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ABSTRACT 

 

Continuous review model in which a fraction of demand is backordered and the 

remaining fraction is lost during the stock out period are considered under fuzzy 

environment. Fuzziness is introduced by allowing the cost components not clear and 

vague to certain extent. Trapezoidal fuzzy numbers are used to represent these 

characteristics. The optimum policy of this model under fuzzy costs are derived. The 

values are now determined numerically and the sensitivity in the decision variables 

are highlighted and described. 
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 1 

    CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The design of effective inventory control policies for models with stochastic demands 

and forecast updates that evolve dynamically over time is a fundamental problem in 

supply chain management. 

 

In many industrial sectors, manufacturing and supply system usually takes the form of a 

complex network of suppliers, fabrication/assembly locations, distribution centres and 

customer locations through which materials, components, products and information 

flow. (Ettl et al. 2000). 

 

The occurrence of shortage in an inventory system is a phenomenon in real situations. In 

some cases, while a few customers are ready to wait till the next arrival time of stock, 

others may be impatient and would persist on satisfying their demand from other 

sources. The demand during stock out period is normally regarded as complete 

backorders or lost forever. 

 

A solution to such a model was first derived by Montgomery et al. (1973). Quyang and 

Wu (1996) also derived a similar model for variable lead time with fixed recorder point 

analyzed. Also Hariga and Daya (1999) described both periodic and continuous review 

models with a mixture of backorders and lost sales in case of full and partial demand 

information. Kumaran et al. (2006) analyzed Kim and Park model under a more general 
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set up assuming the generalized lambda distribution to describe the stochastic lead time 

demand. 

In most stochastic inventory models, the cost parameters are usually treated as crisp 

variables. However in practical situations, precise values of the cost characteristics are 

seldom achieved as they may be vague and imprecise (Vijayan and Kumaran, 2008). 

 

The shortage in an inventory system may occur due to different causes such as increase 

in demand, hike in wages, delayed production, shipping problems. Shortage always 

results in loss of goodwill and it is very difficult to measure the exact amount of 

shortage cost. This same problem is experienced in ordering and holding cost. 

 

Hence in inventory systems, the decision maker always allow some flexibility in the cost 

parameter values in order to tackle the unforeseen circumstances which always fit real 

situations. These characteristics are better described by the use of fuzzy sets which 

encompass a range of values than statistical treatment of cost characteristics which is 

inefficient for these models because of lack of random observations (Vijayan and 

Kumaran, 2008). 

. 

 

1.2 Brief History of Mantrac Ghana Limited 

Mantrac Ghana Limited, formerly known as Tractor and Equipment Ghana, is the sole 

authorized dealer for Caterpillar products in Ghana. The Mantrac Group also holds the 

caterpillar dealership in Kenya, Uganda, Nigeria, Tanzania, Sierra Leone, Egypt, Iraq 

and parts of Russia. 
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In addition, the sister company of Mantrac Group, Unatrac, caters for offshore customers 

through representatives offices in the United Kingdom and Dubai. 

Since its establishment in Ghana in 1937, Mantrac Ghana Limited has supplied and 

supported caterpillar equipment used in many different sectors such as construction, 

mining, forestry, material handling and power generation. 

 

Apart from Mantrac‘s long affiliation with caterpillar, the company maintains strategic 

link with other global suppliers including O&K mining equipment, Olympian 

generators, MaK marine engines, Perkins engines, Allight lighting towers, Kenworth 

trucks, Isuzu, Suzuki, General Motors passenger cars and commercial trucks. Mantrac 

also offers customers‘ integrated business solutions backed by technical expertise to help 

customers choose the products and systems for their applications. Finally, Mantrac 

Ghana deals in forty to fifty thousand land items. 

 

1.3 Problem Statement 

The main problem facing the company is the conditional expected marginal holding cost 

incurred by maintaining excess inventory due to over-ordering; and the conditional 

expected backlogging cost incurred by not satisfying demand on time due to under 

ordering. 

 

1.3.0 Objectives  

The objectives of the study are: 

1. To model Mantrac Ghana Limited‘s inventory cost using Continuous Review 

 (Q, r) inventory model with all cost components fuzzy. 
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2. To determine the optimum order quantity, reorder point and optimum cost of 

Mantrac Ghana Limited L/M Hose-in from inventory model. 

 

1.4. Methodology 

The problem under study is the conditional expected marginal holding and backlogging 

cost incurred as a result of maintaining excess inventory and when demands are not 

satisfied respectively on time. 

 

The model for the problem is a continuous review (Q, r) inventory model with all cost 

components fuzzy. A continuous review and periodic review inventory model is 

considered in which a fraction of demand is backordered and the remaining fraction is 

lost during the stock out period are considered under fuzzy environment. Trapezoidal 

fuzzy numbers are used to represent these characteristics. 

 

In carrying out this work, data was obtained from the Inventory Department of Mantrac 

Ghana Limited. The following data was obtained. 

 Stock list, 

 Cost per unit item, 

 Data on demand, 

 Data on supply, 

 Inventory holding cost 
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Stochastic inventory models with a mixture of backorders and lost sales are described by 

introducing fuzziness into the cost parameters. Several cases of the models with exactly 

one of the cost components fuzzy and all others crisp as well as with all the cost 

parameters fuzzy are described. Fuzzifications of the cost parameters for continuous and 

periodic review inventory models are described.  

 

The signed distance method is adopted to defuzzify the fuzzy cost function. Optimum 

policies with respect to (Q, r) and (R, T) models under fuzzy cost are derived. Results of 

numerical computations for optimum parameters of these models under both fuzzy and 

crisp cases and their comparisons are presented. 

 

Derive 5 and Mat lab are applied to solve the various algorithms. 

Materials from the internet, books on inventory from KNUST library, papers and 

journals on inventory were used in carrying out this project. 

 

1.5 Justification  

Economically, because of the cost some companies in Ghana incur as a result of keeping 

excess inventory in the warehouse, the operating cost of most of this companies keep on 

increasing as the year goes by. Also the ‗promise and fail‘ attitude of some of these 

companies to deliver to their costumers on time. This normally happens because of 

inadequate stocks hence the need for proper investigation into inventory control. 

 

Furthermore due to inadequate spare parts, some transport companies have their fleet of 

buses reduced thereby affecting the economic and social activities of the population who 
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depended on the services of these companies. In addition, research is the bedrock of 

every developed and developing countries and as a result there is the need for students to 

acquire the skills in academic research to help in developing ones country.  

 

Finally, the project is prerequisite to partially fulfill the requirements for the award of 

M.Sc.  in Industrial Mathematics. 

   

 

1.6 Organization of the thesis. 

This thesis has been organized into five chapters. Chapter one introduces the background 

of the thesis, the problem statement and the objectives of the study. Also the 

methodology and the justification of the thesis were spelt out. 

 

Chapter two presents the literature review of the thesis whilst chapter three gives the 

methodology which spells out the mathematical tools that are applied and chapter four 

deals with data description, analysis and modeling. 

Finally, chapter five contains the conclusions and the recommendations.  
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CHAPTER TWO 

LITERATURE REVIEW 

Various models have been proposed for stock level dependant inventory systems. Barker 

and Urban (1988a) investigated a deterministic inventory system in which the demand 

rate depends on the inventory level described by a polynomial function. 

 

Clark and scarf (1960) considered a multiechelon serial system under continuous review. 

Svoronos and Zipkin (1991) study continuous-review hierarchical inventory systems 

with exogenous stochastic replenishment lead times and a one-for-one replenishment 

policy. By preserving the order of replenishment, the authors were able to approximate 

the study-state system performance and to bring out the important role played by the 

lead time variance. Lee and Billington (1993) use a single-node periodic review model 

as a building block to analyze a decentralized supply chain with normally distributed 

demands and processing lead time.  

More examples on supply chain models were provided by Tayur et. Al. (1999). 

 

An extension of the standard periodic –review model is to impose a capacity limit at 

each stage on the maximum amount of outputs per time unit. Glasserman and Tayur 

(1994) demonstrate that in a serial system with an echelon base-stock policy, the 

inventory and backorders are stable if the mean demand per period is less than the 

capacity at every node. Glasserman (1997) developed bounds and approximations for 

setting the base-stock levels in the above system. Glasserman and Wang (1998) use a 

large deviations approach to obtain an asymptotic linear relationship between lead time 

and inventory as the fill rate approaches 100%. 
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Zipkin (2000) provides a systematic discussion of inventory models with stochastic lead 

times. Based on the system structure, the models are divided into three groups: 

exogenous sequential systems, parallel systems and limited-capacity systems. 

Exogenous sequential systems are essentially standard inventory systems with constant 

lead times replaced by stochastic lead times (Kaplan, 1970). In a parallel system, an 

infinite-server queue is used to model the supply process. With an unlimited capacity, 

the order lead times are independent and identically distributed random variables. 

 

The aim of inventory management is to minimize total operating costs while satisfying 

consumer service requirements. In order to accomplish this objective, an optimal 

ordering policy will be determined by answering to questions such as when to order and 

how much to order. The operating costs taken into account are the procurement costs, 

the holding costs and the shortage costs which are incurred when the demand of a client 

cannot be satisfied (either lost sales costs or backorder costs). 

 

There exist different inventory policies which are periodic-review policy and the 

continuous- review policy. The first policy implies that the stock level will be checked a 

fixed period of time and an ordering decision will be made in order to complete to an 

upper limit (order up to point), if necessary. In second policy, the stock level will be 

monitored continuously. A fixed quantity will be ordered when the stock level reaches a 

recorder point. The order quantity will only be delivered after a fixed lead time and 

shortage can exist if the inventory is exhausted before the receipt of the order quantity. 

Those basic policies can be adapted to take into account special situations such as 

stochastic demands and lost sales or backorder. 
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Research on Inventory Record Inaccuracy (IRI) has been taking place since 1960s with 

the report by (Rinehart, 1960). The author stated that this inaccuracy produces a 

‗‘deleterious effect‘‘ on operational performance. Following this, it was reported that 

this divergence between stock record and physical stock results in ‗‘warehouse denials‘‘ 

(Iglehart and Morey, 1972). Their research took into consideration the frequency and the 

depth of inventory counts and stocking policy to minimize total inventory and inspection 

costs. 

 

Moreover, focusing on the significance of measuring IRI, DeHoratius and Raman (2008) 

show that inventory counts may not impact record inaccuracy and additional buffer 

stock may not be equally necessary across all items in all stores. In fact, safety stock in 

the continuous –review lost-sales inventory models is one of the effective inventory 

management policies for mitigating long run total cost. 

 

Ritchken and Sankar (1984) used a regression-based method to adjust the size of the 

stock by incorporating an additional safety stock requirement in order to estimate the 

risk in inventory problems. Persona et al. (2007) propose innovative cost-based 

analytical models for showing that one can reduce the occurrence of stock-outs by 

introducing a safety stock of pre-assembled modules or components. On considering the 

continuous-review lost-sales inventory models with a Poisson demand, Hill (2007) 

shows that a base-stock policy is ‗‘economically‘‘ optimal and that computing the 

optimal base-stock and its corresponding cost is quite simple for a backorder model.  
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However for a lost-sales model, this policy is not optimal. Hence, the author proposes 

three alternative policies. Two of these involve modifying the optimal base-stock policy 

by imposing a delay between the placements of successive orders. The third policy is to 

place orders at pre-determined fixed and regular intervals. However these policies 

require a lot of complex calculations for lead-times under demand uncertainty. 

