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ABSTRACT  

This study explored the application of geospatial technology in understanding change pattern of 

Land use/Land cover (LULC) and associated Land Surface Temperature (LST) variability in the 

Greater Accra region between 1986 and 2018. Landsat satellite imagery between the months of  

December and February (dry season) were used for LULC analysis and LST Estimation.  MODIS 

LST data for 1986, 2002 and 2018 were also utilized for the validation of satellite derived LST. 
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The aim of this research was to investigate how LULC changes affects LST. The results of analysis 

show that LULC in Greater Accra region has changed significantly over the 32-year period. Four 

major LULC types identified were; vegetation, built-up, bare land and waterbody. Bare land cover 

type indicated decrease from 1986 to 2018 of 60.22%. Water bodies experienced varying trend of 

7.84% decrease representing 9.11 Km2. Vegetation cover indicated 16.20% increase in 2002 and 

28.02% decrease in 2018. This amounted to a total of 11.82% decrease in vegetation cover. On the 

contrary, built-up increased by 654.03% (724.3 Km2) between 1986 and 2018. LST was observed 

to have increased by 3.05  over the 32-year period of this study across the Greater Accra region.  

with the highest LST of 36.95  and the lowest of 20.19 , both recorded in 2002. The trend 

however indicated a significant increase between 1986 and 2002 but a decrease in LST from 2002 

to 2018. The increasing trend in LST over time was found to be consistent with the observed urban 

expansion of the study area. High temperatures are also more apparent along the coastal belt of the 

region stretching northwards as development spread in the same direction. Total change in LST 

for the entire period of the study show increases of 3.53 , 3.04 , 2.78  and 2.65  for bare land, 

vegetation, built-up and waterbody land use/land cover types respectively. LULC association with 

LST shows that bare land experienced the highest negative change of 60.22% and this 

corresponded to the highest increase in LST of 3.53  over the same period. Correlation analysis 

and Coefficient of variation indicated largely that, MODIS LST data validated derived LST from 

Landsat satellite imagery. Trend of both LST values follow identical pattern with few instances 

where derived LST is greater than MODIS LST. Both NDBAI and NDBI exhibited a positive 

correlation with LST. NDVI demonstrated a negative linear correlation while NDWI indicated the 

strongest negative linear correlation with LST. Land use/Land cover change can be linked to rising 

Land Surface  

Temperature Changes in the Greater Accra region of Ghana. The research stresses the need to 

ensure effective land use planning by relevant regulatory bodies to control urban development and 

address anthropogenic causes of surface temperature changes.  
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1 Chapter One: Introduction  

1.1  Background  

Concerns over changing climatic conditions is unequivocal in recent times. Climate change 

conditions is among the major challenges facing the world in this modern age. It adds substantial 

stress to the environment and the society due to its repercussions felt by both human and natural 

systems (Adedeji et al. 2014; Serdeczny et al. 2017). Hille (2016) identifies global surface 

temperature as one of the two key climate change indicators. Earth‘s climate has warmed by 

approximately 0.6ºC over the past hundred years, each decade has experienced successively 

warmer surface temperatures compared to the previous decade from 1850 (Walther et al. 2002; 

Stocker et al. 2013). Africa is among the continents that are likely to suffer the impact of changing 

climate (Intergovernmental Panel on Climate Change, 2014; Niang et al. 2014). Surface 

temperature changes in Sub-Saharan Africa has not been any different from global trends. A study 

carried out by Collins (2011) on temperature variability over Africa, found significant increasing 

temperature trends between 1979 and 2010.   

Increasing temperatures has been exacerbated in cities by Urban Heat Islands (UHI) effect. The 

phenomenon of urban heat island (UHI) shows that temperatures in built-up regions differ in few 

degrees higher compared to those in non-urbanized regions. ―Recent studies show that a number 

of cities in the world have observed an upsurge in urban temperatures‖ (Manu et al. 2006). Many 

researchers including Voogt and Oke (1997) have linked anthropogenic activities to UHI. The 

effects of urban heat-island (UHI) is one key example of human influence on local climate (Hinkel 

et al. 2003).   

Urbanization trends resulting in increasing size of cities and deterioration of urban environment 

has been a source of growing worry for future cities (Enete and Okwu, 2013). Approximately 2% 

of the entire landmass of the earth constitute urban regions, which are inhibited by approximately 

half of the world‘s population (Van Vliet, 2001). The urbanization rate especially in most of the 

emerging countries is significant over recent decades due to the pursuit of fast economic 

development (Li et al. 2009). It has rapidly increased in the past century and is projected to further 

increase. Rapid growth of population and the incessant exploitation of the world‘s resources over 

the years have been the main factors instigating land-use/cover change (LUCC) on global scale 

(Zhou and Wang, 2011). Kleemann et al. (2017) reported that, population growth particularly in 
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rural communities constitute a significant factor of LUCC in Ghana. The dynamics of Land use 

and land cover (LULC) affect the land surfaces‘ ability to reflect or absorb in varying proportions 

solar radiation (Appiah et al. 2017). LUCC typically affect land surface temperatures (LST) 

(Asmat et al. 2016 cited in Appiah et al. 2017).  

The most appropriate tool for the systematic assessment of heat islands at city and regional scales 

is remote sensing, it allows the analysis of surface temperature maps and processing of images 

revealing the distribution of other parameters influencing UHI (European Environment Agency, 

2010). Thermal Infrared (TIR) imagery is significant in several applications such as LST 

estimation (Liu and Zhu, 2012). Thermal bands from satellites have been used in several studies 

to estimate surface temperature (Bakar et al. 2016). Several authors have used the TIR satellite 

remote sensing as proxy for calculating LST through the estimation of land surface reflectance 

properties (Srivastava et al. 2010; Liu and Zhang, 2011; Rajeshwari et al. 2014 cited in Appiah et 

al. 2017). Thermal infrared (TIR), the Enhanced Thematic Mapper Plus (ETM+) and the Landsat 

Thematic Mapper (TM) data have been used likewise for local-scale reports of urban heat island 

(Chen et al. 2002; Weng, 2001).  

Previous research works have shown that, integration of Remote Sensing (RS) and Geographic 

Information System (GIS) can be combined as tool for estimating the LST impact on rapid builtup 

growth development (Liu and Weng, 2008). Widyasamratri et al. (2013) in his study to assess the 

rate as well as the intensity of urbanization in Jakarta, Indonesia, established the correlation 

between UHI and urbanization. In another study by Bakar et al. (2016), the relationship between 

LUCC revealed a negative correlation between vegetation cover and LST concluding that Modified 

Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI) 

and Normalized Difference Built-up Index (NDBI) indices could serve as pointers to monitor the 

impact of LCLU on LST.   

In Ghana, the correlation between LULC and LST has been assessed for few cities. However, there 

exist limited research and comprehensive understanding of long-term LST trend in the Greater 

Accra region at large. The insight offered by the long-term spatiotemporal study of LST is 

necessary for urban thermal environment and microclimate characterization. The study was 

therefore intended to investigate LUCC relationship with LST in the Greater Accra Region of 

Ghana.  
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1.2  Problem Statement  

The World Meteorological Organization (2017) report on temperature shows that 2015 to 2017 

have been the top three warmest years and it constitute a long-term warming trend. Reports of heat 

waves have also been rampant in recent times, buttressing observed increasing temperature trends. 

Mora et al. (2017) predicts more extreme cases in the coming decades, in frequency and over much 

greater portion of the planet. The planet earth recorded   

The impacts of increasing temperature trends have been identified by several studies. For instance, 

increasing thermal stress poses significant threats to human health (European Environment 

Agency, 2011). UHI effect increases the hazard of outdoor environment discomfort and injuries 

related to heat stress which pose threat to the health of those living in the cities (Ebi et al. 2004; 

Mathies et al. 2008; Barredo, 2009; Hajat et al. 2010; Enete et al. 2013).  

WHO (2007) report on ―Improving Public Health Responses to Extreme Weather/Heat-Waves, 

EuroHEAT‖ emphasizes the fact that, hot weather can kill and cause illness. Higher temperatures 

in the urban areas also increase daily energy consumption requirement for cooling, especially 

during peak electric demand periods in the Central Business Districts (CBDs). Increased energy 

consumption is also linked to the release of more greenhouse gas due to the combustion of fossil 

fuel, thus perpetuating the cycle  (EEA, 2010).    

In local climates of many cities, a major contributing factor to increasing temperatures has been 

identified as LUCC (Peng et al. 2018; Mushore et al. 2017; Chen et al. 2006; Pei et al. 2016; 

Buyadi et al. 2013; Zhou and Wang, 2011). Urban growth has accounted for changes in LULC and 

impacted LST (Wang et al. 2018; Zhao et al. 2017).   

Land use/cover pattern in Ghana have experienced fundamental change due to accelerated 

economic development. For example, infrastructure development in Accra has been very high with 

built-up areas increasing by 59% between 1985 and 2010 (Yeboah et al. 2017).  Due to the 

seriousness of LUCC on environment, impact studies has been undertaken leading to the 

conclusion that the changes can have momentous impact on climate and local weather (Yeboah et 

al. 2017; Landsberg, 1981). This underpins the need to understand the LST trends and its 

association with the changes in land use in the Greater Accra of Ghana. The insight from this study 

seeks to present valuable actionable information for variety of application in addressing the rising 
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temperature conditions in our cities. This knowledge on the impacts of changing urban landscape 

on microclimatic conditions of cities is imperative for spatial decision making in especially urban 

design and land use planning for sustainable development.  

1.3  Objectives    

Main:  

The aim of this study is to investigate how Land Use/Cover changes affects Land Surface 

Temperature (LST) in the Greater Accra Region of Ghana.  

Specific:  

1. To identify the changing pattern of LULC over the past thirty-two (32) years.  

2. To understand LST variability in the Greater Accra region.  

3. To analyze LST variations associated with LULC changes.  

1.4  Research Questions   
1. What is the trend of LULC in the region?  

2. Is there spatial variation in Land Surface Temperature?  

3. What is the relationship between LULC types and LST?  

4. Can LST changes be explained by the changing nature of LULC in the region over the 

years?  

1.5  Structure of Thesis Report  

The thesis structure was organized in five interrelated chapters. Chapter one outlined the following: 

research background; aim and objectives of the research; research question as well as problem 

definition. The second chapter reviewed relevant papers and other literature on GIS and RS 

application in LULC and LST research. The third Chapter gives description to the study area, data 

sources, research techniques and general methodological approach used in the study. Chapter four 

presented the results after the data analysis and discussion on the findings of the research. Finally, 

the fifth chapter focused on the research limitations, recommendations and the conclusion.    



 

5  

  

2 Chapter Two: Literature Review  

The attention of climate researchers has for the last decade been drawn to regional and local climate 

under human influences to ascertain the upsurging change in driving factors of climate (Adegoke 

et al. 2003). The change in the surface thermal environment is one of the key components of 

regional climate change. The global average data of combined ocean and LST confirms a warming 

of 0.85  ْ C (0.65 to 1.06) from 1880 to 2012 (Stocker et al., 2013). Many observed increases in the 

average temperature on the global scale have been linked directly to the emission of greenhouse 

gases (GHG) (Hegerl et al., 2007). Anthropogenic causes have been on the rise since the era of 

pre-industry, driven mainly by population and economic growth which influence LULC. The 

impact of human influences has been the main cause of the upsurge in LST since the middle of the 

twentieth century.  

2.1  Land Surface Temperature (LST)  

A number of factors have been linked to micro climatic warming and heat rise. The major factor is 

the rise in LST. According to Bense, et al. (2016), LST defines the skin temperature of the surface 

–referring to canopy surface temperature of vegetation (i.e. for densely vegetated area) and soil 

surface temperature (i.e. for bare soil). The skin temperature or land surface is referred to as the 

temperature that comes from the surface of the canopy layer. For meager vegetated ground, LST 

defines the temperature of the canopy, body of the vegetation as well as surface of soil (Qin and 

Karnieli, 1999). LST is defined by the temperature radiating from the surface of the earth –

controlling water exchange with temperature and surface heat (Yuan and Bauer, 2007).  

The difference that exist between Ground Surface Temperature (GST) and LST effect is not only 

based on the regular recurrence of shortwave radiation from the sun and the influence of the 

characteristic layer and surface of the soil/litter. Thus, the main bias or deviation can be brought 

about especially when using products of LST since the inadequate reflection of the buffering 

effects of vegetation, snow cover as well as upper soil layers (Luo et al., 2018).      

LST is among the significant phenomena that control the chemical, physical and the biological 

courses of the earth and an important factor in urban climate study (Pu et al. 2006). In other words, 

land surface temperature constitutes a significant phenomenon in understanding the physical 

courses of water balance and surface energy. It is considered as a complete force underpinning the 
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exchange of turbulent heat and long-wave radiation at the atmosphere-surface interface (Brunsell 

and Gillies, 2003; Zhang et al. 2008; Anderson et al. 2008; Kustas and Anderson, 2009; Karnieli 

et al. 2010). Land surface temperature play a significant role in most of the land-surface processes 

(Sellers et al. 1988; Mannstein, 1987).  

