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Abstract
In recent years, there has been an upsurge of interest in spatial databases. A major issue is how to
efficiently manipulate massive amounts of spatial data stored on disk in multidimensional spatial
indexes (data structures). Construction of spatial indexes has been studied intensively in the
database community. The continuous arrival of massive amounts of new data makes it important
to efficiently update existing indexes. This dissertation is concerned with optimizing the dynamic
index structure for spatial search, a class of data structure that organizes multidimensional data in
database systems. The R-tree, one of the most popular access methods for spatial data, is based
on the heuristic optimization of the area of the enclosing rectangles in each inner node. The
method proposed in this thesis is based on the technique of geometry, area and overlap
optimization of each enclosing rectangle in the directory, and by running several tests and
comparing with other R-tree variants, the new optimized R-tree is efficient in terms of disk
storage, internal computation time and number of pages stored in memory. [t also produces a
better quality index in terms of query performance. One important novel feature of this technique
is that in most cases it allows updates and queries to be performed simultaneously in
environments where queries have to be answered even while the index is being updated and
reorganized. Although the optimized R-tree outperforms its competitors, the cost for the
implementation of the structure is only slightly higher than the other R-trees. Notwithstanding
the benefit of this research, there are still more to be done in topology because in real world

spatial objects are more static .It must therefore follow an engineering approach to improve

complex applications.
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CHAPTER ONE

1.1 Introduction

Tree structure is one of the best recipe in data structures for database and it’s applicable to
organization charts and files systems. Since its inception, it has contributed to how data are
structured and indexed in databases. Notwithstanding the fact that B-Trees (Balanced Tree)
which came to strengthen Binary Tree in data structures still had limitations with respect to

spatial location of data which had more attributes.

In database application where data had more attributes, enquiry into such multi-dimensional data
objects is difficult when classical indexing structure is used and a typical example is that of a

Spatial and Multimedia Databases.

Spatial databases provide concepts for databases that keep track of object in a multidimensional
space. For example, cartographic databases that store maps includes two dimensional space
description of their objects-from cities and towns to rivers, seas, roads and so on. These
applications are known as Geographical Information Systems (GIS), and are used in areas such
as environmental, emergency and battle management. Others such as meteorological information

for weather forecasting is based on spatial point

Multimedia databases provide features that allow users to store and query different types of
multimedia infEHnatinn, which includes images (such as photos or drawings), video clips (such
as mevies. newsreels or home videos) and audio clips. The main types of database queries that

are needed involve locating multimedia sources that contain certain objects of interest. A typical

image database query would be te- find images in the database that are similar to a given image.



The given image could be an isolated segment that contain, say a pattern of interest and the query

is to locate other images that contain the same pattern.

In general, a spatial database store objects that have spatial characteristics that describes them.
The spatial relationship among the objects are important, and they are often needed when

querying the database.

The main extensions that are needed for spatial databases are models that can interpret spatial
characteristics. Additionally, special indexing and storage structures are often needed to improve
performance.. The basic extension needed include two-dimensional geometric concepts, such as
points, lines segments, circles, polygons and arcs, in order to specify the spatial characteristics of
the objects. Also, spatial operation are needed to operate on the objects, for example, to compute
the distance between two objects and as well check whether these two objects spatially
overlapped. Some of these objects generally have static spatial characteristics. such as streets
and highways, police stations, fire stations, hospitals, water pumps (for fire control) etc. Other
objects have dynamic spatial characteristics that change over time and it includes police vehicles,

ambulances or fire trucks.

There are a number of ways by which the above scenarios could be achieved and these include:

Range query-where we find the objects of a particular type that are within a given spatial area or

within a particular distance from a given location. For example, find all hospital within a given
=t e il

city area or find all ambulances within five miles from accident locations.

Neighbnur Query-here, an object of a particular type that is closest to a given location

is found. A typical example could be finding all police car that is closest to a particular location.



Spatial Join or Overlay-Typically joins the objects of two types based on their spatial
condition, such as the objects intersecting or overlapping spatially or being within a certain
location of one another. An example is to find all cities located on a major highway or find all

homes that are within three miles from a lake.

However, for these and other types of spatial queries to be achieved efficiently, special
techniques for spatial indexing are needed. One of the best known techniques is the use of R

Trees and their variations, which was initially proposed by Antoine Guttman.

R-Trees group objects that are in close spatial physical proximity on the same leaf nodes of a tree
structured index. Since a leaf notes can point to a certain number of objects only, algorithms for
dividing the space into rectangular subspaces that include the objects are needed. Typical criteria
for dividing the space include minimizing the rectangle areas, since this would lead to a quicker
narrowing the search space. Problems such as having objects with overlapping spatial areas
would be handled differently by the many different variations of R-Trees. Internal nodes of R-
Trees are associated with rectangles whose areas covers all the rectangles in its SubTree. Hence,
R-Trees can easily answer queries, such as find all objects in a given area by limiting the tree

search to those subtrees whose rectangle intersect with the area given in the query.

Other spatial storage would include quad trees and their variations. Quadtrees generally divide
each space or subspace into equally sized areas, and proceed with the subdivisions of each
N S = /,.-—""'—_—_-_

subspace to identify the positions of various objects. Hence, there is the need to go further into

this spatial access structures to improve on the existing R-Trees.



1.2 Statement of problems

In our modern application world the using of spatial index structure for indexing multi-
dimensional information acmrd.ing to their special location is enormous. To handle spatial data
efficiently a database system needs a special index mechanism. Investigation shows that
Contemporary Multi-dimensional database technology is severely limited at managing indexed
data types of keys for many advanced application. One of the huge demaﬁds in geo-data i.e.
geographical data applications is to response very quickly to spatial inquiry, for example,
“finding all supermarkets within 2 km of my current location". Spatial data objects often cover
areas in multi-dimensional spaces. Further Investigation shows that multi-dimension data
prevents using classical indexing structures, for instance the B-Tree (Kemper, 2001). The reason
is that database use one-dimensional indexing structures. However, in modern information
processing like CAD (Computer Aided Design), cartography and multimedia applications use a
multi-dimensional data object, which means that the objects have more attributes. Thus, the

database system needs an efficient multi-dimensional index structure.

A number of structures had been proposed for handling multi-dimensional point data. Antoine
Guttman was one of the first persons to propose them. In 1984, Guttman published a book
(Guttman, 1984 ) in which he presented a data structure called R-Tree (Rectangle Tree) that
represents data_ob;’};ts by intervals+nseveral dimensions.
Others included the following:

—

* Priority R-Tree, or PR-Tree, (Herman J. et al., 2001 ) which is the first R-Tree variant

that was practically efficient and worst-case optimal R-Tree, was also based on area

optimization.



« R+ Tree: (T. Sellis et al., 1987 ). This tree tries to minimize the overlapping of regions.
Here, objects are saved disjunctive. The search algorithm is faster but the tree structure is
more complicated.

» R* Tree: (M. Astrahan et al., 1976). The Split-Node algorithm that takes volume and the
extend of overlapping into consideration, but faster for spatial and point access queries.

All other properties are similar to the R-Tree.

An optimized elaborative retrieval method to extend the traditional R-Tree, can serve as an
indexing structure in some multi-dimensional database systems. This method will try to
addresses the problem of the traditional R-Tree where the only criterion is to minimize the area

of index coordinate data.

1.3 Objectives of the proposed research

The main or specific objectives of this research are to address the following:
1. To eliminate or improve large distances of data types which will initiate a bad
split. According to the spatial location of data, the structure is designed in such a
way that a spatial search requires visiting only a small number of nodes.
The spatial data is comprised by a MBR (Minimal Bounding Rectangle) which
bgéﬁmc formatted and-eomprised from a MBR again. Therefore, there is the need

to eliminate large distances of data types to have a better split.

2

To develop a method that will take into consideration the rest of assigned nodes

by taking their geometry after a group data type has reached a maximum number



of entries. This is very important so that the tree structure is maintained and

balanced.

1.4 Hypothesis
In an effort to trying to address the above problems I put across the following Hypothesis.

H1: The decision whether to visit a node depends on whether its covering rectangle overlaps the
search area, the total area of the two covering rectangles after a split should be

minimized.

H2: In order to add a new entry to a full node containing M entries, it is necessary to divide the
collection of M+1 entries between two nodes so that I will have the best split for the

search space.

These Hypotheses would be discussed and fully analyzed in the methodology.

1.5 Methodology of the Study

A lot of research had already been conducted on R-Tree. Antoine Guttman was one of the first

persons to propose them. However, there are still more to be done on the algorithms used.

_"-'-H-
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The method to use will examine in detail the algorithms listed below, which would be written in
pseude=code, and the program implemented in Java.
In the pseudo-code the rectangle parts of an index entry E would be denoted by E:I and the tuple-

identifier or child - pointer part weuld be denoted by E:p.



The algorithms to be considered includes the following:

Searching

Insertion

Deletion

SplitNode

these will be compared with B-Tree and other forms of tree data structures.

For example: In searching, the search algorithm is similar to that of the B-Tree. It returns all
qualifying records, which the search rectangle overlaps. The algorithm transverse the tree from
the root. In the same time, the algorithm checks the rectangle overlapping in the node with the
searched rectangle. If the test is positive, the search just descends to the found overlapping
nodes. This procedure is repeated until the leaf node overlaps. If the entries of the leaf node
overlap the searched rectangle then return these entries as a qualifying record.

For inserting index records for new data is similar to inserting into a B-Tree. New data is added

to the leaves. nodes that overflow are split, and splits propagate up the tree.

Deletion in R-Trees is different from deletion in B-Tree. This is so because after deletion, the

tree had to be condensed.

Split Note: In the ease of adding a new entry to a full node containing n number of entries, it is
e - Fr".-‘-._——-—-__ . . "

necessary to divide the collection of n+ 1 entry between two nodes and insertion and deletion

method can be adopted to save the tree structure from coalescing. The division should be done in

such a way that both new nodes will need to be checked on subsequent searches.

The problems associated with searching and inserting al gorithms would also be discussed.



1.6 Justification of the Study

Though. a lot of modifications on R-Tree had been made in recent years specifically structure,
there was specialization for particular application. So. in this research I will try to develop an
algorithm to optimize the dynamic index structure of R Tree to improve or eliminate large

distances of data types which will initiate a bad split of nodes.

This work when completed will result in the development of a new algorithm that will bring to
knowledge the best splitting algorithm that will maintain the tree after a group data type has
reached a maximum number of entries. Also, it will highlight the minimization of the overlaps of
the MBRs to determine Node Splitting. unlike the original R-tree which considers only the

minimization of the enclosing rectangle.

1.7 Scope of the Study

An R-Tree is a height-balanced tree similar to a B-Tree. Leaf nodes contain pointers to data
objects. The index is completely dynamic. Structure is designed in such a way that a spatial
search requires visiting only a small number of nodes. The spatial data is comprised by a MBR
(Minimal Buunding_;_j{ectangle) which become formatted and comprised from a MBR again. This
structure continues up to the chl.’——EveEt—u_ally the root comprises a MBR over all objects.

The maximum coordinates to use is 300, maximum width: 60, maximum number of Rectangle to

use is 100 with three dimension.



The research seeks to do in depth analysis of the following:
e The review of B Trees in file systems.
e R Tree and B Trees in spatial data
e Visualization of R Tree for 3D Cubes
e Difference between R*-Tree, R+-Tree, M-Tree, Priority-Tree, etc and R-Tree
e Structure of R Tree

e R Tree and the usage of memory page disk.



CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

Spatial databases provide concepts for databases that keep track of object in a multidimensional
space. And for spatial it means the data have more attributes that spread across wide
geographical area and spatial database store objects that have spatial characteristics that
describes them. The spatial relationships among the objects are important, and they are often
needed when querying the database. The purpose of this review is the inception of various
researches that tries to solve spatial enquiries using various methods for which R-Tree is no
exception. On this, B-Tree will be reviewed with reference to Binary Tree, searching, insertion
and deleting methods, file systems and database systems and its associated problems. The
development of R-Tree as a prerequisite to solving spatial data in multidimensional space, other

types of tree structure that support R-Tree and the usage of disk space provided by R-Tree.

2.1.0 Review of Relevant Literature

-

=== _,-—*""'-—-_—_F
2.1.1 The Review of B-Trees in File Systems

—

In computer science, a B-Tree is a tree data structure that keeps data sorted and allows searches,
sequential access, insertions, and deletions in logarithmic amortized time. The B-Tree is a
generalization of a binary search tree in that a node can have more than two children. Comer et

al., (1979) unlike seif-balancing binary search trees, the B-Tree is optimized for systems that

read and write large blocks of data. It is commonly used in databases and filesystems

10



In B-Trees, internal (non-leaf) nodes can have a variable number of child nodes within some pre-
defined range. When data is inserted or removed from a nbde, its number of child nodes changes.
In order to maintain the pre-defined range, internal nodes may be joined or split. Because a range
of child nodes is permitted, B-Trees do not need re-balancing as frequently as other self-
balancing search trees (Binary Search Tree), but may waste some space, since nodes are not
entirely full. The lower and upper bounds on the number of child nodes are typically fixed for a
particular implementation. For example, in a 2-3 B-Tree (often simply referred to as a 2-3 tree),

each internal node may have only 2 or 3 child nodes.

Each internal node of a B-Tree will contain a number of keys. Usually, the number of keys is

chosen to vary between ¢ and 2d. In practice, the keys take up the most space in a node. The
factor of 2 will guarantee that nodes can be split or combined. If an internal node has 2d keys,

then adding a key to that node can be accomplished by splitting the 2d key node into two d key
nodes and adding the key to the parent node. Each split node has the required minimum number
of keys. Similarly, if an internal node and its neighbour each have d keys, then a key may be
deleted from the internal node by combining with its neighbour. Deleting the key would make

the internal node have d — lWipg the neighbour would add d keys plus one more key

brought down from the neighbour's parent. The result is an entirely full node of 2d keys.
S

The number of branches (or child nodes) from a node will be one more than the number of keys
stored in the node. In a 2-3 B-Treg, the internal nodes will store either one key (with two child

nodes) or two keys (with three child nodes). A B-lree is sometimes described with the

parameters (d + 1) — (2d + 1) or simply with the highest branching order. (2d + 1).

1l



A B-Tree is kept balanced by requiring that all leaf nodes are at the same depth. This depth will
increase slowly as elements are added to the tree, bﬁt an increase in the overall depth is

infrequent, and results in all leaf nodes being one more node further away from the root.

B-Trees have substantial advantages over alternative implementations when node access times
far exceed access times within nodes (Folk et al., 1992). This usually occurs when the nodes are
in secondary storage such as Hard Drives. By maximizing the number of child nodes within each
internal node, the height of the tree decreases and the number of expensive node accesses 1s
reduced. In addition, rebalancing the tree occurs less often. The maximum number of child nodes
depends on the information that must be stored for each child node and the size of a full disk
block or an analogous size in secondary storage. While 2-3 B-Trees are easier to explain,
practical B-Trees using secondary storage want a large number of child nodes to improve

performance.

2.1.2 The Structure of B-Tree

Unlike a binary-tree, each node of a B-Tree may have a variable number of keys and children.
The keys are stored in non-decreasing order as shown in the figure below. Each key has an
associated child _t_bat 15 the rﬂWEs containing all nodes with keys less than or equal to
the key but greater than the preceding key. A node also has an additional rightmost child that is

e e
the root for a subtrees containing all keys greater than any keys in the node.

12



Sample B-Tree

3 T
i ‘H&‘*‘_.i Ll o £ !ﬂ.'r:%';: - f‘
Figure 1

Data storage in B-Tree structure as shown below: di, d2, d3, d4, ds, d6 and d7

Figure 2

13



According to Knuth's definition (Knuth Donald 1997), a B-Tree of order m (the maximum

number of children for each node) is a tree which satisfies the following properties:

» Every node has at most m children.

« Every node (except root) has at least "/, children.

» The root has at least two children if it is not a leaf node.

« All leaves appear in the same level, and carry information.

* A non-leaf node with k children contains &1 keys.

Each internal node's elements act as separation values which divide its subtrees. For example, if
an internal node has three child nodes (or subtrees) then it must have two separation values or
elements a; and a». All values in the leftmost subtree will be less than a , all values in the
middle subtree will be between a; and a, and all values in the rightmost subtree will be greater

than a,. This is shown in the diagram below:

Figure 3

s

A B-Tree has a minimum number of allowable children for each node known as the minimization
factor. If t is this minimization factor, every node must have at least 7 - I keys. Under certain
circumstances, the root node is allowed to violate this property by having fewer than 7 - I keys.

Every node may have at most 2¢ - I keys or, equivalently, 27 children.

14 Nl e »
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Since each node tends to have a large branching factor (a large number of children), as seen in
the figure below, it is typically necessary to traverse relatively few nodes before locating the
desired key. If access to each node requires a disk access, then a B-Tree will minimize the
number of disk accesses required. The minimization factor is usually chosen so that the total size
of each node corresponds to a multiple of the block size of the underlying storage device. This
choice simplifies and optimizes disk access. Consequently, a B-Tree is an ideal data structure for
situations where not all data can reside in primary storage and accesses to secondary storage are

comparatively expensive (or time consuming).

Tree Structure

According to (Rivest et al., 1991), for n greater than or equal to one, the height of an n-key B-

- -Fr-r.."—-_—-— - £l
Tree T of height & with a minimum degree / greater than or equal to 2, is given by

B

n+1

h < log, ——

Where h is the height of the tree,

and n is the number of nodes.
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The best case height of a B-Tree is:
log,. n.

The worst-case height of a B-Tree is:
log/2 12
Where m is the maximum number of children a node can have.

Since the "branches" of a B-Tree can be large compared to many other balanced tree structures,
the base of the logarithm tends to be large; therefore, the number of nodes visited during a search
tends to be smaller than required by other tree structures. Although this does not affect the
asymptotic worst case height, B-Trees tend to have smaller heights than other trees with the same

asymptotic height.
2.1.3 Searching, Inserting and Deleting in B-Tree

Searching is similar to searching a binary search tree. Starting at the root, the tree is recursively
traversed from top to bottom. At each level, the search chooses the child pointer (subtree) whose
separation vaiuesze;re on either-stde of the search value. Binary search is typically (but not
necessarily) used within nodes to find the separation values and child tree of interest. Instead of
choosing between a left and a right child as in a binary tree, a T-Tree search must make an n-way
choice. The correct child is chosen by performing a linear search of the values in the node. After
finding the value greater than or equal to the desired value, the child pointer to the immediate left
of that value is followed. If all values are less than the desired value, the rightmost child pninte_r

is followed. Of course, the search can be terminated as soon as the desired node is found.
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Since the running time of the search operation depends upon the height of the tree, B-Tree-
Search is O(log; n).

Inserting in B-Tree in not the same as binary tree. According to Kruse in (Kruse et al., 1991), to
perform an insertion on a B-Tree, the appropriate node for the key must be located using an
algorithm similar to B-Tree-Search. Next, the key must be inserted into the node. If the node is
not full prior to the insertion, no special action is required; however, if the node is full, the node
must be split to make room for the new key. Since splitting the node results in moving one key to
the parent node, the parent node must not be full or another split operation is required. This
process may repeat all the way up to the root and may require splitting the root node. This
approach requires two passes. The first pass locates the node where the key should be inserted;

the second pass performs any required splits on the ancestor nodes.

Since each access to a node may correspond to a costly disk access, it is desirable to avoid the
second pass by ensuring that the parent node is never full. To accomplish this, the presented
algorithm splits any full nodes encountered while descending the tree. Although this approach
may result in unnecessary split operations, it guarantees that the parent never needs to be split

and eliminates the need for a second pass up the tree. Since a split runs in linear time, it has little

effect on the big Q:Natation, i.e. O@login) running time of B-Tree-Insert.

SpliMe root node is handled as a special case since a new root must be created to contain

the median key of the old root. Observe that a B-Tree will grow from the top.

. =3 Y
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Below is an example of inserting in a B-Tree of order two.

1
112
2
1 3
2
1 34
214
1 3 5
214
1 3 5|6

Fig: 4: A B-Tree insertion example with each iteration.

Note that all insertions start at a leaf node.

Deletion of a key from a B-Tree is possible; however, special care must be taken to ensure that

the properties q_f'_i’é.-Tree arir’n,aimaincd. Several cases must be considered. If the deletion

reduces the number of keys in a node below the minimum degree of the tree, this violation must
RS

be corrected by combining several nodes and possibly reducing the height of the tree. If the key

has children, the children must be re-arranged (Rivest, ibid ).
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There are two popular strategies for deletion from a B-Tree.

¢ locate and delete the item, then restructure the tree to regain its invariants

« do a single pass down the tree, but before accessing (visiting) a node, restructure the tree
so that once the key to be deleted is encountered, it can be deleted without triggering the

need for any further restructuring

2.1.4 B-Trees in File and Database Systems

In addition to its use in databases, the B-Tree is also used in filesystems to allow quick random
access to an arbitrary block in a particular file. The basic problem is turning the file block
address into a disk block (or perhaps to a cylinder-head-sector) address.

Some operating systems require the user to allocate the maximum size of the file when the file is
created. The file can then be allocated as contiguous disk blocks. Converting to a disk block: the
operating system just adds the file block address to the starting disk block of the file. The scheme
is simple, but the file cannot exceed its created size. Other operating systems allow a file to
grow. The r:sulting disk blocks may not be contiguous, so mapping logical blocks to physical
blocks is more involved. -

——

B-trees are preferred when decision points, called nodes, are on hard disk rather than in random-
access memory (RAM). It takes thousands of times longer 10 access a data element from hard
disk as compared with accessing it from RAM, because a disk drive has mechanical parts, which
read and write data far more slowly than purely electronic media. B-trees save time by using

nodes with many branches (called children), compared with binary trees, in which each node has
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only two children. When there are many children per node, a record can be found by passing

through fewer nodes than if there are two children per node. A simplified example of this

principle is shown below.

Figure 5

In a tree, records are stored in locations called leaves. This name derives from the fact that
records always exist at end points (as shown in fig 1 above); there is nothing beyond them. The
maximum number of children per node is the order of the tree. The number of required disk
accesses is the depth. The image at left shows a binary tree for locating a particular record in a
set of eight leaves. The image at right shows a B-tree of order three for locating a particular
record in a set of ei&ht_ leaves (the ninth leaf is unoccupied, and is called a null). The binary tree
at left has a deﬁﬂféf four; thm _r_ight has a depth of three. Clearly, the B-tree allows a
desired_record to be located faster, assuming all other system parameters are identical. The
tradeoff is that the decision process at each node is more complicated in a B-tree as compared

with a binary tree. A sophisticated program is required to execute the operations in a B-tree. But

this program is stored in RAM, so it runs fast.
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It is not uncommon for a database to contain millions of records requiring many gigabytes of
storage. For examples, TELSTRA, an Australian telecommunications company, maintains a
customer billing database with 51 billion rows (yes, billion) and 4.2 terabytes of data. In order
for a database to be useful and usable, it must support the desired operations, such as retrieval
and storage, quickly. Because databases cannot typically be maintained entirely in memory,
B-Trees are often used to index the data and to provide fast access. For example, searching an
un-indexed and unsorted database containing » key values will have a worst case running time of
O(n); if the same data is indexed with a B-Tree, the same search operation will run in O(log n).
To perform a search for a single key on a set of one million keys (1.000,000), a linear search will
require at most 1,000,000 comparisons. If the same data is indexed with a B-Tree of minimum
degree 10, 114 comparisons will be required in the worst case. Clearly, indexing large amounts
of data can significantly improve search performance. Although other balanced tree structures
can be used, a B-Tree also optimizes costly disk accesses that are of concern when dealing with

large data sets.