 

In addition, quantitative measures were applied and it was found out that the quality of 

service – level declines in a continuous review (Q, R) inventory policy when there are 

inventory miscounts and variations in lead-time (Kumar and Arora, 1992). Even though 

most of the current research focusing on (Q, R) policy often proposes models of 

operational research, simulation modeling is becoming an effective and timely tool and 

is capturing the cause and effect relationship in this field (Kang and Gershwin, 2004). 

 

Urban (1995) investigated an inventory system in which the demand rate during stock 

out periods differs from the in-stock period demand by a given amount. The demand rate 

depends on both the initial stock and the instantaneous stock. Urban formulates a profit-

maximizing model and develops a closed-form solution. Datta and Pal (1990) analyzed 

an infinite time horizon deterministic inventory system without shortage, which has a 

level-dependent demand rate up to a certain stock level and a constant demand for the 

rest of the cycle. 

 

Paul et al. (1996) investigated a deterministic inventory system in which shortages are 

allowed and are fully back-logged. The demand is stock dependent to a certain level and 

then constant for the remaining periods. Hwang and Hahn (2000) constructed an 
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inventory model for an item with an inventory-level dependent demand rate and a fixed 

expiry date. All units that are not sold by their expiry date are regarded as useless and 

therefore discarded. 

 

The holding cost is explicitly assumed to be varying over time in only few inventory 

models. Shao et al. (2000) determined the optimum quality target for a manufacturing 

process where several grades of customers‘ specifications may be sold. Since rejected 

goods could be sold later to another customer, variable holding costs are considered in 

the model. Beltran and Krass (2002) analyzed the dynamic lot sizing problem with 

positive or negative demands and allowed disposal of excess inventory. 

 

Goh (1994) apparently provides the only existing inventory model in which the demand 

is stock dependent and the holding cost is time dependent. While Goh (1992) models 

holding cost variation over time as a continuous nonlinear function, the storage time is 

divided into a number of distinct periods with successively increasing holding costs. As 

the storage time extends to the next time period, the new holding cost can be applied 

either retroactively (to all storage periods) or incrementally (to the new period only). 

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical 

system, which is an extension of multivalued logic. However, in a wider sense fuzzy 

logic (FL) is almost synonymous with the theory of fuzzy sets, a theory which relates to 

classes of objects with unsharp boundaries in which membership is a matter of degree. 

In this perspective, fuzzy logic in its narrow sense is a branch of FL. Even in its more 
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narrow definition, fuzzy logic differs both in concept and substance from traditional 

multivalued logical systems. 

In Fuzzy Logic Toolbox software, fuzzy logic should be interpreted as FL, that is, fuzzy 

logic in its wide sense. The basic ideas underlying FL are explained very clearly and 

insightfully in Foundations of Fuzzy Logic. What might be added is that the basic 

concept underlying FL is that of a linguistic variable, that is, a variable whose values are 

words rather than numbers. In effect, much of FL may be viewed as a methodology for 

computing with words rather than numbers. Although words are inherently less precise 

than numbers, their use is closer to human intuition. Furthermore, computing with words 

exploits the tolerance for imprecision and thereby lowers the cost of solution.  

Another basic concept in FL, which plays a central role in most of its applications, is 

that of a fuzzy if-then rule or, simply, fuzzy rule. Although rule-based systems have a 

long history of use in Artificial Intelligence (AI), what is missing in such systems is a 

mechanism for dealing with fuzzy consequents and fuzzy antecedents. In fuzzy logic, 

this mechanism is provided by the calculus of fuzzy rules. The calculus of fuzzy rules 

serves as a basis for what might be called the Fuzzy Dependency and Command 

Language (FDCL). Although FDCL is not used explicitly in the toolbox, it is effectively 

one of its principal constituents. In most of the applications of fuzzy logic, a fuzzy logic 

solution is, in reality, a translation of a human solution into FDCL. 

A trend that is growing in visibility relates to the use of fuzzy logic in combination with 

neurocomputing and genetic algorithms. More generally, fuzzy logic, neurocomputing, 

and genetic algorithms may be viewed as the principal constituents of what might be 
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called soft computing. Unlike the traditional, hard computing, soft computing 

accommodates the imprecision of the real world. The guiding principle of soft 

computing is: Exploit the tolerance for imprecision, uncertainty, and partial truth to 

achieve tractability, robustness, and low solution cost. In the future, soft computing 

could play an increasingly important role in the conception and design of systems whose 

MIQ (Machine IQ) is much higher than that of systems designed by conventional 

methods. 

Among various combinations of methodologies in soft computing, the one that has 

highest visibility at this juncture is that of fuzzy logic and neurocomputing, leading to 

neuro-fuzzy systems. Within fuzzy logic, such systems play a particularly important role 

in the induction of rules from observations. An effective method developed by Dr. Roger 

Jang for this purpose is called ANFIS (Adaptive Neuro-Fuzzy Inference System). This 

method is an important component of the toolbox. 

You can use Fuzzy Logic Toolbox software with MATLAB technical computing 

software as a tool for solving problems with fuzzy logic. Fuzzy logic is a fascinating 

area of research because it does a good job of trading off between significance and 

precision—something that humans have been managing for a very long time.  

In this sense, fuzzy logic is both old and new because, although the modern and 

methodical science of fuzzy logic is still young, the concepts of fuzzy logic relies on 

age-old skills of human reasoning. 

Montgomery et al. (1973) propose a continuous review inventory system where a 

fraction of the unfilled demand is backordered and the remaining fraction is lost. Both 
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the cases of deterministic and stochastic demands are considered, but the stochastic 

demand case is treated heuristically.  Rosenberg (1979) reformulates the above model by 

introducing a "fictitious demand rate" that simplifies the analysis of the partial backorder 

policy and gives an economic interpretation of the circumstances under which this 

policy is optimal.  

 

Kim and Park (1985) extend the Montgomery et al. (1973) stochastic demand model to 

one in which the cost of a backorder is assumed to be proportional to the length of time 

for which the backorder exists. Assuming at most one order outstanding at any point in 

time and an arbitrary continuous density function of lead time demand, they derive the 

equations from which the optimal order quantity and the reorder point can be iteratively 

computed. Assuming Poisson demand and an exponential lead time, Woo and Sphicas 

(1991) formulate a partial backorder model that allows a finite number of orders to be 

outstanding.  

 

Rabinowitz et al. (1995) analyze a (Q, r) inventory model where a fixed maximum 

number of backorders b is allowed. During the stockout period, the first b units of 

incoming demand are backordered and the remainder is lost. Under the assumption of 

Poisson demand and no more than a single order outstanding, they derive the expected 

annual cost function and employ an exhaustive search procedure to find the optimal 

values of Q, r and b. Chu et a!. (2001) generalize the above model by dividing the lead 

time into two segments and use two backorder control limits, one for each time segment.  
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Posner et al. (1972) treat the case where backorder customers are willing to wait for a 

random period of time. The demand process is assumed to be Poisson, and the lead time 

and how long the customers are willing to wait are assumed to be exponentially 

distributed. Das (1977) uses an (S-1, S) policy and assumes that customers are willing to 

wait for a fixed amount of time before canceling their orders. Moinzadeh (1989) also 

considers an (S-1, S) inventory system with Poisson demand and a constant lead time. 

Smeitink (1990) proves that Moinzadeh's results hold for an arbitrary lead time and that 

the steady-state net inventory probabilities depend on the mean of the lead time and not 

on the shape of its distribution. Chang and Dye (1999) consider a partial backordering 

system for deteriorating items with the backlogging rate dependent on the length of the 

waiting time for the next replenishment.  

 

Moon and Gallego (1994) introduce the distribution-free procedures in the analysis of 

stochastic inventory models. They solve both the continuous review and the periodic 

review model with a mixture of backorders and lost sales using the minimax 

distribution-free approach. The treatment of the periodic review model is heuristic.  

 

Porteus (1990) reviews stochastic periodic review models including one where a fraction 

of the excess demand is backordered. A myopic approximation to this model is provided 

by Nahmias (1979). For recent findings regarding the computation of optimal solutions 

to general (s, S) inventory systems with a backorder policy (both periodic and 

continuous review systems), see Zheng and Federgruen (1991, 1992); for continuous 

review backorder systems, see Federgruen and Zheng (1992) and for a discussion of the 

sensitivity of the optimal solutions, see Zheng (1992).  
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During the lead time there is a cut off point. Before that, if shortage occurs, incoming 

demands will be filled by emergency orders, and after that all unfilled demands are 

backordered. Backorder costs are usually time-dependent, that is, they accumulate over 

time. DeCroix and Arreola-Risa (1998) and Cheung (1998) consider inventory systems 

that offer economic incentives (time-based price discount) to customers who are willing 

to wait longer than normal delivery times. Furthermore, Kim and Park (1985) and Park 

(1989) argue that the time duration of the backorder is a critical factor of the backorder 

costs and must be considered in an inventory system.  

 

Given the importance of shortening the time duration of the backorder period, it is 

reasonable to let backorders occur close to the time when replenishment is due to arrive. 

Although inventory systems are typically customer driven, we do notice that there are 

many real systems controlled solely by the supplier. In such cases, emergency orders are 

often adopted instead of the lost sales policy (although they are mathematically the 

same) in order to maintain customer loyalty. Rabinowitz et al. (1995) consider a model 

for this type of inventory system. However, in their model, shortages are first 

backordered and the rest are filled by emergency orders. This may not be the most cost-

effective because of the time-dependent cost of backorders. Furthermore, setting the 

time limit rather than the limit on backorders is operationally more convenient.  

 

The assumption of no more than one outstanding order is commonly made in the 

exisiting inventory models with emergency orders or lost sales. The usage and 

plausibility of the assumption has been discussed in detail by Hadley and Whitin (1963), 
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Kim and Park (1985), and Cheung (1998). In particular, Hadley and Whitin (1963) 

discussed the difficulty in developing exact solutions for the lost sales case when more 

than one outstanding order is allowed. Hadley and Whitin (1963, p. 198) argued that "If 

r < Q, then there can never be more than a single order outstanding. In the lost sales case 

then, it is possible to stipulate that there is only a single order outstanding if one requires 

that r < Q."  

 

System Dynamics (SD) methodology aims to model real complex dynamic systems for 

understanding them and coming up with policies to change the problematic 

dynamic behavior. The real dynamic problems contain feedbacks, delays, and random 

noise or uncertainties which make them ―complex‖ (Größler, 2004). Feedbacks and 

delays are the main reasons why human decision-making behavior results in unwanted 

behavior in these systems (Sterman 1989a). In most of the cases, the problems that are 

which SD is interested in have problematic dynamic behavior usually caused by not 

optimal decisions of humans. To achieve the aim of making valid models of dynamic 

systems, SD tries to capture human decision making behavior together with feedbacks 

and delays which are all endogenously included in the model.  

 

In other words, SD models should be able represent ‗intended rationality‘ of human 

beings (Größler 2004). The words intended rationality or bounded rationality is used to 

describe the decision making behavior of humans in these complex dynamic systems 

which are far from optimal. This behavior should not be interpreted as humans acting 

irrationally (Größler et al. 2004). However, the rationality of decision maker is bounded 

or limited because of the complexity of many real dynamic systems (Sterman, 2000). 
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Thus, the modeler should represent the two bounded rationality of the decision maker 

for the model to be a valid representation of reality. 