Land surface temperature is linked to heat transport between the atmospheric boundary layer and 

land surface and makes estimation of latent heat and evapotranspiration, or sensible heat fluxes. 

LST constitute a significant input with regards to the modeling of the ecosystem, which can be 

performed at the global, regional and local scales. Land surface temperature varies in terms of 

surface energy balance as it controls the temperature of air at the lower layers of built-up 

atmosphere. LST is important to the balance of energy on earth surface and affects exchanges of 

energy and these together affect people‘s comfort especially those in urban areas (Voogt and Oke, 

2003). In-depth knowledge on LST hence provide details on spatial and temporal differences of 

equilibrium state of the surface –this is important in several applications such as monitoring the 

climate, urban environment and climate studies, hydrological, evapotranspiration and the 

monitoring of vegetation (Bastiaanssen et al. 1998; Su, 2002; Arnfield, 2003; Voogt and Oke, 

2003; Weng et al., 2004; Kalma et al., 2008; Weng, 2009; Hansen et al., 2010). Land surface 

temperature has been extensively used in meteorological, climatological, ecological, and 

hydrological studies (Duan et al., 2017; Weng and Fu, 2014; Anderson et al., 2008; Sandholt et 

al., 2002). It continues to be used for various scientific studies and it is a significant factor in 

assessing heat related risks, for estimation of building energy consumption, and for measuring 

surface urban heat islands (Mattew et al., 2016; Weng and Fu, 2014; Deng and Wu, 2013; Hu and 

Brunsell, 2013).   

Land surface temperature is very sensitive to several features on land surface and thus can be 

engaged in the extraction of information from the various LULC types. Due to the fact that strong 

heterogeneity of features of land surface like topography, soil, and vegetation (Neteler, 2010), land 

surface temperature changes are rapid in time and space (Prata et al., 1995) and enough description 

of the distribution of land surface temperature as well as temporal evolution.  

LST thus entails measurements with in-depth temporal and spatial sampling.  
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2.2  Urban Heat Island (UHI)  

The UHI effect is among the best expressions of anthropogenic activities impact on local climate. 

UHI has been a concern since the last four decades. Voogt (2004) suggests that urban heat island 

is the distinctive warmth of the lithosphere and atmosphere in the built-up areas as against their 

rural regions. Cities have comparatively adequate thermal capacity and higher absorption of solar 

radiation (Weng, 2001). The effect of UHI constitute a phenomenon that produce higher 

temperatures in built-up regions than that of the non-urban surroundings (Jensen, 2000). The effect 

of urban heat island constitutes a significant climatic phenomenon to research because 

microclimate gets affected by local temperatures through process like vegetation growth, moisture 

retention, levels of plant, and atmosphere evaporation.    

Comparison of the general warming of cities to that of the hinterlands is just one of the facet of the 

impacts of urbanization on local climate. A significant impact of UHI phenomenon is the local 

climatic variability and changes. UHI result as a mammoth division of land-cover within a 

particular region get replaced with built-ups that absorbs radiation from the sun during the day and 

later releases this radiation at night (Quattrochi et al. 2000; Oke, 1982). There are some factors 

linked to micro climatic warming and urban heat rise, LST is one of these factors. The phenomenon 

is basically affected by the amount of water and vegetation on pervious surfaces. The causes of 

UHI include change of land surfaces like urban expansion which uses materials capable of 

retaining heat. Also, population growth linked to rapid expansion of urban areas contribute to UHI 

development in these areas with concurrent upsurge in both maximum and minimum temperatures 

at similar rates. Economic output per capital and rapid population growth has been an exceptional 

character of this modern age (Sieferie, 2001; Cohen, 1995), affecting concerns on global 

environment (Rosa et al., 2004). Rapid urbanization is a contributor to changes in LULC and affect 

UHI (Streutker, 2003; Gallo and Owen, 2002). Like most built-up areas in Africa, the Accra and 

Kumasi metropolises keep experiencing a quick urban expansion with a linkage to growth in 

human population.  

Several research point to the fact that human activities strongly impact the atmosphere of the urbans 

through UHI establishment (Magee et al., 1999; Oke, 1997). The sources of anthropogenic heat 

are factories, cars and homes. The most significant is heat absorbed and released by layers like 
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stones, black asphalt, concrete and bricks. These impervious layers have high capacity to capture, 

store and radiate heat.  

2.3  Remote Sensing (RS) Approach to LST Estimation  

Traditionally, ground measurement of Land Surface Temperature has always provided point values 

at the monitoring station usually sited in tree park-like surroundings (Nichol and To, 2012). This 

is plagued with the challenge of the discrete nature of the data recorded. Other challenges include 

the rising cost of purchase, installation as well as maintenance of climate equipment. This makes 

it hard to measure adequate LST at point locations in order to achieve a full coverage of an area. 

As local modeling depends on field data, RS constitute the primary source of estimation of LSTs 

at the global and regional scales (Li et al., 2013).    

Development of RS technology has improved the possibility of measuring LST over wide areas 

and even the entire globe. The RS methods make use of the thermal inertia of materials on the land 

surface and physical models are applied to generate LST (Jensen, 2000; Sobrino et al.,  

2004). Satellite data have availed sufficient high temporal resolution which is key as a vital tool 

for monitoring the LST and UHIs of the Earth over long period of time. Thermal band from 

different satellite data has been used by several researchers (Yuan and Bauer, 2007; Weng et al., 

2004; Small, 2006; Gluch et al., 2006; Weng, 2009; Kato and Yamaguchi, 2005) to evaluate LST.   

Land surface temperature has always been retrieved successfully from satellite-infrared sensors 

like the Moderate Resolution Imaging Spectral-diometer (MODIS) and Advanced Very 

Highresolution Radiometer (AVHRR) aboard satellites. The best method of approach for a 

sinusoidal model over the quotidian product is most used to smoothen the sequential mean of land 

surface temperature (Tedesco, 2015). Hachem et al. (2009) posits that, choosing the best method 

enhanced the investigations of permafrost of mountains, particularly for uneven and sparsely 

observed remote regions.     

Dash et al. (2002) indicates that the satellite thermal infrared sensors is responsible for measuring 

the top of the atmosphere (TOA) radiances, where brightness temperatures are derived using the 

Plank‘s law. The top of the atmosphere radiances constitutes the result of the upwelling radiance 

from space, the emitted radiances from earth‘s surface, and the down-welling radiance from the 

sky, which is the three fractions of energy. The difference between land surface brightness and top 
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of the atmosphere radiances generally ranges from 1K to 5K in the 10 to 12μm spectral area, and 

these are affected by atmospheric conditions (Prata et al. 1995). Thus, conditions of the atmosphere 

like the downward irradiance reflected, upward emission, and absorption from the surface (Franca 

and Cracknell, 1994) ought to be rectified before the land surface temperature is generated. The 

brightness temperatures must be corrected further with values of spectral emissivity before the 

computation of land surface temperature to explain the roughness properties of the nature and 

amount of the land surface, vegetation cover, and the moisture content and thermal properties of 

the soil (Friedl, 2002).     

Several algorithms have been suggested and have been adopted for the estimation of LST for 

treating the various sensors aboard distinct satellites and making use of various assumptions and 

approximations for LSEs and RTE. Schmugge et al. (1998), considered two approaches to stem 

LST from multi-spectral thermal infrared images. The first approach makes use of a radiative 

transfer equation to render corrections to at-sensor radiance to the surface radiance, then by 

emissivity model to cause separation to the surface radiance into emissivity and temperature. The 

second approach uses the technique of split-window for land and sea surfaces, suppose the 

emissivity in the channels are similar (Dash et al. 2002). LST are thus worked out as the two 

channels are combined.    

One particular challenge of this algorithm is that the coefficients are only effective for the set of 

data used in deriving them. That is to say, thermal responses datasets for a particular landscape 

process or phenomenon measured by means of specific thermal infrared sensor will fail to be 

inferred for the prediction of similar measurement of thermal infrared –either from both recorded 

images and sensors at separate periods making use of similar sensor (Quattrochi and Goel, 1995).     

The upsurge in usage of Landsat data in recent times for the retrieval of LST has been the cause of 

creation of models that center on thermal band (TM6) only for Landsat sensors. Models like the 

radiative transfer equation was advanced for Landsat LST retrieval, however, the foremost 

challenge of this model is its inability to launch concurrently with satellite movements without in-

situ radio-sounding. In finding solution to this challenge, a mono-window algorithm was created 

Qin et al. (2001). Land surface temperature is acquired by this algorithm from the TM6 of the 

sensor of thematic mapper which aboard Landsat 5 satellite. Factors used for the algorithm are the 

total atmospheric transmittance, the at-sensor brightness temperature, the effective mean 
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atmospheric temperature, and the land surface emissivity (i.e. all temperatures in Kelvin). This 

algorithm is regarded more robust as it includes other factors aside brightness temperature. The 

benefit of the mono-window is after surface emissivity values as well as the solar angel values 

have been combined to the model, there exist a higher correlation between the retrieved land 

surface temperature and the brightness temperature (BT) (Alsultan, 2005). In the estimation land 

surface temperature making use of the mono-window algorithm, the BT is calculated first, while 

incoming solar radiation and surface emissivity are given as the parameters for the algorithm. The 

values of the surface emissivity are extracted from the values of NDVI. Regression and correlation 

test by Lim et al. (2012), confirmed a more positive relationship between anticipated LST and the 

values computed using the mono-window algorithm. Jung et al. (2011) used the same algorithm 

in their study to establish the relationship between LST, land covers and spectral emissivity making 

use of Landsat ETM+ and ASTER imagery of Kuju volcano from 2000 to 2006. This study 

identified a negative correlation for the retrieved values of LST and values for the NDVI.   

In the application of the split window algorithms and the mono-window algorithm on MODIS data, 

Zheng (2006) posits that one major challenge of using the retrieval algorithms is their requirement 

for surface emissivity values and atmospheric profile parameters, which are absent in the imagery 

from Landsat TM thermal channel. Additional computation must be done to have the parameters 

which render the land surface temperature retrieval process strenuous. Various studies have made 

use of the various algorithms and techniques to the retrieval of land surface temperature, using the 

thermal band in Landsat.   

2.4  Land Use/Land Cover Classification  

Geographic Information System (GIS) and Remote Sensing (RS) constitute important tools for the 

assessment and monitoring of changes in the environment as a result of its repetitive and synoptic 

coverage of space borne imagery thus useful for urban growth detection projects (Weng, 2001). 

Satellite remote sensing can collect multi-temporal data and as well turn it into usable information 

for observing changes in urban land processes.  

The integration of GIS and RS constitute a useful tool for studying interactions in human 

environment, like changes in LULC. LULC mapping to generate information on the changing 

nature of the earth is therefore one of the key and typical RS applications.   
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Currently, there has been near real time availability and improvement of multi spatio-temporal data 

with upgraded techniques for making monitoring LUCC cost-effective and timely.  

Many have used various algorithms or methods in LULC studies. The Supervised Maximum  

Likelihood Classification method has been widely used (Appiah, 2014; Basommi et al., 2016; 

Kumi-boateng and Stemn, 2015; Amamo and Amenu, 2017; Yeboah et al., 2017; Mensah, 2017) 

due to the need to make selection of the classes on the basis of pixel spectral properties and as well 

user friendliness of the classifier for images of low resolution (Appiah, 2014). Notwithstanding, 

development in technology have resulted in machine learning algorithms like the Random Forest 

(RF) algorithm.   

2.4.1 Random Forest Classifiers  

In the past twenty years, the random forest classifier as Breiman (2001) posits has attracted 

increased consideration as a result of its excellent results for classification and the speed in 

processing it (Rodriquez-Galiano et al. 2012). This algorithm constitutes an ensemble classifier 

that gives multiple decision trees, with the use of randomly selected subclass of training variables 

and samples. The RF classifier has gained popularity in the RS application as a result of its 

accuracy in classifications. Breiman (2001) avers that RF classifier uses set of CARTs for 

prediction. The trees are created through drawing subsets of training samples by means of 

replacement, implying that, similar samples can be selected on many occasions, whereas others 

may not at all get selected. That is, approximately two thirds of the in-bag samples are used in the 

internal cross-validation technique for the estimation on how well RF result model would perform 

(Breiman, 2001). Stumpf and Kerle (2001) indicates that the size of the sets of training samples 

have been identified to affect performance of RF classifier. According to Colditz (2015) 

investigation to date on RF classifier shows that the training samples sizes ought to represent about 

0.25 percent of the entire study area. Deng and Wu (2013) adopted RF classifier in their quest of 

classifying large-scale urban impermeable regions and they observed that the method performs 

better when there is availability of a large number of samples.   

Mellor et al. (2015) when investigating forest classification from Landsat data identified that 

random forest classification was comparatively insensitive to mislabeled training data. The 

researchers further identified that imbalanced training data can get introduced to take out errors in 

the classes posing greater challenge to the classification. On the other hand, investigations carried 
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out by Dalponte et al. (2013) and Millard and Richardson (2015) shows that random forest 

classifier is sensitive to the proportions of the different classes inside the training samples and to 

spatial autocorrelation of the training classes. Dalponte et al. (2013) continued that random forest 

classifier fails to withstand the excessive training data and thus tend to favour those in the 

representative classes.              

