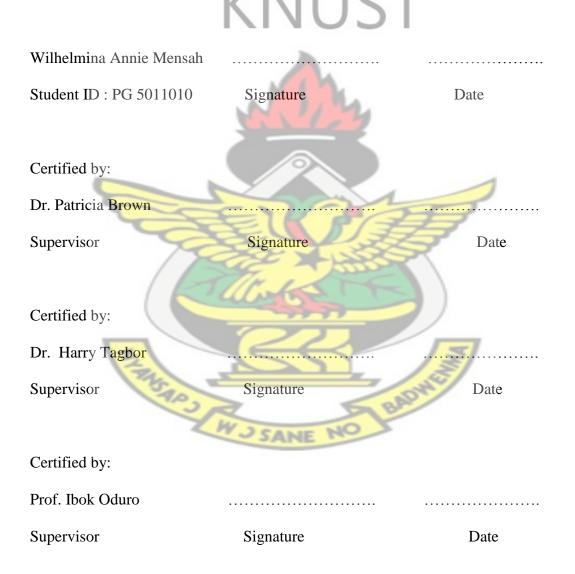
THE EFFECT OF VITAMIN A AND ZINC OR VITAMIN A, ZINC &


MULTIVITAMIN SUPPLEMENTATION ON MORBIDITY DUE TO MALARIA

BY Wilhelmina Annie Mensah, Bsc. Biochemistry (Hons) A Thesis submitted to Department of Biochemistry And Biotechnology, Kwame Nkrumah University of Science And Technology-Kumasi in partial fulfillment of the requirements for the degree of MASTER OF PHILOSOPHY College Of Science

FEBRUARY 2013

CERTIFICATION

I hereby declare that this submission is my own work towards the MPhil and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for award of any other degree in the University. I have undertaken the study reported herein under the supervision of Dr. Patricia Brown, Dr. Harry Tagbor and Prof. Ibok Oduro and that except portions that are duly cited this dissertation is the outcome of my research work

ACKNOWLEDGEMENTS

I give thanks to God almighty for his infinite mercies, love and provision throughout this postgraduate period.

I also thank my family, my husband; Mr. Amoako Kyei-Mensah, my supervisors, my team members; Michael Ampofo and William Marfo, as well as my special friend; Robert Dwumah. I am also grateful to the institutions who contributed to the success of this work with various products; Malaria Control Program, Accra, M&G Pharmaceuticals, Accra, Ernest Chemists, Kumasi, Aryton Drugs, Accra, Lynch Medical Services Ltd, Accra. I also thank the Research and Conference Committee (KNUST) for the financial funding. The contribution of Yaa Mantebea Ofori-Mante, Hilda Inemesit Sampson and Frances Wendy Grant towards data collection and analysis is acknowledged.

To Prof. Victoria Dzogbefia, I dedicate this degree to you, Mum, your financial sponsorship made a young girl's dream of starting postgraduate studies become a reality, I am forever grateful.

iii

CONTENTS

Title	Page
Certification Page	ii
Acknowledgement	iii
Table of Content	iv
List of tables	vii
List of figures	viii
Abstract KNUST	viii
CHAPTER ONE: INTRODUCTION	
1.1 Background	1
1.2 Problem statement	3
1.3 Justification	6
1.4 Objectives	7
1.5 Study hypothesis	8
CHAPTER TWO : LITERATURE REVIEW	
2.0 Vitamin A and malaria	9
2.1 Zinc and malaria	10
2.3. Other micronutrients and malaria	13
2.4 Multiple micronutrient supplementation and malaria	13
2.5 Anthropometry	14
2.6 Significance of weight-for-age, weight-for-height, height-for-age	15
2.7 Assessing nutritional status	16

CHAPTER THREE: METHODOLOGY

3.1. Study site and recruitment	17
3.2 Ethical issues	17
3.3 Sample size	19
3.4. Randomization and micronutrient distribution	19
3.5.Cross sectional survey and follow up	20
3.6 Laboratory procedures	21
3.7 Anthropometry	23
3.8 Statistical analysis	23
CHAPTER FOUR : RESULTS	
4.1. Demography of children and care givers of children	24
4.2. Baseline characteristics of participants who completed the study by groups	29
4.3. Indicators of malaria infection at baseline and end of study among groups	30
4.4 Mean days to first infection in the intervention groups during study period	34
4.6. Anthropometric indices	35
CHAPTER FIVE : DISCUSSION	
5.0 Discussion	37
CHAPTER SIX : CONCLUSION	
6.0 Conclusion	45
6.1 Recommendation	45
References	46
Appendix	52-73

LIST OF TABLES

Tables	Page
Table 2.1. Overview of some published trials to assess effects of preventive zinc	10
supplementation in sub-Saharan African children	
Table 4.1: Demographic data on children and care givers who completed the study	23
(n=347)	
Table 4.2: frequency of various meals eaten by children based on a 24 hour recall	24
Table 4.3: Baseline characteristics of study participants who completed the study by	25
their intervention groups	
Table 4.4a: Comparison of episodes of malaria and other morbidity between vitamin A & zinc and vitamin A alone groups as well as vitamin A, zinc & multivitamin and vitamin A alone groups during the study period	29
A THE A THE A	
Table 4.4b: Comparison of indicators of malaria infection between vitamin A & zinc and vitamin A alone groups as well as vitamin A, zinc & multivitamin and vitamin A alone groups during cross sectional survey at baseline and end of study	30

Table 4.5: Time to first malaria episode, other morbidity and general illness between 33 intervention groups during the study BA

W

J SANE NO Table 4.6: Z-score values for weight for age, length for age, weight for height in 34 various intervention groups at baseline and end of study for children who completed the study

LIST OF FIGURES

Figure	Page
Fig 3.1: Conceptual framework	17
Fig 4.1: The study profile of the intervention from beginning to end of study	24
Fig 4.2: Percentages of children who developed diarrhoea, fever, rashes, measles, cough,	32
anaemia, vomiting and other illness (e.g. headache, convulsion etc) amongst the	
intervention groups during the five month follow up period	

ABSTRACT

Interventions with vitamin A or zinc have been shown in various studies to reduce incidences of malaria and other illness. However the effect of supplementing with vitamin A, Zinc and multivitamins has not been studied. We measured the effect of combining vitamin A, zinc and multivitamins on malaria morbidity. A randomized, controlled trial was conducted in children in the Ejusu-Juaben Municipality of Ghana. Children (n=542) aged between 6 to 60 months were randomly assigned to 1 of 3 intervention groups; group 1, control - vitamin A (single dose 200 000 IU), group 2vitamin A (single dose 200 000 IU) & zinc (10 mg daily), group 3-vitamin A (single dose 200 000 IU) with multivitamin (according to age) and zinc (10mg daily). Malaria episodes were detected by surveillance or cases self-reported to a community health worker. Cross-sectional surveys were conducted at the beginning and the end of the study period. The primary outcome was an episode of malaria (temperature \geq 37.5°C) which was confirmed by microscopy and testing with a rapid test kit for malaria antigen (HRP2) of plasmodium falciparium. The risk of malaria infection among the children who received vitamin A, zinc & multivitamin during the study period was reduced to 62% $(\mathbf{RR} = 0.62, p = 0.018)$ of the risk in children who received vitamin A alone. The risk of children who received vitamin A & zinc was 81% though this decrease was not significant (RR = 0.81, p = 0.109). The children in the vitamin A alone group had the highest geometric mean parasite density the end of the study. Amongst the groups, it took those in the vitamin A, zinc & multivitamin group a longer time (112 days) to develop the first episode of malaria compared to the vitamin A alone group (93days, p = 0.004); differences in time to develop malaria between the other groups were not significant.; vitamin A & zinc; 94 days and vitamin A; 93 days. The results suggest that combined supplementation with vitamin A, zinc and multivitamins reduces the risk of malaria infection appreciably.

CHAPTER ONE

1.1 BACKGROUND

Essential micronutrients are nutrients required by humans and other living things throughout life in small quantities (micrograms and milligrams). They are needed to orchestrate a whole range of physiological functions, which the organism itself cannot produce (WHO, 2011). Micronutrient deficiencies are estimated to be responsible for 21% of worldwide deaths in children under 5 years in low- and middle-income countries every year (Onis de and Blössner, 2009). Most of the diseases that cause these deaths are infectious diseases such as malaria, pneumonia, diarrhoea, and measles (Pelletier and Frongillo, 2003). This disease burden is mostly due to deficiencies in zinc and vitamin A, and is highest in Asia and sub-Saharan Africa (Black *et al.*, 2008).

Studies have indicated that macronutrient and certain forms of micronutrient malnutrition exacerbate malaria morbidity and mortality (Shankar, 2000). A high prevalence of several micronutrient deficiencies has been found among 6 to 60-monthold Ghanaian infants (Lartey *et al.*, 2000). Deficiencies in vitamin A, B₁, B₂, C, E and zinc have also been associated with susceptibility to malaria infection (Black *et al.*, 2008). Deficiencies of thiamin, folate, and antioxidants including vitamin E have been noted in patients with acute malaria (Metzger *et al.*, 2001). There are a lot of trials (Allard *et al.*, 1998; Akompong *et al.*, 2000b; Banajeh, 2003; Wrenger *et al.*, 2006 ; Brown *et al.*, 2010) that measure the effect of vitamin A and zinc independently on malaria infection. However, the results from these trials are inconsistent; some suggest protective effects while others are exacerbative.

For example, in vitro studies with human monocyte cell lines suggests that vitamin A may facilitate the breaking up of red blood cells infected with malaria parasites and thus may reduce the severity of malaria (Serghides and Kain, 2002). Studies in humans indicated that vitamin A supplementation reduced the frequency of *P. falciparum* malaria episodes among pre-school children (Shankar *et al.*, 1999a; Cox *et al.*, 2005). In contrast, a vitamin A supplementation trial in preschool children in Northern Ghana reported no statistically significant effects of vitamin A on *P. falciparum* morbidity or mortality (Binka *et al.*, 1995).

Zinc is essential for the production of immune proteins like immunoglobin G (IgG), interferon- γ (IFN- γ), and tumour necrosis factor $-\alpha$, implicated to help in resistance to malaria (Good *et al.*, 1998; Fischer-Walker and Black, 2004). A trial of zinc supplementation in preschool children in Papua New Guinea (Shankar *et al.*, 2000) documented a 38% reduction in health center attendance owing to *P. falciparum* malaria. However, a subsequent trial of daily zinc supplementation of preschool children in Burkina Faso indicated no protective effect on *P. falciparum* (Muller *et al.*, 2001).

The discrepancies in the results may be because the response to these supplementations are suppressed in children who are also deficient in other nutrients known to be essential for immunity, or in nutrients that impair absorption or utilization of other nutrients (Maggini *et al.*, 2007). For example, zinc is involved in the conversion of β -carotene to vitamin A and it is required in mobilizing vitamin A within cells and from the liver (Dijkhuizen *et al.*, 2004).

Also, vitamin A deficiency may reduce absorption and lymphatic transport of zinc by altering synthesis of a zinc dependent binding protein; vitamin E is generally recognized as necessary for optimal utilization of vitamin A. Riboflavin depletion impairs absorption and increases the rate of gastrointestinal loss of endogenous iron and possibly other minerals (Powers, 1998).

KNUST

1.2 Problem Statement

Malaria is also a burden worldwide. In Ghana and the *Ejisu-Juaben* municipality, 40% and 60% of outpatient cases are due to malaria respectively (MOH, 2010). Also, high prevalence of several micronutrient deficiencies have been found among 6 to 60-monthold Ghanaian children (Lartey *et al.*, 2000). Literature suggests that certain forms of micronutrient deficiencies exacerbate malaria morbidity and mortality. Deficiencies in vitamin A, B₁, B₂, C, E and zinc have also been associated with susceptibility to malaria infections (Black *et al.*, 2008). Deficiencies of thiamin, folate, and antioxidants including vitamin E have been noted in patients with acute malaria (Black *et al.*, 2008). Hence, supplementation programs have been used over the years to correct vitamin and mineral deficiencies in children and even the elderly.

Vitamin A supplementation has been used as a possible strategy to improve the nutrition of infants at high risk of vitamin A deficiency, and thus potentially reduce their mortality and morbidity. This is because vitamin A is central to normal immune function, and supplementation has been shown to lower the morbidity of some infectious diseases. The effect of vitamin A supplementation in preventing malaria has been studied, some studies suggest a protective effect while others suggest an exacerbative effect. Other reviews suggest that these results are discordant because the individuals may have been deficient in other nutrients which help the bioavailability of vitamin A. One such nutrient is zinc. Zinc is known to interact with vitamin A and deficiency in either nutrient may affect the bioavailability of each other. Coincidentally, zinc has also been tried in some studies as a prophylactic in malaria prevention but the results in these studies are also discordant (Keen and Gershwin, 1990; Fraker *et al.*, 2000; Cui *et al.*, 2003).

In addition to the problem above, the WHO in collaboration with the government of Ghana undertake vitamin A supplementation twice a year the country. These supplementations are done from the fact that vitamin A supplementation corrects vitamin A deficiency, and if the vitamin A nutriture of the children is improved then they can be better protected from common infections like malaria. But malaria is still the highest outpatient case in Ghana and specifically in the Ejisu-Juaben municipality. It is possible that, the vitamin A supplementation may not be effective in correcting the deficiency especially in children who are also deficient in other nutrients especially zinc.

It is assumed that children who may not respond as well to the vitamin A supplementation are those located in the middle and upper belt of Ghana. This is because these children may be lacking zinc in their diet because known good sources of zinc in the diet are sea foods particularly oysters and mollusks.

Some of these foods are known to be scarce in the geographical location (*Ejisu-Juaben* Municipality in the *Ashanti* Region) of our study population. The *Ashanti Region* is located in the middle belt of Ghana, which is far from the coastline, making sea foods scarce in this part of the country. These foods may be lacking in the diet of the research population hence making them deficient in this nutrient.

