stadium provides entertainment and so requires a 

large amount of access to enable supporters to attain a game. On the other hand, on a match day, 

local non-football fans will have to be content with the noise and traffic generated. The 

generation of noise and traffic will be unpleasant for locals who are not attending the match and 

who will therefore describe the facility as undesirable. The combination of the two makes this 

facility semi-obnoxious. 

Another example is a hospital with an ambulance. Here access is needed for the treatment of the 

local population especially on emergency days. On the other hand the siren of the ambulance 

may be too noisy to others who might not need its service at the moment in time. 

2.3 Obnoxious Fcilities 

An obnoxious facility is one which is useful but has undesirable effect on the inhabitants and 

users in an area. Examples include equipment which emit pollutants such as noise and radiation 

or warehouses that contain flammable materials. Other obnoxious facilities include machines that 

are potential sources of hazards to nearby machines and workers. Further obnoxious facilities are 

the nuclear power stations, military installations. Although necessary for society, these facilities 

are undesirable and often dangerous to the surrounding inhabitants. 
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2.4 LOCATIO� MODELS 

We discuss two approaches to siting a single facility on a road network.  

1. Methods that do not make use of the road links; 

a) Location Break Even Analysis 

b) Centre of gravity  

c) Factor rating method 

2. Methods that make use of road links and which includes Median problems and Centre 

Problems. 

2.4.1 The Location Break-Even Analysis 

The location break-even analysis is the use of cost-volume analysis to make an economic 

comparison of location alternative. By identifying fixed and variable cost and graphing them for 

each location, we can determine which location provides the lowest cost. Location break-even 

analysis can be done mathematically or graphically. The graphical approach has the advantage of 

providing the range of volume over which each location is preferable. 

The location break-even analysis method employs three steps, these are: 

• Determine the fixed and variable cost for doing business at each location. 

•Plot the cost for each location, with cost on the vertical axis of the graph and volume on the 

horizontal axis. 

•Select the location that has the lowest total cost for the expected volume of business. 
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The location break-even analysis is determined by the equation; 

Y ax b= + , where; 

a  = Variable cost 

b  = fixed cost 

X= Volume of business, Y= Cost of business 

 Table (1.0) below illustrate an example where the fixed and variable cost for three potential 

manufacturing plant sites for a rattan chair waver. 

Table (1.0): Fixed and variable cost for a manufacturing plant site 

Site Fixed cost( b ) Variable cost( a ) 

1 500 10 

2 1,000 6 

3 1,500 4 

We relate the given table as; 

1 10 500Y x= +  

2 6 1000Y x= +  

3 4 1500Y x= +  

For a volume of 125x = , site 1 gives minimum cost of 1,750y =  
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2.4.2 Centre of Gravity Method 

The centre of gravity method is a mathematical technique used for finding the location of a 

distribution center that will minimize distribution cost. For instance in the location of a market, 

the method takes into account the volume of goods shipped to those markets and shipping cost in 

finding the best location for the distribution centre. 

The first step in the centre of gravity method is to place the locations on a coordinate system. 

The coordinates of each location must be carefully noted. The origin of the coordinate system is 

arbitrary, just as long as the relative distances are correctly represented. This can be done easily 

by placing a grid over an ordinary map of the location in question. The centre of gravity is 

determined by equations (1) and (2) below; 

    .........................(1)
ix i

x
i

d W
C

W
=
∑
∑

   

  ....................(2)
iy i

y
i

d W
C

W
=
∑
∑

   

Where, 

 xC  = X -coordinate of the centre of gravity 

yC  = Y -coordinate of the centre of gravity 

ixd   = X -coordinate of location i  

 
iyd  =Y -coordinate of location i  
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 iW  = volume of goods to or from location i  

The centre of gravity is then determined by equation (1) and (2) above. Once x  and y - 

coordinates have been obtained, we place that new location on the previously described map. If 

that particular location does not fall directly on a city, simply locate nearest city and place the 

new distribution there. In the case where there is more than one city that can be used as possible 

location, the factor rating method can be used to select one. This method could be implemented 

when locating a Library Complex on a network of towns/ cities. 

2.4.3 The Factor Rationg Method 

The factor rating method is a method used to find a suitable location for a facility considering a 

number of factors. 

The factors include: labour cost (wages, unionization, and productivity), labour availability, 

proximity to raw materials and supplier, proximity to markets, state and local government fiscal 

policies, environmental regulations, utilities, site cost, transportation, and quality of life issues 

within the community, foreign exchange and quality of government. When using the factor 

rating method, the following six steps must be followed strictly. 

These are: 

● Develop a list of relevant factors. 

● Assign a weight to each factor to reflect its relative importance in management’s objective. 

● Develop a scale for each factor (for example, 1 to 10 or 1 to 100) 



 

13 

 

● Have management or related people score each relevant factor, using the scale developed            

above. 

● multiply the score by the weight assigned to each factor and total the score for each location. 

● Make a recommendation based on the maximum point score; considering the result of 

quantitative approaches as well. 

Table (1.1) below gives an example of the map coordinates and shipping loads for a set of cities 

that we wish to connect trough a central ‘hub’. 

Table (1.1): Map coordinates and shipping loads for a set of cities 

Factor 

No 

Factor Rating 

weight 

Ratio of 

Rate 

Location A Location B Location C 

1 Proximity to port 

facilities 

5 0.25 25 20 20 

2 Power Source available 

and cost 

3 0.15 12 10.5 15 

3 Work force attitude and 

cost 

4 0.2 6 12 14 

4 Distance from  Tema 2 0.1 1 8 6 

5 Community Desirability 2 0.1 9 6 8 

6 Equipment Suppliers in 

area 

3 0.15 7.5 9 13.5 

7 Economic activity 1 0.05 4.5 3 3 

    65 68.5 79.5 

 

Clearly from their respective aggregate scores, location C or site C would be recommended since 

it has the highest aggregate. 
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2.5 FACILITY �ODES A�D �ETWORK, POPULATIO� CE�TERS 

Location simply refers to the strategy of putting a facility in place where it can be identified         

as serving inhabitants staying at population centres around the facility. The points of placement 

of the facilities are called facility nodes and the population centres are called demand nodes. 

These nodes are linked by paths or streets which are called edges. A node may simultaneously 

serve as facility node and demand node. 

A graph is defined as G (V, E) consisting of a finite set of vertices (V) and a finite set of edges 

( E ) such that V x V→ E. Example if ,i jV V  ∈ V then ( ,i jV V ) ∈ E if there is an edge between iV  

and 
jV  which implies there exist an edge distance e ( ,i jV V  ) ≠ 0. 

A network is a physical implementation of a graph. Example: 

• A network of roads: The vertices are towns and the edges are road links. 

• An electrical network: The vertices are junctions of resistors, inductors and capacitors 

and edges are wire links to junctions. 

2.5.1 Median Problem 

The median problem is to find the location of p facilities on a network so that the total cost is 

minimized. The cost of serving demands at node i is given by the product of the demand at node 

i and the distance ( ( )ijd  between demand node i and the nearest jth  facility to node i . This 

problem may be formulated using the following notation: 

Inputs 
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ih = demand at node i  

ijd = distance between demand node i  and candidate site j  

P = number of facilities to locate 

Decision variables 

iX  =      1, if we locate at candidate site j  

              0, if not 

ijY  =      1, if demands at node i  are served by a facility at node j  

               0, if not 

With this notation, the median problem may be formulated as follows: 

Minimize     h

i j
∑∑ i ijd Y ij …………………………………………….... (1) 

Subject to        ijY∑  = 1  ∀ i  …………………………………………..  (2) 

                        j

j

X P=∑ …………………………………………………. (3) 

                        0ij iY X− ≤   ∀ ,i j …………………………………………. (4) 

                     0,1jX =        ∀  j …………………………………………….. (5) 

                     0,1ijY =       ∀ ,i j …………………………………………….. (6) 
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The objective function (1) minimizes the total demand-weighted distance between each demand 

node and the nearest facility. Constraint (2) requires each demand node i  to be assigned to 

exactly one facility j . Constraint (3) states that exactly P facilities are to be located. Constraints 

(4) link the location variables, jX  and the allocation variables ijY . They state that demands at 

node i can only be assigned to a facility at location ( 1)ijj Y = if a facility is located at 

node i ( 1)jX = . Constraints (5) and (6) are the standard integrality conditions. 

The median formulation given above assumes that facilities are located on the nodes of the 

network. (Hamiki, 1995).  

2.5.2 Centre Problem 

The center problem is defined as the location of a number of facilities such that all the nodes are 

covered. 

The center problem requires the model to minimize the coverage distance such that each demand 

node is covered by one of the facilities to be sited within the endogenously determined coverage 

distance. The center problem is a minimax problem. 

The 1-center problem is a classical optimization problem that looks at the location of a single 

facility such that all the demand nodes are covered. Under the 1-center problem, we have the 

vertex center problem, which seeks to locate the facilities on the nodes of a network. There is 

also the absolute center problem that seeks to locate facilities at anywhere on the network. 

