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There is paucity of data regarding the geographical distribution, incidence, and phylogenetics

of multi-drug resistant (MDR) Salmonella Typhi in sub-Saharan Africa. Here we present a

phylogenetic reconstruction of whole genome sequenced 249 contemporaneous S. Typhi

isolated between 2008-2015 in 11 sub-Saharan African countries, in context of the 2,057

global S. Typhi genomic framework. Despite the broad genetic diversity, the majority of

organisms (225/249; 90%) belong to only three genotypes, 4.3.1 (H58) (99/249; 40%),

3.1.1 (97/249; 39%), and 2.3.2 (29/249; 12%). Genotypes 4.3.1 and 3.1.1 are confined within

East and West Africa, respectively. MDR phenotype is found in over 50% of organisms

restricted within these dominant genotypes. High incidences of MDR S. Typhi are calculated

in locations with a high burden of typhoid, specifically in children aged <15 years. Anti-

microbial stewardship, MDR surveillance, and the introduction of typhoid conjugate vaccines

will be critical for the control of MDR typhoid in Africa.
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Typhoid fever is a systemic infection primarily caused by the
bacterium Salmonella enterica serovar Typhi (S. Typhi).
The organism only infects humans, with the disease being

contracted by the ingestion of bacteria through contaminated
food or water. The vast majority of the global burden of disease
(21.7 million estimated cases annually with 217,000 fatalities)1 is
thought to arise in urban areas in low-middle income countries
(LMICs) in South and Southeast Asia, but more recent data have
shown a substantial burden of disease in urban and rural areas
of sub-Saharan Africa2. Between 2010 and 2014, the Typhoid
Fever Surveillance in Africa Programme (TSAP) conducted
population-based surveillance for typhoid fever in thirteen sites
in ten sub-Saharan African countries3. The TSAP study, which
recruited 13,431 febrile patients, isolated 135 S. Typhi from nine
countries and found notably high incidences of typhoid fever in
Burkina Faso, Ghana, and Kenya2.

Many antimicrobials remain effective for the treatment of
typhoid fever. However, S. Typhi that exhibit resistance to
empirical antimicrobials hamper successful therapy4. The phe-
nomenon of antimicrobial resistance (AMR) in S. Typhi has
been well described, and resistance to the traditional first-line
antimicrobials, ampicillin, chloramphenicol, and trimethoprim-
sulfamethoxazole (co-trimoxazole), were associated with large
outbreaks in Asia in the 1980s and 1990s5,6. The emergence of
resistance to these first-line antimicrobials in Asia, which was
dominated by the H58 genotype (now renamed 4.3.1)7,8, led to a
change in typhoid treatment guidelines, with fluoroquinolones
becoming the empirical choice for MDR infections9,10. However,
this shift towards the more common use of fluoroquinolones was
inevitably followed by a decline in susceptibility to this group of
antimicrobials4,11.

Recent phylogenetic analyses further suggest that the multi-
drug resistant (MDR) S. Typhi genotype 4.3.1 dominates and
circulates across Southeast (lineage I: Vietnam, Cambodia, and
Laos) and South Asia (lineage II: mostly India with clusters in
Nepal and Pakistan)12. Additionally, these 4.3.1 S. Typhi have
transferred from South Asia into Eastern and Southern Africa
(lineages I and II; Kenya, Tanzania, Malawi, South Africa)12–14.
The characteristics of 4.3.1 S. Typhi define this genotype as a key
driving force in global MDR S. Typhi, as intercontinental trans-
mission, regional circulation, and multiple localised outbreaks
over the last three decades are distinct from the evolutionary
trends and population structure of other extent S. Typhi
genotypes12,15. Despite the known circulation of 4.3.1 S. Typhi in
sub-Saharan Africa, there is a paucity of data regarding the
geographical distribution of AMR genotypes (MDR and reduced
fluoroquinolone susceptibility), their phylogenetic structure, and
the incidence of MDR typhoid fever across the African continent.
Here, we aimed to investigate the phylogeography and incidence
of MDR S. Typhi across sub-Saharan Africa, utilizing organisms
generated through the TSAP initiative2,3 and additional typhoid
fever studies conducted in Ghana, Uganda, and The Gambia.

Results
Geographical distribution of S. Typhi genotypes in Africa.
Phylogenetic analysis of 249 contemporary African S. Typhi
genome sequences combined with 2,057 existing S. Typhi genome
sequences (including 504 from Africa) permitted a visualisation
of these new African isolates within a global S. Typhi genomic
framework (Fig. 1). The primary observation was that these 249
contemporary African S. Typhi sequences were distributed
throughout this framework, with multiple lineages found to be
circulating simultaneously across sub-Saharan Africa in the last
decade. With TSAP providing expansive sampling across the
continent, we observed a substantial degree of genetic diversity,

with 12 different S. Typhi genotypes represented in 11 different
typhoid endemic countries (Fig. 2). This distribution of genotypes
ranged from single organisms in particular countries (for exam-
ple: The Gambia, Kenya, and Uganda) to numerous closely
related organism clusters isolated in several countries (Supple-
mentary Table 1).

