BIO-MECHANICAL PROPERTIES OF *KLAINEDOXA GABONENSIS* AND THE STRENGTH PERFORMANCE OF ITS DOVETAIL AND MORTISE-TENON JOINTS IN LEG-AND-RAIL CONSTRUCTION

BY

KWADWO BOAKYE BOADU

MAY, 2016

NO

WJSANE

CORSH

BIO-MECHANICAL PROPERTIES OF *KLAINEDOXA GABONENSIS* AND THE STRENGTH PERFORMANCE OF ITS DOVETAIL AND MORTISE-TENON JOINTS IN LEG-AND-RAIL CONSTRUCTION

A Thesis submitted to the Department of Wood Science and Technology at the Kwame Nkrumah University of Science and Technology, Kumasi in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

BY

KWADWO BOAKYE BOADU

BSc. Natural Resources Management

Faculty of Renewable Natural Resources, College of Agriculture and Natural Resources

WJSANE

May, 2016

NO

DECLARATION

I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any degree of the University, except where due acknowledgment has been made in the text.

	\mathbf{A}	
Candidate:	N M	
Kwadwo Boakye Boadu (PG7090812)	Signature	Date
		1
Supervisors:		TES
Prof. C. Antwi-Boasiako	Signature	Date
Prof. K. Frimpong-Mensah	Cisr store	
ALLER TO	Signature	Date
Head of Department:	ANE NO	84
PTOI. C. ANIWI-BOASIAKO	Signature	Date

ACKNOWLEDGEMENTS

I acknowledge the unflinching support and direction received from my supervisors, Prof. C. Antwi-Boasiako (Head, Department of Wood Science and Technology, KNUST, Kumasi) and Prof. K. Frimpong-Mensah, and other Staff of the Department. I am grateful to the Staff at Juaso Forest Services Division (FSD) [Forestry Commission of Ghana] for the supply of the timber and Messrs. Andrew C. Bayuko, Johnson K. Addai (Wood Science Workshop) and Douglas Amoah (Wood Chemical Laboratory) of the Department of Wood Science and Technology for the wood sample preparation and test for physical properties respectively.

I thank the Staff from Forest Products, Trade and Marketing Division of the Forestry Research Institute of Ghana (FORIG), Kumasi (for the determination of wood mechanical properties), and Dr. Emmanuel Ebanyele, Ruth Esi Amuzu and Kudjoe Govina (Wood Anatomy Laboratory, FORIG) for the tissue preparation and image capturing. I express my appreciation to Technicians from the Department of Civil Engineering, KNUST (for the assistance during testing of furniture joints) and Staff of Furniture and Wood Products Association of Ghana (FAWAG) and Wood Village Carpenters Union (Kumasi) for providing the database for furniture manufacturers in Ghana. I further thank Mr. Eric Owusu Danquah (Crops Research Institute of the Council for Scientific and Industrial Research (CSIR), Kumasi) for the statistical advice, Dr. Emmanuel Appiah-Kubi, Mrs. Mary Boakye-Yiadom, Miss Abigail Agyeiwaa Darkwa, Franscica TabiManu and Messrs. Gideon Abaidoo Ocran, Desmond Opoku, Daniel Nii Odoi Tutuani (A4 Technology Systems) and Yaw Sampene Buadu for their numerous forms of assistance.

WJ SANE NO

ABSTRACT

Wood product demand far outstrips timber supply. Secondary timbers, likely-substitutes for endangered traditional hardwoods, lack information about their engineering applications. Furniture strength depends on their joints, design and timber suitability. Thus, the extent to which furniture producers utilize non-traditional timber species was ascertained by interviewing 300 Timber Firms from Kumasi and Accra using the stratified random sampling technique. Key bio-mechanical properties of Klainedoxa gabonensis (Lesser-Utilized-Species [LUS]) and Entandrophragma cylindricum (a notable building and furniture material), which was the control as well as the strength of two dovetail and mortise-tenon joint-designs from the two timbers were further investigated based on BS 373, ASTM D 1037-06a (24), EN 252 and the International Association of Wood Anatomists (IAWA). Most manufacturers (85%) hardly use any LUS; 44% of these attributed this to lack of information on their properties and prospective uses and 32% to their nonavailability on the markets. K. gabonensis moisture content and density (at 12% mc) were greater than those of *E. cylindricum*. The former's Tangential-Radial ratio for swelling (1.31–1.38) and shrinkage (1.58–1.63) are within acceptable thresholds (<1.6 and <2.5 respectively) for structural timbers. Anatomically, K. gabonensis is diffuse-porous, has simple perforation plates, sclerotic tyloses, prismatic crystals and thick-walled fibres forming the greatest proportion $(42.4\pm4.5 45.6\pm4.5\%$) of all its tissues. Its fibre diameter ($20.1\pm0.2-22.7\pm0.2$ µm) and double wall thickness $(8.9\pm0.3-9.7\pm0.3 \ \mu\text{m})$ were greater than those of *E. cylindricum* (19.6\pm0.4-19.7\pm0.3 \ \mu\text{m} and 8.6±0.2–9.0±0.2 µm respectively). Vessel lumen diameters for K. gabonensis (144.8±2.2–176.9±4 μ m) and *E. cylindricum* (115.6±1.4–184.4±2 μ m) compare with those reported for tropical diffuseporous timbers (<200 µm). K. gabonensis heartwood and sapwood were found very durable (Visual Durability Rating: 1; mass loss: $4.8\pm0.3\%$) and durable (1; $8\pm0.6\%$) respectively against termite attacks, E. cylindricum heartwood was durable (2; 10±0.7%) and sapwood was moderately durable (3; 13.1±0.6%). Dovetail joints were strongerh (e.g., K. gabonensis heartwood: 913.8±49.2) than mortise-tenon (e.g., K. gabonensis heartwood: 745.9±59.7). For both joints, the design with longer, wider and thicker tails and tenons (Type LS) was stronger (e.g., K. gabonensis heartwood dovetail: 913.8±49.2 Nm) than those with shorter, narrower and thinner tails and tenons (Type SS) (e.g., K. gabonensis heartwood dovetail: 745.9±59.7 Nm). K. gabonensis joints were also stronger (e.g., heartwood Type LS dovetail: 913.8±49.2 Nm) than those from E. cylindricum (heartwood Type LS dovetail: 759.6±16.8 Nm). To improve on the level of LUS utilization including K. gabonensis, wood workers must be supplied with comprehensive information about their properties and economic values. The superior physico-mechanical and biological properties of K. gabonensis, its abundance (> 396 m^3 km⁻²) and great amount of biomass (diameter: 120-150 cm; height: 45-50 m) make it a suitable material for the building/construction sector, the wood and other related industries. Its use will contribute to reducing pressure on the primary timbers, ensuring consistent supply of wood and keeping the timber sector always operational. K. gabonensis chairs designed with dovetail joints and longer, wider and thicker tails would resist bending forces better and ensure greater strength of furniture than mortise-tenon.