2.5.3 Vertex P-Center Problem formation 

Let ija = distance from demand node i  to candidate facility site j  
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ih        = demand at node i  

P        = number of facilities to locate 

Decision variables,       

jx         =       1, if we locate at candidate site j  

                      0, if not 

ijY        = fraction of demand at node i  that is served by a facility at node j  

W        = maximum distance between a demand node and the nearest facility. 

The problem is formulated as follows, 

 Minimize W                                      2.13 a  

Subject to 

                  1ij

j

Y =∑      ∀ i              2.13 b  

                      j

j

X P=∑                      2.13 c  

                    ij jY X≤        ∀ ,i j        2.13 d  

                       W ≥  ij ij

j

a Y∑   ∀ i       2.13 e  

                      0,1jx =            ∀ j        2.13f 

                       0ijY ≥                            2.13 h  
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In some cases, the demand-weighted distance is considered and constraint 2.13 e become 

iW h≥ ij ij

j

a Y∑  ∀ i   2.13e
i 

2.5.4 The Absolute 1-Center Problem on a Tree 

A tree is a network which has no loop in the connected nodes.  

We have the absolute 1 center problem on a tree in which all of the demands are equal; this is 

called the un-weighted tree. We also have the weighted tree in which the weights associated with 

each of the nodes are not equal. Consider the weighted tree in figure 1.0 below; 

 

Figure 1.0. Example of tree network 

The solution is computed with the steps below; 

Let ijB  be the demand weighted distances between node i and j . This is computed as; 

ijβ =            
( , )i j

i j

h h d i j

h h+
 

Where i  and j are nodes. ( , )d i j  is the distance between node i , j  and ih  and jh  are 

respectively demand weights. 
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Step 1:         Compute one row of ijβ  elements 

Step 2:          Find the maximum element in the row that was just computed 

Step 3:          Compute the ijβ  in the column in which the maximum ijβ  element occurred in  

                      step 2. 

Step 4:          Find the maximum element in the column that was first computed 

Step 5:        Compute the elements ijβ  in the row in which the maximum ijβ  element occurred in   

                    Step 4. 

Let F  be candidate node and T be demand node. We find max ( )FT ij ijB B= . We further locate a 

point [ /( ), ( , )F F Th h h d F T+ ] from node F on the unique path from F  to T  or equivalently, 

locate a point [ /( ), ( , )T F Th h h d F T+ ] from node T  on the unique path from T  to F . When all 

ijβ  are calculated according to figure 1.0we get the results as shown in table 1.2 below; 
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Table 1.2; ijB  Values 

          A B C D E F G H 

A 0.00 128.57 68.37 180 280 326.91 231.89 340.65 

B 128.57 0.00 93.33 22.8 338.05 389.74 282.86 400.00 

C 68.37 93.33 0.00 159.31 300 362.21 234.08 376.73 

D 180 228 159.31 0.00 175.94 244.29 101.54 271.3 

E 280 338.05 300 175.94 0.00 349.13 236.37 508.54 

F 326.91 389.74 362.21 244.29 349.13 0.00 132.54 269.26 

G 231.89 282.86 234.08 101.54 236.37 132.54 0.00 166.74 

H 340.65 400.00 376.73 271.3 508.54 269.26 166.74 0.00 

 

 

We find max ( )FT ij ijB B= and obtain 

508.54AE FT HEB B B= = =  

Point on 
( , )H

HE

H E

H d H E
B

h h
=

+
 

Point on 
16

(40)
16 21

HEB =
+

 

                      = 17.30 

The facility will be located 17.30 units from node H  to node E . 
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2.6 MODELS OF 1-CE�TRE PROBLEM O� A GRAPH  

In this section, we present an optimal or near optimal location for an emergency semi-obnoxious 

facility such as a Clinic with an ambulance..  

This chapter focuses on the quantitative analysis of discrete optimization problems on a network 

with demand nodes. The objective is to minimize the maximum cost of serving one of several 

clients in the centre problem modelled as the Minimax regret 1-cente problem on a network with 

discrete set of demands on each node. The cost is equivalent to the demand weighted distances 

between points on the network 

2.6.1 Absolute 1-Center Problem 

The absolute 1-center problem is to locate a facility on a network so as to minimize the 

maximum of the weighted distances between a facility node and the demand node. This model is 

suitable for the location of a hospital on a network whose nodes represent population centers of 

cities or the location of an ambulance station on a campus. Distance measure uses the shortest 

path between two nodes in the network and the weights of the nodes represent numbers of the 

population residing at the nodes. 

The absolute 1-center problem was first defined and solved by Hakimi in 1964(Hakimi, 1964). 

Hakimi et al. implemented Hakimi’s method for the weighted and the un-weighted case 

(Schmeichel and Hakimi, 1978). Further refinements of the procedure were obtained by Kariv 

hxdand Hakimi, for the weighted and the un-weighted cases (kariv and Hakimi, 1979). 
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2.6.2  Robust 1-Center Problem  

In planning, model parameters are usually uncertain and several values or scenarios have to be 

considered since they are based on estimates. In such a context, uncertain data render 

inappropriate the search for optimal solutions for absolute 1-centre problems and require the use 

of robust analysis. Unlike the absolute center problem which determines the best solution for one 

instance of values (or scenario), robust approaches try to find a solution or a set of solutions that 

is acceptable for a set of scenarios. In combinatorial optimization and particularly in location 

problems, the most used robustness criterion relies on regret (Yu G and Kouvelis, 1997). A 

robust solution is one that minimizes the maximal regret among all scenarios. We recall that the 

regret is the difference between the resulting output under a given scenario and the best possible 

output under the same scenario. 

The minimax regret 1-center problem was considered by many authors in the context of 

estimates of data where uncertain weights and/or uncertain distances are represented by 

estimates. In the case of estimated weights, Averbakh and Berman,(1997) developed an 

algorithm for the problem on a general network. 

To model future demands at different nodes, a decision-maker will represent possible trends of 

the demographic evolution of the different cities through discrete scenarios instead of estimates. 

We consider the minimax regret 1-center problem on a network under uncertain demands. We 

assume that the set demands (or weights) at each node are modelled by a finite set S of possible 

scenarios, where q is  the number of scenarios at the node.  
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2.6.3 Development of the Robust center problem 

Let G = (V, E) be a graph composed of a set V = {vi, i = 1 . . . n} of n nodes (or vertices) and a set 

E of m edges. We denote by d (a, b) the minimum distance between two points a and b of G. A 

point of the graph corresponds either to a node or to any point along an edge. The length of each 

edge e∈ E  is denoted by ( , )c p q .  

The matrix of shortest distances between nodes of G is calculated from the matrix of edge 

distances.  

We assume that demands occur only at the nodes of the network and that they can be 

characterized by a weight vector W = (w1, w2. . . wn) where wi is the weight associated with node 

vi for i = 1, . . . , n. 

For a given point x ∈ e on the edge, ( , )e p q  the maximum of the weighted distance between x 

and all the nodes of G, is denoted by D(x). It is also called the cost of x .  

The cost ( )D x of x is then given by; 

1
( ) max ( , )i i

i n
D x w d x v

≤ ≤
=  

The local center on the edge ( , )e p q is given by the minimum of the maximum weighted distance 

for all points x  on the edge ( , )e p q . This gives; 

min ( )
x e

D x
∈

 

2.6.4 Finding the Absolute Centre 

 A vertex is a designated node on a network or graph and an edge is a direct distance or link 

between two vertices. For two vertices p and q define ( , )c p q , to be the edge cost or edge 

distance.  
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Consider the edge ( , )p q  with point x  on it and a weight iw  on vertex iV  as shown in figure 1.1 

below. Assuming we want to move from x  to iV , where iV  is any node on the network, we find 

the minimum cost of moving to 
iV  along the edge.  

 

Figure 1.1: Edge ( , )p q  with point x  on it, weight iw  and vertex iV  

Take p  as the origin then the length ( p , x ) has its cost being x  and ( x , q ) has a cost of  

( , )c p q  – x . The movement from x  to iV  can be done in two directions i.e. through the origin p  

or the other end vertex q  . This gives rise to the cost equations: 

( , )ix d p v+  and  ( , ) ( , )ic p q x d q v− +  . 

If 
iw  is the weight at the vertex 

iV  then the demand weighted cost or weighted distances are; 

1 ( ( , ))i iy w x d p v= +  and 
2 1( ( , ) ( , ))iy w c p q x d q v= − + where 

1y  is the distance from x  to iV  

through p  and 2y  is the distance from x  to iV   through q . As x  moves along the edge ( , )p q  

from p  to q  there will be a point when the two weighted distances or cost would be equal. At 

this point 
1y  = 

2y  and the point of intersection or the kink point could be found. Solving for the 

path of equal weighted cost we have;  
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w ( x + ( , )id p v ) = w ( ( , )c p q  – x  + ( , )id q v ) . Hence;  

1 1( , ) ( , ) ( , )

2
kink

d q v d p v c p q
x

− +
=  

We note that 1y does not hold for values of x  beyond kinkx and 2y does not hold for values of x  

below kinkx . The equations 1y  and 2y  are therefore used to draw graph for the edge ( , )p q  from 

which a local center can be determined. 