Despite the apparent broad genetic diversity in the circulating
S. Typhi population, the majority of the recently isolated
organisms (225/249; 90%) belonged to only three genotypes,
4.3.1 (H58) (99/249; 40%), 3.1.1 (97/249; 39%), and 2.3.2 (29/249;
12%). Organisms belonging to genotype 4.3.1 were found only in
East Africa, comprising 100% of the S. Typhi isolates from Kenya
(59/59) and Uganda (30/30), and 91% (10/11) of the isolates from
Tanzania (Fig. 1 and Fig. 2). Conversely, all of the organisms
belonging to genotype 3.1.1 were found only in West African
sites, constituting 88% (89/101) and 57% (8/14) of the S. Typhi
organisms sequenced from Ghana and Burkina Faso, respectively.
Organisms belonging to genotype 2.3.2 were found only in the
West African countries of Burkina Faso, The Gambia, Ghana,
Guinea-Bissau, and Senegal (Fig. 2 and Supplementary Table 1).

MDR phenotypes restricted to dominant S. Typhi genotypes.
The MDR phenotype was prevalent across isolates from the
11 sampled countries, with 129/249 (52%) of all isolates exhi-
biting the classical S. Typhi MDR phenotypic profile of resistance
against ampicillin, chloramphenicol, and co-trimoxazole. MDR
organisms were widely distributed in both East and West Africa,
and isolated in Ghana (68/101; 67%), Kenya (50/59; 85%), Tan-
zania (4/11; 36%), and Uganda (7/30; 23%). No MDR organisms
were identified in Burkina Faso (0/14), Ethiopia (0/2), The
Gambia (0/11), Guinea-Bissau (0/3), Madagascar (0/8), Senegal
(0/8), or South Africa (0/2), and none of the organisms in these
countries were genotype 4.3.1 or 3.1.1 except for Burkina Faso (8/
14; genotype 3.1.1) (Fig. 2 and Table 1).

Saliently, MDR phenotypes were confined entirely within the
dominant circulating genotypes in East (4.3.1) and West Africa
(3.1.1). Overall, 70% (68/97) of 3.1.1 S. Typhi and 62% (61/99) of
4.3.1 S. Typhi were MDR (Supplementary Table 1). Further
investigation revealed distinct origins of these MDR S. Typhi
genotypes in each region. These contemporary genome sequences
were compared to the existing global framework for S. Typhi 4.3.1
using a maximum likelihood phylogeny12 (Fig. 3a). Our Kenyan
MDR 4.3.1 organisms (2012–2013) belonged to two distinct
clades, one in lineage I and the other in lineage II, indicative of
the two distinct introductions from South Asia, as identified in an
earlier global study12, followed by the establishment of local
populations. The Tanzanian MDR 4.3.1 organisms (2011–2012)
clustered within each of these Kenyan clades, providing evidence
of historical transfer of 4.3.1 S. Typhi from Kenya into Tanzania;
ongoing local expansion was evident in the lineage I group only.
The MDR 4.3.1 S. Typhi isolated in Uganda in 2015 formed a
monophyletic clade within lineage II that was not closely related
to the Kenyan or Tanzanian lineage II organisms, and were
characterised by extremely narrow genetic diversity (mean
pairwise genetic distance of 1 SNP), indicative of a recent
population expansion or an outbreak16. This Ugandan MDR
cluster was nested within a clade of 4.3.1 MDR S. Typhi
organisms isolated in South Asia between 2007 and 2011,
consistent with a third importation of MDR S. Typhi into East
Africa from South Asia (Fig. 3a).

In contrast, the 3.1.1 MDR S. Typhi from Ghana (68 isolates)
represented a population that was found only in West Africa,
with the resulting phylogeny showing no evidence for inter-
continental transmission as observed for 4.3.1 (Table 1). Rather,
3.1.1 S. Typhi could be better defined as a repeating pattern of
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small country specific population expansions with organisms
being regularly transferred between countries (Fig. 3b). Phylo-
geographical reconstruction has not previously been performed
for S. Typhi 3.1.1, therefore we conducted a Bayesian spatio-
temporal phylodynamics analysis for the subclade using BEAST2
(Fig. 3b). The results suggest that Ghana was the most likely
recent source of this 3.1.1 S. Typhi population (posterior
probability = 0.66) which emerged de novo, and the correspond-
ing source of three major clusters, which then radiated into other
nearby countries on multiple occasions. Notably, Ghanaian S.
Typhi appear to have been the probable origin of 3.1.1 S. Typhi in
Burkina Faso on at least two separate occasions. Furthermore,
existing whole genome sequences of 131 S. Typhi from Nigeria,
including two isolates from travellers returning to the United
Kingdom from Nigeria, demonstrated that 3.1.1 S. Typhi has been
introduced into Nigeria from Ghana on at least two separate
occasions. One of these events, estimated to be between 2010 and
2011, formed a major population expansion encompassing the
majority (76/86; 88%) of the isolates from Nigeria.