2.4.2 Random Forests and RS Satellite Imagery  

The random forest classifier has been used positively for the mapping of classes of LULC 

(Stefanski et al., 2013; Tsutsumida and Comber, 2015; Haas and Ban, 2014; Colditz, 2015) as well 

as buildings in built-up regions (Belgiu and Drǎgut, 2014); for classifying insect defoliation levels 

by the use of the red-edge band (Adelabu et al., 2014); for mapping habitats of boreal forest using 

WorldView-2 imagery (Räsänen et al., 2013); for mapping biomass with the use of temporal data 

of Landsat; for classifying built-up areas‘ impervious surfaces from data of the single date MODIS 

(Deng and Wu, 2013); for identifying tree health using IKONOS data; and for mapping the canopy 

of vegetation as well as the biomass using multi-temporal and unitemporal Landsat 8 imagery 

(Karlson et al., 2015). Random forest classifier has been successful as well in using it for LULC 

classifications from both data of Polarimetric SAR (Uhlmann and Kiranyaz, 2014),  multi-temporal 

SAR (Waske and Braun, 2009) and for oil spill mapping from data of SAR (Topouzelis and 

Psyllos, 2012).   

Several researchers have investigated the potency of RF classifier for mapping reforested landslide 

with the use of calculated variables either for image objects or pixel defined by segmentation; or 

for improving urban object classification from the data of airborne LiDAR (Niemeyer et al., 2014; 

Chehata et al., 2009). However, few researchers have explored the usage of RFs in the 

classification of UAV data and in thermal RS as Sun and Schulz (2015) avers.       

2.5  Driving Factors of Land Use/Cover Change  

LUCC constitute a complex interaction between humans and the environment. In built-up areas in 

Ghana, predominantly Kumasi, Accra, the term urbanization basically refers to the expression of 

the external expansion of cities including converting prime vegetation or agricultural land cover 

into industrial and residential uses.   
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The main factors or forces contributing to LUCC is generally accepted to be two factors namely 

anthropogenic or socioeconomic factors and biophysical forces. According to Geist and Lambin 

(2002) the factors causing LUCC are referred to as the precise and subtle forces. There are several 

factors leading to LULC changes in other parts of the globe (Campbell et al., 2005; Semeels and 

Lambin, 2001). These specific drivers include global market forces (Beilin et al., 2014), pasturing 

(Calvas et al., 2013), population growth (Bewket, 2002), urbanization (Dewan et al., 2012), but 

may at times include other complex human interactions due to cultural and institutional influences.   

Not long ago, climate change in the form of fire, changing patterns of rainfall, and drought, have 

all being considered as the upshot of land use/land cover changes (Kicklighter et al., 2014; Roman-

Cuesta et al., 2014).  

Attention on land use/land cover changes has increase on global scale, however, other causes have 

been identified in other regions of the world (Beilin et al., 2014; Dessie and Kleman, 2007; Bewket, 

2002). In Africa, Ethiopia to be precise, a study conducted by Tekle and Hedlund (2000) observed 

that settlement expansion is the main force contributing to land use/land cover changes as forest in 

the South Wello gets deforested. Also, according to Tegene (2002), charcoal making and collection 

of fuelwood constitute the main forces contributing to LULC processes.   

A study along the Kokrobite and Bortianor shoreline discloses the changing pattern of increasing 

conversion of traditional and nature-based land use patterns to tourism-based establishments. This 

was found to culminate into rapid loss of vegetative cover making it highly susceptible to the high 

influence of coastal erosion and wetland ecological resource degradation (Boafo et al., 2014).  

2.6  LST Trend and LULC Change  

Land Surface Temperature has been studied by several researchers across many parts of the globe 

from Middle East, Asia, Africa, South America among others. Description of the temperature 

trends and how they are attributed to natural factors and socioeconomic forces have been 

significant in understanding the role of human activities in altering climate system. The altering 

effect of climate change facing the world in recent decades have extensive impact on natural as 

well as human systems (IPCC, 2014). As has been widely discussed, the implication of human 

induced factor to warming of the atmosphere is extensive and it may demand substantial economic, 
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societal, and technological changes in trends (Van Den Bergh and Botzen, 2014; IPCC, 2014; 

Stern, 2007).      

Various studies have demonstrated the connection between LUCC and corresponding LST 

dynamics.  In Malang, spatio-temporal analysis of temperature shows widening of geographic 

space experiencing increasing temperature trends while establishing the link between the spatial 

pattern of temperature distribution and land cover change.   

Higher level of anthropogenic activities has been attributed to higher Land Surface Temperature. 

Makinde and Agbor, (2019) identifies with this trend and alludes to the notion that high level of 

anthropogenic activities is a driving force of significant UHI effect in Akure, a central business 

district in Nigeria. Though change in land surface temperature does not give substantial evidence 

to explain the phenomenon of urban heat islands, which is considered as one of the significant LS 

factors contributing to urban surface heat (Ishola et al., 2016).  

Ishola et al. (2016) concludes that surface temperature is a major indicator of the presence of 

surface urban heat island in the city of Abeokuta. Areas in and around the city center experience 

increase surface temperature. Its distribution however altered being mixed pattern to UH as the 

impermeable regions increased drastically from about 13 percent of the entire region of the city 

after it was changed to high land surface temperature of 33  and above. It was however identified 

that higher surface temperatures were infrequently experienced in regions of cities, but also in city 

outskirts, particularly areas with advanced built-ups or developing sites due to fewer green/trees 

lands and other impervious areas like pavements (Makinde and Agbor, 2019).   

Carlson and Sanches-Azofeifa (1999) investigated and concluded on a strong positive correlation 

between change in urbanization and land surface temperature.  In other words, changes in land use 

especially in the cities led to pixels migrating from cool surface condition to hotter one. A five 

years study also supported assertions that increasing urbanization affected and converted dense 

green lands which come with low temperatures to sparse green lands which come with high 

temperatures as Jiang and Tian (2010) indicates.   

 Further study by Buyadi et al. (2018) on LULC changes and LST indicated increase in land surface 

temperature including the thermal signal of cities and bare land and established the ability of green 

land regions to positively influence the high temperature in the built-up areas. Xiao and Weng 
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(2007) showed that change in land surface temperature is directly linked to changes in the materials 

use for construction in the built-up regions and abundant vegetation in both rural and urban regions.   

 Similar research into Rural Cool Troughs (RuCT) and Peri-Urban Heat (PuHT) in the Bosomtwe 

district by Appiah et al. (2017) suggested that the district, was on a rural to peri-urban trajectory 

characterized by values of land surface temperature that range between 24  to 53 . Their 

observation supported the conditions of the Peri-Urban Heat and the Rural Cool Troughs which 

resulted from changes in the landscape of the peri-urban and rural areas.   

Domaley et al. (2018) further confirm this link between surface temperature and vegetation with 

their study that documented general negative correlation between vegetation and LST throughout 

Ghana with the northern sector demonstrating the strongest negative correlation of approximately 

-0.8 and the southwestern part of Ghana depicting a weak negative correlation.   

Urban areas and bare soil recorded higher LSTs than vegetated areas buttressing the conclusion 

arrived in a study in Tarkwa that higher impervious and non-evaporative surfaces experience high 

LSTs due to absence of vegetation associated with lower temperatures (Aduah et al. 2012)  

According to Kumi-boateng and Stemn (2015), within a period of seventeen (17) years, urban 

development in the urban zones of Sekondi-Takoradi Metropolis also increased surface radiant 

temperature by 4.3  depicting the increasing yearly rate of change in the land use of built-up 

regions of 4.65% within the same period.   

Carlson and Arthur (2000); Weng et al., (2004); Jiang and Tian (2010); Chen et al., (2006); Pal 

and Ziaul (2016); Rasul and Ibrahim (2017); Azhdari et al., (2018); Fathizad et al., (2017); 

Shiferaw (2011) have all studied the effect of LULC change on LST. Some of these have 

specifically investigated specific LULC categories including vegetation indices and their 

relationship with Land Surface Temperature changes.    

  

3 Chapter Three: Approach and Methodology  

3.1  Study Area  

3.1.1 Physical Characteristics and Administrative Structure  

The Greater Accra region is among one of Ghana‘s sixteen (16) administrative regions. The Greater 

Accra region shares boundaries with the Volta Region to the east, Eastern Region to the north, 
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Central Region to the west, and the Gulf of Guinea to the south. Its coastline is about 225 

kilometers, stretching from Kokrobite in the west to Ada in the east. The region is the smallest 

among the sixteen (16) regions of Ghana occupying an area of 3,245 square kilometers, 

representing 1.4% of Ghana‘s entire land mass. The Greater Accra region is located in the 

southcentral part of Ghana and lies approximately within geographic coordinates of latitude (0º 13′ 

55″E; 6º 6′ 28″N to the North, 0º 24′ 19″ W; 5º 28′ 23″ N to the South) and longitude (0º 30′  

 
53″W; 5º 41′ 19″N to the West, 0º 41′ 29″E; 5º 46′ 4″N to the East).   

Figure 3-1 Map of Greater Accra Region  

The region comprises of sixteen (16) Metropolitan, Municipal and District Assemblies  

(MMDAs). Among these are five (5) District Assemblies, two (2) Metropolitans and nine (9)  

Municipal. The MMDAs are Accra Metropolitan Assembly (AMA), Adentan, Ga South, Ga East,  

Ga Central, Ada West, Ada East, Ashiaman, La Dade Kotopon, Kpone Katamanso, 

LedzokukuKrowor, Tema Metropolitan Assembly (TMA), Ningo Prampram, Madina, and La 

Nkwantanang.    
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The Greater Accra region is drained by notable rivers like Volta and the Densu. The region is also 

characterized by seasonal streams that flow from the Akwapim Ridge through numerous lagoons 

into the sea. Some of these wetlands and lagoons in the Accra metropolis, Dangme East and Tema 

are of high ecological importance but are extremely polluted largely through human activities. The 

prominent Volta River flows into the sea at Ada in the Dangme East District of the region.  

3.1.2   Climate   

The study region is in the dry, coastal, equatorial climatic zone. This zone experiences bi-modal 

rainfall season with an annual average rainfall ranging between 635 millimeters along the coast to 

1,140 millimeters in the northern parts. The first begins in April and ends in June whereas the 

second is between September and mid-November.  Major agricultural activities in the region are 

undertaken during this season. Both rainfall seasons peak, notably in June and October. 

Temperatures largely range from 20°C and 30°C (GSS, 2012). Close proximity to the equator 

ensures minimal variation in both annual and daily temperature throughout the year.   

3.1.3 Vegetation Cover  

Vegetation cover in the region is mainly coastal savannah shrubs scattered with thickets. Grasses 

in this area barely grow and so they are short and are even less than 1 meter with the maximum 

tree height of about 5 meters. Loss of dense forest in the region has been attributed to climate 

change and human activities (MLG, 1992).  

3.1.4 Demographic and Economic Characteristics  

According to the PHC (2010), the region has 4,010,054 inhabitants which account for 16.3% of 

the total population of Ghana. This makes it the most populated region. The Greater Accra region 

has the highest dense population in Ghana, and it is attributed to high population growth as well as 

in-migration. The age structure of the region is youthful, as it is characterized by high rate of 

fertility.   

The region is the center of most economic activities in the country. Notable economic districts 

among the several distinct political and administrative areas that together form the Greater Accra 

region is the AMA and Tema. The Accra Metropolitan area is an economic center of the region. It 

provides key political, economic and administrative functions with several financial and 

government institutions concentration. The Tema metropolis is also not only a port city but also 

the industrial hub of Ghana.   
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The Ga districts absorb much of the urban expansion occurring within the urban core of Accra and 

Tema. Agricultural activities of the region on the other hand are predominantly found in the Ga 

and Dangme districts where farmers are mainly engaged in the old system of farming.  

3.2 Research Approach  

The research adopted both GIS and remote sensing methods as shown in the methodological 

flowchart in Figure 3-2 and used both raster and vector geospatial data. The various techniques as 

shown in Table 3-1 are broadly categorized into four major procedures namely;   

• Satellite Image Pre-processing  

• LULC Classification and Accuracy Assessment  

• Change Detection Analysis  

• Correlation Analysis  

Software suite used in this research were ArcGIS Pro 2.2, ENVI 5.5 and SNAP to analyze satellite 

images and LST data. Outputs were presented in charts, maps, bar and line graphs.   

Table 3-1: Research Approach  

Objective   Research Question   Methodology  

1. To identify the changing 

pattern of LULC over 

the past thirty-two (32) 

years.  

  What is the changing trend of LULC in 

the region?  

  

  

  

Satellite Image Pre-processing  

(Radiometric correction,  

Image enhancement etc.)  

Land cover/Land use  

Classification (Random Forest  

Classification Algorithm)  

     Accuracy Assessment (Overall 

accuracy & Kappa 

Coefficient).  

     Change Detection Analysis  

    (identify and quantify 

differences)  

2. To understand LST  

variability in the  

Greater Accra region.  

  Is there spatial variation in Land Surface 

Temperature?  
  

  

LST estimation using the 

mono window algorithm  

Spatial Autocorrelation   
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3. To analyze LST 

variations associated 

with LU/LC changes.  

