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ABSTRACT 

 

In recent times there have been calls on the climatic changes that are happening and the 

need to put measures in place to forestall drastic changes in the climate. 

 

In this study therefore, we attempted to study the trend of rainfall patterns in Ghana for 

four regions: Northern, Western, Eastern, and the Greater Accra Region, using four 

models namely: Linear Trend with Seasonal Terms, Seasonal Exponential Smoothing, 

ARIMA, Simple Exponential Smoothing, and Linear (Holt) Exponential Smoothing. All 

the ARIMA models are one model family, and the Simple Exponential Smoothing and 

Linear (Holt) Exponential Smoothing which is one model family, since the Simple 

Exponential Smoothing is just basics of the Linear (Holt) Exponential Smoothing. 

 

We have been able to show that the best model for the prediction of rainfall in the regions 

under study was Linear Trend with Seasonal Terms; in choosing this model we used the 

Means Square Error (MSE) and the R-Square as a criterion for the selection of the best 

model for prediction. We also further were able to come to the conclusion that the levels 

of rain in this four regions are not going to fall but rather will rise at least for the year 

2011. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

 

Rain is liquid precipitation, as opposed to non-liquid kinds of precipitation such as snow, 

hail and sleet. Rain requires the presence of a thick layer of the atmosphere to have 

temperatures above the melting point of water near and above the Earth's surface. On 

Earth, it is the condensation of atmospheric water vapor into drops of water heavy enough 

to fall, often making it to the surface. Two processes, possibly acting together, can lead to 

air becoming saturated leading to rainfall: cooling the air or adding water vapor to the air. 

Virga is precipitation that begins falling to the earth but evaporates before reaching the 

surface; it is one of the ways air can become saturated. Precipitation forms via collision 

with other rain drops or ice crystals within a cloud. Rain drops range in size from oblate, 

pancake-like shapes for larger drops, to small spheres for smaller drops. 

 

Moisture moving along three-dimensional zones of temperature and moisture contrasts 

known as weather fronts is the major method of rain production. If enough moisture and 

upward motion is present, precipitation falls from convective clouds (those with strong 

upward vertical motion) such as cumulonimbus (thunderstorms) which can organize into 

narrow rain bands. In mountainous areas, heavy precipitation is possible where upslope 

flow is maximized within windward sides of the terrain at elevation which forces moist 

air to condense and fall out as rainfall along the sides of mountains. On the leeward side 
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of mountains, desert climates can exist due to the dry air caused by down slope flow 

which causes heating and drying of the air mass. The movement of the monsoon trough, 

or inter tropical convergence zone, brings rainy seasons to savannah climes. Rain is the 

primary source of freshwater for most areas of the world, providing suitable conditions 

for diverse ecosystems, as well as water for hydroelectric power plants and crop 

irrigation. Rainfall is measured through the use of rain gauges. Rainfall amounts are 

estimated actively by weather radar and passively by weather satellites. 

(http://en.wikipedia.org/wiki/Rain retrieved on November, 2010) 

The standard way of measuring rainfall or snowfall is the standard rain gauge, which can 

be found in 100-mm (4-in) plastic and 200-mm (8-in) metal varieties. The inner cylinder 

is filled by 25 mm (0.98 in) of rain, with overflow flowing into the outer cylinder. Plastic 

gauges have markings on the inner cylinder down to 0.25 mm (0.0098 in) resolution, 

while metal gauges require use of a stick designed with the appropriate 0.25 mm 

(0.0098 in) markings. After the inner cylinder is filled, the amount inside it is discarded, 

then filled with the remaining rainfall in the outer cylinder until all the fluid in the outer 

cylinder is gone, adding to the overall total until the outer cylinder is empty. Other types 

of gauges include the popular wedge gauge (the cheapest rain gauge and most fragile), the 

tipping bucket rain gauge, and the weighing rain gauge. For those looking to measure 

rainfall the most inexpensively, a can that is cylindrical with straight sides will act as a 

rain gauge if left out in the open, but its accuracy will depend on what ruler you use to 

measure the rain with. Any of the above rain gauges can be made at home, with enough 

know-how. When a precipitation measurement is made, various networks exist across the 

United States and elsewhere where rainfall measurements can be submitted through the 
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Internet, such as COCORAHS or GLOBE. If a network is not available in the area where 

one lives, the nearest local weather or met office will likely be interested in the 

measurement. One millimeter of rainfall is the equivalent of one liter of water per square 

meter. This makes computing the water requirements of crops simple. 

 

1.2 OBJECTIVE 

The objective is to study the rainfall patterns in Northern, Western, Eastern and Greater 

Accra Regions taking the years 1995 – 2009 and getting an appropriate times series 

model for forecasting rainfall in four regions in Ghana. 

 

1.3 PROBLEM STATEMENT 

As a result of climate change more work is now being done on climate indices such as 

rainfall, sunshine, temperature and so on. But much has not been done in this direction in 

Ghana as a country especially looking at a number of models at the same time to conclude 

on the best model; this research studies rainfall patterns in four regions of Ghana, in the 

selection of the four regions purposive sampling (Judgmental sampling or Purposive 

sampling - The researcher chooses the sample based on who or where they think would 

be appropriate for the study) is used.  

 

1.4 SIGNIFICANCE 

The significance of this research work will be enormous since the world‘s population is 

increasing and with the events of global warming. 
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1. It will provide empirical evidence to stakeholders on rainfall trends to formulate 

 policies that can benefit the regions concern and the nation at large. 

2. It will help the regions under consideration to know the trends and rainfall 

patterns. 

3. It will help the farmers to know how to plan their farming activities ahead of time. 

 

1.5 LIMITATIONS 

Just like any other academic thesis, this very work will also have some limitations:- 

I. Time: the time needed to complete a conduct this thesis in a very elaborate manner is not 

available. 

II. Finance: being an academic thesis, it need some amount of financial commitment to be 

able to get more logistics for the thesis but clearly that is not available 

III. Literature: getting data needed for any purpose is not easy in Ghana, and that was a major 

limitation for this work. 

 

1.6 SCOPE  

 This thesis, ―The Application of Times Series on rainfall Patterns in Ghana‖ will cover 

four selected regions in Ghana, namely Eastern Region, Western Region, Northern 

Region and the Greater Accra Region and that is selected to represent the regions in the 

extreme ends of the country. The analysis will be based on a secondary data collected by 

the Ghana Meteorological Agency. 

 

 



5 

 

1.7 PURPOSE OF THE STUDY 

The purpose of this study will be to:- 

 To advance the frontiers of knowledge 

 To add to the existing academic literature on Rainfall pattern using Times series 

 To serve as a guide to further studies in this field of studies 

 To fulfill the requirements for graduation. 

 

1.8 DATA COLLECTION 

 The main data that will be used for the research is from secondary source. The rainfall 

data in millimeters (mm) will be collected from the Ghana Meteorological Agency 

(GMET) Accra who receives data from their 22 synoptic stations all over Ghana. The 

data is about monthly average of rainfall from January 1995 and December 2009. (Unit: 

millimeter) 

1.9 OUTLINE OF DISSERTATION 

This section deals with the outline of the project:- 

Chapter 1, will talk about the background and overview of Times series and Rainfall. 

Chapter 2, talks about the literature that was reviewed to help the writer on this thesis.  

Chapter 3, talks about the theory behind the methods that will be used in analysis of the 

data collected. 

 Chapter 4, will contain analysis from the four models which will be made using SAS. 

Chapter 5 will be on Conclusion and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2. 1 INTRODUCTION 

The Quantitative Precipitation Forecast (abbreviated QPF) is the expected amount of 

liquid precipitation accumulated over a specified time period over a specified area.  A 

QPF will be specified when a measurable precipitation type reaching a minimum 

threshold is forecast for any hour during a QPF valid period. Precipitation forecasts tend 

to be bound by synoptic hours such as 0000, 0600, 1200 and 1800 GMT. Terrain is 

considered in QPFs by use of topography or based upon climatological precipitation 

patterns from observations with fine detail. Starting in the mid to late 1990s, QPFs were 

used within hydrologic forecast models to simulate impact to rivers throughout the United 

States. Forecast models show significant sensitivity to humidity levels within the 

planetary boundary layer, or in the lowest levels of the atmosphere, which decreases with 

height. QPF can be generated on a quantitative, forecasting amounts, or a qualitative, 

forecasting the probability of a specific amount, basis.  Radar imagery forecasting 

techniques show higher skill than model forecasts within 6 to 7 hours of the time of the 

radar image. The forecasts can be verified through use of rain gauge measurements, 

weather radar estimates, or a combination of both. Various skill scores can be determined 

to measure the value of the rainfall forecast. 

The urban heat island effect leads to increased rainfall, both in amounts and intensity, 

downwind of cities. Global warming is also causing changes in the precipitation pattern 
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globally, including wetter conditions across eastern North America and drier conditions in 

the tropics. Precipitation is a major component of the water cycle, and is responsible for 

depositing most of the fresh water on the planet. The globally-averaged annual 

precipitation is 990 millimeters (39 in). Climate classification systems such as the 

Köppen climate classification system use average annual rainfall to help differentiate 

between differing climate regimes. Antarctica is the Earth's driest continent. Rain is also 

known or suspected on other worlds, composed of methane, iron, neon, and sulfuric acid 

rather than water. 

Although drought is seen as an extreme event, long periods of low rainfall are common in 

Australia. The most recent drought story begins in 2001-02, when drought began in areas 

of south-western Queensland in 2002-03. Extreme drought occurred across much of 

eastern Australia, further exacerbating drought conditions in those areas (McKeon and 

Hall, 2000; McKeon et al., 2004; Sivakumar and Ndegwa, 2007). Following average 

conditions in 2003-04, severe drought returned in many regions in 2004-05. For many 

regions of Australia, the overall five-year period from April 2000 to March 2005 

represents extremely low rainfall compared to the historical records commencing in 1890. 

A similar but more cautionary story emerges from an analysis of the last 40 years of 

rainfall records. In much of Australia, this recent drought started after a sequence of 

above-average years of rainfall from the second half of 1998 to the first half of 2001. 

Central coastal Queensland and south-west Western Australia had already experienced 

drier conditions for at least 15 years. For example, eastern Australia received significantly 

less rainfall during the three years from 2002-2005 than during 1961-90 (the current 
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international standard reference period). Coastal areas experienced the greatest rainfall 

deficits (the difference between actual rainfall in a year and the long-term average). In 

contrast, during the same 2002-05 period, rainfall in the north of the Northern Territory 

and in parts of north-western Western Australia was significantly greater than that 

experienced from 1961-90 (Bureau of Meteorology, 2005). The recent drought may be 

unusual in that it has been warmer than previous droughts in the last 50 years (the length 

of temperature records). 

The enhanced greenhouse scenario suggests that temperatures in Australia may rise by 1-

0-2°C, summer rainfall may increase and the frequency of high rainfall and flooding 

events may also increase (Whetton et al., 1993; 1994). Hence, there is growing awareness 

of the possible consequences of global climate change. High rainfall may be a blessing to 

Australia but this has not been noted in recent times. Indeed, such a scenario is difficult to 

grasp for those living in Queensland and parts of eastern Australia that have been subject 

to a ‗severe and persistent‘ drought since 1991 (Bureau of Meteorology, 1995). 

Observational studies, however, lend some support to these projected changes. Over the 

period 1910 to 1988, summer rainfall appears to have increased over much of eastern 

Australia (Nicholls and Lavery, 1992). This increase occurred rather abruptly around 

1950, confirming earlier findings (Pittock, 1975). There is also evidence that annual 

rainfall intensity and the frequency of heavy rainfall events have increased over tropical 

Australia over the period 1910-1989 (Suppiah and Hennessy, 1996). Observational 

studies also provide evidence of temperature increases over Australia (Jones et al., 1990; 

Plummer, 1991). 
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Temperatures have been equally variable. The average temperature across Australia has 

risen by 0.82°C between 1910 and 2004 with much of the warming occurring in the 

second half of the twentieth century. The warmest year on record is 2005. Until 2004, the 

warmest year had been 1998. These temperature changes have been greater for minimum 

than maximum temperatures with a consequent decline in the Daily Temperature Range 

(DTR) in recent decades (Plummer et al., 1995), matching trends in DTR found in other 

parts of the world (Karl et al., 1993). Some of these trends in Australian climate over 

recent decades have also been identified in climate regions of the south-west Pacific 

(Salinger et al., 1995). 

While there has been research on rainfall and temperature interactions the majority of 

them was conducted in earlier times and therefore notes able to benefit from the large 

changes that may have occurred in recent times when climate change issue has come to 

the fore. Not only that, the literature review showed little work has been done in coastal 

Queensland on this area given that climate change has been a major driving force for 

research. As noted earlier, this study uses an updated dataset and time series techniques to 

further understand the relationship between rainfall and temperature in coastal 

Queensland (Singhtaun and Charnsethikul, 2007). 

Case study: According to Jordanian Ministry of Water and Irrigation Jordan is located 80 

kilometers east of the eastern coast of the Mediterranean Sea. Its location between 

29°11'N and 33°22'N and between 34°19'E and 39°18'E with an area of 89329 km2. In 

Jordan, more than 80% of the country is classified as arid areas with an average of rainfall 

ranges from 600 mm years-1 in the north to less than 50 mm year-1 in the south. The 
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precipitation pattern is both latitude and altitude dependent. In addition, water resources 

in Jordan are limited and with deteriorating quality due to urban development. Therefore, 

it is important to know the future water resources budget in order to help decision makers 

improve their decisions with taking consideration the available and future water resources 

(Naill, and Momani, 2009). 

Additionally, using modeling and forecasting for future water resources becomes possible 

with advances in forecasting methodologies such as time series analysis. The rainy season 

is between October and May where 80% of the annual rainfall occurs through December 

to March. Jordan witnessed rainy seasons above average for the years 1970/1971 and 

1991/1992 where the last one considered the highest in the last 75 years. 

The climate in Jordan is predominantly of the Mediterranean type. hot and dry summer 

and cool wet winter with two short transitional periods in autumn and spring: Four 

climatic regions are distinguishable in Jordan. They are: 

 The Jordan rift valley (Al-Ghor): The climate of Al-Ghor is classified as tropical. It is 

very hot in summer and warm in winter with an annual rainfall of 150-250 mm. The 

elevation of the Ghor is below Mean Sea Level ranging from 200-400 m. Its width ranges 

from 15 km in the North to 30 km in the South 

 The mountainous (hilly) region: The climate of these Regions is rather mild in summer 

and cold in winter. The amount of rainfall ranges from 300-600 mm year-1. Snowfall 

occurs over the mountains. This region lies to the east of the Jordan rift valley extending 

from North to South. Its elevation varies from 750-1200 m with some tops exceeding 

1700 m. 
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 The badia region: A flat terrain that lies to the east of the high lands with an elevation 

varies from 600-700m. It is characterized by dry hot summer and relatively cold dry 

winters with rainfall varying from 40-100 mm year-1. 