Geographically distinct S. Typhi IncHI1 MDR plasmids. We
next investigated the genetic mechanisms associated with the
MDR phenotypes by inferring AMR gene content in the 249
contemporaneous African S. Typhi genome sequences. Across the
dataset we identified genes encoding resistance to aminoglyco-
sides (aph(3'')-Ib, aph(6)-Id, and ant(3'')-Ia), ampicillin (OXA-1

and TEM-95/-93), chloramphenicol (catA1), trimethoprim
(dfrA7, dfrA14 and dfrA15), sulfonamides (sul1 and sul2), and
tetracycline (tet(A) and tet(D)). Most AMR genes were associated
with IncHI1 plasmids. However, the two MDR S. Typhi geno-
types were associated with distinct plasmid lineages. The 3.1.1
MDR S. Typhi from Ghana (68 isolates) carried IncHI1 MDR
plasmids of plasmid sequence type (PST) 2a, whilst the 4.3.1
MDR S. Typhi from Kenya (50 isolates) and Uganda (7 isolates),
respectively carried ST6 and ST6a IncHI1 MDR plasmids. Minor
differences in the specific AMR genes were also evident between
these plasmid types (Fig. 4). For example, the class I integron
cassette contained dfrA15 in the West African/PST 2a plasmid
and dfrA7 in East African/PST 6/6a plasmids, the latter plasmids
also contained sul2 and tet(D) which were absent from the West
African isolates.

Outliers included: non-MDR S. Typhi isolates from Burkina
Faso (genotype 2.2) with an IncX1 plasmid containing no
resistance genes and Ghana (genotype 3.1.1) with an IncN
plasmid displaying resistance against aminoglycosides (aph(6)-
Id), ampicillin (TEM-95/-93), trimethoprim (dfrA14), and
sulfonamides (sul2) and 5 non-MDR S. Typhi isolates (genotype
4.3.1) from Tanzania with IncFIB plasmid carrying resistant
genes aph(3'')-Ib, aph(6)-Id), TEM-95/-93, dfrA14, sul2; and an
MDR S. Typhi isolate (genotype 4.3.1) from Kenya with an
IncHI1 and IncQ1 plasmid associated with resistance genes
against aminoglycosides (aph(3'')-Ib, aph(6)-Id), ampicillin
(TEM-95/-93), chloramphenicol (catA1), trimethoprim (dfrA7),
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Fig. 1 The phylogenetic context of Salmonella Typhi isolated in sub-Saharan Africa. Maximum likelihood tree outlining the phylogenetic structure of 249 S.
Typhi isolates unique to this study (highlighted by the blue points) combined with 2,057 global S. Typhi isolates. The tree is adjacent to three concentric
circles highlighting associated metadata. The inner most circle represents the three most predominant genotypes (colour coded according to top of key),
the middle circle represents the geographical sub-regions of Africa from where the S. Typhi organisms were isolated (colour coded according to top of key),
and the outer circle (blue) again highlights the organisms unique to this study. The scale bar indicates the number of substitutions per variable site
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sulfonamide (sul1 and sul2), and tetracycline (tet(A) and tet(D))
(Fig. 4). Additionally, none of the four MDR organisms from
Tanzania possessed a detectable plasmid backbone. Using
Bandage to investigate the location of MDR cassettes, we found
that these isolates carried multiple resistance genes (aph(3'')-Ib,
aph(6)-Id), TEM-95/-93, catA1, dfrA7, sul1, sul2) on a 24-kb
composite chromosomal transposon (Tn2670-like element)
inserted between coding sequences STY3618 and STY361912.

In total, 16% (39/249) of the contemporaneous African S.
Typhi exhibited reduced susceptibility against ciprofloxacin (9
from Kenya and 30 from Uganda). The Kenyan organisms
exhibited the common mutation associated with reduced
susceptibility to fluoroquinolones in S. Typhi, a substitution
from serine to phenylalanine at codon 83 (Ser83Phe) in gyrA. The
Ugandan organisms harboured an alternative serine to tyrosine
gyrA mutation also at codon 83 (Ser83Tyr) (Table 1).

The incidence of MDR typhoid fever in African countries. We
lastly calculated the incidence of MDR typhoid fever in specific
age groups in countries where MDR S. Typhi was isolated: Ghana,
Kenya, and Tanzania (Table 2). The incidence of MDR S. Typhi
exceeded 100/100,000-person years of observation (PYO) in
specific age groups in Ghana (<15 years: 414/100,000 PYO; 95%
confidence interval [CI], 333–515) and Kenya (<15 years: 398/
100,000 PYO; 95% CI, 291–545), in all age groups in Kenya (263/
100,000 PYO; 95% CI, 199–347) and in the urban site in Tanzania
(103/100,000 PYO; 95% CI, 61–173). While Burkina Faso had a