According to (Bayer R. M. et al., 1994), databases typically run in multiuser environments where
many users can concurrently perform operations on the database, a B-Tree suffers from similar
problems in a multiiﬁér cnvirﬂnfl’e”m,lf_tw{a or more processes are manipulating the same tree, it

is possible for the tree to become corrupt and result in data loss or errors.

e —

In an attempt to address the above problems (Gray 1994) introduced serialize access to the data
structure. In other words, if another process is using the tree, all other processes must wait.

Although this is feasible in many cases, it can place an unnecessary and costly limit on

performance because many operations actually can be performed concurrently without risk.
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Locking, introduced by Gray and refined by many others, provides a mechanism for controlling
concurrent operations on data structures in order to prevent undesirable side effects and to ensure

consistency.
2.1.5 Some Variations in B-Trees

According to Shaffer in (Clifford A. Shaffer 1997), the B-tree and variations on it are commonly
used in large commercial databases to provide quick access to the data. In fact, he says that they
are "the standard file organization for applications requiring insertion, deletion, and key range
searches". The variant called the B+ tree is the usual one. Another variant is the B* tree, which is

very similar to the B+ tree, but tries to keep the nodes about two-thirds full at a minimum,

In a B+ tree, data records are only stored in the leaves. Internal nodes store just keys. These keys
are used for directing a search to the proper leaf. If a target key is less than a key in an internal
node, then the pointer just to its left is followed. If a target key is greater or equal to the key in
the internal node, then the pointer just to its right is followed. The leaves are also linked together
so that all of the keys in the B+ tree can be traversed in ascending order, just by going through all

of the nodes in this linked list along the bottom level of the tree.

—

When a B+ Ueé'fgim.plementm,) it is likely that the leaves contain key, pointer pairs
where the-pointer field points to the record of data associated with the key. This allows the data
file to exist separately from the B+ tree, which functions as an "index" giving an ordering to the
data in the data file. This is how B+ trees are used in a database. Of course, the pointers are

record numbers, our typical fake pointers used when creating dynamic data structures on disk.
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Notice that this B+ tree indexing scheme allows one data file to have several such indices, each

giving an ordering by a different key field, something highly desirable to have.

As an example, consider a B+ tree of order 200, whose leaves can each contain up to 199 keys
(approximately 200). Let's assume that the root node has at least 100 chiidren (though we know
it is allowed to have as few as two). A 2 level B+ tree that meets these assurﬁptinns can store up
to about 10,000 records, since there are at least 100 leaves, each containing at least 99 keys
(approximately 100). A 3 level B+ tree of this type can store up to about 1 million keys. A 4
level B+ tree can store up to about 100 million keys. To get faster access to the data, the root
node is commonly kept in main memory. Maybe even the child nodes of the root can fit in main
memory. Thus one can find one of 100 million keys with only 2 or 3 disk reads. If, as is
common, the associated data records are stored in a separate file, there is one additional read to
get the data associated with a key. Also, note that if the root node has fewer that our assumed

100 children, this slows down the lookup further.

In a practical B-Tree, there can be thousands, millions, or billions of records. Not all leaves
necessarily contain a record, but at least half of them do. The difference in depth between binary-

tree and B-Tree schemes is greater in a practical database than in the example illustrated here,

because realuwufHB-Trees mem order (32, 64, 128, or more). Depending on the number
of records-in the database, the depth of a B-Tree can and often does change. Adding a large
enough number of records will increase the depth; deleting a large enough number of records

will decrease the depth. This ensures that the B-Tree functions optimally for the number of

records it contains.
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Though B-Tree is a data structure for storing sorted data with amortized run times for insertion
and deletion often used for data stored on long latency I/O (filesystems and DBs) because child
nodes can be accessed together (since they are in order) and provided a foundation for R-Trees, it
cannot store new types of data specifically geometrical data and multi-dimensional data where
data have more attributes that spread across wide geographical area and spatial database store

objects that have spatial characteristics that describes them.

2.2 R-Tree

R-Tree is a tree data structure used for spatial access methods, i.e., for indexing multi-
dimensional information such as geographical coordinates, rectangles or polygons. R-Tree is a
spatial indexing technique such that given a query rectangle. we can quickly locate the spatial
object results. For location-based search, it is very common to search for objects based on their
spatial location. A query can be represented as another rectangle. The query is about locating the
spatial objects whose Minimum Bounding Rectangle (MBR) overlaps with the query rectangle as

shown in the figure 5 below:
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A world as a set of spatial objects

Figure 6: Source: http://horicky.blogspot.com/2010/02/spatial-index-rtree.html#links

The concept is similar to B-Tree, because spatial objects that are close by are grouped and each
of them form a tree whose intermediate nodes contains "close-by" objects. Since the MBR of the
parent node contains all MBR of its children, the Objects are close by if their parent's MBR is

minimized.

It’s a balanced search tree like B-Tree and so all leaf nodes are at the same height, organizes the
data in pages, and is designed for storage on disk as used in databases. Each page can contain a
maximum numbﬁ: of entries. often denoted as M. Researches show that it also guarantees a
minimum fill (except for the root node), however best performance has been experienced with a

minimum fill of 30% — 40% of the maximum number of entries, B-Trees guarantee 50% page

fill, and B*-Trees even 66%). The reason for this is the more complex balancing required for

spatial data as opposed to linear data stored in B-trees.

25 PP Rt (ec¥



The R-Tree was proposed by Antoine Guttman in 1984 ( Gutt 84, op. cit. pp. 47 ) and has found

significant use in both research and real-world applications (Y. Manolopoulos et.al., 2009).

A common real-world usage for an R-Tree might be to store spatial objects such as restaurant
locations or the polygons that typical maps are made of: streets, buildings, outlines of lakes,
coastlines. etc. and then find answers quickly to queries such as "Find all museums within 2 km
of my current location", "retrieve all road segments within 2 km of my location" (to display them
in a navigation system) or "find the nearest police station" (although not taking roads into

account).

The key idea of R-Tree data structure is to group nearby objects and represent them with their
minimum bounding rectangle (MBR) in the next higher level of the tree. Since all objects lie
within this bounding rectangle, a query that does not intersect the bounding rectangle can also
not intersect any of the contained objects. At the leaf level, each rectangié describes a single
object; at higher levels the aggregation of an increasing number of objects. This can also be seen

as an increasingly coarse approximation of the data set.

Each node of an R-Tree has a variable number of entries up to some pre-defined maximum, Each
entry witkljn a non-leaf node stores two pieces of data: a way of identifying a child node and the

S

& j'f—-___'_- s [
bounding box of all entries within this child node. So, according to Antoine Guttman an R-Tree

satisfiesthe following properties:

» Every leaf node contains between m and M index records unless it is the

root Thus, the root can have less entries than m
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» For each index record in a leaf node, | is the smallest rectangle that spatially contains the

n-dimensional data object represented by the indicated tuple
* Every non-leaf node has between m and M children unless it is the root

* For each entry in a non-leaf node, i is the smallest rectangle that spatially contains the

rectangles in the child node
* The root node has at least two children unless it is a leaf

» All leaves appear on the same level. That means the tree is balanced
2.2.1. Operation on R-Trees

As with most trees, the searching algorithms are rather simple. The key idea is to use the
bounding boxes to decide whether or not to search inside a subtree. In this way, most of the
nodes in the tree are never read during a search. Searching start from the root, (Scott T. et al.,
1996 ) and each children's MRB is examine to see if it overlaps with the query MBR. The whole
subtree is skipped if there is no overlapping, otherwise, an alternative search is adopted by

drilling into each child.

Notice that unlike other tree algorithm where only traverse down one path. The search needs to

traverse down mlﬂtfﬁle path if thg overtaps happen. Therefore, one need to structure the tree to

minimize the overlapping as high in the tree as possible. This means that the sum of MBR areas
e

along each path must be minimized (from the root to the leaf) as much as possible.

The insertion in R-Trees are the same with slight difference in B-Trees. To insert a new spatial

object, starting from the root node, pick the children node whose MBR will be extended least if

the new spatial object is added, walk down this path until reaching the leaf node.
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If the leaf node has space left, insert the object to the leaf node and update the MBR of the leaf
node as weil as all its parents (Tan, T. C. et al., 1997). Otherwise, split the leaf node into two
(by creating a new leaf node and copy some of the content of the original leaf node to this new
one). And then add the newly created leaf node to the parent of the original leaf node. If the

parent has no space left, the parent will be split as well.

If the split goes all the way to the root, the original root will then be split and a new root is

created.

Deleting a spatial node will first search for the containing leaf node. Remove the spatial node
from the leaf node's content and update its MBR and its parent's MBR all the way to the root. If
the leaf node now has less than m node. then we need to condense the node by marking the leaf
node to be deleted. And then we remove the leaf node from its parent's content as well as
updating them. If the parent is now less than m nﬁde, we mark the parent to be deleted also and
remote the parent from the parent's parent. At this point, the entire node that is marked delete is

removed from the R-Tree.

Notice that the content with these delete node is not all garbage, since they still have some

i e _,.--""'-—_._‘_ | '
children that are valid nodes (but were removed from the tree). Now, you need to reinsert all

these valid nodes back in the tree.

Finally, you check if the root node contains only one child, you throw away the original root and

use its own child to become the new root.
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Note: The only difference betwegn R-Tree and B-Tree with respect to the algorithm used is that
The insertion and deletion algorithms use the bounding boxes from the nodes to ensure that
"nearby" elements are placed in the same leaf node (in particular, a new element will go into the
leaf node that requires the least enlargement in its bounding box). Each entry within a leaf node
stores two pieces of information; a way of identifying the actual data element (which,

alternatively, may be placed directly in the node), and the bounding box of the data element.

Similarly, the searching algorithms (e.g., intersection, containment, nearest) use the bounding
boxes to decide whether or not to search inside a child node. In this way, most of the nodes in the
tree are never "touched" during a search. Like B-trees, this makes R-Trees suitable for large data
sets and databases, where nodes can be paged to memory when needed, and the whole tree

cannot be kept in main memory.

Update happens when an existing spatial node changes its dimension. One way is to just change
the spatial node's MBR but not change the R-Tree. A better way (but more expensive) 1s to

delete the node, modify it MBR and then insert it back to the R-Tree.
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A typical example of R-Tree data structure is as shown in the Fig 7 below:

credrs &
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R1 and R? are the Root Nodes, R3. R4, R5 and R6 , R7 are also the Leaf nodes.

R1 covers leaf nodes R3, R4, R5 & R2 covers leaf nodes R6, R7. These comprise them with the

Minimum Bounding Rectangle

R1 covers child nodes “A and I” and comprise them with the Minimum Bounding Rectangle
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R4 covers child nodes “C and G” and comprise them with the Minimum Bounding Rectangle in

that order. The records to be located are A. B.to L.

The key problem with R-Tree is to build an efficient tree that on one hand is balanced so
that the leaf nodes are at the same height. Also, the rectangles do not cover too much empty
space and do not overlap too much so that during search, fewer subtrees need to be
processed. For example, the original idea for inserting elements to obtain an efficient tree is
to always insert into the subtree that requires least enlargement of its bounding box. Once
that page is full, the data is split into two sets that should cover the minimal area each.
Most of the research and improvements for R-Trees aims at improving the way the tree is
built and can be grouped into two objectives: building an efficient tree from scratch
(known as bulk-loading) and performing changes on an existing tree (insertion and.

deletion).