 

In order to model human decision-making behavior in a certain system, one must 

first understand how people behave or decide in that system. Laboratory experiments are 

conducted where subjects play the role of the decision-maker in the model of the system 

to capture the behavior of humans. Then their decision behavior is modeled with the 

help of certain heuristics and rules. Various studies work on generic systems such as 

stock management problem and use laboratory experiments to come up with decision-

making behavior formulation (Sterman 1989a., b., Dogan and Sterman 2000, Barlas and 

Özevin 2001). Many of these studies base their formulations on anchor and adjustment 

heuristic which is first proposed by Tversky and Kahneman (1982). 

 

Fuzzy Logic is one of the best tools to model our imprecise and blurred world. 

The real world is too complicated for precise descriptions to be obtained; therefore 

approximations (or fuzziness) must be introduced in order to obtain a reasonable, yet 

traceable, model (Wang 1997). Fuzzy logic is the tool for transforming human 

knowledge and its decision-making ability into a mathematical formula. In other words, 

it provides us with meaningful and powerful representation of measurement 

uncertainties and also with meaningful representation of vague concepts expressed in 

natural language (Klir & Yuan 1995). 

 

Morgan and Ammentorp (1994) uses the qualitative knowledge of experts on financial 

risk management to determine decision variables, and numeric ranges of these variables 
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such as what value range is low, normal and high. Then their responses to those ranges 

were obtained to develop fuzzy logic model. Takahagi (1995) applies fuzzy logic 

modeling to inventory control model with taking sales as the only decision variable. He 

claims that the behavior of this fuzzy logic model is similar to human behavior without 

comparison to any real inventory and order behavior. Although human behavior can be 

modeled by just contemplating on the reasons, it may cause validation problems. A few 

other applications make use of fuzzy logic to model human behavior. Sousa-Poza et al. 

(2003) use survey data to build the fuzzy model of how humans determine job 

satisfaction. Esmaeli et al. (2006) model electric consumption of low, medium and high 

income group using fuzzy approach. Ghazanfari et al. (2003) proposes that fuzzy set 

theory can be applied to model any vague concept in a SD model. 

 

This study proposes fuzzy logic to mimic decision making behavior of humans in 

Stock Management Problem. Three different types of human behavior are extracted 

from the data (Barlas and Özevin 2004) and hence, three types of fuzzy logic player are 

proposed.  

 

The methodology for this project work was based on inventory models with a mixture of 

backorders and lost sales under fuzzy cost in the European Journal of Operational 

Research 189 (2008) 105 – 119 , (Vijayan and Kumaran, 2008). 
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CHAPTER THREE 

METHODOLOGY 

References are given to different models in the field of inventory models with a mixture 

of backorders and lost sales under fuzzy cost available in the literature. 

Considering a general inventory model where the items are delivered against random 

demands, the replenishment orders are normally made after a fixed lead time. The items 

are normally  

withdrawn from the inventory in response to the demand. If the entire inventory depletes 

to zero at a point in time, then a stock out state is said to occur. The stock out period is 

treated in three different forms; 

 Backorders case - the demands that occur during the stock out  period are 

fulfilled from the next delivery of orders.                          

 Lost sales case - the impatient customers will satisfy their demand from 

other sources. 

 Mixture of backorders and lost sales -  some customers who may be willing 

to wait till the next arrival of stock while a few customers may be impatient. 

 

 

3.1 Continuous review (Q,r) inventory model   

(Q,r) inventory model or the recorder point model is a standard continuous review 

inventory system in which the inventory position of an item is monitored after every 

sales and the policy is to order a lot of size Q units when the inventory level drops to the 
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re-order point r. Such models are described in all standard text books on inventory. One 

such model under the following assumptions are considered below. 

Assumptions 

(i) The unit cost of the items is a constant independent of the order quantity. 

(ii) Shortage cost is fixed for each unit of demand during the stock out period. 

(iii) Backorder cost is independent of time.  

(iv) Reorder point r is positive. The safety stock = (r- expected lead time demand), is 

positive. 

(v) There is never more than a single order outstanding. 

(vi) The stock out period during a cycle (time between the replenish of two 

consecutive orders) is very small. 

 

More justifications and assumptions on backorders and lost sales models are available in 

Hadley and Whitin (1963). 

Let 

D = average annual demand 

y = demand during lead time 

θ = expected lead time demand 

f(y) = the probability density function (pdf) of lead time demand 

h = inventory holding cost per unit per year 

C = fixed ordering cost per inventory cycle 

s = fixed shortage cost per unit shortage 

β = fraction of demand backordered during the stock-out period, 0 < β < 1 

Л = shortage cost of lost sales including the lost profit 
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The expected shortage at the end of the cycle is given by: 

( ) ( ) ( ) ,
r

B r y r f y dy



    

It is referred to as loss function.  

  = the expression for annual variable cost under the model (Montgomery et al., 1973) 

is given by: 

(1 )
( , ) ( ) (1 )

2

CD Q sD D
Z Q r h r B r h

Q Q Q

 
 

  
          

   
 ……………………(1) 

The function in Eq. (1) is convex; the optimum values of Q and r are derived by the 

usual calculus procedure of minimization. This gives 

 2 ( ) (1 ) ( )D C sB r B R
Q

h

    
  

 
…….............................................................(2) 

and 

( )
(1 ) (1 )

r

Qh
f y dy

Qh sD D



  


    ………………………… ……………………(3) 

At the extremes, β=1 and β=0 , the above model reduces to the usual backorders and lost 

sales cases respectively.  

 

3.2 Periodic review (R,T) inventory model 

Consider a periodic review policy in which a review of the inventory level and the 

ordering decision are made at fixed interval of time T and at each review time a 

sufficient quantity is ordered to bring the inventory position up to level R. Such a policy 

is often known as a periodic review (R,T) policy. In addition to the assumptions:  

(i) The unit cost of the items is a constant independent of the order quantity. 
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(ii) Shortage cost is fixed for each unit of demand during the stock out period. 

(iii) Backorder cost is independent of time.  

  The following assumptions are also used. 

(i) The cost J of making a review is independent of the variables R and T. 

(ii) The backorders are incurred in very small quantities. 

(iii) The lead time τ is known and constant. 

 

The annual ordering and review cost is given by W=C+J. Let f(y,T)dy  denote the 

probability that y units are demanded in time T. Expected number of demands short per 

review period is given by:  

( , ) ( ) ( , )
R

B R T y R f y T dy



  . 

Using the same notations: 

D = average annual demand 

y = demand during lead time 

θ = expected lead time demand 

f(y) = the probability density function (pdf) of lead time demand 

h = inventory holding cost per unit per year 

C = fixed ordering cost per inventory cycle 

s = fixed shortage cost per unit shortage 

β = fraction of demand backordered during the stock-out period, 0 < β < 1 

Л = shortage cost of lost sales including the lost profit, 
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to describe the characteristics, the average annual variable cost under the model is given 

by: 

(1 )
( , ) ( , ) (1 )

2

W DT s
Z R T h R D B R T h

T T

 
 

    
         

   
 …………………(4) 

 

Using calculus, Montgomery et al.(1973) gave the optimal value of R for a given T, as 

the solution of the equation: 

 ( , )
(1 ) (1 )

R

hT
f y T dy

hT s



  


     ……………………………………………...(5) 

Different values of T produce different optimal values of R. We choose the pair (R, T) 

which minimizes the cost function in Eq .(4) 

 

3.3  Preliminary concepts of fuzzy set theory 

Some preliminary concepts of fuzzy set theory required in the development of our 

models are described below. 

 

3.3.1 Fuzzy preliminaries 

The fuzzy set theory was introduced by (Prof. Lotfi A. Zadeh, 1965) and fuzzy logic in 

1973 to deal with problems in which fuzzy phenomena exist. In a universe of discourse 

X, a fuzzy subset Ǎ of X is defined by the membership function μ Ǎ(x) which maps 

each element x in X to a real number in the interval [0,1].The  function value of  

 μ Ǎ(x)  denotes the grade of membership. A fuzzy set is normal if the largest grade 

obtained by any element in that set is 1. A fuzzy set Ǎ on X is convex if and only if 
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~ ~ ~
21 1 2( (1 ) ) min.( ( ), ( ))

A A A

u x x u x u x     for all 1 2,x x X   and λ   [0,1], where min 

denotes the minimum operator.   

 

A fuzzy number is a fuzzy subset of the real line which is both normal and convex. For a 

fuzzy number 
~

A , its membership function can be denoted by  ~

( ), ,

( ) 1, ,

( ),
A

l x x m

u x m x n

u x x n




  
 

 

where l(x) is upper semi continuous, strictly increasing for x < m and there exist m1 < m 

such that l(x) = 0 for 1, ( )x m u x  is continuous, strictly decreasing function for x > n 

and there exist 1n n  such that u(x) = 0 for 1, ( )x n l x  and ( )u x  are called the left and 

right reference functions respectively. 

 

The diagram below shows a block diagram of a Fuzzy system. 

 

 

 

 

Figure 3.1: A Block Diagram of a Fuzzy System 

 

3.3.2  Trapezoidal fuzzy number  

The fuzzy number 
~

A  is said to be a trapezoidal fuzzy number if it is fully determined by 

1 2 3 4( , , , )a a a a  of crisp numbers such that  1 2 3 4 ,a a a a    whose membership function 

representing a trapezoid can be denoted by: 

Crisp 

Input 

 

Fuzzifier 

 

Fuzzy Rules 

Rule 

Inference 

Engine 

 

Defuzzifier 

 

Crisp 

Output 
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1

2 1

~
4

3 4

1 2

2 3

3 4

, ,

1, ,
( )

,

0,

x a

a a

x a
A

a a

a x a

a x a
u x

a x a

otherwise









  


 
 

 



 

where 1 2 3, ,a a a  and 4a  are lower limits, lower mode, upper mode and upper limit 

respectively of the fuzzy number 
~

A . 

 

 The interval [a1, a4] is called the support of the fuzzy number and it gives the range of 

all possible values of 
~

A  that are at least marginally possible or plausible. The interval 

[a2, a3]   corresponds to the core of the fuzzy number and gives the range of most 

plausible values. The intervals [a1, a2] and [a3, a4] are called penumbra of the fuzzy 

number 
~

A   (Zimmerman,1991). 

Let 
~

1A  = 11 12 13 14( , , , ),a a a a  
~

2A = 21 22 23 24( , , , ),a a a a  be two trapezoidal fuzzy numbers, 

then  

~

1A  +
~

2A  = 11 21 12 22 13 23 14 24( , , , )a a a a a a a a    and for all 0,b   b
~

1A  = 

11 12 13 14( , , , ).ba ba ba ba  

The set  ~( ) { : ( ) }
A

A x u x   ,  [0,1]  is called the α cut of 
~

A  . 
~

A (  ) is a non 

empty bounded closed interval contained in the set of real numbers and it can be denoted 

by 
~ ~ ~

( ) [ ( ). ( )].l uA A A    
~

( )lA   and 
~

( )uA   are respectively the left and right limits of  

~

A (  ) and are usually known as the left and right α cuts of 
~

A . 
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For a trapezoidal fuzzy number 
~

A = 1 2 3 4( , , , )a a a a ,  
~

1 2 1( ) ( )
l

A a a a     and 

~

4 4 3( ) ( )uA a a a    . The fuzzy set [a, b, α ] on ( , )   is called a level α fuzzy 

interval, if its membership function is  [ , : ]( )

,0 1,

0,
a b x

a x b
u

otherwise


    
  

 

 

 

3.4  Signed distance method 

In order to defuzzify the fuzzy cost function, we need to consider some distance 

measures as in Yao and Wu (2000). The signed distance between the real numbers a and 

0, denoted by do (a, 0) is given by do (a, o) =a. Hence the signed distance of 
~

( )lA  and 

~

( )uA  measured from 0 are  

do (
~

( )lA  ,0) = 
~

( )lA   and do(
~

( )uA  ,0) = 
~

( )uA   respectively.  