high overall incidence of typhoid2, no MDR S. Typhi were
detected; 2/14 isolates were resistant to chloramphenicol and co-
trimoxazole. The highest incidence of MDR S. Typhi in a specific
age group in a single location was in children aged 2–4 years in
Ghana (747/100,000 PYO; 95% CI, 491–1135), followed by 5–14
year olds in Kenya (507/100,000 PYO; 95% CI, 352–729). In
Kenya and Ghana, the only TSAP sites where S. Typhi were
isolated from infants (aged 0–1 years), the incidences of MDR S.
Typhi in this age group were 148 (95% CI, 48–458) and 60 (95%
CI, 17–210) per 100,000 PYO, respectively. Generally, the inci-
dence of MDR S. Typhi was substantially higher in children <15
years than in adults. An exception was in Tanzania, where MDR
S. Typhi occurred in higher incidences in those aged ≥15 years
than in young children (Table 2).

Discussion
Here we present a contemporary dataset of S. Typhi genome
sequences and AMR data from across sub-Saharan Africa gen-
erated through a major population-based surveillance study with
data augmented from further locations. We exploited these data
to assess the circulation of MDR S. Typhi genotypes and to cal-
culate the incidence of MDR typhoid infections across the con-
tinent. Our results have major implications for the use of
empirical antimicrobials for treating febrile disease of presumed
bacterial origin and future intervention measures for controlling
typhoid in Africa.
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Table 1 Genotypes of MDRa S. Typhi and gyrA in four countriesb

Country (n, all S. Typhi per country) MDR S.
Typhi (n)

MDR S. Typhi (%/out of
all S. Typhi per country)

MDR S. Typhi
Genotype

Non-susceptible to
fluoroquinolones (n, gyrA)c

Ghana (101) 68 67 3.1.1 0
Kenya (59) 50 85 4.3.1 (H58) 9 (Ser83Phe)
Tanzania (11) 4 36 4.3.1 (H58) 0
Uganda (30) 7 23 4.3.1 (H58) 30 (Ser83Tyr)
Total 201 S. Typhi from 4 countries
(out of 249 S. Typhi from 11 countriesd)

129 64% of 201
52% of 249

aMDR definition used for the analysis: presence of resistant genes for at least one agent in all three antimicrobial categories of ampicillin/amoxicillin (beta-lactamase: OXA-1, TEM-95/-93) AND
chloramphenicol (catA1), AND trimethoprim-sulfamethoxazole (sulfonamide (sul1, sul2) and trimethoprim (dfrA7, dfrA14, dfrA15)
bFour countries with MDR S. Typhi organisms: Ghana, Kenya, Tanzania, and Uganda
cOut of total 249 S. Typhi isolates yielded from this study in 11 countries in sub-Saharan Africa, total 39 isolates were non-susceptible to fluoroquinolone (ciprofloxacin and nalidixic acid (gyrA): 9 of 39
isolates were from Kenya, of which 7 were MDR S. Typhi; and all 30 isolates from Uganda were non-susceptible to fluoroquinolones, of which 7 were MDR S. Typhi. These 39 organisms exhibited the
mutations at codon 83 of gyrA; serine (TCC) to phenylalanine (TTC) for all 9 isolates from Kenya (Ser83Phe) and serine (TCC) to TAC (tyrosine) for all 30 Uganda isolates (Ser83Tyr)
dNo MDR S. Typhi from Burkina Faso (14; genotypes 2.2 (2 isolates), 2.3.2 (2 isolates), 3.1.1 (8 isolates), and 4.1.1 (2 isolates)), Ethiopia (2; genotypes 1.2 (1 isolate) and 2.2.2 (1 isolate)), Gambia (11
isolates, all genotype 2.3.2), Guinea-Bissau (3; genotypes 2.3.2 (2 isolates) and 2.3.1 (1 isolate), Madagascar (8; genotypes 2.5 (4 isolates), 2.2 (3 isolates), and 4.1 (1 isolate)), Senegal (8; genotypes
2.3.2 (6 isolates), 3.1 (1 isolate), and 4.1 (1 isolate)), and South Africa (2; all genotypes 3.1.1)

Table 2 The incidence of MDR typhoid fever in sub-Saharan Africaa

Country Age group
in years

PYO estimationb Recruitment
proportionb

Genome-
sequenced
S. Typhi
casesc

Crude
MDR S.
Typhi
cases

Crude MDR
S. Typhi
incidence per
100,000
PYO

Adjusted
MDR S.
Typhi
cases

Adjusted MDR S.
Typhi incidence
per 100,000
PYO (95% CI)d

Proportion of
catchment
population
visiting study
facility in
case of fever
(95% CI)

Catchment
population

Catchment
population
adjusted
by health-
seeking
behavior

PYO

Ghanae

AAN 0–1 16% (14–18) 11222 1760 4080 41% 1 1 25 2 60 (17–210)
2–4 16% (13–18) 8086 1268 2940 41% 17 12 306 22 747 (491–1135)
0–4 n.a. n.a. n.a. n.a. n.a. 18 13 n.a. n.a. n.a.
5–14 16% (15–17) 34439 5415 12554 623/1657

(38%)
23 16 96 24 252 (177–357)

<15 n.a. 53747 8443 19574 n.a. 41 29 97 81 414 (333–515)
≥15 n.a. n.a. n.a. n.a. n.a. 22 16 n.a. n.a. n.a.
Non_TSAPe n.a. n.a. n.a. n.a. n.a. 38 23 n.a. n.a. n.a.
All n.a. n.a. n.a. n.a n.a. 101 68 n.a. n.a. n.a.