According to (Hwang S. et al., 2003) R-Trees do not historically guarantee good worst-case
performance, but generally perform well with real-world data. While more of theoretical interest,
the (bulk-loaded) Priority R-Tree variant of the R-Tree is also worst-case optimal, ( Lars Arge
et al., 2004 ) but due to the increased complexity, has not received much attention in practical
applications so faf:j -fi:I-owever. one—advantage of R-Tree is that when data is organized in an
R-Tree, the k nearest neighbours (for any local space) of all points can efficiently be computed

e —

using a spatial join (Brinkhoff et al., 1993) This is beneficial for many algorithms based on the

k nearest neighbours.
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2.2.2. Visualizing R-Tree in 3-Dimension (3-D)

A three-dimensional (3-D) spatial index is required for real time applications of integrated
organization and management in virtual geographic environments. Being one of the most
promising methods, the R-Tree spatial index which adopted 2-D has paid increasing attention in
3-D, geospatial database management. Since the existing R-Tree methods are usually limited by
their weakness of low efficiency, due to the critical overlap of sibling nodes and the uneven size
of nodes. The 3-D R-Tree, proposed in (Y. Theodiridis et al., 1991 ) considers time as an extra
dimension and represents 2-D rectangles with time intervals as three-dimensional boxes. This
tree can be the original R-Tree or any of its (ephemeral) variants. The 3-D R-Tree was
implemented and evaluated analytically and experimentally in (Y. Theodiridis et al., 1998), and
it was compared with the alternative solution of maintaining a spatial index (e.g. a 2-D R-Tree)
and a temporal index (e.g., a 1-D R-Tree or a segment tree). Synthetic (uniform-like) datasets
were used. and the retrieval costs for pure temporal (during, before), pure spatial (overlap,
above), and spatiotemporal operators (the four .cnmbinatiuns} were measured, according to Y.
Theodoridis . The results suggest that the unified scheme of a single 3-D R-Tree is obviously
superior when spatiotemporal queries are posed, whereas for mixed workloads, the decision
depends on the seleetivity of the operators.

With the increa;; ‘..r;ariatinns iﬁ R-Tree, a new spatial cluster grouping algorithm and R-Tree
insertion algérithm is then proposed. Experimental analysis on comparative performance of
spatial indexing shows that by the new method the overlap of R-Tree sibling nodes is minimized

drastically and a balance in the volumes of the nodes is maintained. such as Virtual geographic

environments; 3-D spatial index: R-Tree and Spatial cluster grouping.
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2.2.3 Variations in R-Trees

A survey by Gaede and Guenther in (V. Gaede et al., 1998) annotates a vast list of citations
related to multi-dimensional access methods and, in particular, refers to R-Trees to a significant
extent. Just as in B-Tree various variations had brought an improvement in the original R-Tree
proposed by Antoine Guttman. In this review, I am further focusing on the family of R-Trees by
enlightening the similarities and differences, advantages and disadvantages of the variations in a
more exhaustive manner. As the number of variants that have appeared in the literature is large, I

group them according to the special characteristics of the assumed environment or application.

2.2.3.1 The R+-Tree

The original R-Tree has two important disadvantages that is:
e The execution of a point location query in an R-Tree may lead to the investigation
of several paths from the root to the leaf level. This characteristic may lead to
performance deterioration, specifically when the overlap of the MBRs is significant.
e A few large rectangles may increase the degree of overlap significantly, leading to

performance degradation during range query exec ution, due to empty space.

-
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R+-Trees were proposed as a structure that avoids visiting multiple paths during point location

qucrﬁm thus the retrieval performance could be improved (M.Stonebraker et al.,1986).
Moreover, MBR overlapping of internal modes is avoided. This is achieved by using the clipping
technique. In simple words, R+-Trees do not allow overlapping of MBRs at the same tree level.
In turn, to achieve this, inserted objects have to be divided in two or more MBRs, which means

that a specific object’s entﬁes may be duplicated and redundantly stored in several nodes
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as shown below. Therefore, this redundancy works in the opposite direction of decreasing the
retrieval performance in case of window queries. At the same time, another side effect of
clipping is that during insertions, an MBR augmentation may lead to a series of update
operations in a chain-reaction type. Also, under certain circumstances, the structure may lead to a
deadlock, as, for example, when a split has to take place at a node with M+1 rectangles, where

every rectangle encloses a smaller one.

Fig 8. An R+-Tree example
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2.2.3.2 The R*-Tree

The R*-Tree. Although proposed in (N. Beckmann et al., 1990), are still very well received and
widely accepted in the literature as a prevailing performance-wise structure that is often used as a
basis for performance comparisons. The R*-Tree does not obey the limitation for the number of
pairs per node and follows a sophisticated node splif technique. More specifically, the technique
of ‘forced reinsertion’ is applied, according to which, when a node overflows, p entries are
extracted and reinserted in the tree (p being a parameter, with 30% a suggested optimal value).
Other novel features of R*-Tree is that it takes into account additional criteria except the
minimization of the sum of the areas of the produced MBRs. The benefit from involving these
criteria is seen from its performance. These criteria are the minimization of the overlapping
between MBRs at the same level, as well as the minimization of the perimeter of the produced
MBRs. Conclusively, the R*-Tree insertion algorithm is quite improving in comparison to that of
the original R-Tree and, thus, improves the latter structure considerable as far as retrievals are
concerned (up to 50%). Evidently, the insertion operation is not for free as it is CPU demanding

since it applies a plane-sweep algorithm.

2.2.3.3 The Hilbert R-Tree

The Hilbert R—Tree:i;a hybrid strueture based on R-Trees and B+-Trees (1. Kamel et al., 1994 ).
Actual_l_:f:__i_t_is a B+-Tree with geometrical objects being characterized by the Hilbert value of
their centroid. Thus, leaves and internal nodes are augmented by the largest Hilbert value of their
contained objects or their descendants, respectively. For an insertion of a new object, at each

level the Hilbert values of the alternative nodes are checked and the smallest one that is larger

than the Hilbert value of the object under insertion is followed. In addition, another heuristic
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used in case of overflow by Hilbert R-Trees is the redistribution of objects in sibling nodes. In
other words, in such a case up to s siblings are checked in order to find available space and
absorb the new object. A split takes place only if all s siblings are full and. thus, s+1 nodes are
produced. This heuristic is similar to that applied in B*-Trees, where redistribution and 2-to-3
splits are performed during node overflows (Donald Knuth 1967). According to the authors’
experimentation, Hilbert R-Trees were proven to be the best dynamic version of R-Trees.
However, this variant is vulnerable performance-wise to large objects. Moreover, by increasing
the space dimensionality, proximity is not preserved adequately by the Hilbert curve, leading to

increased overlap of MBRs in internal tree nodes.

2.2.3.4 Linear Node Splitting

Linear Node Splitting in (Ang and Tan, op. cit. 1997) have proposed a linear algorithm to
distribute the objects of an overflowing node in two sets. The primary criterion of this algorithm
was to distribute the objects between the two nodes as evenly as possible, whereas the second
criterion was the minimization of the overlapping between them. Finally, the third criterion was
the minimization of the total coverage. Experiments using this algorithm have shown that it

results in R-trees with better characteristics and better performance for window queries in

-

comparison with the quadratic atgorithm of the original R-tree.

Rpp—
2.2.3.5 Optimal Node Splitting

In an attempt to solve overflow of node, three node splitting algorithms were proposed by
Guttman to handle a node overflow. The three algorithms have linear, quadratic, and exponential

complexity, respectively. Among them, the exponential algorithm achieves the optimal
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bi-partitioning of the rectangles, at the expense of increased splitting cost. On the other hand, the
linear algorithm is more time efficient but fails to determine an optimal rectangle bipartition.
Therefore, the best compromise between efficiency and bipartition optimality is the quadratic

algorithm.

Y. Garcia et al., (1998) elaborated the optimal exponential algorithm of Guttman and reached a
new optimal polynomial algorithm O(nd) where d is the space dimensionality and n = M +1 is
the number of entries of the node that overflows. For n rectangles the number of possible
bipartitions is exponential in n. Each bipartition is characterized by a pair of MBRs,

one for each set of rectangles in each partition. The key issue, however, is that a large number of
candidate bipartitions share the same pair of MBRs. This happens when we exchange rectangles
that do not participate in the formulation of the MBRs. The authors show that if the cost function
used depends only on the characteristics of the MBRs, then the number of different MBR pairs is
polynomial. Therefore, the number of different bipartitions that must be evaluated to minimize

the cost function can be determined in polynomial time.

The proposed optimal node splitting algorithm investigates each of the O(n2) pairs of MBRs and
selects the one that;ninimizes the-cost Tunction. Then each one of lhé rectangles is assigned to
the MBR that it is enclosed by. Rectangles that lie at the intersection of the two MBRs are
assigned to one of them according to a selected criterion. In the same paper, the authors give

another insertion heuristic, which is called sibling-shift. In particular, the objects of an

overflowing node are optimally separated in two sets. Then one set is stored in the specific node,
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whereas the other set is inserted in a sibling node that will depict the minimum increase of an
objective function (e.g., expected number of disk accesses). If the latter node can accommodate
the specific set, then the algorithm terminates. Otherwise, in a recursive manner the latter node is
split.

Finally, the process terminates when either a sibling absorbs the insertion or this is not possible,
in which case a new node is created to store the pending set. The authors reported that the
combined use of the optimal partitioning algorithm and the sibling-shift policy improved the
index quality (i.e., node utilization) and the retrieval performance in comparison to the Hilbert

R-trees, at the cost of increased insertion time.

2.2.3.6 Branch Grafting

More recently, in (T. Schrek et al., 2000) an insertion heuristic was proposed to improve the
shape of the R-tree so that the tree achieves a more elegant shape, with a smaller number of
nodes and better storage utilization. In particular, this technique considers how to redistribute
data among neighboring nodes, so as to reduce the total number of created nodes. The approach
of branch grafting is motivated by the following observation, If, in the case of node overflow,
you examined all nthf.:r nodes to see if there is another node (at the same level) able to
accommodate ann.;the overflowed node s rectangles, the split could be prevented. Evidently,
in thlw__ a split is performed only when all nodes are completely full. Since the
aforementioned procedure is clearly prohibitive as it would dramatically increase the insertion
cost, the branch grafting method focuses only on the neighboring nodes to redistribute an entry

from the overflowed node. Actually, the term graffing refers to the operation of moving a leaf or

internal node (along with the corresponding subtree) from one part of the tree to another.
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The objectives of branch grafting are to achieve better-shaped R-trees and to reduce the total

number of nodes. Both these factors can improve performance during query processing.

To illustrate these issues, the following example is given in (T. Schrek et al., ibid). Assume that
you are inserting eight rectangles (with the order given by their numbering), which are depicted
in figure, below. Let the maximum (minimum) number of entries within a node be equal to 4.
Therefore, the required result is shown in Figure 9 (a). because they clearly form two separate
groups. However, by using the R-tree insertion algorithm, which invokes splitting after each
overflow, the result in Figure 9. (b) would be produced. Using the branch and grafting method,
the split after the insertion of rectangle / can be avoided.

Figure 9. (¢) illustrates the resulted R-tree after the insertion of the first seven rectangles (i.e., 4
to G). When rectangle H has to be inserted, the branch grafting method finds out that rectangle 3
is covered by node R1, which has room for one extra rectangle. Therefore, rectangle C is moved

from node R2 to node R1. and rectangle H can be inserted in R2 without causing an overflow.