The signed distance of the interval (
~

( )lA  ,
~

( )uA  )  measured from the origin 0 is given 

by: 

do ((
~

( )lA  ,
~

( )uA  ),0)  = 

~
~ ~1 1

[ ( ( ),0) ( ( ),0)] ( ( ) ( )),
2 2

o l o u l ud A d A A A      where 
~

( )lA   

and 
~

( )uA  exist and are integrable for [0,1].  

For each [0,1] ,  the crisp interval [
~

( )lA  ,
~

( )uA  ] and the level α fuzzy interval 

[[
~

( )lA  ,
~

( )uA  ]:α]   are in one to one correspondence. The signed distance from 
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[[
~

( )lA  ,
~

( )uA  ]:α]   to Ồ (where Ồ is the 1 level fuzzy point which maps to the origin) 

is d([[
~

( )lA  ,
~

( )uA  ]:α], Ồ) = do ((
~

( )lA  ,
~

( )uA  ),0) = 
~1

( ( ) ( )),
2

l uA A    . The signed 

distance of 
~

A  measured from Ồ defined as  

d (
~

A ,Ồ) 

1 ~

0

1
( ( ) ( )) ,

2
l uA A d     …………………………………………………….(6) 

where 
~

( )lA   and 
~

( )uA  are respectively left and right cuts of the fuzzy number 
~

A . 

 

Let 
~

, 1,2,3,....................,iA i N  be N fuzzy numbers and bi, i = 1, 2, 3… N are real 

crisp constants. Then  

~ ~ ~ ~

1 1

, ,
N N

i ii i

i i

d b A O b d A O
 

   
   

  
   …………..…………………………………………(7) 

The signed distance formula in Eq. (6) is considered when ranking fuzzy numbers.  

(Yao and Wu, 2000). Fuzzy numbers 
~

1A and 
~

2A are ranked as 
~

1A  < 
~

2A  if: 

~ ~ ~ ~

1 2, ,d A O d A O
   

   
   

 ………………………………………………………………(8). 

 

3.5. Continuous review (Q, r) model under fuzzy cost parameters. 

Four different cases of the continuous review inventory model are considered under 

fuzzy cost parameters. 

3.5.1 (Q, r) model with all cost components fuzzy.  

Assuming that the cost components c, h, s and π are all fuzzy, we represent them by 

trapezoidal fuzzy numbers given below.  
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 
~~

1 2 3 4, , ,C c c c c        ,  

 
~

5 6 7 8, , , ,h h h h h         

 
~

1 2 3 4, , ,S s s s s          and  

 
~

5 6 7 8, , , ,             where i  and i , i = 1, 2, 3, …………, 8 are 

arbitrary positive numbers under the following restrictions. 

1 2 3 4, 5 6,C h           and 7 8  . 

1 2 3 4 5 6, ,S             and 7 8   . 

The left and right limits of  α cuts of 
~ ~ ~

, ,C h S  and 
~

  are given below. 

~

1 1 2( ) ( ) ,LC c         
~

4 4 3( ) ( ) ,uC c         

~

5 5 6( ) ( ) ,Lh h         
~

8 8 7( ) ( ) ,uh h         

1

~

1 1 2( ) ( ) ,LS s         
~

4 4 3( ) ( )uS s       

~

5 5 6( ) ( ) ,L           
~

8 8 7( ) ( )u          

The annual variable cost of the model under all cost components being fuzzy is given 

by: 

~ ~ ~
~ ~ (1 )

( , ) ( ) ( )[ (1 ) ]
2

CD Q S D D
Z Q r h r B r h

Q Q Q

 
 


         ………………….(9) 

The left and right α cuts of the fuzzified cost function are respectively given by the 

following: 
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~ ~ ~
~ ~ ~( ) ( ) ( )(1 )

( , ) ( )( ) ( )[ ( )(1 ) ]
2

L L L
LL L

C D Q S D D
Z Q r h r B r h

Q Q Q

    
   


       

………………………..(10) 

and  

~ ~ ~
~ ~ ~( ) ( ) ( )(1 )

( , ) ( )( ) ( )[ ( )(1 ) ]
2

u u u
uu u

C D Q S D D
Z Q r h r B r h

Q Q Q

    
   


       

………………………..(11) 

Using equations (6), (7), (10) and (11), defuzzified value of  
~

( , )Z Q r  is given by: 

~ ~
31 4

2 2

(1 )
( ( , ), ) ( ) ( )[ (1 ) ]

2

k Dk D k DQ
d Z Q r O k r B r k

Q Q Q


 


        ………...(12) 

where  

 1 2 3 4

1

4

4

c
k

      
 ,  

 
 5 6 7 8

2

4

4

h
k

      
 ,  

 1 2 3 4

3

4

4

s
k

       
  and  

 5 6 7 8

4

4

4
k

        
 . 

The defuzzified valued 
~ ~

( ( , ), )d Z Q r O  is taken as the estimate of fuzzy cost function in 

Eq. (9)  denoted by 
~

,( )Q rE Z . The estimate in Eq. (12) is a convex function of Q and r 

(similar to Eq.(1) and a unique minimum of 
~

,( )Q rE Z  is obtained by equating to zero the 

first order partial derivatives of 
~

,( )Q rE Z  with respect to Q and r. That is 
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~

,( )
0

Q rE Z

Q





 ………………………………………………………………………..(13) 

and  

~

,( )
0

Q rE Z

r





………………………………………………………………………..(14) 

Solving Equations (13) and (14), we get 

1 3 4

2

2 [ ( ) (1 ) ( )]D k k B r k B r
Q

k

   
  

 
  …………………………………………(15) 

and  

2

2 3 4

( )
(1 ) (1 )

r

Qk
f y dy

Qk k D k D



 


     …………………………………………(16) 

Since Equations (15) and (16) are not explicit to get the optimum values of Q and r, the 

iterative procedure suggested by (Hadley and Whitin ,1963) is used to solve the 

equations. Initially put  

B (r) = 0 in Eq.(15) which gives 1

2

2
o

Dk
Q

k

 
  

 
 ………………………………….(17) 

Replacing Q by Qo, Equation (16) gives a value of r, say ro. Using these initial values, 

the iteration continued to arrive at the optimum solution. 

 

3.5.2  (Q,r) model under fuzzy ordering cost  

Representing the ordering cost C in section 3.1 as the trapezoidal fuzzy number 
~

C  in 

section 3.5.1 and keeping all other components crisp constants, the cost function in Eq. 

(1) becomes  
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~
~ (1 )

( , ) ( ) ( )[ (1 ) ]
2

CD Q S D D
Z Q r h r B r h

Q Q Q

 
 


        ………………… (18) 

The left and right α cuts of the function in Eq. (18) are respectively given by: 

~
~ (1 )

( , ) ( ) ( )[ (1 ) ]
2

L

L

C D Q S D D
Z Q r h r B r h

Q Q Q

 
 


        ………………(19) 

and 

~
~ (1 )

( , ) ( ) ( )[ (1 ) ]
2

u

u

C D Q S D D
Z Q r h r B r h

Q Q Q

 
 


        ……………… (20) 

Using Equations (6), (7), (19) and (20), the estimate of cost function under fuzzy 

ordering cost is given as: 

~ ~
1 (1 )

( ( , ), ) ( ) ( )[ (1 ) ]
2

k D Q sD D
d Z Q r O h r B r h

Q Q Q

 
 


         ………….. (21) 

The optimum values of Q and r are obtained from the following expressions: 

12 [ ( ) (1 ) ( )]D k sB r B r
Q

h

    
  

 
 ……………………………………………(22) 

and  

( )
(1 ) (1 )

r

Qh
f y dy

Qh sD D



  


     ……………………………………………(23) 

 

3.5.3 (Q, r) model under fuzzy holding cost 

We consider the model in Equation (1) with holding cost, h alone assumed as fuzzy. 

With the trapezoidal fuzzy number 
~

h  denoting the fuzzy holding cost, the signed 

distance value (defuzzified value) of total cost is given by: 
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~ ~

2 2
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( ( , ), ) ( ) ( )[ (1 ) ]

2

CD Q sD D
d Z Q r O k r B r k

Q Q Q

 
 


        …………..(24) 

The optimum values of Q and r are obtained from the relations: 

2

2 [ ( ) (1 ) ( )]D c sB r B r
Q

k

    
  

 
 ……………………………………………..(25) 

and  

 2

2

( )
(1 ) (1 )

r

Qk
f y dy

Qk sD D



  


     …………………………………………. (26) 

 

 

3.5.4 (Q, r) Model under fuzzy shortage costs 

The model in Equation (1) with the shortage costs as fuzzy and all other cost 

components crisp is considered. The model in Equation (1) involves two shortages costs, 

s and    corresponding to the demands backordered and lost demands respectively. 

Both s and   are allowed to be fuzzy. The cost function in Equation (1) under fuzzy 

shortage costs 
~

s  and 
~

  is given by: 

~ ~
~ (1 )

( , ) ( ) ( )[ (1 ) ]
2

CD Q S D D
Z Q r h r B r h

Q Q Q

 
 


        …………………..(27) 

The left and right α cuts for the above cost function are respectively 

~ ~
~ ( ) ( )(1 )

( , ) ( ) ( )[ (1 ) ]
2

LL

L

S DC D Q D
Z Q r h r B r h

Q Q Q

   
 


        ……….(28) 

and 
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( , ) ( ) ( )[ (1 ) ]
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u

S D DC D Q
Z Q r h r B r h

Q Q Q

   
 


        ………(29) 

The defuzzified value of cost function in Equation (27) using signed distance formula 

(6) is given by:  

~ ~
3 4 (1 )

( ( , ), ) ( ) ( )[ (1 ) ]
2

k D k DCD Q
d Z Q r O h r B r h

Q Q Q


 


        …….…….(30) 

 

3.6 Periodic review (R, T) model under fuzzy cost parameters 

Four different cases of the periodic review inventory model is considered. 

 

3.6.1 (R, T) model under all cost components fuzzy 

In addition to the fuzzy cost parameters 
~ ~ ~

, ,c h s  and
~

 , the review cost J is also fuzzified 

by the trapezoidal fuzzy number as 
~

1 2 3 4( , , , )J J J J J        , where i , i = 1, 

2, 3, 4 are  arbitrary positive numbers which satisfy 1 2J     and 3 4  . 

For the trapezoidal fuzzy number: 

 
~ ~ ~

1 1 2 2 3 3 4 4, , ,W C J W W W W                  , the left and right α cuts 

are respectively 
~

1 1 1 2 1 2( ) ( )LW W               and 

~

4 4 4 3 4 3( ) ( )uW W              . 