 The Gulf of Aqaba: This area is considered very hot in summer and warm in winter with 

an amount of rainfall <50 mm year-1 Amman is the capital city of Jordan where more 

than one million people live. Since rainfall data for this station is around the average 

among these stations it is used as a case study in our analysis. 

In an agricultural country like India, the success or failure of crops and water scarcity in 

any year is a matter of greatest concern and these problems are highly associated with the 

behavior of the summer monsoon rainfall. Mean monsoon rainfall over India, as a whole 

during June–September, is 88 cm with a coefficient of variation of 10% (Rajeevan, 2004). 

Accurate, long lead prediction of monsoon rainfall can improve planning to mitigate the 

adverse impacts of monsoon variability and to take advantage of favorable conditions 

(Reddy and Salvekar, 2003). The summer monsoon precipitation over India is dominated 

by the semi-permanent monsoon trough, which extends from West Pakistan to the North 

Bay of Bengal across Northwest India and the Westward moving synoptic disturbances 

developing over the North Bay of Bengal (Mohanty and Mohapatra, 2007). In the paper 

by Rajeevan (2001), the status and future prospects of long-range forecasts of Indian 

summer monsoon have been reviewed. In another work, Krishnamurthy and Shukla 

(2000) studied the inter seasonal and inter annual variability of summer monsoon rainfall 

over India. In the following paragraphs, we present a survey of the studies on rainfall time 

series over different parts of the world. Subsequently, we have mentioned the newness in 

our study with respect to the studies available on monsoon rainfall forecasting over India. 
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The study of rainfall time series is a topic of great interest in the field of climatology and 

hydrology. Some significant examples in such areas include Delleur and Kavvas (1978), 

Shin et al. (1990), Singh (1998). Both univariate (e.g. Soltani et al., 2007) and 

multivariate (Grimaldi et al., 2005) approaches have been attempted to model the rainfall 

time series. Impact of other atmospheric variables on rainfall has been discussed in 

various literatures (e.g. Cracknell and Varotsos, 2007; Varotsos, 2005; Chattopadhyay, 

2007b). The association between rainfall and agro meteorological processes is well 

discussed (e.g. Jhajharia et al., 2009; Chattopadhyay et al., 2009). 

 

Several stochastic models were attempted to forecast the occurrence of rainfall, to 

investigate its seasonal variability and to forecast monthly/yearly rainfall over some given 

geographical area. Study of the rainfall is interesting because of the associated problems, 

such as forecasting, corrosion effects and climate variability and various literatures have 

discussed these issues (e.g. Kondratyev et al., 1995; Kondratyev and Varotsos, 2002; 

Ferm et al., 2005, 2006; Tzanis and Varotsos, 2008). In a study by Chin (1977), where 

daily precipitation records for 25 years at more than 100 stations in the conterminous 

United States were analyzed, it was proved that the proper Markov order describing the 

daily precipitation process has to be determined and cannot be assumed a priori. Gregory 

et al. (1993) applied a Markov chain model to investigate inter annual variability of area 

averaged total precipitation. Wilks (1998) applied mixed exponential distribution to 

simulate precipitation amount at multiple sites exhibiting realistic spatial correlation. 

Chaotic features associated with the atmospheric phenomena have attracted the attention 
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of modern scientists (e.g., Varotsos et al., 2007, Varotsos and Krik-Davidoff, 2006, Khan 

et al., 2005; Bandyopadhyay and Chattopadhyay, 2007). In recent times, the study of the 

possible presence of chaotic behavior in rainfall time series has been of much interest 

(Sivakumar, 2001). Mathematical tools based on the theoretical concepts underlying the 

methodologies for detection and modeling of dynamical and chaotic components within a 

hydrological time series have been studied extensively by various scientists like Islam and 

Sivakumar (2002); Khan et al. (2005) and Jayawardena and Lai (1994). The existence of 

deterministic chaos within rainfall time series is well documented in the literature (e.g. 

Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990). 

 

Phase space reconstruction and artificial neural networks (ANN) are non-linear predictive 

tools that have been proposed in the modern literature as effective mathematical 

methodologies to be useful to hydrological time series characterized by chaotic features 

(Chattopadhyay and Chattopadhyay, 2008a; Elsner and Tsonis, 1992; Khan et al., 2005). 

The suitability of ANN over conventional statistical approaches has been demonstrated in 

many research papers dealing with hydrological processes (e.g. Chattopadhyay, 2007a ; 

Chattopadhyay and Chattopadhyay, 2008a). Applicability of ANN to rainfall time series 

is well documented in the literature. In recent times, the competence of ANN(Rojas,1996) 

in forecasting chaotic time series has been established by several authors (e.g. Principe et 

al., 1992; Oliveira et al., 2000; Silverman and Dracup, 2000). Prediction of atmospheric 

events, especially rainfall, has benefited significantly by voluminous developments in the 

application field of ANN and rainfall events and quantities have been predicted 

statistically (e.g. DelSole and Shukla, 2002; Mohanty and Mohapatra, 2007). The 
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advantages of ANN over traditional statistical and numerical weather prediction 

approaches have been discussed by McCann (1992), Kuligowski and Barros (1998) and 

Silverman and Dracup (2000). Several research papers are available where the suitability 

of the ANN approach has been established quantitatively over conventional statistical 

rainfall prediction procedures (e.g. Chattopadhyay, 2007a; Hastenrath, 1995; Toth et al., 

2000; Ramirez et al., 2005; Chattopadhyay, 2007b; Chattopadhyay and Chattopadhyay, 

2008b). Guhathakurata (2008) generated an ANN based model that captured the input-

output non-linear relationship and predicted the monsoon rainfall in India quite 

accurately. The purpose of the present article is to investigate the stationarity within the 

average monsoon rainfall time series in India and subsequently to model this time series 

through autoregressive approach.  

 

The Asian monsoon circulation influences most of the tropics and subtropics of the 

Eastern Hemisphere and a major portion of the Earth‘s population (Chattopadhyay, 

2007b). The southwest (summer) and the northeast (winter) monsoons influence weather 

and climate between 

30N and 30S over the African, Indian and Asian land masses (Reddy and Salvekar, 2003, 

Chattopadhyay, 2007b). The variability in the monsoon rainfall depends heavily upon the 

sea surface temperature anomaly over the Indian Ocean (Clark et al., 2000). As the extra 

tropical circulation anomalies display energy dispersion away from the region of 

anomalous tropical convection, they have been taken to mean a Rossby wave response to 

the latent heat release associated with the tropical convection (Ferranti et al., 1990). In 

regions of anomalous tropical heating, there is a dynamical response with anomalous 
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large-scale ascent and upper tropospheric divergence, which acts as a Rossby wave 

source (Sardeshmukh and Hoskins, 1988) for extra tropical waves. The summer monsoon 

(June–August) is the most productive period in India with respect to its agricultural 

practices. Moreover, the conserved rainwater for this period is used for future irrigation 

purposes in this country. Therefore, forecasting of average summer monsoon rainfall is 

necessary for future agricultural and irrigation modeling over this country. A plethora of 

literature is available where the summer-monsoon rainfall over this country has been 

predicted through multivariate approach (e.g. Chattopadhyay, 2007a, 2007b; 

Chattopadhyay and Chattopadhyay, 2008a, 2008b and references therein). However, the 

multivariate approach requires various other parameters which themselves are 

characterized by chaotic properties. 

The autoregressive approach, which is a univariate approach, depends solely upon the 

concerned variable and therefore is free from the effect of other variables. 

 

Dahale and Singh (1993) adopted autoregressive approach to monsoon rainfall time series 

over India and identified third order autoregressive model as the best fit. In the present 

paper, we have viewed the autocorrelation structure of the monsoon rainfall time series 

and consequently adopted autoregressive integrated moving average (ARIMA) approach 

instead of tradition autoregressive (AR) approach. Finally, we have implemented ANN in 

autoregressive manner and compared its performance statistically with the ARIMA-based 

model. The methodology and implementation procedure are described in the subsequent 

sections. 
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A time series analysis is a valuable tool to get information about analyzed data structures 

and their components, which provides a good basis for successful future predictions. The 

formation of predictive linear models for time series of discharges in Slovakia have been 

dealt with by, e.g. Pekárová et al. (2004), Pekárová et al. (2005) as Komorníková and 

Szökeová (2004a), who tested mean monthly and annual discharges on the Kysuca River. 

Jones and Smart (2005) as well as Worrall and Burt (1999) dealt with autoregressive 

modeling too. Tesfaye, et al. (2006) used seasonal ARMA models for the identification of 

mean annual discharges. The seasonal models were analyzed by Jones and Brelsford 

(1967), Pogano (1978), Troutman (1979), Anderson and Vecchia (1993), Ula (1990 a, b), 

Ula and Smaldi (1997), Shao and Lund (2004) and Tesfaye, et al. (2006) too. 

 

The testing of mean monthly discharge time series with Long Memory models was done 

by Komorníková and Szökeová (2004b). Állóová (2006) tested time series of mean 

monthly precipitation totals data in the regions of the Belianske Lúky, Abrod and 

Kláštorské Lúky wetlands. Amendola (2003) dealt with the prediction of mean rainfall 

data using regime switching models. These models are suitable for time series analysis of 

extreme events. 
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CHAPTER 3 

METHODOLOGY 

 

3.0 INTRODUCTION 

In this chapter we discuss the theory of time series in terms of its definition, types of time 

series models as well as the theory of time series. 

 

3.1 DEFINITION 

Time series is a time dependent sequence denoted  where  where 1, 

2,…  denote time steps. 

 

3.1.1 Deterministic Time Series 

If from past knowledge, the future of a time series can be exactly predicted, it is a 

deterministic series and requires no further investigation. It can be expressed as a known 

function. That is . 

 

3.1.2 Stochastic Time Series 

If a time series can be expressed as , where  is a random variable, then is a 

stochastic time series. 
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3.2 OBJECTIVES OF TIME SERIES ANALYSIS 

The main objectives of analyzing a time series are classified as description, explanation, 

prediction and control. 

3.2.1 Description 

When presented with time series data, the first step in the analysis is usually to plot the 

data to obtain simple descriptive measure of the main properties of the series as seasonal 

effect, trend etc. 

Apart from trend and seasonal variations, the outliers to look for in the graph of the time 

series are the possible presence of turning points, where for example, an upward trend has 

suddenly changed to a downward trend. 

 

3.2.2 Explanation 

When observations are taken on two or more variables, it may be possible to use the 

variable in one time series variable to explain the variation in the other time series 

variable. This may give a deeper understanding of the mechanism which generated a 

given time series. For example, sales are affected by price and economic condition. 

 

3.2.3 Prediction 

Given an observed time series one may want to predict the future values of the series.  

This is an important task in sales forecasting and in the analysis of economic and 

industrial time series. Prediction is closely related to control problems in many situations. 

For example if we can predict that manufacturing process is going to move off target, 

then appropriate corrective action can be taken. 
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3.2.4 Control 

When a time series is generated which measures the quality of a manufacturing process, 

the aim of the analysis may be to control the process. In statistical quality control, the 

observations are plotted on control charts and the controller takes action as a result of 

studying the charts. Box and Jenkins have described a more sophisticated control strategy 

which is based on fitting a stochastic model to the series from which future values of the 

series are predicted. The values of the process variables predicted by the model are taken 

as target values and the variables conform to the target values. 

 

3.3 COMPONENTS OF TIME SERIES 

Traditional methods of time series analysis are mainly concerned with decomposing the 

variation in series into the various components of trend, periodic and stochastic. 

 

3.3.1 Periodic Component 

If  for all  ∈ , then the time series has a periodic component of period 

T. 

 

3.3.2 Trend Component 

If  , then there exist a linear trend with the slope being  . 

 

3.4 STATIONARY TIME SERIES 
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A time series is said to be stationary if the joint distribution of   is the same as 

the joint distribution of  for all . In other words shifting the 

time origin by an amount T has no effect on the joint distribution which must therefore 

depend only on the intervals between  . 

 

3.4.1 Autocorrelation Function (ACF) 

The autocorrelation function measures the degree of correlation between neighboring 

observations in a time series. The autocorrelation function at lag k is defined as 

 

 

The autocorrelation coefficient is estimated from sample observation using the formula; 

 

(Hamilton J.D., 1994) 

 

3.4.2 Partial Autocorrelation Coefficient 

Partial autocorrelation function measures the degree of association between  and  

when the effects of other time lags on Y are held constant. The partial autocorrelation 

function PACF denoted by the set of partial autocorrelation at 

various lags k are defined by  
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  where  is the autocorrelation matrix and   is with the last column 

replaced by [  and an example is  

 

and    =    

And estimates of can be obtained by replacing the by . 

3.4.3 An Autoregressive Model of Order p [AR(p)] 

An autoregressive model of order p denoted by AR(p) is a special kind of regressive in 

which the explanatory variables are past values of the process. An autoregressive model 

of order  is given by  

 
 

where  is the mean of the time series data and  is the white noise. 

The order of an AR(p) process is determined by the partial autocorrelation function 

(PACF). An AR(p) process has its PACF cutting off after lag p and the ACF decays. For 

example the PACF of an AR(1) process cuts off after lag one (1). (Hamilton J.D, 1994) 

 

3.4.4 Autoregressive Process of Order one (1) AR(1) 

The AR(1) process is 
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Putting  = 0 we have 

    

Multiplying through by  we have 

    

 

But = 0 since  depends only on which are not 

correlated with  for k>0. Hence 

     

Dividing through by  we have        

 

We have  

 

For k = 2 

 

 

For k = 3 
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And in general (Box and Jenkins, 1971) 

    

3.4.5 Moving Average of Order q MA(q) 

MA models provide predictions of  based on a linear combination of past forecast 

errors. In particular the MA model of order q is given by (Hamilton J.D., 1994) 

 

3.4.6 Autocorrelation Function (ACF) of MA(q) 

    

= 

 

=  

Since 

    

Hence the autocorrelation function (ACF) of MA(q) process is given by 
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The order of the MA(q) is given by the autocorrelation function. The ACF cuts after lag q 

and the partial autocorrelation function decays to zero. Thus an MA(1) process cuts off 

after lag one. In other words the ACF after lag one will not be significantly different from 

zero. 

 

3.4.7 Moving Average process of Order one MA(1) 

The MA(1) process is given by 

    

And its autocorrelation is given by 

 

Thus  
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The parameters are thus roots of a quadratic. This means that we can find two MA(1) 

processes that corresponds to the same ACF. To establish a one-to-one correspondence 

between the ACF and the model and obtain a converging autoregressive representation, 

we restrict the moving average parameter such that | | < 1. This restriction, known as the 

invertibility, implies that the process can be written in terms of an autoregressive model. 

(Hamilton J.D., 1994) 

 

3.4.8 The Duality of AR and MA processes 

We show that the Random Walk process given by 

    

Can be rewritten as an infinite moving average. Indeed, consider the following moving 

average, 

 

= (1 + B + B
2 

+ B
3
 + …)  

= …………………………3.9 

We recall that   = 1/(1 – y) is valid when |y| < 1 

Hence Yt =   

 So that 

(1 – B) Yt =  

Yt – BYt =   
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Yt –  Yt – 1  =   

Yt =  Yt – 1  +  

This is the random walk process. This means that a finite autoregressive process. For 

example, we show that an MA(1) process is an infinite autoregressive process. For such a 

process, 

    

Using the B operator notation, we have 

Yt = (1 – )  

=     

(1 + 1B+ 
2
 + …)    

Yt  + 1 Yt – 1  +   

This is an infinite autoregressive process. 