We observe that, on a general network, the distance ( , )id x v  between a point x varying on an 

edge  ( , )e p q=  and a given node iV  has three possible plots as shown in Figure 1.2. 

 

Figure 1.2: Plots of d(x, vi) on a given edge (p,q) 

In figure 1a  and 1b  kinkx  coincide with an end vertex of the edge ( , )p q or iV  is one of the 

vertices of ( , )p q .In figure 1c we have 0< 
kinkx < ( , )c p q .Therefore, the function y is piecewise 

linear and continuous on each edge ( , )c p q . 

 Local Centre 

Proposition 1: For a set of all points x  on a fixed edge ( , )p q , the maximum distance function 

( )m x for the absolute centre problemis piecewise linear and its slope is always +w or -w. 
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To obtain the local centre on an edge ( , )p q , we use the equations; 

1y = iw ( x  + ( , )id p v ) 

2y =
iw ( ( , )c p q  – x  + ( , )id q v ) 

We solve for the kink points with respect to all vertices , 1,2,3,...iV i n=  of G. For each vertex iV , 

we contruct the piecewise linear graphs. From all the graphs, we contruct the upper envelop of 

the set of graphs. This is formulated as; 

1
( ) max ( , )i i

i n
D x W d x v

≤ ≤
=    ( , )x p q∈  

The local centre ix  is the point ( , )x p q∈ that corresponds to the minimum of the upper 

envelopes. This gives; 

( )sD x = 
1

min max
x i n≤ ≤

s

iW d ( x , vi) ( , )x p q∈  

Proposition 2: For an edge ( , )p q  the local center satisfies  

1( )M X ≥ w
( ) ( ) ( , )

2

m p m q c p q+ −∑ , where ( , )c p q  denotes the cost of edge ( , )p q  and w , a 

given scenario.  

Absolute Centre 

The local centre of an edge ( , )p q  is defined as a point ix  on ( , )p q such that for every point 

y on (p, q), ( y may be on an edge of G), ( ) ( )im x m y≤  
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Given that all the local centres for all the edges of the network have been determined, we pick 

the local centre that gives the minimum weighted cost and compare to the weighted cost of the 

node centre. We select the point or vertex that gives the minimum weighted cost. 

2.7 Computation using sets of weights : 1,2,...,sw s h=  

For each of the set of weights
1 2( , ,... )s s s s

nw w w w= , we calculate the local centres to get h  local 

centres for edge ( , )p q . We thus take each edge ( , )p q of the network and compute the linear 

equations for each element of the set S or scenario of S. We then find the graph of its upper 

envelope with respect to the vertices and the local centre. 

Define the values of x  at which discontinuity occur in each upper envelope to be breakpoint 

( x t= ), listing all the breakpoints of the h upper envelopes in an increasing order 

0 1 20 ( , )nt t t t c p q= =≺ ≺ ≺ . Define ijt =[ ]j it t−  to be the ijt  basic interval satisfying 
ijt ≻ 0. 

1). Let ,i ja t b t= =  be two breakpoint on 
1S  and [ , ]t a b∈ , then for the upper envelope of the 

weight set 1sw  we have;  

1 1
1 1 ( ) ( )
( ) ( ) ( ) [ , ].................(1)

s s
s s e e
e e

D b D a
D t D a t a t a b

b a

−
= + − ∀ ∈

−
  

Equation (1) is the weighted cost at the point t . 

1( )s

eD a  is the weighted cost at a  

1( )s

eD b  is the weighted cost at b  

1( )s

eD t  is weighted cost at t and is a linear function of t.  
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2). Suppose t b=  is a breakpoint of the upper envelope of the weight set 2S  instead of 1S . We let 

t c= be the next breakpoint of 1S  such that a b c≺ ≺  then; 

1 1
1 1 ( ) ( )
( ) ( ) ( )..........................(2)

s s
s s e e
e e

D c D a
D b D a b a

c a

−
= + −

−
  

Using the above value for 1s

eD ( b ) we have; 

1 1
1 1 ( ) ( )
( ) ( ) ( ) [ , ].................(1 )

s s
s s e e
e e

D b D a
D t D a t a t a b a

b a

−
= + − ∀ ∈

−
 

For any current subinterval, the value of 1s

eD (a) is taken to be the value of 1s

eD (b) of the previous 

subinterval. For the first subinterval where 0t = , 1s

eD (0) is obtained from the upper envelope. 

We compute 1s

eD (t) for all the basic intervals within [0, ( , )]t c p q∈  and the regrets 1s

eR (t) 

2.8 REGRET A�ALYSIS 

The regret of solution x also called opportunity loss or absolute deviation is the difference 

between the cost of x under scenario s and the cost of the best solution under the same scenario. 

It is given by: 

( ) ( ) ( )...............(3)s s s sR t D t D x∗= −  

where x*
s
 is the local centre under scenario S . 

 The maximum of all the regrets for the entire basic interval under 
1S  is; 

1s

eR ( t ) = 1max ( )s

eR t  0 ( , )t c p q≤ ≤  

The minimum of all the maximum values 1 2, ,...s s sp

e e eR R R  occur at the point Rt  called the local 

robust centre. This is formulated as;     
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[ , ] 0 ( , )
min max ( )s

e
a b e t c p q

R t
∈ ≺ ≺

 

 We describe below the different steps of our approach to solve the minmax regret 1- center 

problem under scenario-based uncertainty: 

• We first use the Kariv and Hakimi’s algorithm to solve q classical 1-center problems in order to 

compute the absolute centers x*
s
 for all s є S. 

 • Then, we decompose each edge of the network into intervals called basic intervals. 

 • For each basic interval, we determine a local solution of the problem, using a procedure 

developed by Kouvelis and Yu. 

 • Finally, the minmax regret 1-center is determined among all the local solutions given by the 

previous step. 

The minimax regret 1-centre is given by; 

[ , ] 0 ( , )
min max ( )s

e
a b e t c p q

e G

R t
∈

∈
≺ ≺

 

2.9 An illustrative example 

Consider the graph G of figure 1.3 where values on edges represent lengths. Table 1.3 shows the 

road distance ( , )c p q = ( , )c i j  between nodes with node demands modelled by three scenarios S1, 

S2, S3 as shown in table 1.4 
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Figure 1.3: Example of a network 

: Table 1.3: Table of edge matrix of direct road distances between nodes ( , )c i j  

 V1 V2 V3 V4 V5 

V1 - 5 ∞ 6 ∞ 

V2 5 - 4 ∞ ∞ 

V3 ∞ 4 - 4 3 

V4 6 ∞ 4 - 3 

V5 ∞ ∞ 3 3 - 

 

Table 1.4: Weights under the three scenarios 1 2 3, ,S S S  

Weight 
1

sW  2

sW  3

sW  4

sW  5

sW  

1s

iW  10 20 10 15 10 

2s

iW  10 15 20 10 10 

3s

iW  10 10 15 20 10 

 



 

31 

 

From the edge matrix of table 1.3, Floyd Warshall algorithm is used to compute shortest paths 

between all pairs of point. The result is shown in table 1.5 below; 

Table1.5: All pairs shortest path distance Matrix                                                                                                               

 

 

 

 

 

 

 

Vertex Center 

From table 1.5, the maximum entries for all rows are given in column 7: Thus 

1( ) 9m V =           2( ) 6m V =          3( ) 9m V =     4( ) 6m V =           5( ) 9m V =   

The minimum of the row maximum occur at either V2 and V4. Thus the vertex centre is node 2 or 

node 4 with objective value of 6. The absolute centre of G may not coincide with the vertex 

center of G. Moreover, the absolute center of G may be located on an edge that is not incident to 

the vertex center of G. 

