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ABSTRACT 

This research work presents a case study of the School Bus Routing Problem (SBRP). The main 

objective involves optimizing the total transportation cost by reducing the total lengths of tour 

made by all buses at the Woodbridge School Complex. The problem is formulated as an Integer 

Programming Model and solution is presented via the Ant Colony Based Meta-heuristic for the 

Travelling Salesman Problem. Data on distances were collected from potential picking points 

and with a Matlab implementation codes, results are obtained. In comparison with the existing 

routing system at Woodbridge School Complex, the results evince the outperformance of the Ant 

Colony algorithm in terms of efficiency. In fact, the Ant Colony results reveal a tremendous 

improvement in the total route length by approximately 33%.   
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CHAPTER 1 

INTRODUCTION 

1.1  BACKGROUND OF THE STUDY 

In the Sekondi-Takoradi Metropolis of the Western Region of Ghana, it has become a distinct 

feature of most private schools to provide transportation service for their students to and from 

their various schools. Unlike in the advanced countries where most of the School Bus 

Transportation Services (SBTS) are ran by public transports (Bowerman, Hall and Calamai, 

1995). In Ghana and for that matter Sekondi-Takoradi, school transportation service, in most 

private schools, are executed using school buses provided for the purpose. It is hard to believe 

that most parents would rather have their wards patronize services executed by taxi drivers or 

other private transport operators, regardless of the fact that relatively low fees are charged by 

schools in running transportation services for students. 

In trying to find answers to questions that pertains low patronage, any operation researcher 

would question the degree of efficiency, effectiveness and equity of transportation services that 

private schools run in Sekondi-Takoradi. A sober reflection, from investigation, revealed that all 

the systems on which most of the private schools base their transport services, have no scientific 

basis. This culminated to the inefficient scheduling of school buses to routes or inefficient 

assignment of students to picking points. 

The task of finding an efficient route is an important logistic problem (Bell and McMullen, 

2004). When a school is able to reduce the length of its delivery route then it is able to provide 

better services to student. A typical school bus routing problem includes simultaneously 
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determining the routes for several vehicles from a given school to students and returning to the 

school without exceeding capacity. 

This thesis seeks to analyze the efficiency of school bus transportation service using Woodbridge 

School Complex as a case study. Savas (1978) outlined efficiency, effectiveness and equity as 

performance criteria for the provision of school bus transportation services. According to him, 

efficiency measures the ratio of the level of service to the cost required to provide the service. 

The level of service required in providing an efficient school bus routing is fixed for a particular 

situation, hence the main variable in determining the efficiency of a particular solution is the 

total cost of providing the service in currency units or manpower. Therefore, the efficiency of a 

solution can be measured by its cost (Bowerman, Hall and Calamai, 1995). In this instance, the 

problem involves finding the minimum cost of the combined routes for a number of vehicles in 

order to connect students from the school to a number of locations. Since the cost is directly 

related to the distance, the school might attempt to find the minimum distance covered by its 

number of buses in order to satisfy demand. In doing so the school management attempts to 

minimize cost while increasing or at least maintaining a standard or quality service to students.  

It is important to remind readers of the fact that so many research efforts have been geared 

towards this course. Thus, there exist a whole lot of mathematical models for the School Bus 

Routing Problem (SBRP) but all these models have their basis from the standard Vehicle 

Routing Problem (VRP). It is not the aim of this work to come out with a new model but to 

analyze a real- life situation by applying a model of SBRP. For the purpose of this work, SBTS 

will be formulated as single objective problem and application centered on the one developed by 

Patrick Schittekat, Marc Sevauz and Kenneth Sorensen. Unlike in most problems where bus 

routing formulations involve a given set of bus stops and each connected by a given set of routes, 
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here, a set of potential bus stops are identified. Determining the set of stops to actually visit is a 

part of the problem formulation. Similar to their work, the real-life situation, as exists in 

Woodbridge School Complex, is a single School with five (5) school buses. Apart from the fact 

that the buses are of different capacities (as against their instance), this problem will also be 

solved using the Ant Colony heuristics for SBTS. 

1.2  PROFILE OF WOODBRIDGE SCHOOL COMPLEX AND ITS BUS SYSTEM 

The year 1996 marks the opening of Woodbridge School Complex. It is located at Race Course, 

North Apremdo, near Asakae, Takoradi. Though profit oriented, it was established to provide 

first class education to children in Sekondi-Takoradi and its catchment areas. The population of 

the school is 1100. It is currently ranked as first class private school. 

SBTS of the school started since its inception. The school started the operation of the SBTS with 

a 9 passenger bus. As the population begun to grow the 9 passenger bus was replaced by a 16 

passenger bus; later a 33 passenger bus was purchased in place of the previous one as it became 

too small and very weak for the service. Followed by this was an additional 19 passenger bus to 

supplement the former. The population of the school experienced a remarkable increase in 2006, 

2007and 2008. In response to this increase, 45, 45 and 60 capacity buses, respectively, were 

procured in order to render what they call effective service. All these buses are in operation up to 

date. 4 out of these 5 operate on regular basis whilst 5 (a 45 capacity) serves as a stand-by bus. 

240 out of a total of 1100 patronize the SBTS. There are about 84 potential bus stops for all these 

buses. The 33 passenger bus (3) visits about 23 potential bus stops as it sets off from the school. 

The 19 capacity bus (4) visits about 14, while the 45 capacity bus (2) visits 30 potential stops and 

the 60 capacity bus (1) visits about 16 potential bus stops. On the average, all buses are expected 
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to leave the school around 530 am and return at 730 before morning lessons begin. Lateness 

sometimes occur under two circumstances. First, it occurs when customers on one hand wait for 

unreasonably long hours at their various picking points. Secondly, lateness occurs when buses on 

the other hand, wait for customers at various picking points. Some buses visit some stops more 

than once. Details about the buses and their tour (Ant sketches) can be seen in Appendix A  

Customers (students) are charged on daily basis and customer pays an amount of 70 Ghana 

pesewa for SBTS. On the average, this is comparatively lower than that charged by other private 

transport operators (i.e. taxi, trotro, etc). 

Management outlined low patronage, high cost of servicing buses, high cost of spare parts, 

unavailability of genuine parts, poor nature of roads linking stops, etc. as major set-backs of 

operation. 

1.3  STATEMENT OF PROBLEM 

 Transporting students to and from school is highly recognized in modern societies; hence its 

relevance cannot be underestimated. More schools are springing up as the campaign on Free and 

Compulsory Basic Education is on the ascendance to its apex. Following this, many people are 

getting their children of school going age ready for school. For every school, there is a 

geographical distribution of students‘ locations around the given school. Thus, not all length of 

distances between a given school and location of students‘ homes can be considered as walking 

distances for every student. More so, the chaotic traffic jam on our roads in recent times does not 

favour parents who personally drive their children to school before going to work. It is for the 

above and other reasons that transportation service for school children has become necessary. In 

the Sekondi-Takoradi Metropolis, a feature that distinguishes private schools from public ones is 
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the provision of transportation service for their students. It now behooves on parents to decide 

whether their wards go to school in school buses or engage the services of taxi drivers if they 

cannot personally drive their wards to school. This decision will definitely be influenced by the 

overall assessment of the level of transportation services in terms of cost, satisfaction, total riding 

time and time of arrival of all buses at their origin. 

A closer observation has revealed that the transportation service at Woodbridge School Complex 

suffers low patronage regardless of the fact that service charge per student is comparatively low. 

It is evident that total daily fuel consumption of all buses is too high as a result of abnormally 

long lengths of routes covered by all buses. It is this component of cost that over increases the 

daily operation cost of transportation service and culminates to losses. The deficit Woodbridge 

School Complex incurs in her transport operations makes her unable to buy new buses, 

effectively repair or service faulty buses or replace those ones that are considered dilapidated. 

Now the problem to grapple with, involves optimizing total cost of transport operation by 

reducing the total lengths of tour made by all buses. Providing a desired solution to the routing 

problem at Woodbridge School Complex forms the core of the objectives of this research whose 

areas of interests are summarized as follows:  

i. Formulation of a mathematical model that takes into account the actual distances between 

various picking points of the respective buses 

ii. Determining the optimal route for each of the buses 

iii. Selection of bus stops from a given number of potential bus stops 

The statement is not far from the fact that finding solution to the above problems reflects the 

objective of this research. 
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1.4  OBJECTIVES 

This research is centered on analyzing the SBTS in Woodbridge School Complex. The objectives 

include: 

i. To formulate of a mathematical model that takes into account the actual distances 

between various picking points of the respective buses 

ii. To determine the optimal route for each of the buses 

iii. To select bus stops from a given set of potential bus stops 

1.5  METHODOLOGY 

This section discusses data collection and solution methods. 

The data collected from the school is purely primary and quantitative in nature. The researcher 

personally gathered the information via observation and interview of personnel in charge of 

transport. Data on the number of buses, student population of the school, number of students that 

patronize the school bus and number of potential bus stops were obtained through personal 

interview. Moreover, observation technique was also employed to enable the researcher have a 

clear picture of the locations of various potential bus stops and their distances from one to the 

other, given that they are on the same routes. Distances measured from one bus stop to another 

(according to the order of movements of respective buses) were converted into Cartesian 

coordinates, which gave rise to the distance matrix (see Appendices B). With regard to the 

solution method, SBTS will be formulated as single objective problem in order to adopt simple 

but efficient technique that mirrors the structure of the problem. Since this is a combinatorial 

problem, the solution grows exponentially with the number of variables. Consequently, no exact 

algorithm exists for SBTS. That notwithstanding, SBTS will be formulated as an Integer 
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Programming (IP) and the Ant Colony Optimization (ACO) Heuristics for SBTS will be used 

and the result tested with real-life data from Woodbridge School Complex. ACO simulates the 

behaviour of ants as they forage for food and find the most efficient routes from their nest to 

food source. The decision making process of ants are embedded in the artificial intelligence (AI) 

algorithm of a group of virtual ants which are used to provide solution to the VRP (Bell and 

McMullen, 2004). Bell and McMullen established in their paper that the performance of ACO is 

competitive with other techniques used to generate solutions to the VRP. Dorigo and 

Gambardella (1997) also concluded in their work that ACO out-performs other nature-inspired 

algorithms such as simulated annealing and evolutionally computation. Last but not least, 

Abounacer et al., (2009) came out with the conclusion that ACO performs better than Genetic 

Algorithm (GA) in terms of cost calculations. However, the performances of both techniques in 

determining the number of vehicles, required for a given set  of students, are the same. Since 

the objective function of this thesis is centered on minimizing the total routes length, which 

reflects the cost of service, the researcher finds it justifiable to adopt ACO technique. 

1.6  JUSTIFICATION 

The bus routing systems used by almost every private school in the Sekondi-Takoradi Metropolis 

are non-scientific. It is therefore believed that when the research is successfully completed and 

recommendations well considered, Woodbridge School Complex will adopt a standard 

mathematical model for her SBTS. 