Additionally, if zinc is deficient, vitamin A bioavaitability may also be impeded. It can be proposed then that the children may also be deficient in other nutrients known to be essential for immunity. If so, then zinc and other micronutrients would act synergistically, and simultaneous supplementation with other nutrients might be required to overcome the lack of effect that may occur when zinc or vitamin A is given alone To compound the problem, the consumption of fruits and vegetables is known to provide the body with the needed vitamins and minerals whose deficiency has been linked with malaria infection like B vitamins and vitamin C. This practice is known to be very low in Ghanaian children under 5years. Low fruit and vegetable consumption prevalence ranged from 36.6% (Ghana) to 99.2% (Pakistan) for men and from 38.0% (Ghana) to 99.3% (Pakistan) for women (Hall *et al.*, 2009). This may also predispose them to common infections like malaria. A daily multivitamin and mineral supplement is known to reduce the number of infections (Barringer *et al.*, 2003),.

1.3 Justification

This study is timely because, it can be an approach that can be used by policy makers as part of preventive measures for the control of infections from *P. falciparum*. Other benefits may also be gained; for example, nutrient supplementation may mitigate the delay in acquired immunity associated with bed nets and chemoprophylaxis.

The result of the study also has the potential of contributing to the realization of the Millennium Development Goal 4 which is reduction of childhood mortality.

Secondly, patients will respond better to treatment and length of treatment will be reduced. This will lead to less cost of treatment per patient. The increase response to treatment will translate into more children recovering from the disease and reduce mortality associated with it.

Also, this study seeks to investigate the relationship malnutrition and malaria. The two share certain consequences, including stunting, wasting, cognitive impairment and decreased school performance. If malnutrition and malaria rates are reduced, children will grow well and will also grow into intelligent and productive adults.

Additionally, since vitamin A and zinc protects the body against night blindness, stunting and other common infections like cough and diarrhoea, children will benefit health wise. The multivitamin and mineral supplement will also protect them from common infections.

6

Moreover, the country will also benefit socio-economically since the time spent by parents off the job at the hospital will be used for productive work. And children will spend less time away from school resulting in a better educated population.

Lastly, findings from this work will be disseminated worldwide through publications and presentations at conferences to expand general knowledge on nutrition and malaria, specifically, vitamin A, Zinc and multivitamins. If this study shows a positive benefit, a more sustainable method of supplementation will be developed. This will be either fortification of complementary foods or development of a complementary food from local foodstuffs rich in these nutrients

1.4 Main Objectives

To determine the effect of multivitamin and zinc supplementation on malaria infection and morbidity in children under 5 years in the Ejisu-Juabin Municipality of Ashanti Region in Ghana

1.5 Specific Objectives

- 1. To supplement children aged between 6months and 5years with zinc and multivitamin supplements for 5 months
- 2. To determine the prevalence of malaria and the parasite density in participants before and after the trial.
- 3. To determine the incidence of malaria episodes among study children
- 4. To determine the incidence of other morbid episodes among study children
- 5. To assess the various foods eaten by our study population

1.6 Study Hypothesis

Based on the known effects of zinc and vitamin A (Zeba *et al.*,2008; Shankar *et al.*,2008) It is hypothesized that the risk of developing malaria will be lowered by 50% in children given a single dose of vitamin A (200,000 IU) and daily doses of either Zinc (10mg) or multivitamin syrup (1-5ml per body weight) together with daily doses of zinc (10mg) compared to those given vitamin A alone.

CHAPTER TWO

LITERATURE REVIEW

2.0 Vitamin A and malaria

Vitamin A is a family of compounds with similar structures called retinoids. In plantbased foods, vitamin A is found in the form of provitamin A, principally beta-carotene (Solomons, 2006). The recommended intake of vitamin A in males and females for age 6months to 8years is between 13,33IU and 16,66IU per day. A dosing schedules for universal distribution of vitamin A for infants 6-11months is 100,000IU every 4-6months and for children aged between 12-59months, the intake is 200,000IU every 4-6months (Marks, 1975). Rich sources (more than 2000 μ g retinol-equivalents/100g edible portion) of vitamin A include carrots and liver. Other moderate sources 100-500retinol – equivalents/100g edible portion) include spinach, cheese, cereals and fish (Ames, 1969).

Vitamin A is essential in the development and function of virtually all cells. Vitamin A deficiency has been associated with reduced numbers and activity of natural killer cells and eosinophils (Erickson *et al.*, 2000; Stephenson, 2001). In adaptive immune response vitamin A appears to maintain the normal antibody-mediated immune response (Long and Santos, 1999; Stephenson, 2001). In vitro studies showed that addition of free retinol to *P. falciparum* cultures reduced parasite replication in two studies (Davis *et al.*, 1998; Hamzah *et al.*, 2003), although this was not seen in another (Samba *et al.*, 1992).

Meta-analyses of findings from intervention trials have shown that, in areas of endemic vitamin A deficiency, all-cause preschool child mortality can be reduced, on average, by 23% to 34% by vitamin A interventions. Vitamin A lowered the risk of fatality from severe *Plasmodium falciparum* malaria, based on findings from a trial in Papua New Guinea (Shankar *et al.*, 1999a).

KNUST

2.1 Zinc and malaria

Zinc is a trace mineral that is essential for all forms of life, including plants, animals, and microorganisms. In human subjects growth and development is strictly dependent on Zinc (Brown and Wuehler, 2000). The recommended intake of infant and children is between 5-12mg per day. Meat and animal products rich in zinc include oysters, liver, pork and calf. Vegetable and plant sources include whole meal flour, carrot and potato (FAO/WHO, 2001). Zinc is involved in a variety of cellular functions including membrane stabilization, free radical defense, signal transduction, transcription, and cell replication (Food and Nutrition Board, 2001). Given the multiple biological roles of zinc, deficiency of this element has immunological consequences. Classical signs of zinc deficiency include diarrhea and dermatitis (Keen and Gershwin, 1990; Fraker *et al.*, 2000; Cui *et al.*, 2003).

Zinc has a particularly important role in the control of blood stages of Plasmodium spp. Zinc is essential for the production of immune proteins like immunoglobin G (IgG), interferon- γ (IFN- γ), and tumour necrosis factor α (TNF- α) implicated to help in resistance to malaria (Fischer-Walker and Black, 2004). In Papua New Guinean children, daily zinc supplementation led to a reduction of the number of fevers attributable to malaria due to *P. falciparum* by 38% (Shankar *et al.*, 2000). In contrast, in a supplementation trial in Burkina Faso, zinc provided no or only little protection against malaria (Muller *et al.*, 2001) despite evidence that the children studied were zinc deficient.

Country	Population Studied	Design	Main findings
Ghana (Zlotkin <i>et al.</i> , 2003)	Rural anemic children, 6–18 months (n=304)	Zinc (10 mg as gluconate) plus iron (80 mg as ferrous fumarate) versus iron alone, daily for 2 months 1	No evidence of improved zinc status or catch-up growth
South-Africa (Bobat <i>et al.</i> , 2005)	HIV-infected children, not receiving antiretroviral therapy; 6– 60 months (n=96)	Zinc (10 mg as sulphate) versus placebo, daily for 6 months	No effect of zinc on plasma viral load or CD4 counts. Overall odds of diarrhoea (all surveys combined) lower in zinc group (p=0.001
(Walker <i>et al.</i> , 2007)	Infants aged 1–5 months with acute diarrhoea (n=163) (multi-country study also including children in India and Pakistan)	Zinc (10 mg as sulphate) versus placebo, daily for 2 weeks	No apparent benefit
Pemba, Tanzania (Olney <i>et al.</i> , 2006; Sazawal <i>et al.</i> , 2004; Kordas <i>et al.</i> , 2009)	Children (without severe malnutrition), 1–35 months (n=42,546)	Zinc (5–10 mg as sulphate) versus placebo, daily until children reached the age of 48 months	Zinc resulted in reduction in all-cause mortality by 7% (–19% to 6%). Effect seemed more pronounced among children aged > 12 m (18% [0–32%] reduction in all cause mortality). Zinc also resulted in longer sleep duration, increased hemoglobin concentration and decreased ZPP:H ratio
South Africa (Luabeya <i>et</i> <i>al.</i> , 2007; Chhagan <i>et al.</i> , 2009)	HIV-positive and HIV-negative children, 4–6 months (n=36 and 341)	Zinc (10 mg as gluconate) plus multi- nutrients plus vitamin A versus zinc plus vitamin A versus vitamin A alone, for 18 months. 21%–23% of children in all groups received therapeutic iron during the study (dose/ duration not specified)	2007: No evidence that zinc, or zinc plus multi- nutrients reduce the prevalence of diarrhoea and respiratory tract infections. No difference in effect between subgroups. 2009:Improved growth and increase in hemoglobin concentration due to multi- nutrients, as compared to zn+vit A, or vit A alone

Table 2.1. Overview of some published trials to assess effects of preventive zinc supplementation in sub-Saharan African children

2.3. Other micronutrients and malaria

There have also been studies to elucidate the role of other micronutrients in malaria. Poor thiamine (vitamin B₁) status is associated with greater risk of severe malaria and simple clinical malaria (Krishna *et al.*, 1999). Also, high doses of riboflavin (vitamin B₂) suppress parasite growth by preventing the oxidation of hemoglobin needed by the malaria parasites (Akompong *et al.*, 2000a). Thus, high-dose riboflavin therapy could possibly be of benefit. No evidence of the role of niacin (Vitamin B₃), pyridoxine (vitamin B₆), cobalamin (vitamin B₁₂), vitamin D on malaria have been found (Rall and Meydani, 1993). Experiments in monkeys has indicated that vitamin C deficiency exacerbated malaria (McKee and Geiman, 1946). In general, data is lacking on the effects of these nutrients on malaria morbidity, pathology, and mortality in humans. Additional studies in this area are clearly warranted.

2.4 Multiple micronutrient supplementation and malaria

Literature suggests a potential interaction between Vitamin A and zinc (Smith *et al.*, 1973; Christian and West, 1998). In children with severe protein energy malnutrition, zinc supplementation improved serum retinol binding protein and retinol concentration (Rahman *et al.*, 2001a). Subsequently, a combined Zinc and vitamin A supplementation reduced malaria morbidity by 38% in rural Burkinabee children aged 6months- 6yrs (Zeba *et al.*, 2008).

Only one study was found to have examined the role of zinc and multiple micronutrient supplements in malarial outcomes in children less than five years of age. In this study it was found that preschool children in Tanzania showed no evidence that multi-nutrients influenced the effect of zinc (or vice versa). Neither zinc nor multi-nutrients influenced malaria rates respectively. This clearly indicates that more research is needed in this area.

KNUST

2.5 Anthropometry

Anthropometric measures include physical measurements of weight, height, head circumference, mid upper arm circumference, and skin fold thickness that are compared to reference values. A single measurement generally indicates cumulative growth, while repeated measurements show whether growth is proceeding normally. Head and brain growth is maximal during the first two years of life, after which growth is very slow. Mid upper arm circumference measurements (MUAC) reflect the amount of subcutaneous fat and muscle, and changes correlate positively with changes in weight. A decrease in MUAC indicates a reduction in one or both of these tissues (Lee and Nieman, 1996).

2.6 Significance of weight-for-age, weight-for-height, height-for-age The weight or height of an individual is compared to a known reference of the same age or height. The most widely used reference is that of the US National Centre for Health Statistics (CDC/NCHS/WHO). Anthropometric indices are reported using three different

systems namely Z-scores, percentiles, or percentage of the median.

The z-score or standard deviation (SD) unit is given by the calculation below:

Z-score = (observed value for an individual) – (median of the reference population)

SD of the reference population.

The advantage of this index is that the curves are normally distributed and a fixed Z-score interval corresponds to a fixed weight or height difference for children of a given age (Onis de and Blössner, 2009).

Weight-for-age: Low weight-for-age index identifies the condition of being underweight, for a specific age. The advantages of this index are that it may reflect both past (chronic) and/or present (acute) undernutrition (although it is unable to distinguish between the two)

Height-for-age: This index is an indicator of past undernutrition or chronic malnutrition. It cannot measure short term changes in malnutrition. For children below 2 years of age, the measurement used is length-for-age; above 2 years of age, the index is referred to as height-for-age. Deficits in length-for-age or height-forage are signs of stunting.

Weight-for-height: This index helps to identify children suffering from current or acute undernutrition or wasting and is useful when exact ages are difficult to determine. Weight-for-length (in children under 2 years of age) or weight for- height (in children over 2 years of age) is appropriate for examining short-term effects such as seasonal changes in food supply or short-term nutritional stress brought about by illness. The three indices are used to identify three nutritional conditions: underweight, stunting and wasting (De Onis *et al.*, 1997).

2.7 Assessing nutritional status

Nutritional status can be determined using a 24-h dietary recall and a food frequency questionnaire. In a 24-h recall the respondent recalls and provides a detailed description of all food and drink consumed, including cooking methods and brand names (where possible), on the previous day. Food quantities are measured using household measures or food models. The food frequency questionnaire asks about the frequency (daily, weekly, monthly, or yearly) of consumption of major foods. Food consumption data are converted into nutrient intake using food composition tables and reported as percentage of the recommended daily allowances (Lee and Nieman, 1996).

CHAPTER THREE

METHODOLOGY

3.1. Study site and recruitment

The study was conducted between November 2011 and April 212, in areas in the *Ejusu-Juaben municipality*, Ghana. These were *Achinakrom*, *Sarpeh*, *Onwe*, *Abenase*, *Donyina*. These communities were selected because of the rural setting and the fact that only one (*Onwe*) has a health center, making access to health information and care very low. Due to this the treatment of malaria is not properly handled. The malaria infection rate is 60% of outpatient cases in the municipality (MOH, 2010). Announcements were made at the various information centers in the various communities to encourage parents with children in the age group to make them available for the study

3.2 Ethical Issues

The study was reviewed and approved by the Committee on Human Research, Publications and Ethics, Kwame Nkrumah University of Science And Technology, School of Medical Sciences & Komfo Anokye Teaching Hospital Kumasi, Ghana. The study was explained explicitly to parents in their local language for them to completely understand what the study involved. Consent was obtained from parents enrolling each child into the study either orally, in writing or by use of thumb.

