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ABSTRACT  

  
 Everyone uses money.  We all want it, work for it and think about it. Money has been one of 

the strongest supporting pillars in the lives of humans. People  usually  have  the  desire  to 
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earn  more money  in  order  to  achieve set  goals  in their  lives,  but  the  decision  on  how, 

where and how long  to invest  for  maximum  profit  becomes  a problem  to some . This  study  

examines  which  of the  three  types  of  fixed  deposits  on  sale  from  three  financial  

institutions ; Barclays  Bank Of  Ghana   limited,  Ghana  Commercial Bank  and  Fidelity  

Bank Limited at defined rates and periods when  purchased  yields  the  best  returns. The 

method employed was discrete dynamic programming technique. Results  of  the  study  

indicated  that  investment  at  Fidelity  Bank Limited yields  more  returns  comparable  to  

Barclays  Bank  of  Ghana  Limited  and  Ghana  Commercial  Bank.     
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CHAPTER ONE  

INTRODUCTION  

1.1    BACKGROUND OF STUDY  

Human beings since creation have sought to look for avenues to increase their wealth. 

Investment has become a vehicle that is usually used to improve wealth.  It has been used by 

man to move from the cave to skyscrapers.  Individuals, entities, organizations and cooperate 

bodies make investments towards the future. One difficulty faced by all is where, how, when 

and for how long to invest, in the mist of all opportunities, to obtain the maximum satisfaction 

from the investment made. Usually investors might have a certain amount of money to invest. 

The investor may have various options of investment based on the returns. Any time an investor 

makes an investment he must decide on the optimal investment strategy. Two very important 

strategies are active portfolio management and long term investing. The strategies that one 

chooses for an optimal strategy will depend on the investors investment goals.  

1.2  INVESTMENT   

Investment has been defined by many and in many fields. It is usually an act of forgoing 

consumption. In a purely agrarian society, early humans had to choose how much grain to eat 

after the harvest and how much to save for future planting. That was an act of investment. 

Investing is the act of investing; that is laying out money or capital in an enterprise with the 

expectation of profit. Money is invested with an expectation of profit. Investment is the 

commitment of something other than money (time, energy, or effort) to a project with the 

expectation of some worthwhile result. Investment is the commitment of money or capital to 

purchase financial instruments or other assets in order to gain profitable returns in the form of 

interest, income, or appreciation of the value of the instrument. It is related to saving or 
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deferring consumption. An investment involves the choice by an individual or an organization 

such as a pension fund, after some analysis or thought, to place or lend money in a vehicle, 

instrument or asset, such as property, commodity, stock, bond, financial derivatives (e.g. 

futures or options), or the foreign asset denominated in foreign currency, that has certain level 

of risk and provides the possibility of generating returns over a period of time. When an asset 

is bought or a given amount of money is invested in the bank, there is anticipation that some 

return will be received from the investment in the future.  

Investment is a term frequently used in the fields of economics, business management and 

finance. It can mean savings alone, or savings made through delayed consumption. Investment 

can be divided into different types according to various theories and principles.  According to 

economic theories, investment is defined as the per-unit production of goods, which have not 

been consumed, but will however, be used for the purpose of future production. Examples of 

this type of investments are tangible goods like construction of a factory or bridge and 

intangible goods like six (6) months of on-the-job training. In terms of national production and 

income, Gross Domestic Product (GDP) has an essential constituent, known as gross 

investment.   

According to business management theories, investment refers to tangible assets like 

machinery and equipments and buildings and intangible assets like copyrights or patents and 

goodwill. The decision for investment is also known as capital budgeting decision, which is 

regarded as one of the key decision. In finance, investment refers to the purchasing of securities 

or other financial assets from the capital market. It also means buying money market or real 

properties with high market liquidity. Some examples are gold, silver, real properties, and 

precious items.  Financial investments are in stocks, bonds, and other types of security 



 

3  

  

investments. Indirect financial investments can also be done with the help of mediators or third 

parties, such as pension funds, mutual funds, commercial banks, and insurance companies.  

According to personal finance theories, an investment is the implementation of money for 

buying shares, mutual funds or assets with capital risk.  Usually a combination of any of the 

above investment possibilities may be considered by an investor or an individual.  Any time an 

investor wishes to make an investment with a certain sum of money, say, he must decide on 

the optimal investment strategy to adopt.  The optimal investment strategy could be long term 

or short term, active portfolio management or long term investing. The choice of a particular 

investment should be based on the cumulative returns on all the investments.     

  

1.3   STATEMENT OF THE PROBLEM  

Suppose an investor or a customer wants to invest in fixed deposits. The investor may be faced 

with the problem of which of the financial institutions and which period of fixed deposits 

should be made. Usually there are several opportunities available as a result of which the 

problem of choice/allocation arises. It would be realized that each opportunity requires deposits 

in financial terms and an expected return. The investor may allocate all the money to just one 

opportunity or split the money between the alternatives of investments all with the aim of 

obtaining the optimal returns from the investment made.   

Let   denote the return from investment  when  units of money are 

invested. We define  as the amount of money invested in investment  .   

The problem of determining how much  to invest in each investment in order to maximize total 

returns can be approached through a multi-stage decision process by modeling a Mathematical 

program to find the optimal policy using Dynamic Programming.  

,  
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 Maximize      

 Subject to      

                       

                                                                        

It must be noted that  are functions of a single variable,  is a known nonnegative  

integer.  

  

1.4  OBJECTIVES OF THE STUDY  

The objectives of this thesis are:  

(i) to identify the various types of fixed deposits and their annual returns.  

(ii) to use dynamic programming to obtain an optimal solution.   

(iii) to identify where to invest and how much to invest at any point in time.  

  

1.5   METHODOLOGY   

The mathematical technique of discrete Dynamic Programming was used in the study. A 

secondary data consisting of Interest rates of fixed deposits for various periods; 91-day fixed 

deposit, 182-day fixed deposit and 1 year fixed deposits, in three financial institutions;  

Barclays Bank, Ghana Commercial Bank and Fidelity Bank was collected and used. Dynamic 

Programming was applied to determine the optimal investment and the appropriate investment 

allocations to be made.   



 

5  

  

1.6  JUSTIFICATION OF THE STUDY  

Many are those who have resources and would like to invest, but are not sure of where, when 

and how to put their resources in order to accrue the maximum returns. To justify the products 

in which to invest, we need to look out for the various forms of investments available, the 

expected returns from each investment and the associated cost. Financial institutions would 

like to know where to keep their excess cash flows to make the maximum returns. All the above 

can be modeled as dynamic programming problem. It is known that dynamic programming 

solves problems in stages and is quicker and less time consuming far less than total enumeration  

  

1.7  LIMITATIONS OF THE STUDY  

The problem to be considered in this study is the Bellman‘s Principle of Optimality using 

Dynamic programming. I considered only three banks and three fixed deposit periods with five 

groups of values. I selected two figures at random from each group to arrive at a nine by eleven 

matrix. The selections were made due to the researcher‘s easy access to the information/data.   

  

1.8  ORGANIZATION OF THE STUDY  

The study is organized into five chapters.  