1. Location of local centre on edge V1 V4 

For given edge ( , )p q  we use the set of equation; 

 V1 V2 V3 V4 V5 Max 

V1 - 5 9 6 9 9 

V2 5 - 4 3 6 6 

V3 9 4 - 4 3 9 

V4 6 3 4 - 3 6 

V5 9 6 3 3 - 9 
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1 ( ( , ))s

i iy w x d v p= + …………………………………….  (1) 

                
2 ( ( , ) ( , ))s

i iy w c p q x d q v= − + …………………………..   (2) 

Location of local center for scenario 1S  

Consider edge ( 1 4,V V ) using demand weights for scenario S1 , 
1w =15 and 1 4[0, ( , )] [0,6]x c V V∈ =  

We set the origin at V1. Hence p= V1 and q= V4 

( i ). For iV  = 4V  and demand at 4V  being 4w  =15 

 d ( , ip V ) = d (
1 4,V V ) = 6, d ( , iq V ) = (

4V ,
4V ) = 0 and ( , )c p q  = c (

1 4,V V ) =6 

Thus y1= 15( x  +6) and y2 = 15(6- x ). Solving for the point of equal cost, we have 

15( x +6) = 15(6- x ), ⇒  x = 0 is the kink for the two equations; y1, y2 

When x = 0, the equation y1 falls outside the range [0, 6] and so is discarded and we are left with  

y = y2 = 15(6 - x )                        0≤  x  ≤  6……………………………….. (1)                   

( ii ). When Vi = V1, and demand at V1 is w i=10, then 

 d ( , ip V ) = d(V1,V1) =0 and d(q,Vi) = d(V4,V1) = 6 

Thus y1 = 10( x ) and y2 = 10(12- x ), hence the kink point is x = 6. 

The equation y2 = 10(12- x ) falls outside the range and so is discarded. Thus; 

         y =  y1 = 10( x ),                            0≤ x  ≤6…………………………………. (2) 
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( iii ). For Vi = V2 and w 2 = 20, then 

d(p,Vi) = d(V1,V2) =5 and d(q,Vi) =d(V4,V2) =3 

The resulting equations are; 

y1 = 20( x +5) and y2 = 20(9- x ) with a kink point x =2, thus we have; 

                        y1 = 20( x +5),           0≤ x ≤2…………………………….. (3a) 

                        y2 = 20(9- x ),           2≤ x ≤6……………………………… (3b) 

( iv ).For Vi = V3, and w 3 =10, then 

d(p,Vi) = d(V1,V3) =9 and d(q,Vi) = d(V4,V3) =4 

The resulting equations are; 

y1 =10( x +9) and y2 = 10(10- x ) with the kink point, x = ½. Thus we have; 

                        y1 = 10( x +9),        0≤ x ≤1/2………………………….. (4a) 

                        y2 = 10(10- x ),        1/2≤ x ≤6………………………….  (4b) 

( v ).For Vi = V5 and w 5 = 10, then 

d(p,Vi) = d(V1,V5) =9 and d(q,Vi) = d(V4,V5) = 3 

The resulting equations are; 

y1 = 10( x +9) and y2 =10(9- x ) with the kink point x =0. We discard equation y1 since it will fall 

outside the range of values. Thus we have; 
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                 y =   y2 = 10(9- x ),                0≤ x ≤6…………………………….(5) 

The resulting equations are then plotted on the same axes of of figure 1.4 as shown below; 

               

Figure 1.4: Edge 1 4,V V  for year 1  

                                                                                                                                                                      

2.9.1 Construction of the upper envelope 

Upper envelop for edge (V1, V4) under Scenario 1S                                                           

To construct the upper envelope, we trace all points of lines with maximum y value for a given 

x -value.beyond which there are no points with higher y values for the same x  value. The trace 

is indicated by thick a line as shown in the figure 1.4 above. The local center on (V1, V4) is the 

x -value of the point on the envelope with minimum cost.  

From the figure above, the local center of edge (V1, V4) for scenario S1 is x
* 

=6 and the cost is 

(m x *) = 60
 



 

35 

 

Location of local center for Scenario 2S  

We repeat the calculations for the local centers for edge (V1, V4) under scenario S2 where the set 

of weights 2 (10,15,20,10,10)sw = are used.  

Figure 1.5 below shows the plot and the upper envelop for edge (V1, V4) under scenario S2 ,  

 

Figure 1.5: Edge 1 4,V V  for year 2 

From figure 1.5, the local centre of edge (V1, V4) for scenario S2 is x
* 

=6 and the cost is    

(m x *) = 80.  

Location of local center for Scenario 3S  

Figure 1.6 below shows the plot and the upper envelope for edge (V1, V4) under scenario S3 

where the set of weights 3 (10,10,15,20,10)sw = are used. 
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Figure 1.6: Edge 1 4,V V  for year 3 

 From figure 1.6, the local centre of edge 1 4,V V  for scenario S3 is x
* 

=6 and the cost is 

( ) 60m x∗ =   

2.9.2 CALCULATION OF REGRETS  

Regret for edge ( 1 4,V V ) 

The three upper envelops for the three scenarios S1, S2, S3 with respect to edge (V1, V4) are 

plotted on a single graph which is used to compute the regret for the given edge. Figure 1.7 is the 

plot of the three upper envelopes for edge (V1, V4) 
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EDGE V1,V4  

                  

Figure 1.7: Combination of the upper envelopes for Edge 
1 4,V V  

                                                                                                                                                                                                                 

The breakpoints of the graph are 0,0.5,2 and 6t =   

From figure 1.7 above, we compute the regret of edge V1,V4.  

For each basic interval [ , ]t a b∈  and scenario s , 

( )s

eD t = ( )s

eD a  + 
( ) ( )s s

e eD b D a

b a

−

−
( t - a )  ∀ [ ,a b ]………………………………………………..(i)                               

   ( )s

eD b  is the weighted cost at b for edge e if breakpoint exist at x b=  for scenario S otherwise, 

for a breakpoint x c=  and a b c≺ ≺ ,                                

( )s

eD b = ( )s

eD a + 
( ) ( )s s

e eD c D a

c a

−

−
( b a− ) ∀∈[ ,a b ]………………………………………….. (ii)   

The regret is given by;                                                                                                                                                    

Re (t) = ( )s

eD t  – ( )s s

eD x∗ ………………………………………………………………… (iii) 
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From previous calculations 

 1 6x∗ =  and 1 1( )eD x∗  = 60     2 6x∗ =  and 2 2( )eD x∗ = 80 3 6x∗ = and   3 3( )eD x∗ = 60 

Regret for 1S (year 1) for basic interval [0,0.5]t =  

Consider year 1, for basic interval 0 1( , ) (0,0.5)t t t∈ = . The breakpoint 0 0t =  is on year1 and        

0 1( , )t t t∈ , 1(0)eD =100 but the breakpoint 1 0.5t b= = is on year 2. Take 2 2t c= =  and use 

equation (ii) to find 1

1( )eD t  as;  

1

1( )eD t = 1

0( )eD t + 
1 1

2 0

2 0

( ) ( )e eD t D t

t t

−

−
 ( t 1- t 0)                               

          = 100 + 
143 136

0.5

−
 (0.5-0) ⇒   1

1( )eD t = 110                               

Thus from equation (i), 

1( )eD t = 1

0( )eD t + 
1 1

1 0

1 0

( ) ( )e eD t D t

t t

−

−
 ( t - t 0)                              

1( )eR t = [ 1

0( )eD t  – 1 1( )eD x∗ ] – (
1 1

1 0

1 0

( ) ( )e eD t D t

t t

−

−
) ( t 0) + (

1 1

1 0

1 0

( ) ( )e eD t D t

t t

−

−
) ( t )                               

          = 100 – 60 – (110- 100) (0) + 
110 100

0.5

−
t   

1( )eR t = 40+20 t  …………………………………………………………………………. ( a ) 

 

Regret for 2S (year 2) for basic interval [0,0.5]t =  

Consider year 2, 0t   ∈year2 and 1t  ∈ year 2. From equation (i); 

2( )eD t = 2

0( )eD t + 
2 2

1 0

1 0

( ) ( )e eD t D t

t t

−

−
 ( t - t 0)                        
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  The regret is;                                    

2 ( )eR t = 100 + 20 t ……………………………….. (b) 

Regret for 3S (year 3) for basic interval [0,0.5]t = ,  

we have; 

3( )eR t = 136 – 60 + 
143 136

0.5

−
t       

3( )eR t = 76 + 14 t ……………………………………(c) 

Regret for basic interval 1 2[ , ] [0.5,2]t t t= =  

Let us consider the interval [ 1 2,t t ]. Consider year 1 

t 1∈ year1 and t 2 ∈ year 1. The regret is; 

1( )eR t = 40 + 20( t ) ……………………………………………………………..( a ) 

 For year 2 ; 

t1 ∈  year 2 and t2 ∈  year 1. The regret is; 

      2 ( )eR t  =120 – 20 t ……………………………………………………………. ( b ) 

For year (3) t 1∈ year3 and t 2 ∈ year 3. The regret is; 

1( )eR t = 90.5 – 15.07 t …………………………………… ( c ) 

 Table (1.6) below is a summary of computations of the entire breakpoints for edge (V1, V4 ) 
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  Table (1.6):   Regret equations for subintervals of edge (V1, V4 )                        

 Subintervals   

 [0, 0.5] [0.5, 2] [2, 6] 

Year 1 40 + 20 t  40 + 20 t        120 - 20 t                          

Year 2 100 + 20 t  120 - 20 t  120 - 20 t  

Year 3 76 + 14 t  90.5 – 15.07 t  90.6 – 15.1 t  

Since the regret equations are linear, the maximum values will occur at the endpoints of the basic 

intervals 

Substituting the end point values of the interval in the given equations the results are shown in 

table (1.7) below: 