 

3.4.9 Autoregressive Moving Average Model (ARMA) 

A more general model is a mixture of the AR(p) and MA(q) models and is called an 

autoregressive moving average model (ARMA) of order (p,q). 

The ARMA(p,q) is given by 

Yt = αi Yi – 1 +  θi ei – 1 +  + et -------------------------------------3.10 

An example of an ARMA(1,1) 

Yt = αi Yi – 1 + θi ei – 1 +  + et----------------------------------------------------------------3.11 
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An important characteristic of ARMA models is that both the ACF and PACF do not cut 

off as in AR and MA models, (Box and Jenkins, 1971). 

 

3.4.10 ARMA or “Mixed” Process 

Consider the process given by: 

Yt  =  1 Yt – 1  + 1  +  

This can be rewritten as 

Yt   1 Yt – 1  =  + 1      or 

(1 – ) Yt  = (1 + )    ……………………………………….……3.12 

AR( ) Yt  = MA( )     

This is called a mixed or autoregressive moving average (ARMA) process of order (1,1).  

Since equation (1) is ARMA(1,1) if | | < 1, it can be rewritten as 

 

 (  

[(1 – α +  + (αθ + θ
2
)

2
 +  …] Yt   

There is an infinite order AR process.  This is true if |α| < 1 and |θ| < 1 i.e. if the AR is 

stationary and MA is invertible.  If we have two polynomial in B, MA(B) and AR(B), and 

an ARMA model. 
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3.4.11 The Autoregressive Integrated Moving Average Model (ARIMA) 

If a non-stationary time series which has variation in the mean is differenced to remove 

the variation the resulting time series is called an integrated time series. It is called an 

integrated model because the stationary model which is fitted to the differenced data has 

to be summed or integrated to provide a model for the non-stationary data. Rotationally, 

all AR(p) and MA(q) models can be represented as ARIMA(1,0,0) that is no differencing 

and no MA part. 

 

The general model is ARIMA(p,d,q) where p is the order of the AR part, d is the degree 

of differencing and q is the order of the MA part. 

 Writing   

The general ARIMA process is of the form 

 

 

 3.4.12 ARIMA(1,1,1) Process 

An example of ARIMA(p,d,q) is the ARIMA(1,1,1) which has one autoregressive 

parameter, one level of differencing and one MA parameter is given by 

  Wt = αiWt – i + θ1et – i + μ + et 

 (1 – B)Yt = α1 (1 – B)Yt – 1 + θ1et – i + μ + ………………………………………3.16 

Which can be simplified further as 

  Yt – Yt – 1 = α1 Yt – 1 – α1 Yt – 2 + θ1et – i + μ + et 

Yt – Yt – 1 = α1 (Yt – 1 – Yt – 2) + θ1et – i + μ + ……………………………………3.17 
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3.4.13 Estimating the parameters of an ARIMA Model 

In practice most time series are non-stationary and the series is differenced until the series 

becomes stationary. An AR, MA or ARMA model is fitted to the differenced series and 

estimation procedures are as described for the AR, MA, and ARMA above. 

3.4.14 Stationarity and Invertibility Conditions of Specific Time Series model 

In the Table below we display the stationarity and invertibility conditions of specific time 

series models and the behavior of their theoretical ACF and PACF functions. 

3.4.15 The Box-Jenkins Method of Modeling time Series 

The Box-Jenkins methodology is a statistical sophisticated way of analyzing and building 

a forecasting model which best represents a time series. The first stage is the 

identification of the appropriate ARIMA models through the study of the autocorrelation 

and partial autocorrelation functions. For example if the partial autocorrelation cuts off 

after lag one and the autocorrelation function decays then ARIMA(1,0,0) is identified. 

The next stage is to estimates the parameters of the ARIMA model chosen. 

 

The third stage is the diagnostic checking of the model. The Q-statistic is used for the 

model adequacy check.  If the model is not adequate then the forecaster goes to stage one 

to identify an alternative model and it is tested for adequacy and if adequacy then the 

forecaster goes to the final stage of the process. 

The fourth stage is where the analysis uses the model chosen to forecast and the process 

ends. 
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Below is a schematic representation of the Box-Jenkins process. 
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Figure  3.13 Box-Jenkins Process 
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3.4.16 Identification techniques 

Identification methods are rough procedures applied to a set of data indicate the kind of 

representational model that will be further investigated. The aim here is to obtain some 

idea of the values p, d and q needed in the general linear ARIMA model and to obtain 

initial estimates for the parameters. 

The task here is to identify an appropriate subclass of models from the general ARIMA 

family α (B) 
d
Yt = θ( ) et  which may be used to represent a given time series. The 

approach will be as follows; 

(a) To differentiate Yt as many times as is needed to produce stationary, reducing the process 

under study to the mixed autoregressive moving average process 

α (B) Wt  = θ0 + θ(B) et   where Wt = (1 – B) d Yt =  
d
Yt   

 

(b) To identify the resulting ARMA process 

The principle tools for putting (a) and (b) into effect is the sample autocorrelation 

function and the sample partial autocorrelation function. Apart from helping to guess the 

form of the model, they are used to obtain approximate estimates of the parameters of the 

model. These approximations are useful at the estimates stage to provide starting values 

for iterative procedures employed at that stage. 
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3.4.17 Use of the autocorrelation and Partial Autocorrelation functions in 

Identification 

A stationary mixed autoregressive moving average process of order (p, 0, q),  

α(B)Yt = θ(B)et, the autocorrelation function satisfies the different equation 

  α(B) Pk = 0  k > q 

Also, if 

  α(B) = (1 – GiB) 

The solution of this difference equation for the kth autocorrelation is, assuming distinct 

roots, of the form 

Pk = A1  + A2 + …+ Ap    k > q – p  

The stationarity requirement that the zeros of α(B) lie outside the unit circle implies that 

the roots G1, G2, G3, …, Gk, lie inside the unit circle. Inspection of the equation 

Pk = A1  + A2 + …+ Ap    k > q – p  

shows that in the case of a stationary model in which none of the roots lie close to the 

boundary of the unit circle, the autocorrelation function will quickly ―die out‖ or decay 

for moderate and large k. 

Suppose that a single real root, say G1 approaches unity, so that G1 = 1 – δ where δ is a 

small positive quantity. Then, since for k large, PK = A1(1 – kδ) the autocorrelation 

function will not die out quickly and will fall off slowly and very nearly linearly. 

Similarly if more than one root approaches unity the autocorrelation function will decay 

slowly. Therefore if the autocorrelation function dies out slowly it implies there is at least 

a root which approaches unity. As a result failure of the estimated autocorrelation 
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function to die out rapidly might logically suggest that the underlying stochastic process 

is non-stationary in Yt  but possible stationary in ∇d
Yt , or in some higher difference. 

It is therefore assumed that the degree of differencing d1 necessary to achieve stationarity 

has been reached when the autocorrelation function of Wt = ∇d
Yt  lie out fairly quickly. 

3.4.18 Forecasting 

The fourth stage of the Box-Jenkins approach is to forecast with model selected. Suppose 

the model chosen to fit a hypothetical data is 

 Yt  = Yt – 1 +  α1 (Yt – 1 – Yt – 2) +  ………………………………………3.19 

And suppose further that the data is of length 60, α = 0.2178 

Y60  = 131.2   Y59  = 134.8 

Then  Y61  = Y60  +  0.2178 (Y60 – Y59)   

Y61  = 131.2  +  0.2178 (131.2 – 134.8)   

Y61  = 130.097 

Hence, a forecast value for period 61 is 130.097. 

 

3.5 SEASONAL EXPONENTIAL SMOOTHING  

It is used when the time series exhibits seasonality but no trend is present. The parameters 

estimated from this model are the seasonal smoothing weight, the level smoothing weight 

and the seasonal smoothing factors. A seasonal weight that is close in value to one 

implies that a non-seasonal model might be more appropriate. Whereas, a seasonal weight 

near zero implies that deterministic seasonal factors might be present. 

The seasonal exponential smoothing model is given by the model equation 



34 

 

 

 

The smoothing equations are 

 

 

The k-step-ahead prediction equation is 

 

That is, you forecast y k-steps ahead by using taking the last available estimated level 

state and then add the last available smoothed seasonal factor, 

the month of the forecast horizon. 

The smoothing weights consist of the following at time t: 

is a smoothed level of the series that estimates  

,  are seasonal factors that estimate  

 the value of the observation at time t 

 a level smoothing weight.  

 a seasonal smoothing weight 
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3.6 EXPONENTIAL SMOOTHING 

The formulation of exponential smoothing forecasting methods arose in the 1950‘s from 

the original work of Brown (1959, 1962) and Holt (1960) who were working on creating 

forecasting models for inventory control systems.  One of the basic ideas of smoothing 

models is to construct forecasts of future values as weighted averages of past observations 

with the more recent observations carrying more weight in determining forecasts than 

observations in the more distant past.  By forming forecasts based on weighted averages 

we are using a ―smoothing‖ method.  The adjective ―exponential‖ derives from the fact 

that some of the exponential smoothing models not only have weights that diminish with 

time but they do so in an exponential way, as in  where   and  

 represents the specific period in the past.  

  At least three major points can be raised about exponential smoothing models:  

 As a methodology, exponential smoothing methods suffer from not having an objective 

statistical identification and diagnostic system for evaluating the ―goodness‖ of 

competing exponential smoothing models.  For example, the smoothing parameters of the 

smoothing models are determined by fit and are not based on any statistical criteria like 

tests of hypotheses concerning parameters or tests for white noise in the errors produced 

by the model.   In this sense, exponential smoothing models are ad hoc models, 

statistically speaking.  Of course, if one continues to monitor the forecasting performance 

of a given exponential smoothing model, and, if the model‘s forecasts become more and 

more inaccurate over time, then one has, in a sense, an ex post evaluation method for 

picking and choosing between competing exponential smoothing models.  The only 
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problem is that this approach comes with a cost.  Bad forecasting for a certain amount of 

time while learning can be expensive when, for example, dealing with inventories that run 

into the millions of dollars.  But instead of pursuing this ex post monitoring approach, one 

can attempt to make a good choice of exponential smoother beforehand by using out-of-

sample forecasting experiments.   In this approach, the forecaster reserves some of the 

available data for a ―horse race‖ between competing exponential smoothing methods.  To 

carry these horse races out, one divides the data into two parts: the in-sample data set (say 

60% of the first part of the available time series data) and with the remaining latter part of 

the time series assigned to the out-of-sample data set.  Then one ―runs‖ the competing 

exponential smoothing methods through the out-of-sample data while forecasting h-steps 

ahead each time (we assume h is the forecast horizon of interest) while updating the 

―smoothing‖ parameter(s) as one moves through the out-of-sample data.  In the process of 

generating these h-step-ahead forecasts for the competing methods we can compare the 

competing forecasts with the actual values that we withheld as we generated our forecasts 

and then use the standard forecasting accuracy measures like MSE, MAE, RMSE, PMAE, 

etc. to choose the best (most accurate) exponential smoothing forecasting method, as 

indicated by the out-of-sample forecasting experiment, for further use (subject to 

monitoring of course).  

 Most exponential smoothing methods, as we will see below, can be shown to be special 

cases of the class of Box-Jenkins models.  For this reason, Box-Jenkins forecasters have 

been critical of using exponential smoothing models for forecasting.  They usually say, 

―Why be satisfied with a special case of a Box-Jenkins model when we can fit any Box-

Jenkins model we want to the data?  Moreover, we can use the various diagnostic tests 
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that are available to choose a good Box-Jenkins model without being ad hoc in our model 

choice.‖  This, of course, is a very persuasive argument and is the reason why many 

forecasters use standard Box-Jenkins computer software for doing their forecasting.  

 A counterargument to the traditional Box-Jenkins criticism of exponential smoothing 

methods is that, once basic decisions like the presence or absence of trend in the time 

series and the presence or absence of seasonality is determined, pretty accurate 

forecasting can be obtained even to the point of being ―almost‖ as accurate as the ―fully 

flexible‖ and non-ad hoc Box-Jenkins models.  The fact that carefully chosen exponential 

smoothing models do almost as well as Box-Jenkins models has been documented in two 

large-scale empirical studies by Makridakis and Hibon (1979) and Makridakis et. al. 

(1982).  So if the Box-Jenkins models are more time consuming to build yet only yield 

marginal gains in forecasting accuracy relative to less time-consuming well informed 

choices of exponential smoothing models, we have an interesting tradeoff between time 

(which is money) and accuracy (which, of course, is also money).  This trade-off falls in 

the favor of exponential smoothing models sometimes when, for example, one is working 

with 1500 product lines to forecast and has only a limited time to build forecasting 

models for them.  In what we will argue below, an informed choice consists of knowing 

whether the data in hand has a trend in it or not and seasonality in it or not. Once these 

basic decisions are made (and if they are correct!), then pretty accurate forecasts are likely 

via the appropriately chosen exponential smoothing method.    
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3.6.1 SIMPLE EXPONENTIAL SMOOTHING (SES)  

It is one of the most commonly used forecasting methods that are very good for 

forecasting a few periods. This model works best if there is no trend and no seasonality.  

Similar to moving average forecasting models, SES suppresses short- run fluctuation by 

smoothing the series and adding greater weights on more recent observations. The 

smoothing parameter is the weight that is determined for series and has the following 

characteristics: 

1. A value between 0 and 1 

2. If α=1 it becomes a naïve model; if α is close to 1, more weights are put on recent values. 

The model fully utilizes forecast errors. 

3. If α is close to 0, distant values are given weights comparable to recent values. Choose α 

random variations in the data. 

4.  is often selected as to minimize the Mean Square Error 

 

Let the observed time series be Y1, Y2, …,Yn 

The equation for the Simple Exponential Smoothing model is 

 

 

 where : the smoothing parameter, 0  1 
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 Yt: the value of the observation at time t 

 St: the value of the smoothed observation at time t 

.  

3.6.2 THE HOLT LINEAR EXPONENTIAL SMOOTHING MODEL 

It is an extension to the simple exponential smoothing model.  Holt‘s method introduces a 

trend factor to the SES method to allow for forecasting series with trends. This model is 

used for time series that appear to have a trend but no seasonality.  The Holt smoothing 

method utilizes two equations.  Equation one adjusts for the trend of the previous time 

period by adding it the last smoothed value.  

 

 

The second equation updates the trend by differencing the two previous trend values.  

 

 

The forecast value is determined as the sum of the trend term and the smoothed level. 

 

Where 

Lt = Estimate of the level of the series at time t 

 = smoothing constant for the data. 

yt = new observation or actual value of series in period t. 

 = smoothing constant for trend estimate 

bt = estimate of  the slope of the series at time t 
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m = periods to be forecast into the future. 