1.7 SIGNIFICANCE OF THE STUDY 

The results of this scientific-based transportation system may be of significance in the following 

ways as stated below. 
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i. It will impact positively by reducing the cost of running transport services in the school.  

ii. Constructing an efficient route could also lead to improvement in the level of customer 

satisfaction.  

iii. It could also lead to improvement in students‘ performance since efficiency is closely 

related to punctuality and reduction of stress, which would have resulted from increased 

waiting time and long time spent in buses (Abounacer, et al., 2009). 

iv. Other schools could also use the model as a basis to improve their SBTS. It will also 

become the building block for improvement in the services of public transport as well as 

that of other transport service providers. 

v. When this problem is well addressed and the system adopted and improved countrywide, 

Ghana‘s national output will increase since a reduction in total lateness will increase the 

average number of hours per the Ghanaian worker. 

1.7  LIMITATIONS 

This research was limited to only one school linked up by so many routes. The school serves as 

the central depot and each route starts and ends at the depot. This choice of the researcher is 

justified by the fact that in Sekondi-Takoradi, it is very rare to have one bus serving at least two 

different schools, though these schools might be on the same route. Woodbridge School 

Complex was chosen because the problem there conforms to the nature of problem the researcher 

wanted to investigate –that is buses with different capacities. 

Like any other academic research, this work was not without constraints. Time and cost posed 

many challenges. The entire research was to be completed within a given time period. However, 

time is needed sufficiently well enough for reviewing literature, understanding methodologies, 
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testing alternative algorithms to select efficient ones, etc. The limited time at the researcher‘s 

disposal lead to few items being reviewed as literature. The quality of data depends not only on 

the amount of time one spends in gathering them but partially on how much money one is 

prepared to spend in gathering them. This work would have considered the routing systems of a 

given number of schools but the limitations imposed by time and cost influenced the researcher‘s 

decision to concentrate on a single school.  

The researcher also encountered certain difficulties in connection with data collection. The 

nature of this study requires the researcher to collect data on distances from one bus stop to the 

other for all four buses. Other information, like the angle at a particular point with reference to a 

given geographical direction, etc. are required. Getting a reliable and an efficient measuring 

instrument did not come with ease. This actually delayed the timely completion of the work. 

1.8  ORGANIZATION 

The entire organization of this thesis comprises five chapters. 

Chapter 1 (Introduction) provides information on the background of the study. It also throws 

light on the problem statement and objectives of the study, methodology, justification, 

limitations and organization. 

Chapter 2 (Literature Review), reviews related works of some authors and summarizes the 

Performance Criteria for Providing SBTS. 

Chapter 3 (Methodology) presents the description and mathematical formulation of the problem 

(i.e. the model) with the underlying assumptions. Chapter 4 presents the data collection and 
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analysis. Finally, Chapter 5 is made up of discussions of results, conclusions and 

recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0  INTRODUCTION 

This work, SBTS is a real-life application of the standard VRP to solving contemporary routing 

problems in Sekondi-Takoradi, a district in the western region of Ghana. Following the basis of 

this model, this section is devoted to review literature of related works by some researchers. It 

also summarizes the criteria for assessing the performance of a school bus transportation service. 

2.1  LITERATURE ON RELATED WORKS 

Schowenaars et al., (2009) presented a new approach to fuel optimal path planning for multi 

vehicle using combination of LP and IP. The basic problem formulation was to have the vehicles 

moving from initials dynamic state to a final state without colliding with each other, while at the 

same time avoiding other stationary obstacles. They showed that the problem could be rewritten 

as a linear program with mixed integer program linear constraints that account for the collision 

avoidance. The problem was solved using the CPLEX optimizatice software with an 

AMPL/Matlab interface.          

Ibraki et al., (2001) introduced a vehicle Routing problem with general time constraints. The 

problem was to minimize the sum of the distances travelled by a fixed number of vehicles which 

visit every customer under capacity and time window constraints. The time window constraint 

was treated as a penalty function, which can be non- convex and discontinuous as long as it is 

piecewise linear function. First they fixed the order of customers to visit and proceeded to 

determine the optimal start times to serve customers so that total time penalty of the vehicle is 

minimized. They proved how the problem could efficiently be solved using dynamic 

programming which was incorporated into the local search algorithms, In the local search, in 
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addition to standard neighborhoods, they employed a new type of neighborhood called the cyclic 

exchange neighborhood, whose size generally growths exponentially  with the input size. This 

difficulty was conquered by finding an efficient heuristic to find an improved solution in the 

cycle exchange neighborhood via the improvement graph. The computation results revealed 

good prospects for the proposed algorithms. 

 Sue (1994) studied the problem of permutation routing and sorting on several model of meshes 

with fixed and reconfigurable row and column buses. He described two fast and fairly simple 

deterministic algorithms for permutation routing on two-dimensional networks and a more 

complicated algorithms for multi-dimensional networks. The algorithms were obtained by 

converting two known off-line routing schemes into deterministic routing algorithms which can 

be implemented on a variety of different models of meshes with buses. A deterministic algorithm 

for 1-1 sorting whose running time matches that for permutation routing, and another algorithm 

that matches the bisection lower bound on reconfigurable networks of arbitrary constant 

dimension, were introduced. 

 Bowerman, et al., (1995) proposed a new heuristic for urban school Bus Routing. The problem 

was formulated as a multi-objective model and a heuristic based on this formulation is 

developed. The study involves two interrelated problems. One has to do with the assignment of 

students to their respective bus stops and the second has to do with routing of buses to the bus 

stops. A problem of these characteristics is a location-routing problem. The nature of the 

formulation made it possible to organize their study into three layers, where layer one is the 

school, layer two is the bus stops and layer three the students. School buses routes cause 

interaction between layers one and two, while movements of student cause interaction between 

layers two and three. The heuristic approach to this problem involves two algorithms which 
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catered for the multi-objective nature of the model. The first is a districting algorithm which 

groups students into clusters to be serviced by a unique school bus route. The second is a routing 

algorithm, which generates a specific school bus route that visits a sub set of potential bus stops 

sites.  

Bell and McMullen (2004) applied a meta-heuristic method of ant colony optimization (ACO) to 

establish a set of vehicle routing problems. They modified the ACO algorithm used to solve the 

traditional traveling salesman problem (TSP) in order to allow the search of multiple routes of 

the vehicle routing problem (VRP). Experimental results exhibited the success of the algorithm 

in finding solution within 1% of known optimal solution. The usage of multi ant colonies 

provides a comparatively competitive solution technique especially for larger problems. Also the 

size of the candidates list used within the algorithm became a significant factor in finding 

improved solution. The computational times for the algorithm compared favourably with other 

solution methods. 

Dorigo and Gambardella (1997) introduced ant colony systems (ACS) to the TSP. In order to 

understand the operation of the ACS, experiments were conducted and the results showed that 

ACS outperforms other nature-inspired algorithms such as simulated annulling and evolutionary 

computations. They concluded by comparing ACS-3-opt, a version of ACS augmented with a 

local search procedure to some of the best performing algorithms for symmetric and asymmetric 

TSP‘s 

Lenstra et al., (1988) under took a survey of solution method for routing problems with time 

window constraints. The problem they considered include the travelling salesman problem, 

vehicle routing problem, pickup and delivery problem and the dial-a-ride problem(DARP). They 

implemented optimization algorithms that use brand and bound, dynamic programming and set 



 14 

partitioning and approximation algorithms based on construction, iterative improvement and 

incomplete optimization. 

Kontoravdis and Bard (1995) proposed a greedy randomized adaptive search procedure 

(GRASP) to VRP with time window. The objective was to address the problem of finding the 

minimum number of vehicles required to visit a set of node subject to time window constraints. 

They also considered a secondary object centered on minimizing the total distance travelled. 

Feasible solution obtained from GRASP for standard 100 modes data set as well as for a number 

of real –world problems with up to 417 customers. Experimental results revealed that their 

proposed procedure out performs techniques existing at the time and requires only a small 

fraction of time taken by exact method. They gauged the quality of solutions by applying three 

different lower bounding heuristics. The first considers the ―bin parking‖ aspect of the problem 

with respect to vehicle capacity; the second is based on the maximum clique associated with 

customers‘ incompatibility; the third exploits the time window constraints. 

Corberán et al., (2002) addressed the problem of routing school buses in rural areas. They 

approached this problem with a node routing model with multiple objectives that arise from 

conflicting viewpoints. From the point of view of cost, the number of buses used to transport 

students from their homes to school and back is minimized. From the service viewpoint, they 

minimized the time that a given student spend on route. The multi-objective employs a weighted 

function to combine individual objective functions into a single one. They developed a solution 

procedure that considered each objective separately and searched for a set of efficient solution 

instead of a single optimum. Their solution procedure is based on construction, improving and 

then combining solutions within the frame work of the evolutionary approach known as scatter 

search. 
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Schittekat, et al., (2006) formulated the school bus routing problem using a single objective 

integer programming model VRP by introducing several other interesting additional features. 

They considered a set of potential stops as well as a set of students who can walk to one or more 

of these potential stops. The goal of their routing problem is to select a subset of stops that will 

actually be visited by the buses; determine which stops each student should walk to; and develop 

a set of tours that minimize the total distance travelled by all buses. The problem was solved 

using a commercial integer programming solver and results on small instances were discussed. 

Fisher (1981) implemented a Lagragian Relaxation Method for solving integer programming 

with many side constraints. He considered the dual of the side constraints to obtain a Lagragian 

problem that is easy to solve and whose optimal value is a lower bound (for a minimization 

problem) on the optimal value of the original problem. The Lagragian has led to dramatically 

improved algorithms for a number of important problems in areas of routing, location, 

scheduling, and assignment and set covering. 

Marius (1985) designed and analyzed algorithms for vehicle routing and scheduling problems 

with time window constraints. He described a variety of heuristics and conducted an extensive 

computational study of their performance. The problem set include routing and scheduling 

environment that differ in terms of the type of data used to generate the problem, the percentage 

of customers with time windows, their tightness and positioning and the scheduling horizon. The 

observation made was that several heuristics performed well in different problem environ; in 

particular, an insertion-type heuristics consistently gave very good results.  

Desrochers, et al., (1991) proposed the development of a new optimization algorithm for the 

solution of VRPTW. They solved the LP relaxation of the set portioning formulation of the 

VRPTW by column generation. By this, feasible columns are added as required by solving a 
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shortest path problem with time window and capacity constraint using dynamic programming. 

The LP solution obtained generally provides an excellent lower bound that is used in a branch-

and-bound algorithm to solve integer set partitioning formulation. Their results indicate the 

success of the algorithm on a variety of practicalized benchmark VRPTW test problems. The 

algorithm was capable of optimally solving a 100 customer problems. This problem size is six 

times larger than any report presented by other published research prior to 1990.  

Swersey and Ballard (1984) presented a work on scheduling of school buses. With the 

scheduling situation considered here, a set of routes each associated with a particular school is 

given. A single bus is assigned to each route to pickup students and arriving at their school 

within a specific time window. The problem includes finding the fewest buses needed to cover 

all routes whiles meeting the time window specifications. They presented two integer 

programming formulations of the scheduling problem and applied them to actual data from New 

Heaven, Connecticut for two different years as well as to 30 randomly generated problems. 