The cost function in Equation (4) under the above set of fuzzy cost parameters becomes: 

~ ~ ~
~ ~ ~ (1 )

( , ) ( , ) (1 )
2

W DT s
Z R T h R D B R T h

T T

 
 

 
           

  
 

 ……………….(33) 
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The left and right α cuts of the fuzzified cost function in Equation (33) are respectively 

given by: 

~ ~ ~
~ ~ ~( ) ( ) ( )(1 )

( , ) ( ) ( , ) ( )(1 )
2

L LL
LL L

W DT s
Z R T h R D B R T h

T T

    
   

 
           

  
 

…………………(34) 

and  

~ ~ ~
~ ~ ~( ) ( ) ( )(1 )

( , ) ( ) ( , ) ( )(1 )
2

u uu
uu u

W DT s
Z R T h R D B R T h
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    
   

 
           

  
 

 

………………….(35) 

Using equations (6), (7), (34) and (35), the estimate value of  
~

( , )LZ R T  denoted by 

~

,( )R TE Z is given by: 

~ ~ ~
5 3 4

, 2 2

(1 )
( ) ( ( , ), ) ( , ) (1 )

2
R T
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E Z d Z R T O k R D B R T k
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   
          

   
 

…………………(36), where  

 1 2 1 2 3 4 3 4

5

4

4

W
k

              
   

For a given T, the value of R which minimizes Eq. (36) satisfies 

~ ~
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d Z R T O

R

 
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 
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which reduces to  

2

2 3 4

( )
(1 ) (1 )

r

k T
f y dy

k T k k



 


     …………………………………….………(37) 

Equation(37) gives the optimum value of R for a specified value of T. The optimal value 

of T is determined using the trial and error procedure as advocated in (Hadley and 
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Whitin, 1963). Three particular cases of the periodic review model in Equation (33) are 

considered below, where one of the cost components is assumed as fuzzy. 

 

3.6.2 (R, T) model under fuzzy ordering and review costs. 

Under fuzzy ordering and review costs, the cost function in Equation (4) becomes  

~
~ (1 )

( , ) ( , ) (1 )
2

W DT s
Z R T h R D B R T h

T T

 
 

 
           

  
 

………………(38) 

The signed distance 
~ ~

( , ),d Z R T O
 
 
 

 of fuzzified function in Equation (38) is given by  
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( , ), ( , ) (1 )
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d Z R T O h R D B R T h
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 
 

     
                

…….…(39) 

and the optimal value of R for a given value of T is obtained from the expression  

( , )
(1 ) (1 )

R

hT
f y T dy

hT s



  


     …………………………………………… (40) 

 

3.6.3 (R, T) model under fuzzy holding cost 

Keeping the cost components C, J, s and   constant, under the fuzzy holding cost, the 

signed distance value and optimal value of R are respectively given by the following 

equations  

~ ~

2 2

(1 )
( ( , ), ) ( , ) (1 )

2

W DT s
d Z R T O k R D B R T k

T T

 
 

 
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……….(41) 

and  

2
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R

k T
f y T dy

k T s



  


     ……………………………………………..(42) 
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3.6.4 (R, T) model under fuzzy shortage costs 

The cost function in Equation (4) under fuzzy shortage costs 
~

s  and 
~

  is given by  

~ ~
~ (1 )

( , ) ( , ) (1 )
2

W DT s
Z R T h R D B R T h

T T

 
 

 
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 

 ………………(43) 

The defuzzified value of fuzzified cost function in Equation (43) is given by 

~ ~
3 4 (1 )

( ( , ), ) ( , ) (1 )
2

k kW DT
d Z R T O h R D B R T h

T T


 

 
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  
 

 ……..(44) 

Optimum value of R is obtained from the expression  

3 4

( , )
(1 ) (1 )

R

hT
f y T dy

hT k k



 


     …………………………………………..(45) 

 

The final equations giving optimal values of the decision variables Q and R in all the 

four models described above are of the same type. Hence Eqs (22) and (23), (25) and 

(26), and (31) and (32) are solved using the iterative procedure as described to solve Eqs 

(15) and (16). However, neither a theoretical comparison of the solutions or an 

assessment of the impact of the level of fuzziness in the decision variables is possible.  

 

3.7 Fuzzy Logic Approach to Mimic Decision-Making Behavior of Subjects 

The patterns of ordering behavior of subjects are divided into three basic classes by 

(Barlas and Özevin, 2004); 

(i) smooth, continuous-oscillatory or non-oscillatory-damping orders, 

(ii) alternating large-and-zero discrete orders, like a high frequency signal, 

(iii) long periods of constant orders punctuated by a few sudden large ones. 
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Anchor and adjustment rule is only a valid representation of (i) type of players. 

The rest cannot be mimicked by this rule. Then several other decision rules are evaluated 

to see if they can generate an ordering pattern that belongs to the rest of the classes of 

interest. 

The study proposes fuzzy logic as an alternative modeling tool for decision making 

behavior of humans to commonly used heuristics and rules. We believe that fuzzy logic 

provides a valid representation of human behavior in Stock Management Game. Unlike 

other proposed heuristics, it provides not only the desired pattern, but also provides us 

with the reasons why humans act the way they do which is in full consensus with 

System Dynamics modeling methodology. 

 

In order to be able to use fuzzy logic in modeling the decision making behavior of 

subjects, their reasoning should be well understood. For this aim, the game has been 

played several times, to make the ―If...then‖ rules clear. Clear understanding of 

―If...then‖ rules helped to understand what kind of inputs subjects ignore and how they 

interpret the information that they take into account. In Barlas and Özevin (2004), some 

rules are only tested with continuous exponential delay and other rules only with discrete 

delay. In this paper, after different types of ordering behavior is modeled, the models are 

tested with both delay types. The reason for testing fuzzy logic models with both delay 

types is to observe how the logic works on the delay that it is not designed for. Singleton 

Sugeno type of fuzzy logic has been used to model each class of ordering behavior. 

Fuzzy Logic modeling is done by utilizing Matlab Fuzzy Toolbox (1995). The orders of 

the fuzzy logic player are placed in Stella manually and also the inputs to the fuzzy logic 

players are made manually from Stella.  
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Furthermore, the outputs are in real numbers whereas the orders for the Stock 

Management Game in Stella could only be adjusted in increments of five. Thus the 

orders of the Fuzzy Logic player are rounded up to the nearest number, multiple of five. 

Throughout this section, we use data from the short, step-up-and-down customer 

demand game with either exponential or discrete delay. 

 

3.7.1 Modeling (i) Type Subjects 

The ordering behavior of Type (i) subjects is explained as smooth, continuous 

oscillatory or non-oscillatory—damping orders. In this type, the subjects do usually not 

take the supply line levels into consideration. They try to order as much as the demand 

so as to keep inventory at the initial level. Even though, subjects order as much as the 

demand all the time, usually backordering occurs because of exponential delay and step 

up in customer demand. When the inventory is below zero, subjects order greater than 

demand. In this situation, they can not avoid making a peak or an overflow in the 

inventory level because of both step-down in customer demand and receiving delay. 

Here is the fuzzy logic model of the subjects with (i) type ordering behavior: 

 

Figure 3.2: Fuzzy Logic Model for (i) type subjects 

The inputs are stock level and demand. Several fuzzy logic models were designed 

to mimic (i) type decision making behavior and the ones that mimic (i) type players best 



 40 

are the ones that don‘t take supply line level as a factor in decision making. The ranges 

of the decision factors are obtained from the experimental data on subjects with (i) type 

of ordering behavior. 

Table 3.1: Inference rule table of the fuzzy logic model for (i) type subjects 

 

 

Figure 3.3: Surface of the fuzzy logic model for (i) type subjects 

The ordering response to changes in stock level and demand is smooth. There is a 

slightly sharper increase in order when the inventory level moves from the membership 

functions ‗PS‘ to ‗PB‘ or from ‗NS‘ to ‗NB‘. Transitions of the inventory level from ‗Z‘ 

to ‗NS‘ or ‗PS‘ are quite smooth and close to linear. This is obtained by keeping the 
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ranges that membership functions intersect small, at the same time by choosing the 

output values of consecutive membership functions close. For example, 

IF stock is NS and demand is med then order is 35. 

IF stock is Z and demand is med then order is 30. 

IF stock is PS and demand is med then order is 20. 

Looking at the inference rules given above, when the demand is exactly medium, 

which is 25, and stock level is exactly zero then the order will be 30. Similarly when the 

demand is exactly medium, which is 25, and stock level is in NS, which happens 

between -135 and -165, then the order will be 35. This will cause a gradual increase 

because of exponential delay.    

 

3.7.2 Modeling (ii) Type Subjects 

This ordering behavior is explained as alternating large-and-zero discrete orders like a 

high frequency signal. (ii) type subjects are usually observed in discrete delay games. In 

discrete delay the inflow is simply lagged by the given delay time. Hence, in the discrete 

game, a placed order is received in 4 days as exactly the same amount. In the 

experimental data, the subjects capture the dynamics of the game as the game unfolds. 

So an idea about the delay type can quickly be developed by observing supply line level. 

If the players do not consider supply line level as a decision factor, usually an oscillatory 

and unstable stock level results. The inventory of the  

(ii) type subjects usually endures zigzagging stock levels since a large order reaches the 

inventory after a discrete delay of 4 days. Then the inventory begins to drop gradually 

till the next large order reaches the inventory. 

 



 42 

 

Figure 3.4: Fuzzy Logic Model for (ii) type subjects 

The decision making factors for the model is supply line and stock level. The demand is 

not considered as decision making factor. Even though the order amount should be the 

total of four day delays‘ demand, the subjects usually make the large orders looking at 

the level of the inventory or randomly. 

 

The order range is between 0 and 300 where the maximum order level is from the 

experimental data of subjects with (ii) type ordering behavior. 

 

Figure 3.5: Surface of the fuzzy logic model for (ii) type subjects 

The surface is very steep which means the order is zero or a large amount. The 

inference rules suggest that if stock is ‗P‘ or the supply line is ‗B‘ then the order is zero. 
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If the supply line level is 0, then it is known, because of discrete delay, there will be no 

inflow to the stock for at least four days. If the stock level is not too high, the model 

should avoid supply line level to drop to zero. As soon as the supply line level is ‗S‘ and 

the stock level is not ‗P‘, a large order is placed according to the stock level. 

 

 

3.7.3 Modeling (iii) Type Subjects 

This ordering behavior is explained as long periods of constant orders punctuated by a 

few sudden large ones. This (iii) type subjects are common in continuous exponential 

delay games. Some players do not order smoothly like (i) type. They order smoothly 

when the inventory level is around the desired level. When the inventory level is below 

the desired level, in other words when backordering occurs, subjects tend to give large 

orders to compensate the discrepancy in the inventory level quickly. Similarly, when the 

inventory level is above the desired level, they cease ordering. 

 

 

 

Figure 3.6: Fuzzy Logic Model for (iii) type subjects 
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The decision making factors for (iii) type players are stock level and demand. Demand is 

needed as an input for fuzzy logic model to obtain a smooth ordering around desired 

range of inventory to counteract the demand. (iii) type players order in high amounts 

only when backordering occurs or cease ordering only when there is overflow of goods. 

Hence, supply line is not a decision making factor for this type of players. 

 

Table 3.2: Inference rule table of the fuzzy logic model for (iii) type subjects 

 

 

Figure 3.7: Surface of the fuzzy logic model for (iii) type subjects 

Looking at the surface, it is seen that the ordering response to changes in stock level and 

demand is smooth between 0 and 100. When the stock level is above 100, the model 

does not order. There is a sharp increase in order when the inventory level moves from 
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the membership functions ‗Z‘ to ‗NS‘ or from ‗NS‘ to ‗NB‘. The order increases 

gradually as the demand increases no matter what the inventory level is. Few sudden 

large orders or the leaps in orders are obtained when the inventory level goes below 0 or 

below -200. 
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND MODELING 

4.1 Data Collection and Description 

Data for this project was obtained from Inventory Department of Mantrac Ghana 

Limited covering a period of six years on monthly basis.  

 

 The data comprises the following: 

 Monthly data on stock, demand and supply from January 2005 to December 

2010. 