The initialization of the model requires that an initial trend (b1)and smoothing value 

(L1)must be determine along with identifying , β.  

 

Generally,  

 L1 is set to Y1 

b1 is set to Y2Y1, (YnY1)/(n1), or 0. 

The weight  and  are selected subjectively or by minimizing the MSE as similarly done 

in SES.  

 

3.7 LINEAR TREND MODEL 

Most naturally-occurring time series in business and economics are not at all stationary 

(at least when plotted in their original units). Instead they exhibit various kinds of trends, 

cycles, and seasonal patterns. For example, here is a time series (Series #2) which 

exhibits steady, if somewhat irregular, linear growth: 

The mean model described above would obviously be inappropriate here. Many persons, 

upon seeing this time series, would naturally think of fitting a simple linear trend model-

-i.e., a sloping line rather than horizontal line. The forecasting equation for the linear 

trend model is:  

 

where t is the time index. The parameters alpha and beta (the "intercept" and "slope" of 

the trend line) are usually estimated via a simple regression in which Y is the dependent 
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variable and the time index t is the independent variable. Here is a plot of the forecasts 

produced by the "Linear Trend" 

Although linear trend models have their uses, they are often inappropriate for business 

and economic data. Most naturally occurring business time series do not behave as though 

there are straight lines fixed in space that they are trying to follow: real trends change 

their slopes and/or their intercepts over time. The linear trend model tries to find the slope 

and intercept that give the best average fit to all the past data, and unfortunately its 

deviation from the data is often greatest near the end of the time series, where the 

forecasting action is!  

If the model has succeeded in extracting the entire "signal" from the data, there should be 

no pattern at all in the errors: the error in the next period should not be correlated with 

any previous errors, and the bars on the autocorrelation plot therefore should all be close 

to the zero line. The linear trend model obviously fails the autocorrelation test in this 

case.  

When trying to project an assumed linear trend into the future, we would like to know the 

current values of the slope and intercept--i.e., the values that will give the best fit to the 

next few periods' data. We will see that other forecasting models often do a better job of 

this than the simple linear trend model. 
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3.8 MEAN SQUARED ERROR 

The mean squared error is arguably the most important criterion used to evaluate the 

performance of a predictor or an estimator. (The subtle distinction between predictors and 

estimators is that random variables are predicted and constants are estimated.) The mean 

squared error is also useful to relay the concepts of bias, precision, and accuracy in 

statistical estimation. In order to examine a mean squared error, you need a target of 

estimation or prediction, and a predictor or estimator that is a function of the data. 

Suppose that the target, whether a constant or a random variable, is denoted as U. The 

mean squared error of the estimator or predictor T(Y) for U is 

 

The reason for using a squared difference to measure the "loss" between T(Y) and U is 

mostly convenience; properties of squared differences involving random variables are 

more easily examined than, say, absolute differences. The reason for taking an 

expectation is to remove the randomness of the squared difference by averaging over the 

distribution of the data.  

Consider first the case where the target U is a constant—say, the parameter —and 

denote the mean of the estimator T(Y) as . The mean squared error can then be 

decomposed as 

  

=  
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=  

The mean squared error thus comprises the variance of the estimator and the squared bias. 

The two components can be associated with an estimator‘s precision (small variance) and 

its accuracy (small bias).  

If T(Y) is an unbiased estimator of —that is, if —then the mean squared 

error is simply the variance of the estimator. By choosing an estimator that has minimum 

variance, you also choose an estimator that has minimum mean squared error among all 

unbiased estimators. However, as you can see from the previous expression, bias is also 

an "average" property; it is defined as an expectation. It is quite possible to find 

estimators in some statistical modeling problems that have smaller mean squared error 

than a minimum variance unbiased estimator; these are estimators that permit a certain 

amount of bias but improve on the variance. For example, in models where regressors are 

highly collinear, the ordinary least squares estimator continues to be unbiased. However, 

the presence of collinearity can induce poor precision and lead to an erratic estimator. 

Ridge regression stabilizes the regression estimates in this situation, and the coefficient 

estimates are somewhat biased, but the bias is more than offset by the gains in precision.  

When the target  is a random variable, you need to carefully define what an unbiased 

prediction means. If the statistic and the target have the same 

expectation, , then  
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In many instances the target is a new observation that was not part of the analysis. If 

the data are uncorrelated, then it is reasonable to assume in that instance that the new 

observation is also not correlated with the data. The mean squared error then reduces to 

the sum of the two variances. For example, in a linear regression model where U is a new 

observation  and T(Y) is the regression estimator  

 

with variance , the mean squared prediction error for is  

 

and the mean squared prediction error for predicting the mean ] is  

 

 

3.9 COEFFICIENT OF DETERMINATION (  

The coefficient of determination in a regression model, also known as the R-square 

statistic ( , measures the proportion of variability in the response that is explained by 

the regressor variables. In a linear regression model with intercept, ( is defined as  
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where SSE is the residual (error) sum of squares and SST is the total sum of squares 

corrected for the mean. The adjusted statistic is an alternative to that takes into 

account the number of parameters in the model. This statistic is calculated as  

 

where is the number of observations used to fit the model, P is the number of 

parameters in the model (including the intercept), and i is 1 if the model includes an 

intercept term, and 0 otherwise.  

statistics also play an important indirect role in regression calculations. For example, 

the proportion of variability explained by regressing all other variables in a model on a 

particular regressor can provide insights into the interrelationship among the regressors.  

Tolerances and variance inflation factors measure the strength of interrelationships among 

the regressor variables in the model. If all variables are orthogonal to each other, then 

both the tolerance and variance inflation are 1. If a variable is very closely related to other 

variables, the tolerance approaches 0 and the variance inflation gets very large. Tolerance 

(TOL) is 1 minus the that results from the regression of the other variables in the 

model on that regressor. Variance inflation (VIF) is the diagonal of , if 

is scaled to correlation form. The statistics are related as  

3.10 MAXIMUM-LIKELIHOOD ESTIMATION (MLE):- is a method of 

estimating the parameters of a statistical model. When applied to a data set and given a 

statistical model, maximum-likelihood estimation provides estimates for the model's 

parameters.  
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CHAPTER 4 

ANALYSIS AND DISSCUSSION OF RESULTS 

4.1 INTRODUCTION 

This chapter displays, discusses and interprets the results obtained from the study. This 

chapter is generally organized into Preliminary analysis, model fitting and then the 

forecasting, there will also be a discussion on the accuracy of the forecast. The study has 
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been looking at rainfall figures in fifteen years that is to say from January 1995 to 

December 2009 within four regions of Ghana i.e. Greater Accra, Northern, Western, and 

Eastern regions which are representing the north, south east and west of the country. 

4.2 RAINFALL PATTERN IN THE NORTHERN REGION 

 

Figure 4.1 A times series plot of the observed data (Northern Region) 

 

From Figure 4.1 which is A times series plot of the observed data in the northern region 

in Ghana, we can clearly see some form of seasonal trend in the pattern. We observe from 

the above figure that in the northern region of Ghana over the years under study for all the 

month, the highest level of rainfall in a particular month was in June 1997 which recorded 

271.875mm of rain. Since 1997, the region has not recorded that amount of rainfall. The 

closest amount of rainfall, in a particular month closest to that of the June 1997 was 
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recorded in July 2009 which was 257.25mm rain. June 1996 which recorded 242.8mm, 

August 2004 which recorded 235.15mm and June 2005 which recoded 216.6mm just to 

mention a few followed in that other, interestingly, September also recorded highest 

figures in the following years 1998, 2000, 2001, and 2007 recording 191.25mm, 

209.85mm, 176.825mm, and 203.075mm respectively.  

The above argument however strengthens the fact that Ghana experiences its highest 

amounts of rainfall from June to September each year. From our study, for the years 

under review June has clearly shown to be the month of highest amount of rainfall 

recording a total of 2638.08mm of rainfall. The month of January has proven to be the 

month with the lowest rainfall in the northern region followed by December and February 

in that order. 

A first run of the best possible model came up with some interesting results as presented 

in the Table below. 

The Table 4.2 below has Model Label, Number of Observations, Mean Square Error 

(MSE), and R-Square. In this research we decided to use (MSE), and R-Square as a 

criterion for selecting a model. From the Table 4.2 clearly using the summary of the 

models and the criterion for the selection of the best model, it is clear that with a less 

MSE (802.04) and a higher R-square (0.8379) the best model that can be used for 

forecasting the rains of the northern region will be Linear Trend with Seasonal Terms. 

The second best model so far as these criterions are concerned is the Seasonal 

Exponential Smoothing and the rest of the models follow as such. 
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This work is looking at four main models, that is, Linear Trend with Seasonal Terms, 

Seasonal Exponential Smoothing, ARIMA, and Simple Exponential Smoothing and 

Linear (Holt) Exponential Smoothing. So all the ARIMA models are one model, and the 

Simple Exponential Smoothing and Linear (Holt) Exponential Smoothing is also one 

model since the Simple Exponential Smoothing is just basics of the Linear (Holt) 

Exponential Smoothing. 

 

Table 4.1 Northern Region summary of models and their MSE's and R-square 

Series 

Name Model Label 

Number of 

Observations 

Mean 

Square 

Error R-Square 

RAIN Linear Trend with Seasonal Terms 180 802.0462 0.8379 

RAIN Seasonal Exponential Smoothing 180 816.6829 0.8349 

RAIN ARIMA(0,1,1)s NOINT 180 1050.6768 0.7890 

RAIN ARIMA(0,2,2)(0,1,1)s NOINT* 180 1274.0108 0.7431 

RAIN ARIMA(2,1,0)(0,1,1)s NOINT* 180 1376.1617 0.7226 

RAIN ARIMA(2,0,0)(1,0,0)s** 180 1734.0558 0.6495 

RAIN Simple Exponential Smoothing 180 3293.7734 0.3342 

RAIN 

Linear (Holt) Exponential 

Smoothing 180 3297.0549 0.3335 

 

* NOINT 

When NOINT is specified the fitting of a constant (or intercept) in the model is omitted. 

The interpretation of the constant depends on the model that is fit. If there are no 

autoregressive parameters in the model, then the constant,  is the mean of the series. The 

constant represents the intercept if there are autoregressive parameters in the series, and 

lastly if the series is differenced then the constant represents the mean or the intercept of 

the differenced series.  
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** EXPLANATION FOR ARIMA(P,D,Q)s 

ARIMA models for time series with regular seasonal fluctuations often use differencing 

operators and autoregressive and moving-average parameters at lags that are multiples of 

the length of the seasonal cycle. When all the terms in an ARIMA model factor refer to 

lags that are a multiple of a constant s, the constant is factored out and suffixed to the 

ARIMA(p,d,q )s notation.  

ARIMA(p,d,q) (P,D,Q)s is the general notation for the order of a seasonal ARIMA 

model with both seasonal and non-seasonal factors.   The term (p,d,q) gives the order of 

the non-seasonal part of the ARIMA model and the term (P,D,Q)  gives the order of the 

seasonal part. The number of observations in the seasonal cycle is the value of s. For 

example if it is a monthly series, then the value for s is 12, 4 for quarterly series, 7 for 

daily series, etc.  

 

We will now look at the various parameters for the various models and then we will state 

the models and use the models to produce the predicted or forecast values for the various 

models. 

 

4.2.1 Analysis using the Linear Trend with Seasonal Terms  

Below is figure 4.5 which gives us our parameters for the forecast. 

The general model for the Linear Trend with Seasonal Terms is given as:-  
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Where  

 

 

 

 

 = 1=January, 2=February, 3=March . . . 11=November 

Table 4.2 Parameters for the Northern Region With the model "Linear Trend with 

Seasonal Terms 

Model Parameter Estimate Std. Error T Prob>|T| 

Intercept 6.3571 8.6080 0.7385 0.4612 

Linear Trend 0.0274 0.0423 0.6480 0.5179 

Seasonal Dummy 1 -0.4987 10.7462 -0.0464 0.9630 

Seasonal Dummy 2 3.2872 10.7444 0.3059 0.7600 

Seasonal Dummy 3 37.4999 10.7429 3.4907 0.0006 

Seasonal Dummy 4 98.1391 10.7414 9.1365 0.0000 

Seasonal Dummy 5 136.4317 10.7402 12.7029 0.0000 

Seasonal Dummy 6 167.0643 10.7391 15.5566 0.0000 

Seasonal Dummy 7 125.5903 10.7382 11.6957 0.0000 

Seasonal Dummy 8 148.6096 10.7374 13.8403 0.0000 

Seasonal Dummy 9 162.6155 10.7369 15.1455 0.0000 

Seasonal Dummy 10 92.4548 10.7364 8.6113 0.0000 

Seasonal Dummy 11 14.3007 10.7362 1.3320 0.1847 
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From equation 4.1 above and from the parameters the equation for the forecasting will be 

given as:- 

 

Example 1:- So for January 1995 we will have:  

 

 

 

Example 2: for say July 2001 we have 

 

 

 

Example 3: for say December 2004 we have 
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With the above information we will produce a prediction or forecast table including all 

the models on the Northern Region for easy comparing, the table will have actual figures 

and their corresponding predicted figures for the various models. But all these are done 

with the help of SAS so we will not be going through the calculations for the others and 

the other regions so as to safe space. 

 

4.2.2 Analysis using Seasonal Exponential Smoothing Model 

The general model equation for seasonal exponential smoothing is:- 

 

The smoothing equations are 

 

 

The k-step-ahead prediction equation is 

 

That is, you forecast y k-steps ahead by using/taking the last available estimated level 

state and then add the last available smoothed seasonal factor, , which matches the 

month of the forecast horizon. 

The smoothing weights consist of the following at time t: 
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is a smoothed level of the series that estimates  

,  are seasonal factors that estimate  

 the value of the observation at time t 

 a level smoothing weight.  

 a seasonal smoothing weight 

The parameters for the Seasonal Exponential Smoothing Model are given in the Table 4.3 

below, 

With the above information we will produce a prediction or forecast table including all 

the models on the Northern Region for easy comparing, the table will have actual figures 

and their corresponding predicted figures for the various models. 

Table 4.3 Parameters for the Northern Region With the model "Seasonal Exponential 

Smoothing" 

Model Parameter Estimate Std. Error T Prob>|T|

LEVEL Smoothing Weight 0.0188 0.007205718 2.6081 0.0099

SEASONAL Smoothing Weight 0.0010 0.031307409 0.0319 0.9746

Residual Variance (sigma squared) 825.8591

Smoothed Level 92.8204

Smoothed Seasonal Factor 1 -82.7832

Smoothed Seasonal Factor 2 -78.9647

Smoothed Seasonal Factor 3 -44.7194

Smoothed Seasonal Factor 4 15.9527

Smoothed Seasonal Factor 5 54.2782

Smoothed Seasonal Factor 6 84.9439

Smoothed Seasonal Factor 7 43.5031

Smoothed Seasonal Factor 8 66.5556

Smoothed Seasonal Factor 9 80.5949

Smoothed Seasonal Factor 10 10.4677

Smoothed Seasonal Factor 11 -67.6526
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From the equations 4.4 above and from the parameters the equation for the forecasting 

from the Northern Region will be given as: 

 

 

 

 

Example 1. To Forecast the rainfall values for May1995 and suppose the following data is    

=  is a smoothed level of the series that estimates March1995.  