The resulted R-tree is depicted in Figure 9. (d).
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Fig. 9. Branch grafting technique:

(a) Optimal result after inserting 8 rectangles:

(b) actual result produced after two R-tree splits. -

D
E H
€
F G
Fig. 9. (a)
D
C
E H
F G
Fig. 9. (b)
Rl
A|B |D
Fig. 9. (¢)
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R1

R1 R2

Fig. 9. (d)

Fig. 9. (¢) Resulted R-tree after the first 7 insertions (rectangles 4 to G);

Fig.9. (d) result of branch grafting after inserting the rectangle /.

In summary, in case of node overflow, the branch grafting algorithm first examines the parent
node, to find the MBRs that overlap the MBR of the overflowed node. Next, individual records
in the overflowed are examined to see if they can be moved to the nodes corresponding to the
previously found overlapping MBRs. Records are moved only if the resulting area of coverage

for the involved nedes does not haveto be increased after the moving of records. In the case that

no movement is possible, a normal node split takes place.

In general, the approach of branch grafting has some similarities with the forced reinsertion,

which is followed by the R-tree. Nevertheless, as mentioned in (T. Schrek, et al.,) branch

grafting is not expected to outperform forced reinsertion during query performance. However,
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one may expect that, because branch grafting tries to locally handle the overflow, the overhead to
the insertion time will be smaller than that of forced reinsertion. In (T. Schrek et al., 2000),

however, the comparison considers only various storage utilization parameters, not query

processing performance,

2.2.3.7 Compact R-Tree

This type of variation was proposed by Huang et al, a dynamic R-Tree version with optimal
space overhead ( P. W. Huang et al., 2001 ). The motivation behind the proposed approach is that
R-Trees, R+-Trees, and R*-Trees suffer from the storage utilization problem. which is around
70% in the average case. Therefore, the authors improve the insertion mechanism of R-trees to a
more compact R-tree structure, with no penalty on performance during queries. The heuristics
applied are simple, meaning that no complex operations are required to significantly improve
storage utilization. Among theM+1 entries of an overflowing node during insertions, a set of M
entries is selected to remain in this node, under the constraint that the resulting MBR is the

minimum possible. Then the remaining entry is inserted to a sibling that:

e has available space, and

-

e whose MBR is emme as possible.

__-_-—-_F_ » - - -
Thus, a split takes place only if there is no available space in any of the sibling nodes.

Performance evaluation results reported in (P. W. Huang et al., 2001) have shown that the
storage utilization of the new heuristic is between 97% and 99%, which is a great improvement.
A direct impact of the storage utilization improvement is the fact that fewer tree nodes are

required to index a given dataset. Moreover, less time is required to build the tree by individual
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insertions, because of the reduced number of split operations required. Finally, caching is
improved because the buffer associated with the tree requires less space to accommodate tree
nodes. It has been observed that the query performance of window queries is similar to that of

Guttman’s R-tree.

2.2.3.8. Priority R-Tree
The Priority R-tree (PR-R-tree for short) has been proposed in ( Lars Arge et al., op. cit) and is a
provably asymptotically optimal variation of the R-tree. The term priority in the name of PR-tree

stems from the fact that its bulk-loading algorithm utilizes the “priority rectangles”.

A PR-tree is a height-balanced tree, i.c., all its leaves are at the same level and in each node ¢
entries are stored. According to Lars Arge et al., pseudo-PR-tree 7S on S are defined recursively:
if S contains fewer than ¢ rectangles (c is the maximum number of rectangles that can fit in a
disk page), then 7S consists of a single leaf. Otherwise, 7S consists of a node v. To derive a PR-
tree from a pseudo-PR-tree, the PR-tree has to be built into stages, in a bottom-up fashion. First,
the leaves Vo are created and the construction proceeds to the root node. At stage i, first the

pseudo-PR-tree 7Si is constructed from the rectangles Si of this level. The nodes of level i in the

-

PR-tree consist uf’ai;’the leaves oEFSi1.e., the internal nodes are discarded. The bulk-loading of
a PR-tree is slower than the bulk-loading of a packed 4D Hilbert tree. However, regarding query
performance, for nicely distributed real data, PR-trees perform similar to existing R-tree variants.
In contrast, with extreme data (very skewed data, which contain rectangles with high differences

in aspect ratios), PR-trees outperform all other variants, due to their guaranteed worst-case

3
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performance, because any other R-tree variant may require (in the worst case) the retrieval of

leaves, even for queries that are not satisfied by any rectangle.

2.2.3.9 Deviating Variations

Apart from the aforementioned R-Tree variations, a number of interesting extensions and
adaptations have been proposed that in some sense deviate drastically from the original idea of
R-trees. Among other efforts, include the following research works.

The Sphere trees by Oosterom use minimum bounding spheres-instead of MBRs (P. Oosterom
et al., 1990 ), whereas the Cell trees by Guenther use minimum bounding polygons designed to
accommodate arbitrary

shape objects ( O.Guenther 1989 ). The Cell tree is a clipping-based structure and, thus, a variant
of Cell trees has been proposed to overcome the disadvantages of clipping. The latter variant

uses ‘oversize shelves’, i.e., special nodes attached to internal ones. which contain objects that

normally should cause considerable splits ( O.Guenther et al 1991 ).

Similarly to Cell trees, Jagadish and Schiwietz proposed independently the structure of

Polyhedral trees or P-trees, which use minimum bounding polygons instead of MBRs

(H. V Jagadish 1996). ST

_,__-—-"'-'-'-__

The X-tree by Berchtold et al. uses the notion of ‘supernodes’ (i.e.. nodes of greater size) to

handle overflows and avoid splits (Berchtold et al. op. cit. pp.28-39 ).
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The S-tree by (Aggrawal et al., 1997). relaxes the rule that the R-tree is a balanced structure and
may have leaves at different tree levels. However, S-trees are static structures in the sense that

they demand the data to be known in advance.

Another recent effort by (C. H Ang et al., 2000), is the Bitmap R-tree where each node contains
bitmap descriptions of the internal and external object regions except the MBRs of the objects.
Thus, the extra space demand is paid off by savings in retrieval performance due to better tree
pruning. The same trade-off holds for the RS-tree, which is proposed by (J. D. Park et al., 2001)

and connects an R *-tree with a signature tree with an one-to-one node correspondence.

P. K. Agarwal et al., ( 2001 ) proposed the Box-tree, that is, a bounding volume hierarchy that
uses axis-aligned boxes as bounding volumes. They provide worst-case lower bounds on query
complexity, showing that box-trees are close to optimal, and they present algorithms to convert
box-trees to R-trees, resulting in R-trees with (almost) optimal query complexity.

Y. J. Lee et al., ( 2001 ) developed the DR-tree, which is a main memory structure for multi-
dimensional objects. They couple the R*-tree with this structure to improve the spatial query
performance. .

Finally, Bozanis et ;il. have partitioned the R-tree in a number of smaller R-trees (P. Bozanis et

al., 1999 ), along the lines of the binomial queues that are an efficient variation of heaps.
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2.3 Static Versions of R-Trees

There are common applications that use static data. For instance, insertions and deletions in
census, cartographic and environmental databases are rare or even they are not performed
at all. For such applications, special attention should be paid in order to construct an optimal
structure with regards to some tree characteristics, such as storage overhead minimization,
storage utilization maximization, minimization of overlap or cover between tree nodes, or
combinations of the above. Therefore, it is anticipated that query processing performance will be
improved. These methods are well known in the literature as “packing’ or ‘bulk loading’. Thus,

such methods that require the data to be known in advance are also reviewed.

2.3.1 The Packed R-Trees

The first packing algorithm was proposed by (N. Roussopoulos et al., 1985 ), soon after the
proposal of the original R-tree. This first effort basically suggests ordering the objects according
to some spatial criterion (e.g., according to ascending x-coordinate) and then grouping them in
leaf pages. No experimental work is presented to compare the performance of this

method to that of the original R-tree. However, based on this simple inspiration a number of

other efforts have been proposed in the literature.

-

2.3.2 The Hilbert Packed R-Trees
L. Kamel and Faloutsos ( 1993 ) proposed an elaborated method to construct a static R-tree with
100% storage utilization based on sorting the objects according to the Hilbert value of their

centroids and then build the tree in a bottom-up manner. Experiments showed that the latter

method achieves significantly better performance than the original R-tree with quadratic split.

46



the R*tree and the Packed R-tree by (N. Roussopoulos et al.,1985 ) in Ipnint and window
queries. Moreover, Kamel and Faloutsos proposed a formula to estimate the average number of
node access, which is independent of the details of the R-tree maintenance algorithms and can be

applied to any R-tree variant.

2.3.3 Small-Tree-Large-Tree

The previous packing algorithms build an R-tree access method from a set of spatial objects. The
small-tree-large-tree method (STLT) L. Chenetal., 1998 ) performs efficient bulk insertions into
an existing R-tree structure. And they proposed this: Let R be a set of spatial objects indexed by
an already existing R-tree and N a set of new objects that must be inserted. Instead of inserting
the objects in the R-tree one-by-one, the STLT method constructs a small R;tree for N and then
inserts the small R-tree into the large R-tree. Obviously, the efficiency of the resulting index
depends on the data distribution of the small R-tree. If the objects in N cover a large part of the
data space, then using the STLT approach will result in increasing overlap in the resulting index.
Therefore, the method is best suited for skewed data distributions. STLT is extended, where the
Generalized R-tree Bulk-Insertion Strategy (GBI) is proposed. GBI inserts new incoming data

sets into active R-trees as follows: it first partitions the data sets into a set of clusters and outliers,

then it constructs asmall R-tree-foreach cluster, finding suitable places in the original R-tree to

insert the newly created R-trees, and finally it bulk-inserts the new R-trees and the outliers in the

original R-tree.
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2.3.4 Buffer R-Trees

According to (L. Arge et al., 2002 ), the Buffer R-tree (BR) for performing bulk update and
queries. BR is based on the buffer tree lazy buffering technique and exploits the available main
memory. Analytical results in L. Arge et al show the efficiency of BR, whereas experimental
results illustrates its superiority over the other methods. BR requires smaller execution times to
perform bulk updates and produces a better quality index in terms of query performance.
Moreover, BR (differently from other methods) allows for simultaneous batch updates and

queries.

2.3.5 Trajectory Bundle-Tree (TB-Tree)

The TB-tree (D. Pfoser et al., 2000 ) relaxes a fundamental R-tree property, i.e.. keeping
neighboring entries together in a node, and strictly preserves trajectories (paths) such that a leaf
node only contains segments belonging to the same trajectory. This is achieved by giving up on
space discrimination. The TB-tree indexes past locations of objects and supports continuous

changes.

2.4 Summary and Conclusion

Evidently, the original R-treeﬁm be Guttman. has influenced all the forthcoming
variations of static and dynamic R-tree structures. The R*-tree followed an engineering approach
and evaluated several factors that affect the performance of the R-tree. For this reason. it is

considered the most robust variant and has found numerous applications, in both research and

commercial systems. However, the empirical study has shown that the Hilbert R-tree can

perform better than the other: variants in some Cases. It is worth mentioning that the PR-tree,
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although a variant that deviates from other existing ones, is the first approach that offers
guaranteed worst-case performance and overcomes the degenerated cases when almost the entire

tree has to be traversed. Therefore, despite its more complex building algorithm, it has to be

considered the best variant reported so far.



CHAPTER THREE
METHODOLOGY

3.0 Introduction

In recent years, there has been an upsurge of interest in spatial databases. A major issue is how to
efficiently manipulate massive amounts of spatial data stored on disk in multidimensional spatial
indexes (data structures). Construction of spatial indexes has been studied intensively in the
database community. The continuous arrival of massive amounts of new data makes it important
to efficiently update existing indexes. The R-tree, one of the most popular access methods for
rectangles, is based on the heuristic optimization of the area of the enclosing rectangle in each
inner node. A lot of variations has emerged since its inception, all in an effort to improve the
original R-tree proposed by Antoine Gutman. In this research, a new R-tree variant “an
optimized R-tree” is designed which is expectec_i to improve upon the original R-tree. This

section covers the study area, design of study, design of algorithms and constraints/problems.