Table (1.7); Regrets for the subintervals of edge (V1, V4 ) 

 t  = 0 t  = 0.5 t  = 0.5 t  = 2 t  = 2 t  = 6 

Year 1 40 50 50 80 80 0 

Year 2 100 110 110 80 80 0 

Year 3 76 83 82.965 60.36 60.4 0 

The maximum regret for year1, year2, year3 is respectively 80, 110, and 83. The minimum of the 

maximum regrets is 80 of year 1 and it occurs at 2t =   

EDGE V4,V5 

Table (1.8) below is a summary of computations of the entire breakpoints for edge (V4, V5 )  

    Table (1.8):   Regret equations for subintervals of edge (V4, V5 )      

 Subintervals    

 [0, 1] [1, 1.2] [1.2, 2] [2, 3] 

Year 1 20 t   20 t    20 t - 4                        20 t  

Year 2 20 t  40 - 20 t  -32 +40 t  -20 + 10 t  

Year 3 15 t  30 - 15 t  10 t  10 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (1.9) below: 
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Table (1.9); Regrets for the subintervals of edge (V4, V5 )      

 t  = 0 t  = 1 t  = 1 t  = 1.2 t  = 1.2 t  = 2 t  = 2 t  = 3 

Year 1 0 20 20 24 20 36 40 60 

Year 2 0 20 20 16 16 48 0 10 

Year 3 0 15 15 12 12 20 20 30 

The maximum regret for year1, year2, year3 is respectively 60, 48, and 30. The minimum of the 

maximum regrets is 30 of year 3 and it occurs at 3t =   

EDGE V1,V2  

Table (2.0) below is a summary of computations of the entire breakpoints for edge (V1, V2 ) 

Table (2.0):   Regret equations for subintervals of edge (V1, V2 )      

 Subinterval     

 [0, 0.3] [0.3, 0.4] [0.4, 1] [1, 2.2] [2.2, 5] 

Year 1 40 – 16.67 t  32 + 10 t        30 + 15 t                          60 - 15 t  48.12 – 9.6 t  

Year 2 100 - 20 t  100 - 20 t  100 - 20 t  100 - 20 t  100 - 20 t  

Year 3 75 - 15 t  75 - 15 t  61.67+ 8.33 t  100 - 20 t  100 - 20 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (2.1) below: 

Table (2.1); Regrets for the subintervals of edge (V1, V2 )      

 t  = 0 t  = 0.3 t  = 0.3 t  = 0.4 t  = 0.4 t  = 1 t = 1 t =2.2 t =2.2 t =5 

Year 1 40 34.999 35 36 36 45 45 27 27 0.12 

Year 2 100 94 110 92 92 100 100 56 56 0 

Year 3 75 70.5 70.5 69 58.34 70 80 56 56 0 

The maximum regret for year1, year2, year3 is respectively 45, 110, and 80. The minimum of the 

maximum regrets is 45 of year 1 and it occurs at 1t =  
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EDGE V2,V4 

Table (2.2) below is a summary of computations of the entire breakpoints for edge (V2, V4 )    

Table (2.2):   Regret equations for subintervals of edge (V2, V4 )      

 Subintervals    

 [0, 0.5] [0.5, 1.5] [1.5, 2] [2, 3] 

Year 1 5 - 10 t   -5 + 10 t    -5 + 10 t                          35 - 10 t  

Year 2 20 t  20 t  60 - 20 t  60 - 20 t  

Year 3 16 t  0.75 – 14.5 t  45 - 15 t  45 - 15 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (2.3) below; 

Table (2.3); Regrets for the subintervals of edge (V2, V4 )      

 t  = 0 t  = 0.5 t  = 0.5 t  = 1.5 t  = 1.5 t  = 2 t  = 2 t  = 3 

Year 1 5 0 0 10 10 15 15 5 

Year 2 0 10 10 30 30 20 20 0 

Year 3 0 8 -6.5 -21 22.5 15 15 0 

The maximum regret for year1, year2, year3 is respectively 15, 30, and 22.5. The minimum of 

the maximum regrets is 15 of year 1 and it occurs at 2t =  
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EDGE V2 ,V3 

Table (2.4) below is a summary of computations of the entire breakpoints for edge (V2, V3 ) 

Table (2.4):   Regret equations for subintervals of edge (V2, V3 )      

 Subinterval      

 [0, 0.5] [0.5, 1] [1, 2.5] [2.5, 2.8] [2.8, 3.65] [3.65, 4] 

Year 1 10 t  10 - 10 t  15.33 t -

15.33 

64.67 – 

16.67 t  

10.59 t -

11.65 

8.57 t -

4.29 

Year 2 20 - 20 t  20 - 20 t  -10+10 t  -10+10 t  10.59 t -

11.65 

8.57 t -

4.29 

Year 3 20 t  20 t  20 t  100 - 20 t  100 - 20 t  -4.29   + 

8.57 t                                

Substituting the end point values of the interval in the given equations the results are shown in 

table (2.5) below; 

Table (2.5); Regrets for the subintervals of edge (V2, V3 )      

 t  = 

0 

t = 0.5 t = 

0.5 

t =1 t  =1 t  =2.5 t =2.5 t =2.8 t =2.8 t =3.65 t =3.65 t =4 

Year 

1 

0 5 5 0 0 22.995 22.995 17.99 18.00 27 26.99 29.99 

Year 

2 

20 10 10 0 0 15 15 18 18 27 26.99 29.99 

Year 

3 

0 10 10 20 20 50 50 44 44 27 26.99 29.99 

The maximum regret for year1, year2, year3 is respectively 29.99, 29.99 and 50. The minimum 

of the maximum regrets is 29.99 of year 1 and it occurs at 4t =  
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EDGE  V3,V5 

Table (2.6) below is a summary of computations of the entire breakpoints for edge (V3, V5 ) 

Table (2.6):   Regret equations for subintervals of edge (V3, V5 )      

 Subintervals     

 [0, 1] [1, 1.5] [1.5, 2.45] [2.45, 2.5] [2.5, 3] 

Year 1 10 t  -10 + 60 t  -10 + 20 t  -10 + 20 t  90 - 20 t  

Year 2 10 t  10 t   29.21 – 9.47 t  -43 + 20 t  42 - 14 t  

Year 3 10 t  10 t  29.21 – 9.47 t  30.5 - 10 t  33 - 11 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (2.7) below; 

Table (2.7); Regrets for the subintervals of edge (V3, V5 )      

 t  = 0 t  = 1 t  = 1 t  = 1.5 t  = 1.5 t  = 

2.45 

t = 

2.45 

t =2.5 t =2.5 t =3 

Year 1 0 10 50 80 20 39 39 40 40 30 

Year 2 0 10 10 15 15 6 6 7 7 0 

Year 3 0 10 10 15 15 6 6 5.5 5.5 0 

The maximum regret for year1, year2, year3 is respectively 80, 15 and 15. The minimum of the 

maximum regrets is 15 of year 2 and year 3 and it occurs at 1.5t =  
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EDGE V3,V4       

Table (2.8) below is a summary of computations of the entire breakpoints for edge (V3, V4 ) 

Table (2.8):   Regret equations for subintervals of edge (V3, V4 )      

 Subintervals     

 [0, 0.5] [0.5, 0.7] [0.7, 1.5] [1.5, 3.35] [3.35, 4] 

Year 1 30 + 10 t  37.5 - 5 t  20 + 20 t  80 - 20 t  80 - 20 t  

Year 2 23 + 10 t  33 - 10 t  33 - 10 t  32.6 – 9.73 t  -67 + 20 t  

Year 3 30 + 10 t  40 - 10 t  40 - 10 t  39.6 – 9.73 t  43.1 – 10.77 t  

 

Substituting the end point values of the interval in the given equations the results are shown in 

table (2.9) below; 

Table (2.9); Regrets for the subintervals of edge (V3, V4 )      

 t  = 0 t = 0.5 t  = 0.5 t  = 0.7 t = 0.7 t =1.5 t =1.5 t =3.35 t =3.35 t =4 

Year 1 30 35 35 34 34 50 50 13 13 80 

Year 2 23 28 28 26 26 18 18 0 0 13 

Year 3 30 35 35 33 33 25 25 7 7 0 

The maximum regret for year1, year2, year3 is respectively 80, 28 and 35. The minimum of the 

maximum regrets is 28 of year 2 and it occurs at 0.5t =  

To find the solution to the above problem of figure 1.3, we compare all the regrets for the given 

edges and the most minimum becomes the solution to our problem. The values of the minimum 

of the maximal regret ( Re ) on the various edges of the above network are listed in table (3.1) 

below. 
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Table (3.0); Values of the minimax regrets 

e 1 4R ( , )V V  e 3 4R ( , )V V  e 3 5R ( , )V V  e 2 3R ( , )V V  e 2 4R ( , )V V  e 1 2R ( , )V V  e 4 5R ( , )V V  

80 28 15 29.99 15 45 30 

The minimum value is e 3 5R ( , )V V =15 and e 2 4R ( , )V V =15 corresponding respectively to points 

1.5 and 2 on respective edges. The robust centre is the point x∗  of edge ( 2 4,V V ) at a distance 2.0 

from 2V .  