Kenya
Kibera 0–1 42% (38–47) 3467 1456 2031 99/99

(100%)
5 3 148 3 148 (48–458)

2–4 39% (36–43) 3070 1197 2039 312/312
(100%)

11 7 343 7 343 (164–720)

5–14 43% (39–47) 7514 3231 5722 539/539
(100%)

32 29 507 29 507 (352–729)

<15 n.a. 14051 5884 9792 n.a. 48 39 398 39 398 (291–545)
≥15 35% (32–38) 15263 5342 9228 301/301

(100%)
11 11 119 11 119 (66–215)

All n.a. 29314 11227 19020 n.a. 59 50 263 50 263 (199–347)
Tanzaniaf

Moshi Rural 0–1 4% (0–11) 24289 390 693 79% 0 0 0 0 0
2–4 2% (0–4) 25281 406 721 79% 0 0 0 0 0
5–14 13% (10–16) 118219 15487 27508 79% 1 (2)f 0 0 0 0
<15 n.a. 167789 16283 28922 n.a. 1 (2)f 0 0 0 0
≥15 2% (1–2) 298948 5172 9186 79% 2 (4)f 0 0 0 0
All n.a. 466737 21454 38108 n.a. 3 (6)f 0 0 0 0

Moshi Urban 0–1 7% (0–19) 10406 335 595 79% 0 0 0 0 0
2–4 2% (0–6) 10831 348 618 79% 0 0 0 0 0
5–14 13% (8–19) 37309 4850 8615 79% 3 (9)f 2 (7)f 12 (81)f 1 (9)f 15 (3–84) (103

(54–199)) f

<15 n.a. 58546 5533 9828 n.a. 3 (9)f 2 (7)f 10 (71)f 1 (9)f 10 (1–72) (91
(47–175)) f

≥15 n.a. 125746 2138 3796 79% 4 (8)f 2 (4)f 53 (105)f 3 (5)f 67 (19–229)
(133 (56–319)) f

All n.a. 184292 7671 13626 n.a. 7 (17)f 4 (11)f 29 (81)f 4 (14)f 29 (11–78)
(103 (61–173)) f

aThe TSAP study has data from total 10 countries, of which 9 countries (Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, and Tanzania in alphabetical order)
found blood culture confirmed S. Typhi isolates circulating in the respective sites. These S. Typhi isolates have been whole-genome sequenced for detection of multidrug resistant (MDR) genes. In
addition, S. Typhi isolates yielded from 2 other surveillance activities in Uganda and The Gambia have been added to this analysis. Of these 11 countries, S. Typhi isolates with MDR genes were detected
in Ghana from West Africa and Kenya, Tanzania, and Uganda from East Africa. Incidence of MDR S. Typhi in Uganda could not be estimated due to insufficient data on age stratification of patients,
catchment population, healthcare seeking behavior and recruitment proportion, which were applied uniformly for the analysis presented in this table for Ghana, Kenya, and Tanzania
bPYO estimation and recruitment proportion have been published in detail in the TSAP typhoid burden paper (Marks et al, Lancet Global Health, 2017).
cGenome sequenced S. Typhi case numbers in this table may not exactly match the crude S. Typhi case numbers reported in the TSAP typhoid burden paper (Marks et al) due to few sequencing failures
dAdjusted incidence rates per 100,000 PYO (95% CI): adjustments for case recruitment and error factors
eGhana samples include non-TSAP projects as outlined in the Supplementary Table 2. AAN: Asante Akim North (Supplementary Table 2)
fTanzania: Enrolment algorithm has been applied to the crude MDR S. Typhi case numbers, that is: recruitment by every 5th patient if enrolled before Nov 11th 2011 and every 2nd patient if enrolled after
then. 1 isolate from Tanzania, which was from outside the study catchment area (Supplementary Table 2: “Moshi Other”) is not included in this incidence table due to the insufficient background data
required as mentioned in this footnote
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Despite the broad genetic diversity observed within the con-
tinental S. Typhi population, we identified only three principal S.
Typhi genotypes. These genotypes were geographically limited
to East (genotype 4.3.1) and West (genotypes 3.1.1 and 2.3.2)
Africa. MDR S. Typhi in Africa is currently dominated by gen-
otypes 4.3.1 and 3.1.1. S. Typhi 4.3.1 has been previously reported
to circulate only in East Africa on the African continent12–14,
with 3.1.1 dominating in Nigeria and circulating amongst
neighbouring countries in West Africa17. After the likely
importation from South Asia within the last 20 years, the extant
population of S. Typhi 4.3.1 in Kenya, Tanzania, and Uganda has
been formed through multiple introductions from South Asia
followed by local expansions. Conversely, S. Typhi 3.1.1, which
were isolated in Ghana, Burkina Faso, and Nigeria, do not appear
to have recent ancestral roots in Asia, but have undergone loca-
lised microevolution within West Africa in recent decades. We
speculate that these organisms have been transferred, maintained,
and selected through the sustained movement of people and
antimicrobial usage in West Africa. The MDR 4.3.1 S. Typhi from
Kenya and Uganda also commonly exhibited mutations in gyrA,
associated with reduced susceptibility to fluoroquinolones, which
has also been reported in Africa in recent years. Conversely, no
gyrA mutations were found in the MDR S. Typhi 3.1.1 from
Ghana. These data mirror recent reports from Nigeria17, and
suggest that first-line antimicrobial agents (ampicillin, chlor-
amphenicol, and co-trimoxazole) for the treatment of febrile
diseases are still in common use in West Africa.