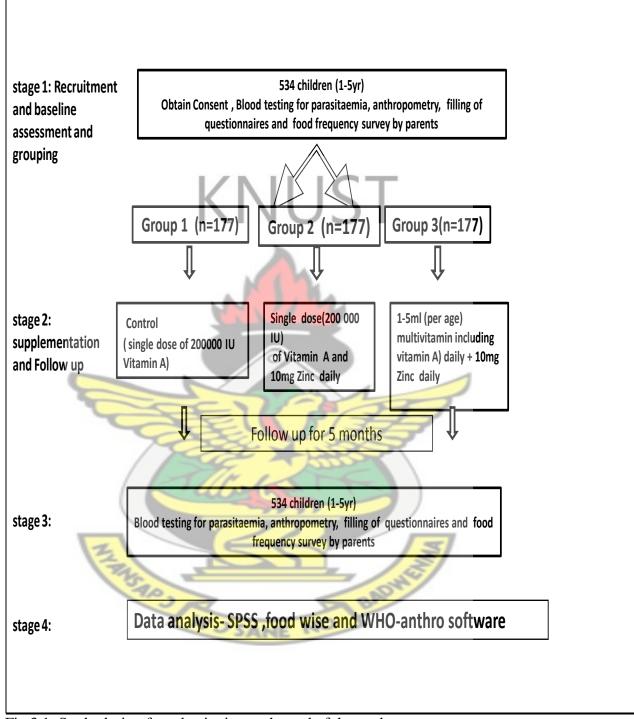


Fig 3.1: Study design from beginning to the end of the study

3.3 Sample Size

Assuming a prevalence rate of 35% of malaria episodes in the age group with 90% power and $\alpha = 0.05$, it is hypothesized that combined vitamin A and zinc or vitamin A zinc and multivitamin supplementation will reduce the prevalence rate by 50% (see page 7), assumption that 10% of participants would be lost to follow up. From this premise the sample size was calculated as n =177 for each group making a total of 531 children.

3.4. Randomization and Micronutrients Distribution

Children aged 6 months to 5 years who had received vitamin A (200,000 IU) supplements as part of a national supplementation were enrolled into the study. The vitamin A supplement had been given two weeks before the study. Confirmation of intake was done by checking their health record cards, the presence of an indelible mark on their small finger and oral confirmation from their care givers. They were included if 1) they showed no signs of malaria infection or other illness; 2) there was parental consent for the child's participation. 3) they planed not to move from the locality for at least the next 6 months. Children showing signs of malaria, allergic to any of the drugs or supplements or having obvious or terminal illness e.g. cancer, HIV etc were exclude from the study. After enrolment, children were randomly sectioned into vitamin A only (control), vitamin A and zinc or multivitamin and zinc by allowing them to select group numbers from an envelope. The vitamin A group was called the control group since all the children in the study had received a single dose of vitamin A.

The vitamin A and zinc group received a capsule of zinc containing 10 mg of elemental zinc in addition to the Vitamin A, 7 days a week for a 5-month period. In the multivitamin and zinc group each child received a 1-5ml/age multivitamin syrup once a day and a tablet of 10mg elemental zinc 7 days a week for 5 months. As per national guidelines, children who tested positive to the rapid test kit for malaria but were not showing symptoms were treated with a 3 day course of Artermether (4-5mg/kg)/ Lumifantrine (10mg/kg)-(3days) in order to clear any malaria infection 7 days before the initiation of supplementation. An episode of *P. falciparium* malaria was defined as temperature $\geq 37.5^{\circ}$ C, accompanied by the presence of asexual forms of the *P. falciparium* on blood smear , or a positive response to the malaria rapid test kit in children with guardian-reported fever and no other obvious cause for the illness. History of fever, cough, diarthea, and stomach ache and the use of mosquito net on the previous night were recorded.

3.5 Cross Sectional Survey and Follow Up

Two surveys were conducted – before and after the study. During these surveys the history of fever, immunization data, physical examination encompassing height and weight. The ages of the children were recorded from birth record cards. The parents of children were interviewed using a 24 hour recall and food frequency questionnaires to get fair representation of their nutrient intake. A structured questionnaire was administered to parents to ascertain factors that may predispose them to malaria.

The primary outcome, an episode of malaria, was pre-defined as a positive response to the malaria rapid test kit in children with guardian-reported fever and any of the following confirmed fever (axillary temperature $\geq 37.5^{\circ}$ C), separated by at least 14 days from a previous malaria episode. Community health workers who have been trained under the Home Management of Malaria Program administered supplement to participating children. The Parents were advised to bring their children to the home of the health worker as soon as the child fell sick. The health worker also visited the homes weekly to record any signs of sickness.

The health workers were trained to diagnose malaria with the malaria test kit. The health workers made regular, unannounced spot checks to ensure adherence to procedures. Supplementation and follow-up continued for all children for five months. Each child was visited by a community health worker for zinc and multivitamin administration, and for recording any sign of illness. An episode of *P. falciparum* malaria was defined as temperature \geq 37.5° C, accompanied by a positive test for the malaria antigen P*.falciparium* (Histidin Rich Protein 2) detection rapid card test. Malaria episodes were treated with artemether lumefantrine and were followed up for 7 days. Forms used by the health workers to record administration of micronutrients and monitoring of malaria episodes are attached.

3.6 Laboratory Procedures

First Response malaria antigen P.*falciparium* detection rapid card test (Premier Medical Corporation Ltd, Nani-Daman, India) for the qualitative determination of malaria histidine -rich protein 2 (HRP2) in blood was used.

The test kit contains a membrane strip, which is coated with a monoclonal antibody across a test strip. The monoclonal antibody (test line) is specific to the Histidine –rich protein 2 of the plasmodium. This test has a sensitivity of 95% for samples with positive *P. falciparum* parasites and 99% for random normal human specimen (Velecha *et al.*, 2002). Blood films were prepared for all children. Children with *Plasmodium* infection were treated with artemether-lumefantrine. Thick and thin Giemsa-stained blood films were reviewed for the presence of *Plasmodium* species. Each film was examined by microscopy by two experienced laboratory technicians who were blinded to the groups. The parasite count per μ l was done by counting 200 white blood cells and the number expressed on the basis of 8000 WBC per μ l (Trape, 1985,).

3.7. Anthropometry

Scales were calibrated for each measurement. Child weight was measured with an electronic scale for children who could stand and a hanging scale was used for children who could not stand on their feet. In measuring the weight, the child's shoes, bulky clothing, and hair ornaments that interfere with the measurement were removed. The hanging scale was zeroed after it has been adjusted with the weighing pants and measurement taken when child was still. All measurements were taken to the nearest kilogram.

A locally made stadiometer was used to measure the height of children who can walk. The child was made to stands with head, shoulders, buttocks, heels touching a flat surface, feet flat, straight, together, and arms were at the sides, and with shoulders level. A horizontal head board was lowered firmly onto the head while the subject inhales and a reading taken at observer's eye level. Those who couldn't stand were made to lie before their lengths were taken with a tape measure and the measurement was accurately recorded to the nearest 0.1 centimeter. The mid-upper arm circumference (MUAC) was measured with the subject standing with his left arm at right angles. The midpoint of the child's left upper arm was calculated by measuring the length of the tip of the shoulder to the end of the elbow and dividing by two. The arm circumference was then measured at the midpoint with the arm hanging relaxed and using a non-stretching flexible fiber glass tape held snugly around the arm.

3.8 Statistical Analysis

The analysis was done with SPSS (v 19-0 for Windows, SPSS, Chicago, IL, USA), GraphPad prism (v.5.01 for windows, Graphpad software Inc) .The analysis was based on the mean (for continuous variables) or proportion (for binary variables). Comparison of malaria incidence between the treatment groups was based on the two-sided 95% confidence interval. All analyses were by intention to treat. The risk ratio (RR) of a P*falciparium* episode in those given vitamin A only, zinc and vitamin A and vitamin A, zinc and multivitamin was the ratio of incidence between the vitamin A (control) and the other groups. Weight, height and age data were converted to Z-scores based on the National Center for Health Statistics standard with the WHO anthropometry software (WHO).

CHAPTER FOUR

RESULTS

4.1. Demographic characteristics of children and care givers

In the current study a total of 587 children within the age groups 6months to 60 months were screened, however 45 children were eliminated from the population sample for the following reasons; irregularity of care giver's residency during the study period, ill health, unreliability of date of birth records (Fig 4.1). Five hundred and forty two (542) were randomized into the three groups; vitamin A (control n=177), vitamin A and zinc (n=189), vitamin A, zinc and multivitamin (179). The number of children belonging to the different classes were fairly representative (Table 4.1).

A total number of 347 children between the age group 6 months and 60 months completed the study which began with 542 children. The results shown in this section are therefore based on the 347 participants who completed the study or on children we had both their baseline and end of study data taken. The ratio of males to females was 45.8 to 54.2 % (Table 4.1). Out of the 347 respondents who completed the course, 82 % had parents who were married. The remaining 18% had single parents (Table 4.1). The majority of the parents had had primary/elementary education. About 80 % (Table 4.1) of the parents have either had secondary or primary education. During the study a number of factors contributed to children not completing the study (Fig 4.1)

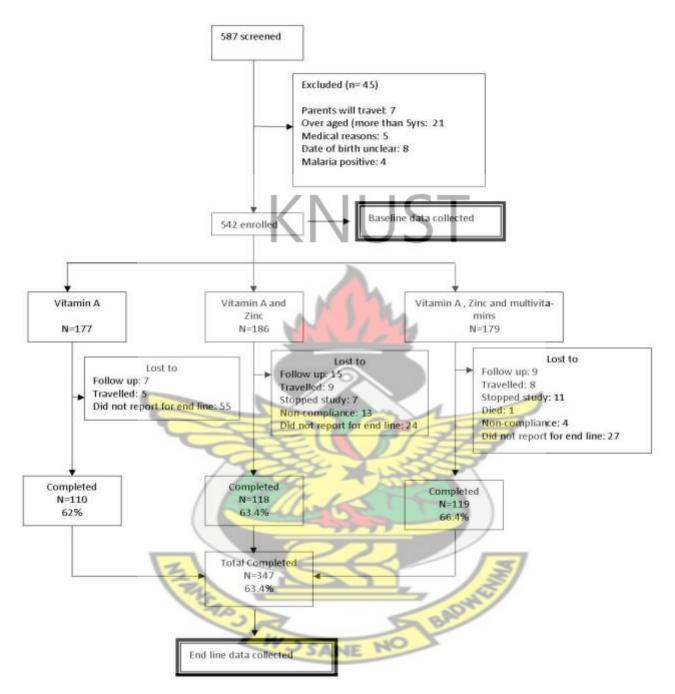


Fig 4.1: The study profile of the intervention from beginning to end of study;

Also another factor that reduced the number of children who completed the study was that fact that the study was not placebo controlled. Those in the vitamin A group felt left out and so when the end of study data was being taken at the community centers they refused to turn up (n=55). The reason we can give for those in the vitamin A & zinc and vitamin A, zinc & multivitamin groups not turning up (n=51) is the fact that the health worker did not meet them in their home to give them the information, they did not hear the public address system announcement, they had other pressing commitment or did not attach sufficient importance to participation. Other mothers (n=19) were not giving the supplements to the children as directed by the health workers and so they were withdrawn from the study.

The proportion of foods consumed which were rich in carbohydrate and protein rich foods were 51.5% and 23.7% respectively while the proportion fruits and vegetables was 24.9% (Table 4.2). All the carbohydrate rich foods are poor sources of vitamin A and zinc. The dietary patterns indicate a low intake of animal protein, zinc and vitamins such as vitamin A, and C.

	Ν		Perce	ent (%)		
Age class of participants						
>1year	75			21.6		
< 1year	272		78	8.5		
Gender of participant	ts					
Male	159	1.1.2	4	45.8		
Female	188		54	54.2		
Marital status of care	givers	0.				
Single	61		1'	17.6		
Married	286	14	82	2.4		
Head of household of Father	89	89.3				
Mother	36	36		10.4		
Other	1			.3		
Monthly income (GHC) of care givers of participants						
Less than 100	62		The second se	19.5		
100-300	238	13		69.4		
300-600		35		9.0		
600-900	A A ALAN AND	6		1.7		
1000-3000	1	11		.3		
Educational background of care givers				,		
12	Women	Men	Women (%)	Men (%)		
primary/elementary	249	194	72.2	55		
secondary	54	86 🥣	15.7	25.3		
post secondary	4	22	1.2	6.5		
Tertiary	5 DAIN	9	1.4	2.6		
None	31	13	9	3.8		
don't know	4 23		0.6	6.8		

Table 4.1: Socio-demographic data on children and care givers who completed the study (n=347)

Meals/snacks eaten by	Number	meals/snacks by population in	Number
population in 24hours	children	24hours	children
	eating the		eating the
	food		food
CARBOHYDRATES		VEGETABLES	
Banku	94	Beans	17
Plain rice	72	Carrot	12
Fufu	56	Nsusuaa	10
Kenkey (Fante /Ga)	51	Cabbage	5
Cooked Plantain	37	Green pepper	3
Cooked yam	31	mushrooms	1
Gari / Eba	23	DAIRY PRODUCTS	
Fried yam	15	Boiled eggs	22
Fried plantain	11	Condensed milk	15
Jollof Rice	11	Evaporated Milk	12
Fried Rice	10	Fried eggs	5
MEATS /FISH /SEA FOOD		FRUITS	
Beef	42	Orange	65
Fish	30	Banana	12
Chicken	3	Water melon	12
Goat meat	2	Avocado Pear	9
SOUPS	E C	Apple	8
Groundnut soup	50	Pawpaw	8
Palm nut soup	41	Pineapple	6
Kontonmire soup	36		
Okro soup	24		
STEWS		DRINKS	
Tomato stew	47	Sweetened drinks Kalyppo	43
Okro stew	44	Minerals	9
Garden egg stew	34	Malt	5
Beans stew/ Beans & oil	17	Fruit Juices	1
BREAKFAST	SANE	PASTRIES	
Koko	49	Biscuits	57
Теа	42	Doughnut/ Bofrot	2
Bread (White /Brown)	37	Meat pie	2
Tom Brown	19	OTHERS	
Kose	17	Formula	12
Hausa koko	11	Breast milk	213
TOTAL MEALS/SNACKS CO	NSUMED		1552

Table 4.2: Various meals/snacks eaten by all children (n=542) based on a 24 hour recall

4.2 Baseline characteristics of study participants who completed the study by intervention groups.

The distribution of the sexes, age groups, the use of mosquito nets and plasmodium infection at baseline according to the intervention groups is shown in table 4.3. The intervention groups were similar in terms of sex distribution (p value = 0.73), age (p value = 0.38) and bed net use (p value =0.4).