The table below displays the stock, demand and supply data for January, 2005 to 

December, 2006 

YEAR 2005 2006 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2400 1804 1804 3500 1405 1405 

FEBRUARY 2060 2045 2045 2600 1975 1975 

MARCH 2500 1750 1750 4000 4128 4000 

APRIL 1500 251 251 4500 2145 2145 

MAY 1400 468 468 4800 2694 2694 

JUNE 900 390 390 3000 1945 1945 

JULY 1000 1005 1000 4100 3056 3056 

AUGUST 2000 1065 1065 3500 2043 2043 

SEPTEMBER 935 50 50 1000 632 632 

OCTOBER 3500 3567 3500 2000 1024 1024 

NOVEMBER 4000 1157 1157 1200 380 380 

DECEMBER 3000 4309 3000 1500 1902 1500 

AVERAGE  2099.58 1488.42   2975 1944.08   

 

Table 4.1 Stock, demand and supply data for January, 2005 to December, 2006. 

The stock, demand and supply data for January, 2007 to December 2010 is displayed 

in appendix A. The average stock and demand for each year was displayed in the last 
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rows of the table. The average monthly stock for the five years period was 2684 and 

that of demand was 1932. 

 

 Inventory holding cost per unit per year, fixed ordering cost per inventory cycle, 

fixed shortage cost per unit shortage and shortage cost of lost profits as at the 

year 2011 are displayed in the table below. 

 

COST AMOUNT (GH¢) 

Fixed ordering cost per inventory cycles (C) 58.00 

Holding cost per item per year (h) 2.90 

Fixed shortage costs per unit short (s) 5.80 

Shortage cost of lost sales including the lost profit ( )  8.70 

 

Table 4.2 Data on cost components 

The costs are in Ghana cedis. 

 

4.2 Stock, Demand and Supply data compared 

Figure 4.1 below displays the trajectory of stock, demand and supply data from 

January 2005 to December 2010. 

The visual pattern of the graph shows that during most of the periods, the stock 

was more than the demand and supply. However, a careful observation of the 

pattern of the graph shows the incidence of periodicity with high and low points. 

During some months, the demand was more than the stock and supply and this 

will result into backorders and lost sales which is one of the problems of the 

company. 
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The high demands during this period is due to some factors such as the low 

humidity which cause the hose to wear off very early because those periods are 

in the harmattan. Also because the grounds are very hard during those periods, 

the hydraulics systems of the excavators which make use of the hose do wear off 

quickly because of the difficulties the excavators experienced when excavating. 
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Figure 4.1 

N.B.: Index stands for number of months. 

4.2.1 Description of trajectory of stock data 

Figure 4.2 on the next page describes the trajectory of stock data from January, 

2005 – December, 2010. The visual pattern of stock shown in the figure is 

indicative of periodicity.  The average monthly stock level was about 2684 and 
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majority of the stock were below indicating stock out period. Limiting stock out 

period is one of the concerns of this study. 
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 Fig. 4.2 

 

 

 

4.2.2 Description of trajectory of demand data 

Figure 4.3 below describes the trajectory of demand data from January, 2005 to 

December, 2010. The visual pattern of demand as shown in figure 4.3 is of 

similar pattern as that of the stock levels shown in figure 4.2 indicating that the 

demand depends on the stock. If the demand exceeds the stock, backorders and 

lost sales may occur. 
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Figure 4.3 

The average monthly demand was 1932 units and it was observed that majority of the 

demands were above the average. 

  

 

 

 

4.3 Computational procedures 

 

 The following values were used in the computations. 

 Average annual demand (D)     = 1931.86 x 12 

          =        2683.985 units  

 Fixed ordering cost per inventory cycle (C)   = GH¢58.00 

 Inventory holding cost per unit year (h)   = GH¢2.90 
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 Fixed shortage costs per unit short (s)    = GH¢5.80 

 Shortage cost of lost sales including lost profit (π)  = GH¢8.70 

 Fraction of demand backordered during stock out period (β) = 0.1 

 Expected lead time demand (θ)     = 100
5.0

50
  

 The expected shortage at the end of the cycle B(r)  = 0.088 

 

 

Assuming that the cost components c, h, s and π are all fuzzy, we represent them by 

trapezoidal fuzzy numbers given below.  

 
~~

1 2 3 4, , ,C c c c c        ,  

 
~

5 6 7 8, , , ,h h h h h         

 
~

1 2 3 4, , ,S s s s s          and  

 
~

5 6 7 8, , , ,             where i  and i , i = 1, 2, 3, …………, 8 are 

arbitrary positive numbers under the following restrictions. 

1 2 3 4, 5 6,C h           and 7 8  . 

1 2 3 4 5 6, ,S             and 7 8   . 

Five sets of the fuzzy components used for the computation based on arbitrary choices 

of i  and i , i = 1,2,3,…………,8 are displayed in table 4.3  on the next page. 
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        Table 4.3    Table of Arbitrary values of ii d  and ii a ,  

    where i= 1,2,3,………,8 used in the computations. 

 

 

4.3.1 Calculation of fuzzified costs 

For the first set of values, we obtained the fuzzified costs as follows: 

 ,68,63,13,8

)1058,558,4558,5058(

~

~





C

C
 

 

 ,2.4,9.3,4.1,9.0

3.19.2,19.2,5.19.2,29.2

~

~





h

h
 

 

 2.7,7,6.1,6.0

4.18.5,2.18.5,2.48.5,2.58.5

~

~





s

s
  and 

 

 1.10,2.9,3.1,1

4.17.8,1.17.8,4.77.8,7.77.8

~

~








 

 

The procedure is repeated for the 2
nd

, 3
rd

, 4
th

 and 5
th

 sets and the results are displayed in 

table 4.4 on the next page. 

di 1st  2nd  3rd  4th  5th  ai 1st  2nd  3rd  4th  5th  

d1 50 48 50 50 50 a1 5.2 5.0 4 5 3 

d2 45 42 47 43 42 a2 4.2 3.0 2 3 2 

d3 5 7 10 8 6 a3 1.2 1.5 1.5 1.5 1.8 

d4 10 12 14 15 20 a4 1.4 1.8 2 4 5 

d5 2 2.2 2.3 2.1 2.1 a5 7.7 5.2 4.2 3.2 2 

d6 1.5 1.3 1.4 1.4 1.5 a6 7.4 4.8 2.4 2.2 1.5 

d7 1 1.2 1.5 1.3 1.6 a7 1.1 1.6 2.1 1.8 2.5 

d8 1.3 1.5 1.7 2 2 a8 1.4 1.9 2.5 3 2.8 
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Ĉ ĥ ŝ 
~

  

(8,13,63,68) (0.9,1.4,3.9,4.2) (0.6,1.6,7,7.2) (1,1.3,9.2,10.1) 

(10,16,65,70) (0.7,1.6,4.1,4.4) (0.8,2.8,7.3,7.6) (3.5,3.9,10.3,10.6) 

(8,11,68,72) (0.6,1.5,4.4,4.6) (1.8,3.8,7.3,7.8) (4.5,6.3,10.8,11.2) 

(8,15,66,73) (0.8,1.5,4.2,4.9) (0.8,2.8,7.3,9.8) (5.5,6.5,10.5,11.7) 

(8,16,64,78) (0.8,1.4,4.5,4.9) (2.8,3.8,7.3,10.8) (6.7,7.2,11.2,11.5) 

 

Table 4.4 Table of fuzzified cost components 

 

4.3.2 Calculation of signed distances 

 

For the first set of fuzzy cost components, the signed distances k1= d(Ĉ, Ȏ),  

k2 =  d(ĥ, Ȏ),  k3 =  d(ŝ, Ȏ) and k4 = d(


 , Ȏ) were determined using the following 

equations: 

d(Ĉ, Ȏ) =  4321425.0  C , 

d(ĥ, Ȏ)  =   8765425.0  h , 

d(ŝ, Ȏ)  =    4321425.0 s  and  

d(


 , Ȏ) =  8765425.0  . (Yao and Wu, 2000) 

By substituting in the values, we obtained the following: 

d(Ĉ, Ȏ) =  105455058425.0     = 38.00 , 

d(ĥ, Ȏ)  =   3.115.129.2425.0     = 2.60, 

d(ŝ, Ȏ)  =    4.12.12.42.58.5425.0   = 4.10  and 

d(


 , Ȏ) =  4.11.14.77.77.8425.0   = 5.55 

The procedure is repeated for the 2
nd

, 3
rd

, 4
th

 and 5
th

 sets and the results are displayed in 

table 4.5 on the next page. (See appendix D.1 for Matlab output). 
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d(Ĉ, 
~

O )  d(ĥ, Ȏ)   d(ŝ, 
~

O )  d(
~

 ,
~

O ) 

38.00 2.60 4.10 5.55 

40.25 2.70 4.63 7.08 

39.75 2.78 5.18 8.20 

40.50 2.85 5.18 8.55 

41.50 2.90 6.25 9.15 

 

Table 4.5 Table of signed distances 

 

4.3.3 Calculation of percentage increase Pc, Ph, Ps and Pπ  

The percentage increase Pc, Ph, Ps and Pπ in C, h, s and π respectively under fuzzy cases 

are determined using the following equations: 

100
 C-) ,Cd(

~~


















C

PC , 

100
h -) ,hd(

~~


















h

Ph , 

100
 s-) ,sd(

~~


















s

Ps  and  

100
 -) ,d(

~~





















P .  (Vijayan, Kumaran, 2008). 

For the first set of values, we obtained the percentage increase in the cost parameters as 

follows: 

48.34100
58

58-(38









CP , 

34.10100
90.2

 2.90-2.60









hP , 
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31.29100
80.5

 5.80-4.10









sP  and  

21.36100
70.8

 70.8-5.55









P . 

The procedure is repeated for the 2
nd

, 3
rd

, 4
th

 and 5
th

 sets and the results are displayed in 

table 4.6 below. (See appendix D.1 for Matlab output). 

PC Ph Ps Pπ 

-34.48 -10.34 -29.31 -36.21 

-30.60 -6.90 -20.26 -18.68 

-31.47 -4.31 -10.78 -5.75 

-30.17 -1.72 -10.78 -1.72 

-28.45 0 +7.76 +5.17 

 

Table 4.6 Table of percentage increase in the costs components 

 

 

4.3.4 Calculation of the optimum quantity, reorder point and total cost 

The optimum quantity (Q), the reorder point (r) and the corresponding total cost 

~

,( )Q rE Z are determined using the following equations: 

1 3 4

2

2 [ ( ) (1 ) ( )]D k k B r k B r
Q

k

   
  

 
 ………………………………………… (α)  

 
D

DkDkQk

Qk
r 


 )

)1(1
(

432

2


....………………………………………..(β) 

~

,( )Q rE Z =  
 








 











Q

Dk

Q

Dk
krBr

Q
k

Q

Dk 


1
1)(

2

43

22
1 ………….( γ) 

(Vijayan, Kumaran, 2008)   
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By substituting the various values into equation (α) the optimum quantity (Q) is  

  







 


60.2

088.01.0155.5088.010.43832.231822
Q  

Q =  831.81 units. 

 

Also the reorder point r is obtained by substituting the various values into equation (β). 