Chapter One is the introduction of investment in general, background, problem Statement, 

objectives,  methodology , justification and limitations of the study.  In Chapter Two, there is 

a review of related literature on Dynamic programming applications and its variants. Chapter 

three outlines some algorithms solution of Shortest Path problems, Knapsack Problems, 

Equipment Replacement problems using total enumeration and Dynamic Programming. It 

considers cases where there is total enumeration and compares the time and stages used in 

solving a problem.  Chapter Four deals with the analysis and interpretation of the data. Data on 

Investment made and the returns were collected from three financial institutions and Dynamic 
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programming used to determine the optimal investment returns and the corresponding 

investments to be made. Chapter Five is the concluding part of the study It draws the Summary 

of the findings, gives the appropriate conclusions and recommendations of the study.  

  

  

  

  

  

  

  

  

  

CHAPTER TWO LITERATURE REVIEW 2.1   INTRODUCTION  

  

Dynamic programming is both a mathematical optimization method, and a computer 

programming method.  In both contexts, it refers to simplifying a complicated problem by 

breaking it down into simpler sub problems in a recursive manner.  While some decision 

problems cannot be taken apart this way, decisions that span several points in time do often 

break apart recursively; Bellman called this the ―Principle of Optimality‖.    

If sub problems can be nested recursively inside larger problems, so that dynamic programming 

methods are applicable, then there is a relation between the value of the larger problem and the 
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values of the sub problem.  In the optimization literature this relationship is called the Bellman 

equation.  

Dynamic programming is a widely used programming technique in bioinformatics.  In sharp 

contrast to the simplicity of textbook examples, implementing a dynamic programming 

algorithm for a novel and non-trivial application is a tedious and error prone task.  The algebraic 

dynamic programming approach seeks to alleviate this situation by clearly separating the 

dynamic programming recurrences and scoring schemes.  

  

2.2   LITERATURE REVIEW  

Based on the programming style, Steffen et al. (2005) introduced a generic product operation 

of scoring schemes.  This lead to a remarkable variety of applications, allowing us to achieve 

optimizations under multiple objective functions, alternative solutions and back tracing, 

holistic search space analysis, ambiguity checking, and more, without additional programming 

effort.  The authors demonstrated the method on several applications for Ribo Nucleic Acid 

(RNA) secondary structure prediction. The product operation as introduced here, adds a 

significant amount of flexibility to dynamic programming.  It provides a versatile text bed for 

the development of new algorithmic ideas which can immediately be put to practice.  

Institutional fund managers generally rebalance using adhoc methods such as calendar basis or 

tolerance band triggers.  Sun et al. (2005) proposed a different framework that quantifies the 

cost of a rebalancing strategy in terms of risk-adjusted returns net of transaction costs.  The 

authors then developed an optimal rebalancing strategy that actively seeks to minimize that 

cost.  They used certainty equivalents and the transaction costs associated with a policy to 

define a cost-to-go function, and they minimized this expected cost-to-go using dynamic 

programming.  The authors applied Monte Carlo simulations to demonstrate that their method 
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outperforms traditional rebalancing.  They also showed the robustness of our method to model 

error by performing sensitivity analyses.  

The existence of an optimum and dynamic programming techniques was derived from abstract 

assumptions based on primitive utility function U and its W and M primitive aggregators.  A 

non-positive-valued utility function U that is derived from a W dynamic aggregator and an M 

stochastic aggregator was constructed.  The resulting examples exhibit mean growth without 

the distribution of unbounded support due to the few growth  

restrictions of non-positive objective.  

  

Jacobson‘s, (2003) differential dynamic programming is a technique, based on dynamic 

programming rather than the calculus of variations, for determining the optimal control 

function of a nonlinear system.  Unlike conventional dynamic programming where the optimal 

cost function is considered globally, differential dynamic programming applies the principle of 

optimality in the neighbourhood of a nominal, possibly no optimal, trajectory.  This allowed 

the coefficients of a linear or quadratic expansion of the cost function to be computed in reverse 

time along the trajectory: these coefficients may then be used to yield a new improved 

trajectory (i.e. the algorithms are of the ―successive sweep‖ type).  A class of nonlinear control 

problems, linear in the control variables, is studied using differential dynamic programming.  

It is shown that for the free-end-point problem, the first partial derivatives of the optimal cost 

function are continuous throughout the state space, and the second partial derivatives 

experience jumps at switch points of the control function. A control problem that has an 

analytic solution is used to illustrate these points.  The fixed-end-point problem is converted 

into an equivalent free-end-point problem by adjoining the end-point constraints to the cost 

functional using Lagrange multipliers: a useful interpretation for Pontryagin‘s adjoint variables 
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for this type of problem emerges from this treatment.  The above results are used to devise new 

second- and first-order algorithms for determining the optimal bang-bang control by 

successively improving a nominal guessed control function.  The usefulness of the proposed 

algorithms is illustrated by the computation of a number of control problem examples.  

Dynamic programming solutions for optimal portfolios in which the solution for the portfolio 

vector of risky assets is constant were solved by Merton in continuous time and by Hakansson 

and others in discrete time.  There is no case with a closed form solution where this vector of 

risky asset holdings changes dynamically.  Tenney (1995) derived such solutions for the first 

time, and is thus a dynamic dynamic-programming solution as opposed to a static dynamic-

programming solution for this vector.  The solution is valid when there is a set of basis assets 

whose excess expected return is linear in the state vector, whose variance-covariance matrix is 

time-dependent and for which the interest rate is a quadratic function of the state vector.  

Guangliang et al. (1999) solved the problem of constructing an optimal portfolio consisting of 

many risky assets to maximize the long-term growth rate of a representative agent‘s  

expected utility, subject to a set of general linear constraints on the portfolio weight vector as 

well as a constraint to prevent wealth drawdown‘s below a dynamic floor.  The dynamic floor 

is defined as the time-decayed historical all-time high. Our results generalize those achieved 

by earlier authors, including Grossman and Zhou (1993) and Cvitannic and Karatzas (1994). 

Grossman and Zhou solved a special case of the authors problem by focusing on a single risky 

assets without portfolio weight constraints.  Cvitannic and Karatzas solve a problem involving 

many risky assets but that ignored portfolio weight constraints and the time decay on the 

dynamic floor.  To illustrate the usefulness of our method, the authors presented several 

numerical examples based on both actual and simulated (Monte Carlo) returns. Finally, they 
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suggested applications of our results to various practical investment management problems, 

including the management of hedge fund portfolios and ‗principalprotected‘ investment 

strategies.     

Herman D et al. (2009) developed a multiperiod investment portfolio model that includes risky 

farmland, risky and risk-free nonfarm assets, and debt financing on farmland in the presence 

of transaction costs and credit constraints. The model is formulated as a stochastic continuous-

state dynamic programming problem, and is solved numerically for Southwestern Minnesota, 

USA. Result show that optimal investment decisions are dynamic and take into account the 

future decisions due to uncertainty, partial irreversibility, and the option to wait. The optimal 

policy includes ranges of inaction, states where the optimal policy in the current year is to wait. 

The risk-averse farmer makes a lower investment in risky farmland reflecting risk-avoiding 

behaviour. The authors found that, in addition to risk aversion, the length of the planning 

horizon affects risk-avoiding behavior in investment decisions. Finally, they found that higher 

debt financing on farmland is optimal when risky nonfarm assets can be included in the optimal 

investment portfolio and that the probability of exiting farming increases with the risky 

nonfarm investment.  

Ghezzi (1997) considered an immunization problem, in which a bond portfolio is to be 

periodically rebalanced. Max-min optimal control is applied to the problem. The target is to 

maximize the final portfolio value under the worst possible evolution of interest rates. The 

optimal control law, obtained by means of dynamic programming, turns out to be different 

from any duration-based immunization policy.  