	Vit A alone	Vit A plus zinc	Vit A, Zinc & multivitamin	p-value
Variables	n %	n %	n%	
	110 (31.7)	118 (34)	119 (34.3)	
Sex				1
Male	49 (44.5)	52 (44.1)	58 (48.7)	0.731
female	61 (55.5)	66 (55.9)	61 (51.3)	
Age class of	participants	At .	T33	
>1year	23 (30.7)	24 (32.0)	28 (37.3)	0.82
		1 Contraction		
< 1 year	87 (32.0)	94 (34.5)	91 (33.5)	
				_
Use of mosq	uito nets by t	the pa <mark>rticipatin</mark> g	<mark>g child</mark> ren	
Use	69 (62.7)	75 (65.2)	68 (57.6)	0.477
Don't use	41 (37.3)	40 (34.8)	50 (42.4)	
	New New	WJSAN	NO BA	

Table 4.3: baseline characteristics of study participants who completed the study by intervention groups

4.3 Indicators of malaria infection among intervention groups for baseline and end of study as well as during the 5month follow up period

The risk of malaria among children who received vitamin A, zinc & multivitamin during the study period was 62% (RR = 0.62, p= 0.018)) of the risk in children who receive vitamin A alone (Table 4.4a). Also the risk of children who received vitamin A & zinc developing malaria during the study period was 81% (RR = 0.82, p= 0.32) of the risk in children who received vitamin A alone (Table 4.4a). Similarly, The risk of other illness other than malaria among children who received either vitamin A, zinc & multivitamin or vitamin A & zinc during the study period was 77% (RR = 0.77) and 83% (RR = 0.83) respectively (Table 4.4a).

There was no difference among the three groups in terms of positive plasmodium infection during the two cross sectional surveys. The parasite density for baseline was not reported due to errors in slide preparation. At the end of the study, the vitamin A and zinc group had the lowest parasite density (1608 mps/ul) compared to the other groups (see Table 4.3b). Vitamin A group had the highest number of incidences of diarrhoea, fever, rashes, vomiting and other illness (e.g. headache, convulsion etc) while the vitamin A and zinc group had the highest number of children with measles (Fig 4.2).

Groups	Malaria ep	oisodes		
	Cases	No cases	RR(95% Cl)	P-value
Vit A alone [n=110(%)]	39 (35.5%)	71 (64.5%)	1	
Vit A/ zinc [n=118(%)]	34 (28.8%)	84 (71.2%)	0.81(0.55-1.19)	0.3210
Vit A/ zinc /Multivite	25 (64.5%)	94 (79.0%)	0.62 (0.39-0.91)	0.018
[n=119(%)]				
	Illness other	than malaria		
	Cases	No cases	RR(95% Cl)	P-value
Vit A alone [n=110(%)]	54 (50.9%)	56 (50.8%)	1	
Vit A/ zinc [n=118(%)]	48 (40.7%)	70 (59.3%)	0.77 (0.57-1.02)	0.109
Vit A/ zinc /Multivite	45 (37.8%)	74 (62.2%)	0.83(0.62-1.11	0.2310
[n=119(%)]				
	K	2		
	General mon	rbidity (malari	ia and other il <mark>lne</mark> s	s together)
	Cases	No cases	RR(95% Cl)	P-value
Vit A alone [n=110(%)]	72 (65.5%)	38 (34.5%)	1	
Vit A/ zinc [n=118(%)]	62 (52.5%)	56 (47.5%)	0.80(0.65-0.99	0.0594
Vit A/ zinc /Multivite	54 (46.6%)	62 (53.4))	0.71 (0.56-0.90)	0.005
[n=119(%)]	1	-2-L		

Table 4.4a: Comparison of episodes of malaria and other morbidity between vitamin A alone and the other groups during the study period

*RR- Risk ratio of vit A/zinc and vit A or vita A/zinc/multivite and vit A

	Positive malaria rapid test kit ^a result by intervention groups during cross-sectional surveys					
Groups	Baseline	endline	RR((95%Cl)	P-value		
Vit A alone [n=110(%)]	50 (45.5%)	33 (30%)	1			
Vit A/ zinc [n=118(%)]	44 (37.2%)	35 (29.5%)	0.92(0.7-1.2)	0.63		
Vit A/ zinc /Multivite	40 (33.6%)	34 (28.5%)	0.9(0.62-0.18)	0.52		
[n=119(%)]						
	Endline geo	metric mean n	arasite density ^b a	mong		
	0	-	g cross-sectional s	0		
	Mps/ul	9	P-value between			
Vit A alone [n=110(%)]	6620	N.	p =0.139			
Vit A/ zinc [n=118(%)]	536	1 10.				
Vit A/ zinc /Multivite	1608	69				
[n=119(%)]						

Table 4.4b: Comparison of indicators of malaria infection between vitamin A alone group and other groups during cross sectional survey at baseline and end of study

*p-values are the overall group comparison using Pearson-Chi square test for significance (p< 0.05)

G. First Response malaria antigen P.falciparium detection rapid card test for qualitative determination of malaria histidine -rich protein 2 (HRP2) in blood.

b. counting 200 white blood cells and the number expressed on the basis of 8000 WBC per μ l.

*RR- Risk ratio of vit A/zinc and vit A or vita A/zinc/multivite and vit

WJSANE

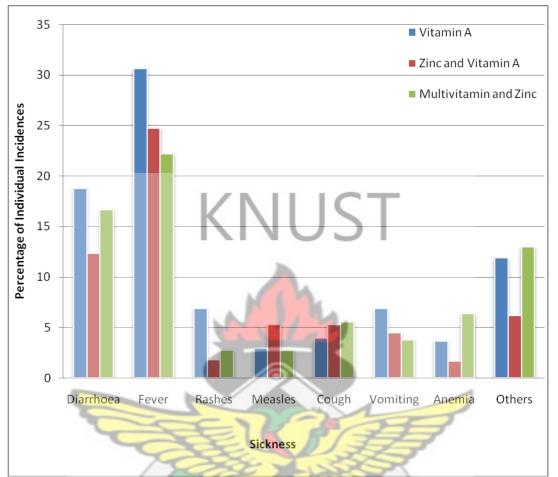


Fig 4.2: Percentages of children who developed diarrhoea, fever, rashes, measles, cough, anemia, vomiting and other illness (e.g. headache, convulsion etc.) among the intervention groups during the five month follow up period.

4.4 Mean days to first infection of illness in the intervention groups during study period Amongst the groups it took those in the multivitamin and Zinc group a longer time (average of 112 days) to get malaria than the others groups; vitamin A (93days) and vitamin A and Zinc (94 days) groups (Table 4.5). The vitamin A and zinc group recorded an average of 106 days to develop any other illness apart from malaria than the other two groups. When the two variables were put together (general illness), the multivitamin and zinc group took a longer time (104 days) as compared to 99 days and 98 days for vitamin A and vitamin A and Zinc groups respectively.

Table 4.5: Mean days to first malaria episode, other morbidity and general illness between intervention groups during the study

Factor	Mean	Range ^C	Standard Dev
- 7767	(days)		
Malaria	93	12161	50.8
Other Morbidity ^a	103	8168	50.6
General Illness ^b	99	8168	50.8
I. Jak	X		
Malaria	94	6167	49.2
Other Morbidity	106	6167	50.8
General Illness	98	6- -16 7	52.9
		3	
Malaria	112	24162	47.5
Other Morbidity	103	9 -167	49.5
General Illness	104	9-167	48.4
	Malaria Other Morbidity ^a General Illness ^b Malaria Other Morbidity General Illness Malaria Other Morbidity	(days)Malaria93Other Morbiditya103General Illnessb99Malaria94Other Morbidity106General Illness98Malaria112Other Morbidity103	(days) Malaria 93 12161 Other Morbidity ^a 103 8168 General Illness ^b 99 8168 Malaria 94 6167 Other Morbidity 106 6167 General Illness 98 6167 Malaria 912 24162 Malaria 112 24162 Other Morbidity 103 9-167

a.

any other illness apart from malaria e.g. diarrhoea, fever, rashes, measles, cough, anemia, vomiting

b.

malaria and other illness together

c. Number of days to first infction in the group and the highest number of days in the group to develop an illness

4.5. Anthropometric indices

The summary of the z-score values and the standard deviation for weight-for-age, height for age, weight for height factor is given in the table 4.6. The anthropometric indices improved (higher z-scores at end of study) across all the three indices (weight for age, length for age, weight for height).

KNUST

Table 4.6: z-score values for weight for age, length for age, weight for height in various intervention groups at baseline and end of study for children who completed the study

4

Treatment	Ba	aseline	Endline		Sig.
	Mean	Stand. Dev	Mean	Stand. Dev	
Weight-for-age					
Vitamin A	-0.38	1.56	-1.22	1.5	0.0000
Zinc and Vitamin A	-0.76	1.51	-1.17	1.36	0.0089
Multivitamin and Zinc	-0.36	1.69	-1.23	1.4	0.0000
Overall	-0.5	1.59	-1.21	1.42	0.0000
X	3	4			
Length/height-for-age	54		000		
Vitamin A	-0.2	1.58	-1.83	1.49	0.0000
Zinc and Vitamin A	-0.07	1.66	-1.53	1.57	0.0000
Multivitamin and Zinc	-0.08	1.72	-1.79	1.35	0.0000
Overall	-0.12	1.65	-1.71	1.48	0.0000
THE	1			12	
Weight-for-height/lengt	th			and the	
Vitamin A	-0.39	1.7	<u>-0.31</u>	1.66	0.6600
Zinc and Vitamin A	-0.91	SAN 1.82	-0.45	1.72	0.7200
Multivitamin and Zinc	-0.54	1.61	-0.36	1.66	0.6600
Overall	-0.62	1.72	-0.38	1.68	0.6800

a. z-score ± Standard deviation

p-values are the overall group comparison using Pearson-Chi square test for significance (p< 0.05)

The summary for the weight-for-age factor is given in the table above for the different treatments. It shows an overall significant difference between the baseline and endline measurements. There is significant difference in all treatments at a level of significance of 0.05 with the Zinc and Vitamin A group registering a relatively extreme mean of -0.76.

The length-for-age factor also shows a significant difference between the baseline and endline overall results. This difference is due to the fact that at a significance level of 0.05, all treatments were significantly different with a common mean of -1.71. The Vitamin A group recorded a high in magnitude mean of -1.83.

The weight-for-height/length factor on the other hand has an overall significance of 0.6800, it implies that there is no significant difference in the mean measurements with the groups (i.e. Vitamin A group, Zinc and Vitamin A group and Multivitamin and Zinc group) by comparing the endline and baseline statistics.

CHAPTER FIVE

DISCUSSION

In this study, there was evidence the risk of malaria infection in children who received vitamin A, zinc & multivitamin was significantly reduced to 62% of the risk of those who received Vitamin A alone (100%). In children who received vitamin A & zinc the risk was 81%, though this decrease was not significant. This means that vitamin A, zinc & multivitamin protected the children better than giving the children vitamin A alone or vitamin A & zinc. It is of interest that the effects of vitamin A, zinc & multivitamin on malaria were not reflected in cross-sectional malaria test kit results, suggesting that zinc primarily affects immunological or pathological processes associated with clinical episodes. However, vitamin A, zinc & multivitamin decreased end of study geometric mean parasite density as compared to supplementing with vitamin A alone

This indicates that there is a synergistic effect of zinc, vitamin A and multivitamins on malaria rates. More vitamin A is stored in the liver when the diet contains vitamin E and zinc than when the diet is deficient in vitamin E and zinc. Hence, concurrent ingestion of several nutrients may result in synergistic, or threshold effects as compared to a single nutrient (Ames, 1969). In this study, it was found that vitamin A, zinc & multivitamin increased the time to first malaria and decreased the episodes of malaria, is very noteworthy. This is because there are a few studies (Ramakrishnan and Huffman, 2001; Barringer *et al.*, 2003; Luabeya *et al.*, 2007) that examine the interaction between vitamin A, zinc, multivitamins and as it relates to morbidity.

Barringer *et al.*, (2003), reports in a study in North Caroline that patients taking placebo pill reported more infections and more days missed from work due to infection than did

patients taking the vitamin and mineral pill. Subsequently, a study in Tanzania suggests a protective effect of multivitamin supplementation on malaria. In that study (Villamor *et al.*, 2007), daily multivitamin supplementation of HIV-infected women during pregnancy and the lactation period decreased the incidence of malaria outcomes among their children during the first 2 years of life. A combination of vitamins B-complex, C, and E significantly decreased the incidence of clinical malaria by 71%; a protective effect was also suggested on high parasitemia, although it did not reach statistical significance. The same can be said of this current study, since the parasitemia levels were lower in the zinc and multivitamin group than the vitamin A group, but it was not significant (p=0.139). Albeit, in another study in children aged 6–60 months there was no evidence that preventive zinc supplementation, alone or with multinutrients, reduced rates of febrile attacks of malaria.

Furthermore, there was no evidence that multi-nutrients influenced malaria rates and multi-nutrient supplementation may have increased the incidence of first malaria episodes by approximately 30% (Veenemans *et al.*, 2011). The results from Veenemans and colleagues could have been exacerbative because the multinutrients they administered included iron. Iron has been speculated to enhanced parasite proliferation specifically in children with iron deficiency (Oppenheimer *et al.*, 1986). This is because iron absorption in iron deficient children is more efficient and thus may lead to transient production of non-transferrin bound iron (Hutchinson *et al.*, 2004; Baron *et al.*, 2008).

This may act as a nutritional source and favour the proliferation of *Plasmodium* parasites (WHO, 2007). A randomized trial among children aged 1–35 months in Pemba, Tanzania showed that daily supplementation with iron (12.5 mg as ferrous sulphate) and folic acid

increased rates of hospital admission and all-cause mortality (combined endpoint) by 12% (Sazawal *et al.*, 2006). This report reinforced earlier concerns that iron interventions can increase the incidence of malaria and infectious disease, even in individuals without iron overload (Oppenheimer 2001, 2002).