Linear programming relaxation of the integer programs was found to produce integer solutions 

more than 75% of the time. In the remaining cases, they observed the few functional values can 

be adjusted to integer values without increasing the number of buses needed. Their method 

reduces the number of buses needed by about 25% compared to the manual solutions developed 

by the New Heaven school bus scheduler. 

Li and Fu (2002) presented a case study of the bus routing problem. It is formulated as a multi-

objective combinatorial optimization problem. The objectives include minimizing the total 

number of buses required, the total travel time spent by all pupils at all pick-up points and the 

total bus travel time. They also aimed at balancing the loads and travel times between the buses. 

They proposed a heuristic algorithm, which was programmed and run efficiently on a PC. 
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Numerical results were reported using test data from a kindergarten in Hong Kong. This proved 

to be effective as it save 29% of total travelling times when compared the system under practice.   

Tillard et al., (1997) described a tabu search heuristic for the vehicle routing problem with soft 

time windows. This problem allows lateness at a customer location although a penalty is incurred 

and added to the objective value. In the tabu search, a neighbourhood of the current solution is 

created through an exchange procedure that swaps sequences of consecutive customers 

(segments) between routes. The tabu search also exploits an adaptive memory that contains the 

routes of the best previously visited solutions. New starting points for the tabu search are 

produced through combination of routes taken from different solution found in this memory. 

They reported many best known solutions on classical test problems.   

A bounacer et al., (2009) proposed a two population meta-heuristics to the professional staff 

transportation problem (PSTP). PSTP has to do with building the vehicle routing for transporting 

staff of one or several companies in order to minimize total cost of transport, taking into account 

the level of service offered to its users. The meta-heuristics developed here in this paper include 

ACO and Genetic algorithm (GA). Experimental results proved both techniques to be efficient. 

Goel and Gruhn (2006) studied a rich vehicle routing problem incorporating various 

complexities found in real-life applications. The real life requirements they considered include 

time window restrictions, heterogeneous vehicle fleets with different travel times, travel cost and 

capacity, multi-dimensional capacity constraints, vehicle compatibility constraints, orders with 

multiple pick up, delivery and service location, different start and end locations for vehicles and 

routes restrictions for vehicles. This problem known as General Vehicle Routing Problem 

(GVRP) is highly constrained and the search space is likely to contain many solutions such that it 

is impossible to go in for one solution to another using a single neighbourhood structure. As a 
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result, they proposed iterative improvement approaches based on the idea of changing the 

neighbourhood structure during the search.  

Palmgren, et al., (2001) proposed a column generation algorithm for the Log Truck Scheduling 

problem. Both pick-up and delivery are included in this problem. Its consist of finding one 

feasible route for each vehicle in order to satisfy demand of customers and in such way that total 

transport cost is minimized. They used a mathematical formulation of the log truck scheduling 

problem that is a generalized set partitioning problem. The column generation algorithm was 

applied to solving LP relaxed model and a branch and price algorithm for obtaining integer 

solutions. 

Chen and Zhang (2005) introduced adaptive ant colony optimization. Their objective is to improve the 

critical factor influencing the performance of the parallel algorithm. In their work they proposed strategies 

for information exchange between processor selections based on sorting and on difference, which makes 

each processor choose another processor to communicate with and update the pheromone adaptively. In 

order to increase the ability of the search and avoid early convergence, they also introduced a method of 

adjusting the time interval of information exchange adaptively in accordance with the diversity of the 

solution. These techniques were applied to the travelling salesman problem on the massive parallel 

processors and experimental results revealed high convergence speed, high speed up and efficiency. 

Ali, et al., (2009) proposed a solution to the minimum vertex cover problem using ant colony 

optimization. They introduced a pruning based ant colony algorithm to find approximate solution to 

the minimum vertex cover problem. The focus was on improving both time and convergence rate 

of the algorithm as such they introduced a visible set based on pruning paradigm for ant, where 

in  each stop of their traversal, are not forced to consider all the renaming vertices to select the 

next one for continuing the traversal. Their technique was compared to two existing algorithms 

based on Genetic Algorithms and computational experiment evinced that ACO Algorithm 
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demonstrates much effectiveness and consistency for solving the minimum vertex cover 

problem.  

Ghiduk (2010) presented ant colony optimization based approach for generating a set of optimal 

paths to cover all definition –use associations (du-pairs) in the program under test. The objective 

is to use ant colony optimization to generate suit of test-data for satisfying the generated set 

paths. They introduced a case study to illustrate their approach and the algorithm proved to be 

very efficient. 

Leeprechanon, et al., (2010) presented a paper which proposes the appreciation of ant colony 

optimization to solve a static transmission expansion planning (STEP) problem based on DC 

power flow model. Their major objective is to minimize investment cost of transmission lines 

added to existing network in order to supply forecasted load as economically as possible and 

subject to many system constraints-power balance, the generation requirement, line connections 

and thermal limits. In order to analyze and appraise the feasibility of the ACO, their proposed 

methodology was applied to the Gaver‘s six-bus system. Experimental result compared to other 

conventional approaches of Genetic Algorithm and Tabu search (TS) algorithm revealed the 

outperformance of ACO in convergence characteristics and computational efficiency. 

Nazif and Lee (2010) proposed an ―Optimal Crossover Genetic Algorithm for Vehicle Routing 

Problem with Time Windows‖. In this work, they considered a set of vehicles with limits on 

capacity and travel times available to service a set of customers with demands and earliest and 

latest time for serving. The objective is to find routes for the vehicles to service all customers at 

minimal cost without violating capacity and travel time constraints of vehicles and time window 

constraints set by customers. Their proposed algorithm was tested with bench mark instances and 
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also compared with other heuristics in the literature. Results proved the competitiveness of the 

proposed algorithm in terms of quality of the solution found. 

Although this work addresses a contemporary routing problem using ACO, it also considers 

sensibility analysis on the number of ants needed for optimality. This is an important aspect of 

the work since it will assist in establishing a relationship between the number of ants and 

optimality. 

2.2  PERFORMANCE CRITERIA FOR THE PROVISION OF SBTS                              

Three criteria exist for evaluating the provision of public goods and services (Savas, 1978 and 

Bowerman; Hall and Calamai, 1995). These include efficiency, effectiveness and equity. Each 

criterion has its own unique set of consideration and objective to satisfy yet there are clear 

linkages between them in terms of an overall assessment of service provision. 

2.2.1  Efficiency Criterion 

Efficiency measures the ratio of the level of service to the cost of the resources required to 

provide the service. Since the level of service in providing efficient school bus transportation is 

fixed for a particular situation, the main variable in determining the efficiency of a particular 

solution is the total cost of providing the service in currency units or man power. Therefore the 

efficiency of a solution is measured by its cost. 

There are two main components to consider in the total cost of providing school bus 

transportation. One cost is the capital cost required to run one school bus for a year. Components 

of this include payment of bus driver, as well as the cost of vehicle maintenance, purchasing and 

leasing. The other main cost is the incremental cost or the cost of school bus route per kilometer 

travelled. It is generally accepted that the capital cost is significantly larger per bus than the 
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incremental cost over year (Kidd, 1991). Therefore, in efficiency terms, a solution that requires 

fewer routes would be preferred to a solution with fewer routes. 

2.2.2  Effectiveness Criterion 

The effectiveness of a service is measured by how well the demand for the service is satisfied. In 

school bus routing measurement of service effectiveness amounts to determining whether bus 

transportation is available to all eligible student and whether the level of service is acceptable to 

the public.   The question of whether or not a student qualifies for school bus transportation is 

dependent upon school board specific policies. In Ontario, provincial standards require a 

minimum level of service provision but local school board trustee determine how these standard 

are met and to what degree (if any) they are exceeded (Feick, 1991). An example of such a 

standard is the maximum distances students may walk from their homes to school before being 

eligible for school bus transportation. In setting this and other standards, the local school board 

determines the effectiveness of the school bus service by determining which student are eligible 

for busing. 

2.2.3  Equity Criterion 

Equity consideration assesses the fairness or impartiality of the provision of the service in 

question for each eligible student. It believed that the optimization of the efficiency criterion 

might produce an inexpensive solution. However, such a solution would be unacceptable to the 

school board due to inequities in the provision of service to students. Following this, several 

additional goals must be imposed which seek to make the service fair as well as efficient. For 

example, ―first-on / first-off‖ on a board‘s school bus routes can be regarded as equity-related 

criterion. This policy states that who are picked up first in the morning must also be those who 

are dropped off first in the afternoon. This ensures that all students on the same route travel on a 
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school bus for approximately the same length of time and that no student has a school day 

(including travel time) that is significantly longer than any other student. To address this policy, 

the school bus routes are designed so that they begin and end at the school rather than just 

beginning or ending at the school. This is considered in the problem formulation of this thesis. 

Another way to improve equity is to ―load-balance‖ the routes serving an area so that each 

school bus route transports approximately an equivalent number of students. Satisfaction of this 

criterion has the added advantage that it reduces the chances of filling routes to over-capacity if 

additional load is assigned to them during the school year. Such a situation may occur when new 

students move into a school attendance area or if school attendance areas are redefined when 

modifying pre-existing bus routes. Though capacity constraint is considered in the problem 

formulation of this work, emphases are not placed on ―load-balance‖.     
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CHAPTER 3 

 METHODOLOGY 

3.0  INTRODUCTION 

This chapter involves presentation of Linear Programming (LP) and Integer Programming (IP) 

models and the problem formulation. 

3.1 THE LINEAR PROGRAMMING MODEL 

Linear Programming is the process of transforming a real life problem into a mathematical model 

which contains variables representing decisions that can be examined and solved for an optimal 

solution using algorithms (Chibuzor, 2005). Linear programming is described by Sierkma as 

being ―concerned with the maximization or minimization of a linear objective function 

containing many variables subject to linear equality or inequality constraints.‖ Since its 

introduction in 1947 as a means for planners to set general objectives and optimize schedules to 

meet set goals, linear programming and its various extensions have become an important part of 

not just mathematics but economics, computer science and decision science. This larger superset 

of linear programming applications is referred to as mathematical programming or optimization 

because it seeks to maximize (or minimize) a given objective function subject to a linear, 

nonlinear or integer constraint on the variables. 

More formally since a mathematical programming problem is a superset of a linear programming 

problem, we can safely assume that every solution to the LP problem satisfies the mathematical 

programming problem. In other words every solution in the LP problem is an admissible solution 

which solves the mathematical programming problem. 