DECL ACKN	ARATIONi OWLEDGEMENTSii
ABSTI	RACT
iii	
TABL	E OF CONTENTS v
LIST (DF TABLES xii
LIST (DF FIGURES xiii
LIST (DF PLATES xv
LIST (DF APPENDICES xvi
LIST (OF ABBREVIATIONS xvii
СНАР	TER ONE
GE <mark>NE</mark> I	RAL INTRODUCTION
1.1	Background and problem statement
1.2	Justification
1.3	Aim
1.4	Specific objectives
1.5	Research questions
1.6	Scope of the study
СНАР	TER TWO
LITER	ATURE REVIEW
2.1	THE OVERVIEW OF GLOBAL DEMAND FOR TIMBER RESOURCES
2.2 SUPPL	THE ROLE OF SECONDARY TIMBER SPECIES IN THE SUSTAINABLE Y OF WOOD
2.2.1	Factors influencing acceptance of secondary timber species by end users
2.2.2	Klainedoxa gabonensis as a promising alternative timber material
2.3	PROPERTIES OF WOOD INFLUENCING THEIR PROSPECTIVE USES 11
2.3.1	Biological properties influencing the uses of wood
2.3.1.1	Anatomical properties

TABLE OF CONTENTS

2.3.1.1	Durability	. 13
2.3.2	Mechanical and physical properties influencing the uses of wood	. 14
2.3.2.1	Mechanical properties	. 14
2.3.2.2	Physical properties	16
2.3.2.2.1	Density	16
2.3.2.2.2	Swelling and shrinkage characteristics	16
2.4	WOODEN FURNITURE PRODUCTION	17
2.4.1	Fasteners available for furniture and joinery production	18
2.4.1.1	Joints	18
2.4.1.1.1	Mortise-tenon joint	19
2.4.1.1.2	Dovetail joint	22
2.4.1.1.3	Factors affecting the strength of furniture joints	23
2.4.1.2	Adhesives	. 25
2.5	Summary	. 26
CHAPT	ER THREE	. 28
LEVEL	OF UTILIZATION OF SECONDARY TIMBER SPECIES AMONG FURNITURE	
PRODU	CERS	28
3.1	Introduction	. 28
3.2	Materials and methods	30
3.2.1	Study Area	30
3.2.2	Sampling technique	31
3.2.3	Data collection and analysis	31
3.2.4	Validity and Reliability of the questionnaire	31
3.3	Results	. 32
3.3.1	Size of firm	. 32
3.3.2	Furniture products manufactured by firms	33
3.3.3		24
224	Choice of markets for sale of furniture products	. 34
3.3.4	Choice of markets for sale of furniture products Timber materials used for furniture production	. 34
3.3.4 3.3.4.1	Choice of markets for sale of furniture products Timber materials used for furniture production Choice of wood species	35 35
3.3.43.3.4.13.3.4.2	Choice of markets for sale of furniture products Timber materials used for furniture production Choice of wood species Utilization of LUS for furniture manufacturing	. 34 . 35 . 35 . 38

3.3.5	Challenges faced by firms in furniture manufacturing	40
3.4	Discussion	41
3.4.1	Size of firm	41
3.4.2	Furniture products manufactured by firms	42
3.4.3	Choice of markets for sale of furniture products	43
3.4.4	Timber materials used for furniture production	43
3.4.4.1	Choice of wood species	43
3.4.4.2	Utilization of LUS for furniture manufacturing	45
3.4.4.3	Sources of timber materials for furniture production	46
3.4.5	Challenges faced by furniture manufacturers	47
3.5	Summary	48
СНАРТ	ER FOUR	49
PHYSIC	AL AND MECHANICAL PROPERTIES OF K. GABONENSIS	49
4.1	Introduction	49
4.2	Materials and methods	51
4.2.1	Study area and sampling of wood materials	51
4.2.2	Determination of physical properties	52
4.2.2.1	Moisture content	52
4.2.2.2	Density at 12% mc	53
4.2.2.3	Dimensional stability	53
4.2.2.3.1	Swelling	53
4.2.2.3.2	Shrinkage	54
4.2.3	Determination of mechanical properties	54
4.2.4	Experimental design and data analysis	55
4.3	Results	55
4.3.1	Physical properties of K. gabonensis and E. cylindricum	55
4.3.1.1	Moisture Content	55
4.3.1.2	Density	55
4.3.1.3	Dimensional Stability of K. gabonensis and E. cylindricum	56
4.3.1.3.1	Swelling	56
4.3.1.3.2	Shrinkage	57