Vila et al. (1991) used stochastic dynamic programming to study the inter-temporal 

consumption and portfolio choice of an infinitely lived agent who faces a constant opportunity 
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set and a borrowing constraint. The authors showed that, under general assumptions on the 

agent‘s utility function, optimal policies exist and can be expressed as feedback functions of 

current wealth. They described these policies in detail, when the agent‘s utility function 

exhibits constant relative risk aversion.   

Optimal asset allocation deals with how to divide the investor‘s wealth across some assetclasses 

in order to maximize the investor‘s gain. Pola et al. (2006) considered the optimal asset 

allocation in a multi-period investment setting: optimal dynamic asset allocation provides the 

(optimal) re-balancing policy to accomplish some investment‘s criteria. Given a sequence of 

target sets, which represent the portfolio specifications at each re-balancing time, an optimal 

portfolio allocation is synthesized for maximizing the joint probability for the portfolio to fulfill 

the target sets requirements. The approach pursued is based on dynamic programming. The 

optimal solution is shown to conditionally depend on the portfolio realization, thus providing 

a practical scheme for the dynamic portfolio rebalancing. Finally some case studies are given 

to show the proposed methodology.  

Rudoy et al. (2008) studied the problem of optimal portfolio construction when the trading 

horizon consists of two consecutive decision intervals and rebalancing is permitted. It is 

assumed that the log-prices of the underlying assets are non-stationary, and specifically follow 

a discrete-time co integrated vector autoregressive model. The authors extended the classical 

Markowitz mean-variance optimization approach to a multi-period setting, in which the new 

objective is to maximize the total expected return, subject to a constraint on the total allowable 

risk. In contrast to traditional approaches, they adopted a definition for risk which takes into 

account the non-zero correlations between the inter-stage returns. This portfolio optimization 

problem amounts to not only determining the relative proportions of the assets to hold during 
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each stage, but also requires one to determine the degree of portfolio leverage to assume. Due 

to a fixed constraint on the standard deviation of the total return, the leverage decision is 

equivalent to deciding how to optimally partition the allowed variance, and thus variance can 

be viewed as a shared resource between the stages. The authors derived the optimal portfolio 

weights and variance scheduling scheme for a trading strategy based on a dynamic 

programming approach, which is utilized in order to make the problem computationally 

tractable. The performance of this method is compared to other trading strategies using both 

Monte Carlo simulations and real data, and promising results are obtained.  

Ye (2007) considered a continuous-time model of optimal life insurance, consumption and 

portfolio is examined by dynamic programming technique. The Hamilton-Jacobi- Bellman 

(HJB in short) equation with the absorbing boundary condition is derived. Then explicit 

solutions for Constant Relative Risk Aversion (CRRA in short) utilities with subsistence levels 

are obtained. Asymptotic analysis is used to analyze the model.  

Dijkhuizen et al. (1993) used a personal computer-based stochastic dynamic programming 

(DP) model for the determination of the optimal replacement policy in swine breeding is 

evaluated. The model provides the maximal expected annual net returns of current herd sows 

and subsequent replacements over time. The DP-based system was seen to be viable in 

modeling such factors as biological variations, but are limited by hardware requirements.   

Result accuracy is effected by the number of DP runs achieved.   

Lubbecke et al. (2005) used column generation method to solve linear programs with a large 

number of variables. Dynamic program algorithms are used for column generation and a simple 

technique is used to reduce the state space of these algorithms.  
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Dynamic Programming has been applied to a number of digital signal processing problems. In 

this paper Rader et al, (2003) discussed it‘s well known application of determining the optimum 

order of sections in a digital filter realization. The authors showed that the method is quite 

insensitive to the specific details of the problem; it is applicable over a wide range of possible 

optimality criteria, various kinds of arithmetic, scaling options, etc. This is characteristic of the 

application of dynamic programming to many signal processing problems. Also, since a 

problem, to be solved by dynamic programming, must be represented as the traversal of a 

directed graph, we usually discover unsuspected structure in the problem when we attempt to 

solve it using dynamic programming. Quite often it is necessary to recognize this structure in 

order to solve the problem efficiently. In the case of ordering of filter section the structure leads 

to an efficient utilization of memory.  

A system and method are disclosed for capturing the full dynamic and multi-dimensional nature 

of the asset allocation problem through applications of stochastic dynamic programming and 

stochastic programming techniques. The system and method provide a novel approach to asset 

allocation and based on stochastic dynamic programming and Monte Carlo sampling that 

permit one to consider many rebalancing periods, many asset classes, dynamic cash flows, and 

a general representation of investor risk preference. The system and method further provide a 

novel approach of representing utility by directly modeling risk aversion as a function of 

wealth, and thus provide a general framework for representing investor preference. They 

system and method demonstrate how the optimal asset allocation depends on the investment 

horizon, wealth, and the investors risk preference and how optimal asset allocation therefore 

changes over time depending on cash flow and the returns achieved and how dynamic asset 



 

14  

  

allocation leads to superior results compared to static or myopic techniques. Examples of 

dynamic strategies for various typical risk preferences and multiple asset classes are described.  

The dramatic growth in institutionally managed assets, coupled with the advent of Internet 

trading and electronic brokerage for retail investors, has led to a surge in the size and volume 

of trading. At the same time, competition in the asset-management industry has increased to 

where fractions of a percent in performance can separate the top funds from those in the next 

tier. In this environment, portfolio managers have begun to explore active management of 

trading to boost returns. Controlling execution cost can be viewed as a stochastic dynamic 

optimization problem because trading takes time, stock prices exhibit random fluctuations, and 

execution prices depend on trade size, order flow, and market conditions. In this article, the 

authors apply stochastic dynamic programming to derive trading strategies that minimize the 

expected cost of executing a portfolio of securities over a fixed time period. That is, they derive 

the optimal sequence of trade as a function of prices, quantities, and other market conditions. 

To illustrate the practical relevance of these methods, Bertsimas et al, (1999) apply them to a 

hypothetical portfolio of 25 stocks. They estimate the methods‘ price-impact functions using 

1996 trade data and derive the optimal execution strategies. The authors also perform several 

Monte Carlo simulations to compare the optimal strategy‘s performance to that of several 

alternatives.  

 Battocchio et al. considered a stochastic model for a defined-contribution pension fund in 

continuous time. In particular, we focus on the portfolio problem of a fund manager who wants 

to maximize the expected utility of his terminal wealth in a complete financial market with 

stochastic interest rate. The fund manager must cope with a set-off stochastic investment 

opportunities and two background risks: the salary risk and the inflation risk. We use the 
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stochastic dynamic programming approach. We show that the presence of the inflation risk can 

solve some problems linked to the use of the stochastic dynamic programming technique, and 

namely to the stochastic partial differential equation deriving from it. The authours found a 

closed form solution to the asset allocation problem, without specifying any functional form 

for the coefficients of the diffusion processes involved in the problem. Finally, the derivation 

of a closed form solution allows us to analyze in detail the behavior of the optimal portfolio 

with respect to salary and inflation.  

Bouzaher et al. (1990), used dynamic programming algorithm design to analyze soil 

movement, to ensure water quality and reduce the costs of water treatment by facilitating the 

control of agricultural sediment pollution in surface waters. The algorithm models analyze the 

spatial characteristics of soil movement though a watershed and the impact of soil movement 

on reservoirs and water channels. The model solves this class of pollution control problems by 

generating sediment abatement cost frontiers. This information is valuable to watershed 

management and planning because it devises control strategies to reduce sediment deposition 

in water courses and can be used to identify special problem areas.  