  

  

What is the relationship between LULC 

and LST?  

Can LST changes be explained by the 

changing nature of LULC in the region 

over the years?  

  

  

  

Correlation Analysis  

Zonal Statistical Analysis  

LULC Indicator Analysis  

  

  

 

Figure 3-2 Methodology Flowchart  

3.2  Data Type and Source  

The study was based on the use of a time series of Landsat satellite images, MODIS Land Surface 

Temperature data and vector dataset.   

3.2.1 Landsat Satellite Images  

Remote Sensing data from Landsat missions was obtained from the US Geological Survey 

Department online resource website. Landsat was the first civilian earth observation satellite in the 
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world and have created the longest continuously acquired space-based, moderate-resolution data 

archive.   

In an attempt to reduce errors that may result from cloud cover interference during analysis, only 

images between the months of December and February (dry season) were acquired while ensuring 

that ―cloud cover‖ for each scene of satellite image was restricted to 10 percent. These satellite 

images were used for LULC classification. Details of specific satellite images acquired are shown 

in Table 3-2.  

Table 3-2 Details of Landsat Satellite Images  

SATELLITE  

  SENSOR  

ACQUISITION  

DATE  RESOLUTION  
NUMBER OF 

BANDS  

LANDSAT 5  TM  22-12-1986  
Multispectral Band- 30m 

Thermal Band – 120(30)m     7  

LANDSAT 7  ETM +  26-12-2002  
Multispectral Band- 30m 

Thermal Band – 60(30)m  8  

LANDSAT 7  ETM +  04-01-2018  
Multispectral Band- 30m 

Thermal Band – 60(30)M  8  

Source: United States Geological Survey  

  

3.2.2 MODIS Land Surface Temperature Data  

MODIS land surface temperature products is among the globally available sources of LST. It has 

been created as a sequence of products beginning with a swath (scene) and progressing, through 

spatial and temporal transformations, to daily, eight-day and monthly global gridded products.  

The MOD11C1 granule consists of 16 layers at a pixel size of 5600 meters. This include five 

observation layers, six emissivity layers including their quality indicator (QC) layers, and day and 

night land surface temperature layers and QC layers. Corroboration at the second stage has 

succeeded for all products of MODIS land surface temperature or emissivity.   

MODIS was launched onboard Terra and Aqua NASA satellites in 1999 and 2002 respectively. 

Each satellite captures daily images of the entire earth‘s surface, making available two images of 

a specific location per day. In this study, due to data availability challenge for the year 1986, 

MODIS LST data with same acquisition date for only 2002 and 2018 were used in the validation 

of Landsat satellite derived LST.   
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3.2.3 Vector Datasets   

GIS vector data of study area boundary representing the administrative region of Greater Accra 

region together with road network dataset was collected from the Centre for Remote Sensing and 

Geographic Information Services (CERSGIS). This data assisted to define the various 

administrative regions that make up Greater Accra and help identify major road networks in the 

region.  

3.3  Methods  

This sub-section enumerates analytical geospatial techniques and methods utilized in generating 

results outputs.  

3.3.1 Satellite Image Pre-processing   

Image pre-processing is a fundamental technique in ensuring error free and accurate classification. 

Image pre-processing involves geometric/radiometric corrections, image enhancement, stacking 

and subset. Images acquired from USGS were already georeferenced into the WGS 84 UTM zone 

30. Radiometric correction processed the images for the imperfectly transparent atmosphere, 

imperfections in scanning instruments, seasonal and daily variations for received solar radiations, 

flaws as a result of curved shape of the earth among others. These preprocessing techniques which 

are aimed at preparing images for better analysis were executed with ENVI 5.5 software suite.   

Image Stacking was performed to ensure that all multispectral bands were combined into a single 

layer of multiple bands. The single layer of multiple bands ensures easy and relevant band 

combinations to focus on specific features during image classification. In supervised classification, 

band combination is very useful and suitable (Saleh, 2011; Lillesand et al. 2008). This was 

followed by image subset using regional boundary shapefile of the Greater Accra Region. It is a 

procedure through which an area of interest is masked out from the entire scene of the image.  

3.3.2 Land use/Land cover Classification  

Image classification is adopted to assign corresponding groups with homogeneous characteristics 

to discriminate multiple objects from each other in imagery. Pixel based classification could be 

supervised or unsupervised (Levin, 1999). This research used supervised classification which is 

the most widely used approach since it makes provision for more accurate classes definition and 
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enhance classification precision. Supervised classification uses samples of known spectral 

characteristics to classify pixels.   

3.3.2.1 Classification Scheme  

The Landsat satellite images were classified into four land cover classes; built-up, waterbody, bare 

land and vegetation for the assessment of changing land use trend. The selection of the land cover 

classification scheme was a modified USGS Land use/land cover classification system as 

conceptualized by Anderson et al. (1976). Based on the main objective of this study which was to 

investigate how LULC change is affecting LST, the following modification were made to the 

classification scheme (see Table 3-3)  

Table 3-3 Description of LULC types  

Land use/ Land cover Class  Description  

Urban/Built up Land  
Residential, Commercial, Industrial, Transportation, 

Mixed Urban or Built-up   

Bare Land  

Dry Salt Flats, Beaches, Sandy Areas other than 

Beaches, Bare Exposed Rock, Strip Mines, Quarries, 

and   

Gravel Pits, Transitional Areas, Mixed Barren Land.  

Vegetation   

Cropland and Pasture, Orchards, Groves, Vine yards, 

Nurseries, and Ornamental Horticultural  

Areas,  Confined  Feeding  Operations,  Other  
Agricultural Land.  

Deciduous Forest Land, Evergreen Forest Land, 

Mixed Forest Land  

Herbaceous Rangeland, Shrub and Brush Rangeland, 

Mixed Rangeland.  
Streams and Canals, Lakes, Reservoirs, Bays and  

Waterbody  Estuaries.  

Forested Wetland and Non-forested Wetland.  

 

Source:  Modified Classification Scheme from Anderson et al. (1976)  

Supervised classification algorithms group pixels into different classes based on the training 

samples or spectral signatures for every predefined land cover class. In sampling training data prior 

to supervised classification, the eight elements of image interpretation were considered to aid in 

the identification of land cover classes. These factors are colour, shadow, size, texture, shape, 
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association, and pattern relationship. Campbell and Wynne (2011) suggest factors such as sample 

size, class heterogeneity, placement, data collection method and supervised classification 

algorithm. Again, when selecting the training strategy, a number of factors were considered and 

they include size of the training data, difference in the image, number of pixels used, time and cost, 

and the impact of spatial autocorrelation (Foody and Mathur, 2002; Saha et al. 2005).  For each 

image, training data was gathered at a minimum of 50 samples sites for each land cover class. The 

training data were collected with the aid of the knowledge of study area from ground truthing field 

visit.  

3.3.2.2  Random Forest Algorithm for Land use/Land cover Classification  

This algorithm constitutes one of the most effective machine learning models use for predictive 

analysis. The random forest algorithm predicts using various decisions from series of individual 

base models. Model ensembling refers to the technique of using various models to achieve an 

enhanced predictive performance. In the random forests, every base model is constructed 

individually with the use of various subsample of dataset. The Random Forest model is 

conceptualized in Figure 3-3.   

 

Figure 3-3 Random Forest Model  

Random Forest (RF) algorithm was implemented in SNAP to classify satellite images based on 

gathered training datasets. Random Forest algorithm grows many classification ‗trees‘ premised 
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on the assertion that a set of classifiers (trees) do perform better classifications than an individual 

classifier.   

3.3.2.3  Accuracy Assessment  

Accuracy assessment is aimed at determining the accuracy of a classification outcome and it is 

basically used for RS data processing and analysis (Hashemian and Fatemi, 2004). This was 

undertaken using stratified random sampling method for ground truthing field survey. The study 

used error matrix approach which compared classified images and referenced data through the 

selection of points at random for the purpose of testing the accuracy of classification. Error matrix 

defines a square combination of numbers organized in rows and columns representing the number 

of pixels assigned to a particular land cover class relative to the real category verified from 

referenced data (Congalton, 1991).  

Accuracy assessment for land cover classification was based on reference data generated from 

several sources including unused training datasets, GIS layers, Google Earth and other higher 

resolution satellite images. In this study, for each land cover class, 25 percent random points from 

unutilized training dataset were selected and used for accuracy assessment in ENVI 5.5.  

Quantitatively, the measure of accuracy of classified images was calculated in the form of overall 

accuracy (total number of correctly classified pixels divided by the total number of pixels sampled) 

and kappa coefficient. Kappa values are characterized as <0 as indicative of no agreements and 0–

0.2 as slight, 0.2–0.41 as fair, 0.41–0.60 as moderate, 0.60–0.80 as substantial and 0.81–1.0 as 

almost perfect agreement (Chander and Markham, 2003; Kepner et al. 2000). A kappa value of 1 

indicates perfect agreement whiles a value of 0 indicates no agreement.  

 

Kappa coefficient was calculated using equation 3.1;  

Where:    

i : is the class number  n : is the total number of classified pixels compared to the reference pixels  

mi,i is the number of values belonging to the reference class i that have also been classified as 

(3.1)   
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class i (pixels found in both the reference and classified maps)  Ci : is the total number of 

predicted pixels belonging to class i   

Gi : is the total number of reference pixels belonging to class i  

3.3.3 Change Detection Analysis  

Change Detection Analysis involved techniques to quantify and identify the differences in 

classification outputs of the images between 1986 and 2018. This measured changes between 

paired images representing an initial state and final state. Change detection statistics and change 

detection difference map tools are key in the interpretation and statistical analysis of the changing 

trend of LULC in the study region.   

Various tools from post classification toolbox in ENVI 5.5 were adopted for the analysis of change 

detection. The thematic change tool was also used to generate maps depicting land cover class 

transitions.  

3.3.4 Land Surface Temperature (LST) Estimation Algorithm   

A mono-window algorithm adopted from Qin et al. (2001) was used to estimate LST. This 

algorithm is regarded more robust as it explains other factors instead of brightness temperature. 

One advantage of the mono-window according to Alsultan (2005) is that after surface emissivity 

values as well as the solar angel values have been combined to the model, there exist a higher 

correlation between the brightness temperature and the retrieved land surface temperature.     

In this study, this LST estimation algorithm used the single Landsat thermal band of the 

atmospheric window between 10.40 and 12.50 μm.  The mono-window algorithm for Landsat TM 

requires three significant factors to estimate land surface temperature. These are the effective mean 

atmospheric temperature, atmospheric transmittance, and ground emissivity (Qin et al., 2001).  

The flow chart shown in Figure 3-4 identifies the major steps in LST retrieval from Landsat satellite 

images.  
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Figure 3-4 Major Steps in Estimating LST  

3.3.4.1 Conversion to Top of Atmosphere Radiance  

Acquired TM band data was converted from Digital Numbers (DN) to Top of Atmosphere (TOA) 

spectral radiance using the radiance rescaling factors in the metadata of the various images with the 

formula shown in equation 3.2:  

  

Lλ = ML x Qcal + AL   

  

where:  

  

Lλ: TOA spectral radiance (Watts/ (m2 * srad * μm))  

ML: Band-specific multiplicative rescaling factor   

AL: Band-specific additive rescaling factor   

Qcal: Quantized and calibrated standard product pixel values (DN)  

3.3.4.2 Conversion to Top of Atmosphere Brightness Temperature  

TOA spectral radiance calculated above was input for the formula below to convert data from 

spectral radiance to top of the atmosphere brightness temperature in kelvin with the aid of  

 

(3. 3 )   

(3. 2 )   
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thermal constants documented in the metadata of satellite images (see Table 3-4).   

where:   

T: Top of atmosphere brightness temperature (K)  

Lλ: TOA spectral radiance (Watts/(m2 * srad * μm))  

K1/ K2: Band-specific thermal conversion constant   

Table 3-4: Thermal Conversion Constants used for LST Estimation  

Constant Variable  
Landsat 5 TM  Landsat 7 ETM+  

K1  607.76  666.09  

K2  1260.56  1282.71  

  

3.3.4.3 Deriving Land Surface Temperature  

3.3.4.3.1 Calculation of Mean Atmospheric Temperature   

 A key component of LST estimation using the mono-window algorithm is the mean atmospheric 

temperature. This is related to the air temperature and dependent on the climatic zone of the region. 

In other words, under clear sky without great turbulence (standard atmospheric distributions), the 

mean atmospheric temperature (Ta) is a linear function of near-surface air temperature (T0). This 

is attributed to the assumption that the impact of distributed water vapour as well as the distribution 

of atmospheric temperature Ta is constant for the standard distributions (Qin et al., 2001).   

The Greater Accra region lies within the tropics, thus the formula;  

 Ta=17.9769+0.91715*To     

Where Ta and T0 are in Kelvin.  

3.3.4.3.2 Atmospheric Transmittance  

An accurate estimation of transmittance (t) is very significant in the retrieval of Land Surface 

Temperature. A principal influencing factor however is water vapour content. It has been 

established to have strong influence on atmospheric transmittance (Coll et al. 1994; Cracknell, 

1997; Sobrino et al. 1991).  