Consider the following problem: 

Tough University provides ―quality‖ education to undergraduate and graduate students. 
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In an agreement signed with Tough‘s undergraduates and graduates (TUGs), ―quality‖ is defined 

as follows: every year, each u (undergraduate) must take eight courses, one of which is a seminar 

and the rest of which are lecture courses, whereas each g (graduate) must take two seminars and 

five lecture courses. A seminar cannot have more than 20 students and a lecture course cannot 

have more than 40 students. The University has a faculty of 1000. The Weary Old Radicals 

(WORs) have a contract with the University which stipulates that every junior faculty member 

(there are 750 of these) shall be required to teach six lecture courses and two seminars each year, 

whereas every senior faculty member (there are 250 of these) shall teach three lecture courses 

and three seminars each year. The Regents of Touch rate Tough‘s President at  points per u and 

 points per g ―processed‖ by the University. Subject to the agreements with the TUGs and 

WORs how many u‘s and g‘s should the President admit to maximize his rating? Formally then 

the President faces the following decision problem: 

Maximize g u 

Subject to 2g + u  45, 000 

5g + 7u  210, 000 

                                                                                                                  

It is convenient to use a more general notation. So let x = (g; u ; c = ( ; 

 b = (45000, 210000 0 and let A be the  matrix: 

 

Then  can be rewritten as  

Maximize  
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Subject to Ax  b                                                                                                                                                              

In general, a linear programming problem (or LP in brief) is any decision problem of the form 

 

Maximize  

Subject to   

 

 

And  

 

                                                                                                                                                                           

where the are fixed real numbers. There are two important special cases: 
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3.2 THE BRANCH-AND-BOUND TECHNIQUE TO BINARY INTEGER 

PROGRAMMING 

Because any bounded pure IP problem has only a finite number of feasible solutions, it is natural 

to consider using some kind of enumeration procedure for finding an optimal solution. 

Unfortunately, as discussed above, this finite number can be, and usually is, very large. 

Therefore, it is imperative that any enumeration procedure be cleverly structured so that only a 

tiny fraction of the feasible solutions actually need be examined. For example, dynamic 

programming provides one such kind of procedure for many problems having a finite number of 

feasible solutions (although it is not particularly efficient for most IP problems). Another such 

approach is provided by the branch-and-bound technique. This technique and variations of it 

have been applied with some success to a variety of OR problems, but it is especially well known 

for its application to IP problems. 

The basic concept underlying the branch-and-bound technique is to divide and conquer. 

Since the original ―large‖ problem is too difficult to be solved directly, it is divided into smaller 

and smaller sub problems until these sub problems can be conquered. The dividing (branching) is 

done by partitioning the entire set of feasible solutions into smaller and smaller subsets. The 

conquering (fathoming) is done partially by bounding how good the best solution in the subset 

can be and then discarding the subset if its bound indicates that it cannot possibly contain an 

optimal solution for the original problem. 

We shall now describe in turn these three basic steps—branching, bounding, and fathoming— 

and illustrate them by applying a branch-and-bound algorithm to the prototype example shown 

below: 
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3.2.1 Branching 

When you are dealing with binary variables, the most straightforward way to partition the set of 

feasible solutions into subsets is to fix the value of one of the variables (say, ) at   for 

one subset and at   for the other subset. Doing this for the prototype example divides the 

whole problem into the two smaller sub problems shown below. 

Sub problem 1: 

Fix    so the resulting sub problem is 

 

 

 

 

 

                                                     (3.6)                         

 



 28 

Sub problem 2: 

Fix so the resulting sub problem is 

 

 

 

 

 

                                                 (3.7) 

. 

Figure 3.1 portrays this dividing (branching) into sub problems by a tree (with branches (arcs)) 

from the all node (corresponding to the whole problem having all feasible solutions) to the two 

nodes corresponding to the two sub problems. This tree, which will continue ―growing branches‖ 

iteration by iteration, is referred to as the solution tree (or enumeration tree) for the algorithm. 

The variable used to do this branching at any iteration by assigning values to the variable (as 

with  above) is called the branching variable. (Sophisticated methods for selecting branching 

variables are an important part of some branch-and-bound algorithms but, for simplicity, we 

always select them in their natural order— , , . . . ,  throughout this section.) 

Later in the section you will see that one of these sub problems can be conquered (fathomed) 

immediately, whereas the other sub problem will need to be divided further into smaller sub-

problems by setting  

For other IP problems where the integer variables have more than two possible values, the 

branching can still be done by setting the branching variable at its respective individual values, 
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thereby creating more than two new sub problems. However, a good alternate approach is to 

specify a range of values (for example,   or  ) for the branching variable for each 

new sub problem.  

          

                              0      

                                  

    All                 

                            

                              1  

 

FIGURE 3.1 

 Figure 3.1 shows a solution tree created by the branching for the first iteration of the BIP branch 

and bound algorithm for (3.7) 

3.2.2 Bounding 

For each of these sub problems, we now need to obtain a bound on how good its best feasible 

solution can be. The standard way of doing this is to quickly solve a simpler relaxation of the sub 

problem. In most cases, a relaxation of a problem is obtained simply by deleting (―relaxing‖) 

one set of constraints that had made the problem difficult to solve. 

For IP problems, the most troublesome constraints are those requiring the respective variables to 

be integer. Therefore, the most widely used relaxation is the LP relaxation that deletes this set of 

constraints. 

To illustrate for the example, consider first the whole problem  Its LP relaxation is obtained 

by replacing the last line of the model (  is binary, for ) by the constraints that 
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 and  for . Using the simplex method to quickly solve this LP 

relaxation yields its optimal solution  

  

Therefore,  , for all feasible solutions for the original BIP problem (since these solutions 

are a subset of the feasible solutions for the LP relaxation). In fact, as summarized below, this 

bound of  can be rounded down to 16, because all coefficients in the objective function are 

integer, so all integer solutions must have an integer value for Z. Bound for whole problem: 

 Now let us obtain the bounds for the two sub problems in the same way. Their LP 

relaxations are obtained from the models in the preceding subsection by replacing the constraints 

that  is binary for  by the constraints . Applying the 

simplex method then yields their optimal solutions (plus the fixed value of ) shown below. 

LP relaxation of sub problem 1: with . 

LP relaxation of sub problem 2: , with  

The resulting bounds for the sub problems then are 

Bound for sub problem 1: , 

Bound for sub problem 2: . 

Figure 3.2 summarizes these results, where the numbers given just below the nodes are the 

bounds and below each bound is the optimal solution obtained for the LP relaxation. 

          

 

                              0      
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    All                  

     16                       
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FIGURE 3.2 

Figure 3.2 shows the results of bounding for the first iteration of the BIP branch and bound 

algorithm for (3.7) 

3.2.3 Fathoming 

A sub problem can be conquered (fathomed), and thereby dismissed from further consideration, 

in the three ways described below. One way is illustrated by the results for sub problem 1 given 

by the  node in Figure 3.7. Note that the (unique) optimal solution for its LP 

relaxation, , is an integer solution. Therefore, this solution must also 

be the optimal solution for sub problem 1 itself. This solution should be stored as the first 

incumbent (the best feasible solution found so far) for the whole problem, along with its value 

of Z. This value is denoted by 

 value of Z for current incumbent, so  at this point. Since this solution has been 

stored, there is no reason to consider sub problem 1 any further by branching from the   

node, etc. Doing so could only lead to other feasible solutions that are inferior to the incumbent, 

and we have no interest in such solutions. Because it has been solved, we fathom (dismiss) sub 

problem 1 now. 

The above results suggest a second key fathoming test. Since , there is no reason to 

consider further any sub problem whose bound , since such a sub problem cannot have a 
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feasible solution better than the incumbent. Stated more generally, a sub problem is fathomed 

whenever it‘s bound  

This outcome does not occur in the current iteration of the example because sub problem 2 has a 

bound of 16 that is larger than 9. However, it might occur later for descendants of this sub 

problem (new smaller sub problems created by branching on this sub problem, and then perhaps 

branching further through subsequent ―generations‖). Furthermore, as new incumbents with 

larger values of are found, it will become easier to fathom in this way. 

The third way of fathoming is quite straightforward. If the simplex method finds that a sub 

problem‘s LP relaxation has no feasible solutions, then the sub problem itself must have no 

feasible solutions, so it can be dismissed (fathomed). 

In all three cases, we are conducting our search for an optimal solution by retaining for further 

investigation only those sub problems that could possibly have a feasible solution better than the 

current incumbent. 

Summary of Fathoming Tests 

 A sub problem is fathomed (dismissed from further consideration) if 

Test 1: It‘s bound  

or 

Test 2: Its LP relaxation has no feasible solutions, or 

Test 3: The optimal solution for its LP relaxation is integer. (If this solution is better than the 

incumbent, it becomes the new incumbent, and test 1 is reapplied to all unfathomed 

Sub problems with the new larger .) 
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Figure 3.3 summarizes the results of applying these three tests to sub problems 1 and 2 by 

showing the current solution tree. Only sub problem 1 has been fathomed, by test 3, as indicated 

by F(3) next to the  node. The resulting incumbent also is identified below this node. 

The subsequent iterations will illustrate successful applications of all three tests. However, 

before continuing the example, we summarize the algorithm being applied to this BIP problem. 

(This algorithm assumes that all coefficients in the objective function are integer and that the 

ordering of the variables for branching is .) 

          

                              0      

                                  

    All                  

     16                       

                              1 

 16 

FIGURE 3.3 

Figure 3.3 shows the solution tree after the first iteration of the BIP branch and bound algorithm 

for (3.7) 

3.2.4 Summary of the BIP Branch and Bound Algorithm 

Initialization: Set . Apply the bounding step, fathoming step, and optimality test 

described below to the whole problem. If not fathomed, classify this problem as the one 

remaining ―sub problem‖ for performing the first full iteration below. 

Steps for each iteration 
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1. Branching: Among the remaining (unfathomed) sub problems, select the one that was 

created most recently. (Break ties according to which the larger has bound.) Branch from 

the node for this sub problem to create two new sub problems by fixing the next variable 

(the branching variable) at either 0 or 1. 

2. Bounding: For each new sub problem, obtain its bound by applying the simplex method 

to its LP relaxation and rounding down the value of Z for the resulting optimal solution. 

3. Fathoming: For each new sub problem, apply the three fathoming tests summarized 

above, and discard those sub problems that are fathomed by any of the tests. 

Optimality test: Stop when there are no remaining sub problems; the current incumbent is 

optimal.1 Otherwise, return to perform iteration. 

3.3  SOME APPLICATIONS OF BINARY INTEGER PROGRAMMING WITH 

PRAGMATIC EXAMPLES  

 Managers frequently face yes or-no decisions. Therefore, binary integer programming (BIP) is 

widely used to aid in these decisions. 

We now will introduce various types of yes-or-no decisions. We also will mention some 

examples of actual applications where BIP was used to address these decisions. 

Each of these applications is fully described in an article in the journal called Interfaces (Hillier 

and Lieberman, 2001). 

3.3.1  Capital Budgeting with Fixed Investment Proposals 

Linear programming sometimes is used to make capital budgeting decisions about how much to 

invest in various projects. However, some capital budgeting decisions do not involve how much 

to invest, but rather, whether to invest a fixed amount. Specifically, the decisions involve 

whether to invest the fixed amount of capital required in building a certain kind of facility 
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(factory or warehouse) in a certain location. Management often must face decisions about 

whether to make fixed investments (those where the amount of capital required has been fixed in 

advance). Should we acquire a certain subsidiary being spun off by another company? Should we 

purchase a certain source of raw materials? Should we add a new production line to produce a 

certain input item ourselves rather than continuing to obtain it from a supplier? In general, capital 

budgeting decisions about fixed investments are yes-or-no decisions of the following type. Each 

yes-or-no decision:  

Should we make a certain fixed investment? 