The multivitamin used in our study however, did not include iron hence enhancing the protective effects of the multivitamin. Nevertheless, it is not possible to determine to what extent the apparent benefits of multivitamins (B_1 , B_2 , B_6 , B_{12} , C, D and E) could have contributed to the actions of individual nutrients. In our study; the potential mechanisms that mediate the vitamins' effects on clinical P. *falciparum* malaria are speculative.

As mentioned, despite the lowering of P. *falciparum* episodes in children given vitamin A, zinc & multivitamins, consistent effects were not observed in cross-sectional malaria test kit results. Indeed, the percentage decrease in P. *falciparum* prevalence at the end-of-study survey was higher in the vitamin A group compared to the vitamin A & zinc /multivitamins group. It is, however, noteworthy that differences in parasite density did not follow the same pattern. One possibility for this observation may be that there may have been greater rates of clinic attendance due to malaria or other infections in the vitamin A group.

This could have led to higher consumption of anti-malarial drugs or immune boosters, possibly resulting in the observed differences in cross-sectional prevalence. However, the frequency of their infection could have contributed to their high geometric mean parasite densities. Alternatively, given that zinc is a known antioxidant and a potent inhibitor of

apoptosis (Brown *et al.*, 2009c), children given zinc may better endure the immunopathologies associated with a P. *falciparum* episode and appear less ill to their parents, resulting in fewer clinic visits.

Considering the effect of the combination of vitamin A and zinc on malaria, it has been earlier proven by a study in Bangladesh (Rahman *et al.*, 2001b) that zinc helps improves vitamin A status. In that study, although >90% of the children had received a vitamin A capsule (200,000 IU) as part of the National (India) Vitamin A Week campaign 4–6 mo before enrollment, 38% of these children were still vitamin A deficient. After receiving another large dose of vitamin A (200,000 IU) during the study, a significant number of children in all groups except the Zinc and vitamin A group remained vitamin A deficient. Thus, vitamin A status improved significantly in children who received both zinc and vitamin A, but not in those who received vitamin A alone.

This can be based on well documented evidence that zinc deficiency decreases plasma vitamin A levels, and zinc deficiency impair hepatic Retinol Binding Protein synthesis (Smith *et al.*, 1976). This protein helps in the hepatic mobilization of vitamin A. Zinc is also for essential for the production of immune proteins like immunoglobin G (IgG), interferon- γ (IFN- γ), and tumour necrosis factor α (TNF- α) implicated to help in resistance to malaria (Fischer-Walker and Black, 2004).

Based on these findings and the role of vitamin A in reducing childhood morbidity and mortality, Zeba et al., (2008) studied the effect of a combination of vitamin A and Zinc on malaria morbidity.

This was from the backdrop that vitamin A and zinc independently ((Shankar *et al.*, 1999a; Shankar *et al.*, 2000) reduced malaria rates by 30% and 38% respectively. The findings of Zeba and others were consistent with our findings since in their work, the combination reduced plasmodium infection by 38%, although in our case the reduction was not statistically significant (p=0.052).

The mean parasite densities counted on the blood films between groups showed that the vitamin A group, had a high mean parasite density of 6620[280-12,960]parasites/µL at end of study .The mean parasite density was lowest in the vitamin A & zinc group; 536 [240-440]parasites/µL at end of study. This is consistent with the vitamin A and zinc trial in Burkina Faso (Zeba et al., 2008). In that study, the combination of vitamin A and zinc reduced the parasitemia from 1589 [1026-2459] to 1011 [647-1579], and there was a significant increase in the placebo group from 1444 [923–2259] to 1945 [1155–3275] (p = 0.023). In the current study the baseline parasitemia levels could not be presented due to errors at the preparation of slides. The slides could not be prepared again because blood samples were not collected for storage. In spite of this the level of parasitemia in the vitamin A and zinc group is worth commenting on and can be said to be comparable to the previous study in Burkina Faso (Zeba et al., 2008). Lastly, a trial in Ghana reported that addition of zinc to the routine intervention package of malaria chemoprophylaxis, iron and folic acid for pregnant women in Ghana was associated with reduced densities of malaria parasites (Saaka et al., 2009).

Similarly in our case, there was a reduction in parasite densities in the groups which took the additional nutrients in addition to vitamin A. Overall, the mean number of days (112 days) to develop the first malaria episode and other illness including malaria (104 days) was longer in the vitamin A, zinc & multivitamin group than in the other groups. Zinc appears to have an effect beyond an impact on malaria alone as many studies have shown that zinc reduces morbidity due to numerous infectious diseases (Jacob et al., 1978; Moran and Lewis, 1985; Fraker et al., 1987; Sazawal et al., 1998; Dutta et al., 2000). This is shown in the vitamin A and zinc group having a higher mean number of days [106] days] to develop other illness as compared to the other groups. The incidence of confirmed malaria was lowest (25 cases) in the multivitamin group with the vitamin A group having the highest number (39 cases) of malaria incidence. Reports from a study in South Africa (Chhagan et al., 2009) indicates that supplementing HIV-infected and noninfected children with multivitamins resulted in an increase in haemoglobin levels, although the haemoglobin levels of our population was not checked, the multivitamins may have contributed to the children having an improved immune status or the mothers took good care of their children.

Across groups the vitamin A, multivitamin and zinc groups recorded the highest number of sickness-free children either from malaria or from other illness (p=0.015). This finding is in contrast to the finding of a study in Tanzania (Veenemans *et al.*, 2011) which found no evidence that supplementing with multivitamins and zinc reduced malaria incidences although multiple micronutrient supplementation has been associated with improved immune function and delayed disease progression in HIV/AIDS patients, but there is a recommendation for more research into the area (Buys *et al.*, 2002). The number of fever episodes was significantly lower in children who received additional supplements in addition to vitamin A. This confirms the findings of a Papua New Guinea study in which there was no effect of vitamin A alone on the number of fever episodes (Shankar *et al.*, 1999b). It has been demonstrated that free retinol has a pharmacological effect against malaria parasites (Davis *et al.*, 1994). Nevertheless the very low concentrations of free retinol in the serum make its hypothetical effect inconclusive given the lack of association between serum retinol concentration and malaria morbidity found in Papua New Guinea (Shankar *et al.*, 1999a).

The serum retinol concentrations were not determined in this study, but the levels ingested by the children (single dose of 200000IU) for the five month period may have been inadequate to protect them from morbidity. An earlier study in Ghana (Binka *et al.*, 1995) found supplementing children with single dose of 200000IU of vitamin A for six months to be non-protective. Also the number of episodes of other illness (Fig 12) was higher in the vitamin A group except for the incidences of cough and measles which were more prevalent in the zinc and vitamin A group. Comparably Women who received daily pre natal multiple vitamins had significantly higher CD3+, CD4+, and CD8+ counts, as well as improved infant outcomes compared with the control group who received iron-folate supplements that is the standard of care (Fawzi *et al.*, 1998). This means that the multivitamins improved the immune status of the children.

The 24-hour survey suggested that the children were receiving low amounts of zinc in their diet since zinc rich foods like oysters and mollucks were absent from their diet. This can be one reason why the children responded well to the supplementation.

Although the weights of food consumed were not recorded, protein rich foods and fruits and vegetables did not form a high percentage of the foods consumed. Protein rich foods and fruits and vegetables are an important source of micronutrients. This suggests that it is unlikely that children in this study were taking high levels of these micronutrients and any effects seen cannot be attributable to a high intake by a specific group.

It is worth commenting that there was a high dropout rate and one major factor was parents concern about length of time their children consumed the supplements. A larger sample size could have improved the power of the study and allowed the detection of smaller effects of vitamin A, zinc & multivitamin supplementation on malaria episodes.

CHAPTER SIX

6.0 CONCLUSION

The prevalence of malaria in the study population was significantly lower (p=0.006) at end of study (29.4%) than at baseline (36.6%). The incidence of malaria was significantly lower (0.018) in the group supplemented with Vitamin A, Zinc and multivitamin group (21%, RR= 0.62) compared to the group that received Vitamin A alone (35.5%). General morbidity was lowest in the Vitamin A, Zinc & multivitamin group (46.6%) and highest in the Vitamin A alone group (65.5%). The 24-hour recall suggested that the children were receiving low amounts of protein rich foods in their diet.

6.1. LIMITATIONS

In this study, we did not determine the levels of the various vitamins and minerals in the children before and after the study. This makes it uncertain whether the benefits of the vitamin and mineral supplement were due to its effects on nutritional status.

6.2. RECOMMENDATIONS

A placebo controlled trial would be recommended for a larger study with more participants to give more statistical power to the study as well as reduce the dropout rate. Furthermore, immunological assays could have given us a better understanding of what was going on at the cellular level before and after the study. A more sustainable foodbased approach such as fortification, improving dietary quality, and education to improve micronutrient intakes of young children must be also pursued.

REFERENCES

- Akompong, T., Ghori, N. and Haldar, K. (2000a). In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. *Antimicrob. Agents Chemother* 44, 88-96.
- Akompong, T., Ghori ,N. and Haldar, K. (2000b). In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents. *Chemother* 44, 88-96.283.
- Allard, J.P., Aghdassi, E. and Chau, J. (1998). Effects of vitamin E and C supplementation on oxidative stress and viral load in HIV-infected subjects. *AIDS* 12, 1653-1659.
- Ames, S.R. (1969). Factors affecting absorption, transport, and storage of vitamin A. Am. J. Clin. Nutr. 22, 934-935.
- Banajeh, S.M. (2003). Is 12-monthly vitamin A supplementation of preschool children effective? An observational study of mortality rates for severe dehydrating diarrhea in Yemen. Afr J Clin Nutr 16, 137-142.
- Baron, J., Ben-David, G. and Hallak, M. (2008). Changes in non-transferrin-bound iron (NTBI) in pregnant women on iron supplements. *Eur. J. Obstet. Gynecol. Reprod. Biol. Chem.* 140, 281-282.
- Barringer, T.A., Kirk, J.K., Santaniello, A.C., Foley, K.L. and Michielutte, R. (2003), Effect of a multivitamin and mineral supplement on infection and quality of life. *Ann. Intern. Med.* 138, 365-371.
- Beaton, G.H., Martorell, R. and Aronson, K.J. (1993). *Effectiveness of vitamin A supplementation in the control of young child mortality in developing countries. Nutrition policy discussion paper No. 13 ACC/SCN.* Geneva.
- Binka, F.N., Ross, D. and Morris, S. (1995). Vitamin A supplementation and childhood malaria in northern Ghana. *Am J Clin Nutr* 61, 853-859.
- Black, R.E., Allen, L.H. and Bhutta, Z.A., (2008). Maternal and child undernutrition: global and regional exposures and health consequences. *Lancet* 371, 243-260.
- Bobat, R., Coovadia, H. and Stephen, C. (2005). Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebocontrolled trial. *Lancet* 366, 1862-1867.
- Brown, K.H., Baker, S.K. and Committee, I.S. (2009c). Galvanizing action: conclusions and next steps for mainstreaming zinc interventions in public health programs. *Food Nutr. Bull.* 30(supplement), S179-184.
- Brown, K.H., Hambidge, K.M., Ranum, P. and Group. Z.F.W. (2010). Zinc fortification of cereal flours: current recommendations and research needs. *Food Nutr. Bul.l* 31, S62-74.
- Brown, K.H. and Wuehler, S.E. (2000). Zinc and human health: results of recent trials and implications for program interventions and research. Ottawa, Canada: The Micronutrient Initiative, .
- Buys, H., Hendricks, M., Eley, B. and Hussey, G. (2002). The role of nutrition and micronutrients in paediatric HIV infection. S. Afr. Dis. J. 57, 454-456.
- Chhagan, M.K., Van den Broeck, J., Luabeya, K.K., Mpontshane, N., Tucker, K.L. and Bennish, M.L. (2009). Effect of micronutrient supplementation on diarrhoeal disease among stunted children in rural South Africa. *Eur. J. Clin. Nutr.* 63, 850-857.
- Christian, P. and West, K.P.J. (1998). Interactions between zinc and vitamin A: an update. *Am. J. Clin. Nutr.* 68, 43541S43514.

- Cox, S.E., Staalsoe, T., Arthur, P., Bulmer J.N., Tagbor, H., Hviid, L., Frost, C., Riley, E.M. and Kirkwood, B.R. (2005). Maternal vitamin A supplementation and immunity to malaria in pregnancy in Ghanaian primigravids. *Trop. Med. Int. Health.* 10, 1286-1297.
- Cui L., Blanchard R.K. and Cousins R.J. (2003) The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin 1alpha is rapidly reversed by zinc repletion. *J. Nutr.* 133, 51-56.
- Davis, T.M.E., Binh,T.Q., Danh, P.T., Dyer, J.R., John, A.S., P. G.-W. (1994). Serum vitamin A and E concen&ations in acute- falcl(p&un malaria: modulators or markers of severity? *Clinical Science* 87, 505-511.
- Davis, T.M.E., Skinner-Adam, T.S and Beilby, J. (1998). In vitro growth inhibition of Plasmodium falciparum by retinol at concentrations present in normal human serum. *Acta. Trop.* 69, 111-119.
- De, Onis M., Yip, R. and Mei, Z. (1997). The development of MUAC-for-age reference data recommended by WHO Expert Committee. *Bull. World Hlth. Organ.* 75, 11-18.
- Dijkhuizen, M.A., Wieringa, F.T., West, C.E. and Muhilal. (2004). Zinc plus β-carotene supplementation of pregnant women is superior to β-carotene supplementation alone in improving vitamin A status in both mothers and infants. *Am. J. Clin. Nutr.* 80, 1299-1307.
- Dutta, P., Mitra, U. and Niyogi, S.K. (2000). Impact of zinc supplementation in malnourished children with acute watery diarrhoea. *J. Trop. Pediatr.* 46, 259-263.
- Erickson, K.L., Medina, E.A. and Hubbard, N.E. (2000). Micronutrients and innate immunity. J. *Infect. Dis* 182, 5-10.
- FAO/WHO., (2001), Human vitamin and mineral requirements. Report of a joint FAO/WHO expert consultation Bangkok, Thailand. Food and Agriculture Organization UN/World Health Organization. Rome, Italy: Food and Agriculture Organization of the UN.
- Fawzi, W.W., Chameres, T.C., Herrera, M.G. and Mosteller, F. (1993). Vitamin A supplementation and child mortality. *JAMA* 269, 898-903.
- Fawzi, W.W., Msamanga G.I. and Spiegelman D. (1998). Randomized trial of effects of vitamin supplements on pregnancy outcomes and T cell counts in HIV- 1-infected women in Tanzania. *Lancet* 351, 1477-1482.
- Fischer-Walker ,C. and Black, R.E. (2004), Zinc and the risk for infectious disease. Annu. Rev. Nutr. 24, 255-275.
- Food and Nutrition Board., (2001). Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy. Washington, DC: Institute of Medicine.
- Fraker, P.J., Jardieu P. and Cook, J. (1987). Zinc deficiency and immune function. Arch. Dermatol. 123, 1699-1701.
- Fraker, P.J., King, L.E., Laakko, T. and Vollmer, T.L. (2000). The dynamic link between the integrity of the immune system and zinc status. *J. Nutr* 130, 1399S-1406S.
- Ghana Statistical Service and Ghana Health Service.(2009) Ghana health and demographic survey, 2008. Calverton MEASURE DHS, Macro international ltd .
- Gibson ,R.S. (1990a). Principles of nutritional assessment. New York: Oxford University Press.
- Gibson, R.S. (1990b). Principles of nutritional assessment. New York: Oxford University Press.
- Glasziou, P.P. and Mackerras, D.E.M. (1993). Vitamin A supplementation in infectious diseases: a meta-analysis. *BMJ* 306, :366-370.