=15.95269,j=0,1,…p-1, are seasonal factor estimate for April 1995 

=54.27823 the seasonal factor estimate for May 1995  

=100.2 is the value of the observation at time April 1995 

= 0.01879 is a level smoothing weight.  

= 0.001 is a seasonal smoothing weight.  

 

 

 

 

 

 

 

 

Therefore the forecasted value for May 1995 is which is 142.1 is given by:- 
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4.2.3 Analysis using ARIMA 

An autoregressive integrated moving average (ARIMA) model is a generalization of an 

autoregressive moving average (ARMA) model, ARIMA models are, in theory, the most 

general class of models for forecasting a time series which can be stationarized by 

transformations such as differencing and logging. In fact, the easiest way to think of 

ARIMA models is as fine-tuned versions of random-walk and random-trend models: the 

fine-tuning consists of adding lags of the differenced series and/or lags of the forecast 

errors to the prediction equation, as needed to remove any last traces of autocorrelation 

from the forecast errors. 

The generalized ARIMA model is of the form ARIMA (p,d,q) 

Where:-  

 p is the number of autoregressive terms,  

 d is the number of non-seasonal differences, and  

 q is the number of lagged forecast errors in the prediction equation. 

In our case the specific ARIMA model we are dealing with in the data of the Northern 

region is the ARIMA(0,1,1) NOINT.  

ARIMA(0,1,1) without constant which is also the same as simple exponential smoothing: 

Another strategy for correcting auto-correlated errors in a random walk model is 

suggested by the simple exponential smoothing model. Recall that for some non-

stationary time series (e.g., one that exhibits noisy fluctuations around a slowly-varying 

mean), the random walk model does not perform as well as a moving average of past 
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values. In other words, rather than taking the most recent observation as the forecast of 

the next observation, it is better to use an average of the last few observations in order to 

filter out the noise and more accurately estimate the local mean. The simple exponential 

smoothing model uses an exponentially weighted moving average of past values to 

achieve this effect. The prediction equation for the simple exponential smoothing model 

can be written in a number of mathematically equivalent ways, one of which is:  

 

We move on to produce the parameter estimates and the table for the actual values with 

their corresponding predicted figures will be at the end of the analysis for the northern 

region. 

 

 

Table 4.4 Parameters for the Northern Region With the model "ARIMA(0,1,1)" 

Model Parameter Estimate Std. Error T Prob>|T|

Seasonal Moving 

Average, Lag 12 0.9479 0.1869 5.0724 0.0000

Model Variance 

(sigma squared) 907.2934

  

4.2.4 Analysis Using Simple Exponential Smoothing (SES)  

Table 4.5 Parameters for the Northern Region With the model "Simple Exponential 

Smoothing‖ 

Model Parameter Estimate Std. Error T Prob>|T| 

LEVEL Smoothing Weight (α) 0.9990 0.052852206 19 0.0000 
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Residual Variance (sigma 

squared) 3312.1743       

Smoothed Level 10.5929       

 

From equation 4.7 below and from the parameters the equation for the forecasting from 

the Northern Region will be given as:- 

 

Example 10. To Forecast the rainfall values for July 1996 and suppose the following data 

is Yt(actual rainfall value for June 1996)=242.8 and St-1 (actual smoothed level for May 

1996)= 158.046 

Then  

= (0.999)*242.8 +(1-0.999)*158.1 

= 242.7157 

Hence, a forecast value for July 1996 is 242.715. 

 

Example 11. To Forecast the rainfall values for August 1996 and suppose the following 

data is    

Yt(actual rainfall value for July 1996)= 94.70 and St-1 (actual smoothed level for June 

1996)= 242.8 

Then 1996
ˆ

AugY
 = 0.999Yt +  (1-0.999)St-1 
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= (0.999)*94.7 +(1-0.999)*242.8   

= 94.848mm 

Hence, a forecast value for August 1996 is 94.848mm. 

 

4.2.5 Analysis Using the Holt Linear Exponential Smoothing Model 

The Holt Linear Exponential Smoothing Model is an extension to the simple exponential 

smoothing model.  Holt‘s method introduces a trend factor to the SES method to allow for 

forecasting series with trends. This model is used for time series that appear to have a 

trend but no seasonality.  The Holt smoothing method utilizes two equations.  Equation 

one adjusts for the trend of the previous time period by adding it the last smoothed value.  

  

 

The second equation updates the trend by differencing the two previous trend values.  

 

The forecast value is determined as the sum of the trend term and the smoothed level. 

 

Where 

Lt = Estimate of the level of the series at time t 

 = smoothing constant for the data. 

8.4............................).........)(1( 11   tttt bLyL 

9.4......................................)1()( 11   tttt bLLb 

10.4....................................................ˆ
ttmt mbLY 
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yt = new observation or actual value of series in period t. 

 = smoothing constant for trend estimate 

bt = estimate of  the slope of the series at time t 

m = periods to be forecast into the future. 

The initialization of the model requires that an initial trend (b1)and smoothing value 

(L1)must be determine along with identifying ,  .  

 

Generally,  

 L1 is set to Y1 

b1 is set to Y2Y1, (YnY1)/(n1), or 0. 

The weight  and  are selected subjectively or by minimizing the MSE as similarly done 

in SES.  

Table 4.6 Parameters for the Northern Region With the model "Linear (Holt) Exponential 

Smoothing‖ 

Model Parameter Estimate Std. Error T Prob>|T| 

LEVEL Smoothing Weight 0.999 0.05449713 00018.331 0.0000 

TREND Smoothing Weight 0.001 0.02565904 00000.039 0.9690 

Residual Variance (sigma squared) 3334.100 

   Smoothed Level 10.593 

   Smoothed Trend 0.043 
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From equation 4.8 above and from the parameters the equation for the forecasting from 

the Northern Region will be given as: 

 

 

 

 

Example 4. To forecast the rainfall values for June 1996 the following equations must be 

solved. Assume the following data: 

=158.1 

 (actual rain value for May 1996) =158.047 

 (actual rain value for April 1996)= 104.514 

 (actual trend level for April 1996) = 0.160 
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Then  1996
ˆ
JuneY  = LMay96 +bMay96 

= 158.047+0.213=158.260 

Hence, a forecast value for JUNE 1996 is 158.260mm. 

 

With the all the above information on the Northern Region we will produce a prediction 

or forecast table including all the models on the Northern Region for easy comparing into 

Table 4.7, the table will have actual figures and their corresponding predicted figures for 

the various models. 

But all these are done with the help of SAS so we will not be going through the 

calculations for the others and the other regions so as to save space. 

Table 4.7 Actual figures of Rainfall with their corresponding predicted figures for all the 

models for the Northern Region. 

Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

1 Jan1995 0.0 64.28 9.12 65.73 60.44 6.20 

2 Feb1995 10.4 63.60 18.53 61.13 59.82 15.53 

3 Mar1995 167.0 63.02 62.17 57.68 59.32 59.11 

4 Apr1995 93.7 63.97 104.77 68.59 60.42 103.19 

5 May1995 104.2 64.19 147.02 74.39 60.75 145.32 

6 Jun1995 283.8 64.52 218.19 70.12 61.19 215.92 

7 Jul1995 148.8 66.59 63.83 82.52 63.46 62.50 

8 Aug1995 17.7 67.33 21.18 85.83 64.32 21.04 

9 Sep1995 2.6 66.79 38.36 68.00 63.85 38.18 

10 Oct1995 20.1 66.11 69.17 57.93 63.23 68.50 

11 Nov1995 50.5 65.61 31.01 55.92 62.79 29.68 

12 Dec1995 29.2 65.40 21.81 57.63 62.66 20.77 

13 Jan1996 0.0 64.99 8.83 28.77 62.32 8.15 

14 Feb1996 56.2 64.30 18.24 32.78 61.69 17.45 



63 

 

Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

15 Mar1996 72.9 64.16 61.88 118.59 61.64 61.74 

16 Apr1996 172.8 64.18 104.48 78.86 61.75 104.38 

17 May1996 228.8 65.18 146.74 88.99 62.88 147.55 

18 Jun1996 191.8 66.71 217.90 196.81 64.56 219.94 

19 Jul1996 99.6 67.87 63.54 120.07 65.85 65.21 

20 Aug1996 31.2 68.12 20.90 40.33 66.20 22.96 

21 Sep1996 11.7 67.71 38.08 31.00 65.84 40.22 

22 Oct1996 3.0 67.10 68.88 39.59 65.29 70.63 

23 Nov1996 18.6 66.42 30.72 53.76 64.66 31.61 

24 Dec1996 1.9 65.90 21.52 41.22 64.19 22.22 

25 Jan1997 0.9 65.22 8.55 25.36 63.56 9.19 

26 Feb1997 1.2 64.54 17.96 55.72 62.92 18.54 

27 Mar1997 143.8 63.86 61.60 63.62 62.30 62.03 

28 Apr1997 177.7 64.58 104.20 123.29 63.12 105.70 

29 May1997 171.1 65.62 146.45 160.76 64.29 148.92 

30 Jun1997 467.2 66.59 217.62 137.50 65.37 220.40 

31 Jul1997 39.5 70.42 63.26 106.77 69.45 69.51 

32 Aug1997 9.2 70.07 20.61 67.16 69.15 26.34 

33 Sep1997 7.1 69.43 37.79 31.62 68.54 43.22 

34 Oct1997 150.4 68.77 68.60 27.95 67.92 73.48 

35 Nov1997 31.9 69.51 30.44 46.41 68.75 36.51 

36 Dec1997 38.9 69.09 21.24 39.29 68.38 27.23 

37 Jan1998 0.0 68.74 8.26 31.23 68.08 14.65 

38 Feb1998 7.1 68.02 17.67 29.96 67.39 23.90 

39 Mar1998 0.9 67.37 61.31 103.39 66.78 67.50 

40 Apr1998 52.0 66.67 103.91 116.49 66.11 109.12 

41 May1998 165.8 66.47 146.17 109.63 65.96 150.52 

42 Jun1998 57.0 67.38 217.33 276.41 66.98 222.12 

43 Jul1998 6.1 67.22 62.97 40.38 66.88 65.30 

44 Aug1998 6.1 66.57 20.33 17.83 66.26 21.74 

45 Sep1998 8.8 65.93 37.51 29.64 65.65 38.62 

46 Oct1998 101.5 65.32 68.31 106.90 65.07 69.08 

47 Nov1998 24.3 65.61 30.15 45.46 65.44 31.41 

48 Dec1998 15.0 65.15 20.95 49.37 65.02 22.12 

49 Jan1999 17.7 64.61 7.98 26.93 64.52 9.26 

50 Feb1999 52.6 64.09 17.39 31.33 64.04 18.82 

51 Mar1999 16.0 63.92 61.03 31.65 63.92 63.07 

52 Apr1999 99.9 63.40 103.63 58.66 63.44 104.96 
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Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

53 May1999 63.8 63.69 145.88 120.42 63.81 147.15 

54 Jun1999 240.1 63.64 217.05 60.32 63.81 217.22 

55 Jul1999 53.4 65.29 62.69 42.09 65.60 63.09 

56 Aug1999 12.7 65.12 20.04 47.48 65.47 20.25 

57 Sep1999 29.9 64.55 37.22 35.47 64.94 37.23 

58 Oct1999 32.1 64.16 68.03 82.87 64.58 68.06 

59 Nov1999 8.8 63.79 29.87 39.96 64.25 29.41 

60 Dec1999 6.5 63.20 20.67 33.02 63.69 19.93 

61 Jan2000 0.7 62.59 7.69 35.81 63.11 7.00 

62 Feb2000 0.0 61.93 17.10 54.01 62.47 16.39 

63 Mar2000 44.6 61.27 60.74 32.87 61.84 59.86 

64 Apr2000 48.6 61.04 103.34 80.21 61.66 102.23 

65 May2000 124.7 60.86 145.60 62.76 61.53 143.68 

66 Jun2000 81.5 61.42 216.76 159.66 62.17 214.74 

67 Jul2000 40.4 61.56 62.40 58.25 62.37 58.43 

68 Aug2000 9.1 61.29 19.76 31.23 62.15 15.48 

69 Sep2000 6.9 60.72 36.94 43.61 61.61 32.47 

70 Oct2000 36.5 60.14 67.74 43.38 61.05 63.03 

71 Nov2000 25.8 59.85 29.58 32.13 60.80 24.52 

72 Dec2000 31.3 59.46 20.38 32.94 60.45 15.35 

73 Jan2001 1.1 59.12 7.41 30.41 60.15 2.83 

74 Feb2001 19.2 58.50 16.82 28.73 59.55 12.27 

75 Mar2001 53.0 58.05 60.46 51.73 59.14 56.06 

76 Apr2001 154.9 57.94 103.06 55.76 59.08 98.57 

77 May2001 207.9 58.82 145.31 103.28 60.05 141.56 

78 Jun2001 176.6 60.21 216.48 87.95 61.55 213.68 

79 Jul2001 14.4 61.28 62.12 66.48 62.72 58.80 

80 Aug2001 6.1 60.76 19.47 40.17 62.23 15.50 

81 Sep2001 114.6 60.17 36.65 30.06 61.66 32.44 

82 Oct2001 17.2 60.64 67.46 53.46 62.20 64.47 

83 Nov2001 21.2 60.16 29.30 47.82 61.74 25.71 

84 Dec2001 12.4 59.72 20.10 43.73 61.33 16.47 

85 Jan2002 53.5 59.20 7.12 27.62 60.83 3.65 

86 Feb2002 12.7 59.08 16.53 40.14 60.76 13.81 

87 Mar2002 32.3 58.57 60.17 58.62 60.27 57.49 

88 Apr2002 146.4 58.25 102.77 109.32 59.99 99.75 

89 May2002 116.6 59.05 145.03 141.44 60.86 142.61 

90 Jun2002 343.1 59.54 216.19 125.14 61.43 213.36 
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Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