Its decision variable  

The July–August 1990 issue of Interfaces describes how the Turkish Petroleum Refineries 

Corporation used BIP to analyze capital investments worth tens of millions of dollars to expand 

refinery capacity and conserve energy. A rather different example that still falls somewhat into 

this category is described in the January–February 1997 issue of Interfaces. A major OR study 

was conducted for the South African National Defense Force to upgrade its capabilities with a 

smaller budget. The ―investments‖ under consideration in this case were acquisition costs and 

ongoing expenses that would be required to provide specific types of military capabilities. A 

mixed BIP model was formulated to choose those specific capabilities that would maximize the 

overall effectiveness of the Defense Force while satisfying a budget constraint. The model had 

over 16,000 variables (including 256 binary variables) and over 5,000 functional constraints. 

The resulting optimization of the size and shape of the defense force provided savings of over 

$1.1 billion per year as well as vital nonmonetary benefits. The impact of this study won it the 

prestigious first prize among the 1996 Franz Edelman Awards for Management Science 

Achievement. 
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3.3.2  Site Selection 

In this global economy, many corporations are opening up new plants in various parts of the 

world to take advantage of lower labour costs, etc. Before selecting a site for a new plant, many 

potential sites may need to be analyzed and compared. Each of the potential sites involves a yes-

or-no decision of the following type. 

Each yes-or-no decision: 

Should a certain site be selected for the location of a certain new facility? 

For each of the yes-or-no decisions of any of these kinds, its decision variable  

In many cases, the objective is to select the sites so as to minimize the total cost of the new 

facilities that will provide the required output. As described in the January–February 1990 issue 

of Interfaces, AT&T used a BIP model to help dozens of their customers select the sites for their 

telemarketing centers. 

The model minimizes labor, communications, and real estate costs while providing the desired 

level of coverage by the centers. In one year alone (1988), this approach enabled 46 AT&T 

customers to make their yes-or-no decisions on site locations swiftly and confidently, while 

committing to $375 million in annual network services and $31 million in equipment sales from 

AT&T. We next describe an important type of problem for many corporations where site 

selection plays a key role. 

3.3.3  Designing a Production and Distribution Network 

Manufacturers today face great competitive pressure to get their products to market more quickly 

as well as to reduce their production and distribution costs. Therefore, any corporation that 

distributes its products over a wide geographical area (or even worldwide) must pay continuing 

attention to the design of its production and distribution network. 
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This design involves addressing the following kinds of yes-or-no decisions. 

Should a certain plant remain open? 

Should a certain site be selected for a new plant? 

Should a certain distribution center remain open? 

Should a certain site be selected for a new distribution center? 

If each market area is to be served by a single distribution center, then we also have another kind 

of yes-or-no decision for each combination of a market area and a distribution center. Should a 

certain distribution center be assigned to serve a certain market area? For each of the yes-or-no 

decisions of any of these kinds, its decision variable   

Ault Foods Limited (July–August 1994 issue of Interfaces) used this approach to design its 

production and distribution center. Management considered 10 sites for plants, 13 sites for 

distribution centers, and 48 market areas. This application of BIP was credited with saving the 

company $200,000 per year. Digital Equipment Corporation (January–February 1995 issue of 

Interfaces) provides another example of an application of this kind. At the time, this large 

multinational corporation was serving one-quarter million customer sites, with more than half of 

its $14 billion annual revenues coming from 81 countries outside the United States. Therefore, 

this application involved restructuring the corporation‘s entire global supply chain, consisting of 

its suppliers, plants, distribution centers, potential sites, and market areas all around the world. 

The restructuring has generated annual cost reductions of $500 million in manufacturing and 

$300 million in logistics, as well as a reduction of over $400 million in required capital assets. 

3.3.4  Dispatching Shipments 

Once a production and distribution network has been designed and put into operation, daily 

operating decisions need to be made about how to send the shipments. Some of these decisions 
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again are yes-or-no decisions. For example, suppose that trucks are being used to transport the 

shipments and each truck typically makes deliveries to several customers during each trip. It then 

becomes necessary to select a route (sequence of customers) for each truck, so each candidate for 

a route leads to the following yes-or-no decision. Should a certain route be selected for one of the 

trucks? Its decision variable  

The objective would be to select the routes that would minimize the total cost of making all the 

deliveries. Various complications also can be considered. For example, if different truck sizes are 

available, each candidate for selection would include both a certain route and a certain truck size.  

Similarly, if timing is an issue, a time period for the departure also can be specified as part of the 

yes-or-no decision. With both factors, each yes-or-no decision would have the form shown 

below. Should all the following be selected simultaneously for a delivery run: 

i. A certain route, 

ii. A certain size of truck, and 

iii. A certain time period for the departure? 

Its decision variable  

Here are a few of the companies which use BIP to help make these kinds of decisions. 

A Michigan-based retail chain called Quality Stores (March–April 1987 issue of 

Interfaces) makes the routing decisions for its delivery trucks this way, thereby saving about 

$450,000 per year. Air Products and Chemicals, Inc. (December 1983 issue of Interfaces) saves 

approximately $2 million annually (about 8 percent of its prior distribution costs) by using this 

approach to produce its daily delivery schedules. The Reynolds Metals Co. (January–February 

1991 issue of Interfaces) achieves savings of over $7 million annually with an automated 



 39 

dispatching system based partially on BIP for its freight shipments from over 200 plants, 

warehouses, and suppliers. 

 

 

 

 

3.3.5  Scheduling Interrelated Activities 

We schedule interrelated activities in our everyday lives, even if it is just scheduling when to 

begin our various homework assignments. So too, managers must schedule various kinds of 

interrelated activities. When should we begin production for various new orders? 

When should we begin marketing various new products? When should we make various capital 

investments to expand our production capacity? For any such activity, the decision about when 

to begin can be expressed in terms of a series of yes-or-no decisions, with one of these decisions 

for each of the possible time periods in which to begin, as shown below. Should a certain activity 

begin in a certain time period? For each of the yes-or-no decisions of any of these kinds, its 

decision variable   

Since a particular activity can begin in only one time period, the choice of the various time 

periods provides a group of mutually exclusive alternatives, so the decision variable for only one 

time period can have a value of 1. For example, this approach was used to schedule the building 

of a series of office buildings on property adjacent to Texas Stadium (home of the Dallas 

Cowboys) over a 7-year planning horizon. In this case, the model had 49 binary decision 

variables, 7 for each office building corresponding to each of the 7 years in which its 
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construction could begin. This application of BIP was credited with increasing the profit by $6.3 

million.  

A somewhat similar application on a vastly larger scale occurred in China recently (January–

February 1995 issue of Interfaces). China was facing at least $240 billion in new investments 

over a 15-year horizon to meet the energy needs of its rapidly growing economy. Shortages of 

coal and electricity required developing new infrastructure for transporting coal and transmitting 

electricity, as well as building new dams and plants for generating thermal, hydro, and nuclear 

power. Therefore, the Chinese State Planning Commission and the World Bank collaborated in 

developing a huge mixed BIP model to guide the decisions on which projects to approve and 

when to undertake them over the 15-year planning period to minimize the total discounted cost. 

It is estimated that this OR application is saving China about $6.4 billion over the 15 years. 

3.3.6  Scheduling Asset Divestitures 

This next application actually is another example of the preceding one (scheduling interrelated 

activities). However, rather than dealing with such activities as constructing office buildings or 

investing in hydroelectric plants, the activities now are selling (divesting) assets to generate 

income. The assets can be either financial assets, such as stocks and bonds, or physical assets, 

such as real estate. Given a group of assets, the problem is to determine when to sell each one to 

maximize the net present value of total profit from these assets while generating the desired 

income stream. In this case, each yes-or-no decision has the following form. Should a certain 

asset be sold in a certain time period? Its decision variable  

One company that deals with these kinds of yes-or-no decisions is Homart Development 

Company (January–February 1987 issue of Interfaces), which ranks among the largest 

commercial land developers in the United States. One of its most important strategic issues is 



 41 

scheduling divestiture of shopping malls and office buildings. At any particular time, well over 

100 assets will be under consideration for divestiture over the next 10 years. Applying BIP to 

guide these decisions is credited with adding $40 million of profit from the divestiture plan. 

3.3.7  Airline Applications 

The airline industry is an especially heavy user of OR throughout its operations. For example, 

one large consulting firm called SABRE (spun off by American Airlines) employs several 

hundred OR professionals solely to focus on the problem of companies involved with 

transportation, including especially airlines. We will mention here just two of the applications 

which specifically use BIP. One is the fleet assignment problem. Given several different types of 

airplanes available, the problem is to assign a specific type to each flight leg in the schedule so as 

to maximize the total profit from meeting the schedule. The basic trade-off is that if the airline 

uses an airplane that is too small on a particular flight leg, it will leave potential customers 

behind, while if it uses an airplane that is too large, it will suffer the greater expense of the larger 

airplane to fly empty seats. 

For each combination of an airplane type and a flight leg, we have the following yes or-no 

decision. Should a certain type of airplane be assigned to a certain flight leg? 

Its decision variable  

Delta Air Lines (January–February 1994 issue of Interfaces) flies over 2,500 domestic flight legs 

every day, using about 450 airplanes of 10 different types. They use a huge integer programming 

model (about 40,000 functional constraints, 20,000 binary variables, and 40,000 general integer 

variables) to solve their fleet assignment problem each time a change is needed. This application 

saves Delta approximately $100 million per year. A fairly similar application is the crew 

scheduling problem. Here, rather than assigning airplane types to flight legs, we are instead 
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assigning sequences of flight legs to crews of pilots and flight attendants. Thus, for each feasible 

sequence of flight legs that leaves from a crew base and returns to the same base, the following 

yes-or-no decision must be made. Should a certain sequence of flight legs be assigned to a crew? 

Its decision variable  

The objective is to minimize the total cost of providing crews that cover each flight leg in the 

schedule. American Airlines (July–August 1989 and January–February 1991 issues of Interfaces) 

achieves annual savings of over $20 million by using BIP to solve its crew scheduling problem 

on a monthly basis. 

3.4  PROBLEM DESCRIPTION OF THE PROPOSED MODEL FOR WBSC 

The problem confronted here is how to transport a group of students from their homes to school. 

Residences of the students are geographically dispersed around the school and each school bus is 

unique in terms of capacity.   

The following assumptions are considered: 

i. Service is available to only students whose residence is not within a walking distance 

from the school. 

ii. All students to be serviced must walk to an allowed bus stop. 

iii. A bus must visits a given stop only once. 

iv. Capacities of buses must not be exceeded. 

Parameters/Data 

 Capacity of bus b                                                              

 Number of buses 

Cost of traversing arc from  
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 Set of all potential stops                                                  

 Binary variable that shows if a student  can walk to stop  or not 

 Set of all arcs between stops. 