Qin et al. (2001) posits that simulation of atmospheric conditions by the use of atmospheric 

simulation programs are mostly used in calculating atmospheric transmittance for Landsat TM 

band.  

(3. 4 )   
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High temperature profiles (refer to Table 3-5) was used in this study.  

 
Table 3-5 Estimation of Atmospheric Transmittance  

Source: Qin et al., (2001).  

3.3.4.3.3 Calculation of Land Surface Emissivity   

Emissivity (e) of a surface is a function of different parameters such as texture of surfaces, chemical 

composition, properties, physical structure, and water content and has the ability to influences the 

total radiation of the surface (Prata, 1993; Snyder et al., 1998). Emissivity (e) values for this study 

were adopted from the Digital Imaging and Remote Sensing (DIRS) Laboratory of the Chester F. 

Carlson Center for Imaging Science at Rochester Institute of Technology (RIT).   

3.3.4.3.4 Calculation of Land Surface Temperature   

Upon successful calculation of surface emissivity, Land Surface Temperature was finally derived 

as:  

   LST = 

  

Where:  α = -67.355351, β = 0.458606 are coefficients approximated for temperature range 

of 0–70°C  c = emissivity (e) * transmittance (t)  d = (1-t) *(1+(1-e) *t)    

Land Surface Temperature in kelvin is converted to degrees Celsius by subtracting 273.15.  

3.3.5 Land Surface Temperature Validation  

Evaluating and ascertaining the certainty of satellite retrieved LST can facilitate its use for various 

applications. It is important for one to assess accuracy to provide users of land surface temperature 

a reliable source of information on the quality of data and imminent improvement. Even though a 

number of algorithms exist in this modern time for retrieval of land surface temperature from TIR 

(3. 5 )   

(3. 6 )   
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satellite data, not enough studies have been carried out for the validation of LSTs derived from 

satellite. It is difficult in taking ground measurements of the land surface temperature and the large 

spatiotemporal variations in the LST itself makes study difficult. However, one key advantage of 

this validation is that even without ground measurement, LST can be validated anywhere with well 

documented and validated LST data coverage. MODIS LST data was analyzed against LST 

estimates computed from Landsat satellite images as a validation procedure.  

3.3.6 Correlation Analysis  

Establishing the nature of relationship between Land use/land cover types and Land Surface 

Temperature is key to the understanding of the contribution of anthropogenic factors to LST 

changes. Correlation analysis between LST and LULC was used to understand how LST dynamics 

are influenced by LULC changes. Correlation analysis assesses the linear relationship between two 

variables and provides a measure of both the strength and direction of the relationship. Correlation 

makes no assumption on causality in the relationship. To help identify the type of relationship 

between variables, visual inspection of a scatterplot is invaluable and thus was employed in this 

analysis. As a measure of the strength of the relationship between LST and LULC, the Pearson 

Coefficient (Pearson r) of correlation was determined.  The formula  

 
for r is: where x is the sample mean of variable x and y is the sample mean of 

variable y.  

4 Chapter Four: Results and Discussions  

This chapter is one of the most important sections of this research study. The section reported 

results from the analysis of data for Land use Land cover change, spatial variability of Land Surface 

Temperature and the relationship between the two. It also presents arguments on insights gathered 

using techniques and methods describe in the previous chapter. Results are presented as maps, 

tables, charts and graphs.   

(3. 7 )   
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4.1  Land Use/Land Cover Patterns  

This subsection presented the coverage extent and changing pattern of LULC within the Greater 

Accra region for the three-year stamps under study.   

4.1.1 Land use/Land cover Mapping and Analysis   

Similar in many studies (Appiah, 2014; Basommi et al., 2015, 2016; Kumi-boateng and Stemn, 

2015; Amamo and Amenu, 2017; Yeboah et al., 2017; Mensah, 2017; Bewket 2002; Dessie and 

Kleman 2007; Beilin et al., 2014), the application of Remote Sensing again proved to be key in 

land use/land cover mapping especially over large geographic areas.    

Satellite image classification using the random forest algorithm, identified four major LULC types 

in the Greater Accra region. The LULC types were Vegetation, Bare land, Built-up and Waterbody. 

LULC maps were generated from acquired Landsat satellite imagery for the year 1986, 2002 and 

2018.    

4.1.1.1 Spatial Pattern of 1986 LULC Classification  

The total area of the study region is about 3,668 square kilometers. Figure 4-1 shows the Land 

use/Land cover map of 1986. In this year, results indicate 46.5% representing 1,706.1 km2 of the 

total land mass was bare land, while vegetation covered 48.5%. Built-up land represented the least 

of the LULC categories of 67 km2. Table 4-1 shows each LULC category and coverage extent.  

  

  

  

  

Table 4-1 LULC Types and Coverage Extent of 1986  

LULC Type  Area (Square Kilometer)  Percentage  

Bare land  1,706.1  46.5  

Vegetation  1,779.8  48.5  

Water  116.3  3.2  

Built-up  67.0  1.8  
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 Figure 4-1 LULC Classification Map of 1986  

4.1.1.2 Spatial Pattern of 2002 LULC Classification  

 Observation and examination of the classified imaged revealed that in the year 2002 the study area 

was dominated by two LULC types namely vegetation and bare land representing 56.4% and 

32.8% of total land mass of the Greater Accra region respectively. The geographic representation 

of the extent of individual land cover types is seen in Figure 4-2. The same extent of the individual 

LULC types in square kilometers together with their respective percentage of land size covered is 

shown in Table 4-2.  

Table 4-2 LULC Types and Coverage Extent of 2002  

LULC Type  Area (Square Kilometer)  Percentage  

Bare land  1,202.0  32.8  

Vegetation  2,068.2  56.4  

Water  88.7  2.4  

Built-up  310.3  8.5  
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Land use and land cover classification for 2002 from ETM+ sensor of Landsat 7 mission in Figure 

4-2 showed that majority of the study area during the period was under vegetation cover and bare 

land accounting for 2,068.2 square kilometers and 1,202.0 square kilometers respectively. While, 

built up area and water body accounted for 310.3 square kilometers (8.5%) and 88.79 square 

kilometers (2.4 %) respectively.  

 

Figure 4-2 LULC Classification Map of 2002  

  

4.1.1.3 Spatial Pattern of 2018 LULC Classification  

 It was evident from the analysis of the 2018 image that, spatial distribution of LULC types suggest 

the fast pace increase of urban expansion at the peri-urban surroundings of most developed areas 

like the Tema, Ada, Amasaman among many other towns. Figure 4-3 depicts the extent to which 

the urban expansion is creeping on other LULC categories. Vegetation however still appeared to 

be the largest LULC type covering about 1,750.2 Km2 (47.7%). This is to a large extent accounted 

for by the protected areas in and around Shai Hills in the north-eastern parts of the region.  
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Figure 4-3 LULC Classification Map of 2018  

Table 4-3 LULC Types and Coverage Extent of 2018  

LULC Type  Area (Square Kilometer)  Percentage  

Bare land  1,020.5  27.8  

Vegetation  1,750.2  47.7  

Water  107.1  2.9  

Built-up  791.3  21.6  

It can be observed from Table 4-3 that in 2018, following the largest cover of vegetation, bare land 

and built up together accounted for 49.4% of the study area, while water had a coverage of the 

remaining 2.9% covering an area of 107.1 Km2.  

4.2  Results of LULC Accuracy Assessment  

Notwithstanding the limitations of Kappa statistics, it is a widely used measure of classification 

accuracy.  Accuracy of classifications are influenced by range factors including quality of 

classified images and lack or inadequate local knowledge of the study area resulting in 



 

34  

  

misclassifications. Shao (2006) classified change detection errors as error from reference data, 

post-processing, pre-processing and classification. Accuracy assessment is said to be a process of 

validating the insight and statistics derived from change detection, spatial analysis and prediction 

(Campbell and Wynne, 2011). The ‗confusion matrix‘ approach was used in assessing the 

accuracy of classification and results are shown in Table 4-4  

Table 4-4 Accuracy Assessment of LULC Maps  

LULC Classification  Overall Accuracy  Kappa Coefficient  

1986  88.7892%  0.8029  

2002  90.3571%  0.7818  

2018  99.8154%  0.9968  

  

Classification accuracy assessment was performed for all three LULC maps. As it is shown in 

Table 4-4, the overall accuracy and Kappa coefficient values derived indicate high accuracy of the 

classification procedures adopted.  The overall accuracy for the three LULC maps were higher 

than 85% with 2018 having the highest accuracy.   

A kappa value of 1 indicates perfect agreement whiles a value of 0 indicates no agreement. The 

values that lie 0.60–0.80 are however characterized as substantial and 0.81–1.0 as almost perfect 

agreement (Kepner et al., 2000; Chander and Markham, 2003). Accuracy assessment of LULC 

maps show kappa coefficients that indicate that classification for 1986 and 2018 had almost perfect 

agreement while 2002 recorded substantial agreement.  

  

Table 4-5 Producer Accuracy  

LULC Type  1986  2002  2018  

Vegetation  100  100  100  

Bare land  64.29    100  96.77  

Built-up  79.17  88.10  99.83  

Waterbody  100  87.82  99.69  
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Producer's Accuracy is the map accuracy from the point of view of the map maker (the producer). 

This indicates the extent to which real features on the ground correctly shown on the classified 

map or the probability that a certain land cover of an area on the ground is classified as such. In 

other words, it is the number of reference sites classified accurately divided by the total number of 

reference sites for that class. The Producer's accuracy complements Error of Omission accuracy 

metric, which is mathematically represented as; Producer's Accuracy equals one hundred percent 

minus Omission Error (100% - Omission Error).  

From   

Table 4-5 producer accuracy assessment of all LULC types are shown. Among the four LULC 

categories, vegetation had the highest with perfect producer accuracy for the entire period. This 

could be explained by the ability to clearly distinguish vegetation from other LULC types 

especially in the near-infrared spectrum. The two lowest accuracy values were recorded in 1986 

for Bare land and Built-up, 64.29% and 79.17% respectively. The low accuracies are largely due 

to the identical spectral properties of both Bare-land and Built-up areas in some parts of the Landsat 

satellite images particularly in 1986. Water bodies recorded the second highest total producer 

accuracy among the three LULC maps due to the spectral uniqueness and defined boundaries of 

water bodies.   



 

 

4.3  Land Use/Land Cover Change (LUCC) Dynamics in the Greater Accra Region  

In this study, post-classification change detection was used in the analysis of Land use/Land cover 

changes. The post classification change detection approach offers thorough and in-depth insight into 

the extend of change in LULC types.  

The LULCC classification results over the thirty-two-year period from 1986 to 2018 are 

summarized in Table 4-6. This table shows the pattern of change in land use/land cover between 

1986 and 2018. Bare land cover type indicates steady decline from 1986 with a coverage of 1,706.1 

Km2 to 1020.5 Km2 in 2018. On the contrary, Built-up displays an increase trend of 724.3 Km2 

during the same period.   

Table 4-6 Extent of Change in LULC Types  

 Extent of Change in Km2   

  1986  2002  2018  

Bare land   1,706.12   1,202.00  1,020.54  

Vegetation   1,779.80   2,068.20  1,750.15  

Waterbody   116.25   88.70  107.14  

Built-up   67.00   310.30  791.33  
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LULC Change in Square Kilometers  
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Statistical analysis of all three classified images disclosed that waterbody was the least overall 

LULC type (see Table 4-6) over the period. Water bodies in the study region experienced 

undulating trend with a decrease in 2002 and an increase in 2018 respectively amounting to a total 

decrease of 7.84% as depicted by Figure 4-4.  

Analysis further showed that vegetation cover increased by 16.2% from 1,779.8 Km2 to 2,068.2  

Km2 between 1986 and 2002. It however decreased by 15.38% amounting to a total coverage of  

  

 Bareland Vegetation Water Builtup 

318.05 Km2.  
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 Figure 4-5 Graphical Representation of LULC Change   

 Figure 4-4 Percentage Change in LULC Types  

  

4.3.1 Vegetation Cover   

LULC type classified as vegetation was one of the major LULC categories in the Greater Accra. 

Beginning 1986, vegetation cover increased from 1,779.80 Km2 to 2,068.20 Km2 in 2002 

representing 16.20% increase as shown in Figure 4-6.  
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Figure 4-6 Vegetation Cover Trend  

The increase in vegetation cover was indicative of the region‘s recovery from extreme adverse 

impact of drought experienced during the 1980s in most parts of Ghana (Ofori-Sarpong, 1986).  