- Good, M.F., Kaslow, D.C. and Miller, L.H. (1998). Pathways and strategies for developing a malaria blood-stage vaccine. *Ann. Rev. Immuno.l* 16, :57-87.
- Hall, J.N, Moore S, Harper S. B, Lynch J. W (2009). Global Variability in fruit and vegetable consuption. Am. J Prev Med 36(5): 402 409
- Hamzah, J., Skinner-Adams, T.S. and Davis, T.M. (2003). In vitro antimalarial activity of retinoids and the influence of selective retinoic acid receptor antagonists. *Acta. Trop.* 87, 345-353.
- Hutchinson, C., Al-Ashgar, W. and Liu, D. (2004). Oral ferrous sulphate leads to a marked increase in pro-oxidant nontransferrin-bound iron. *Eur. J. Clin. Invest.* 34, 782-784.
- Jacob, R.A., Sandstead, H.H., Solomons N.W., Rieger C. and Rothberg, R. (1978). Zinc status and vitamin A transport in cystic fibrosis. *Am. J. Clin.Nutr.* 31, 638-644.
- Keen, C.L. and Gershwin, M.E. (1990). Zinc deficiency and immune function. Annu. Rev. Nutr. 10, 415-431.
- Kordas, K., Siegel, E.H. and Olney, D.K. (2009). The effects of iron and/or zinc supplementation on maternal reports of sleep in infants from Nepal and Zanzibar. J. Dev. Behav. Pediatr. 30, 131-139.
- Krishna, S., Taylor, A.M. and Supanaranond, W. (1999). Thiamine deficiency and malaria in adults from southeast Asia. *Lancet* 353, 546-549.
- Lartey, A., Manu, A., Brown, K. and Dewey, K. (2000). Predictors of micronutrient status among 6- to 12-monthold breast-fed Ghanaian infants. J. Nutr. 130(2), :199-207.
- Long, K.Z. and Santos, J.I. (1999). Vitamins and the regulation of the immune response. *Ped. Infect. Dis. J.*, 283-290.
- Lee, R.D. and Nieman, D.C. (1996). *Nutritional Assessment*, 2 ed. St. Louis MI: Library of Congress Cataloging in Publication Data, Mosby
- Luabeya, K.K., Mpontshane, N. and Mackay, M. (2007). Zinc or multiple micronutrient supplementation to reduce diarrhea and respiratory disease in South African children: a randomized controlled trial. *PLoS ONE* 2, e541.
- Maggini, S., Wintergerst, E.S., Beveridge, S. and Hornig, D.H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. *Br. J. Nutr.* 98, Suppl 1:S29-35.
- Mark, J. (1975). A Guide to The Vitamins. Their Role in Health and Disease. Lancaster.
- Mayo-Wilson, E., Imdad, A., Herzer, K., Yakoob, M.Y. and Bhutta, Z.A. (2011). Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. *BMJ* 343, d5094.
- McGraw-Hill.(2001) Foodwise Diet analysis program.
- McKee, R.W. and Geiman, Q.M. (1946). Studies on malarial parasites. V. Effects of ascorbic acid on malaria (Plasmodium knowlesi) in monkeys. *Proc. Soc. Exp. Biol. Med.* 63, 313-315.
- McLaren, D. and Burman, D. (1982). *Textbook of Paediatric Nutrition*, 2 ed. New York: Churchill Livingstone.
- Metzger, A., Mukasa, G., Shankar, A.H., Ndeezi, G., Melikian, G. and Semba, R.D. (2001) Antioxidant status and acute malaria in children in Kampala, Uganda. *Am. J. Trop. Med. Hyg.* Aug ,65(2), 115-119.
- Ministry of Health (MOH).(2010). Records of morbidity rates in the Ejisu-Juaben District.
- Moran, J.R. and Lewis, J.C. (1985). The effects of zinc deficiency on intestinal permeability: an ultrastructural study. *Pediatr. Re.s* 19, 968-973.

- Muller, O., Becher, H., van Zweeden, A.B., Ye, Y., Diallo, D.A., Konate, A.T., Gbangou A., Kouyate ,B. and Garenne, M. (2001). Effect of zinc supplementation on malaria and other causes of morbidity in west African children: randomised double blind placebo controlled trial. *BMJ* Jun 30;322(7302), 1567.
- Olney, D.K., Pollitt, E. and Kariger, P.K. (2006). Combined iron and folic acid supplementation with or without zinc reduces time to walking unassisted among Zanzibari infants 5- to 11-mo old. *J. Nutr.* 136, 2427-2434.
- Onis, de M. and Blössner, M. (2009). WHO Global Database on Child Growth and Malnutrition, Nutrition Program Office World Health Organization. Geneva.
- Oppenheimer, S.J., Gibson, F.D. and Macfarlane, S.B. (1986). Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. *Trans. R. Soc. Trop. Med. Hyg.* 80, 603-612.
- Pelletier, D.L. and Frongillo, E.A. (2003). Changes in child survival are strongly associated with changes in malnutrition in developing countries. *J. Nutr.* 133, 107-109.
- Powers, H.J. (1998). Effects of riboflavin deficiency on the handling of iron. In Micronutrient interactions.Impact on child health and nutrition. Washington, DC: International Life Sciences Institute.
- Rahman, M.M., Vermund, S.H., Wahed, M.A., Fuchs, G.J., Baqui, A.H. and Alvarez, J.O. (2001a). Simultaneous zinc and vitamin A supplementation in Bangladeshi children: A randomized double blind controlled trial. *Br. Med. J.* 323, 314-318.
- Rahman, M.M., Wahed, M.A., Fuchs, G.J., Baqui, A.H. and Alvarez ,J.O. (2001b). Synergistic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. *Am. J. Clin. Nutr.* (in press).
- Rall, L.C. and Meydani, S.N. (1993). Vitamin B6 and immune competence. Nutr. Rev. 51, 217-225.
- Ramakrishnan, U. and Huffman, S. (2001). Multiple micronutrient malnutrition: What can be done? In Nutrition and Health in Developing Countries, pp. 365-391. Totowa: Humana.
- Ronaghy, H., Spivey, Fox, M.R. and Garn, S.M. (1969). Controlled zinc supplementation for malnourished school boys: a pilot experiment. *Am. J. Clin. Nutr.* 22, 1279-1289.
- Ronaghy, H.A., Reinhold, J.G., Mahloudji, M., Ghavami, P., Fox, M.R. and Halsted, J.A. (1974). Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. *Am. J. Clin. Nutr.* 27, 112-121.
- Roos, A., Hegsted, D.M. and Stare, F.J. (1946). Nutritional studies with the duck. IV. The effect of vitamin deficiencies on the course of P. lophurae infection in the duck and the chick. *J. Nutr.* 32, 473-448.
- Samba, D.C., Basco, L.K., Bleiberg-Daniel, F., Lemmonier, D. and Le Bras ,J. (1992). Absence of effect of retinol on the in vitro development of Plasmodium falciparum. *Int. J. Vit. Nutr. Res.* 62, 99-100.
- Sazawal, S., Black, R., Jalla, S., Mazumdar, S., Sinha, A. and Bhan, M.K. (1998). Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: a double-blind controlled trial. *Pediatrics* 102, 1-5.
- Sazawal, S., Black, R.E. and Ramsan, M. (2006). Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool Introduction 27 children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. *Lancet* 367, 133-143.

- Sazawal, S., Malik, P., Jalla, S., Krebs, N., Bhan, M. and Black, R.E. (2004). Zinc supplementation for four months does not affect plasma copper concentration in infants. *Acta. Paediatr.* 93, 599-602.
- Serghides, L. and Kain, K.C. (2002). Mechanism of protection induced by vitamin A in falciparum malaria. *Lancet* 359, (9315):1404-1406.
- Shankar, A.H. (2000). Nutritional modulation of malaria morbidity and mortality. J. Infec.t Dis. 182, (suppl): S37-53.
- Shankar, A.H., Genton, B., Baisor, M., Paino J., Tamja, S., Adiguma, T., Wu, L., Rare, L., Bannon, D., Tielsch, J.M., West, K.P.J. and Alpers, M.P. (2000). The influence of zinc supplementation on morbidity due to Plasmodium falciparum: a randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg.62, 663-669.
- Shankar, A.H., Genton, B. and Semba, R.D. (1999a). Effect of vitamin A supplementation on morbidity due to Plasmodium falciparum in young children in Papua New Guinea: a randomised trial. *Lancet* 354, 203-209.
- Shankar, A.H., Genton, B., Semba, R.D., Baisor, M. and Paino, J. (1999b). Effect of vitamin A supplementation on morbidity due to Plasmodium falciparum in young children in Papua New Guinea: a randomized trial. *Lancet* 354, 203-209.
- Smith, J.C.J., Brown, E.D., McDaniel, E.G. and Chan, W. (1976). Alterations in vitamin A metabolism during zinc deficiency and food and growth restriction. J. Nutr. 106, 569-574.
- Smith, J.C.J., McDaniel, E.G., Fan F.F. and Halsted J.A. (1973) Zinc: a trace element essential in vitamin A metabolism. *Science* 181, 9545.
- Snow, R.W., Omumbo, J.A. and Lowe, B. (1997). Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. *Lancet* 349, 1650-1654.
- Solomons, N.W. (2006). Vitamin A. In Present knowledge in nutrition, pp. 157-183 [B.A. Bowman and R.M. Russell, editors]. Washington, DC: ILSI: International Life Sciences Institute.
- Stephenson, C.B. (2001). Vitamin A, infection, and immune function. Annu. Rev. Nutr. Rev. 21, 167-192.
- Tonascia, J. (1993). Meta-analysis of published community trials: impact of vitamin A on mortality. In: Bellagio meeting on vitamin A deficiency and childhood mortality. Proceedings of Public Health Significance of Vitamin A Deficiency and Its Control., pp. 49–51. New York: Helen Keller International.
- Trape, J.F. (1985). Rapid evaluation of malaria parasite density and standardization of thick smear examination for epidemio logical investigations. *Trans. R. Soc. Trop. Med. Hyg.* 79(2), 181-184.
- Veenemans, J.;Milligan, P., Prentice, A.M., Schouten, L.R.A. and Inja, N. (2011). Effect of Supplementation with Zinc and Other Micronutrients on Malaria in Tanzanian Children A Randomised Trial. *PLoS Med* 8, 1001125.
- Velecha, N., Eapen, A., Devi, C., Usha, Ravindran, j., Aggarwal, A. and Subbaroa, S.K. (2002). field evaluation of the ICT malaria P.f/ P.v immunochromatic test in india. *Annals of tropical medicine and parasitology* 96.
- Villamor, E., Msamanga, G., Saathoff, E., Fataki, M., Manji, K. and Fawzi, W.W. (2007). Effects Of Maternal Vitamin Supplements On Malaria In Children Born To Hiv-Infected Women. Am. J. Trop. Med. Hyg., 76, 1066-1071.

- Walker, C.L., Bhutta, Z.A., Bhandari, N., Teka, T., Shahid, F., Taneja, S. and Black, R.E. (2007). Zinc during and in convalescence from diarrhea has no demonstrable effect on subsequent morbidity and anthropometric status among infants < 6 mo of age. Am. J. Clin. Nutr. Rev. 85, 887-894.</p>
- WHO Anthro software. Geneva ,Switzerland: Department of Nutrition.
- WHO. (2007). Conclusions and recommendations of the WHO consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. In *Food Nutr. Bull.*, pp. S621-S627.
- WHO, (2011) Guideline: use of multiple micronutrient powders for homen fortification of foods consumed by infants and children 6-23 months of age. Geneva, Switzerland: World Health Organization.
- Williams, T.N., Maitland, K., Bennett, S., Ganczakowski, M., Peto, E., Newbold, C., Bowden, D.K., Weatherall, D.J. and Clegg, X.X. (1996). High incidence of malaria in athalassaemic children. *Nature Genet* 383, 522-525.
- Wrenger, C., Eschbach, M.L., Muller, I.B., Laun, N.P., Begley, T.P. and Walter, R.D. (2006). Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5- hydroxymethyl-2-methylpyrimidine. *Biol. Chem.* Jan; 387(1), 41-51.
- Zeba, A.N., Sorgho, H., Rouamba, N., Zongo -Rouamba, J., Guiguemde, R.T., Hamer, T.H., Mokhtar, N. and Ouedraogo, B.J. (2008). Major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children in Burkina Faso: a randomized double blind trial. *Nutr. J.* 7, 1186/1475-2891.
- Zlotkin, S., Arthur, P., Schauer, C., Yeboah, Antwi, K., Yeung, G. and Piekarz, A. (2003). Homefortification with iron and zinc sprinkles or iron sprinkles alone successfully treats anemia in infants and young childre. *Nutr.* 133, 1075-1080.