 Set representing the school or the depot  

Decision Variables 

 Number of times bus  traverses arcs from  to  

 

 

3.5  THE SBTS MODEL 

Min  

 

 

 

 

 

 



 44 

 

 

 

 

 

The objective function  minimizes the total length of all routes covered by all buses. 

Constraint  guarantees that all buses start from the school (i.e. D). Constraint  

guarantees that if bus  visits stop  then one arc is traversed by  entering and exiting . 

Constrain  prevents the formation of sub-tours. This means that each cut defined by a 

customer set  is crossed by a number of arcs not less than the minimum number of buses  

required to serve set . Constraint  guarantees that a bus visits a particular stop not more 

than one. Constraint  ensures that every student walks to his single designated stop only. 

Constraint  guarantees that respective capacities of buses are not exceeded. Constraint 

 guarantees that a student  designated to stop  is picked up by bus  provided  visits 

stop . Constraint  ensures that all students are picked up only once. Finally, ,  

and  represent the binary integrality constraints on all decision all decision variables. 

3.6  THE WOODBRIDGE SBTS MODEL 

Min                                                                                                                                                                 
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Apart from the fact that SBTS is a hard combinatorial problem, the number of customers and that 

of potential bus stops locations, as exists at Wood Bridge School Complex, are large. 

Consequent to this, the IP model described above cannot be solved efficiently using the branch- 

and-bound or any exact polynomial algorithm. A heuristic approach must therefore be used and 

the one that favours the researcher‘s choice is the ACO heuristics. The next subsection is devoted 

to explaining ACO heuristics and it‘s algorithm for SBTS. 

3.7 ANT COLONY OPTIMIZATION  
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Ant colony optimization is a part of the larger field of swarm intelligence in which scientists 

study the behavior patterns of bees, termites, ants and other social insects in order to simulate 

processes. 

The ability of insect swarms to thrive in nature and solve complex survival tasks appeals to 

scientists developing computer algorithms needed to solve similarly complex problems. 

Artificial intelligence algorithms such as ant colony optimization are applied to large 

combinatorial optimization problems and are used to create self-organizing methods for such 

problems. Ant colony optimization is a meta-heuristic technique that uses artificial ants to find 

solutions to combinatorial optimization problems. ACO is based on the behavior of real ants and 

possesses enhanced abilities such as memory of past actions and knowledge about the distance to 

other locations. In nature, an individual ant is unable to communicate or effectively hunt for 

food, but as a group, ants possess the ability to solve complex problems and successfully find 

and collect food for their colony. Ants communicate using a chemical substance called 

pheromone. 

As an ant travels, it deposits a constant amount of pheromone that other ants can follow. Each 

ant moves in a somewhat random fashion, but when an ant encounters a pheromone trail, it must 

decide whether to follow it. If it follows the trail, the ant‘s own pheromone reinforces the 

existing trail, and the increase in pheromone increases the probability of the next ant selecting 

the path. Therefore, the more ants that travel on a path, the more attractive the path becomes for 

subsequent ants. Additionally, an ant using a short route to a food source will return to the nest 

sooner and therefore, mark its path twice, before other ants return. This directly influences the 

selection probability for the next ant leaving the nest. Over time, as more ants are able to 
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complete the shorter route, pheromone accumulates faster on shorter paths and longer paths are 

less reinforced. 

The evaporation of pheromone also makes less desirable routes more difficult to detect and 

further decreases their use. However, the continued random selection of paths by individual ants 

helps the colony discover alternate routes and insures successful navigation around obstacles that 

interrupt a route. Trail selection by ants is a pseudo-random proportional process and is a key 

element of the simulation algorithm of ant colony optimization (Dorigo and Gamberdella, 1997).  

ACO was first applied to the traveling salesman problem and the quadratic assignment problem 

(Dorigo, 1992). Ever since, it has been applied to other problems, which include but not limited 

to the space planning problem (Bland, 1999), the machine tool tardiness problem (Bauer, 

Bullnbeimer and Hartl, 1999) and the multiple objective JIT sequencing problem (McMullen, 

2001). 

3.8 ACO HEURISTICS FOR ROUTING BUSES TO STOPS 

3.8.1  Route construction 

Using ACO, an individual ant simulates a vehicle, and its route is constructed by incrementally 

selecting customers until all customers have been visited. Initially, each ant starts at the depot 

and the set of customers included in its tour is empty. The ant selects the next customer to visit 

from the list of feasible locations and the storage capacity of the vehicle is updated before 

another customer is selected. The ant returns to the depot when the capacity constraint of the 

vehicle is met or when all customers are visited. The total distance L is computed as the 

objective function value for the complete route of the artificial ant. The ACO algorithm 

constructs a complete tour for the first ant prior to the second ant starting its tour. This continues 

until a predetermined number of ants m each construct a feasible route. 
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Using ACO, each ant must construct a vehicle route that visits each customer. To select the next 

customer j, the ant uses the following probabilistic formula (Dorigo and Gamberdella, 1997)  

  

Where  is equal to the amount of pheromone on the path between the current location  and 

possible locations . The value  is defined as the inverse of the distance between the two 

customer locations and the parameter  establishes the importance of distance in comparison to 

pheromone quantity in the selection algorithm  Locations already visited by an ant are 

stored in the ants working memory  and are not considered for selection. The value  is a 

random uniform variable  and the value  is a parameter. When each selection decision is 

made, the ant selects the arc with the highest value from (3.13) unless  is greater than . In this 

case, the ant selects a random variable  to be the next customer to visit based on the 

probability distribution of , which favors short paths with high levels of pheromone: 

 

Using formulas (3.20) and (3.21) each ant may either follow the most favorable path already 

established or may randomly select a path to follow based on a probability distribution 

established by distance and pheromone accumulation. If the vehicle capacity constraint is met, 

the ant will return to the depot before selecting the next customer. This selection process 

continues until each customer is visited and the tour is complete. 

3.8.2 Trail updating 

 To improve future solutions, the pheromone trails of the ants must be updated to reflect the ant‘s 

performance and the quality of the solutions found. This updating is a key element to the 
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adaptive learning technique of ACO and helps to ensure improvement of subsequent solutions 

(Bell and McMullen, 2004). Trail updating includes local updating of trails after individual 

solutions have been generated and global updating of the best solution route after a 

predetermined number of solutions m has been accomplished. 

 First, local updating is conducted by reducing the amount of pheromone on all visited arcs in 

order to simulate the natural evaporation of pheromone and to ensure that no one path becomes 

too dominant. This is done with the following local trail updating equation,  

  

Where  is a parameter that controls the speed of evaporation and  is equal to an initial  

pheromone value assigned to all arcs in graph . For this study,  is equal to the inverse of the 

best known route distances found for the particular problem. After a predetermined number of 

ants m construct a feasible route, global trail updating is performed by adding pheromone to all 

of the arcs included in the best route found by one of m ants. Global trail updating is 

accomplished according to the following relationship, 

 

This updating encourages the use of shorter routes and increases the probability that future routes 

will use the arcs contained in the best solutions. This process is repeated for a predetermined 

number of iterations and the best solution from all of the iterations is presented as an output of 

the model and should represent a good approximation of the optimal solution for the problem. 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 

This chapter displays ant colony results of the data taken on the various buses. Since four buses 

are involved, the chapter is divided into four sections, where each section provides ACO results 

for each bus. For each section, four or five results are displayed for different ant numbers. The 

results are obtained by an ant colony programme written in Matlab implementation codes. Each 
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figure comprises two panels viz, lower and upper. The upper pannel shows the distance covered 

by various ants at every iterative point whilst the lower displays the complete optimal tour of the 

best ant (for the different ant numbers). 

The data involves length of distances between various picking points. The conversion of the 

distances into cartesian coordinates is what gave rise to the distance matrix as given in Appendix 

C. This was made possible by recordig the angles at various picking points with reference to the 

magnetic north (call it directional conversion). The distances were recoded with the aid of a car 

that reads distances digitally, while the angles were obtained with the help of an i-phone. The i-

phone also provided the GPS information at the respective picking points. This information on 

longitudes and lattitudes could also be converted to coordinates. One possibility is the use of a 

software called the eye-calculator (call it GPS conversion). Preliminary experimentation proved 

results of the the different distance matrices to be the same. The results in this section are based 

on the directional conversion, which was chosen arbitrary. The data on the original tour of the 

various buses is given in ‗Ant Sketches‘ (see Appendix A). 

4.1  ACO OUTPUT FOR BUS 1 
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Figure 4.1.1: Ant colony results for 10 ants. 

Figure 4.1.1 depicts the ant colony results of bus 1 for 10 ants. From the figure, the tour of the 

best ant out of the 10 is shown by the lower panel. Thus, the optimal route length covered by the 

best ant is about 25km. This is worse compared to the actual distance covered by bus 1. 
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Figure 4.1.2: Ant colony result for 15 ants. 

Figure 4.1.2 shows that for 15 ants, the best ant would cover an optimal route length of about 

24km. This is equivalent to the actual route length covered by bus 1. The direction from the 

source node is displayed by the lower panel. 
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Figure 4.1.3: Ant colony result for 50 ants. 

Figure 4.1.3 shows that for 50 ants, the optimal route length recorded by the best ant is 

approximately 21km, which is better than that covered by bus 1. The complete tour and order of 

movement is displayed in the lower panel. 
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Figure 4.1.4: Ant colony result for 100 ants. 

Figure 4.1.4 shows that for 100 ants, the optimal route length covered by the best ant as it starts 

from the source node is approximately 18km. This represents an improvement of the one covered 

by the 50 ants. The course of the best ant from the source node is shown in the lower panel.  
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Figure 4.1.5: Ant colony result for 200 ants. 

Figure 4.1.5 shows that for 200 ants the best ant will cover an optimum course by the length of 

about 18km, which is the same as that which was covered by 100 ants. This means that the 

optimal route length displaced by bus 1 using ant colony is approximately 18km, and is given by 

the optimal route is given by the following order of tour: 

17→1→13→12→15→14→4→3→2→16→8→5→6→10→11→9→7→17 (See Appendix B 

for names corresponding to nodes). 
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4.2 ACO OUTPUT FOR BUS 2 

Figure 4.2.1: Ant colony results for 8 ants. 

Figure 4.2.1 depicts the ant colony results for bus 2 with the number of ants equal to 8. It can be 

seen from the figure that the optimal route length covered by the best out of the 8 ants is 

approximately 40km. This is very close to the actual distance covered by bus 2 (i.e. 40.7km). 

The course of the best ant is shown by the lower panel. 
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Figure 4.2.2: Ant colony results for 50 ants. 

Figure 4.2.2 shows that for 50 ants the total distance covered by the best ant is approximately 

27km, representing an improvement from the previous 8 ants. The course of the best ant from the 

source node is shown by the lower panel. 
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 Figure 4.2.3: Ant colony results for 100 ants. 

From figure 4.2.3, it can be seen that the optimal route length covered by the best out of the 100 

ants is by about 24km, which also represent an improvement from the previous 50 ants. The tour 

of the best ant from the source node is shown by the lower panel. 
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Figure 4.2.4: Ant colony results for200 ants. 