 Greco (1990) said dynamic programming is a general technique for solving optimization 

problems. It is based on the division of problems into simpler sub problems that can be 

computed separately. In this paper, we show that Datalog with aggregates and other 

nonmonotonic constructs can express classical dynamic programming optimization problems 

in a natural fashion, and then we discuss the important classes of queries and applications that 

benefit from these techniques.   
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Ryzin's work, Van Ryzin and Vulcano considered a revenue management network capacity 

control problem in a setting where heterogeneous customers choose among the various 

products offered by a firm (for example, different light times, fare glasses and/or routings).  

Customers may therefore substitute if their preferred products are not offered, even buy up. 

Their choice model is very general, simply specifying the probability of purchase for each fare 

product as a function of the set of fare products offered. Overall, the value of this paper is to 

facilitate the understanding of more complex, and probably more realistic, models of revenue 

management.  

Dynamic programming addresses how to make optimal decisions over time under uncertain 

conditions and to control a system.  Most risk management situations can be analyzed assuming 

a discrete-state and a discrete time over a finite-horizon modeling.    

Four criteria of research analyzed:  

(i) A paper could consider a single product (at various prices) or multiple products  

(depending on purchase restrictions or independent demands for example);   

(ii) A paper could consider a static policy (assuming a strict order of booking arrivals) or 

allow for a dynamic policy (not assuming the early birds hypothesis);   

(iii) A paper could consider various forms of demand process;  

(iv) A paper could consider either a single resource for 1 to n products or multiple resources 

(such as an airline network of hubs and spokes).  
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CHAPTER THREE  

METHODOLOGY  

  

3.0   INTRODUCTION  

This chapter presents the research methodology of the study.  

  

3.1   DYNAMIC PROGRAMMING  

Dynamic Programming is a technique that can be used to solve many optimization problems. 

In most applications, dynamic programming obtains solutions by working backward from the 

end of a problem toward the beginning, thus breaking up a large, unwieldy problem into a 

series of smaller, more tractable problems.  

In mathematics and computer science, dynamic programming is a method for solving complex 

problems by breaking them down into simpler sub problems. It is applicable to problems 

exhibiting the properties of overlapping sub problems which are only slightly smaller and have 

optimal sub-structures. When applicable, the method takes far less time than naïve methods.  

The key idea behind dynamic programming is quite simple. In general, to solve a given 

problem, we need to solve different parts of the problem (sub problems), then combine the 

solution of the sub problems to reach an overall solution. Often, many of these sub problems 

are really the same. The dynamic programming approach seeks to solve each sub problem only 

once, thus saving a lot of computation. This is especially useful when the number of repeating 

sub problems is exponentially large.  

Top-down dynamic programming simply means storing the results of certain calculations, 

which are later used again since the completed calculation is a sub-problem of a larger 
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calculation. Bottom-up dynamic programming involves formulating a complex calculation as 

a recursive series of simpler calculations.  

The term dynamic programming was originally used in the 1940s by Richard Bellman to 

describe the process of solving problems where one needs to find the best decisions one after 

another. By 1953, he refined this to the modern meaning, referring specifically to nesting 

smaller decision problems inside larger decisions, and the field was there after recognized by 

the IEEE as a systems analysis and engineering topic. Bellman‘s contribution is remembered 

in the name of a systems of Bellman equation, a central result of dynamic programming which 

restates an optimization problem in recursive form.  

The word dynamic was chosen by Bellman because it sounded impressive, not because it 

described how the method worked. The word programming referred to the use of the method 

to find an optimal program, in the sense of a military schedule for training or logistics. This 

usage is the same as that in the phrases linear programming and mathematical programming a 

synonym for optimization.  

Dynamic programming is both a mathematical optimization method and a computer 

programming method. In both contexts it refers to simplifying a complicated problem by 

breaking it down into simpler sub-problems in a recursive manner. While some decision 

problems cannot be taken apart this way, decisions that span several points in time do often 

break apart recursively; Bellman called this the ―Principle of Optimality‖. Likewise, in 

computer science, a problem which can be broken down recursively is said to have optimal 

substructure.  

If sub-problems can be nested recursively inside larger problems, so that dynamic 

programming methods are applicable, then there is a relation between the value of the larger 
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problem and the values of the sub-problems. In the optimization literature this relationship is 

called the Bellman equation.  

  

3.2   DYNAMIC PROGRAMMING IN MATHEMATICAL OPTIMIZATION  

In terms of mathematical optimization, dynamic programming usually refers to simplifying a 

decision by breaking it down into a sequence of decision steps over time. This is done by 

defining sequence of value function , , …  with an argument  representing the state of the 

system at times I from 1 to . The definition of  is the value obtained in state  at  

the last time . The values   at earlier times   can be found by  

working backward, using a recursive relationship called the Bellman equation, for  

 for those states. Finally,  at the initial state of the system is the value of the  

optimal solution. The optimal values of the decision variables can be recovered, one by one, 

tracking back the calculations already performed.  

  

3.2.1 DYNAMIC PROGRAMMING IN COMPUTER PROGRAMMING  

There are two key attributes that a problem must have in order for dynamic programming to be 

applicable: optimal substructure and overlapping sub problems which are only slightly smaller.  

When the overlapping problems are, say, half the size of the original problem the strategy is 

called ―divide and conquer‖ rather than ―dynamic programming‖. This is why merge sort, 

quick sort, and finding all matches of a regular expression are not classified as dynamic 

programming problems. Optimal substructure means that the solution to a given optimization 

problem can be obtained by the combination of optimal solutions to its sub problems. 

Consequently, the first step towards devising a dynamic programming solution is to check 
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whether the problem exhibits such optimal substructure. Such optimal substructures are usually 

described by means of recursion. For example given a graph , the shortest path  

from a vertex to a vertex  exhibits optimal substructure: take any intermediate vertex  on 

this shortest path  . If  is truly the shortest path, then the path  from  to  and  from  to  are 

indeed the shortest paths between the corresponding vertices.  Hence, one can easily formulate 

the solution for finding shortest paths in a recursive manner, which is what the Bellman-Ford 

algorithm does.  

Overlapping sub problems means that the space of sub problems must be small, that is, any 

recursive algorithm solving the problem should solve the same sub problems over and over, 

rather than generating new sub problems.   

For example, consider the recursive formulation for generating the Fibonacci series:   

.   

Then .   

Now  is being solved in the recursive sub trees if both  as well as  are known. Even 

though the total number of sub problems is actually small (only 13 of them), we end up solving 

the same problems over and over if we adopt a naïve recursive solution such as this.  

Dynamic programming takes account of this fact and solves each sub-problem only once.  

This can be achieved in either of two ways  

• Top-down approach:  

This is the direct fall-out of the recursive formulation of any problem. If the solution to 

any problem can be formulated recursively using the solution to its sub problems, and 

if its sub problems are overlapping, then one can easily memorize or store the solutions 

, with base case  

, and  
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to the sub problems in a table. Whenever we attempt to solve a new sub problem, we 

first check the table to see if it is already solved. If a solution has been recorded we can 

use it directly, otherwise we solve the sub problem and add its solution to the table.  