The acquisition of an MDR phenotype in S. Typhi is typically
associated with IncHI1 plasmids, which have long been con-
sidered the main vehicle for resistance to first-line antimicrobials
in S. Typhi8. The distinct MDR lineages of S. Typhi found in
West and East Africa, each associated with a distinct IncHI1
plasmid sequence type, suggest that S. Typhi and its AMR plas-
mids have not been transferred laterally across the continent. This
may be because genotype 4.3.1 MDR S. Typhi has not been cir-
culating for a sufficient period in Africa to reach the West African
region. Furthermore, the four MDR S. Typhi isolates from Tan-
zania did not harbour plasmid-associated sequences, suggesting
that these AMR genes are inserted into the chromosome, as has
been observed previously in Asia12,18,19 and Zambia20. The
integration of AMR genes into the S. Typhi chromosome is a
worrying development, as it provides a mechanism for stable
vertical transmission of the MDR phenotype without the poten-
tial fitness deficit associated with maintaining large plasmids,
increasing the likelihood that MDR will be sustained during the
ongoing spread of related S. Typhi across East Africa.

Here we identified specific populations that are most at risk of
MDR typhoid, which particularly warrants a reconsideration of
current empirical antimicrobial use for treatment of typhoid.
Generally, we found that the site incidences of MDR S. Typhi
corresponded largely with the overall burden of typhoid in the
various study sites2 (that is, countries with high incidences of
typhoid also had high incidences of MDR S. Typhi). Conse-
quently, Kenya and Ghana exhibited the highest incidences of
MDR typhoid in the sampled countries. Notably, Burkina Faso,
which had a high burden of typhoid, had no incidence of MDR S.
Typhi in comparison to neighbouring Ghana. Further, we found
that children aged <15 years, the highest at-risk age group for
typhoid in Africa, also generally exhibited the highest incidence
rates of MDR S. Typhi infections. This age distribution of typhoid
caused by MDR S. Typhi was not consistent across the continent,
as those aged >15 years in Tanzania exhibited a higher incidence
of MDR S. Typhi than younger children. Alternatively, some sites
with a high burden of typhoid in specific age groups had no MDR
infections. We suggest that this distribution is likely to mirror
access to, and the generic usage of, specific antimicrobial agents in

these locations and age groups, warranting the need for continued
country/site-specific surveillance, review of local treatment poli-
cies, and the collection of antimicrobial usage data.

The incidence of MDR typhoid varied dramatically between
settings and also between age groups in some individual locations.
This discrepancy may be due to differing exposures to anti-
microbials in different settings and age groups, which could lead
to differential selective pressures in local circulating bacterial
populations. Our data additionally indicate that AMR/MDR S.
Typhi are not only spread through local population movements
in East and West Africa but can also arise de novo. This phe-
nomenon can be observed within the microevolution and
expansion of 3.1.1 MDR S. Typhi in West Africa. The AMR genes
associated with 4.3.1 MDR S. Typhi in East Africa appear to be
both plasmid and chromosomally located. This observation,
coupled with the acquisition of reduced susceptibility to fluor-
oquinolones, transmission between East African countries, and
the importation of organisms from South Asia, raises further
concerns regarding the progression of drug resistant S. Typhi in
Africa. 4.3.1 S. Typhi has spread successfully cross South Asia and
become increasingly resistant to ciprofloxacin, making treatment
options more limited4. The pervasiveness of AMR in 4.3.1 S.
Typhi in South Asia has been recently highlighted by an outbreak
of a ceftriaxone-resistant 4.3.1 S. Typhi in Hyderabad, Pakistan,
which appears to be resistant to commonly available anti-
microbial classes21. We predict that new AMR phenotypes that
emerge in 4.3.1 S. Typhi in Asia can be periodically introduced
into East Africa. Further, the emergence of MDR S. Typhi 4.3.1 in
South Africa suggests possible spread from East Africa to
Southern Africa through human population movement, however
this notion requires further investigation22.