4.3.2	Mechanical properties of K. gabonensis and E. cylindricum	58
4.3.2.1	Shear strength parallel to the grain	58
4.3.2.2	Compressive strength parallel to the grain	58
4.3.2.3	MOR and MOE	58
4.4	Discussion	59
4.4.1	Physical properties of K. gabonensis and E. cylindricum	60
4.4.1.1	Moisture Content	60
4.4.1.2	Density at 12% mc	61
4.4.1.3	Dimensional Stability	61
4.4.1.3.1	Swelling	62
4.4.1.3.2	Shrinkage	63
4.4.2	Mechanical properties	64
4.4.2.1	Shear strength parallel to the grain	64
4.4.2.2	Compressive strength parallel to the grain	65
4.4. <mark>2.3</mark>	MOR and MOE	66
4.5	Summary	67
СНАРТ	ER FIVE	68
CHAPT BIOLOC	ER FIVE	68 68
CHAPT BIOLOC 5.1	ER FIVE	68 68 68
CHAPT BIOLOC 5.1 5.2	ER FIVE	68 68 68 70
CHAPT BIOLOC 5.1 5.2 5.2.1	ER FIVE	68 68 68 70 70
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2	ER FIVE	 68 68 68 70 70 71
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2.1	ER FIVE BICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics Study of the anatomical features of K. gabonensis	 68 68 68 70 70 71 71
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2.1 5.2.2.1	ER FIVE BICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics Study of the anatomical features of K. gabonensis Determination of tissue proportions	 68 68 68 70 70 71 71 71 71
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2.1 5.2.2.1 5.2.2.2	ER FIVE GICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics. Study of the anatomical features of K. gabonensis Determination of tissue proportions. Determination of fibre and vessel morphological characteristics through maceration.	 68 68 68 70 70 71 71 71 71 72
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2.1 5.2.2.1 5.2.2.1 5.2.2.2 5.2.3	ER FIVE	 68 68 70 70 71 71 71 72 72
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2.1 5.2.2.1 5.2.2.2 5.2.2.2 5.2.3 5.2.3	ER FIVE SICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics Study of the anatomical features of K. gabonensis Determination of tissue proportions Determination of fibre and vessel morphological characteristics through maceration Determination of durability Visual durability ratings	 68 68 70 70 71 71 71 72 72 73
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2.1 5.2.2.1 5.2.2.2 5.2.3 5.2.3 5.2.3.1 5.2.3.2	ER FIVE GICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics Study of the anatomical features of K. gabonensis Determination of tissue proportions Determination of fibre and vessel morphological characteristics through maceration. Determination of durability Visual durability ratings Mass loss (%)	 68 68 70 70 71 71 71 72 72 73 73
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4	ER FIVE GICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics Study of the anatomical features of K. gabonensis Determination of tissue proportions Determination of fibre and vessel morphological characteristics through maceration Determination of durability. Visual durability ratings. Mass loss (%) Experimental Design and Data Analysis	 68 68 70 70 71 71 71 72 72 73 73 74
CHAPT BIOLOC 5.1 5.2 5.2.1 5.2.2 5.2.2 5.2.2 5.2.2 5.2.2 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.4 5.3	ER FIVE BICAL PROPERTIES OF K. GABONENSIS Introduction Materials and methods Sampling of wood material Determination of anatomical characteristics. Study of the anatomical features of K. gabonensis Determination of tissue proportions. Determination of fibre and vessel morphological characteristics through maceration. Determination of durability. Visual durability ratings. Mass loss (%) Experimental Design and Data Analysis Results	 68 68 70 70 71 71 71 72 73 73 74 74

5.3.1.1	Anatomical description of K. gabonensis sapwood and heartwood	74
5.3.1.2	Fibre and vessel morphology	76
5.3.1.2.1	Fibre characteristics	76
5.3.1.2.2	Vessel lumen diameter	78
5.3.1.3	Tissue proportions	78
5.3.2	Durability	80
5.3.2.1	Visual durability rating	80
5.3.2.2	Mass loss (%)	81
5.4	Discussion	82
5.4.1	Anatomical characteristics	82
5.4.1.1	Anatomical description of <i>K. gabonensis</i> wood	83
5.4.1.2	Fibre and vessel morphology	85
5.4.1.2.1	Fibre characteristics	85
5.4.1.2.2	Vessel lumen diameter	86
5.4. <mark>1.3</mark>	Tissue proportions	88
5.4.2	Durability	90
5.4.2.1	Visual durability rating	90
5.4.2.2	Mass loss	92
5.5	Summary	94
СНАРТ	ER SIX	95
THE BE	NDING STRENGTH OF MORTISE-TENON AND DOVETAIL JOINTS IN LEG-	
AND-RA	AIL CONSTRUCTED FROM K. GABONENSIS PIERRE EX ENGL	95
6.1	Introduction	95
6.2	Materials and methods	97
6.2.1	Choice of joint designs and fastener	97
6.2.2	Construction of joints	98
6.2.2.1	Mortise-tenon joint	98
6.2.2.2	Dovetail halving joint	101
6.2.3	Strength of joints determination	104
6.2.4 6.2.5	Data Analysis Stress analysis of the design for the flexural member of Types SS and LS mortise-ter	106 101

	and dovetail joints
6.3	Results
6.3.1	Strength of mortise-tenon and dovetail joints 108
6.3.2	Stress analysis of the design for the flexural member of Types SS and LS mortise-tenor and dovetail joints
6.4	Discussion 112
6.4.1	Strength of mortise-tenon and dovetail joints 112
6.4.1.1	Kind of joints
6.4.1.2	Joint size
6.4.1.3	Type of timber and joint strength
6.4.2	Stress analysis of the design for the flexural member of Types SS and LS mortise-tenor and dovetail joints
6.5 Sum	mary 118
СНАРТ	ER SEVEN 119
GENER	AL DISCUSSION 119
7.1	Challenges with utilization of LUS among furniture manufacturers
7.2	Moisture content
7.3	Density
7.4	Dimensional stability
7.5	Mechanical properties
7.6 Dura	ability 122 7.7
Joint stre	ength 122
7.8 gabon <mark>en</mark>	The relationship between the physico-mechanical and biological properties of <i>K</i> sis
7.9 Pros	pects of K. gabonensis
СНАРТ	ER EIGHT 127
CONCL	USION AND RECOMMENDATION 127
8.1	Conclusion
8.2	Recommendation
8.3 8.4	Contribution to knowledge