3.1 Study Area

o

There has been major concern of interest in spatial databases in the commercial and research

database communities. Spatial databases ar¢ systems designed to store, manage, and manipulate

spatial data like points, polyclinic, polygons, and surfaces. Geographic information systems

(GIS) are a popular incarnation. Spatial database applications often involve massive data sets,

thus the need for efficient handling of massive spatial data sets has become a major issue, and a

large number of disk based multidimensional index structures (data structures) have been

proposed in the database literature. Typically, multidimensional index structures support
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insertions, deletions, and updates; as well as a number of proximity queries like window or
nearest-neighbor queries. Recent research in the database community has focused on supporting
bulk operations, in which a large number of operations are performed on the index at the same
time. The increased interest in bulk operations is a result of the ever-increasing size of the
manipulated spatial data sets and the fact that performing a large number of single operations one
at a time is simply too inefficient to be of practical use. The scope is limited to memory

utilization and the use of directory pages in memory.

3.2 Design of Study

In this design study, I consider all approaches of optimizing the retrieval performance that have
to be applied during the insertion of a new data rectangle. The two basic design for this approach
are:

* the Leaf Node and

» the Non Leaf Node

A leaf node contains-entries of the form (Dataobject, Rectangle) where Dataobject refers to a
- — "..._.___.r-'-__-_-_._’

record in the database, describing a spatial object and Rectangle is the enclosing rectangle of that

spatial object.

A non-leaf node contains entries of the form (cp, Rectangle) where cp is the address of a child

node in the R-tree and Rectangle is the minimum bounding rectangle of all rectangles which are

entries in that child node.

51



As I said in the previous chapters, the main problem with R-tree are:

« For an arbitrary set of rectangles, dynamically build up bounding boxes from subsets of
between m and M rectangles, in a way that, arbitrary retrieval operations with query
rectangles of arbitrary size are supported efficiently. The known parameters of good
retrieval performance affect each other in a very complex way, such that it is impossible
to optimize one of them without influencing other parameters which may cause a
deterioration of the overall performance.

« Moreover, since the data rectangles may have very different size and shape and the
minimum bonding boxes grow and shrink dynamically, the success of methods which
will optimize one parameter is very uncertain.

In this approach, some of the parameters which are essential for the retrieval performance are
considered. Furthermore, interdependences between different parameters .are analyzed. The
design seek to consider the following parameters:

1. The area covered by a minimum bounding rectangle should be minimized, i.e. the area
covered by the bounding rectangle but not covered by the enclosed rectangles, the dead

space, should be minimized. This will improve performance since decisions which paths

have to b t“'*érsed, can be taken on higher levels.
ave to be trav - taken 68 g

i

2. The overlap between minimum bounding rectangle should be minimized. That’s also

—
decreases the number of paths to be traversed.

The method will consider the principle of R-tree under Antoine Guttman with respect to inserting

new data rectangle and it effects as compared with the design in detail an improved R-tree (an

Optimized R-tree).
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3.3 The Principles of R-Tree

The R-tree is a dynamic structure, thus all approaches of optimizing the retrieval performance
have to be applied during the insertion of a new data rectangle. The insertion algorithm calls two

more algorithms in which the crucial decisions for good retrieval performance are made.

The first is the algorithm ChooseSubtree Beginning in the root, descending to a leaf, it finds on

every level the most suitable subtree to accommodate the new entry.

The second is the algorithm Split and it’s always called, If ChooseSubtree ends on a node filled
with the maximum number of entries M Split should distribute M+ rectangles into two nodes in

the most appropriate manner.

In the following, the ChooseSubtree- and Split-algorithms, suggested in available R-tree variants
are analyzed and discussed. I will first consider the original R-tree as proposed by Guttman in

[Gut 84].

e —

Algorithm ChooseSubtree (Select aleaf node in which to place a new index entry E)

CS 1 Set N to be the root
CS2 IfNisaleaf
Return N

Else
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Choose the entry in N whose rectangle needs least area enlargement to include

the new data. Resolve ties by choosing the entry with the rectangle of smallest area

end

CS 3 Set N to be the childnode pointed to by the childpointer of the chosen entry and repeat

from CS2

Obviously, the method of optimization is to minimize the area covered by a directory rectangle,

this may also reduce the overlap and the CPU cost will be relatively low.

Guttman discusses split-algorithms with exponential, quadratic and linear cost with respect to the
number of entries of a node. All of them are designed to minimize the area, covered by the two
rectangles resulting from the split. The exponential split finds the area with the global minimum,
but the cpu cost is too high The others try to find approximations in his experiments, Guttman
obtains nearly the same retrieval performance but I will only discuss the quadratic algorithms in

details.

e

Algorithm QuadraticSplit

[Divide a set of M+l entries into two groups]

0S 1 Invoke PickSeeds to choose two entries [0 be the first

entries of the groups
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0S2 Repeat
DistributeEntry
until
all entries are distributed or one of the two groups has M-m+1 eniries

0S3 If entries remain, assign them to the other group such that it has the minimum number m

Algorithms PickSeeds

PS | For each pair of entries E1 and E2, compose a rectangle R including EI rectangle and

E2 rectangle

Calculate d = area(R) - area(El rectangle) - area(E2 rectangle)

PS2 Choose the pair with the largest d

Algorithms DistributeEntry

DE1 Invoke PickNext to choose the next eniry 1o be

assigned.

DE2 Add it to the group whose covering rectangle will have to be enlarged least to
accommodate it. Resolve-ties by adding the eniry 10 the group with the smallest area,

_then to-the one with the fewer eniries, then to either.

Algorithms PickNext
PN 1 For each entry E not yet ind group, calculate d1 = the area increase required in the
covering rectangle of Group 1 to include E Rectangle

Calculate dz analogously for Group 2

P~ H‘i‘ :
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PN2 Choose the entry with the mﬁximum difference

between drand dz

The algorithm PickSeeds finds the two rectangles which would waste the largest area put in one
group. In this sense the two rectangles are the most distant ones. It is important to mention that
the seeds will tend to be small too, if the rectangles to be distributed are of very different size and

or the overlap between them is high.

The algorithm DistributeEntry assigns the remaining entries by the criterion of minimum area.

PickNext chooses the entry with the best area and the value in every situation.

If this algorithm starts with small seeds, problems may occur if in d-1 (the area required in the
covering rectangle) of the d axes a far away rectangle has nearly the same coordinates as one of
the seeds. it will be distributed first. Indeed, the area and the area enlargement of the created
needle-like bounding rectangle will be very small, but the distance is very large This may initiate
a very bad split. Moreover. the algorithm tends to prefer the bounding rectangle, created from the
first assignmenl of a rectangle to one seed. Since it was enlarged, it will be larger than others.
Thus it needs less gr;a enlargemme the next entry, it will be enlarged again. and so on.

_._—-l-"'-'-_-_

Another problem is that, if one group has reached the maximum number of entries M-m+l, all

remaining entries are assigned to the other group without considering geometric properties

Figure 10 (as shown below) gives an example showing all these problems The result is either a

split with much overlap (fig 10b) or a split with uneven distribution of the entries reducing the |
storage utilization (fig 10a)
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3.4 The Optimized R-Tree

An Optimized R-Tree is completely dynamic, - sertions and deletions can be intermixed with

g_anizatinn is required. Obviously, the structure must allow

queries and no periodic global reor

it cannot guarantee that only one search path is required

overlapping directory rectangles. Thus,

for an exact match query as in the original R-Tree by Guttman.

57



To solve the problem of choosing an appropriate insertion path, previous R-tree versions take
only the area parameter into consideration. The Optimized R-tree will take into considerations
the area perimeters, the margins and the overlaps in different combinations with respect to

insertion, where the overlap of an entry is defined as

Let E1, & Ep be the entries in the current node. Then

p

overlap (Ek) = Z Area (Ex Rectangle n E1 Rectangle), 1<p= k

1=1,1%Fk

3.4.1 Algorithms for Optimized R-tree

The best insertion and retrieval method is described in the following algorithms using the

relation above.

_.—l-l-'-'-—..__‘_

Algorithm ChooseSubtree (Select a leaf node in which to place a new index entry E)

CS 1 Set N to be the root
CS2 IfNisaleaf
Return N

Else
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if the childpointer in N p{;inrs to leaves (determine the minimum overlap cost) Choose
the entry in N whose rectangle needs least overlap enlargement to include

the new data. Resolve ties by choosing the entry whose rectangle needs least area
enlargement

then
the entry with the rectangle of smallest area if the childpointer in N do not point to
leaves(determine the minimum area cost),choose the entry in N whose rectangle needs
least area enlargement to include the new data rectangle. Resolve ties by choosing the
entry with the rectangle of smallest area
end

CS3 Set N to be the childnode pointed to by the childpointer of the chosen entry and repeat

from CS2

34.2 Node Splitting

~ The Optimized R-tree will use the following method to find good splits along each axis. The
entries are first sorted by the lower value, then sorted by the upper value of their rectangles.

For each sort M-mei -distributigxy_ﬁlhtbiﬂ entries into two groups are determined, where the

k-th distribution (k = 1, (M-2m+2)) 18 described as follows The first group contains the first

e ———

(m-1)+k entries, the second group contains the remaining entries. Three different approaches are

considered to have a good split value for the node. These are: the area, the margin and the

overlap and are defined as follows:
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» area value area|bb(first group)] + area|bb(second group)|

+ margin value margin|bb(first group)| + margin|bb(second group)|

+ overlap value area|bb(first group) N bbh(second group)|

Where bb is the bounding box of a set of rectangles
The obtained values may be applied to determine a split axis or the final distribution (on a

chosen split axis ).

Node Splitting Algorithm

Si Invoke ChooseSplitAxis to determine the axis, perpendicular

to which the spit is performed.
§2  Invoke ChooseSplitindex to determine the best distriburion
into two groups along that axis.

83 Distribute the entries into Iwo groups

Algorithm ChooseSplitAxis

CSAl For each _g;g.s N

Sort the entries by the lower then by the upper value of their rectangles and determine all

__.—-’-.-_

distributions as described above Compute S. the sum of all margin values of the different
distributions

end

CSA2 Choose the axis with the minimum S as split axis




Algorithm ChooseSplitIndex

CSIl  Along the chosen split axis, choose the distribution with the minimum overlap value

Resolve ties by choosing the distribution with minimum area value

Algorithm Insert

(starting with the leaf level as a parameter, o insert a new data rectangle)

Il Invoke ChooseSubtree. with the level as a parameter, to find an appropriate node N, in

which to place the new entry E

2 If N has less than M enries, accommodate E in N

If N has M entries. invoke OverflowTreatment with the level of N as a parameter (for

reinsertion or split)

I3 If OverflowTreatment was called and a split was performed, propagate

OverflowTreatment upwards if necessary -

If OverflowTreatment caused a split of the rool, create a new rool

4 Adjust all covering rectangles in the insertion path such that they are minimum bounding

boxes enct‘asfng__rhefr children rectangles
Algorithm OvérflowTreatmeit
OT! —dfthe level is not the root level and this is the first
given level during the insertion of one data rectangle, then
invoke Relnsert 3!
else
invoke Split
end
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Algorithm Relnsert

RIl  For all M+l entries of a node N, compute the distance between the centers of their
rectangles and the center of the bounding rectangle of N

RI2  Sort the entries m decreasing order of their distances
computed m RI1

RI3  Remove the first p entries from N and adjust the bounding rectangle of N

RI4 In the sort, defined in RI2, starting with the maximum distance equal ( far reinsert) or

minimum distance equal ( close reinsert), invoke Insert to re insert the entries

If a new data rectangle is inserted, each first overflow treatment on each level will be a
reinsertion of p entries. This may cause a split in the node which caused the

overflow if all entries are reinserted in the same location. Otherwise, splits may occur in one or
more other nodes, but in many situations splits are completely prevented. The parameter p can be

varied independently for leaf nodes and non-leaf nodes as part of performance tuning.