APPENDICES

APPENDIX I- SUPPLEMENTS USED IN THE VARIOUS GROUPS AND THEIR NUTRIENT COMPOSITION

Table 1.1: intervention groups and their doses of the various supplements given to them.

Group 1	A single dose of vitamin A (200,000 IU or (60000µg)- control
Group 2	A single dose of vitamin A (200,000 IU or (60000µg) followed by daily 10mg of elemental zinc
Group 3	A single dose of vitamin A (200,000 IU or (60000µg and Daily doses of a 1-5ml(per age) of multivitamin (with vitamin A) supplement and daily doses of 10mg of elemental zinc

Table 1.2: nutrient composition of the various supplements, the RDA for age group used

	Quantity	RDA (6months-8yrs)
	TORY J.	22
multivitamin syrup		1000
Vitamin A	300ug(1000 IU)	400* µg(1333 IU)
Vitamin B1	1.07mg	0.6 -2mg
Vitamin B2	0.4mg	0.2-8mg
Vitamin B3	8mg	2-8mg
Vitamin B6	0.4mg	0.1-0.6mg
Vitamin B12	1mg	0.4-1.2mg
Vitamin C	50mg	40-25 mg
Vitamin D	10ug	5ug
Vitamin E	5mg (7 IU)	4-7mg
Others		
Zinc tablets	10mg of zinc sulphate monohydrate and Sweet orange powder	2-10 mg
Vitamin A capsules	200,000 IU for six months	

APPENDIX II - PARTICIPANT INFORMATION SHEET

Title of research: The Relationship between Vitamin A, Zinc and Multivitamin Supplementation And Morbidity Due To Malaria

Name(s) and affiliation(s) of researcher(s) : Wilhelmina Annie Mensah¹(Bsc),Patricia Brown ¹(PhD.), Harry Tagbor ²(MB CHB, DrPH), Adabie Appiah(MB CHB)³, Karen Duca¹(PhD) ,Ibok Oduro¹ (PhD), 1.Department of Biochemistry and Biotechnology, KNUST- Kumasi , 2. School of Medical Sciences ,KNUST- Kumasi, 3.Komfo Anokye Teaching Hospital-Kumasi

Purpose of Research: The purpose of this research is to find out if the intake of vitamin A (already received) and Zinc (essential food supplement like vitamin A) or multivitamin and mineral syrup by children (6months-5yrs) can protect them from getting malaria and **not to test a new drug or product.** Your child has been chosen to take part because she/ he received Vitamin A during the national supplementation.

Procedure of the Research: If you agree for your child to participate, you will then be invited to the community center to help us fill a simple questionnaire (your child's food intake and socioeconomic status, medicines she/he is taking) **on a set date.** We will then take measurements of your child: Age, weight, height, circumference of the middle of upper arm, thickness of their skin with tapes and finger prick blood draw for malaria testing. If he/she is found to be positive she/he will be treated with the standard malaria treatment (Arthemeter/lumefantrine or Artesunate/amodiaquine). After that he /she will be put in a group to receive either zinc (important food substance) daily or multivitamin syrup (multiple food substances) daily or neither of the two **for five months**. After that, the body measurements and testing will be done again to find the effect of the zinc or multivitamin syrup on how they get malaria.

Duration of study: Your child will be in the study for 5 months and during this time whenever your child shows signs of sickness, we have to be called to have him/her tested for malaria and if it is positive your child will be treated.

Cost: You are NOT required to pay anything to participate in this study

Compensation: your child will be given snack during sample taking

Risks: Apart from discomfort during finger pricking all other procedures are routine. If allergic reactions to supplements/ drugs develop your child will be taken out of the study **Bonefit**s

- Benefits
 - Children who will be found to be positive for malaria at the start of study and during the study will be treated with the standard malaria treatment at the cost of study team
 - The results of the measurement and laboratory test will be given to the parents. The measurements will also tell if your child is growing well or not.
 - Since vitamin A, Zinc, multivitamin and mineral supplement protects the body against night blindness and other common infections like cough and diarrhoea, subjects will benefit health wise.

• The results of the study will help increase knowledge of the role nutrition plays in the development of malaria. The study has the potential to provide a means to reduce susceptibility to malaria

Confidentiality: All information obtained from your child will be coded and this will ensure confidentiality of any information obtained from your child. Values obtained from the analysis will be documented and the samples disposed off. As part of our responsibility to conduct the research properly, the ethics committee may access to these records and give an approval.

Voluntariness: You are in no way obliged to let your child participate in this research and you can stop at any time. Your participation is entirely by your own volition.

Alternatives to participant: If you choose not to let your child participate, this will not affect you in any way.

Withdrawal from research: You can also choose to withdraw your child from the research at any time within the duration of the study. However, please note that some of the information that that might have been already obtained about your child may have been modified or used for publications. This information cannot be removed anymore. Also the researchers promise to make the effort to comply with your wishes as much as practicable.

Contact: if you have any questions concerning this study, please do not hesitate to contact Mina -0272884596, Michael- 0244026352 or William-0243740404

If you have any concern about the conduct of this study (your welfare or your rights) as a research participant, you may contact:

The Chairman

Committee on Human Research and Publications Ethics Kumasi

Tel: 03220 63248 and 020 5453785

APPENDIX III -PARENTAL CONSENT -For Child's Participation

Statement of person obtaining informed consent:

I have fully explained this research to the parent(s) of

______ (name of child) And have given sufficient information, including risks and benefits, to make an informed decision. NAME: ______ (name of personnel)

SIGNATURE / THUMPRINT

Statement of parent giving the consent:

I have read the description of the research or have had it translated into languages I understand. I have also talked it over with the interviewer to my satisfaction. I understand that my child's participation is voluntary. I know enough about the purpose, methods, risks, and benefits of the research study to judge that I want my child to take part in it. I understand that my child may freely stop being part of this study at any time. I have received a copy of this consent form and additional information sheet for myself.

DATE:

(Note: Information given is very confidential)

Date: _____ Guardian Signature

Guardian Name: ____

Guardian Phone Number(S):

Witness Signature (Applicable if guardian cannot read and write):_____

Witness Name: ____

Witness Contact Number:

Residential Address (Area, house number and simple direction; name of a popular place around house.....to help us find you when we are visiting)

Date Of Birth Of Child: _____Day___Month____Year (e.g. 25th May,2011)

APPENDIX IV -CHILD ASSENT FORM

(Please don't fill this section)

Statement of person obtaining assent:

I have fully explained this research to

Name of child:

SIGNATURE / THUMPRINT_

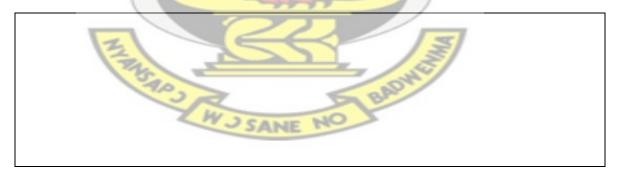
____ DATE: _____

*The study participants are between the ages of 6months-5yrs hence oral assent was sought which was written down by personnel.

		APPENDIX V -DATA CAI	PTURING SHEET	
				FIX PHOTO HERE
A.	Persor	nal data	code	
	1.	Name of Child:	LOT	
	2.	Date of interview	JS DATE/	/
	3.	Interviewer ID	INTERID	
	4.	Child ID:	CHILDID	
	5.	Date of birth of Child:	DATE/_/	
	6.	Age of Child:	AGECH	
	7.	Sex of Child: 1=Male 2=Female	SECHD	
	8.	Contact number :	1 III	
	9.	Residential Address:	ARR A	
		Clinks	TE	
В.	<u>ANTH</u>	ROPOMETRIC DATA		
	STA	ANDING OR RECUMBENT		
		IGHT (cm): EIGHT (Kg):	S BADY	
	MI	D-UPPER ARM CIRCUMFERENCE(mm)	NO	
	TR	AD CIRCUMFERENCE(cm ICEPS SKINFOLD THICKNESS(mm)		
	SU	BSCAPULAR SKINFOLD THICKNESS(mm)		
C.	<u>LABO</u>	DRATORY DATA		
	Pa	rasitaemia 1= Positive 2=Negative		

Parasite density

D. PHYSICAL EXAMINATION


(for each trait specify: 0=normal, 1+=mild, 2+=moderate, 3+=severe)

- a. Oedema
- b. Paleness(lips, tongue, palms, mouth, skin)
- c. dry, dull hair
- d. glossitis (the tongue is swollen and changes colorR

E. ADDITIONAL INFORMATION AND NOTES

- F. WITHDRAWAL INFORMATION(to be filled by personnel in case of withdrawal from study)
 - a. Date of withdrawal
 - b. Reasons for withdrawal

APPENDIX VI -QUESTIONNAIRES FOR PARENT

PERSONAL DATA	CODE
10. Nickname of father	
11. Nickname of Mother	
12. Respondents Relation to child :	
13. Marital status: 1=Single 2=Married MASTA SOCIODEMOGRAPHIC INFORMATION	
14. Head of household 1=father 2=mother 3= other (specify)	HEHOS)
15. Highest Educational level of mother/Guardian(female)	НЕМОТ
1=primary/elementary 2=secondary 3=post secondary 4=tertiary 5=none	6= don't know
7=other (specify)	1
16. Highest Educational level of father/Guardian(male)	HEFAT
1=primary/elementary 2=secondary 3=post secondary	
4=tertiary 5=none 6= don't know 7=other (specify)	
17. Occupation of mother /Guardian	ОСМОТ
1=artisan(carpenter, hairdresser, seamstress etc)	
2=professionals(teacher, lawyer, accountant)	
3=office worker(secretary) 4= trading 5= not employed 6= Don't ki	10W
18. Occupation of father /Guardian	OCFAT
1=artisan(carpenter, hairdresser, seamstress etc)	
2=professionals(teacher, lawyer, accountant)	
3=office worker(secretary) 4=trading 5= not employed 6= Don't ki	10W
19. Residential status RESTA	
1=own house $2=$ family house $3=$ rented house	

	4=company/mission house	5=government house	6=caretak	ers
20.	How many people are in your house	hold	HHSIZE	
21.	How many children have you given		NOCHD	
22.	On the average, how much income c	omes into the house pr r	month in GHC)
	MOTIN			
	1=< GHC 100 2= GHC 100-300			
	3= GHC 300-600	NUST		
23	Ethnic grouping – please state	FTGR	Г	
	STIONS ABOUT CHILD HEALT	N M	L	
<u>VUL</u>	STIONS ADOUT CHILD HEALT	1.7		
24.	Dietary Intake (relative to you're you	ur childs intake):	DEINT	
	1=no change 2=change: duration =	weeks		
25.	Status of GI Tract today: 1= intact 2	= Loose bowel	SATGI	
26.	Swallowing difficulties today: 1= Ye	es 2=No	SWADI	
27.	Medicines being taken by child: 1=	Yes 2=No	MEDTA	
	(if yes state			
28.	Vitamin or mineral supplementation:	: 1= Yes 2=No	VITTA	
	(if yes state	201	3AN	
29.	Recent illness apart from malaria? 1	=yes 2=No	REILL	
	(if yes state			
30.	Recent malaria episode.		REMAL	
	1=1-5days ago 2=a week	ago 3=2 weeks ago		
	4=more than 2 weeks 5=none			
31.	Treatment given		TREGIV	
	1=malaria drug given at the hospita	l upon testing		

60

2= malaria drug given at the hospital without testing	
3= malaria medication bought from pharmacy	
4=self medication	
5=herbal preparation	
6=none	
32. Use of mosquito nets.1= Yes 2=No	USEMOS
33. Does your child take regular anti-malaria drugs including he	rbal medicine
1= Yes 2=No(if yes state	USEMED
34. Does your child have sickle cell anemia 1= Yes 2=No	CHSICL
(if yes state group	
35. Do you take any other precaution to prevent your child from	getting malaria?
1= Yes 2=No(if yes state	MALPRV
36. Do your child get tired easily1= Yes 2=No	ESTIRE
	Ħ
THE ANS	2
Clinton	
AT ALL ST	ETHNIA P
W J SANE NO B	

		FOOD FREQU	ENCY QUESTION	INAIRE		
Code	Foods	Notes	Portion Size	Past 24hrs 1=Yes 2=No	Past OneWeek 1=Yes 2=No	No Times Per Week
	CARBOHYDRATES					
BNK	Banku	Balls=				
KNK	Kenkey (Fante /Ga)	Balls=				
JFR	Jollof Rice	Plate=				
FDR	Fried Rice	Plate=				
SPG	Spaghetti	Tablespoon=				
FFU	Fufu	Bowl=	NIIC			
CDY	Cooked yam	Slices=				
FDY	Fried yam	Slices=	1400			
OMT	Omutuo	Ball=				
GRI	Gari / Eba	Ball=	<u> </u>			
FDP	Fried plantain	Slices=	NON			
RTP	Roasted Plantain	Fingers=	VIII			
CDP	Cooked Plantain	Fingers=	1117			
	MEATS /FISH /SEA	1= Fried				
	FOOD	2= steamed				
		3= grilled				
CHK	Chicken		252	1	5	
FSH	Fish	X	IK P/	113		
BEF	Beef	100	2	×		
GMT	Goat meat	190				
OYS	Oysters	1-11	V LATS			
PRK	Pork	u	R.P.C.			
CBS	Crabs					
SMP	Shrimps				7	
SSG	Sausage	1		12	/	
	SOUPS	Ladles		54		
LTS	Light soup	40.	_	and the		
PNS	Palm nut soup			2		
GNS	Groundnut soup	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SANE NO			
OKS	Okro soup					
KMS	Kontonmire soup					
	STEWS					
GES	Garden egg stew					
VES	Vegetable Stew					
KES	Kontomire stew					
OKS	Okro stew					
BNS	Beans stew/ Beans & oil					
	BREAKFAST					
TEA	Tea					
KOK	Koko		62			