8.5	Suggestions for further work	130
REFERI	ENCES	131
APPENI	DICES	155

LIST OF TABLES

LIST OF TABLES
Table 3.1: Respondents sampled from the various categories of firms in Accra and Kumasi 33
Table 3.2: Furniture products manufactured by the firms in Accra and Kumasi 33
Table 3.3: Reasons for choice of furniture products manufactured by the firms 34
Table 3.4: Timber species used by firms for furniture production
Table 3.5: Reasons for choice of timber used for furniture manufacturing
Table 3.6: Reasons for low level of utilization of LUS among furniture manufacturers
Table 3.7: Sources of timber raw materials for furniture manufacturers
Table 3.8: Challenges faced by firms in furniture manufacturing
Table 4.1: Physical and strength properties across the stems of K. gabonensis and E. cylindricum
Table 5.1: Visual durability ratings for K. gabonensis, E. cylindricum and C. pentandra (Control)
Table 5.2: ANOVA for mass loss for K. gabonensis, E. cylindricum and C. pentandra
Table 5.3: LSD for mass loss for K. gabonensis, E. cylindricum and C. pentandra
Table 6.1: Cutting list for the construction of rail and leg pieces for mortise-tenon and dovetail joints
Table 6.2: ANOVA for the strength of Mortise-tenon and Dovetail joints made from K. gabonensis and E. cylindricum 109
Table 6.3: LSD for the strength of Mortise-tenon and Dovetail joints made from K. gabonensis and E. cylindricum 109
Table 6.4: Stress analysis of the rail for mortise-tenon and dovetail joints 111
Table 6.5: Shear stress analysis of the new dimensions for the rail for mortise-tenon and dovetail

joints

LIST OF FIGURES

Fig. 3.1: Choice of market for sale of furniture products by the manufacturing firms
Fig. 3.2: Reasons for manufacturers' choice of market for furniture products
Fig. 3.3: LUS used for furniture production by the manufacturing firms
Fig. 4.1: Map of Ghana (a) showing the position of Bobiri Forest Reserve (b)
Fig. 4.2: Directional and volumetric swellings across the stems of <i>K. gabonensis</i> and <i>E.</i>
<i>cylindricum</i> (Bar = Standard Error)
Fig. 4.3: Directional and volumetric shrinkages across the stems of K. gabonensis and E.
<i>cylindricum</i> at 12% mc (Bar = Standard Error)
Fig. 5.1: Fibre length across the stems of <i>K. gabonensis</i> and <i>E. cylindricum</i> (Bars=Standard
Errors)
Fig. 5.2: Fibre dimensions across the stems of <i>K. gabonensis</i> and <i>E. cylindricum</i> (Bars=Standard
Errors)
Fig. 5.3: Vessel lumen diameter across the stems of <i>K. gabonensis</i> and <i>E. cylindricum</i> (Bars =
Standard Errors)
Fig. 5.4: Tissue proportion across the stems of <i>K. gabonensis</i> and <i>E. cylindricum</i> (Bars =
Standard Errors)
Fig. 5.5: Durability (mass loss) across the stems of <i>K. gabonensis</i> , <i>E. cylindricum</i> and <i>C</i> .
pentandra (Bars=Standard Errors)
Fig. 6.1: Schematic illustration of the rail (a) and leg (b) of Type SS mortise-tenon joint showing
the final dimensions of the mortise and tenon (Scale = 1:2.5)
Fig. 6.2: Schematic illustration of the rail (a) and leg (b) of Type LS mortise-tenon joint showing

the final dimensions of the mortise and tenon (Scale = 1:2.5)	100
Fig. 6.3: Schematic illustration of the rail (a) and leg (b) of Type SS dovetail joint showing	the

final dimensions of the tail and socket (Scale = 1:2.5)
Fig. 6.4: Schematic illustration of the rail (a) and leg (b) of Type LS dovetail joint showing the
final dimensions of the tail and socket (Scale = 1:2.5)
Fig. 6.5: Strength of mortise-tenon and dovetail joints made from K. gabonensis and E.
cylindricum
Plate 2.1: Mortise-tenon joint showing the mortise and tenon
Plate 2.2: Dovetail joint showing the various parts

Plate 4.1: <i>K. gabonensis</i> log (a), bolt (b) and quarter sawn samples (c)	<mark> 5</mark> 1
Plate 5.1: Stakes inserted vertically at the test site (a); a termitarium located 2m from the test	t
site (b).	74

 Plate 5.5: K. gabonensis heartwood (a), sapwood (b), E. cylindricum heartwood (c) and sapwood

 (d) after field exposure (Arrow = Termite attack). NB: C. pentandra stakes were completely

 destroyed.