91 Jul2002 48.6 62.24 61.83 51.13 64.29 60.77 

92 Aug2002 7.4 62.05 19.19 49.55 64.13 17.95 

93 Sep2002 27.4 61.46 36.37 90.56 63.56 34.96 

94 Oct2002 63.6 61.07 67.17 34.02 63.19 65.63 

95 Nov2002 30.4 61.04 29.01 39.33 63.19 27.53 

96 Dec2002 2.6 60.68 19.81 38.30 62.86 18.39 

97 Jan2003 2.4 60.06 6.83 56.18 62.25 5.47 

98 Feb2003 15.8 59.44 16.25 31.57 61.64 14.85 

99 Mar2003 31.3 58.95 59.89 42.75 61.17 58.53 

100 Apr2003 178.3 58.62 102.49 105.91 60.87 100.83 

101 May2003 55.9 59.73 144.74 96.11 62.06 144.05 

102 Jun2003 352.6 59.63 215.91 215.02 62.00 214.10 

103 Jul2003 33.9 62.42 61.55 63.29 64.95 61.49 

104 Aug2003 14.5 62.08 18.90 42.79 64.64 18.46 

105 Sep2003 35.9 61.56 36.08 42.56 64.13 35.56 

106 Oct2003 114.9 61.26 66.89 62.61 63.84 66.34 

107 Nov2003 31.4 61.72 28.73 49.64 64.36 28.95 

108 Dec2003 22.2 61.37 19.53 34.66 64.02 19.79 

109 Jan2004 10.1 60.93 6.55 30.46 63.60 7.13 

110 Feb2004 11.9 60.38 15.96 37.15 63.06 16.60 

111 Mar2004 8.0 59.85 59.60 44.21 62.54 60.17 

112 Apr2004 26.4 59.28 102.20 120.96 61.98 102.23 

113 May2004 120.0 58.91 144.46 51.40 61.62 143.18 

114 Jun2004 73.1 59.44 215.62 214.93 62.21 214.34 

115 Jul2004 20.5 59.51 61.26 43.45 62.33 57.73 

116 Aug2004 36.1 59.07 18.62 26.96 61.90 14.58 

117 Sep2004 93.0 58.79 35.80 47.84 61.64 32.04 

118 Oct2004 96.8 59.06 66.60 94.42 61.96 63.71 

119 Nov2004 32.6 59.37 28.44 50.77 62.31 26.05 

120 Dec2004 2.4 59.05 19.24 42.03 62.01 16.94 

121 Jan2005 2.2 58.44 6.26 32.62 61.40 4.05 

122 Feb2005 3.9 57.84 15.68 32.26 60.80 13.45 

123 Mar2005 149.4 57.25 59.32 30.67 60.22 56.91 

124 Apr2005 45.1 58.09 101.92 50.09 61.13 100.94 

125 May2005 112.7 57.90 144.17 102.22 60.97 142.21 

126 Jun2005 157.2 58.37 215.34 70.84 61.49 213.17 

127 Jul2005 48.8 59.27 60.98 48.70 62.46 57.83 

128 Aug2005 29.9 59.11 18.33 56.40 62.33 15.13 
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Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

129 Sep2005 17.6 58.77 35.51 79.34 62.00 32.53 

130 Oct2005 91.2 58.31 66.32 76.75 61.55 63.13 

131 Nov2005 50.3 58.57 28.16 44.53 61.85 25.38 

132 Dec2005 19.0 58.43 18.96 32.92 61.73 16.50 

133 Jan2006 10.2 57.99 5.98 31.35 61.30 3.86 

134 Feb2006 2.0 57.47 15.39 30.65 60.78 13.36 

135 Mar2006 26.9 56.87 59.03 106.57 60.18 56.90 

136 Apr2006 39.9 56.52 101.63 47.28 59.84 99.09 

137 May2006 216.0 56.29 143.89 84.03 59.64 140.35 

138 Jun2006 144.1 57.78 215.05 121.36 61.23 212.73 

139 Jul2006 40.5 58.56 60.69 67.18 62.07 57.26 

140 Aug2006 7.9 58.33 18.05 47.70 61.85 14.48 

141 Sep2006 81.8 57.78 35.23 36.59 61.30 31.56 

142 Oct2006 107.2 57.96 66.03 79.31 61.51 63.09 

143 Nov2006 3.8 58.37 27.87 62.18 61.97 25.56 

144 Dec2006 3.0 57.79 18.67 39.35 61.38 16.02 

145 Jan2007 0.0 57.19 5.69 30.20 60.79 3.17 

146 Feb2007 6.3 56.58 15.11 27.03 60.17 12.52 

147 Mar2007 59.1 56.03 58.75 41.03 59.63 56.11 

148 Apr2007 76.7 56.00 101.35 51.22 59.62 98.73 

149 May2007 123.3 56.14 143.60 147.91 59.79 140.63 

150 Jun2007 219.4 56.73 214.77 107.48 60.44 211.59 

151 Jul2007 163.1 58.25 60.41 58.18 62.05 57.22 

152 Aug2007 57.9 59.21 17.76 49.88 63.08 16.13 

153 Sep2007 57.7 59.14 34.94 83.21 63.03 33.93 

154 Oct2007 116.2 59.07 65.75 88.17 62.97 65.10 

155 Nov2007 32.4 59.57 27.59 33.65 63.51 27.60 

156 Dec2007 24.0 59.25 18.39 34.38 63.20 18.43 

157 Jan2008 3.8 58.85 5.41 30.31 62.80 5.84 

158 Feb2008 0.0 58.26 14.82 31.90 62.20 15.21 

159 Mar2008 60.6 57.63 58.46 58.15 61.57 58.68 

160 Apr2008 101.3 57.61 101.06 69.12 61.56 101.26 

161 May2008 249.4 57.97 143.32 98.07 61.96 143.47 

162 Jun2008 131.1 59.77 214.48 159.15 63.87 216.15 

163 Jul2008 100.5 60.41 60.12 126.62 64.55 60.60 

164 Aug2008 25.6 60.75 17.48 59.40 64.91 18.55 

165 Sep2008 42.4 60.35 34.66 57.99 64.51 35.85 

166 Oct2008 47.9 60.12 65.46 88.80 64.29 66.81 
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Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

167 Nov2008 73.1 59.95 27.30 43.87 64.12 28.30 

168 Dec2008 62.2 60.02 18.10 42.24 64.21 19.68 

169 Jan2009 4.2 59.98 5.12 35.81 64.19 7.59 

170 Feb2009 48.7 59.39 14.54 30.28 63.58 16.93 

171 Mar2009 36.8 59.23 58.18 62.23 63.43 61.06 

172 Apr2009 127.9 58.95 100.78 84.07 63.16 103.28 

173 May2009 115.2 59.57 143.03 164.11 63.82 145.93 

174 Jun2009 324.3 60.05 214.20 100.17 64.34 216.54 

175 Jul2009 69.4 62.56 59.84 95.52 66.98 63.77 

176 Aug2009 16.4 62.58 17.19 58.63 67.01 21.21 

177 Sep2009 8.1 62.08 34.37 50.54 66.49 38.35 

178 Oct2009 9.0 61.50 65.18 51.43 65.90 68.78 

179 Nov2009 0.1 60.94 27.02 63.49 65.32 29.77 

180 Dec2009 26.6 60.29 17.82 56.13 64.66 20.13 

181 Jan2010   59.91 4.84 26.00 64.27 7.50 

182 Feb2010   59.85 14.25 53.72 64.27 16.91 

183 Mar2010   59.80 57.89 49.72 64.27 60.56 

184 Apr2010   59.74 100.49 98.43 64.27 103.16 

185 May2010   59.69 142.74 91.88 64.27 145.42 

186 Jun2010   59.63 213.91 202.72 64.27 216.58 

187 Jul2010   59.58 59.55 67.67 64.27 62.23 

188 Aug2010   59.52 16.90 39.59 64.27 19.58 

189 Sep2010   59.47 34.08 35.19 64.27 36.77 

190 Oct2010   59.41 64.89 35.67 64.27 67.58 

191 Nov2010   59.36 26.73 30.95 64.27 29.42 

192 Dec2010   59.30 17.53 44.99 64.27 20.22 

193 Jan2011   59.25 4.55 44.67 64.27 7.50 

194 Feb2011   59.19 13.97 59.37 64.27 16.91 

195 Mar2011   59.14 57.61 57.25 64.27 60.56 

196 Apr2011   59.09 100.21 83.05 64.27 103.16 

197 May2011   59.03 142.46 79.59 64.27 145.42 

198 Jun2011   58.98 213.63 138.32 64.27 216.58 

199 Jul2011   58.92 59.27 66.76 64.27 62.23 

200 Aug2011   58.87 16.62 51.88 64.27 19.58 

201 Sep2011   58.81 33.80 49.55 64.27 36.77 

202 Oct2011   58.76 64.61 49.80 64.27 67.58 

203 Nov2011   58.70 26.45 47.30 64.27 29.42 

204 Dec2011   58.65 17.25 54.74 64.27 20.22 
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From Table 4.7 above, clearly there is a lot similarities between the predicted figures for 

the Holt Exponential Model and the Simple Exponential models that can pretty much be 

explained from the fact that both models have the same underlying principles and the only 

difference is the fact that the Holt is an extension of the Simple Exponential Model. 

Secondly, the figures of the Linear Trend with Seasonal Terms model and the Seasonal 

Exponential Models are close to each other and again this can also be seen from the fact 

that both models take into consideration the Seasonality of the data set. The ARIMA 

model seems to be very independent of the other models. Since we have decided on the 

fact that the best model for this data set was that of the Northern Region, is the Linear 

Trend with Seasonal Terms, we will look at the forecast looking at the prediction for 

2011, we see that there will be averagely high level of rainfall in the Northern Region, 

and already there are signals from the Ghana Metrological Service and other happenings.   
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Figure 4.2 Plots actual rainfall and forecast for all the models (Northern Region) 
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4.3 RAINFALL PATTERN IN THE WESTERN REGION 

 

Figure 4.3 A times series plot of the observed data (western region). 

 

From Figure 4.3 which is A times series plot of the observed data in the western region in 

Ghana, we can clearly see some form of seasonal pattern with some irregularities trend in 

the pattern. We observe from the above figure that in the western region of Ghana over 

the years under study for all the month, the highest level of rainfall in a particular month 

was in June 1997 which recorded 439mm of rain. Again in June 2009, 389.925mm was 

recorded, 367.05mm was recorded in June 1999, and 352.075mm was recorded in June 

2007 just to mention a few. Interestingly, the Western region has recorded higher levels 
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of rainfall than in the Northern region. Unlike in the Northern region where some rainfall 

levels are too low to measure, rainfall in the western region has been relatively high all 

through. The month of January has proven to be the month with the lowest rainfall in the 

Western region followed by December and February in that order. The highest amount of 

rainfall in total comes from the western region which is a total of 4695.15mm, which can 

go to explain why the Western region has been tagged as the food basket of the Nation 

producing the highest amount of Cocoa and other agricultural products.  

 

The Table 4.8 below has Model Label, Number of Observations, Mean Square Error 

(MSE), and R-Square. In this research we decided to use (MSE), and R-Square as a 

criterion for selecting a model. From the Table 4.8 clearly using the summary of the 

models and the criterion for the selection of the best model, it is clear that with a less 

MSE (2440.6715) and a higher R-square (0.70) the best model that can be used for 

forecasting the rains of the northern region will be Linear Trend with Seasonal Terms. 

The second best model so far as these criterions are concerned is the Seasonal 

Exponential Smoothing and the rest of the models follow as such. 

This work is looking at four main models, that is, Linear Trend with Seasonal Terms, 

Seasonal Exponential Smoothing, ARIMA, and Simple Exponential Smoothing and 

Linear (Holt) Exponential Smoothing. So all the ARIMA models are one model, and the 

Simple Exponential Smoothing and Linear (Holt) Exponential Smoothing is also one 

model since the Simple Exponential Smoothing is just basics of the Linear (Holt) 

Exponential Smoothing. 
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We continue to however present the table on the various models and then we will only 

pick the best model to look at. 

 

Table 4.8 WESTERN REGION MODEL SUMMARY 

Series 

Name Model Label

Number of 

Observations

Mean 

Square 

Error R-Square

RAIN Linear Trend with Seasonal Terms 180 2440.67 0.70

RAIN Seasonal Exponential Smoothing 180 2480.94 0.69

RAIN Log ARIMA(2,0,0)(1,0,0)s 180 4174.02 0.48

RAIN ARIMA(2,0,0)(1,0,0)s 180 4237.47 0.47

RAIN Simple Exponential Smoothing 180 8118.35 -0.01

RAIN Linear (Holt) Exponential Smoothing 180 8123.32 -0.01

 

From Table 4.8 above, clearly the Linear Trend with Seasonal Terms model is the best possible 

model using our criterions, we considered a model that has the smaller MSE and the 

highest R-square so we will look at the parameters of this model and conclude. 

 

Table 4.9 Parameters for the Western Region With the model "Linear Trend with Seasonal 

Terms" 

Model Parameter Estimate Std. Error T Prob>|T| 

Intercept 47.8524 15.02 3.1867 0.002 

Linear Trend -0.0262 0.07 -0.3549 0.723 

Seasonal Dummy 1 -20.7412 18.75 -1.1064 0.270 

Seasonal Dummy 2 1.2583 18.74 0.0671 0.947 

Seasonal Dummy 3 53.4445 18.74 2.8519 0.005 

Seasonal Dummy 4 103.7440 18.74 5.5366 0.000 
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Model Parameter Estimate Std. Error T Prob>|T| 

Seasonal Dummy 5 168.7301 18.74 9.0059 0.000 

Seasonal Dummy 6 244.4563 18.73 13.0490 0.000 

Seasonal Dummy 7 105.9958 18.73 5.6585 0.000 

Seasonal Dummy 8 25.5353 18.73 1.3633 0.175 

Seasonal Dummy 9 35.1415 18.73 1.8762 0.062 

Seasonal Dummy 10 123.8343 18.73 6.6119 0.000 

Seasonal Dummy 11 54.5472 18.73 2.9125 0.004 

 

From Table 4.9 that has the Parameters for the Western Region With the model "Linear 

Trend with Seasonal Terms", the equation for the forecasting will be given as:- 

 

And this will be the best model for the forecasting of Western Region of Ghana. 

Below is Table 4.10, which is shortened to two years to save space. 

 

Table 4.10 Actual figures of Rainfall with their corresponding predicted figures for all the 

models for the Western Region (2009-2011). 