Similarly, in Figure 4.2.4, the best ant out of 200 will displace an optimum course by the length 

of approximately 24km. This is equivalent to that which was covered by the previous 100 ants. 

Thus, the optimal course of bus 2 via ant colony optimization is about 24km. The optimal route 

and order of movement (clockwise) from the source node (28) is displayed in the lower panel.   
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4.3 ACO OUTPUT FOR BUS 3 

Figure 4.3.1: Ant colony results for7 ants 

Figure 4.3.1 depicts the ant colony result for bus 3 using 7 ants. It is discernible from the figure 

that the optimal route length covered by the best out of 7 ants is close to 40km, which is also 

equivalent to the actual distance completed by bus 3 (39.94km) in its tour. The course of the best 

ant from the source node is displayed by the lower panel. 
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Figure 4.3.2: Ant colony results for 10 ants 

Figure 4.3.2 shows that for 10 ants, the best ant out of 10 will cover an optimal route length of 

about 37km, representing an improvement in that which was covered by the previous 7 ants. The 

route and order of movement from the source node is shown in the lower panel.   
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Figure 4.3.3: Ant colony results for 50 ants 

It can be seen from Figure 4.3.3 that for 50 ants, the best tour will record the length of about 

29km. This represents an improvement of the previous solution. The route and order of 

movement of the best ant is shown in the lower panel. 
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Figure 4.3.4: Ant colony results for 100 ants 

Figure 4.3.4 also reveals that for 100 ants, the best ant will complete a tour with an optimum 

route length of about 26km. This still shows an improvement in the optimal solution. The course 

of the best ant is captured by the lower panel.  
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Figure 4.3.5: Ant colony results for 200 ants 

Figure 4.3.5 shows that for 200 ants, the optimum length completed by the best out of 200 ants is 

approximately 26km. This is approximately the same as that completed by the best out of the 

previous 100 ant. Hence, the optimum course for bus 3 using ant colonies is approximately by 

the length of 26km. The optimal course from the source node is given by 

23→6→11→1→17→13→8→9→7→22→21→2→10→3→4→19→14→12→20→15→5→18

→16→23. 

 



 66 

4.4 ACO OUTPUT FOR BUS 4 

Figure 4.4.1: Ant colony results for 5 ants 

Figure 4.4.1 depicts the ant colony results for bus 4 using 5 ants. It can be observed from the 

figure that the optimal route length covered by the best out of 5 ants is approximately 21km, 

which is worse in comparison with the actual distance covered by bus 4 (17.8km). The tour of 

the best ant from the source node is shown in the lower panel.   
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Figure 4.4.2: Ant colony results for 15 ants 

Figure 4.4.2 reveals that for 15 ants, the optimal course covered by the best out of 15 ants is by 

the length of about 17km, which is about the same distance covered by bus 4. The course of the 

best ant from the source node is shown by the lower panel.  
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Figure 4.4.3: Ant colony results for 50 ants 

It is discernible from Figure 4.4.3 that for 50 ants, the optimum course of the best ant is by the 

length of about 14km, representing an improvement in previous solution. The course of the best 

ant from the source node is shown in the lower panel. 
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Figure 4.4.4: Ant colony results for 100 ants 

From Figure 4.4.4, the best out of 100 ants records an optimal route length of 

approximately14km, representing about the same optimal distance covered by the best out of the 

previous 50 ants. It can therefore be summarized that the optimum course for bus 4 using ant 

colonies is by the length of approximately 14km. The optimal route and order of movement of 

bus 4 from the source node is given by 14→ 8→ 10→2→3→7→ 12→1→5→4→6→13 

→9→11→14. 
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Table 4.1: SUMMARY OF ANT COLONY RESULTS  

 

BUS 

ORIGINAL 

LENGTH (KM) 

NUMBER OF 

ANTS 

OPTIMAL 

LENGTH (KM) 

PERCENTAGE 

CHANGE 

 

 

1 

 

 

24.4 

10 25.4937 4.4824 

15 24.4127 -0.0520 

50 20.7094 -15.1254 

100 18.4474 -24.3959 

200 18.4474 -24.3959 

 

 

2 

 

 

40.7 

8 40.1139 -1.4400 

50 26.1486 -35.7528 

100 24.2107 -40.5143 

200 24.0342 -40.9479 

 

 

3 

 

 

39.94 

7 40.4342 0.0310 

10 37.8844 -5.1467 

50 29.414 -26.3545 

100 26.1647 -34.4900 

200 26.117 -34.6094 

 

 

4 

 

 

17.8 

5 20.5619 15.5163 

15 16.6908 -6.2315 

50 14.3265 -19.5140 

100 14.3265 -19.5140 

Source: Author’s field survey. May, 2011 
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Table 4.1 presents a summary of the ant colony results for buses 1, 2, 3 and 4. The original 

lengths of tour by the four buses are shown in column 2, whilst the optimal route lengths 

obtained from ant colony results for the various ants numbers are displayed in column 4. The last 

column shows the percentage change in the original route lengths. The negative changes depict 

improvement in optimal solution whilst the positive changes shows otherwise. 

For bus 1, the percentage changes in routes lengths corresponding to ants‘ numbers 10, 15, 50, 

100 and 200 are 4.4824, -0.0520, -15.1254, -24.3959 and -24.3959. Also, for bus 2, the 

percentage changes in the lengths of routes for ants‘ numbers 8, 50, 100 and 200 are -1.4400, -

35.7528, -40.5143 and -40.9479, in that order. Similarly, observing the lengths of routes for ants‘ 

numbers 7, 10, 50, 100 and 200; one could find the percentage changes for bus 3 to be 

respectively, -0.0310, -5.1467, -26.3545, -34.4900 and -34.6094. Finally, for bus 4 the 

percentage change in the lengths of tour for ants‘ numbers 5, 15, 50 and 100 are 15.5163, -

6.2315, -19.5140 and -19.5140 correspondingly. 
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CHAPTER 5 

DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

This chapter comprises discussion of the experimented results, drawing conclusions and 

recommendations based on the outcome of the experimentation. 

5.1 DISCUSSION OF RESULTS 

The focus of this work is centered on constructing routes for vehicles using the school bus 

transportation system of Woodbridge school complex as a case study. In the work, the routes are 

constructed by simulating the behaviour of artificial ants (naturally know as ants). Since ants 

naturally move in ―colonies‖ the methodology is based on the idea that a group of ants are 

allowed to explore various routes that link a given number of points in a given area. As these 

ants are put to work different ants will take route that link a given numbers of point and the result 

of the best ant will be considered as the optimal route length. Thus, the results shown in the 

graphs are based the tour of the best ants. In order to ascertain convergence of the optimal 

solution, the experimentation involves variation in the number of ants. The school has four buses 

that operate on different routes and for each bus different ants‘ numbers are considered. 

However, it is important to note that the research performed several experiments on more than 

those presented, but for the sake of the objectives of this work only few different cases for each 

bus is presented.  
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The results in section 4.1 show the optimal route lengths that will yield the optimal (reduced) 

cost for bus 1. From figure 4.11, ants‘ numbers corresponding to 10 will be inefficient since it 

increases the original tour length for bus 1 by approximately 4.5%. If 15 numbers of ants are 

considered, the optimal cost will be given by a route length of about 24 kilometers (see figure 

4.12). This shows a result close to the actual distance covered by bus 1, which could mean that 

the school operates based on a route constructed by about 10 ants. However for ant numbers 50, 

100 and 200 the optimal course for bus 1 is by the length of approximately 20km, 18km and 

18km, respectively. It can therefore be concluded that the optimal course for bus 1 is by the 

length of about 18km, which represent a reduction in cost by about 25% (1/4). 

 The experimented results in section 4.2 shows the optimal curse for the tour of bus 2. 8 ants will 

yield an optimal route length of about 40, which is somehow close to the original tour length 

covered by bus 2. For 50, 100 and 200 ants the route length will be reduced by about 36%, 41% 

and 41%, respectively (refer to figures 4.21-4.24). Hence, the optimal course for bus 2 is by 

length of close to 24 kilometers. 

 The optimal course for bus 3 is depicted by the figures in section 4.3. For 7 ants the optimal 

course is by the length of about 40km. Thus, the existing length of tour covered by the bus 3 

depicts the results of 7 ants. This implies that for ants‘ number greater than 7, the optimal course 

taken by bus 3 will begin to improve. Ants‘ numbers 10 and 50 reduces the cost by close to 5% 

and 26% respectively. Slimily 100 and 200 ants reduce the route length for bus 3 by the same 

percentage of 35%. As a result, the optimal route length for the bus 3 is approximately 26km. 

From section 4.4 (see figures 4.41- 4.44), the tour constructed by 5 ants will be inefficient for 

consideration by bus 4 since it increases the original tour length constructed by bus 4 by 
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approximately 16%. 15 ants construct an optimal course by length of about 17km, which also 

represents about 6%. This suggests that the optimal route length will improve for number of ant 

greater than 15.For 50 and 100 ants the optimal route length converges to approximately 14km 

representing about 20% optimization of cost of transport service rendered by bus 4. 

It could be calculated from Table 4.1 that in general, the ant colony optimization  has performed 

creditably well by reducing the original route length by about 40km, which is a reduction from 

122.86km to 86.9251km and represents about 33% reduction in total cost. 

 It also could also be discerned from the figures and table that the number of ants required for 

route length to begin to improve varies with the problem size. For example in figures 4.11 to 

4.14 the route length will begin to improve for at least 16 ants. Also for bus 2, at least 8 ants are 

required for route length to begin to improve. For buses 3 and 4 at least 8 ants and 15 are 

required. Since the number of nodes for the buses 1, 2, 3 and 4 respectively are 17, 28, 23 and 

14, it is logic to contend that for smaller number of nodes, high number of ants are required for 

optimal route length to begin to improve than are required for large number of nodes. 

 It is also part of the objective to select bus stops from a given number of potential bus stops. For 

this research work, every point that a bus stops and picks student is considered potential and 

some will be eliminated. For bus 1 some bus stops (nodes) are very close to each other and they 

will be merged resulting to the creation of 13 bus stops out of 17. For bus 2, 15 bus stops will be 

selected out of 28. Moreover, for buses 3 and 4, 10 and 9 bus stops will be selected from 23 and 

14 bus stops respectively. 
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 5.2 CONCLUSIONS 

The ant colony algorithm has proven itself to be a powerful tool for solving strong combinatorial 

optimization problems like the VRP. The results evince the possibility of the ant colony 

optimization heuristic to converge the solution to optimality.    

Based on the experimented results and the discussions above, the following conclusions can be 

made. 

i. Optimal route lengths for buses 1, 2, 3 and 4 are approximately 18km, 24km 

26km and 14km respectively. 

ii. Cost of services rendered by buses 1, 2, 3 and 4 are reduced by 25%, 41%, 35% 

and 20%, respectively. 

iii. In general, the total cost of transportation is reduced by approximately 33% and 

the optimal routes are displayed in figures 4.1.5, 4.2.4, 4.3.5 and 4.4.4.  

iv. Number of ants required for the commencement of improvement in optimal 

route length varies inversely with the number of nodes. 

v. The number of bus stops that will be selected from 17, 28, 23 and 14 bus stops 

as applicable to buses 1, 2, 3 and 4 are about 13, 15, 10 and 9 respectively. 