This implies that areas that were supposedly dry bare land began to fallow and farmers began to 

grow crops post drought season under favourable weather conditions. Vegetation cover statistics 

show 13.04% of Bare land transitioned into Vegetation cover between 1986 and 2002 (see Figure 

4-1 in appendix) . The vegetation increase in 2002 was in areas like the Kpone Kantamanso district, 

around Weija lake in Ga South, Ningo Prampram and Shai Osu Doku. Amidst the vegetation 

increase however, Ada East district experienced decrease in vegetation cover while northern parts 

of Ada West district had a slight increase in vegetation   

On the other hand, for the period between 2002 and 2018 vegetation decreased from 2,068.20 Km2 

to 1,488.67 Km2. Percentage decrease is shown in Figure 4-7. This is corroborated by Yeboah et 

al., (2017) which emphasized the transition of vegetation (forest and agricultural land) to built-up 

environment in Accra between 1985 and 2010.  
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Figure 4-7 Percentage Change in Vegetation Cover  

Change analysis of LULC map of 2002 and 2018 gives the indication that, decrease vegetation 

could be explained by the increasing nature of deforestation for developing settlements and builtup 

environment largely attributed to population increase especially in peri-urban areas like, Pokuasi, 

Odokor, Madina, Ashiaman, Ga East district and southern parts of Ga South district. This explains 

the 16.33% and 10.38% vegetation cover loss to Bare land and Built-up respectively within the 

period see Figure 4-1 and Figure 4-2 in appendix). Urban expansion, agricultural activities and 

firewood harvesting have also been identified by Stow et al. (2013) and Yankson and Gough 

(1999) as contributing factors to loss of vegetation cover in Accra. The Ghana Energy Commission 

(2014) identifies firewood and charcoal to be of high preference among many households in the 

country. Statistics indicate that amidst the urban population, a total of 75% of households depend 

on these sources of energy for cooking leading to decreasing forests and woodland cover (Addae 

and Oppelt, 2019).   

  

4.3.2 Bare and Open Land Cover Change  

Analysis suggested that bare land covered the second largest land mass of 1,706.12 Km2 in the 

Greater Accra region in the year 1986. This represented 46.50% of the total area of the region. 

Bare land was extensive in districts like the Shai Osu Doku, Ningo Prampram, Ada including areas 

around the Songor Lagoon protected area. These areas are vastly covered by large tracts of open 

land with isolated outcrop of rocks and in some cases very sparse vegetation cover. The dominant 
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spread of bare land LULC type in the region, could also be equally be attributed to the drought of 

the 1980s. The drought was characterized by dryness with related inevitable rampant bushfires. 

Bushfires were one of the leading causes of deforestation in West Africa (Korem 1985). According 

to the Environmental Protection Council (1986), 847 bushfires were recorded in the country in 

1982 resulting in about 50% loss of vegetation cover.  

Over the duration of this study bare land experienced the highest change of 60.22% decrease 

between 1986 and 2018 representing consistent decrease from 1706.12 to 833.31 Km2. The trend 

of Bare land over the period is depicted in Figure 4-8. The highest rate of change of 30.67% 

decrease in Bare land LULC type was recorded between 2002 and 2018 while 29.55% was noted 

between 1986 and 2002.   

  

 

Figure 4-8 Bare land Cover Trend  
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Figure 4-9 Percentage change in Bare land   

The spatial distribution of bare land in the region has mainly been seen to be a transition land cover 

type between built-up along the coast and vegetation cover largely in the northern parts of the 

region. Bare land spread around the urban core can be suggested as an indication of the early stages 

of urban development mainly around Adenta, Abokobi, Madina, Ashaiman and Ledzokuku 

Krowor in GAMA. Large tract of bare land transitioned throughout the years to two main LULC 

types namely, built-up and vegetation. Many open spaces in and around the urban core of Accra 

were developed into various retail, industrial, and residential purposes causing the reduction of 

barren land surrounding the urban developments. This is seen in the increased rate of ―bare land 

to built-up‖ conversion rate from 12.01% (204.98 Km2) between 1986 and 2002 to 33.23% (399.59 

Km2) between 2002 and 2018.   

While in districts like the Shai Osu Doku, Ningo Prampram and Ada West and East, decreased 

bare land trends were predominantly associated with increased urban expansion, the reduction was 

higher compared to districts in the Greater Accra Metropolitan Area(GAMA)  like AMA, TMA, 

Ashaiman, Adenta, Ledzokuku Krowor, La Dade Kotopon, Ga East and Central. This could be 

explained by the fact that most areas outside GAMA were covered with large tracts of bare land 

and open barren land with sparse vegetation cover in some cases.    
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As alluded to earlier, Bare lands appear to also have a relationship with vegetation in the region. 

From the year 1986 to 2002, about 33.28% of Bare land was rehabilitated to Vegetation while 

15.13% was also transformed to same between 2002 and 2018. It is suggested that the phenomenon 

could be explained by increasing large farmlands and fallow land in peri-urban areas of the region. 

Notwithstanding the changes, consistent bare land coverage was maintained along the banks of the 

Songor Lagoon protected area with isolated patches of vegetation.   

4.3.3 Urban and Built Environment Expansion   

In 1986, total area of built-up area in the study area was estimated to be 67.0 Km2 stretching out 

through central urban core of Accra with a spatial extent of 1.83%.  Notwithstanding the 

comparatively small extent of built-up, it had the highest expansion rate in the region between 

1986 and 2018 (See Table 4 6). From  Figure 4 10, Built-up increased from covering 1.83% (67.0 

Km2) of the study area in 1986 to 33.06% (1,212.90 Km2) in 2018. Analysis revealed that growth 

rate of urban development was astronomically high but higher for the period between  

1986 and 2002 than between 2002 and 2018. Built-up expanded by 363.15% between 1986 and  

 
2002, and 290.88% between 2002 and 2018 as shown in Figure 4-10.  

Figure 4-10 Percentage Change in Built-up   
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Figure 4-11 Percentage Change in Built-up   

This shows the increasing exponential rate of built-up environment. The rate of change however 

decreased by 72.27% for the period between 2002 and 2018.  This largely agrees with Osei et al 

(2015) acknowledgement that the urban extent of the Greater Accra region increased by 226.33% 

between 1985 and 2014.  

Urbanization driven by population growth can be associated with the drastic positive change in 

built-up area. Braimoh (2004) suggest that the extensive expansion of built-up areas in Ghana is 

partly caused by population increase. According to the Ghana Statistical Service (2012), the 

population of Greater Accra region has almost tripled between 1984 and 2010 with population of 

the region increasing from 1,431,099 to 4,010,054. This is a consistent annual population growth 

rate of 3.3%, 4.4% and 3.1% in 1984, 2000 and 2010 respectively. The growth pattern supports 

the trend of built-up increase for the duration of this research such that higher population growth 

rate is recorded between 1984 and 2000 corresponding a higher expansion in Built-up LULC type 

between 1986 and 2002 of 363.15%  Similar to decreased population growth rate for the region 

between 2000 and 2010, urban expansion also increased at a reduced rate of 290.88% between 

2002 and 2018.   

Notwithstanding the trend exhibited by the annual population growth rate, statistics from the same 

2010 census report indicated a consistent increase in proportion of urban population in the region. 

It shows a continuous rise from 83.0%, 87.7% and 90.5% progressively from 1984 through 2000 

to 2010. The urbanization of Accra has been mainly due to the rapid increase in population as a 

result of the urban biased development strategies adopted by policy makers since the colonial era: 
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centralized city for industry, manufacturing, commerce, administrative functions socioeconomic 

amenities and infrastructure development (Addae and Oppelt, 2019).  

4.3.4 Waterbodies  

Water bodies in the region experienced the least change among all four LULC categories. This 

change was undulating characterized with a decrease between 1986 and 2002 and an increase 

between 2002 and 2018.  It underwent a total change of decrease of 7.84% for the entire duration 

from 1986 to 2018. The undulating nature of waterbody cover type shown in Figure 4-12 indicates 

a fall from 116.25 Km2 in 1986 to 88.65Km2 in 2002 and a subsequent increase to 107.14Km2 in 

2018 accounting for a total loss of 9.11 Km2.  

The changes are seen to be accounted largely by waterbodies drying into Bare land (20.05%) and 

other parts transitioning into Vegetation (12.81%) during the first 16-year period between 1986 

and 2002.  Expansion for the second time period was accounted for by 2.73% representing 32.85 

Km2 of Bare land transformed into waterbody between 2002 and 2018 (see Figure 4-1 and Figure 

4-2 from appendix). This may be due to the expansion of water into bare land areas located along 

the banks of water bodies in the region.   

 

Figure 4-12 Waterbody LULC Trend  

  

  116.25     

88.65   

107.14   

 80.00 

 100.00 

 120.00 

 140.00 

1986 2002 2018 

Water bodies   



 

47  

  

Water bodies covered 3.17% (116.25 Km2) of the study area in 1986, reduced to 2.42% (88.65 

Km2) in 2002 and a subsequent increase coverage of 2.92% (107.14 Km2) in 2018. In the 23.74 

Km2 loss of water bodies in the region between 1986 and 2002, highest contributor to this reduction 

was bare land with 25.05% representing 29.19 Km2 of water resources changed into bare land. Out 

of the total change in the same period, 12.82% and 1.92% were also converted into vegetation and 

built-up respectively (see Figure 4-1 and Figure 4-2 from appendix). Contrary to the first time 

period, water resources increase from 88.73 Km2 to 107.14 Km2 between 2002 and 2018. This 

change could also be explained largely by the changes experienced in the Songor Lagoon, the 

Densu estuary and connected Pambros salt production site.  

 

Figure 4-13 Percentage Change in Water bodies  

The Songor lagoon decreased into visible minor lakes as asserted by United Nations Environment 

Programme (2006). Over the period between 1986 and 2002, both lagoons experienced decrease 

volumes of water content. According to the study, between 1990 and 2000 many African water 

resources have undergone dramatic changes mostly due to the impact of irrigation and other human 

activities. The Songor Lagoon was prominently featured to be drying up, and to be undergoing 

drastic transformation with surrounding lowlands exhibiting signs of becoming dryer and less 

habitable. Water resource management expert have also associated increasing temperatures 

associated with climate change with the decline of water bodies in the country.  
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On the contrary, the period between 2002 and 2018, the same lagoons experienced increase water 

volumes. This expansion around of Pambros and the Densu estuary could however be said to be 

limited by the rapid urbanization occurring in and around the estuary on several sides. The rapid 

urban expansion occurring in the area has resulted in massive pollution of the Densu lake from 

both domestic and commercial sources (Karikari and Ansa-Asare, 2006).  

Increase between 2002 and 2018 could be linked to the increase damming of these two lakes for 

salt production purpose which causes water to be held behind the dam, thus causing the lake to 

expand backwards. In support of these plausibility, Václavík and Rogan (2009) noted that the 

construction of the Slezská Harta dam in the Olomouc region of Czech Republic resulted in a slight 

increase in the total area cover by water bodies in the region. Accumulation of sediments at the 

bottom of water bodies could also explain reduced depth of these water bodies but increases their 

submergence surface area. Braimoh & Vlek (2004) observed that the area of the Bontanga dam in 

northern Ghana had increased in size due to erosion.  

4.4  Land Surface Temperature Analysis  

This section presents the analyses of LST change, using derived LST from the Landsat satellite 

images.  MODIS Land Surface Temperature data together with statistical techniques were further 

used as an authoritative data for the validation of LST estimates.   

4.4.1 Land Surface Temperature Validation  

In this study, MODIS Land Surface Temperature data (MOD11C1) made available by US 

Geological Survey was used for the validation of derived LST values. Due to launch date of 

MODIS, data for 1986 were nonexistent, thus validation was done for only 2002 and 2018. Both 

Daytime MODIS LST data and derived LST data were processed to ensure conformity and allow 

for comparative analysis.   

Table 4-7 Cross-Table Validation of LST  

  
 2002    2018   

Sample  
Site  

Derived LST  MODIS LST  Residual  Derived LST  MODIS LST  Residual  

  
 2002    2018   

1  31.08  31.21  0.13  29.78  27.87  -1.91  

2  32.57  35.35  2.78  27.96  29.67  1.71  

3  33.46  36.09  2.63  30.38  31.77  1.39  
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4  28.36  30.01  1.65  25.51  28.15  2.64  

5  32.28  34.45  2.17  29.78  30.75  0.97  

6  31.08  31.79  0.71  29.48  29.01  -0.47  

7  32.87  34.85  1.98  30.67  31.85  1.18  

8  30.18  32.03  1.85  28.87  30.01  1.14  

9  28.97  32.85  3.88  29.78  29.37  -0.41  

10  31.08  31.69  0.61  29.48  29.01  -0.47  

11  29.88  29.19  -0.69  29.48  29.03  -0.45  

12  28.67  30.87  2.20  28.57  29.45  0.88  

13  27.75  30.01  2.26  27.96  28.19  0.23  

14  32.87  34.85  1.98  30.67  31.85  1.18  

15  27.14  29.63  2.49  28.27  29.85  1.58  

16  26.83  28.27  1.44  26.43  26.71  0.28  

17  27.75  30.43  2.68  27.96  28.19  0.23  

18  32.87  35.11  2.24  30.67  31.85  1.18  

19  28.36  30.01  1.65  25.51  28.15  2.64  

20  30.78  31.25  0.47  29.78  29.47  -0.31  

  

 
Figure 4-14 Spatial Distribution of LST Validation Sample Sites  
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The processing activities included data extraction, rescale, projection and resampling. LST values 

derived from Landsat satellite images by the mono-window algorithm method were validated 

against MODIS LST data. This approach involves the comparison of retrieved LST values with 

well documented and validated LST values retrieved from other satellite data (Trigo et al., 2008).  