Number of 

Observation Full Date 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

169 Jan2009 15.1 114.40 22.69 55.05 119.35 24.88 

170 Feb2009 52.1 113.15 44.66 67.03 118.10 46.70 

171 Mar2009 59.3 112.36 96.82 99.58 117.31 98.99 

172 Apr2009 130 111.66 147.09 109.58 116.62 148.65 

173 May2009 227.2 111.80 212.05 201.08 116.78 213.31 
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Number of 

Observation Full Date 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

174 Jun2009 389.9 113.09 287.75 222.55 118.10 289.14 

175 Jul2009 217.7 116.29 149.27 187.12 121.35 152.20 

176 Aug2009 75.5 117.42 68.78 106.63 122.50 72.75 

177 Sep2009 34.7 116.86 78.36 111.48 121.94 82.43 

178 Oct2009 81 115.81 167.03 123.87 120.90 170.43 

179 Nov2009 84 115.33 97.71 90.37 120.42 99.72 

180 Dec2009 46.2 114.89 43.14 91.24 119.98 44.90 

181 Jan2010   114.01 22.37 44.83 119.10 24.40 

182 Feb2010   113.94 44.35 79.85 119.10 46.38 

183 Mar2010   113.86 96.51 86.17 119.10 98.55 

184 Apr2010   113.79 146.78 126.01 119.10 148.83 

185 May2010   113.72 211.74 181.02 119.10 213.79 

186 Jun2010   113.65 287.44 273.59 119.10 289.50 

187 Jul2010   113.58 148.95 175.51 119.10 151.01 

188 Aug2010   113.51 68.47 94.53 119.10 70.53 

189 Sep2010   113.43 78.05 71.29 119.10 80.12 

190 Oct2010   113.36 166.71 97.67 119.10 168.79 

191 Nov2010   113.29 97.40 99.37 119.10 99.48 

192 Dec2010   113.22 42.83 77.84 119.10 44.92 

193 Jan2011   113.15 22.06 77.07 119.10 24.40 

194 Feb2011   113.08 44.03 97.01 119.10 46.38 

195 Mar2011   113.00 96.19 100.61 119.10 98.55 

196 Apr2011   112.93 146.47 123.30 119.10 148.83 

197 May2011   112.86 211.43 154.63 119.10 213.79 

198 Jun2011   112.79 287.13 207.36 119.10 289.50 

199 Jul2011   112.72 148.64 151.50 119.10 151.01 

200 Aug2011   112.65 68.15 105.37 119.10 70.53 

201 Sep2011   112.57 77.73 92.14 119.10 80.12 

202 Oct2011   112.50 166.40 107.16 119.10 168.79 

203 Nov2011   112.43 97.09 108.13 119.10 99.48 

204 Dec2011   112.36 42.51 95.87 119.10 44.92 

 

From the table above and with our concentration on our choice of model we see that into 

2011 we will have higher amount of rainfall. Due to the fact that the Holt and the Simple 

Exponential Models are not long term predictors they have not given us variations of 
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figures to rely on but clearly we see that even those models are saying we will have 

higher amount of rain. 

 

Figure 4.4 Plots actual rainfall and the forecast for all the models (Western Region) 

 

 

 

 



76 

 

4.4 RAINFALL PATTERN IN THE EASTERN REGION 

 

Figure 4.5 A times series plot of the observed data (Eastern region). 

 

Figure 4.5 is the plot of observed rainfall data for the Eastern region of Ghana. June 1997 

was again an interesting month for Eastern Region too, recording a very high figure of 

339.6667mm rainfall. This was followed by June 1999 which recorded 311.8667mm of 

rainfall in the region. May 1996, June 2002, Sept 2007 and June 1995 followed in that 

order recording 288.7mm, 256.3333mm, 256.333mm and 250.5333mm respectively. The 

months of January, December and February in that order have been the lowest 

contributors of rain per month in the region. 
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From Table 4.11 above, clearly the Linear Trend with Seasonal Terms model is the best possible  

model, considering a model that has the smaller MSE and the highest R-square so we will look at  

the parameters of this model and conclude. 

 

Table 4.12 Parameters for the Eastern Region With the model "Linear Trend with Seasonal 

Terms" 

Model Parameter Estimate Std. Error T Prob>|T| 

Intercept 43.4371 12.2084 3.5580 0.0005 

Linear Trend -0.0871 0.0599 -1.4521 0.1483 

Seasonal Dummy 1 -14.9443 15.2409 -0.9805 0.3282 

Seasonal Dummy 2 4.6495 15.2384 0.3051 0.7607 

Seasonal Dummy 3 73.9299 15.2362 4.8523 0.0000 

Seasonal Dummy 4 100.4569 15.2342 6.5942 0.0000 

Seasonal Dummy 5 126.8373 15.2324 8.3268 0.0000 

Seasonal Dummy 6 163.2643 15.2308 10.7193 0.0000 

Seasonal Dummy 7 85.3581 15.2296 5.6048 0.0000 

TABLE 4.11 EASTERN REGION MODEL SUMMARY 

Series 

Name 
Model Label 

Number of 

Observations 

Mean 

Square Error 
R-Square 

RAIN Linear Trend with Seasonal Terms 180 1613.29 0.65 

RAIN Seasonal Exponential Smoothing 180 1649.87 0.64 

RAIN ARIMA(0,1,1)s NOINT 180 2176.34 0.52 

RAIN ARIMA(2,1,0)(0,1,1)s NOINT 180 2759.33 0.39 

RAIN ARIMA(2,0,0)(1,0,0)s 180 2874.44 0.37 

RAIN 

Linear (Holt) Exponential 

Smoothing 180 4602.21 -0.01 

RAIN Simple Exponential Smoothing 180 4606.42 -0.01 
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Model Parameter Estimate Std. Error T Prob>|T| 

Seasonal Dummy 8 28.3918 15.2285 1.8644 0.0640 

Seasonal Dummy 9 83.6922 15.2277 5.4961 0.0000 

Seasonal Dummy 10 124.3459 15.2271 8.1661 0.0000 

Seasonal Dummy 11 44.5663 15.2267 2.9268 0.0039 

 

 

From Table 4.12 that has the Parameters for the Eastern Region With the model "Linear 

Trend with Seasonal Terms", the equation for the forecasting will be given as:- 

 

And this will be the best model for the forecasting of Eastern Region of Ghana. 

Table 4.13 Actual figures of Rainfall with their corresponding predicted figures for all the 

models for the Eastern Region (2009-2011). 

Number of 

Observation FullDate 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

169 Jan2009 12.5 94.41 13.78 20.28 103.05 20.39 

170 Feb2009 50.7 93.16 33.29 41.78 101.77 39.74 

171 Mar2009 101.8 92.44 102.48 111.39 101.04 109.16 

172 Apr2009 144.5 92.43 128.92 135.66 101.05 135.45 

173 May2009 145.3 93.00 155.21 160.05 101.67 161.94 

174 Jun2009 237.1 93.57 191.55 176.22 102.29 197.93 

175 Jul2009 140.1 95.38 113.56 111.79 104.21 120.68 

176 Aug2009 45.7 95.85 56.51 60.46 104.72 64.03 

177 Sep2009 71.8 95.04 111.72 140.92 103.88 118.94 

178 Oct2009 106.4 94.59 152.29 168.51 103.42 158.66 

179 Nov2009 70 94.61 72.42 76.32 103.46 77.80 

180 Dec2009 19.8 94.14 27.77 37.55 102.99 33.01 

181 Jan2010   93.00 12.74 19.07 101.81 18.69 

182 Feb2010   92.86 32.24 43.16 101.81 38.21 
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Number of 

Observation FullDate 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

183 Mar2010   92.72 101.44 109.90 101.81 107.41 

184 Apr2010   92.58 127.88 137.03 101.81 133.85 

185 May2010   92.45 154.17 157.76 101.81 160.15 

186 Jun2010   92.31 190.51 185.67 101.81 196.50 

187 Jul2010   92.17 112.52 116.19 101.81 118.51 

188 Aug2010   92.04 55.46 58.17 101.81 61.47 

189 Sep2010   91.90 110.68 130.19 101.81 116.69 

190 Oct2010   91.76 151.24 158.87 101.81 157.26 

191 Nov2010   91.62 71.38 75.34 101.81 77.40 

192 Dec2010   91.49 26.72 34.80 101.81 32.76 

193 Jan2011   91.35 11.69 19.07 101.81 18.69 

194 Feb2011   91.21 31.20 43.16 101.81 38.21 

195 Mar2011   91.08 100.39 109.90 101.81 107.41 

196 Apr2011   90.94 126.83 137.03 101.81 133.85 

197 May2011   90.80 153.12 157.76 101.81 160.15 

198 Jun2011   90.67 189.46 185.67 101.81 196.50 

199 Jul2011   90.53 111.47 116.19 101.81 118.51 

200 Aug2011   90.39 54.42 58.17 101.81 61.47 

201 Sep2011   90.25 109.63 130.19 101.81 116.69 

202 Oct2011   90.12 150.20 158.87 101.81 157.26 

203 Nov2011   89.98 70.33 75.34 101.81 77.40 

204 Dec2011   89.84 25.68 34.80 101.81 32.76 
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Figure 4.6 Plots actual rainfall and the forecast for all the models (Eastern Region) 
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4.4 RAINFALL PATTERN IN GREATER ACCRA REGION 

 

Figure 4.7 A times series plot of the observed data (Greater Accra region). 

 

Figure 4.7 is the plot of observed rainfall data for the Greater Accra region of Ghana. 

June 1997 was again an interesting month for Greater Accra too, recording a very high 

figure of 467.2333mm rainfall. This was followed by June 2003 which recorded 

352.6mm of rainfall in the region. June 2002, June 2009 May 2008 and June 1999 

followed in that order recording 343.1333mm, 324.3mm, 249.4333mm and 240.0667mm 

respectively. The months of January, February and December in that order have been the 

lowest contributors of rain per month in the region. 
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Table 4.14 and figure 4.7 are the raw rainfall data and initial plots for the Greater Accra 

region of Ghana respectively. We continue to present the table on the various models and 

then we will only pick the best model to look at. 

 

TABLE 4.14 GREATER ACCRA  REGION MODEL SUMMARY 

Series 

Name Model Label 

Number of 

Observations 

Mean Square 

Error R-Square 

RAIN Linear Trend with Seasonal Terms 180 2346.027058 0.602669709 

RAIN Seasonal Exponential Smoothing 180 2373.053138 0.59809249 

RAIN ARIMA(2,0,0)(1,0,0)s 180 4247.797256 0.280580113 

RAIN 

Linear (Holt) Exponential 

Smoothing 180 5966.106923 

-

0.010438048 

RAIN Simple Exponential Smoothing 180 5967.483985 

-

0.010671271 

 

From Table 4.14 above, clearly the Linear Trend with Seasonal Terms model is the best possible 

model, considering a model that has the smaller MSE and the highest R-square so we will 

look at the parameters of this model and conclude. 
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Table 4.15 Parameters for the Greater Accra Region With the model "Linear Trend with 

Seasonal Terms" 

Model Parameter 
Estimate Std. Error T Prob>|T| 

Intercept 22.0952 14.72214635 1.5008 0.1353 

Linear Trend -0.0238 0.072292566 -0.3288 0.7427 

Seasonal Dummy 1 -12.9548 18.3789543 -0.7049 0.4819 

Seasonal Dummy 2 -3.5177 18.37596829 -0.1914 0.8484 

Seasonal Dummy 3 40.1461 18.37326625 2.1850 0.0303 

Seasonal Dummy 4 82.7698 18.37084829 4.5055 0.0000 

Seasonal Dummy 5 125.0469 18.36871454 6.8076 0.0000 

Seasonal Dummy 6 196.2374 18.36686508 10.6843 0.0000 

Seasonal Dummy 7 41.9012 18.36530001 2.2815 0.0238 

Seasonal Dummy 8 -0.7217 18.3640194 -0.0393 0.9687 

Seasonal Dummy 9 16.4820 18.36302331 0.8976 0.3707 

Seasonal Dummy 10 47.3125 18.36231178 2.5766 0.0108 

Seasonal Dummy 11 9.1762 18.36188485 0.4997 0.6179 

 

 

From Table 4.15 that has the Parameters for the Greater Accra Region With the model 

"Linear Trend with Seasonal Terms", the equation for the forecasting will be given as:- 

 

And this will be the best model for the forecasting of Greater Accra Region of Ghana. 
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Table 4.16 Actual figures of Rainfall with their corresponding predicted figures for all the 

models for the Greater Accra Region (2009-2011). 

Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

169 Jan2009 4.2 59.98 5.12 35.81 64.19 7.59 

170 Feb2009 48.7 59.39 14.54 30.28 63.58 16.93 

171 Mar2009 36.8 59.23 58.18 62.23 63.43 61.06 

172 Apr2009 127.9 58.95 100.78 84.07 63.16 103.28 

173 May2009 115.2 59.57 143.03 164.11 63.82 145.93 

174 Jun2009 324.3 60.05 214.20 100.17 64.34 216.54 

175 Jul2009 69.4 62.56 59.84 95.52 66.98 63.77 

176 Aug2009 16.4 62.58 17.19 58.63 67.01 21.21 

177 Sep2009 8.1 62.08 34.37 50.54 66.49 38.35 

178 Oct2009 9.0 61.50 65.18 51.43 65.90 68.78 

179 Nov2009 0.1 60.94 27.02 63.49 65.32 29.77 

180 Dec2009 26.6 60.29 17.82 56.13 64.66 20.13 

181 Jan2010   59.91 4.84 26.00 64.27 7.50 

182 Feb2010   59.85 14.25 53.72 64.27 16.91 

183 Mar2010   59.80 57.89 49.72 64.27 60.56 

184 Apr2010   59.74 100.49 98.43 64.27 103.16 

185 May2010   59.69 142.74 91.88 64.27 145.42 

186 Jun2010   59.63 213.91 202.72 64.27 216.58 

187 Jul2010   59.58 59.55 67.67 64.27 62.23 

188 Aug2010   59.52 16.90 39.59 64.27 19.58 

189 Sep2010   59.47 34.08 35.19 64.27 36.77 

190 Oct2010   59.41 64.89 35.67 64.27 67.58 

191 Nov2010   59.36 26.73 30.95 64.27 29.42 

192 Dec2010   59.30 17.53 44.99 64.27 20.22 

193 Jan2011   59.25 4.55 44.67 64.27 7.50 

194 Feb2011   59.19 13.97 59.37 64.27 16.91 

195 Mar2011   59.14 57.61 57.25 64.27 60.56 

196 Apr2011   59.09 100.21 83.05 64.27 103.16 

197 May2011   59.03 142.46 79.59 64.27 145.42 

198 Jun2011   58.98 213.63 138.32 64.27 216.58 

199 Jul2011   58.92 59.27 66.76 64.27 62.23 

200 Aug2011   58.87 16.62 51.88 64.27 19.58 

201 Sep2011   58.81 33.80 49.55 64.27 36.77 

202 Oct2011   58.76 64.61 49.80 64.27 67.58 
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Number of 

Observation 

FULL 

DATE 

Actual 

Rain Holt Linear ARIMA 

Simple 

Exponential 

Seasonal 

Exponential 

203 Nov2011   58.70 26.45 47.30 64.27 29.42 

204 Dec2011   58.65 17.25 54.74 64.27 20.22 

 

From Table 4.16 which is the Actual figures of Rainfall with their corresponding 

predicted figures for all the models for the Greater Accra Region (2009-2011). We again 

realized that from the chosen model, we will have enough rains coming down in the 

whole of 2011. 

 

Figure 4.8 Plots actual rainfall and the forecast for all the models (Greater Accra 

Region) 



86 

 

 

CHAPTER 5 

DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

5.0 DISCUSSION 

The study has been looking at rainfall figures in fifteen years that is to say from January 

1995 to December 2009 within four regions of Ghana i.e. Greater Accra, Northern, 

Western, and Eastern regions which are representing the north, south east and west of the 

country. 

This work looked at four main models, that is, Linear Trend with Seasonal Terms, 

Seasonal Exponential Smoothing, ARIMA, and Simple Exponential Smoothing and 

Linear (Holt) Exponential Smoothing. So all the ARIMA models are one model, and the 

Simple Exponential Smoothing and Linear (Holt) Exponential Smoothing is also one 

model since the Simple Exponential Smoothing is just basics of the Linear (Holt) 

Exponential Smoothing. 