In figure 1.8 we locate the upper envelope of edge ( 2 4,V V ) under year 1( 1S ), the cost at 2x = is 

65. 

 

 

Figure 1.8: combination of the upper envelopes for Edge 2 4,V V  
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CHAPTER 3 

 Collection and Analysis of Data 

We consider the six halls of residence of KNUST and a hostel in this thesis.The number of 

students in the various halls / hostel cover a three year period. Table 3.1 below is a table of the 

names of the halls / hostel and the number of students in them. The data was obtained from the 

hall secretaries of KNUST. 

 Table 3.1: .ames of Halls / Hostel and the number of students in them 

  �o. of Students   

Halls/Hostel �ode   Year 2005/2006(S1) Year 2006/2007(S2) Year 2007/2008(S3) 

GUSS Hostel G 967 1063 1389 

University Hall  B 1280 1278 1063 

Independence Hall I 1144 1155 1139 

Unity Hall U 1836 1811 1925 

Republic Hall R 1173 1120 1208 

Queens Hall Q 1384 1165 1171 

Africa Hall A 741 682 712 

Totals  8,525 8,274 8,607 

 

The set of distances of roads linking the halls / hostel was collected from the Geomatic 

Department of the Kwame Nkrumah University of Science and Tecnology. This is presented in 

table 3.2 below 
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Table 3.2: Table of direct road distances between nodes ( , )c p q  

 Q A U R I B G 

Q - 375 ∞ 100 ∞ 950 ∞ 

A 375 - 400 ∞ ∞ ∞ ∞ 

U ∞ 400 - 380 340 ∞ ∞ 

R 100 ∞ 380 - 210 ∞ ∞ 

I ∞ ∞ 340 210 - 1050 ∞ 

B 950 ∞ ∞ ∞ 1050 - 306 

G ∞ ∞ ∞ ∞ ∞ 306 - 

 

The above data has been developed into a network of figure 1.9 below.  
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By using the Floyd-Warshall algorithm, the shortest path matrix or distance matrix for the above 

network was obtained as shown in table 3.3 below. 

Table 3.3: All pairs shortest path distance matrix, ( , )d i j                                                                         

      To 

From              

Q A U R I B G 

Q - 375 480 100 310 950 1256 

A 375 - 400 475 685 1325 1631 

U 480 400 - 380 340 1390 1696 

R 100 475 380 - 210 1050 1356 

I 310 685 340 210 - 1050 1325 

B 950 1325 1390 1050 1050 - 306 

G 1256 1631 1696 1356 1356 306 - 

 

3.1 Location of Local Centre 

We compute for each edge the local centre with respect to the demand weights for the various 

years.   

Using the pair of equations equation; 

               
1 ( ( , ))s

i iy w x d v p= + …………………………………….  (1) 

                
2 ( ( , ) ( , ))s

i iy w c p q x d q v= − + …………………………..   (2) 

( , )c p q  is the edge distance between the initial node p and the end node q . 
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( , )id v p and ( , )id q v  are respectively shortest paths between vertex iv  on the network and the 

nodes 

x  is a distance point on edge ( , )p q measured from node p . 

s

iw  is demand at vertex iv  for the year, S . 

EDGE (A, U) 

Location of local centre for year 1( 1S ) 

Set the origin at A, hence p = A and q  = U, ( , )c p q = 400 with 0 ≤ x  ≤ 400. We use demand 

weight (S1) of year 1. 

 ( i ).For V i  = U= q  and Uw  = 1836 

y1 = w ( x  +d ( p ,U )) and y2 = w (c ( p , q ) – x  + d ( q ,U )) 

y1 = 1836( x + 400) and y2 = 1836(400 – x ). 

 At the kink point, y1 = y2 and so 1836( x + 400) = 1836(400 – x ). 

. Hence x = 0. Equation 1y is of positive slope ending on 0x =  and hence falls outside the range 

and so is discarded leaving the equation; 

 y = 
2y  = 1836(400 – x ),                               0 ≤ x  ≤ 400……………………………….. (1) 

( ii ).For Vi = A = p  and 
Aw  = 741  
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y1 = w  ( x  + d ( p , A )) and y2 = w ( c( p , q ) – x  + d ( q , A )) 

y1 =741( x ) and y2 = 741 (800 – x ) 

At the kink point, 741( x ) = 741 (800 – x ) and x  = 400 

 Equation 
2y = 741 (800 – x ) is of negative slope ending on x =400 and hence falls outside the 

range and so is discarded. We have the equation; 

   1y  = 741( x ),                                      0 ≤ x  ≤ 400……………………………….. (2) 

( iii ). For V1 = Q  and Qw  = 1384 

y1 = w ( x  + d ( p , Q )) and y2 = w (c( p , q ) – x  + d( q , Q ))  

y1 = 1384( x  + 375) and y2 = 1384(880 – x ).  

At the kink 1384( x  + 375) = 1384(880 – x ).  thus x  =252.5. We have the following equations. 

                y1 =1384( x  + 375),    0 ≤ x  ≤ 252.5…………………………………………….. (3a ) 

                y2 = 1384 (880 – x ),   252.5 ≤ x ≤ 400………………………………………….. (3b ) 

( iv ). For Vi = R and Rw  = 1173  

1y  = w ( x  + d ( p , R)) and y2 = w (c ( p , q ) – x  + d( q , R))  

y1 = 1173( x +475) and y2 = 1173(780 - x ) 
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At the kink 1173( x +475) = 1173(780 - x ) thus x  =152.5. We have the following equations;             

1y    = 1173( x + 475),          0 ≤ x ≤ 152.5…………………………………………. (4a) 

1y    = 1173(780- x ),          152.5≤ x ≤ 400…………………………………………. (4b) 

( v ). For Vi = I and Iw = 1144 

1 ( ( , ))y w x d p I= +  and  2 ( ( , ) ( , ))y w c p q x d q I= − +  

y1 = 1144( x  + 685) and y2 = 1144(740 – x ) 

At the kink point, 1144( x  + 685) = 1144(740 – x )⇒  x  = 27.5. We have the following 

equations; 

            y1 = 1144 ( x + 685),      0 ≤ x  ≤27.5 ………………………………………………. ( 5a) 

            y2 = 1144 (740- x ),      27.5 ≤ x  ≤400 ………………………………………………. (5 b) 

( vi ). When Vi = B and Bw = 1280  

1 ( ( , ))y w x d p B= +  and 2 ( ( , ) ( , ))y w c p q x d q B= − +  

y1 = 1280 ( x  + 1325) and y2 = 1280(1790 – x ). 

 At the kink point, 1280 ( x  + 1325) = 1280(1790 – x ). Thus x  = 232. We have the following 

equations; 
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               1y  = 1280 ( x  + 1325)       0 ≤ x  ≤ 232.5 ……………………………………… ( 6a ) 

               2y  = 1280 (1790- x )       232.5 ≤ x  ≤ 400……………………………………… ( 6b ) 

( vii ).For Vi = G  and Gw = 967  

1y  = 
1 ( ( , ))y w x d p G= + and 

2 ( ( , ) ( , ))y w c p q x d q G= − +  

y1 = 967( x  + 1631) and y2 = 967(2096 – x ). 

 At the kink point, 967( x  + 1631) = 967(2096 – x ). Thus x  = 232.5. We have the following 

equations; 

             1y  = 967( x  + 1631),      0 ≤ x  ≤ 232.5……………………………………..………. ( 7a ) 

           2y  = 967 (2096- x )       232.5 ≤ x  ≤ 400…………………………………………… ( 7b ) 

We plot the graphs of equation (1) - (7) as shown in figure 2.0. We construct the upper envelope 

as the maximum y-value on a graph for each point of x : 
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. 

Figure 2.0: Edge (A, U) for year 1 

From the figure 2.0 above, the local center of edge (A, U) for year 1 (S1) is x
* 

= 0 and the cost is 

(m x *) = 1,696,000
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Location of local centre for year 2( 2S )
 

Figure 2.1 below show the plot and upper envelop for edge (A, U) under year 2. 

 

Figure 2.1: Edge (A, U) for year 2 

From figure 2.1 above, the local centre of edge (A, U) for year 2 (S2) is x
* 

=0 and the cost is 

(m x *) = 1,733,753
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Location of local centre for year 3( 3S ) 

Figure 2.2 below show the plot and upper envelop for edge (A, U) under year 3. 