 
32.23182)

)1.01(32.2318255.532.231821.41.0160.281.831

60.281.831
( 




r  

r = 235.62 

 

From 

Q

Dk1 = 
81.831

32.2318238
 = 1059.05 …………………………………………………….(a) 









 r

Q
k

2
2  = 








 10062.235

2

81.831
6.2 = 1433.965 …………………………. (b) 

 
 








 


Q

Dk

Q

Dk
krB




1
1)( 43

2 = 

 
 








 





81.831

32.231821.0155.5

81.831

32.231821.4
1.016.2088.0  = 22.511737 ………(c) 

The total cost 
~

,( )Q rE Z  is obtained by substituting the values in equations (a), (b) and (c) 

into equation (γ) giving; 

~

,( )Q rE Z  = 1059.05 + 1433.965 + 22.511737 

~

,( )Q rE Z  = 2515.50 
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The procedure is repeated for the 2
nd

, 3
rd

, 4
th

 and 5
th

 sets and the results are displayed in 

table 4.7 below. (See appendix D.1 for Matlab output). 

Sets of values Q r 
~

,( )Q rE Z  

1
st
 831.81 235.62 2515.50 

2
nd

 841.30 205.00 2555.20 

3
rd

 826.20 181.33 2518.60 

4
th

 822.98 180.96 2576.50 

5
th

 826.97 164.51 2585.50 

Average 829.85 193.48 2550.30 

 

Table 4.7 Table of optimal (Q, r) policy with all cost components fuzzy 
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4.4 Discussion of Results 

Table 4.8 below reveals that the optimum values of the decision variables Q and R and 

the corresponding total cost will vary with respect to the changes in the level of 

fuzziness in all cost components. 

PC Ph Ps Pπ Q r 
~

,( )Q rE Z  

-34.48 -10.34 -29.31 -36.21 
831.81 235.62 2515.50 

-30.60 -6.90 -20.26 -18.68 
841.30 205.00 2555.20 

-31.47 -4.31 -10.78 -5.75 
826.20 181.33 2518.60 

-30.17 -1.72 -10.78 -1.72 
822.98 180.96 2576.50 

-28.45 0 +7.76 +5.17 
826.97 164.51 2585.50 

 

Table 4.8 Table of percentage increase in cost components and corresponding 

optimum quantities and total costs. 

 

While the optimum order quantity experiences slight changes from one cost component 

to the other, the reorder point experiences higher changes from one cost component to 

the other. Also the total cost experiences slight changes from one cost component to the 

other. Generally, the reorder point records considerable decrease when the fuzzy cost 

increases. 

 

The percentage change in C, h, s and π under fuzzy case (based on signed distance 

values) from their crisp values increases down the columns. 
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The total inventory cost often depend on the lead time demand, the expected shortage 

cost at the end of the period, the fraction of demand backordered during stock out period 

and the quantity demanded by the customers. 

 

A continuous review (Q, r) inventory model was constructed for the study of the impact 

and sensitiveness of the impreciseness of the cost components in the decision variables 

and the total cost. 

 

The continuous review model with all cost parameters fuzzy are useful and efficient 

because in practical situations, precise values of the cost characteristics are seldom 

achieved as they may be vague and imprecise to certain extent. For example, the 

shortage in an inventory system may occur due to different causes such as sudden 

increase of demand, transportation problems, unforeseen incidents, hike in wages, 

delayed production e.t.c. 

 

Shortage brings loss of goodwill and it is difficult to the exact amount of shortage cost. 

The same problem is experienced in the case of the ordering and holding costs hence in 

inventory, the decision maker may allow some flexibility in the cost parameter values in 

order to tackle the uncertainties which always fit the real situations. 

 

Also statistical treatment of the cost characteristics is inefficient for these models 

because of the lack of random observations. As such, these characteristics are better 

described by the use of fuzzy sets which encompass a specific range of values. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 An inventory model to model Mantrac Ghana Limited‘s inventory cost of L/M 

Hose-in using a continuous review (Q, r) inventory model with all cost 

components was developed. 

 

 Considering the optimal (Q, r) policy with all cost components fuzzy for the L/M 

Hose-in, the average optimum order quantity was 829.85 units, the reorder point 

was 193.48 units and the average total cost for the period was GH¢2550.30. 

 

 The fuzziness in the cost components are represented by the trapezoidal fuzzy 

numbers which are Ĉ, ĥ, ŝ and 
~

 . 

 

 

 

5.2 Recommendations 

Based on the findings so far arrived at, in order to ensure proper inventory control 

systems at Mantrac Ghana Limited, the following recommendations are made. 

 The continuous review (Q, r) inventory model with all the cost components fuzzy 

should be used to model the inventory of Mantrac Ghana Limited. 
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 The optimum quantity and reorder point should be determined at the end of each 

year to guide in the New Year to minimize the backorders and lost sales since 

this brings loss of goodwill. 

 In this research, the continuous review (Q, r) inventory model was used with all 

cost components fuzzy. There should be further research study using the periodic 

review (R, T) inventory model with all cost components fuzzy. 
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APPENDIXES 

 

APPENDIX A DATA ON STOCK, DEMAND AND SUPPLY FOR L/M 

HOSE-IN 

 

TABLE A1 Data on stock, demand and supply from Jan. 2005 – Dec. 2006 

YEAR 2005 2006 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2400 1804 1804 3500 1405 1405 

FEBRUARY 2060 2045 2045 2600 1975 1975 

MARCH 2500 1750 1750 4000 4128 4000 

APRIL 1500 251 251 4500 2145 2145 

MAY 1400 468 468 4800 2694 2694 

JUNE 900 390 390 3000 1945 1945 

JULY 1000 1005 1000 4100 3056 3056 

AUGUST 2000 1065 1065 3500 2043 2043 

SEPTEMBER 935 50 50 1000 632 632 

OCTOBER 3500 3567 3500 2000 1024 1024 

NOVEMBER 4000 1157 1157 1200 380 380 

DECEMBER 3000 4309 3000 1500 1902 1500 

AVERAGE  2099.58 1488.42   2975 1944.08   

 

 

 

TABLE A.2 Data on stock, demand and supply from Jan. 2007 – Dec. 2008 

YEAR 2007 2008 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2400 1504 1504 3000 1704 1704 

FEBRUARY 3000 2040 2040 2500 1865 2500 

MARCH 2900 3400 2900 3895 4234 3895 

APRIL 4000 2100 2100 4022 3001 3001 

MAY 3000 1934 1934 3200 2890 2890 

JUNE 2500 2310 2310 3000 2003 2003 

JULY 3500 3078 3078 4300 3070 3070 

AUGUST 3100 2250 2250 3500 2065 2065 

SEPTEMBER 1510 712 712 1450 520 520 

OCTOBER 1200 500 500 1250 792 792 

NOVEMBER 1300 890 890 1000 450 450 

DECEMBER 2000 2068 2000 1500 1600 1500 

AVERAGE 2534.17 1898.83    2718.08 2016.17   
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TABLE A.3 Data on stock, demand and supply from Jan. 2009 – Dec. 2010 

YEAR 2009 2010 

MONTH STOCK DEMAND SUPPLY STOCK DEMAND SUPPLY 

JANUARY 2500 1607 1607 3200 1850 1850 

FEBRUARY 2800 2045 2045 3400 2135 2135 

MARCH 3500 4560 3500 3500 3590 3500 

APRIL 5000 3500 3500 4000 3250 3250 

MAY 3400 2750 2750 3840 2850 2850 

JUNE 3000 1984 1984 3000 2000 2000 

JULY 3200 3055 3055 3010 3045 3010 

AUGUST 3100 2750 2750 4500 2800 2800 

SEPTEMBER 2500 810 810 3000 900 900 

OCTOBER 1800 655 655 2100 610 610 

NOVEMBER 1145 798 798 1490 780 780 

DECEMBER 1340 1400 1340 1000 1200 1000 

AVERAGE  2773.75 2159.5    3003.33 2084.17   

 

AVERAGE ANNUAL DEMAND (D) FOR THE PERIOD -        23182.32 units 

AVERAGE ANNUAL STOCK     -        32207.88 units

  

 

 

 

 

 

 

APPENDIX B 

   

TABLE B.1  Cost of a unit L/M Hose - in 

 

 

YEAR COST PER ITEM (GH¢) 

2005 12.40 

2006 12.70 

2007 12.90 

2008 13.50 

2009 13.60 

2010 14.00 

TOTAL  79.10 

AVERAGE 13.18 
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TABLE B.2  Data on cost components 

 

COST AMOUNT (GH¢) 

Fixed ordering cost per inventory cycles (C) 58.00 

Holding cost per item per year (h) 2.90 

Fixed shortage costs per unit short (s) 5.80 

Shortage cost of lost sales including the lost profit ( )  8.70 

 

 

 

 

 

 

 

 

APPENDIX C 

 

C.1 MATLAB CODE FOR TRAJECTORY OF STOCK  CURVE 
 A=[]; 
for i=1:72 
    a=input('enter values of [t,X]:'); 
    A=[A;a]; 
end 
t=A(:,1); 
X=A(:,2); 
plot(t,X,'-') 
title('TRAJECTORY OF STOCK DATA OF L/M HOSE-IN FROM JAN. 2005-DEC. 

2010') 
xlabel('TIME(MONTHS)') 
ylabel('SUPPLY') 
grid 

 

 

C.2 MATLAB CODE FOR TRAJECTORY OF DEMAND  CURVE 

  
A=[]; 
for i=1:72 
    a=input('enter values of [t,X]:'); 
    A=[A;a]; 
end 
t=A(:,1); 
X=A(:,2); 
plot(t,X,'-') 
title('TRAJECTORY OF DEMAND DATA OF L/M HOSE-IN FROM JAN. 2005-DEC. 

2010') 
xlabel('TIME(MONTHS)') 
ylabel('SUPPLY') 
grid 
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APPENDIX D 

 

MATLAB OUTPUT OF OPTIMAL SOLUTION UNDER CONTINUOUS 

REVIEW (Q, r) MODEL WITH ALL COST COMPONENTS FUZZY 

 

D.1 1
ST

 SET VALUES 

>> D=23182.32 

 

D = 

 

  2.3182e+004 

 

>> C=58 

 

C = 

 

    58 

 

>> h=2.9 

 

h = 

 

    2.9000 

 

>> s=5.8 

 

s = 

 

    5.8000 

 

>> p=8.7 

 

p = 

 

    8.7000 

 

>> b=0.1 

 

b = 

 

    0.1000 

 

>> t=100 

 

t = 

 

   100 
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>> Br=0.088 

 

Br = 

 

    0.0880 

 

>> d1=50 

 

d1 = 

 

    50 

 

>> d2=45 

 

d2 = 

 

    45 

 

>> d3=5 

 

d3 = 

 

     5 

 

>> d4=10 

 

d4 = 

 

    10 

 

>> d5=2 

 

d5 = 

 

     2 

 

>> d6=1.5 

 

d6 = 

 

    1.5000 

 

>> d7=1 

 

d7 = 
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     1 

 

>> d8=1.3 

 

d8 = 

 

    1.3000 

 

>> a1=5.2 

 

a1 = 

 

    5.2000 

 

>> a2=4.2 

 

a2 = 

 

    4.2000 

 

>> a3=1.2 

 

a3 = 

 

    1.2000 

 

>> a4=1.4 

 

a4 = 

 

    1.4000 

 

>> a5=7.7 

 

a5 = 

 

    7.7000 

 

>> a6=7.4 

 

a6 = 

 

    7.4000 

 

>> a7=1.1 

 

a7 = 
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    1.1000 

 

>> a8=1.4 

 

a8 = 

 

    1.4000 

 

>> k1=0.25*(4*C-d1-d2+d3+d4) 

 

k1 = 

 

    38 

 

>> pc=((k1-C)/C)*100 

 

pc = 

 