This study highlights locations in sub-Saharan Africa where
MDR typhoid is prevalent and where future activities to control
its spread from Asia into Africa and also within Africa could be
focused. In addition to continuing disease surveillance and
investigating the genomic characteristics and phenotypic profiles
of MDR S. Typhi, compiling antimicrobial usage data that can be
linked with the distribution of AMR/MDR bacterial pathogens
across Africa is becoming essential. The World Health Organi-
zation (WHO) has prequalified a typhoid conjugate vaccine
(TCV) in January 2018 with a recommendation to introduce the
vaccine for infants and children older than six months in typhoid
endemic countries23. Targeted vaccination programs at sites with
a high burden of AMR/MDR S. Typhi could also be considered
and may be informed by the age-stratified MDR disease incidence
data presented here. New and potentially highly efficacious S.
Typhi conjugate vaccines are currently undergoing clinical trials
and should become routinely available at the end of this decade23.
Until these vaccines become available, countries in Africa with
endemic typhoid should structure antimicrobial stewardship
policies to control MDR S. Typhi and develop national roadmaps
for their deployment.

Methods
Bacterial isolates and antimicrobial susceptibility testing. Between 2010 and
2014, a population-based surveillance of invasive Salmonella infections was con-
ducted in ten sub-Saharan countries (see Supplementary Table 2)2. The research
methodology including ethics approvals, sampling framework, and calculation of
disease incidence of this programme have been previously reported3. Briefly, over
the TSAP sampling period, blood culture-based surveillance was conducted in
defined catchment areas. Cultured isolates were assessed for antimicrobial sus-
ceptibilities by the disc diffusion method locally and at a central reference
laboratory. TSAP recruited 13,558 patients meeting the study inclusion criteria, of
which 127 patients were excluded due to incomplete data. This resulted in 13,431
patients and 135 S. Typhi found in 9 countries for analysis2. We also included 114
additional S. Typhi collected from other studies in Africa (Uganda; 2015, Gambia;
2008-2014 and non-TSAP isolates from Ghana; 2010), resulting in a collection of
249 S. Typhi (Supplementary Table 2).
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Genome sequencing and SNP calling. Genomic DNA from the 249 S. Typhi
isolates was extracted using the Wizard Genomic DNA Extraction Kit (Promega,
Wisconsin, USA). Two μg of genomic DNA from each organism was subjected to
indexed-tagged pair-end sequencing on an Illumina Hiseq 2000 platform (Illumina,
CA, USA) to generate 100 bp paired-end reads. To identify single nucleotide
polymorphisms (SNPs), raw Illumina reads were mapped to the reference sequence
of S. Typhi CT18 (accession: AL513382) including plasmids pHCM1 (accession:
AL513383) and pHCM2 (accession: AL513384), using SMALT version 0.7.4.
Candidate SNPs were called against the reference sequence using SAMtools24 and
filtered with a minimal phred quality of 30 and minimum consensus base agree-
ment of 75%. The allele at each locus in each isolate was determined by reference to
the consensus base in that genome using SAMtools mpileup and removing low
confidence alleles with consensus base quality ≤20, read depth ≤5 or a heterozygous
base call. SNPs in phage regions, repetitive sequences, or recombinant regions
identified previously were excluded12,25. We further identified an additional
recombinant region from the whole genome alignment produced by SNP-calling
isolates using Gubbins26 and SNPs detected within this region (~20kb from
nucleotide 1,439,032-1,459,472) were removed, resulting in a final set of 4,444
chromosomal SNPs. The SNP data were used to assign all isolates to previously
defined subclades in the S. Typhi genotyping framework15.

Phylogenetic analysis. A maximum likelihood (ML) phylogenetic tree was con-
structed from the 4,444 SNP alignment using RAxML version 8.2.8 with a gen-
eralized time-reversible model and a Gamma distribution to model the site-specific
rate variation (GTR+Γ4 model)27. Branch support for this tree was assessed through
a bootstrap analysis with 1,000 pseudo-replicates. To investigate the molecular
epidemiology of our African isolates in regional and international context, a sec-
ondary ML tree was inferred from a separate alignment of 26,479 SNPs identified
across a total of 2,306 S. Typhi isolates (249 from this study, 1,830 from the global
collection12, 128 from Nigeria17, and 99 travel-associated S. Typhi organisms iso-
lated in the United Kingdom15) using RAxML with GTRGAMMA substitution
model and S. Paratyphi A sequence data to outgroup root the tree. Branch support
for this phylogeny was assessed through a 100 bootstrap pseudo-analysis. Anno-
tation of this global tree was visualized using ITOL28. An interactive version of the
global phylogeny, with organisms labeled by genotype, country of origin, year of
isolation and antimicrobial susceptibility was generated in Microreact29.