 

We observe that in the northern region of Ghana over the years under study for all the 

month, the highest level of rainfall in a particular month was in June 1997 which recorded 

271.875mm of rain. Since 1997, the region has not recorded that amount of rainfall. The 

closest amount of rainfall, in a particular month closest to that of the June 1997 was 

recorded in July 2009 which was 257.25mm rain. June 1996 which recorded 242.8mm, 

August 2004 which recorded 235.15mm and June 2005 which recoded 216.6mm just to 

mention a few followed in that other, interestingly, September also recorded highest 
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figures in the following years 1998, 2000, 2001, and 2007 recording 191.25mm, 

209.85mm, 176.825mm, and 203.075mm respectively. The month of January has proven 

to be the month with the lowest rainfall in the northern region followed by December and 

February in that order. 

It became clear that the best model that can be used for forecasting the rains of the 

northern region will be Linear Trend with Seasonal Terms taking into consideration our 

decision to use (MSE), and R-Square as a criterion for selecting the best model.  

We also observed that there is a lot similarities between the predicted figures for the Holt 

Exponential Model and the Simple Exponential models that can pretty much be explained 

from the fact that both models have the same underlying principles and the only 

difference is the fact that the Holt is an extension of the Simple Exponential Model. 

Secondly, the figures of the Linear Trend with Seasonal Terms model and the Seasonal 

Exponential Models are close to each other and again this can also be seen from the fact 

that both models take into consideration the Seasonality of the data set. The ARIMA 

model seems to be very independent of the other models. Since we have decided on the 

fact that the best model for this data set was that of the Northern Region, is the Linear 

Trend with Seasonal Terms, when we looked at the forecast looking at the prediction for 

2011, we see that there will be averagely high level of rainfall in the Northern Region, 

and already there are signals from the Ghana Metrological Service and other happenings.   

A times series plot of the observed data in the western region in Ghana, clearly showed 

some form of seasonal pattern with some irregularities trend in the pattern. We observe 

from the previous chapter that in the western region of Ghana over the years under study 
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for all the month, the highest level of rainfall in a particular month was in June 1997 

which recorded 339.6667mm of rain. Again in June 1999 311.8667mm was recorded, 

288.7mm was recorded in may 1996, and 256.3333mm which recorded in September 

2007. Interestingly, the Western region has recorded higher levels of rainfall than in the 

Northern region. Unlike in the Northern region where some rainfall levels are too low to 

measure, rainfall in the western region has been relatively high all through. The month of 

January has proven to be the month with the lowest rainfall in the Western region 

followed by December and February in that order. The highest amount of rainfall in total 

comes from the western region which is a total of 4695.15mm, which can go to explain 

why the Western region has been tagged as the food basket of the Nation producing the 

highest amount of Cocoa and other agricultural products. 

 

5.1  CONCLUSION 

To achieve the set objectives, a theoretical basis was presented in chapter 3 which has to 

do with our four main types of models which are Linear Trend with Seasonal Terms, 

Seasonal Exponential Smoothing, ARIMA, Simple Exponential Smoothing and Linear 

(Holt) Exponential Smoothing. So that as discussed already, all the ARIMA models are 

one model, and the Simple Exponential Smoothing and Linear (Holt) Exponential 

Smoothing is also one model family since the Simple Exponential Smoothing is just 

basics of the Linear (Holt) Exponential Smoothing. Generally in arriving at a model, three 

basic steps were followed that is; Preliminary analysis, model fitting and then the 

forecasting.  
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There have been some amount of academic work in the form of thesis that has been done 

individually on rainfall and sunshine (weather generally) using some of the above 

mentioned models separately, and in many of these works there is a mention that there are 

other models that can be looked at on the subject of forecasting rainfall in the regions of 

Ghana. 

In this work, we have gone on to look at four major models. We have realized that the 

linear trend with seasonal terms is the best model to use in the modeling of rainfall so far 

as these four regions are concerned. 

In our analysis we have realized that the best model to use in the forecasting of rainfall in 

these four regions under study should be the Linear Trend with Seasonal Terms. We also 

think that fifteen years was more than enough for the study and the analysis can be 

considered as accurate. The exponential models are not the best model for forecasting the 

rainfall pattern in these four regions in Ghana. 

From the Parameters table for the northern region, it‘s clear that the month of June has 

been the month with the highest average significant rainfall. 

Also, in the western region, the month of June has been the month with the highest 

average rainfall. 

 

5.2 RECOMMENDATIONS 

We recommend that:- 
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 At least for the four regions under study, the best model should be a Linear Trend with 

Seasonal Terms. 

 There should be ways of handling the higher levels of rain we expect. 

 There should be some more study in the rainfall pattern for the rest of the six regions in 

Ghana. 

 There should be another study of the entire country to determine if the Linear Trend with 

Seasonal Terms will be suitable for the Country. 

 After the end of 2011 there should be some evaluation on the accuracy of if the Linear 

Trend with Seasonal Terms on the rainfall patterns. 

Clearly we believe that there is still a lot of work that can be done in this very interesting 

topic. 
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APPENDIX A 

Table A-1 Northern Region Average Monthly Rainfall Per Community / Town (mm) 

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

1995 0.0 1.2 56.1 100.2 134.5 147.5 111.4 212.7 145.4 111.5 19.6 4.4 

1996 1.6 20.7 18.4 104.6 158.1 242.8 94.7 168.9 157.1 96.9 35.1 7.9 

1997 8.0 2.4 80.1 164.8 179.3 271.9 115.7 100.9 195.7 101.8 39.4 24.0 

1998 5.6 21.3 4.7 67.3 147.7 144.5 82.7 120.4 191.3 116.7 4.2 5.1 

1999 26.5 17.2 30.6 114.0 107.7 198.7 172.5 168.6 170.2 122.4 15.7 2.3 

2000 32.7 0.0 59.1 76.3 144.6 175.5 94.5 171.9 209.9 71.4 27.0 3.0 

2001 0.0 7.3 71.9 106.5 153.9 140.1 107.5 121.2 176.8 35.2 18.4 4.9 

2002 7.8 22.8 43.2 116.8 115.7 172.1 162.3 188.1 101.1 75.3 16.9 0.6 

2003 5.4 17.9 52.0 113.1 146.2 179.3 70.2 120.4 151.5 105.1 28.6 5.1 

2004 18.5 7.0 56.9 99.1 152.7 147.9 185.7 235.2 169.4 91.6 49.7 8.1 

2005 9.1 14.5 57.0 119.8 175.4 216.6 201.6 82.6 199.6 118.1 19.8 25.8 

2006 1.9 7.2 12.7 99.1 199.3 132.4 129.3 126.5 138.7 137.5 18.9 1.0 

2007 0.0 6.4 39.9 130.1 103.3 122.2 116.7 183.7 203.1 119.6 10.8 14.6 

2008 0.7 1.7 67.9 58.3 146.7 165.7 114.5 209.3 208.8 110.3 41.4 17.4 

2009 5.0 32.4 43.1 133.6 113.3 181.1 257.3 151.9 154.2 107.4 3.4 10.6 

 

 

Table A-2 Western Region Average Monthly Rainfall Per Community / Town (mm) 

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

1995 9.3 25.9 130.3 217.5 164.9 301.7 155.4 112.5 89.5 98.8 120.9 27.0 

1996 25.3 65.9 138.5 161.7 333.7 330.7 230.5 115.2 38.4 126.2 125.6 30.4 

1997 12.5 26.5 109.8 183.5 261.2 439.0 51.5 24.5 42.9 164.3 113.7 57.9 

1998 38.2 52.4 57.3 92.1 138.7 180.2 71.4 69.5 55.1 250.8 111.9 74.3 

1999 39.3 45.9 112.0 174.7 151.8 367.1 268.5 95.9 65.6 134.4 100.9 36.6 

2000 26.5 12.8 85.3 136.6 226.4 300.2 111.5 70.9 81.1 47.9 65.6 68.1 

2001 1.0 25.4 135.5 180.5 218.4 278.3 90.7 48.6 59.9 133.8 102.7 21.5 

2002 43.2 35.2 70.5 172.3 197.2 316.7 349.6 130.3 51.0 178.2 114.3 33.1 

2003 44.2 63.3 103.7 207.2 202.0 221.0 46.0 43.2 48.6 250.6 129.1 35.1 

2004 59.6 87.1 91.6 56.6 159.7 159.7 156.3 52.6 200.6 254.1 110.8 61.4 

2005 20.9 74.9 169.9 140.8 263.6 218.6 19.3 43.9 68.1 207.4 90.6 35.3 

2006 29.1 58.9 68.6 104.3 284.6 213.9 109.7 48.3 103.2 151.8 70.9 40.3 

2007 0.8 22.6 55.6 153.6 132.9 352.1 266.2 69.4 141.6 276.1 55.3 38.2 

2008 8.3 54.0 97.4 128.0 251.5 280.2 127.7 64.4 128.1 183.0 102.4 74.7 

2009 15.1 52.1 59.3 130.0 227.2 389.9 217.7 75.5 34.7 81.0 84.0 46.2 
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Table A-3 Eastern Region Average Monthly Rainfall Per Community / Town (mm) 

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

1995 1.4 13.5 129.1 171.3 122.2 250.5 139.4 127.1 134.2 147.4 64.0 66.3 

1996 27.0 82.3 146.8 139.1 288.7 151.0 166.7 80.3 56.7 194.2 70.2 33.7 

1997 14.7 7.6 95.9 196.0 153.4 339.7 110.9 33.6 53.4 134.8 117.7 61.3 

1998 33.4 64.4 60.3 102.9 228.5 170.9 87.5 62.7 82.8 208.5 86.3 24.6 

1999 30.1 33.4 125.8 131.9 147.4 311.9 209.5 143.5 88.5 139.8 79.7 3.1 

2000 28.8 11.9 72.6 105.8 131.6 240.8 179.7 65.7 169.8 130.6 62.3 12.5 

2001 0.3 1.0 144.6 120.2 112.1 193.9 39.1 12.1 81.6 131.4 104.9 42.3 

2002 35.0 30.3 101.5 170.6 163.7 256.3 198.3 68.3 88.0 196.3 80.8 21.6 

2003 27.9 51.2 63.2 150.7 162.4 138.2 80.8 37.8 80.2 143.5 87.3 31.1 

2004 42.2 79.7 120.0 80.8 160.6 111.0 85.3 85.3 218.2 166.1 101.8 69.5 

2005 1.8 65.7 152.5 82.2 97.5 153.2 52.2 37.0 93.7 154.7 97.9 29.2 

2006 57.7 56.5 135.6 99.4 243.6 102.8 64.8 21.9 176.4 135.3 59.7 15.3 

2007 3.4 26.8 77.4 185.8 107.2 138.6 138.0 54.1 256.3 200.5 55.7 32.9 

2008 0.2 34.0 119.8 162.3 173.7 187.1 120.8 82.2 133.9 204.5 57.7 63.0 

2009 12.5 50.7 101.8 144.5 145.3 237.1 140.1 45.7 71.8 106.4 70.0 19.8 

 

 

 

Table A-4 Greater Accra Region Average Monthly Rainfall Per Community / Town 

(mm) 

Year Jan Feb March April May June July Aug Sept Oct Nov Dec 

1995 0.0 10.4 167.0 93.7 104.2 283.8 148.8 17.7 2.6 20.1 50.5 29.2 

1996 0.0 56.2 72.9 172.8 228.8 191.8 99.6 31.2 11.7 3.0 18.6 1.9 

1997 0.9 1.2 143.8 177.7 171.1 467.2 39.5 9.2 7.1 150.4 31.9 38.9 

1998 0.0 7.1 0.9 52.0 165.8 57.0 6.1 6.1 8.8 101.5 24.3 15.0 

1999 17.7 52.6 16.0 99.9 63.8 240.1 53.4 12.7 29.9 32.1 8.8 6.5 

2000 0.7 0.0 44.6 48.6 124.7 81.5 40.4 9.1 6.9 36.5 25.8 31.3 

2001 1.1 19.2 53.0 154.9 207.9 176.6 14.4 6.1 114.6 17.2 21.2 12.4 

2002 53.5 12.7 32.3 146.4 116.6 343.1 48.6 7.4 27.4 63.6 30.4 2.6 

2003 2.4 15.8 31.3 178.3 55.9 352.6 33.9 14.5 35.9 114.9 31.4 22.2 

2004 10.1 11.9 8.0 26.4 120.0 73.1 20.5 36.1 93.0 96.8 32.6 2.4 

2005 2.2 3.9 149.4 45.1 112.7 157.2 48.8 29.9 17.6 91.2 50.3 19.0 

2006 10.2 2.0 26.9 39.9 216.0 144.1 40.5 7.9 81.8 107.2 3.8 3.0 

2007 0.0 6.3 59.1 76.7 123.3 219.4 163.1 57.9 57.7 116.2 32.4 24.0 

2008 3.8 0.0 60.6 101.3 249.4 131.1 100.5 25.6 42.4 47.9 73.1 62.2 
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2009 4.2 48.7 36.8 127.9 115.2 324.3 69.4 16.4 8.1 9.0 0.1 26.6 

 

APPENDIX B 

 

Figure  B-1 Forecasting Model: Seasonal Exponential (Northern Region) 
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Figure B-2 Forecasting Model Simple Exponential (Northern Region) 
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Figure B-3 Forecasting Model: Linear Holt Exponential (Northern Region) 
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Figure B-4 Forecasting Model- Linear Model with Seasonal  Trends (Northern 

Region) 
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Figure B-5- Forecasting Model: ARIMA (0,1,1)s (Northern Region) 
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APPENDIX C 

 

Figure C-1 Forecasting Model-Simple Exponential (Western Region) 
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Figure C-2 Forecasting Model: ARIMA(2,0,0)(1,0,0) (Western Region) 
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Figure C-3 Forecating Model: Seasonal Exponential (Western Region) 
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Figure C-4 Forecasting Model- Holt Linear Exponential (Western Region) 
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Figure C-5 Forecasting Model: Linear Trend with Seasonal Terms (Western region) 
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APPENDIX D 

 

Figure D-1 Forecasting Model: Holt Linear Exponential (Eastern Region) 
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Figure D-2 Forecasting Model: Linear Trend with Seasonal Terms (Eastern Region) 
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Figure D-3 Forecasting Model: ARIMA (0,1,1)s (Eastern region) 
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Figure D-4 Forecasting Model: Seasonal Exponential (Eastern Region) 
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Figure D-5 Forecasting Model: Simple Exponential (Eastern Region) 
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APPENDIX E 

 

Figure E-1 Forecasting Model: Seasonal Exponential ( Greater Accra Region) 
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Figure E-2 Forecasting Model: Simple Exponential ( Greater Accra Region) 
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Figure E-3 Forecasting Model: Holt Linear Exponential ( Greater Accra Region) 



121 

 

 

 Figure E-4 Forecasting Model: Linear Trend with Seasonal Terms (Greater Accra 

Region) 
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Figure E-5 Figure E-1 Forecasting Model: ARIMA (2,0,0)(1,0,0) ( Greater Accra 

Region) 

 

 

 