 80

Plate 6.1: Leg (a), rail (b) with glue on the face of the tenon (arrowed); Leg and ra	il clamped
together to produce a mortise-tenon joint (c)	
Plate 6.2: Rail (a) and Leg (b) boards fitted to form a dovetail joint	104
Plate 6.3: A universal testing machine for determination of the joint strength	105
Plate 6.4: Failure (arrowed) of dovetail (a) and mortise-tenon (b) joints.	105

LIST OF APPENDICES

Appendix A: Questionnaire for wooden furniture manufacturers 155
Appendix B: Physical and mechanical properties of K. gabonensis and E. cylindricum 158
Appendix C: Swelling and shrinkage characteristics of K. gabonensis and E. cylindricum 163
Appendix D: ANOVA and LSD for physical and mechanical properties of <i>K. gabonensis</i> and <i>E. cylindricum</i>
Appendix E: Fibre and vessel characteristics of <i>K. gabonensis</i> and <i>E. cylindricum</i>
Appendix F: Tissue proportions for <i>K. gabonensis</i> and <i>E. cylindricum</i>
Appendix G: Mass loss and visual durability ratings for K. gabonensis and E. cylindricum 221
Appendix H: Strength of mortise-tenon and dovetail joints constructed from <i>K. gabonensis</i> and <i>E. cylindricum</i>
Appendix I: List of Publications

LIST OF ABBREVIATIONS

ANOVA		Analysis of Variance
ASTM	14	American Standard for Testing Materials
BS	-	British Standard
CODW	-	Corrected Oven Dried Weight
CRD	-	Completely Randomized Design

CSIL	-	Center for Industrial Studies
CSIR	-	Council for Scientific and Industrial Research
FAO	-	Food and Agriculture Organization
FAWAG	• j£.	Furniture and Wood Products Association of Ghana
FORIG	-1/	Forestry Research Institute of Ghana
FPRDI	- 12	Forest Products Research and Development Institute
FSD	÷.,	Forest Services Division
GDP	-	Gross Domestic Product
IAWA	-	International Association of Wood Anatomists
ITTA	-	International Tropical Timber Agreement
ITTO		International Tropical Timber Organization
KNUST	-	Kwame Nkrumah University of Science and Technology
LSD	- 3	Least Significant Difference
LUS	- (Lesser-Utilized Species
MC	- 1	Moisture content
MOE	5	Modulus of Elasticity
MOR	-	Modulus of Rupture
PU		Polyurethane
PVAc	-	Polyvinyl acetate
SME	20	Small- and Medium-scale Enterprise
T/R	17	Tangential-Radial ratio
USA	-4	United States of America
WWAG-WR	-	Wood Workers Association of Ghana-Western Region

NO

BADWEN

THE ROJ W J SANE

CHAPTER ONE

GENERAL INTRODUCTION

1.1 Background and problem statement

Growth in human population and an upsurge in developmental activities have led to an increase in global demand for timber (Millennium Ecosystem Assessment, 2005). With an anticipated increase in population by 1 billion people in the next decade, pressure on traditional timber resources is expected to intensify (United Nations, 2011; Krausmann *et al.*, 2013). Meanwhile, timber product manufacturers and end-users are adapted to using very limited range of timber species. This has led to over-exploitation and unsustainable forest production (Adekunle *et al.*, 2013). Leicester (2001) explained that diversification of marketed timber species to include abundant and Lesser Utilized Species (LUS) could resolve the challenge of raw materials shortage in the timber industry. Many tropical countries (e.g., Brazil) have recognized the need for alternative timber resources and are conducting extensive researches into the properties and uses of the —neglected species! (International Tropical Timber Organisation [ITTO], 1997), especially several of the abundant LUS in the tropical forests.

Klainedoxa gabonensis Pierre ex Engl. (Fam.: Irvingiaceae) is endemic to tropical Africa and often grows up to 120-150cm in diameter with a cylindrically straight stem (45-50 m), which indicates its great commercial potential (Harris, 1996; Oteng-Amoako and Obeng 2012). It is classified as LUS with a mean basal area of 10.77 m²km⁻² in most forests (Ghana Forestry Commission, 2012). Forest inventory conducted between 1986 and 1991 in Ghana indicated its volume (for diameter classes 30 – 130cm) to be 158, 164 and \ge 74 m³km⁻² in the Moist

Evergreen, Wet Evergreen and Moist Semi-deciduous North West sub-type ecological zones.

However, it is rarely traded on the global timber market and has no information in trade statistics. Its poles are for hut construction and spring traps. Similarly, most consumers are generally unaware of the utilization potential of the LUS, which could serve as substitutes to the over-dependent traditional timbers. In some cases, products made from LUS have faced serious problems of acceptance on international markets (Barany *et al.*, 2003; Eastin *et al.*, 2003; Ogunwusi, 2012a). Eastin *et al.* (2003) and Poku *et al.* (2001) have attributed this to reliable supply of comprehensive information about the properties of LUS, which has restricted their promotion and acceptance into the timber markets. These properties often contribute to predict their uses, marketability, service performance and appropriate processing methods (Cox, 2004). Thus, adequate information about the properties of *K. gabonensis* could contribute to the identification of its prospects on the international market.

According to Cordero and Kanninen (2002), the most essential properties needed to promote any LUS include its physical, mechanical and biological characteristics. Ayarkwa (1998) and Opoku (2007) recommended some tropical LUS including *Cylicodiscus gabonensis* (Taub.) Harms, *Nesogordonia papaverifera* (A. Chey.) R. Capuron (Kotibé) and *Petersianthus macrocarpus* (P. Beauv.) for structural products based on these properties. In Costa Rica and Nicaragua, secondary timber species have been used to manufacture furniture parts exported to Cuba, the Dominican Republic, Puerto Rico and the United States because their properties were well investigated (Vlosky and Aguirre, 2001). Fonti *et al.* (2010) and Scholz *et al.* (2013) mentioned that dense and strong timbers with narrow microfibrillar angle and vessel lumen (e.g., *N. papaverifera* and *Diospyros mespiliformis* Hochst. ex A. DC.) are important for tough engineering structures such as bridge, building, furniture and floor construction. The range of uses of *K. gabonensis* could be

well established when adequate information about its physicomechanical and biological properties exist.