• Bottom-up approach:  

This is the more interesting case. Once we formulate the solution to a problem 

recursively as in terms of its sub problems, we can try reformulating the problem in a 

bottom-up fashion: try solving the sub problems first and use their solutions to buildon 

and arrive at solutions to bigger sub problems. This is also usually done in a tabular 

form by iteratively generating solutions to bigger and bigger sub problems by using the 

solutions to small sub problems. For example, if we already know the values of F41 and 

F40, we can directly calculate the value of F42.   

  

3.2.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING APPLICATIONS  

There are a number of characteristics that are common to all problems and all dynamic 

programming problems.  

(i) The problem can be divided into stages with a decision required at each stage.  In capital 

budgeting problem the stages were the allocations to a single plant and the decision was 

how much to spend.   

(ii) Each stage has a number of states associated with it.  The states for a capital budgeting 

problem correspond to the amount spent at that point in time.  In the shortest path 

problem the states were the node reached.  

(iii)The decision at one stage transforms on state into a state in another stage.  The decision 

of much to spend gave a total amount spent for the next stage.  The decision of 

where to go next defined where you arrived in the next stage.  
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(iv) Given the current state, the optimal decision for each of the remaining state does not 

depend on the previous states or decisions.  In the budgeting problem, it is not necessary 

to know how the money was spent in previous stages, only how much was spent.    

In the path problem, it is not necessary to know how you got to a node, only that you 

did.  

(v) There exist a recursive relationship that identifies the optimal decision for stage , given 

that stage  has already been solved.  

(vi) The final stage must be solvable by itself.  The last time properties are tied up in the 

recursive relationship given above.  

  

3.2.3    COMPUTATIONAL EFFICIENCY OF DYNAMIC PROGRAMMING  

In smaller networks it would be a matter of determining the shortest path from one point to 

another by enumerating all the possible paths (after all there are only a few paths).   In larger 

networks however, compute enumeration is practically impossible and the use of dynamic 

programming is much more efficient for determining a shortest path.    

In a network where there are five stages with:  stage1 – 1 state, stage 2 – 3 state, stage 3 – 3 

state, stage 4 – 2 state and stage 5 – 1 state.  Total enumerate will result in 1(3)(3)(2)(1) = 18 

paths while DP with result in 1(3)(3)(2)(1) = 18 paths.    

If in another network there are seven stages with 5 states each. The total enumeration gives 

5(55) paths.    

  

3.2.4    DETERMINISTIC VERSUS STOCHASTIC DYNAMIC PROGRAMMING  

  

There is one major difference between Stochastic Dynamic Programming and Deterministic 

Dynamic Programming. In Deterministic Dynamic Programming the complete decision path 
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is known. In Stochastic Dynamic Programming the actual decision path will depend on the way 

the random aspects play out. Because of this solving a Stochastic Dynamic Programming 

problem involves giving a decision rule for every possible state, not just along an optimal path. 

A multi-stage decision process is Stochastic if the return associated with at least one decision 

in the process is random. This randomness generally enters in one of two ways; either the states 

are uniquely determined by the decisions but the returns associated with one or more states are 

uncertain or the returns are uniquely determined by the states arising from one or more decision 

are uncertain.  

If the probability distributions governing the events are known and if the number of stages are 

finite, then deterministic dynamic programming approach is useful for optimizing a stochastic 

multistage decision process. The general procedure is to optimize the expected value of the 

return. In those cases where the randomness occurs exclusively in the returns associated with 

the states arising from the decision, this procedure has the effect of transforming a stochastic 

process into a deterministic one. For processes in which randomness exists in the states 

associated with the decisions, a policy may be exhibited as a policy table.  

  

3.3     INTEGER PROGRAMMING  

An Integer Programming problem (IP) is a Linear Programming (LP) problem in which some or 

all the variables are required to be nonnegative integers. An Integer programming in which all 

variables are required to be integers is a Pure Integer Programming problem.  

 Many problems can be modeled as an Integer Programming problem. The model is;  

For a maximization problem     

Maximize      

Subject to                                
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3.4     APPLICATIONS OF DYNAMIC PROGRAMMING  

Dynamic programming can be applied in Consumption and savings problems, shortest path 

problem, The Knapsack Problems, Network Problems, Inventory Problems, Equipment 

replacement problems, Resource Allocation Problems etc  

  

3.4.1     OPTIMAL CONSUMPTION AND SAVING PROBLEMS  

A mathematical optimization problem that is often used in dynamic programming to 

economists concerns a consumer who lives over the periods    t = 0, 1, 2, ..., T and must decide 

how much to consume and how much to save in each period.  

Let ct be consumption in period t, and assume consumption yields utility u(ct) = ln(ct) as long 

as the consumer lives. Assume the consumer is impatient, so that he discounts future utility by 

a factor b each period, where 0 < b < 1. Let kt be capital in period t. Assume initial capital is a 

given amount k0 > 0, and suppose that this period's capital and consumption determine  

next period's capital as , where A is a positive constant and 0 < a < 1.  

Assume capital cannot be negative. Then the consumer's decision problem can be written as 

follows:  

Maximize        

Subject to               

      for all  t = 0,1,2,...,T  

Written this way, the problem looks complicated, because it involves solving for all the  

http://en.wikipedia.org/wiki/Utility
http://en.wikipedia.org/wiki/Utility
http://en.wikipedia.org/wiki/Discounting
http://en.wikipedia.org/wiki/Discounting
http://en.wikipedia.org/wiki/Capital_(economics)
http://en.wikipedia.org/wiki/Capital_(economics)
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choice variables  simultaneously. (Note that k0 is not a  

choice variable—the consumer's initial capital is taken as given.)  

The dynamic programming approach to solving this problem involves breaking it apart into a 

sequence of smaller decisions. To do so, we define a sequence of value functions , for  

 which represent the value of having any amount of capital k at each  

time t. Note that , that is, there is (by assumption) no utility from having capital  

after death.  

The value of any quantity of capital at any previous time can be calculated by backward 

induction using the Bellman equation. In this problem, for each  the Bellman  

equation is    

                                        0  

This problem is much simpler than the one we wrote down before, because it involves only two 

decision variables,  and . Intuitively, instead of choosing his whole lifetime plan at birth, the 

consumer can take things one step at a time. At time t, his current capital  is given, and he 

only needs to choose current consumption ct and saving .  

To actually solve this problem, we work backwards. For simplicity, the current level of capital 

is denoted as .  is already known, so using the Bellman equation once we can 

calculate , and so on until we get to , which is the value of the initial decision 

problem for the whole lifetime. In other words, once we know , we can calculate  

, which is the maximum of  where  is the  

  and  

t 
     max(1n( t+1 ( 

http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Bellman_equation
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choice variable and working backwards, it can be shown that the value function at time t = T − 

j is where each  is a constant, and the optimal amount to consume at time t = T − j is which 

can be simplified to   

 ,  and    

We see that it is optimal to consume a larger fraction of current wealth as one gets older, finally 

consuming all remaining wealth in period T, the last period of life.  

  

3.5    DIJKSTRA'S ALGORITHM FOR THE SHORTEST PATH PROBLEM  

From a dynamic programming point of view, Dijkstra‘s the shortest path problem is a 

successive approximation scheme that solves the dynamic programming functional equation 

for the shortest path problem by the Reaching method.   

In fact, Dijkstra's explanation of the logic behind the algorithm is to find the path of minimum 

total length between two given nodes P and Q. We use the fact that, if R is a node on the 

minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path 

from P to R. This is a paraphrasing of Bellman‘s famous Principle of Optimality in the context 

of the shortest path problem.  