  -34.4828 

 

>> k2=0.25*(4*h-d5-d6+d7+d8) 

 

k2 = 

 

    2.6000 

 

>> ph=((k2-h)/h)*100 

 

ph = 

 

  -10.3448 

 

>> k3=0.25*(4*s-a1-a2+a3+a4) 

 

k3 = 

 

    4.1000 

 

>> ps=((k3-s)/s)*100 

 

ps = 

 

  -29.3103 

 

>> k4=0.25*(4*p-a5-a6+a7+a8) 
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k4 = 

 

    5.5500 

 

>> pp=((k4-p)/p)*100 

 

pp = 

 

  -36.2069 

 

>> Q=sqrt((2*D*(k1+k3*Br+k4*(1-b)*Br))/k2) 

 

Q = 

 

  831.8110 

 

>> r=((Q*k2)/(Q*k2*(1-b)+k3*D+k4*D*(1-b)))*D 

 

r = 

 

  235.6158 

 

>> EZQR=(k1*D/Q)+k2*((Q/2)+r-t)+Br*(k2*(1-b)+((k3*D)/Q)+(k4*(1-b)*D)/Q) 

 

EZQR = 

 

  2.5155e+003 

 

D.2 2
ND

 SET  VALUES 

 

>> d1=48 

 

d1 = 

 

    48 

 

>> d2=42 

 

d2 = 

 

    42 

 

>> d3=7 

 

d3 = 

 

     7 
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>> d4=12 

 

d4 = 

 

    12 

 

>> d5=2.2 

 

d5 = 

 

    2.2000 

 

>> d6=1.3 

 

d6 = 

 

    1.3000 

 

>> d7=1.2 

 

d7 = 

 

    1.2000 

 

>> d8=1.5 

 

d8 = 

 

    1.5000 

 

>> a1=5 

 

a1 = 

 

     5 

 

>> a2=3.0 

 

a2 = 

 

     3 

 

>> a3=1.5 

 

a3 = 
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    1.5000 

 

>> a4=1.8 

 

a4 = 

 

    1.8000 

 

>> a5=5.2 

 

a5 = 

 

    5.2000 

 

>> a6=4.8 

 

a6 = 

 

    4.8000 

 

>> a7=1.6 

 

a7 = 

 

    1.6000 

 

>> a8=1.9 

 

a8 = 

 

    1.9000 

 

>> k1=0.25*(4*C-d1-d2+d3+d4) 

 

k1 = 

 

   40.2500 

 

>> pc=((k1-C)/C)*100 

 

pc = 

 

  -30.6034 

 

>> k2=0.25*(4*h-d5-d6+d7+d8) 

 

k2 = 
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    2.7000 

 

>> ph=((k2-h)/h)*100 

 

ph = 

 

   -6.8966 

 

>> k3=0.25*(4*s-a1-a2+a3+a4) 

 

k3 = 

 

    4.6250 

 

>> ps=((k3-s)/s)*100 

 

ps = 

 

  -20.2586 

 

>> k4=0.25*(4*p-a5-a6+a7+a8) 

 

k4 = 

 

    7.0750 

 

>> pp=((k4-p)/p)*100 

 

pp = 

 

  -18.6782 

 

>> Q=sqrt((2*D*(k1+k3*Br+k4*(1-b)*Br))/k2) 

 

Q = 

 

  841.3013 

 

>> r=((Q*k2)/(Q*k2*(1-b)+k3*D+k4*D*(1-b)))*D 

 

r = 

 

  204.9975 

 

>> EZQR=(k1*D/Q)+k2*((Q/2)+r-t)+Br*(k2*(1-b)+((k3*D)/Q)+(k4*(1-b)*D)/Q) 
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EZQR = 

 

  2.5552e+003 

 

D.3 3
RD

 SET VALUES 

 

>> d1=50 

 

d1 = 

 

    50 

 

>> d2=47 

 

d2 = 

 

    47 

 

>> d3=10 

 

d3 = 

 

    10 

 

>> d4=14 

 

d4 = 

 

    14 

 

>> d5=2.3 

 

d5 = 

 

    2.3000 

 

>> d6=1.4 

 

d6 = 

 

    1.4000 

 

>> d7=1.5 

 

d7 = 

 

    1.5000 



 77 

 

>> d8=1.7 

 

d8 = 

 

    1.7000 

 

>> a1=4 

 

a1 = 

 

     4 

 

>> a2=2 

 

a2 = 

 

     2 

 

>> a3=1.5 

 

a3 = 

 

    1.5000 

 

>> a4=2 

 

a4 = 

 

     2 

 

>> a5=4.2 

 

a5 = 

 

    4.2000 

 

>> a6=2.4 

 

a6 = 

 

    2.4000 

 

>> a7=2.1 

 

a7 = 
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    2.1000 

 

>> a8=2.5 

 

a8 = 

 

    2.5000 

 

>> k1=0.25*(4*C-d1-d2+d3+d4) 

 

k1 = 

 

   39.7500 

 

>> pc=((k1-C)/C)*100 

 

pc = 

 

  -31.4655 

 

>> k2=0.25*(4*h-d5-d6+d7+d8) 

 

k2 = 

 

    2.7750 

 

>> ph=((k2-h)/h)*100 

 

ph = 

 

   -4.3103 

 

>> k3=0.25*(4*s-a1-a2+a3+a4) 

 

k3 = 

 

    5.1750 

 

>> ps=((k3-s)/s)*100 

 

ps = 

 

  -10.7759 

 

>> k4=0.25*(4*p-a5-a6+a7+a8) 

 

k4 = 
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    8.2000 

 

>> pp=((k4-p)/p)*100 

 

pp = 

 

   -5.7471 

 

>> Q=sqrt((2*D*(k1+k3*Br+k4*(1-b)*Br))/k2) 

 

Q = 

 

  826.1972 

 

>> r=((Q*k2)/(Q*k2*(1-b)+k3*D+k4*D*(1-b)))*D 

 

r = 

 

  181.3268 

 

>> EZQR=(k1*D/Q)+k2*((Q/2)+r-t)+Br*(k2*(1-b)+((k3*D)/Q)+(k4*(1-b)*D)/Q) 

 

EZQR = 

 

  2.5186e+003 

 

D.4 4
TH

 SET VALUES 

 

>> d1=50 

 

d1 = 

 

    50 

 

>> d2=43 

 

d2 = 

 

    43 

 

>> d3=8 

 

d3 = 

 

     8 
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>> d4=15 

 

d4 = 

 

    15 

 

>> d5=2.1 

 

d5 = 

 

    2.1000 

 

>> d6=1.4 

 

d6 = 

 

    1.4000 

 

>> d7=1.3 

 

d7 = 

 

    1.3000 

 

>> d8=2 

 

d8 = 

 

     2 

 

>> a1=5 

 

a1 = 

 

     5 

 

>> a2=3 

 

a2 = 

 

     3 

 

>> a3=1.5 

 

a3 = 

 

    1.5000 
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>> a4=4 

 

a4 = 

 

     4 

 

>> a5=3.2 

 

a5 = 

 

    3.2000 

 

>> a6=2.2 

 

a6 = 

 

    2.2000 

 

>> a7=1.8 

 

a7 = 

 

    1.8000 

 

>> a8=3 

 

a8 = 

 

     3 

 

>> k1=0.25*(4*C-d1-d2+d3+d4) 

 

k1 = 

 

   40.5000 

 

>> pc=((k1-C)/C)*100 

 

pc = 

 

  -30.1724 

 

>> k2=0.25*(4*h-d5-d6+d7+d8) 

 

k2 = 
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    2.8500 

 

>> ph=((k2-h)/h)*100 

 

ph = 

 

   -1.7241 

 

>> k3=0.25*(4*s-a1-a2+a3+a4) 

 

k3 = 

 

    5.1750 

 

>> ps=((k3-s)/s)*100 

 

ps = 

 

  -10.7759 

 

>> k4=0.25*(4*p-a5-a6+a7+a8) 

 

k4 = 

 

    8.5500 

 

>> pp=((k4-p)/p)*100 

 

pp = 

 

   -1.7241 

 

>> Q=sqrt((2*D*(k1+k3*Br+k4*(1-b)*Br))/k2) 

 

Q = 

 

  822.9768 

 

>> r=((Q*k2)/(Q*k2*(1-b)+k3*D+k4*D*(1-b)))*D 

 

r = 

 

  180.9639 

 

>> EZQR=(k1*D/Q)+k2*((Q/2)+r-t)+Br*(k2*(1-b)+((k3*D)/Q)+(k4*(1-b)*D)/Q) 

 

EZQR = 
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  2.5765e+003 

 

D.5 5
TH

 SET VALUES 

 

d1 = 

 

    50 

 

>> d2=42 

 

d2 = 

 

    42 

 

>> d3=6 

 

d3 = 

 

     6 

 

>> d4=20 

 

d4 = 

 

    20 

 

>> d5=2.1 

 

d5 = 

 

    2.1000 

 

>> d6=1.5 

 

d6 = 

 

    1.5000 

 

>> d7=1.6 

 

d7 = 

 

    1.6000 

 

>> d8=2 
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d8 = 

 

     2 

 

>> a1=3 

 

a1 = 

 

     3 

 

>> a2=2 

 

a2 = 

 

     2 

 

>> a3=1.8 

 

a3 = 

 

    1.8000 

 

>> a4=5 

 

a4 = 

 

     5 

 

>> a5=2 

 

a5 = 

 

     2 

 

>> a6=1.5 

 

a6 = 

 

    1.5000 

 

>> a7=2.5 

 

a7 = 

 

    2.5000 

 

>> a8=2.8 
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a8 = 

 

    2.8000 

 

>> k1=0.25*(4*C-d1-d2+d3+d4) 

 

k1 = 

 

   41.5000 

 

>> pc=((k1-C)/C)*100 

 

pc = 

 

  -28.4483 

 

>> k2=0.25*(4*h-d5-d6+d7+d8) 

 

k2 = 

 

    2.9000 

 

>> ph=((k2-h)/h)*100 

 

ph = 

 

     0 

 

>> k3=0.25*(4*s-a1-a2+a3+a4) 

 

k3 = 

 

    6.2500 

 

>> ps=((k3-s)/s)*100 

 

ps = 

 

    7.7586 

 

>> k4=0.25*(4*p-a5-a6+a7+a8) 

 

k4 = 

 

    9.1500 
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>> pp=((k4-p)/p)*100 

 

pp = 

 

    5.1724 

 

>> Q=sqrt((2*D*(k1+k3*Br+k4*(1-b)*Br))/k2) 

 

Q = 

 

  826.9663 

 

>> r=((Q*k2)/(Q*k2*(1-b)+k3*D+k4*D*(1-b)))*D 

 

r = 

 

  164.5071 

 

>> EZQR=(k1*D/Q)+k2*((Q/2)+r-t)+Br*(k2*(1-b)+((k3*D)/Q)+(k4*(1-b)*D)/Q) 

 

EZQR = 

 

  2.5855e+003 

 

D.6 AVERAGE VALUES 

 

>> Avg(Q)=(831.81+841.30+826.20+822.98+826.97)/5 

>> AvgQ=(831.81+841.30+826.20+822.98+826.97)/5 

 

AvgQ = 

 

  829.8520 

 

>> Avgr=(235.62+205+181.33+180.96+164.51)/5 

 

Avgr = 

 

  193.4840 

 

>> AvgTC=(2515.5+2555.2+2518.6+2576.5+2585.5)/5 

 

AvgTC = 

 

  2.5503e+003 

 

 