3.5 Constraints/problems S ——

Designing-an-algorithms that could be best fitted for spatial data is a bit difficult because spatial

data is static or dynamic in nature especially, working on overfull node. Much attention is

needed to split the node and also maintain the data structure.

Another constraints could be algorithm ChooseSubiree, determining the minimum area cost and

the minimum overlap cost to include new data. However, the success of these algorithms would

be felt when it is put to test.
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CHAPTER FOUR
ANALYSIS OF FINDINGS

4.0 Introduction

The R-tree is a dynamic structure. Thus, all approaches of optimizing the retrieval performance
have to be applied during the insertion of a new data rectangle. The insertion algorithm calls two
more algorithms in which the crucial decisions for good retrieval performance are made. The
first is the algorithm ChooseSubtree, beginning in the root, descending to a leaf, it finds on every
level the most suitable subtree to accommodate the new entry. The second is the algorithm Split
it is called, If ChooseSubtree ends in a node filled with the maximum number of entries, M Split
should distribute M+l rectangles into two nodes in the most appropriate manner. In the

following, the ChooseSubtree and Split-algorithms, suggested in available R-tree variants are

analyzed and discussed.

In this section. the implementation of the algorithms presented in the last section will be
discussed and give empirical evidence for their efficiency when compared to existing methods

used The description of implementation and the experimental setup is dedicated to an empirical

analysis of the effects of insertion, splitting and deletion and how to improve the algorithms
g g __..—-"‘-'-—-_-_._-_

using heuristics similar to the ones used in other methods. Finally, the VO (input/output) cost and

e —

query performance of insertion and deletion algorithms with respect to the control processing

unit (cpu) time of execution proposed by Guttman in the original R-tree and other R-tree variants

will also be compare. The analysis will preview how the Optimized R-tree will perform.
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4.1 Variable m and M

M is the maximum number of entries which is usually given and m is the minimum number of

entries in one node.

al|a2

Figure 11: Representation of M and m

The minimum number of entries in a node is dependent on M with M2 = m.
The maximum number of nodes is [ N/m + N/m* ] +1

Here N stands for the number of index records of the R-Tree. m is jointly responsible for the
height of an R-Tree and the speed of the algorithm. The choice of M depends on the hardware,
especially on hard disk properties such as capacity and sector size. If nodes have more than 3 or

4 entries, the tree is very wide, and almost all the space is used for leaf nodes containing index

records.

—— "__‘_,——'-'_'__": _ : h
If m has a small value, it doesn't come SO quickly to an overflow or an underflow so that the tree

structure does not have to be reorganized. In the following example of deleting it comes to an

underflow because of deleting a3. Here M = 5and m = 3.

64

e e



f

al a2 a3 - as

Figure 12: Underflow

There are now less then m = 3 entries in the node. Thus the tree has to be reorganized.

The other example explains the overflow through inserting.

M L

?

t

al a2 a3 a4 | a5 =k ab

Figure 13: Overflow

Adding 1 to M = 5 entries thus restli in reorganization.

e —
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4,2 Empirical Results

In order to evaluate the practical significance of the algorithms used, let’s examine in detail the

performance of original R-Tree and it variants.

42.1 R-Tree Variants

As already stated, the R-tree s a dynamic structure. Thus all approaches of optimizing the
retrieval performance have to be applied during the insertion of a new data rectangle The
insertion algorithm calls two more algorithms m which the crucial decisiuné for good retrieval
performance are made. The first is the algorithm ChooseSubftree, beginning in the root,
descending to a leaf, it finds on every level the most suitable subtree to accommodate the new
entry The second is the algorithm Split it is called, If ChooseSubtree ends m a node filled with

the maximum number of entries M, Split should distribute M+ rectangles into two nodes in the

most appropriate manner.

The ChooseSubtree- and Split-algorithms, suggested in available R-tree variants are analyzed

and discussed. First, let’s consider the original R-tree as proposed by Guttman in (Gut 84) and

that of Greene’s Spli’tja_ﬂgorithms.
e ’r)__-——'-'__'-_'_._

_______.__-.-—-'—

Algorithm ChooseSubtree

CSl: Set N to be the root
CS2: IfN 1s a leaf,

return N
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else

Choose the entry in N whose rectangle needs least area enlargement to include the new
data. Resolve ties by choosing the entry with the rectangle of smallest area.

end
CS3: Set N to be the childnode pointed to by the childpointer of the chosen entry and

repeat from CS2.

In an attempt to choose sub tree to insert a record starting from the root node, you may encounter
a node that is full which will necessitate for a split in the overflow node. This will invoke split
algorithms to accommodate the new record.

Obviously, the method of optimization in this approach was to minimized the area covered by a
directory rectangle so that the cpu cost will be relatively low and the overlap of rectangles are
reduced. Guttman discusses split-algorithms with exponential, quadratic and linear cost with

respect to the number of entries of a node. All of them are designed to minimize the area,

covered by the two rectangles resulting from the split.

The exponential Sp]_ltﬁnds the W global minimum, but the cpu cost is too high. The

others try to find approximations. [n his experiments, Guttman obtains nearly the same retrieval

e —

performance for the linear and for the quadratic version. However, in implementing the
optimized R-tree with different distributions, different overlap, variable numbers of data-entries

and different combinations of M anﬁ m, the quadratic R-tree yielded much better performance

than the linear version.
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Algorithm Quadratic Split
This algorithm divide a set of M+ entries into two groups.

QS I: Invoke PickSeeds to choose two entries to be the first entries of the groups

QS 2: Repeat
DistributeEntry
until
all entries are distributed or one of the two groups has M-m+1 entries

QS 3: If entries remain, assign them 1o the other group such that it has the minimum

number of m

Algorithm PickSeeds
PS 1: For each pair of entries El and E2. compose a rectangle R including El rectangle and E2

rectangle

Calculate d = area(R) - area(El rectangle) - area(E2 rectangle)

PS 2: Choose the pair with the largest d

Algorithm DistributeEntry ——
DE 1 Invoke PickNext to choose the next entry 10 be assigned

e —
DE:2 Add it to the group whose covering rectangle will have to be enlarged least to

accommodate it. Resolve ties by adding the entry to the group with the smallest area, then

to the one with the fewer entries, then to either



Algorithm PickNext

PN I: For each entry E not yet in a group, calculate d, = the area increase required in the
covering rectangle of Group 1 to include E Rectangle

Calculate d, analogously for Group 2

PN 2: Choose the entry with the maximum difference between ds and d2

422 Analyzing the Quadratic Split Algorithm

The algorithm PickSeeds finds the two rectangles which would waste the largest area put in one
group. In this sense the two rectangles are the most distant ones. It is important to mention that
the seeds will tend to be small too, if the rectangles to be distributed are of very different size and

or the overlap between them 1s high, the algorithm DistributeEntry assigns the remaining entries

by the criterion of minimum area.

Algorithm PickNext chooses the entry with the best area value in every situation, if this

algorithm starts with small seeds, problems may occur, if in d-1 of the d axes a far away rectangle

has nearly the same coordinates as one of the seeds, it will be distributed first. Indeed, the area

e e
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and the area enlargement of the created needle-like bounding rectangle will be very small, but

the distanice is very large. This may ‘nitiate a very bad split. Moreover. the algorithm tends to

prefer the bounding rectangle created from the first assignment of a rectangle to one seed. Since

it was enlarged, it will be larger than-others. Thus, it needs less area enlargement to include

the next entry, it will be enlarged again and so on. Another problem is that, if one group has

reached the maximum number of entries M-m+l, all remaining entries are assigned to the mher.
group without considering geometric properties.
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The result is either a split with much overlap or a split with uneven distribution of the

entries reducing the storage utilization.

In an attempt to comparing the R-tree with other structures storing rectangies, Greene proposed
the following alternative split-algorithm (Greene 1989) To determine the appropriate path to
insert a new entry. She uses Guttman’s original ChooseSubtree-algorithm. Greene’s algorithm is

analyzed and discussed.

Algorithm Greene’s-Split
This algorithm also divide a set of M+l entries into two groups.

GS I: Invoke ChooseAxis to determine the axis perpendicular to which the split is to be

performed.

GS 2: Invoke Distribute.

Algorithm ChooseAxis

CA 1: Invoke PickSeeds as used by Gutman to find the two most distant rectangles of the

-

current node. N

CA 2: For each axis record the separation of the two seeds.
_f

CA 3: Normalize the separations by dividing them by the length of the nodes enclosing

rectangle along the appropriate axis.

CA 4: Return the axis with the greatest normalized separation.
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Algorithm Distribute
D 1: Sort the entries by the low value of then rectangles along the chosen axis
D 2: Assign the first (M+]) div 2 entries to one group, the last (M+1) div 2 entries to the other.

D 3: If M+l is odd, then assign the remaining entry to the group whose enclosing rectangle will

be increased least by its addition.

4.2.3 Analyzing Greene’s Split Algorithm

Greene’s split algorithm is the choice of geometric criterion to split axis. Although choosing a
suitable split axis is important, it is anticipated that more geometric optimization criteria have t0
be applied to considerably improve the retrieval performance of the R-tree. Notably among them
is the number of coordinates and the direction with respect to the topology. In spite of a well

clustering, in some situations Greene's split method cannot find the “right” axis and thus a very

bad split may result.

4.2.4 Analyzing the Optimized R-Tree algorithms

The optimized R-tree which 1s the basis for the subject of this research has the potential to

perform better and improve quinal R-tree proposed by Antoine Gutman. Making

references to the algorithms designed in chapter three above, choosing the best non-leaf node,
———
alternative methods did not outperform Guttman’s original algorithm. For the leaf nodes,

minimizing the overlap performed slightly better. In this algorithms the cpu cost of determining

the overlap is quadratic when the number of rectangles are sorted in an increasing order to

include a new data rectangle of their area enlargement. Because for each entry the overlap with

all other entries of the node has to be calculated. However, for large node sizes you can reduce
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the nmber of entries for which the calculation has to be done, since for very distant rectangles

the probability to yield the minimum overlap is very small.

43 Performance Tests

The implementations of the Optimized R-tree was done in Java under windows in an Intel
Pentium (R) dual core processors machine using two dimensional data. The purpose of this
implementation was to verify the practicality of the structure and storage utilization. Some values
were chosen for M and m, and to evaluate different node-splitting algorithms and organization
of data in memory (that is, number of data stored, number of stored data pages in memory and

the storage utilization of cpu cost). To this. six page sizes were chosen as shown in the table

below.
| Bytes per page Maximum entry per page (M)

128 6

256 20

512 30

1024 40

i 2048 50

3096 55

s

Table : 1 Page sizes

For the values that was tested for m, the minimum number of entries in a node, were M/ 2, M/3,

and 2. The algorithms described earlier were implemcnted in different versions of the program
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ing the cache size. All the iests used two-dimensional data, though the structure and
iﬂpﬂMs may work for any number of dimensions it was limited to two for the purposes of this
Wh.

Durmg the first part of each test run the program read geometry data from files using parameters
area, margins and overlaps in different combinations and constructed an index tree, beginning
with an empty tree and calling the function Insert with each new index record. The insertion

performance was measured for the last 10% of the records, when the tree was nearly its final

size.

During the second phase, the program called the function Search with search rectangles made up

using random numbers. Queries with small query rectangles on datafiles with non-uniformly
distributed small rectangles or points per test run, each retrieving about 5% of the data.

Finally the program read the input files a second tune and called the function Delete to remove
the index record for every fifth data item, so that measurements were taken for scattered deletion

of 5% of the index records.