  

Let's look at a particular type of shortest path problem. Suppose we wish to get from A to J in 

the road network of Figure 3.1.   

=   ,  and  

http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
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FIGURE 3.1: ROAD NETWORK   

The numbers on the arcs represent distances. Due to the special structure of this problem, we 

can break it up into stages. Stage 1 contains node A, stage 2 contains nodes B, C, and D, stage 

3 contains node E, F, and G, stage 4 contains H and I, and stage 5 contains J. The states in each 

stage correspond just to the node names, so stage 3 contains states E, F, and G.   

  

If we let S denote a node in stage j and let  be the shortest distance from node S to the  

destination J, we can write  

                   

where  denotes the length of arc SZ. This gives the recursion needed to solve this problem.  

We begin by setting  and follow with the rest of the calculations:   

Stage 4:  
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During stage 4, there are no real decisions to make: you simply go to your destination J. So 

you get:   

• by going to J,   

• by going to J.   

Stage 3:   

Here there are more choices. Here's how to calculate  From F you can either go to H or 

I. The immediate cost of going to H is 6. The following cost is . The total cost is 9. 

The immediate cost of going to I is 3. The following cost is  for a total of 7. Therefore, 

if you are ever at F, the best thing to do is to go to I. The total cost is 7,   and so on.  

  

   

TABLE 3.1:  ROAD NETWORK CALCULATIONS    

  
  

  

Decision  

H  I  

E  

F  

G  

4  

9  

6  

8  

7  

7  

4  

7  

6  

H  

I  

H  

  

You now continue working back through the stages one by one, each time completely 

computing a stage before continuing to the preceding one. The results are:   
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            TABLE 3.1.1: STAGE 2 OF ROAD NETWORK CALCULATIONS    

  
  

  

Decision  

Go to  

E  F  G  

B C  

D  

11  

7  

8  

11  

9  

8  

12  

10  

11  

11  

7  

8  

E or F  

E  

E or F  

  

  

 TABLE 3.1.2: STAGE 1 OF ROAD NETWORK CALCULATIONS    

  
  

  

Decision  

Go to  

B  C  D  

A  13  11  11  11  C or D  

  

There is another formulation for the knapsack problem. This illustrates how arbitrary our 

definitions of stages, states, and decisions are. It also points out that there is some flexibility 

on the rules for dynamic programming. Our definitions required a decision at a stage to take us 

to the next stage (which we would already have calculated through backwards recursion). In 

fact, it could take us to any stage we have already calculated. This gives us a bit more flexibility 

in our calculations.   

The recursion i am about to present is a forward recursion. For a knapsack problem, let the 

stages be indexed by w, the weight filled. The decision is to determine the last item added to 

bring the weight to w. There is just one state per stage. Let g(w) be the maximum benefit that 

can be gained from a w pound knapsack. Continuing to use and as the weight and  
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benefit, respectively, for item j, the following relates g(w) to previously calculated g values:    

  

Intuitively, to fill a w pound knapsack, we must end off by adding some item. If we add item j, 

we end up with a knapsack of size  to fill. To illustrate on the above example:   

• g(0) = 0   

• g(1) = 30 add item 3.   

• g(2) = max add item 1.   

• g(2) = max add item 1 or 3.   

• g(2) = max add item  

1.   

• g(2) = max add item  

1 or 3.   

This gives a maximum of 160, which is gained by adding 2 of item 1 and 1 of item 3.  

3.6      THE KNAPSACK PROBLEM  

Imagine we have a homework assignment with different parts labeled A through G. Each part 

has a ―value‖ (in points) and a ―size‖ (time in hours to complete). For example, say the values 

and times for our assignment are:  

  

TABLE 3.2: KNAPSACK PROBLEM   

  A  B  C  D  E  F  G  
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Value  

Time  

7  

3  

9  

4  

5  

2  

12  

6  

14  

7  

6  

3  

12  

5  

  

Say we have a total of 15 hours, which parts should we do? If there was partial credit that was 

proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 

points) then the best approach is to work on problems in order of points/hour. But, what if there 

is no partial credit? In that case, which parts should you do, and what is the best total value 

possible? The above is an instance of the knapsack problem, formally defined as follows:  

In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. We notice 

that this doesn‘t include doing part C which has the most points/hour!  

In the knapsack problem we are given a set of n items, where each item  is specified by a size 

 and a value . We are also given a size bound S (the size of our knapsack). The goal is to 

find the subset of items of maximum total value such that sum of their sizes is at most S (they 

all fit into the knapsack). We can solve the knapsack problem in exponential time by trying all 

possible subsets. With Dynamic Programming, we can reduce this to time O (nS).  

Let‘s do this top down by starting with a simple recursive solution and then trying to memorize.  

it. Let‘s start by just computing the best possible total value, and we afterwards can see how to 

actually extract the items needed.  

  

3.7    EQUIPMENT REPLACEMENT PROBLEMS  

Suppose a shop needs to have a certain machine over the next five year period. Each new 

machine cost $1000, the cost of maintaining the machine during its years of operation is as  
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follows: $80, and  A machine may be kept up to three years before 

being traded in, the trade in value after i years is  How  

can the shop minimize cost over the five year period?  

Let the stages corresponds to each year. The state is the age of the machine for that year. The 

decision  are whether to keep the machine or trade it in for a new machine.  

Let  be the minimum cost incurred from time t to time 5, given the machine is x years  

old in time t.  

Since we have to trade in at time 5,   

Now we consider the time periods.  

If you have three year old machine in time t, you must trade in, so  

  

If you have a two year old machine you can either trade or keep.  

- Trade will cost – 600 + 1000 + 60 +   

- Keep will cost 120 +   

So the best thing to do with a two year old machine is the minimum of the two  

  

For a one year old machine trade will cost -800 + 100 + 60 + (1)  

Keep will cost 80+   

  

For a zero year old machine we have to buy 1000 + 60 +   

 =1000+60+   

 =1060+   

  as  

=   

min 

  min  
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 = - 800  

 - 600  

= - 500  

This is solved with backwards recursion as follows:  

  

TABLE 3.3.1: STAGE 5 OF EQUIPMENT REPLACEMENT PROBLEM  

Age x  
  

1  -800  

2  -600  

3  -500  

  

TABLE 3.3.2: STAGE 4 OF EQUIPMENT REPLACEMENT PROBLEM  

Age  Trade  Keep  
  Decision  

1  -540  -520  -540  Trade  

2  -340  -380  -380  Keep  

3  -240  –  -240  Trade  

  

TABLE 3.3.3: STAGE 3 OF EQUIPMENT REPLACEMENT PROBLEM  

Age  Trade  Keep  
  Decision  

1  -280  -300  -300  Keep  

2  -80  -120  -120  Keep  

3  20    20  Trade  

  min (260+ 

  min (460+ 

  min   

=   

  =   

  = 
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TABLE 3.3.4: STAGE 2 OF EQUIPMENT REPLACEMENT PROBLEM  

Age  Trade  Keep  
  Decision  

1  220  220  220  Trade or Keep  

  

TABLE 3.3.5: STAGE 1 OF EQUIPMENT REPLACEMENT PROBLEM  

Age  Trade  Keep  
  Decision  

0  –  1280  1280  Keep  

  

  

So the cost is 1280 and one solution is to trade in years; 1 and 2. There are other optimal 

solutions.  

3.8  AN INVENTORY PROBLEM  

In this section, we illustrate how dynamic programming can be used to solve an inventory 

problem with the following characteristics:  

1. Time is broken up into periods, the present period being period 1, the next period 2, 

and the final period T. At the beginning of period 1, the demand during each period is 

known.  