TMB	Tom Brown	
HSK	Hausa koko	
CCD	Cocoa drink	
KSE	Kose	
BRD	Bread (White /Brown)	Slices=
MGB	Margarine / Butter	
OTS	Oats	
015	VEGETABLES	
CRT	Carrot	
CAB	Cabbage	
BNS	Beans	
LTT	Lettuce	
NSU	Nsusuaa	
CCB	Cucumber	
GPP	Green pepper	
GEG	Garden eggs	
OKR	Okro	
UKK	DAIRY PRODUCTS	
FEG		
CDM	Fried eggs Condensed milk	Tablespoon=
EVM	Evaporated Milk	Tablespoon=
BEG	Boiled eggs	
DEU		
	FRITTS	
ΔΡΡ	FRUITS Apple	SEN 25
APP ORG	Apple	AS CONTRACTOR
ORG	Apple Orange	
ORG PNP	AppleOrangePineapple	
ORG PNP BNA	AppleOrangePineappleBanana	
ORG PNP BNA PWP	AppleOrangePineappleBananaPawpaw	
ORG PNP BNA PWP AVP	AppleOrangePineappleBananaPawpawAvocado Pear	
ORG PNP BNA PWP AVP WTM	AppleOrangePineappleBananaPawpawAvocado PearWater melon	
ORG PNP BNA PWP AVP	AppleOrangePineappleBananaPawpawAvocado PearWater melonMango	
ORG PNP BNA PWP AVP WTM MGO	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKS	
ORG PNP BNA PWP AVP WTM MGO MLT	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMalt	
ORG PNP BNA PWP AVP WTM MGO MLT MNS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMinerals	W. O
ORG PNP BNA PWP AVP WTM MGO MLT	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinks	W Second
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppo	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit Juices	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIES	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS FJS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIESDoughnut/ Bofrot	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS FJS DGT MTP	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIESDoughnut/ BofrotMeat pie	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS FJS DGT MTP CPS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIESDoughnut/ BofrotMeat pieChips	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS FJS DGT MTP	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIESDoughnut/ BofrotMeat pieChipsBiscuits	W. O
ORG PNP BNA PWP AVP WTM MGO MLT MNS STD FJS FJS DGT MTP CPS	AppleOrangePineappleBananaPawpawAvocado PearWater melonMangoDRINKSMaltMineralsSweetened drinksKalyppoFruit JuicesPASTRIESDoughnut/ BofrotMeat pieChips	W. O

Appendix VIII -MEDICAL ASSESSMENT FORMS

CHILD ID [] NAME OF CHILD[_] SEX	(M/F): []AGE: []
GROUP [] DATE OF START OF SUPPLEMEN	TATION:	[/	/
NAME OF HEALTH WORKER: [] COMM	UNITY: [
LOCATION: [] AXILLA	RY TEM	PERATUR	RE: [0C]
A. Symptoms presented by caregiver	Yes	No	Duration (Days)
1. Fever			
2. Vomiting	CT		
3. Diarrhoea			
4. Refusal of feeds			
5. Chills			
6. Headache			
7. Abdominal pain			
8. General weakness			
9. Cough			
10. Runny nose			
11. Fast breathing/difficulty in breathing/noisy breathing	1		
12. Pallor			
13. Convulsion			
14. Jaundice			
15. Dark urine	1		5
16. Other	17	37	
CREW	32		

в.	Ask these questions:	Yes	No
1.	Does the child vomit everything?	- AC	
2.	Is the child unable to drink/breastfeed?	-	
3.	Has the child had a convulsion with this illness?		
4.	Does the child have bloody diarrhoea?	-	

C.	Check for these signs	Yes	No
1.	Severe palmer pallor		5
2.	Sunken eyes/reduced skin elasticity		or/
3.	Lethargy/Unconsciousness	Z	2
4.	Fast breathing/difficulty in breathing/noisy breathing	0 3	
5.	Neck stiffness		
6.	Ear discharge		

*If any of B or C ticked Yes, refer immediately to the nearest health facility.

MANAGEMENT PLAN

HOME MANAGEMENT with RDT	REFERRED TO CLINIC/HOSPITAL	

 Health worker's Name:
 _______]
 Signature:
 _______]
 Date:

[___/___/_____

HEALTH WORKER MALARIA FOLLOW-UP FORM

] SEX (M/ F):
[]AGE: []] DATE OF START OF SUPPLEMENTATION:
[//	DATE OF START OF SUFFLEMENTATION.
NAME OF HEALTH WORKER: [] COMMUNITY:
[]	
	E. IF NOT IMPROVED, WHAT HAS BEEN DONE FOR THE
	CHILD?
A. VISIT No	Child sent to a clinic/hospital
B. TREATMENT/POST-REFERRAL DAY	Child given herbal medication/sent to spiritualist/pastor
C. AXILLARY TEMP	Medication bought at the drug store
	Medication continued
D. CHILD'S CONDITION	Nothing done about it yet
Improved	F. ACTION TAKEN BY HEALTH WORKER
Not Improved	Child referred to nearest health facility
Not At Home	Care-giver advised to heed referral to health facility
	Care-giver advised to continue treatment at home
HEALTH CHILD ID [] NAME OF CHIL	TIVITAMIN AND ZINC SUPPLEMENTATION OF MALARIA MORBIDITY VORKER MALARIA FOLLOW-UP FORM D[] SEX (M/ F):] DATE OF START OF SUPPLEMENTATION:] COMMUNITY:
3	3
124	E. IF NOT IMPROVED, WHAT HAS BEEN DONE FOR THE
A. VISIT No	CHILD?
B. TREATMENT/POST-	Child sent to a clinic/hospital Child given herbal medication/sent to spiritualist/pastor
REFERRAL DAY	Cillid given herbar medication/sent to spintualist/pastor
C. AXILLARY TEMP	Medication bought at the drug store
	Medication continued
D. CHILD'S CONDITION	Nothing done about it yet
Improved	F. ACTION TAKEN BY HEALTH WORKER
Not Improved	Child referred to nearest health facility
Not At Home	Care-giver advised to heed referral to health facility
	Care-giver advised to continue treatment at home
Signature: [] Date: [/]	_/

GR [OUP [/]]	SEX (M/ F): []AG DATE OF START OF	SUPF	PLEME	NTATION:	
NA	ME OF H	IEALTH WORKER: []					COMMUNITY: [_]
	Date	ASSESSMENT TYPE Supplement Dosing Supplement Follow Up Medical Assessment(use form)	Supplement compliance RDT Treatment results follow up after assessm ent				Γ	Referral diagnosis	Referral follow up		RDT results after assessment				
		RDT Test Treatment Follow Up Referral feedback Follow up on referral Post referral assessment Withdrawal from study	Follow Up edback on referral al assessment I from study	Withdrawal date	+		improved	Not improved		Improved	Not improved	+	-		
					Y	X	E A	Z	N.Z	4	P				
						A	9.	2	Alles .	1					
					(46							
				1	M		$\langle \epsilon \rangle$	\mathbb{X}		5	ST.				
					154	C.			6 al	3He					
						X	35	ANE	NO						

VIT A & ZINC , ZINC AND MULTI GROUPS CHILD PROGRESS SHEET

																RESS		ЕЕТ	•								
CHILD	ID [] NAME	OF C	HILI	D[]	S	EX ((M/F)): []AG	E: [SUPPLEME				_]
GROUP	L/			.]															DA	IEU	F STAK	I OF	SUPPLEME	INTA	TION	•	
NAME (OF HEA	LTH WORKER: []									CC	OMM	UNITY	: []	
	Date	ASSESSMENT TYPE Medical Assessment RDT Test Treatment Follow Up Referral feedback	SYN	SYMPTOMS PF			PRESENTED BY CARE GIVER							RDT result s after assess ment		Treatme nt follow up		Referral diagnosis	Referra I follow up		RDT results after assess ment						
		Follow up on referral Post referral assessment Withdrawal from study	fever	vomiting	diarrhoea	refusal of feeds c	chills	headaches	abdominal pain	general weakness	cough	running nose	breathing problems	pallor	convulsion	dark urine	jaundice	other	+	-	improved	Not improved		Improved	Not improved	+	-
						-	7	A K	M	3		6		P	G	Z	5	7									
								1	4	S	Pr.			R	3	3	1										
												V .		7		7											
							MAR	SAL A	Nel.	AN NA	2		E	12/1 1/2		BAD	PENL.	Mar I									

CHILD ID [] NA	SUPPLEMENT ME OF CHILD[] DATE OF STAI COMMUNITY: [ATION COMPLIANCE/ FOL	LOW-UP LOGBOOK(MID EX (M/ F): []AGE: [/NAME OF HE	-WEEK)] GROU ALTH WO	P RKER:
Date	Taking Require	The d Dose	If NO WHY Reasons given	Discontinued IF YES V Study	ST Stopped	l study	IF YES WHY
	Yes	No		YES NO	Yes	No	
				E C			
				W J SANE NO	BADHI		

HEALTH WORKER REFERRAL FORMS		
CHILD ID [] NAME OF CHILD[] SEX (M/ F):
[]AGE: []		
	T OF SUP	PLEMENTATION:
[//	-	~~~~
NAME OF HEALTH WORKER: []	COMMUNITY:
[]		
AXILLARY TEMPERATURE: [0C]		
The Medical Officer in charge		
Dear Sir/Madam,		
REASON FOR REFERRAL	T.	
Sign	Yes	Duration (Days)
1. Fever of 7 days or more		
2. Cough of 14 days or more		
3. Diarrhoea present continuously for 7 days or more		
4. Bloody diarrhoea		
5. Severe palmer pallor	_	
6. Jaundice		
7. Vomiting everything		
8. Unable to drink/breastfeed		
9. Sunken eyes and/reduced skin elasticity		
10. Dark urine (coke-like urine)	/	
11. Lethargy/prostration	1	
12. Unconsciousness	1	
13. Difficulty in breathing/fast breathing/noisy breathing	77	
14. History of convulsion with present illness		
15. Ear discharge	2	
16. Neck stiffness		<u>\</u>
17. Rapid diagnostic test for malaria is negative		
18. Not getting better with ACT		/
19. Not better after ACT completed		
Pre-referral treatment given: Paracetamol [ORS []	ACT [T
I would be very grateful for your further assessment and management.	ACT [3
Thank you.	1.5	
CDD's Name: [] Signature: []	- D	Date: [/ /20
	0	·
WJ SANE NO	2	

CHILD RDT RESULTS SHEET

CHILD ID [] NAME OF CHILD[_] SEX (M/ F):
[]AGE: [] GROUP [] DATE OF START OF
SUPPLEMENTATION: [//	NAME OF HEALTH WORKER: []
COMMUNITY: []	

	Date	Temp	RDT res	ultt	Manage		
			K	V	Treated	Refer red	
				1	4		
				M	Ma		
				1	127		
				0			
	- 6		N		-	1	2
	1			K	5	27	
		73	22	EX		X	
		(R	1 de	15			
				3			/
		5		\prec			X
		FA		_		1 AN	5
		Con Con	R		A	BAY	
1		-	105	ANE	NO	-	

FEEDBACK FORM
CHILD ID [] NAME OF CHILD[] SEX (M/ F)
[]AGE: []
CHILD ID [] NAME OF CHILD[] SEX (M/ F) []AGE: [] GROUP [] DATE OF START OF SUPPLEMENTATION: [// NAME OF LEAL TH WORKER: []
NAME OF HEALTH WORKER: [] COMMUNITY:
[]
Child admitted: Yes [] No [] Child referred out: Yes [] No [] LABORATORY INVESTIGATIONS No [] RESULTS Blood film for malaria parasites POSITIVE [] NEGATIVE [] Haemoglobin level g/dl g/dl White blood cell count g/dl Urine routine examination suggestive of UTI YES [NO []
CHEST EXAMINATION Suggestive of pneumonia YES [] NO []
DIAGNOSIS: [] DATE:/ 20] HEALTH INSTITUTION: []
ATTRASTANCE NO BROTHER

		FOLLOW-UP AFTER TREATMENT/REFER	RAL ON DAY 7				
CHILD] SEX				
(M/F): GROUI]AGE: []] DATE OF START OF	SUPPLEMENTATION:				
NAME	OF I	HEALTH WORKER: [] COMMUNITY:				
[]					
SECTI	ON A	A-POST TREATMENT ASSESSMENT					
1.	Did	your child complete the medication as prescribed by the CHW?	Yes [] Answer Q2, 3 No [] Answer Q3, 4				
	Ask caregiver to see the pack.						
2.	ls t	the pack empty? Yes [] No []					
3.	Ind	icate the number of tablets left if pack not empty []					
4.	Why did your child not complete the medicine?						
a. Child was vomiting the medicine []							
 b. Child was refusing to take the medicine [] c. I was advised by family to seek alternative treatment [] 							
					d.	Medicine got lost	[]
	e.	I forgot to give the medicine regularly	[]				
	f.	I sent the child to the hospital/health centre	[]				
	g.	Child reacted to the medicine					

SECTION B- ADVERSE EVENTS ASSESSMENT

Ask the caregiver to know if the child experienced any of the following symptoms after taking the medication.

Sympto	m Yes No
1.	Nausea
2.	Vomiting
3.	Sleeplessness
4.	Headache
5.	Itching
6.	General weakness
7.	Jaundice
8.	Dark urine
9.	Skin rash
10.	Sore mouth
11.	Dizziness
12.	Pallor
13.	Palpitation

If yes to any of the above, what was done for the child?

- a. Child sent to a clinic/hospital/health centre
 - b. Child given herbal medication/sent to spiritualist/pastor
 - c. Medication continued Name: [

[____] [____] [____] _____] Signature: [______] Date:

SECTION C- POST REFERRAL ASSESSMENT

- 1. Was the child sent to the nearest hospital as was requested by CHW? Yes [____] No
- 2. If no, why was the child not sent to the nearest health facility?

a.	I did not have money to travel to the health facility		
b.	My child is not insured by NHIS		
с.	I preferred to visit the drug store		
d.	I was advised to see the herbalist/spiritualist/pastor		
e.	I did not see the need to go		
f.	Other		
g.	Other		
h.	Other		

3. Condition of child: IMPROVED [____] NOT IMPROVED [____]

If child's condition not improved, reassess the child using the assessment form.

5.	RDT results:	positive []	negative []					
	Child treated with ACT							
	Child referred to nearest health facility []							
	TO R SAN							
	W J SANE NO							