A consumers' choice of wood products is affected by several factors including aesthetics, functionality and strength (Tankut, 2007). Smardzewski and Majewski (2013) explained that the strength of joinery products (such as furniture) depends greatly on its joint, which is influenced by the design and type of timber used in construction. Many types of joints are available for wood work. The most popular of these joints for furniture construction is the mortise-tenon

(Tankut and Tankut, 2005), which is used for the construction of the leg-and-rail of chairs. However, mortise-tenon joints fail under severe tension that results from bending stresses through activities such as rocking during sitting process (Morris, 2014). Zhang and Eckelman (1993) and Hoadley (2000) noted that dovetail joints would resist tensile forces better than mortise-tenon. It could therefore offer an alternative to mortise-tenon in leg-and-rail construction. However, few researches [such as Su and Wang (2007)] have compared the performance of mortise-tenon and dovetail joints against bending, tensile and compressive forces in chair construction.

The success of every joint would partly depend on the appropriateness of the timber used for its construction; different wood species are suitable for making certain kinds of joints (Erdil *et al.*, 2005; Tankut *et al.*, 2014). For instance, Jivkov and Marinova (2006) found that end corner miter joints constructed with *Juglans regia* were stronger than those from *Alnus* spp. and

Pinus sabiniana because of the superior mechanical properties of *J. regia*. Therefore, Ratnasingam *et al.* (2010) and Haviarova *et al.* (2013) recommended that when constructing joinery products, manufacturers should have adequate knowledge on the effect of the type of timber and design used on the overall performance of the joints. However, this information is often non-existent for most of our local LUS recommended for joinery. Thus, in order to promote *K. gabonensis* successfully

for construction works involving joinery and furniture, information about the strength performance of its joints in structures is essential. This study therefore investigated the physico-mechanical and biological properties of *K. gabonensis* as an alternative engineering material to the traditional timbers so as to widen the raw material base for the Timber Industry. It also evaluated the extent to which LUS are utilized by furniture manufacturers and compared the strengths of mortise-tenon and dovetail joints constructed from *K. gabonensis*.

1.2 Justification

Wood availability is the single most important consideration for timber industries in the world (Forest Products Research and Development Institute (FPRDI) and International Tropical Timber Organization (ITTO), 1997). However, the industry's survival is threatened because the amount of wood required annually cannot be met due to scarcity of timber (Adekunle et al., 2013). Manufacturers and end-users have held onto the ever diminishing primary species, which has resulted in excessive pressure and over-exploitation of traditional timbers. Much attention is therefore needed to promote LUS that could substitute the declining levels of the traditional species (Ayarkwa, 1998). Timber selection for wooden products manufacture is based on information on its properties, which is often not available for several secondary timber species (Ayarkwa, 1998). Investigations into the properties of *K. gabonensis* would enhance its utilization as an alternative structural material, increase the wood raw material stock and contribute to minimize the pressure on the highly-utilized primary timbers. Erdil et al. (2005), Likos et al. (2012) and Smardzewski and Majewski (2013) asserted that the strength of furniture largely depends on its joints and the type of timber used for its parts. In most cases, LUS recommended for furniture lack information on the best joint that must be employed to produce furniture with great strength (Addae-Mensah, 1998; Barany et al., 2003) and joint selection is normally left to the discretion of manufacturers

whose choices may compromise the structural rigidity of the entire work piece (Tankut, 2007). Thus, joints that ensure great strength of furniture and joinery products from *K. gabonensis* ought to be established to guide furniture designers in their choice. It was also important to identify the current challenges associated with utilization of LUS by the furniture industry and to propose ways of solving them in order to ensure consistent supply of timber to the industry.

1.3 Aim

The study assessed the utilization potential of *K. gabonensis* and the strength of its mortise-tenon and dovetail joints in leg-and-rail construction.

1.4 Specific objectives

Specific objectives were to determine the:

- (i) Level of utilization of LUS including *K. gabonensis* among furniture manufacturers in Ghana.
- (ii) Physical and mechanical properties of the heartwood and sapwood of *K. gabonensis* and *Entandrophragma cylindricum* (a widely-used traditional utility timber, which was

the control).

(iii) Biological properties (anatomy and durability) of the heartwood and sapwood of K.

gabonensis and E. cylindricum.

(iv) Strength of mortise-tenon and dovetail joints in leg-and-rail constructed from K.

gabonensis. 1.5 Research questions

The study was conducted with the following research questions:

- a. What is the level of utilization of LUS among furniture producers?
- b. What are the physico-mechanical and biological properties of K. gabonensis?

c. What is the strength of mortise-tenon and dovetail joints manufactured from K. gabonensis?

1.6 Scope of the study

The study determined the anatomy of *K. gabonensis* including its fibre and vessel morphology (i.e, proportion, length, wall thickness, diameter and lumen width) as well as its durability, moisture content (mc), density, shrinkage and swelling characteristics, Moduli of Rupture and Elasticity, Compressive and shear strengths parallel to the grain. The strengths of *K. gabonensis* mortise-tenon and dovetail joints were compared. It further investigated the level of usage of LUS in the operations of furniture manufacturers.