The validation method in this study used the LST MODIS data as an authoritative reference for 

validation. Table 4-7 shows LST values from twenty randomly selected sample locations (see 

Figure 4-14)  and their corresponding MODIS LST values. From Table 4-7, residual or difference 

between derived LST and MODIS LST were between -0.69  and 3.88  for 2002 and between -

1.91  and 2.64  for 2018.  

MODIS LST data validated derived LST from Landsat satellite imagery from the correlation 

analysis shown in Figure 4-15 and Figure 4-16. Correlation Coefficient (R) of 0.892 and 0.730 for 

2002 and 2018 respectively indicate high positive correlation between derived LST and  

 
MODIS LST.   

Figure 4-15 Correlation between Derived LST and MODIS LST for 2002  
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Figure 4-16 Correlation between Derived LST and MODIS LST for 2018  

Table 4-8 shows the Root Mean Square Error (RMSE) and Coefficient of Variation (CV) of the 

validation results. It can be concluded from the table that MODIS LST generally validates derived 

LST with identical CV values.   

Table 4-8 Accuracy Assessment of LST Validation  

  Root Mean Square Error (RMSE)  Coefficient of Variation (CV)  

Year  MODIS/Derived LST  MODIS  Derived LST  

2002  2.038  7.346%  7.116%  

2018  1.289  5.034%  5.505%  

  

Notwithstanding, derived LST values appear to have generally recorded relatively lower values 

than MODIS LST values across most the random sample locations. The disparity in values can be 

attributed to factors associated with differences in satellite specifications as shown in Table 4-9.   

  

  

  

  

Table 4-9 Comparison of Landsat and MODIS Specifications  
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Specifications  Landsat  MODIS (MOD11C1)  

Spectral  7 bands  36 bands  

Pixel size  30 m  5600 m  

Scene width  185 km  2,330 km  

Image frequency  16 days  Daily  

Corrections  None  Surface reflectance  

Cost  Free  Free  

Pixel size and LST spatiotemporal mismatches of Landsat and MODIS together with resultant 

propagation of error in processing these LST data to ensure pixel alignment for comparative 

analysis could be mainly cited for the differences between derived LST and MODIS LST values. 

This results in the two satellites to contain land surface information under different viewing angles 

at different pixel resolution or scale.   

Qian et al., (2013) and Trigo et al., (2008) also emphasize the sensitive nature of accuracy of this 

validation method to spatial and temporal mismatches of the two LST measurements.   

Cloud contamination could also be another factor accounting for some discrepancies. It has the 

potential to affect satellite temperature measurement (Jin and Dickinson, 2000). The potential 

contamination decreases the land surface temperature values. This might explain the relatively 

lower observed LST values.   

4.4.2 Spatio-Temporal Dynamics of Land Surface Temperature Distribution  

Thermal band from different Landsat satellite mission 5 and 7 were used to estimate Land Surface 

Temperature for the entire Greater Accra region. For easy comparison and analysis of estimates of 

the 32-year period, all three Land Surface Temperature maps were fitted to a scale of six classes of 

the same range. The scale ranges were; below 22 , 22.0 - 24.0 , 24.1 -26.0 ,  

26.1 -28.0 , 28.1  -30.0  and above 30.0 . The computed LST maps give an overview of the 

spatial distribution. LST values tabulated in   

Table 4-10 indicates values as low as 20.19o C and as high as 36.95 o C clearly showing mean LST 

increase in 2002 but a slight decrease in 2018.    
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Table 4-10 Land Surface Temperature Statistics  

 Summary Statistics of Temperature within Stu dy Area  

   Minimum  Mean  Maximum  

1986  20.49  25.07  29.65  

2002  20.19  28.57  36.95  

2018  21.73  28.12  34.50  

Analysis of the Landsat thermal imagery revealed yearly variation of LST over Greater Accra 

region (Figure 4-17 to Figure 4-19). There is a general increasing trend in LST over time, 

consistent with the observed urban expansion of the study area. The trend however indicates a 

significant increase between 1986 and 2002 but a decrease in LST from 2002 and 2018. The mean 

LST decrease between 2002 and 2018 was 0.45°C less than the average LST observed in 2002. 

The mean, maximum and LST range observed in 2002 buttresses the generally high spatial pattern 

of LST observed in the same year as shown in Figure 4-18.   

Spatial variation of the LST displayed similar patterns for all the three timestamps studied. Higher 

LST was generally concentrated in the core of urban centers and bare land areas comprising sandy 

areas and dry salt, bare exposed rock, and quarries. High temperatures are also more apparent along 

the coastal belt of the region stretching northwards as development spread in the same direction. 

The pattern of low temperatures on the other hand was consistently identified around northern 

boarders spreading towards the north-western corner of the region.   

  

4.4.2.1 Land Surface Temperature (LST) Variability in 1986  

Analysis of estimates from 1986 shows LST range between 20.49  and 29.65  and an average 

of 25.52 . The spatial patterns show LST variability in the region. Visual inspection of map 

clearly shows extensive high LST with range between 26  and 28  were mainly around areas 

like central Accra stretching towards the north and eastern part of the region, all the way to the 

immediate environs of the Songor lagoon protected area. Settlements lying within this zone 

included Ashaiman, Tema, Kobekro, Teshie and Prampram. There were also isolated and patches 

of hotspot areas that experienced between 28.1  and 30.0  but no area within the region 

experienced LST above 30.0 .  
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Figure 4-17 Spatial Distribution of Land Surface Temperature in 1986  

Low LST values of less than 22  and between 22-24  were as expected found to be closely 

associated with water bodies and vegetation in the region. These cold spots were mostly in the 

north-western corner of the region where then rural areas like Amasaman, Pokuase, Adzen Kotoku 

and Koleaku are located.  Furthermore, LST values between 24  and 26  were observed to be 

covering the banks of water bodies and exhibited a transitional zone between areas of ranges 26.1

 -28.0  and 22.0  – 24.0 .   

4.4.2.2 Land Surface Temperature (LST) Variability in 2002  

In the year 2002 as depicted by Figure 4-18, the entire region experienced abrupt increase in LST 

of above 30  in areas stretching from the Lake Volta estuary at the eastern boarders of the region 

to northern parts of the Shai Osu Doku district.  The middle belt of the region extending through 

developed areas like Tema and most residential developments of AMA to Weija and its environs 

were all portions of the region that also experienced LST above 30 .  
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 The same high temperature could be observed along the entire coastline spreading in-land. 

Relatively low LST values remain associated with waterbodies and some known vegetated areas. 

Songor Lagoon area however exhibited the most number pixels that experienced low  

 
temperatures below 22 .  

Figure 4-18 Spatial Distribution of Land Surface Temperature in 2002  

Most of the land mass in the region experienced temperature above 30oC. These included areas of 

vegetation cover which indicated a rise compared to 1986. Parts of Central Accra and Ningo 

Prampram district and Kobeko, extending to some parts of Shai hills were all areas identified to 

have recorded temperatures between 28 C and 30 . Statistical analysis of all the three LST maps 

estimated, the year 2002 presented the highest range of LST values with minimum temperature of 

20.19 C and maximum of 36.95 and the highest mean of 28.57 . Temperature readings above 

30 C were observed extensively covering over 70% of the total area of the region.  This high LST 

extended continuously from the shores of the estuary of the Volta river westward towards north-

eastern corner of AMA stretching up to Madina and its environs as shown in Figure 4-18.  
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According to Asante and Amuakwa-Mensah (2014), Ghana experienced increased greenhouse 

gases emission of 107% between 1990 and 2006. In the year 2006, carbon dioxide became the lead 

GHG accounting for 46%, followed by Methane (34%) and Nitrous oxide (20%). This can be 

associated with decreasing vegetation cover during this period leading to increase release of 

Carbon dioxide into the atmosphere. Land use change is linked to approximately 70% of 

anthropogenic emissions of carbon dioxide (CO2) in Africa (Andrew, 2018). Van Leeuwen et al. 

(2011), observed that deforestation activities is a factor behind increasing land surface temperature 

because aridification and land surface degradation causes the radiative properties of the surface to 

change. This is due to the lowest and highest emissivity of urbanized and vegetated environments.  

  

4.4.2.3 Land Surface Temperature (LST) Variability in 2018  

Figure 4-19 showing LST trend for 2018 indicate high temperatures above 30  largely transition 

into the 28.1  – 30.0  range in most parts of AMA, towards Pambros, Weija lake and northwards 

into Ga West district and northern part of Ga South district. This range of LST was not as extensive 

as in 2002 and were largely located within the Ada districts, Ningo Prampram, Shai Osu Doku and 

some parts of Ashaiman. The outskirts of Ga West, South and Madina ranged from 26  to 28  

with isolated occurrences of 24  to 26  within the same outskirts.  Generally, temperatures for 

the year were high such that no area experienced LST below 22 . Some parts of Weija lake, 

Pambros, Songor lagoon nevertheless also experienced low LST between 22  and 24 .   
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Figure 4-19 Spatial Distribution of Land Surface Temperature in 2018  

4.4.3 Measure of Association in the Spatial Pattern of LST   

Spatial autocorrelation is a measure of correlation of phenomenon across a geographic space. It 

indicates the significance of spatial characteristics  affecting a given phenomenon in space and the 

dependency of objects with spatial properties. Strongly positive or negative results indicate that a 

clear spatial property is found in the object with a high correlation. From Figure 4-20,  Figure 4-

21 and Figure 4-22, spatial autocorrelation (Global Moran's I) analysis indicates the pattern of 

Land Surface Temperature in Greater Accra is clustered for all three timestamps. The z-score of  

3.002 and 2.617 for 1986 and 2002 respectively demonstrate cluttering with less than 1% 

likelihood that the observed clustered pattern is a result of random chance.  Z-score for 2018, 2.401 

though also indicate clustering, it has less than 5% likelihood that the observed clustered pattern 

is a result of random chance.  
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Figure 4-20 Spatial Autocorrelation for 1986  
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Figure 4-21 Spatial Autocorrelation for 2002  

 
Figure 4-22 Spatial Autocorrelation for 2018  
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4.5  Relationship between LST and LULC Types  

The relationship between LULC and LST were analyzed. This subsection relates the results of the 

LULC and LST changes presented in the previous sections of this chapter. Zonal statistical and 

correlation analysis were applied in comparing LULC types and indices with LST estimates.  

4.5.1 Zonal Statistical Analysis between LULC Types and LST  

To analyze land surface temperature variations associated with the four different land use/cover 

categories identified in the study area, statistics (minimum, maximum and mean) on LST for these 

LULC patterns were extracted by zonal statistical analysis. Table 4-11 shows the results from the 

analysis.   

Table 4-11 Land Surface Temperature categorized by Land use/Land cover type  

LULC Type  Minimum LST  Maximum LST  Average LST  

   1986  2002  2018  1986  2002  2018  1986  2002  2018  

Vegetation  20.99  21.16  21.73  29.18  35.79  34.5  25.08  28.47  28.12  

Bare land  20.49  20.19  22.69  29.65  36.66  34.5  25.07  28.42  28.59  

Built up  21.98  21.8  22.69  29.65  36.08  34.5  25.81  28.94  28.59  

Waterbody  20.49  20.19  22.05  28.71  29.28  32.45  24.60  24.73  27.25  

  

Table 4-11, shows that LST has generally increased from 1986 to 2018 in the Greater Accra region. 

The mean LST estimates as shown in Figure 4-23 shows identical trend for built-up and vegetation 

land use/land cover types.   

Vegetation experienced equally high temperatures with a 3.39  increase in LST between 1986 

and 2002. Though built-up experienced similar trend, there was an increase of 3.13  from average 

LST of 25.81  in 1986 to 28.94  in 2002. From 2002 to 2018 however both vegetation and built-

up experienced a decrease in LST of 0.35 . Average land surface temperature values for bare land 

increased from 25.07  to 28.42  and 28.59  in 2002 and 2018 respectively. This indicate 3.35

 and 0.17  increase for 2002 and 2018 amounting to a total increase of 3.52  over the 32-year 

period. Waterbody land use/land cover category also experienced increase temperatures 

throughout the duration of 0.13  and 2.52  increase in 2002 and 2018 respectively (see Figure 

4-23). These LST increase are significantly high compared to IPCC global temperature increase 

values.   
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Figure 4-23 LULC type and Average LST  

Among all four LULC categories, built-up areas have the highest average LST for all three time 

periods except for 2018 which it recorded same as bare land. This is followed by Vegetation, Bare 

land and Water bodies, in descending order. From Table 4-12, bare land experienced the highest 

negative change of 685.58Km2 decrease and this corresponded to the highest increase in LST of 

3.53  over the period the study. This could be explained by the large extent of bare land in the 

region especially in the eastern parts of the region as asserted by  Price (1990), that bare soil 

locations experienced a wider variation in surface radiant temperature.   