2. At the beginning of each period, the firm must determine how many units should be 

produced.  Production capacity during each period is limited.  

3. Each period‘s demand must be met on time from inventory or current production.  

During any period in which production takes place, a fixed cost of production as well 

as a variable per-unit cost is incurred.  
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4. The firm has limited storage capacity. This is reflected by a limit on end-of- period 

inventory. A per-unit holding cost is incurred on each periods ending inventory.  

5. The firm‘s goal is to minimize the total cost of meeting on time the demands for periods 

1, 2,………., T.  

  

3.9  RESOURCE ALLOCATION PROBLEMS  

Resource allocation problems, in which limited resources must be allocated among several 

activities, are often solved by dynamic programming.  Recall that we have solved such 

problems by linear programming.  To use linear programming to do resource allocation three 

assumptions must be made:  

Assumption 1     

The amount of a resource assigned to an activity may be any nonnegative number.  

Assumption 2     

The benefit obtained from each activity is proportional to the amount of the resource assigned 

to the activity.  

Assumption 3     

The benefit obtained from more than one activity is the sum of the benefits obtained from the 

individual activities.  

 Even if assumptions 1 and 2 do not hold, dynamic programming can be used to solve resource 

allocation problems efficiently when assumption 3 is valid and when the amount of the resource 

allocated to each activity is a member of a finite set.  
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CHAPTER FOUR  

DATA COLLECTION AND ANALYSIS  

  

4.0      INTRODUCTION  

In this chapter, we shall put forward the data collection and analysis of the study.  

4.1  DATA COLLECTION  

Data on rate of fixed deposit is collected from three financial institutions; Barclays Bank, 

Ghana Commercial Bank and Fidelity Bank. In each of these institutions fixed deposit rates 

are in bands of various amounts for different categories of periods as shown in Tables 4.1,  

4.2, 4.3.  

  

TABLE 4.1: INTEREST RATES -BARCLAYS BANK   

BAND (GHS)  91 DAY  182 DAY  1 YEAR  

10,000 – 25,000  15.00%  13.50%  14.50%  

25,000+ – 50,000  17.50%  14.50%  15.50%  

50,000+ – 100,000  18.50%  15.50%  16.50%  

100,000+ – 500,000  19.00%  16.50%  18.00%  

500,000+  21.00%  18.00%  18.25%  
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TABLE 4.2: INTEREST RATES -GHANA COMMERCIAL BANK  

BAND (GHS)  91 DAY  182 DAY  1 YEAR  

10,000 – 25,000  9.50%  10.00%  11.00%  

25,000+ – 50,000  9.50%  10.00%  11.00%  

50,000+ – 100,000  10.00%  10.50%  11.50%  

100,000+ – 500,000  10.50%  11.00%  12.00%  

500,000+  11.50%  12.00%  13.50%  

  

TABLE 4.3: INTEREST RATES- FIDELITY BANK   

BAND (GHS)  91 DAY  182 DAY  1 YEAR  

10,000 – 25,000  
19.70%  23.40%  17.50%  

25,000+ – 50,000  
20.70%  23.90%  18.50%  

50,000+ – 100,000  
21.70%  24.40%  19.50%  

100,000+ – 500,000  
22.70%  24.90%  20.50%  

500,000+  
23.70%  25.40%  21.50%  

  

4.2  ANALYSIS  

A fixed deposit is a financial instrument provided by banks which provides investors with a 

higher rate of interest than a regular savings account, until the given maturity date.  

Interest rate is the rate at which interest is paid by borrowers (debtors), for the use of money 

they borrow from lenders (creditors).  
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In each of the institutions fixed deposits are in three categories; 91- day, 182 – day and 1 year. 

Generally the investments are for a specified period. At the end of the period interest is paid 

and the investor may continue or otherwise. But for the purposes of this study we assume an 

annual period, meaning that investments shorter than one year are rolled over until the end of 

the year. For this purpose we have to annualize the returns for uniformity in periods. The rates 

are annualized for each of the bands and two arbitrary points in each band are chosen for the 

study. The return from the various amounts for the periods is as shown in Table 4.4.  

TABLE 4.4: ANNUAL RETURNS FROM THE VARIOUS PERIODS  

INVESTMENT  

   AMOUNT INVESTED (GHC‘000)    

0  10  20  30  40  60  80  200  300  500  600  

Investment 1  0.00  1.59  3.17  5.60  7.47  11.83  14.95  40.79  61.19  113.56  136.27  

Investment 2  0.00  0.98  1.97  2.95  3.94  6.23  7.88  21.84  32.76  60.03  72.03  

Investment 3  0.00  2.12  4.24  6.71  8.95  14.12  17.89  49.41  74.12  129.45  155.34  

Investment 4  0.00  1.40  2.79  4.51  6.01  9.66  12.88  34.36  51.54  94.05  112.86  

Investment 5  0.00  1.03  2.05  3.08  4.10  6.47  8.62  22.61  33.91  61.80  74.16  

Investment 6  0.00  2.48  4.95  7.60  10.13  15.53  20.71  52.90  79.35  135.06  162.08  

Investment 7  0.00  1.45  2.90  4.65  6.20  9.90  13.20  36.00  54.00  91.25  109.50  

Investment 8  0.00  1.10  2.20  3.30  4.40  6.90  9.20  24.00  36.00  67.50  81.00  

Investment 9  0.00  1.75  3.50  5.55  7.40  11.70  15.60  41.00  61.50  107.50  129.00  

  

Table 4.4 shows that there are nine investment options, three from each of the three financial 

institutions; Barclays Bank – 91 day, 182 day and 1 year, GCB Bank – 91 day, 182 day and 1 

year and Fidelity Bank – 91 day, 182 day and 1 year.  

The following notations are made for the study:  

Investment 1 - Barclays Bank – 91 day  -   Investment 

2 - GCB – 91 day     -    
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Investment 3 - Fidelity Bank – 91 day  -    

Investment 4 - Barclays Bank – 182 day  -    

Investment 5 - GCB Bank – 182 day    -    

Investment 6 - Fidelity Bank – 182 day   -    

Investment 7 - Barclays Bank – 1 year  -    

Investment 8 - GCB Bank – 1 year    -    

Investment 9 - Fidelity Bank – 1 year  -    

The amount to be invested is a maximum of ¢600 and two amounts from the various bands are 

selected at random. For the purpose of the study we restrict the amount invested to ¢0, ¢10, 

¢20, ¢30, ¢40, ¢60, ¢80, ¢200, ¢300, ¢500 and ¢600. For the optimal return at least a total of 

¢600 must be invested, (amounts are in thousand Ghana cedis).  

To start the algorithm we arrange the investments in no specific order. We identify the 

appropriate stages, states and decisions. We define a stage such that when one stage is remained 

the problem will have a trivial solution.   