CHAPTER TWO

LITERATURE REVIEW

2.1 THE OVERVIEW OF GLOBAL DEMAND FOR TIMBER RESOURCES

Timber is undoubtedly an important resource in the socio-economic growth of societies. Rapid development of the global economy coupled with growing human population has led to significant increase in the demand of wood for products such as lumber, pulpwood, board and wood-based panels (Chaowana, 2013; World Wildlife Fund, 2015). Lead *et al.* (2005) found that China's demand for logs and wood products increased by more than 50% during the last decade. In 2005 alone, about 20% of the growing stock of forests in Russia was harvested to supply the international timber market (FAO, 2005). According to Agyarko (2001), the Ghanaian wooden furniture manufacturing sector requires about 219,000 m³ of sawn timber annually in order to remain in operation. This represents about 72% of the total domestic timber requirement for the entire country. The current demand places huge pressure on wood resources (Lead *et al.*, 2005; Union of Concerned Scientists, 2011). Shortages of high-value timber species due to overharvesting have been reported (Ghazoul and Sheil, 2010). FAO (1998) estimated that wood demand would rise to about 2 billion m³/yr by 2045/50. This will further increase pressure on forests, while limiting production activities of wood industries (Union of Concerned Scientists, 2011).

Longwood (1962) and Brokaw (2012) found that despite the availability of over thousand different wood species in the Caribean forests, commercial production and utilization were limited to less than 20 timber species. World Conservation Monitoring Centre (2012) also observed that only 60 out of 680 tree species that reach timber size in Ghana have been exploited over the past 20 years. Agyeman *et al.* (1999) and World Wildlife Fund (2015) asserted that with the current trend where

logging and commercial trade is greatly concentrated on few well-known timbers including *Triplochiton scleroxylon* (Wawa), *Khaya grandifoliola* (Mahogany), *E. cylindricum* (Sapele) and *M. excelsa* (Odum), supply of raw materials for wood products is unsustainable. Bioversity International (2009) and International Wood Products Association (2015) explained that by promoting the neglected timbers, pressure on the few highly exploited timbers could be reduced, while increasing commercial production.

2.2 THE ROLE OF SECONDARY TIMBER SPECIES IN THE SUSTAINABLE SUPPLY OF WOOD

Natural forests have a great number of timber species which are characteristically different from each other. Roelof et al. (2013) noted that a scale of preference for the timbers for commercial utilization exists; while some species including Pericopsis elata, K. anthotheca, Ocotea porosa and Shorea spp. are in high demand, others such as K. gabonensis, Peronema canescens and Canarium schweinfurthii are rarely traded. In the three major wood-producing regions in the developing world, namely Southeast Asia, South America and Central Africa, about half the total number of timber species that grow to timber size are not utilized or under-utilized (Erfurth, 1976; Lead et al., 2005). These timbers are broadly called —secondary timber species or -Lesser-Utilized Species and appear in large quantities in the forest. Shupe et al. (2005) defined Lesser-Utilized Species (LUS) as timbers that are not being put to best advantage. Barany et al. (2003) noted that many LUS have properties (e.g., durability, strength and beauty) that are comparable to the presently traded timbers, which could make them accepted by the local and export market for building, decking, flooring, mouldings, veneer, bridge and furniture construction once their availability and technical qualities are investigated. Grant (2008) found that limited stock and high demand for the more popular species make them very expensive, while the cost of secondary timber species is generally low due to their abundance. For instance, while

Loxopterygium sagotii, a popular species for furniture and building construction in Guyana was sold for about \$250/Bm, Hymenolobium flavum, a LUS with similar properties and utilization potential as L. sagotii was sold for \$180/Bm (Forest Products Development and Marketing Council, 2014). International Wood Products Association (2015) observed that several LUS from many parts of the world are making phenomenal sales on the U.S. market. Lim et al. (2004) mentioned that increased use of LUS promotes sustainable forest management by ensuring maximum utilization of forest resources, while alleviating the pressure on the currently overexploited timbers. International Wood Products Association (2015) also mentioned that utilization of LUS would reduce the vulnerability to extinction of timber species that currently have high market demand. Subsequently, biodiversity would be conserved and the forests ability to satisfy future demands for timber materials would be maintained. Ofori et al. (2009) explained that the several advantages of LUS have encouraged the government of Ghana to actively advocate for their use as a sustainable forest management strategy. However, they are neglected by end users due to poor understanding of their characteristics (Barany et al., 2003). Union of Concerned Scientists (2011) asserted that adequate efforts aimed at promoting LUS are needed to halt increasing scarcity and rise in prices of current commercial timbers.

2.2.1 Factors influencing acceptance of secondary timber species by end users

In many countries, efforts aimed at increasing the utilization of LUS as alternatives to the commonly traded timbers have increased (Chaowana, 2013). However, Dadzie *et al.* (2014) noted that many factors influence their acceptance by end users. According to Schulte and Schöne (1996), several non-traditional timbers lack information about their properties and uses, are sparsely distributed in the forest, and have relatively small diameters and high percentage of non-durable sapwood, which affect the willingness of wood product manufacturers to exploit them.

Guyana Forestry Commission (2013) mentioned that the lack of information about the properties of most of Guyana's LUS deterred the timber industry from successfully accepting and utilizing them. Boampong *et al.* (2015) observed that knowledge about the durability, aesthetics, quality and processability of timber influenced its selection for furniture and joinery production. Chaowana (2013) also mentioned that acceptance of alternative timber materials depended on its cost, availability, physical and mechanical properties and compatibility with existing processing technologies. However, such information is often non-existent for most secondary timber species. Therefore, Bonney (1998) explained that in order to increase acceptance of LUS on the local and foreign markets, an effective marketing strategy that focuses on making available information about their characteristics and uses should be adopted.