Table 4-12 Comparison between LULC Change and LST Change between 1986 and 2018  

  LULC Change in Km2   LST Change in    

Bare land  - 685.58  + 3.53  

Vegetation  - 29.65  + 3.04  

Built-up  + 724.34  + 2.78  

Water bodies  - 9.11  + 2.65  

Vegetation cover between 1986 and 2018 decrease by a total of 11.82 percent (29.65Km2) and this 

accounted for the second highest LST increase of 3.04 . This is explained by the generally 

negative correlation between vegetation and temperature as concluded by Domaley et al., (2018).  
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Built-up and waterbody LULC categories recorded a positive change of 724.3 Km2 (654.03%) and 

a negative change of 9.11 Km2 (7.84%) respectively (refer to Table 4-12). It was however surprising 

that built-up which experienced astronomical increase mostly in the form of urban development 

recorded the third highest LST increase of 2.78  between 1986 and 2018. Though this supports 

conclusions from other studies on the role of urban expansion on urban microclimate specifically 

land surface temperature, comparison between built-up LULC change and LST increase clearly 

shows that in Greater Accra region, the influence of urban expansion influence on LST increase is 

average. Inferential statistics from the analysis indicate that for the 32 years of this study, built-up 

environment could be said to be increasing at an average of 20.44% per annum while LST increased 

by an average of 0.09  every year. This is however not conclusive as changing trend for both LULC 

and LST for the period of 1986 to 2002 was higher than between 2002 and 2018.  

Average land surface temperature increase level of 2.65  was observed for LULC type classified 

as waterbody. This was the least among all the LULC types but considered higher compared to 

corresponding temperature of built-up. It could however be explained by two major salt production 

lagoons sites within the region namely Pambros at the west south of the Weija lake and the Songor 

lagoon. These are major salt production sites and relatively high increasing temperature recorded 

for waterbodies within the region may be attributed to the ability of salt to absorb heat very 

effectively because of its physical and chemical properties. Salt's heat absorption properties 

influence the freezing temperature of liquid, particularly water. This has implication on global 

warming as LST rises.  

4.5.2 Correlation Analysis between LST and LULC Types  

In understanding the relationship between LST and land cover, investigation of the thermal 

characteristics of each LULC type is essential. Many indices have been used as a metric in LULC 

analysis. Prominent among these is the Normalized Difference Bareness Index (NDBAI), 

Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI) and 

Normalized Difference Vegetation Index (NDVI).   



 

 

NDVI, NDBAI, NDWI and NDBI have been widely useful in the study of vegetation cover, 

bareness index, water state especially the water content within vegetation and for the evaluation 

built up respectively. These land coverage indices have a strong association with Land Surface 

Temperature (Sun et al., 2012; Zhang et al., 2009). Satellite images were converted from DN 

values to Surface Reflectance value and the four indices were computed as a measure for 

vegetation, built up, waterbody and bare land LULC types. The values of the results of all four 

indices vary between -1 and +1 (see Figure 4-3 to Figure 4-14 from appendix).  

To analyze the relationship between each of these indices and LST, random sample points were 

generated for each LULC type. For each of LULC type, 100 random points were generated thus a 

total of 400 sample points were used in this correlation analysis. Values for each index and related 

LST values were plotted in a scatterplot to examine the relationship.  

4.5.2.1 Normalized Difference Vegetation Index (NDVI) and LST  

The Normalized Difference Vegetation Index (NDVI) is an index of plant ―greenness‖ or 

photosynthetic activity. It is the most commonly used vegetation indices. LST studies widely use 

the NDVI parameter because NDVI is less sensitive to the changes in atmospheric conditions than 

other indices; it has, therefore, become very popular for vegetation monitoring (Raynolds et al., 

2008)  

Values of NDVI can range from -1.0 to +1.0, with values less than zero indicative of no ecological 

meaning, so the range of the index is truncated to 0.0 to +1.0. Higher values signify a condition 

associated with highly photosynthetically active vegetation. Low NDVI values on the  
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other hand mean little photosynthetic activity or greenness.  

Figure 4-24  Relationship between LST and NDVI in 1986  

 

Figure 4-25 Relationship between LST and NDVI in 2002  
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Figure 4-26 Relationship between LST and NDVI in 2018  

Examination of relationship between NDVI and LST over the years shows generally negative 

relationship as indicative in the correlation coefficient (R) of 0.010,-0.869 and -0.839. This 

indicates an inverse relationship between vegetation cover and LST in the Greater Accra region 

suggesting high NDVI areas may be associated with lower LST as concluded in Aduah et al. (2012) 

and Kumi-boateng and Stemn (2015). It can however be seen from Figure 4-24 that the very weak 

correlation coefficient in 1986 was an exception to the general assertion that LST and NDVI are 

negatively correlated. Relationship in 1986 as indicated illustrates the weakest with almost no 

relationship between the two parameters. This affirms conclusion of Yuan and Bauer (2007) that 

the amount of vegetation cover is not the only factor affecting LST values.   

4.5.2.2 Normalized Difference Bareness Index (NDBAI)  and LST  

Distribution and change of bare land play an important role in the ecosystem, which usually implies 

physiographical and anthropogenic impacts on ecologic environment. NDBAI is a derived index 

for mapping bare land areas from Landsat satellite images. NDBAI analysis the association 

between mid-infrared and thermal radiation.  

Scatterplot shown in Figure 4-27 to Figure 4-29 all show positive association between LST and 

NDBAI. Correlation coefficient (R) of 0.628, 0.833 and 0.800 are recorded for 1986, 2002 and 

2018 in Figure 4-27, Figure 4-28 and Figure 4-29 respectively.   
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Figure 4-27 Relationship between LST and NDBAI in 1986  

 
Figure 4-28 Relationship between LST and NDBAI in 2002  
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Figure 4-29 Relationship between LST and NDBAI in 2018  

This represent a strong positive relationship between LST and bare land. Trend of R can clearly be 

associated with increase average LST for bare land from 25.07  to 28.42  and 28.59  as seen 

in Figure 4-23. This implies that LST would increase with an increase in the density of, bare land.  

4.5.2.3 Normalized Difference Built up Index (NDBI) and LST  

NDBI is useful in understanding urban landscape or in built-environment research. This index 

emphasizes urban development where there is typically a higher reflectance in the 

shortwaveinfrared (SWIR) region, compared to the near-infrared (NIR) region.   

From Figure 4-30, Figure 4-31 and Figure 4-32, NDBI as an index  of built-up shows the strongest 

positive correlation between urban development and LST in the Greater Accra region. This implies 

an increasing NDBI index (Built up LULC) results in related increase in Land Surface 

Temperature.   

Observation made from scatterplots of 1986, 2002 and 2018 indicates linear correlation coefficient 

of 0.741, 0.918 and 0.893 respectively.  
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Figure 4-30 Relationship between LST and NDBI in 1986  

 
Figure 4-31 Relationship between LST and NDBI in 2002  



 

69  

  

 
  

Figure 4-32 Relationship between LST and NDBI in 2018  

4.5.2.4 Normalized Difference Water Index (NDWI) and LST  

NDWI is known to be strongly related to the plant water content and therefore a very good proxy 

for plant water stress. According to Gao (1996), NDWI is a good indicator for vegetation liquid 

water content.  

This was the only index that recorded all negative correlation among all four indices. As shown in 

Figure 4-33 to Figure 4-35, negative correlation coefficient of NDBI of -0.741, -0.918 and 0.893 

for 1986, 2002 and 2018 were recorded respectively. This could be explained the low LST 

estimates association with water bodies and dense vegetated areas within the region.  
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Figure 4-33 Relationship between LST and NDWI in 1986  

  

 
Figure 4-34 Relationship between LST and NDWI in 2002  
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Figure 4-35 Relationship between LST and NDWI in 2018  

   

  

This study employed geospatial and statistical techniques to address research objectives. All four 

LULC types identified experienced change over the duration of the study. Changing pattern 

indicate increasing built up and decreasing bare land, vegetation, and water bodies. Analysis show 

increased LST over the entire region over the past 32  years. Correlation analysis were also 

employed in arriving at results that indicated various relationship between LULC indicators 

(NDVI, NDWI, NDBI and NDBAI) and LST.   
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5 Chapter Five: Conclusions and Recommendations  

5.1  Conclusions  

This study explored LULC changes and investigated LST variations using remote sensing and GIS 

technology in the Greater Accra region between 1986 and 2018. Remote sensing and Geographic 

Information System application has proven to be useful in understanding changing pattern of 

LULC, variability of LST and insight from LST variations associated LUCC.  

The results of the research revealed that LULC in Greater Accra region has changed significantly 

over the 32-year period. The four major LULC types identified were Vegetation, Built-up, Bare 

land and Waterbody. Bare land cover type indicated steady decline from 1986 to 2018 representing 

a total of 60.22% decrease. Water bodies experienced varying trend with a decrease in 2002 and 

an increase in 2018 amounting to a total decrease of 7.84% loss representing 9.11 Km2. Analysis 

further showed that vegetation cover exhibited similar but opposite pattern of 16.20% increase in 

2002 followed by a 28.02% decreased. This amounted to a total of 11.82% decrease in vegetation 

cover. On the contrary, built-up increased by 654.03% (724.3 Km2) between 1986 and 2018.    

Land Surface Temperature was observed to have increased by 3.05  over the 32-year period of 

this study across the Greater Accra region. The trend indicated a significant increase of 3.5  

between 1986 and 2002 but a decrease of 0.45  to 28.12  from 2002 and 2018. The increasing 

trend in LST over time was found to be consistent with the observed urban expansion of the study 

area. Higher LST were generally concentrated in the core of urban centers and bare land areas 

comprising sandy areas and dry salt, bare exposed rock, and quarries. High temperatures are also 

more apparent along the coastal belt of the region stretching northwards as development spread in 

the same direction. The pattern of low temperatures on the other hand was consistently identified 

around northern boarders spreading towards the north-western corner of the region.   

A relationship was established between LST and LULC. Total change in LST for the entire period 

of the study shows increase of 3.53 , 3.04 , 2.78  and 2.65  for bare land, vegetation, built-

up and waterbody land use/land cover types respectively. Nevertheless, among all four LULC 

categories, Built-up areas have the highest average LST for all three time periods except for 2018 

which it recorded same as Bare land. Analysis of the overall change in LULC in association with 

LST reveals that Bare land experienced the highest negative change of 60.22% decrease, and this 

corresponded to the highest increase in LST of 3.53  over the same period. Both NDBAI and 
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NDBI exhibited a positive correlation with LST. NDVI demonstrated a negative linear correlation 

while NDWI indicated the strongest negative linear correlation with LST. Land use/Land cover 

change can be linked to rising Land Surface Temperature Changes in the Greater Accra region of 

Ghana  

5.2  Recommendations  

The study recommends the following;  

• Barren land and Open spaces should be utilized for afforestation projects.  

• Relevant regulatory bodies should ensure the control of urban development through land 

use planning to prevent the creation of  ‗Concrete Jungles‘.  

• Appropriate authorities should ensure water bodies are protected as a mitigation measure 

against temperature changes.  

• Local government authorities should ensure effective urban planning to curb the 

contribution of LULC change to LST change.  

• Government should provide policy direction to address anthropogenic causes of surface 

temperature changes.  

Limitations  

1. The use of specific timestamp satellite imagery data. With the advent of platforms like the 

google earth engine, more data are readily made available for use. Notwithstanding, spatial 

autocorrelation (Global Moran's I) test undertaken indicate LST pattern is not a result of 

random chance.  

2. Challenge with data availability.  

3. Spatial distribution of random sampling site for LST validation is not entirely even.  
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Appendices   

Appendix A: Landsat Satellite Images  

 

Figure A-1: Map of True Colour Band Combination of 1986, for Land use/Land cover Classification  

 
Figure A-2: Map of True Colour Band Combination of 2002, for Land use/Land cover Classification  
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Figure A-3: Map of True Colour Band Combination of 2018, for Land use/Land cover Classification 

Appendix B: Change Detection Statistics  

 

Figure B-1: Percentage Change Detection Statistics between 1986 and 2002 for Change Analysis  
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Figure B-2: Percentage Change Detection Statistics between 2002 and 2018 for Change Analysis  

  

 

Appendix C: Map of LULC Indices  
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Figure C-1: Normalized Difference Bareness Index Map of 1986, for Correlation Analysis   

Figure C-2: Normalized Difference Built-up Index Map of 1986, for Correlation Analysis  
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Figure C-3: Normalized Difference Vegetation Index Map of 1986, for Correlation Analysis  

Figure C-4: Normalized Difference Water Index Map of 1986, for Correlation Analysis  
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Figure C-5: Normalized Difference Bareness Index Map of 2002, for Correlation Analysis   

Figure C-6: Normalized Difference Built-up Index Map of 2002, for Correlation Analysis  
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Figure C-7: Normalized Difference Vegetation Index Map of 2002, for Correlation Analysis  

Figure C-8: Normalized Difference Water  Index Map of 2002, for Correlation Analysis  
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Figure C-9: Normalized Difference Bareness Index Map of 2018, for Correlation Analysis 

Figure C-10: Normalized Difference Built-up Index Map of 2018, for Correlation Analysis  
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Figure C-11: Normalized Difference Vegetation Index Map of 2018, for Correlation Analysis   
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Figure C-12: Normalized Difference Water Index Map of 2018, for Correlation Analysis   
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Appendix D: Ground truth Images  

Figure D-1: Image of Urban development around Kwabenya for Accuracy Assessment  

Figure D-2: Image of Bare and Open Land around Afienya for Accuracy Assessment  
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Figure D-3: Image of Built up Development  around Pambros for Accuracy Assessment  

  

  