 

Figure 2.2: Edge (A, U) for year 3 

From figure 2.2 above, the local center of edge (A, U) for year 3 (S3) is x
* 

= 0 and the cost is 

(m x *) = 2,265,459 

3.2 CALCULATIO� OF REGRETS 

The three upper envelopes of year 1, year 2 and year 3 with respect to edge (A, U) are plotted on 

a single graph which is used to compute the regret for the given edge. Figure 2.3 below is a plot 

of the three upper envelops for the edge. 
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Figure 2.3: combination of upper envelopes for edge (A, U) 

  

From figure 2.3, we identify the break points and their y-values as;  

Table (i) for Year 1 

X Values−  Y Values−  

0 1,696,000 

232.5 1,993,600 

400 1,779,200 
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Table (j) for Year 2  

X Values−  Y Values−  

0 1,733,753 

150 1,893,203 

232.5 1,990,485 

300 1,904,220 

400 1,802,848 

 

Table (k) for Year 3 

X Values−  Y Values−  

0 2,265,459 

232.5 2,588,401.5 

400 2,355,744 

 

For each basic interval [ , ]t a b∈  and the given year (
1 2 3, ,S S S ), we have; 

( )s

eD t = ( )s

eD a  + 
( ) ( )s s

e eD b D a

b a

−

−
( t - a ) ∀ [ ,a b ]……………………………………………….. (i)                              

( )s

eD b = ( )s

eD a + 
( ) ( )s s

e eD c D a

c a

−

−
( b a− ) ∀∈[ ,a b ]………………………………………….. (ii)                                               

Re (t) = ( )s

eD t  – ( )s s

eD x∗ ………………………………………………………………… (iii) 
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Regret for year 1( 1S ) for basic interval [0,150]t =  

Consider year 1,  

t  ∈ ( t 0, t 1), t 0 ∈year 1 and t 1 ∈year 2. 

  Let t c=  be the next breakpoint of ( 1S ) such that  a<b<c   then from equation (ii) we have; 

1( )eD b = 1( )eD a + 
1 1( ) ( )e eD c D a

c a

−

−
( b a− ) 

1

1( )eD t = 1

0( )eD t +
1 1

2 0

2 0

( ) ( )e eD t D t

t t

−

−
( 2 0t t− ) 

           = 1,696,000+ 
1,993,600 1,696,000

232.5 0

−

−
(150 0− ) 

             = 1,888,000 

                             

Thus from equation (i), 

1( )eD t = 1

0( )eD t + 
1 1

1 0

1 0

( ) ( )e eD t D t

t t

−

−
 ( t - t 0)        

1( )eD t = 1,696,000+ 
1,888,000 1,696,000

150

−
 ( t -0)                         

           = 1,696,000 +1280( t ) 

1( )eR t = 1( )eD t  – 1 1( )eD x∗  

           = 1,696,000 + 1,280( t ) – 1,696,000 

1( )eR t  = 1,280( t ) …………………………………………………….. ( a ) 

Regret for year 2( 2S ) for basic interval [0,150]t =  

Consider year 2, 0t   ∈year2 and 1t  ∈ year 2. The regret is; 
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 2( )eR t = 1,711.55( t ) ……………………………………………………. (b ) 

For year 3( 3S ), t  ∈ ( t 0, t 1), t 0 ∈year 3 and t 1 ∈year 2. Following the procedure used for the 

regret for year 1, we have the regret for year3 as;  

3( )eR t = 1,289 t ……………………………….…………………………(c) 

The regrets for the remaining subinterval of edge (A, U) are computed as above with the results 

shown 3.4 and table 3.5 below. 

Table 3.4 below is a summary of computation of the entire breakpoints for edge ( ,A U ) 

Table 3.4: Regret equations for subintervals of edge ( ,A U ) 

 Subintervals    

 [0,150] [150, 232.5] [232.5, 300] [300,400] 

Year 1 1,280 t  1,280 t  595,200 - 1,280 t  595,200 - 1,280 t  

Year 2 1,711.55 t  -40,403 + 1,278 t  553,867 – 1,278 t  474,583 – 

1,013.72 t  

Year 3 1,389 t  1,389 t  645,885 – 1,389 t  645,841 – 1,389 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (3.5) below; 

Table ( 3.5 ): Regrets for the subintervals of edge ( ,A U ) 

 0 150 150 232.5 232.5 300 300 400 

Year 1 0 192,000 192,000 297,600 297600 211,200 211,200 83,200 

Year 2 0 256,732.5 151,297 256,732 256,732 170,467 170,467 69,095 

Year 3 0 208,350 208,350 322,942.5 322,942.5 229,185 229,141 90,241 

The maximum regret for year1, year2, year3 is respectively 297,600, 256,732.5 and 322,942.5. 

The minimum of the maximum regrets is 256,732.5 of year 1 and it occurs at 150t =  
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EDGE (Q, A) 

Table 3.6 below is a summary of computation of the entire breakpoints for edge ( , )Q A . 

Table 3.6: Regret equations for subintervals of edge ( , )Q A  

 Subintervals 

 [ 0, 375] 

Year 1 1,280( t ) 

Year 2 1,063( t ) 

Year 3 1,389( t ) 

Substituting the end point values of the interval in the given equations the results are shown in 

table ( 3.7 ) below; 

 

Table ( 3.7 ): Regrets for the subintervals of edge ( , )Q A  

 0 375 

Year 1 0 480,000 

Year 2 0 398,625 

Year 3 0 520,875 

The maximum regret for year1, year2, year3 is respectively 480,000, 398,625 and 520,875. The 

minimum of the maximum regrets is 398,625 of year 2 and it occurs at 375t =  

EDGE ( ,Q R ) 

Table 3.8 below is a summary of computation of the entire breakpoints for edge ( ,Q R ) 

Table 3.8: Regret equations for subintervals of edge ( ,Q R )  

 Subintervals 

 [ 0, 100] 

Year 1 1,280( t ) 

Year 2 1,063( t ) 

Year 3 1,389( t ) 
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Substituting the end point values of the interval in the given equations the results are shown in 

table (3.9) below; 

Table (3.9): Regrets for the subintervals of edge   ( ,Q R ) 

 0 100 

Year 1 0 128,000 

Year 2 0 106,300 

Year 3 0 138,900 

The maximum regret for year1, year2, year3 is respectively 128,000, 106,300 and 138,900. The 

minimum of the maximum regrets is 128,000 of year 1 and it occurs at 100t =  

EDGE ( ,U R )  

Table 4.0 below is a summary of computation of the entire breakpoints for edge ( ,U R ) 

Table 4.0: Regret equations for subintervals of edge ( ,U R )  

 Subintervals  

 [0, 20] [20, 380] 

Year 1 435,200 + 1,280 t  486,400 – 1,280 t  

Year 2 361,420 + 1,063 t  403,940 – 1,063 t  

Year 3 472,260 + 1,389 t  527,820 – 1,389 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (4.1) below; 

Table (4.1):  Regrets for the subintervals of edge   ( ,U R )  

 0 20 20 380 

Year 1 435,200 460,800 460,800 0 

Year 2 361,420 382,680 382,600 0 

Year 3 472,260 500,040 500,040 0 

The maximum regret for year1, year2, year3 is respectively 460,800, 382,680 and 500,040. The 

minimum of the maximum regrets is 382680 of year 2 and it occurs at 20t =  
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EDGE ( ,U I )  

Table 4.2 below is a summary of computation of the entire breakpoints for edge ( ,U I ) 

Table 4.2: Regret equations for subintervals of edge ( ,U I )  

 Subintervals 

 [0, 340] 

Year 1 435,200 – 1,280 t  

Year 2 361,420 – 1,063 t  

Year 3 472,260 – 1,389 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (4.3) below; 

Table (4.3): Regrets for the subintervals of edge ( ,U I )    

 0 340 

Year 1 435,200 0 

Year 2 361,420 0 

Year 3 472,260 0 

The maximum regret for year1, year2, year3 is respectively 435,200, 361,420 and 472,260. The 

minimum of the maximum regrets is 361,420 of year 2 and it occurs at 0t =  

EDGE ( ,R I )  

Table 4.4 below is a summary of computation of the entire breakpoints for edge ( ,R I ) 

Table 4.4: Regret equations for subintervals of edge ( ,R I )  

 Subintervals  

 [0,105] [105, 210] 

Year 1 1,280 t  268,800 – 1,280 t  

Year 2 1,063 t  223,230 – 1,063 t  

Year 3 1,389 t  291,690 – 1,389 t  
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Substituting the end point values of the interval in the given equations the results are shown in 

table (4.5) below; 

Table (4.5): Regrets for the subintervals of edge ( ,R I )  

 0 105 105 210 

Year 1 0 134,400 134,400 0 

Year 2 0 111,615 111,615 0 

Year 3 0 145,845 145,845 0 

The maximum regret for year1, year2, year3 is respectively 134,400, 111,615 and 145,845. The 

minimum of the maximum regrets is 111,615 of year 2 and it occurs at 105t =  

 