We define Investment as the stage because;  

At Investment 9:  Investment 9 Returns = Investment 8 Returns + Investment 9 inputs  

At Investment 8:    Investment 8 Returns = Investment 7 Returns + Investment 8 inputs  

At Investment 7:    Investment 7 Returns = Investment 6 Returns + Investment 7 inputs  

At Investment 6:    Investment 6 Returns = Investment 5 Returns + Investment 6 inputs  

At Investment 5:    Investment 5 Returns = Investment 4 Returns + Investment 5 inputs  

At Investment 4:    Investment 4 Returns = Investment 3 Returns + Investment 4 inputs  

At Investment 3:    Investment 3 Returns = Investment 2 Returns + Investment 3 inputs  
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At Investment 2:    Investment 2 Returns = Investment 1 Returns + Investment 2 inputs  

At Investment 1:   Investment 1Returns = Investment 0 Returns + Investment 1 inputs  

We define the state of the stage as the action to be performed when a stage (investment) is 

reached. That is at each stage (investment) the investor will have to decide how much money 

he will have to invest. To do this we need to know only the amount of money left at the 

beginning of the investment (stage). Hence we define the State as the amount of money left to 

be invested.  

We define decision as the amount to be invested to obtain the best solution at a stage.  

Letting  denotes the return in (¢) from investment  when  units of money are invested 

in it as shown in Table 4.5.  

TABLE 4.5: RETURNS OF INVESTMENT.    

INVESTMENT  
   AMOUNT INVESTED (GHC‘000)     

0  10  20  30  40  60  80  200  300  500  600  

  
0.00  1.59  3.17  5.60  7.47  11.83  14.95  40.79  61.19  113.56  136.27  

  
0.00  0.98  1.97  2.95  3.94  6.23  7.88  21.84  32.76  60.03  72.03  

  
0.00  2.12  4.24  6.71  8.95  14.12  17.89  49.41  74.12  129.45  155.34  

  
0.00  1.40  2.79  4.51  6.01  9.66  12.88  34.36  51.54  94.05  112.86  

  
0.00  1.03  2.05  3.08  4.10  6.47  8.62  22.61  33.91  61.80  74.16  

  
0.00  2.48  4.95  7.60  10.13  15.53  20.71  52.90  79.35  156.89  162.08  

  
0.00  1.45  2.90  4.65  6.20  9.90  13.20  36.00  54.00  91.25  109.50  

  
0.00  1.10  2.20  3.30  4.40  6.90  9.20  24.00  36.00  67.50  81.00  

  
0.00  1.75  3.50  5.55  7.40  11.70  15.60  41.00  61.50  107.50  129.00  

  

Table 4.5, shows the various amounts of money invested and the associated returns from the 

nine investment options.  
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Define  as the number of units of money  

invested in investment .   

Define  = the best return beginning in stage  and state .   

 Decisions taken at a state that achieves   

We note that if we invest nothing we do not get anything, hence  .  

The Model:  

The model for solving the above problem is as shown below:  

Maximize:       

Subject to                   

                                                                                                                                  

and                                 

SOLUTION  

We begin the solution by considering the last stage of the process, stage 9. We assume that the 

previous stages have been completed and we are to complete the allocation of the money to the 

investment 9. Since we do not know how much was allocated to the previous investment 

(investment 8), we do not know how many units are available for investment 9. Thus we 

consider all possibilities.  

After  the  first  eight  investments  have  been  made  there  will  be  either  

. It is clear from the definition of  

 that the best way to complete the process is to allocate all available units to investments  

9.  

  and  
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From investment 9:  
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From investment 8:  
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From investment 7:  
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From investment 6:  
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From investment 5:  
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From investment 4:    
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From investment 3:  
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From investment 2:  
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From investment 1:  

 
   

 
     

      

  

ALLOCATION  

The optimal return from the investment is 179.96 which we obtained by starting the allocation 

from stage 1, then to stage 2 up to stage 9 as follows:  

i. With 600 units available, allocate to stage 1, , leaving 600 – 0 = 600. ii. 

With 600 units, available allocate to stage 2, , leaving 600 – 0 = 600.  
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iii. With 600 units, available allocate to stage 3, ,   

 leaving 600 – 100 = 500.  

iv. With 500 units, available allocate to stage 4, , leaving 500 – 0 = 500.  

v. With 500 units, available allocate to stage 5, , leaving 500 – 0 = 500. vi. 

With 500 units, available allocate to stage 6, , leaving 500 – 500 = 0. 

vii. With 0 units, available allocate to stage 7,  , leaving 0 – 0 = 0. viii. 

With 0 units, available allocate to stage 8, , leaving 0 – 0 = 0. ix. With 0 

units, available allocate to stage 9, , leaving 0 – 0 = 0. 



 

 

TABLE 4.6: OPTIMAL ALLOCATION OF GHC 600   

INVESTMENT  

   
AMOUNT INVESTED (GHC‘000)  

 

0  10  20  30  40  60  80  200  300  500  600  

  0.00  1.59  3.17  5.60  7.47  11.83  14.95  40.79  61.19  113.56  136.27  

  0.00  0.98  1.97  2.95  3.94  6.23  7.88  21.84  32.76  60.03  72.03  

  0.00  2.12  4.24  6.71  8.95*  14.12*  17.89  49.41  74.12  129.45  155.34  

  0.00  1.40  2.79  4.51  6.01  9.66  12.88  34.36  51.54  94.05  112.86  

  0.00  1.03  2.05  3.08  4.10  6.47  8.62  22.61  33.91  61.80  74.16  

  0.00  2.48  4.95  7.60  10.13  15.53  20.71  52.90  79.35  156.89*  162.08  

  0.00  1.45  2.90  4.65  6.20  9.90  13.20  36.00  54.00  91.25  109.50  

  0.00  1.10  2.20  3.30  4.40  6.90  9.20  24.00  36.00  67.50  81.00  

  0.00  1.75  3.50  5.55  7.40  11.70  15.60  41.00  61.50  107.50  129.00  
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CHAPTER FIVE  

  

SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS  

  

5.0         INTRODUCTION  

This chapter presents the summary of findings, conclusions and recommendations of the 

study.  

  

 5.1    SUMMARY OF FINDINGS  

Table 4.4 shows how the ¢600,000 investment fund should be allocated to achieve the optimal 

allocation. The table shows that with ¢600,000 available for investment and given the 

corresponding annual fixed deposits returns for the three financial institutions for the various 

periods, the investor should invest only in the Fidelity Bank. The solutions shows that ¢40,000 

and ¢60,000 should be placed in the 91-day fixed deposits while ¢500, 000 should be 

deposited in the 182-day fixed deposits. The optimal return from the investment is ¢179.96  
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 5.2     CONCLUSIONS  

Generally the annual fixed deposit is not in the interest of the investor. The results show clearly 

that with the current rate of fixed deposits, Fidelity Bank pays more to the investor than the 

other Banks; Ghana Commercial Bank and Barclays Bank. It is also beneficial to allocate 

resources to 91-day and 182-day fixed deposits.   

  

  

 5.3    RECOMMENDATIONS  

I would like to recommend that one of the most important and necessary things one can do for 

one‘s financial wellbeing is to start investing. Once the habit is cultivated or instilled, it 

automatically develops and becomes much easier for a person to invest on a regular basis. 

This gives one the benefit of enjoying a higher standard of living for roughly the same amount 

of work.  

Although people may have variety of reasons for investing their monies, I am recommending 

the following:  

One reason why you have to begin investing is for your future education. Each year more 

people return to school to earn their masters or doctorate degrees. You may also consider 

investing for your children‘s educational costs to enable them climb up the educational ladder.  

Another important reason why you must invest is for your retirement. The sooner you start 

investing for retirement, the less you will have to invest in the future.   

It is also important to have emergency funds set aside to cover unexpected expenses or 

anticipated major expenses, which could be a sudden job loss or an unexpected car repair or 

medical expenses.  
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Finally monies invested can enable one to start his/her own business to support the economy.  
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