The split algorithm is tested with several values for M and m, and the results of the test is shown
in the following pages.

43.1 Results of Inserting Data

——

The diagram below shows the cost i CPU time for inserting the last 10% of the records as a

function of page size.
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Bytes per

Figure 14: CPU cost of inserting data

The CPU time for inserting the last lﬂ!infﬂwncordstsnﬁmcﬁonof!pngcﬂn:isuﬂnun
above. The quadratic (Q) algorithm, whose cost incregses exponentially with page size, s
seen 10 be very slow for larger page sizes. The linear (L) algorithm is fastest, as expected
With this algorithm CPU time hardly increased with page size al all, which suggests that
mdcspliningmmspomﬂylsmﬂlpmufﬁwmunfimﬂincmThc
decreased cost of insertion with a stricter node balance requirement reflects the fact that

wimommupbemnﬂmufull. all spint algorithms simply put the remaining clements

in the other group without further comparisons
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4.3.2 Results of Searching

The program called the function 10 times and examined two kinds of searching. One time the

touched pages per qualifying record and the other time the CPU cost as shown in the diagram

below

128 2o 512 1024 2048

75 2 e



:

The Search algorithms as demnﬁstrated in the two diagrams above show that the search
performance of the index is very insensitive to the use of different node split algorithms and fill
requirements. The algorithm produces a slightly better index structure, resulting in fewer pages
touched and less CPU cost, but most combinations of algorithms and fill requirement come

within 10% of the test. All algorithms provide reasonable performance during searching for

data.

4.3.3 Results of deleting data

The cost of deleting an item from the index, shown m Figure 15 below, is strongly affected
by the minimum node fill requirement. When nodes become under-full, their entries must be
re-inserted, and reinsertion sometimes causes nodes to split. Stricter fill requirements cause
nodes to become under-full more often, and with more entries. Furthermore, splits are more
frequent because nodes tend to be fuller. The curves are rough because node eliminations

occur randomly and frequently. The optimized R-tree will smoothen out the variations

Figure 16: CPU cost of deleting records
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4.4 Performance Cumparisuﬁs

As stated earlier the implementations of the Optimized R-tree was done in Java under
windows in an Intel Pentium (R) dual core processors machine using two dimensional data to
achieve its objectives. In order to keep the performance comparison manageable, I have
chosen the page size for data and directory pages to be 512 bytes which is at the lower end of

realistic page sizes. Using smaller page sizes. I obtain similar performance results as for

much larger file sizes.

From the chosen page size, the maximum number of ‘entries in directory pages is 40.

According to my standardized test, I have restricted the maximum number of entries in a data

page to 50.

The R-tree with quadratic split algorithm is named as ( qua Gut), Greene's variant of the R-

tree (Greene) and the optimized R-tree as Optz where the parameters of the different

structures are set to the best values as described in the previous sections ( that’s the area

value, the margin value and the overlap value). Additionally, the most popular R-trees

implementation, the variant with the linear split algorithm (in Gut) is analyzed. The

popularity of the linear R-tree is due to the statement in the original paper (Gut84) that no

gssential perfgﬁjlance gain Egyjj_editmn the quadratic version VErsus the linear version. For

the linear R-tree it is found that m=20% (of M) to be the variant with the best performance.

e mem—

To compare the performance of the four structures, four datafiles containing about 200 in

2. dimensional rectangle are selected randomly. Each rectangle is assumed to be in the unit

square (O,1)% In the following each data file is described by the distribution of the centers of

the rectangles and by the tuple
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| (N, M area, NVarea)

Where, N denotes the number of rectangles,

LU area is the mean value of the area of a rectangle and

|
|
i NVarea = Oarea/ JL area is the normalized variance where

Oarea denotes the variance of the areas of the rectangles. Obviously, the parameter MVarea

f increases independently of the distribution the more the areas of the rectangles differ from

the mean value and the average ovetlap is simply obtained by N * [ area.

| The above scenarios are used to generate the following:
1. The centers of the rectangles follow a 2-dimensional independent uniform

! distribution ( N = 1,00 L area =0. 01, NVarea = 9.52 ) -* Uniform”

2. The centers follow a distribution with 20 clusters, each cluster contains about 6

P

9, [l area=0.02, NVarea = 1.53) - Cluster”

Objects (N =9
— /______———'—'_—'

3. The centers of the rectangles follow a 2-dimensional independent uniform

_.__,—-l"-._.-”_

distribution. First I take 100 small rectangles with fL area =0.0101. Then 10 large

rectangles are added with JL area =(.1. Finally, these two datafiles are merged to

110, [ area=0.002, NVarea=6.77) = Mixed Uniform”

one. (N
+ o’
g > s *“t&' ﬁ‘i'
‘:‘\}‘ﬁg\t‘k 3 \
1 of 3!”‘%
g‘.’a‘ f-k
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For each of the processes (1) - (3) queries are generated for the following three types of

;mctangles:

. Rectangle intersection query: Given a rectangle S, find all rectangles R in the file with

RnS # 9.

« Point query: Given a point P, find all rectangles R in the file with P € R

« Rectangle enclosure query: Given a rectangle S, find all rectangles R in the file with

R2S

Each of these files were used to performed 100 rectangle intersection queries where the ratio of

the x-extension to the y-extension uniformly varies from 0.25 to 2.25 and the centers of the query

rectangles themselves are uniformly distributed in the unit square.

In addition, four query files made of 50 rectangle intersection queries each were considered. The

" area of the query rectangles of each query file varies from 1%, 0.1% to 0.01% relatively to the

area of the data space used.

two query files where the corresponding rectangles are the same

For the range enclosure query.

Ir as in the query f'l_lg_fs:were cunswmunally, I analyzed a query file of 50 point queries

where the query points are uni formly distributed.

e ——

Each of the query files were measured to determine the average number of disc accesses per

query. The performance comparison used in the optimized R-tree as a measuring stick for the
cesses for the queries of the

other access methods was to standardize the number of page ac

optimized R-tree 10 53y 100%.
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Thus, the performance of the other R-tree variants can be observed relative to the 100%

performance of the optimized R-tree.

To analyze the performance for building up the different R-tree variants, the parameters
considered were insert and storage (stor) utilization.
Where insert denotes the average number of disc accesses per insertion and stor denotes the

storage utilization after completely building up the files.

The following table presents the results of the experiments depending on the different

distributions (data files).

Uniform
Point Intersection Enclosure Stor Insert |
0.01 0.1 1.0 Dol D1
Lin Gut 158 88.7 83.0 85.5 78.7 B8.3 650 | 743
Qua Gut 14.8 79.4 74.1 57.2 66.7 41.1 700 | 4.27
Greene 16.0 56.4 60.1 | 591 528 | 538 7.3 | 4.67
Optz R-tree 100 100 100. 100. 100 100 75.0 | 420
# accesses 5.26 7.63 13.29 5342 | 485 3.66
—— /'Ia'ble 2
Cluster
"] Point Intersection Enclosure Stor | Insert
0.01 0.1 1.0 0.01 0.1
Lin Gut 358 858 76.0 52.1 68.7 920.3 61.0 | 643
Qua Gut 66.8 64.4 58.1 45.2 66.4 84.1 66.0 | 4.87
Greene 60.0 51.3 44.1 51.1 42.8 53.2 693 | 447
Optz R-tree 100 100 100. 100. 100 100 76.0 | 3.66
# accesses 2.20 3.63 7.29 3442 | 185 1.46

Table 3
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Point Intersection Enclosure Stor | Imsert
0.01 0.1 1.0 0.01 0.1
Lin Gut 87.7 82.8 72.8 62.3 79.7 92.3 62.4 | 14.63
Qua Gut 56.5 554 53.1 45.5 59.4 68.1 66.0 | 4.90
Greene 58.2 51.6 48.2 42.3 54.6 56.3 721 | 449
Optz R-tree | 100 100 100. 100. 100 100 74.2 | 4.66
# accesses 4.75 7.28 15.29 53.58 | 4.65 3.61

Table 4

The results shown for performance of building up different R-tree variants above indicate that

given the storage utilization, the optimized R-tree yielded a better result in all the three tables.
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATION

5.0 Summary

The optimized R-tree is the most vigorous method which is undersigned by the fact that for every
query file and every data file less disk accesses are required than by any other variants.

The gain in efficiency for smaller query rectangles is higher than for larger query rectangles,
because storage utilization gets more important for larger query rectangles. This emphasizes the
goodness of the order of preservation of the Tree (i.e. rectangles close 10 each other are more
likely stored together in one page). The maximum performance gained taken over all query and

data files in comparison is about 90%, and in spite of it shortfalls the cost of storage is low.

Concerning the cost of the split algorithm, the optimized R-tree requires a running time of
O (M log (M)) because for each axis (dimension) the entries have 1o be sorted two times. The

margin in each axis as well as the rectangles and the overlap of the distributions have to be

calculated.

Both, R-tree and the optimized R-tree are nondeterministic in allocating the entries onto the
I /-f_.—l—'-__-—-_

nodes i.e. different sequences of insertions will build up different trees. For this reason the R-tree

——

suffers from its old node entries. Data rectangles inserted during the early growth of the structure
may have introduced directory rectangles, which are not suitable to guarantee a good retrieval
performance in the current situation A very local reorganization of the directory rectangles is
performed during a split. But this is rather poor and therefore it is desirable to have a more
powerful and less local instrument to reorganize the structure. The discussed problem would be

maintained or even worsened. if underfilled nodes. resulting from deletion of records would be
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merged under the old parent. Thus, the known approach of treating underfilled nodes in an R-tree
is to delete the node and to reinsert the orphaned entries in the corresponding level. Therefore to
delete randomly half of the data and then to insert it again seems to be a very simple way of
tuning existing R-tree datafiles, but this is a static situation and for nearly static datafiles the pack
algorithm is a more sophisticated approach. To achieve dynamic reorganizations, the optimized
R-tree forces entries to be reinserted during the insertion routine A better way to address this 1S

the ChooseSubtree algorithm that has a new chance of distributing entries into different nodes.

The result was a performance improvement of 20% up to 40% depending on the types of the
queries that is performed. Obviously. the cpu cost will be higher now since the insertion routine
is called more often. This is alleviated, because less splits have to be performed. The tests show
that the average number of disc accesses for insertions increases only about 4% and remains the
lowest of all R-tree variants. The usage of memory organization 1s particularly due to the

structure improving properties of the insertion algorithm.

5.1 Conclusion
The optimized R-j:cse structure Mm_shown (0 be useful for indexing spatial data objects and
multi dimensional points in database systems organizing. Although the optimized R-tree

R

outperforms its competitors, the cost for the implementation of the structure is only slightly
higher than the other R-trees. Nodes corresponding to disk pages of reasonable size have values
of M that decides the maximum number of entries and the variable m the minimum number of

entries in a node produce good performance in memory organization. The maximum

performance gained, taken over all query and data files into consideration is due to the smaller
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query rectangles that become formaitted. The concepts are based on the reduction of area, margin
and overlap of the directory rectangles. In addition, the split algorithm is very rigorous against
unsightly data distributions in particular ChooseSubtree. This make the structure reorganizes
dynamically and the storage utilization is slightly higher than other R-tree variants.
Notwithstanding the benefit of this research, there are <till more to be done in topology because

in real world spatial objects are more static.

5.2 Problems
The implementations was done using machine with a limited memory size which does not allow
over 200 rectangles to be queried and so updating the structure is limited. What happens is that

for rectangles exceeding 200, the system turns out to be slower.

5.3. Recommendations
I wish to recommend the following for consideration:
«  Acquire large machine with big memory size for research.
« Need a machine with a memory size of one terabyte and cpu processing speed also one

terabyte. __, e

« Many new variants of R-tree must follow engineering approach to improve complex
e

applications.
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