As we compare the results of the ant colony to the existing system at Woodbridge school 

complex, we may argue rightly that the school bus transportation service as presently exists at 

Woodbridge School Complex is inefficient. Hence, to run an efficient service, the school must 

adopt a system that is scientific- based, especially the ant colony heuristic for the school bus 

routing problem. 
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 5.3  RECOMMENDATIONS 

i. A clear definition of distance between two points must be considered when 

creating a picking point from one point to the other. This must be done by defining a 

lower bound on the distance between the two points. 

ii. Bad routes that join shortest paths between two points must be developed. 

iii. Back-tour must not be made on already visited routes. 

iv. New rules governing the transport service must involve the condition that all 

student walk to an allowed bus stops. 

v. The school should purchase three additional buses of capacities 60, 33 and 19 to 

support the operation of the existing ones of the respective capacities. 

vi. The 45 capacity bus serving as stand-by should be released to support the 

operation of bus 2 as this will ensure comfortability of customers during ride time.  

vii. In order to avoid lateness, traffic must be avoided; this can only be ensured if all 

customers walk to their designated bus stops in time. 

viii. Limit must be imposed on the time at which a bus must enter and exit and a 

given bus stop.  

ix. Since the school has no policy that ensures that members of staff are transported 

to and from work, the buses should not wait at un-designated stops to pick staff members. 

x. In addition, the researcher recommends that any further research based on this 

study should consider first, the assignment of buses to various tours before constructing 

their respective routes. A lower bound restriction must be imposed on the distance 

between two points before considering them as eligible picking points and this must also 

be included in the ant colony algorithm. 
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1.7 4.6 

 APPENDIX A: BUS TOUR (ANT SKECHES)       Bus 1 
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APPENDIX B: NAMES OF VARIOUS PICKING POINTS 

 

S/N 

 BUS 1  BUS 2  BUS 3  BUS 4 

1  Cape Coast 

station 

 Adom 

Electricals  

 TTI  Apollo  

2 New Takoradi Bishop Porters 

Primary 

West line Station Apollo Dupaul 

gate 1 

3 1
st
 Stop 

Pharmacy 

Gov‘t Propt. 

Sekondi Rd. 

Bertsack 

Ventures 

Apollo Dupaul 

gate 2 

4 All Needs 

Supermarket 

Twincity Sign 

Post 

Lagos Town 

School 

P & O Press 

Ltd 

5 Segoe Junction Bubbles Doctor Ogoo  Barracks 1 

6 Timber Bar Kweikuma 

junction 

Doctor Ogoo 2 Barracks 2 (All 

Shall Pass Ent) 

7 Air Force 1 Church of Jesus 

Christ of Latter 

day Saint 

Woodbridge 

School 

Barracks 3 

(AQ Coy Blk 

Q) 
8 Air Force 2 Jendu Park Galaxy Oil Woodbridge 

School. 
9 31

st
 DWM Sekondi Prisons Onat K. I Adu  

10 Methodist 

Church 

Bakaikyir Lagos Town Mkt Paul Essah 

Ave. Sign Post 

11 Central Police 

Reserve 

Adiembra Round 

About 

Lagos Town 

Sch. 

Uncompleted 

Building Opp. 

MTN stand 
12 Chapel Hill Opp. Kweikuma 

Junction 

Woodbridge 

School 

Ahantaman 

Rural Bank 
13 Davi Ama  Fijai Junction Apowa Estate Lagos Town 

Sch. 
14 Pass Gya Tires May‘s Spot Apowa Bus stop Woodbridge 

Sch. 
15 Cemetery K 

Road 

Hill Top 

Executive House 

God is Great 

Academy 

 

16 Lagos Town 

School 

Ahantaman Sec. 

Sch. 

Alberta Lodge 

opp. Beahu 

 

17 Woodbridge 

School 

Agric. Station Apowa Highway 

Estate 

 

18  Opp. Boy 

Boison 

Apremdo  

19  Fijai Ridge Rd. 

Betty Link 

Woodbridge 

Sch. 
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Saloon 

  BUS 1  BUS 2  BUS 3  BUS 4 

20     My Redeemer 

Liveth Fashion 

 Ground Plaza   

21   Hasko Enterprise 

Block Factory 

Above All Ent.  

22   Justice Bar & 

Spot 

AOG cavalry  

23   Queen of Peace Assakae Station  

24   Ck Man Junction Woodbridge 

School 

 

25   Ecowas Link 

photo Lab 

  

26   No. 9 Taxi Rank   

27   VIP   

28   Bertsack 

Venture 

  

29    Lagos Town 

School 

   

30    Woodbridge 

School 

   

 

 

 

 

 

 

 

 

 

 

 



  

90 
 

APPENDIX C: DISTANCE MATRIX TABLE 

 

S/N 

 BUS 1  BUS 2  BUS 3  BUS 4 

 
  

 
  

 
  

 
  

1 
 

0.2 4.6 1.4 4.5 -1.6 0.8 0.6 

2 -1.6 0.4 -1.3 0.6 -0.5 0.2 0.2 -0.3 

3 -0.9 -0.3 1.9 1.0 -0.1 0.1 0.1 -0.2 

4 -0.6 0.7 0.6 0.5 -1.0 0.1 -0.4 1.2 

5 -0.1 0.1 0.6 0.2 -0.2 -0.4 1.4 1.1 

6 0.1 0.0 0.5 0.1 1.1 -2.6 -0.5 0.2 

7 1.4 -1.9 1.5 -0.1 0.2 0.4 0.3 -0.1 

8 -0.3 -0.3 1.3 0.4 1.3 0.2 1.4 -3.3 

9 1.2 -0.1 0.2 0.1 1.5 -0.3 -1.2 -1.0 

10 0.4 0.0 -2.7 0.6 -0.4 0.0 0.1 -0.6 

11 0.6 -0.2 2.2 2.8 1.2 -3.1 -0.5 -1.2 

12 0.8 1.4 0.1 0.1 -3.7 -1.1 0.2 -0.1 

13 2.5 1.0 0.9 0.5 0.5 0.3 -1.8 0.1 

14 0.3 0.6 -1.2 2.4 -1.9 0.8 1.2 -3.1 

15 0.4 1.0 -1.0 0.2 0.2 -0.2   

16 -1.7 0.1 -2.0 1.3 0.3 -1.6   

17 1.2 -3.1 -0.3 -0.3 3.8 2.6   

18   -0.3 0.0 0.3 -0.7   

19   -0.3 -0.2 -1.6 0.9   



  

91 
 

 

S/N 

 BUS 1  BUS 2  BUS 3  BUS 4 

 
  

 
  

 
  

 
  

20     -0.2 -0.1  -0.1 0.1    

21   0.7 0.6 -0.4 0.5   

22   1.1 1.7 0.2 0.3   

23   0.5 0.2 1.1 -2.6   

24   0.2 -0.1     

25   0.6 -0.1     

26   -0.1 1.4     

27   -1.0 0.1     

28   1.2 -3.1     
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APPENDIX D: MATLAB PROGRAMME FOR TSP ANT COLONY-BASED 

function [cost,f]=ants_cost(m,n,d,at,el); 
for i=1:m 
    s=0; 
    for j=1:n 
        s=s+d(at(i,j),at(i,j+1)); 
    end 
    f(i)=s; 
end 
cost=f; 
f=f-el*min(f);%elimination of common cost 
function [at]=ants_cycle(app,m,n,h,t,alpha,beta); 
for i=1:m 
    mh=h; 
    for j=1:n-1 
        c=app(i,j); 
        mh(:,c)=0; 
        temp=(t(c,:).^beta).*(mh(c,:).^alpha); 
        s=(sum(temp)); 
        p=(1/s).*temp; 
        r=rand; 
        s=0; 
        for k=1:n 
            s=s+p(k); 
            if r<=s 
                app(i,j+1)=k; 
                break 
            end 
        end 
    end 
end 
at=app;% generation of ants tour matrix during a cycle. 
function [x,y,d,t,h,iter,alpha,beta,e,m,n,el]=ants_information; 
iter=100;%number of cycles. 
m=200;%number of ants. 
x=[8 0 -1 2 4 6 3 10 2.5 -5 7 9 11 13]; 
y=[2 4 6 -1 -2 0.5 0 3.7 1.8 1 0 4 3 2];%take care not to enter iterative points. 
n=length(x);%number of nodes. 
for i=1:n%generating link length matrix. 
    for j=1:n 
        d(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); 
    end 
end 
e=.1;%evaporation coefficient. 
alpha=1;%order of effect of ants' sight. 
beta=5;%order of trace's effect. 
for i=1:n%generating sight matrix. 
    for j=1:n 
        if d(i,j)==0 
            h(i,j)=0; 
        else 
            h(i,j)=1/d(i,j); 
        end 
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    end 
end 
t=0.0001*ones(n);%primary tracing. 
el=.96;%coefficient of common cost elimination.  
function [app]=ants_primaryplacing(m,n); 
rand('state',sum(100*clock)); 
for i=1:m 
    app(i,1)=fix(1+rand*(n-1));%ants primary placing. 
end 
function [t]=ants_traceupdating(m,n,t,at,f,e); 
for i=1:m 
    for j=1:n 
        dt=1/f(i); 
        t(at(i,j),at(i,j+1))=(1-e)*t(at(i,j),at(i,j+1))+dt;%updating traces. 
    end 
end 

 
[x,y,d,t,h,iter,alpha,beta,e,m,n,el]=ants_information; 
for i=1:iter 
    [app]=ants_primaryplacing(m,n); 
    [at]=ants_cycle(app,m,n,h,t,alpha,beta); 
    at=horzcat(at,at(:,1)); 
    [cost,f]=ants_cost(m,n,d,at,el); 
    [t]=ants_traceupdating(m,n,t,at,f,e); 
    costoa(i)=mean(cost); 
    [mincost(i),number]=min(cost);besttour(i,:)=at(number,:); 
    iteration(i)=i; 
end 
subplot(2,1,1);plot(iteration,costoa); 
title('average of cost (distance) versus number of cycles'); 
xlabel('iteration'); 
ylabel('distance'); 
[k,l]=min(mincost); 
for i=1:n+1 
    X(i)=x(besttour(l,i)); 
    Y(i)=y(besttour(l,i)); 
end 
subplot(2,1,2);plot(X,Y,'--rs','LineWidth',2,... 
                'MarkerEdgeColor','k',... 
                'MarkerFaceColor','g',... 
                'MarkerSize',10) 
xlabel('X');ylabel('y');axis('equal'); 
for i=1:n 
    text(X(i)+.5,Y(i),['\leftarrow node ',num2str(besttour(l,i))]); 
end 
title(['optimum course by the length of ',num2str(k)]) 

 

 

 

 