EDGE ( ,B G ) 

Table 4.6 below is a summary of computation of the entire breakpoints for edge ( ,B G ) 

Table 4.6: Regret equations for subintervals of edge ( ,B G )  

 Subintervals 

 [0, 306] 

Year 1 1,836 t  

Year 2 1,811 t  

Year 3 1,925 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (4.7) below; 

Table (4.7): Regrets for the subintervals of edge ( ,B G )  

 

 

0 306 

Year 1 0 561,816 

Year 2 0 554,166 

Year 3 0 589,050 



 

65 

 

The maximum regret for year1, year2, year3 is respectively 561,816, 554,166 and 589,050. The 

minimum of the maximum regrets is 554,166 of year 2 and it occurs at 306t =  

EDGE ( ,I B ) 

Table 4.8 below is a summary of computation of the entire breakpoints for edge ( ,I B ) 

Table 4.8: Regret equations for subintervals of edge ( .I B )  

   Subintervals 

 

  

 [0,120] [120,240] [240,280] [280,370] [370,1050] 

Year 

1 

264,828-

1,280 t  

222,456-

926.9 t  

-436,406.4+1,818.36 t  -436,403.78+1,818.35 t  -436,403.28+1,818.35 t  

Year 

2 

297,640-

1,063 t  

297,640-

1,063 t  

297,640 – 1,063 t  -534,396.8 +1,908.56 t  -482,112.28+1,767.25 t  

Year 

3 

513,930-

1,389 t  

513,930-

1,389 t  

513,930 – 1,389 t  513,930 – 1,389 t  -710,696 +1,920.8 t  

Substituting the end point values of the interval in the given equations the results are shown in 

table (4.9) below; 

 

Table (4.9): Regrets for the subintervals of edge ( .I B ) 

 0 120 120 240 240 280 280 370 370 1050 

Year1 264,828 111,228 111,228 0 0 72,734.4 72,734.22 236,385.72 236,386.22 1,472,864.22

Year 

2 

297,640 170,080 170,080 42,520 42,520 0 0 171,770.4 171,770.22 1,373,500.22

Year 

3 

513,930 347,250 347,250 180,570 180,570 125,010 125,010 0 0 1,306,144 



 

66 

 

The maximum regret for year1, year2, year3 is respectively 1,472,864.22, 1,373,500 and 

1,306,144. The minimum of the maximum regrets is 1,306,144 of year 3 and it occurs at 

1050t =  

EDGE ( ,Q B )  

Table 5.0 below is a summary of computation of the entire breakpoints for edge ( ,Q B ) 

Table 5.0: Regret equations for subintervals of edge ( ,Q B )  

 Subinterval      

 [0,70] [70,120] [120,165] [165,245] [245,930] [930,950] 

Year 1 117,488-

1,280 t  

66,931.2-

557.76 t  

1,839 t -

220,777.2 

1,839.81 t -

220,779.09 

1,839.81-

220,776.91 

3,197,728-

1,836 t  

Year 2 175,395-

1,063 t  

143,827.1-

612.03 t  

258,073.09-

1564.08 t  

1,821.93 t -

300,618.45 

1,821.93 t -

300,618.39 

3,078,007-

1,811 t  

Year 3 340,305-

1,389 t  

340,292.4-

1,388.82 t  

340,305-

1,389 t  

340,305-

1,389 t  

1,912.34 t -

468,530.65 

3,100,221-

1,925 t  

 

Substituting the end point values of the interval in the given equations the results are shown in 

table (5.1) below; 

Table (5.1): Regrets for the subintervals of edge ( ,Q B )  

 0 70 70 120 120 165 165 245 245 930 

Year 

1 

117,488 27,888 27,888 0 0 82,791.45 82,791.56 229,979.36 229,976.54 1,490,246.39 

Year 

2 

175,827.10 100,985 100,985 70,383.5 70,383.49 0 0 145,754.4 145,754.46 1,393,776.51 

Year 

3 

340,305 243,075 243,075 173,634 173,625 111,120 111,120 0 0 1,309,945.55 
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The maximum regret for year1, year2, year3 is respectively 1,490,248, 1,393,777 and 1,309,971. 

The minimum of the maximum regrets is 1,309,971 of year 3 and it occurs at 930t =  

Minimax Regret 

To find the solution to the thesis problem, we compare all the regrets for the given edges and the 

most minimum becomes the solution to our problem. The values of the minimum of the 

maximum regret ( eR ) on the various edges of the above network are listed in table (5.3) below; 

Table (5.2): Values of the minimax regrets 

eR ( , )Q A  eR ( , )A U  eR ( , )U R  eR ( , )Q R  eR ( , )U I  eR ( , )R I  eR ( , )Q B  eR ( , )I B  eR ( , )B G  

398,625 256,732.5 382,680 128,000 361,420 111,615 1,309,771 1,306,144 554,166 

 

The minimum value is eR ( , )R I = 111,615. From tables 4.5 and 4.6, this occurs under year 2( 2S ) 

on the edge. The robust centre is the point on edge ( ,R I ) at a distance 105x∗ =  from R .  

From figure 2.4 of edge ( ,R I ) under year 2( 2S ) below, the weighted distance is 1,553,043m 

Thus the solution is 105x∗ =  from vertex R  on edge ( ,R I ) with weighted distance of 

1,553,043m. 
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Figure 2.4: Edge R,I for year 2 
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CHAPTER 4 

 CO�CLUSIO� 

A suitable location for the student clinic should be between Republic Hall and Independence 

Hall, precisely 105m from Republic Hall at a weighted distance of 1,553,043m.  

Aidoo (2008) located a Fire Hydrant between Independence Hall and the Administration block 

precisely 88m from Independence Hall without considering the demography of the students. His 

model was based on Absolute 1-Centre problem. 

The use of Robust Analysis considers student demography and takes into account the planned 

student population in the halls and makes the location suitable for the demograph of students in 

the halls. 

We therefore recommend this site as the best cite to locate a student clinic with an ambulance 

facility.  

4.1 RECOMME�DATIO�S 

We recommend to the University Authorities to put up a permanent student clinic with an 

ambulance fully equipped with facilities and medical officers at our identified location. 

We recommend the use of Robust Centre method in planning the siting.  

. 
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APPE�DIX A 

 (A) function [floyd_mat,pred_mat,thepath]=floyd_warshall(A,thestart,theend) 

% A - This is the Floyd Matrix 

%--Keep a copy of the ending node 

new_theend=theend; 

[r c]=size(A); 

pred_mat=[]; 

if nargin<3 

    disp('You need to enter STARTING and ENDING node for ROUTE') 

elseif or(thestart,theend)>r 

    disp('Non-existent node has been entered') 

elseif or(thestart,theend)<0 

    disp('Nodes can only be positive') 

else 

        %This is for the Pre Mat 

        for i=1:r 

            for j=1:r 

                if A(i,j)~=0 

                    pred_mat(i,j)=i; 

                else 

                    pred_mat(i,j)=0; 
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                end 

            end 

        end 

        %Floyd-Warshall starts its work here 

        for k=1:r 

            for i=1:r 

                for j=1:r 

                   if (A(i,k)+A(k,j))<A(i,j) 

                       A(i,j)=A(i,k)+A(k,j); 

                       % We are improving the predecessor matrix 

                       pred_mat(i,j)=pred_mat(k,j); 

                   end 

                end 

            end 

        end 

        floyd_mat=A; 

        thepath=[]; 

        count=1; 

        while(thestart~=theend) 

            thepath(count)=pred_mat(thestart,theend); 

            theend=pred_mat(thestart,theend); 
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            count=count+1; 

        end 

        thepath=fliplr(thepath); 

end 

% Let us add the last figure in the route 

thepath(end+1)=new_theend; 

% We are working on the number of output arguments 

%  

% if and(nargin==1,nargout>1) 

 %     disp('Only one output argument must be entered') 

% end 
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APPE�DIX B 

 Graphs of combined upper envelop for given network. 

1.0 Edge Q, A 

 

Figure 2.5. Combined Upper envelop for edge Q,A 

2.0 Edge A, U 
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Figure 2.6. Combined upper envelop for edge A, U 

3.0 Edge Q, R 

 

Figure 2.7. Combined upperenvelop for edge Q,R 

4.0 Edge U, R 
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Figure 2.8 Combined upper envelop for edge U,R 

5.0 Edge U, I 

 

Figure 2.9 Combined upper envelop for edge U,I 

6.0 Edge R, I 

 

Figure 3.0 Combined upper envelop for edge R,I 
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7.0 Edge B, G 

 

Figure 3.1 combined upper envelop for edge B,G 

8.0 Edge I, B 

 

Figure 3.2 combined upper envelop for edge I,B 
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9.0 Edge Q, B 

 

Figure 3.3 Combined upper envelop for edge Q,B 
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