Evolutionary timescale and phylogeographic patterns. For genotype
3.1.1 strains, Bayesian phylogenetic analyses was conducted in BEAST2 v2.4.730.
The GTR+Γ4 substitution model, an uncorrelated lognormal relaxed-clock model,
and the exponential-growth coalescent tree prior were used. Three independent
analyses were performed with 5×108 steps, recording samples every 5×104 steps.
We assessed sufficient sampling by combining the three independent runs and
verifying that the effective sample size of all parameters was at least 500. To
calibrate the molecular clock, we used the sampling year of all sequences. This
analysis also included an outgroup sequence (CT18) to ensure a biologically
meaningful root location. Our selected molecular clock model and tree prior have
been shown to perform well even when the data display low rate variation and
constant population size dynamics31. This model combination also allows for
informal model testing via the coefficient of rate variation and the population
growth rate parameters32,33. To determine phylogeographic patterns, we con-
sidered the country of sampling as a discrete trait in our analysis in BEAST234. A
potential shortcoming of this analysis was that it includes a large number of
parameters (transition rates between all locations), therefore the output of these
analysis may be affected by the prior distribution. We verified that the prior dis-
tribution differed from the posterior by comparing the distributions of all transi-
tion rates.

An important consideration when using sampling times as calibrations is that
the sampling timespan should capture sufficient genetic variation to allow reliable
inferences of evolutionary rates and timescales, such that the data have strong
temporal structure. We verified the temporal structure in the data by using a root-
to-tip regression and a date-randomisation test35. We conducted a root-to-tip
regression for the outgroup-rooted ML tree using TempEst36, and obtained a
positive value for the slope, an R2 of 0.12, and a p-value of 3×10-6 (Supplementary
Figure 1). For the date-randomisation test we repeated the analysis 20 times while
randomising the sampling times. Our expectation was that the randomisations
should produce evolutionary rate estimates that were lower and that did not
overlap with those obtained with the correct sampling times37, which was the case
for our data (Supplementary Figure 2). Finally, we compared our estimate of the
time of origin of the 3.1.1 lineage in BEAST with an independent method, LSD
v0.338. LSD and BEAST2 produced congruent estimates of the time of origin of the
3.1.1 lineage (Supplementary Figure 3).

Antimicrobial resistance gene and plasmid analyses. ARIBA (Antimicrobial
Resistance Identifier by Assembly)39 and CARD (https://card.mcmaster.ca/home)
were used to investigate AMR gene content. ARIBA reported the AMR genes and
the quality of assemblies and variants detected between the sequencing reads and
the reference sequences, including mutations in the quinolone resistance-
determining region (QRDR) of the gyrA, gyrB, parC, and parE genes. For plasmid

identification, the sequence reads from each isolate were de novo assembled using
the short-read assembler Velvet with parameters optimized by Velvet
Optimizer40,41. Contigs that were less than 300 bp long were excluded and the
assembled contigs were annotated using Prokka41,42. Plasmid typing was per-
formed in silico using PlasmidFinder43. The presence of the IncHI1 plasmid was
confirmed by BLASTN searching the assembled sequences in reference to the
pHCM1 reference plasmid sequence, and comparative analyses were performed
and visualized using ACT44. The IncHI1 plasmid sequence type was identified
using SRST2 software45 with the IncHI1 plasmid MLST scheme46. To investigate
the isolates with MDR phenotype and without plasmid, raw sequences were sub-
jected to de novo genome assembly using SPAdes47 version 3.11.0, and the resulting
assembly graph was visualized in Bandage48 to inspect the location of AMR genes
in the genome.

Incidence analyses of MDR S. Typhi. Incidence of MDR S. Typhi was
estimated per 100,000 person-years of observation (PYO) for MDR S. Typhi
isolates found in Ghana, Kenya and Tanzania. Statistical methodology used
previously to calculate the incidence of S. Typhi TSAP isolates2,3 was applied to
calculate MDR S. Typhi incidence. Briefly, age-stratified PYO were estimated
using available demographic data in HDSS (Health and Demographic Surveillance
System) and non-HDSS sites and health-seeking behaviour of randomly selected
individuals, representative of the study population, were factored in (denominator).
The recruitment proportion was adjusted to the age-stratified crude MDR S. Typhi
cases (numerator). Adjusted incidence of MDR S. Typhi per 100,000 PYO
was estimated with 95% CIs using these adjustment factors and crude MDR
S. Typhi case numbers. The previously established multi-country database (FoxPro
software) for TSAP was used for the three countries with MDR S. Typhi. The
incidence of MDR S. Typhi in Uganda could not be measured, as data regarding
adjustment factors (healthcare seeking behaviour and recruitment proportion)
was unavailable at the time of analysis.

Data availability
Raw sequence data are available in the European Nucleotide Archive (projects
ERP009684, ERP010763, ERP013866). The Microreact interactive phylogeny of the
analysed isolates is available at: https://microreact.org/project/HJWBihsvz. SMALT
version 0.7.4 used is available at: http://www.sanger.ac.uk/resources/software/
smalt/.
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