2.2.2 *Klainedoxa gabonensis* as a promising alternative timber material

K. gabonensis Pierre ex Engl. (Fam.: Irvingiaceae) is a tropical LUS which commonly occurs in the humid evergreen and semi-deciduous forests in Angola, Cameroon, Democratic Republic of Congo, Ghana, Senegal, Sudan, Tanzania, Uganda and Zambia (Oteng-Amoako and Obeng, 2012). It has an open evergreen crown, which makes it one of the largest trees in tropical rainforests (Harris, 1996). Its bole could be branchless for up to 25 m from the ground (OtengAmoako and Obeng, 2012). The wood has a fine texture, straight or interlocked grain and thin light brown sapwood, which is susceptible to insect damage. Its heartwood has reddish to golden brown colouration with zigzag markings (CIRAD Forestry Department, 2008). Its density (940 – 1150 kgm⁻³), shrinkage, nail-holding ability and sawing characteristics are some of the few properties investigated by Oteng-Amoako and Obeng (2012). The authors found that the wood was dense, difficult to dry and liable to checking and distortions after drying. Preliminary studies on its

anatomy showed that the wood is diffuse porous and has thick-walled non-septate fibres (Harris, 1996; Oteng-Amoako and Obeng, 2012).

Ogunwande *et al.* (2008) explained that in most countries, it is left standing to provide shelter when forest is clear-felled for agricultural purposes. It is locally exploited for medicine, firewood, spring traps and hut construction (Neuwinger, 2000; Wansi *et al.*, 2010). In Sierra Leone, the buttresses are sometimes used to construct doors. However, the wood is seldom exploited and lacks information in Trade Statistics. Harris (1996) asserted that its prospects on the international market could be enhanced when further researches are conducted on its properties, processing and end-uses.

2.3 PROPERTIES OF WOOD INFLUENCING THEIR PROSPECTIVE USES

In spite of the versatility of wood, Likos *et al.* (2012) and Tankut (2007) explained that timbers with specific properties are required for specific applications. For example, Discovery

Communications (2013) observed that since 1900 furniture has been manufactured from *J. nigra*, *Quercus spp., E. cylindricum, Acer saccharum* and *M. excelsa* due to their beauty, strength, durability and workability. Several LUS including *Koordersiodendron pinnatum*, *Diospyros pyrrhocarpa*, *Artocarpus blancoi* and *Ziziphus talanai* were recommended for various structural works because they had fair to good finishing properties as well as great bending (65.9 – 84.0 Nmm⁻²), compression parallel to the grain (19.5 – 36.1 Nmm⁻²) and Shear (8.31 – 11.0 Nmm⁻²) strengths (Forest Products Research and Development Institute (FPRDI) and International Tropical Timber Organization (ITTO), 1997). Studies on specific properties of wood are therefore important for ascertaining timbers' utilization potential (Tankut, 2007; Discovery

Communications, 2013). Cordero and Kanninen (2002), Rowell and Winandy (2005) and Strong (2013) observed that the biological, physical and mechanical properties of wood mostly influence

its selection for certain applications. Therefore, in order to predict the full range of uses of *K*. *gabonensis*, its physical, mechanical and biological properties were investigated.

2.3.1 Biological properties influencing the uses of wood

2.3.1.1 Anatomical properties

Major cells that make up tropical hardwoods are vessels, fibres and parenchyma. These cells may be hollow, elongated or spindle-shaped (McGraw-Hill Concise Encyclopedia of Bioscience, 2002). Vessels are comparatively large cells with large cavities and open ends that conduct sap up a plant. Fibres rather have small cavities, relatively thick cell walls and are the main elements that give strength to wood (Izekor and Fuwape, 2011). Barnett and Jeronimidis (2003), and Ocloo and Laing (2003) explained that the strength, density, dimensional stability and many other properties, which determine the uses of wood basically depend on fibre, vessel and parenchyma characteristics such as wall thickness, diameter, length, lumen width and proportion. Rowell and Winandy (2005) observed that wood density increases as the proportion of cells with thick walls increases. They further explained that most high density woods possess more thickwalled fibres in relation to vessels and parenchyma and subsequently have great bending, compressive and shear strengths. They also tend to be dimensionally stable, shrinking and swelling less. These timbers are good for flooring, furniture, building and bridge construction (Rowell and Winandy, 2005). On the contrary, Raven et al. (1999) and Quartey (2009) observed that woods such as Ochroma pyramidale and Albizia ferruginea which have thin-walled vessels and fibres have very low density (i.e., about 40-340 kg/m³) and poor strength. Consequently, such timbers are recommended for light construction (Wiedenhoeft and Miller, 2005). Quartey

(2009) further noted that *Blighia sapida* was very brittle due to the large proportion of short fibres and was only suitable for applications where strength was not of prime importance. Walter *et al.*

(2009) recommended *Picea mariana* based on its long fibres for manufacturing paper that produced highest quality newsprint. Lei *et al.* (1997) mentioned that in furniture construction, it is important to select wood with narrow vessels in order to minimize excessive moisture absorption, which results in swelling and shrinkage of furniture products. Wood deposits also have great influence on the uses of timber. Adeniyi *et al.* (2013) observed that *Xylia dolabriformis* was largely used for flooring due to the large amount of gum within its fibres that were resistant to wear. Boulton *et al.* (2013) also noted that white oak was suitable for cooperage because its vessels were plugged by tyloses. Thus, anatomical characteristics of wood are good indices that guide wood end-use.

2.3.1.1 Durability

Wood product deterioration is a challenge to consumers. Meanwhile, wood, as a natural polymer, is prone to bio-degradation by bacteria, fungi and insects (Khatib, 2009). Termites, carpenter bees, ants and powder-post beetles are the major insect pests to wooden structures (Abood,

2008). These organisms decompose the cellulose in wood for biochemical energy (Sonowal and Gogoi, 2010). Usually the durability of wood is widely correlated with the amount of cellulolytic materials it loses from attacks by bio-degraders (Arango *et al.* 2006; Ashaduzzaman *et al.* 2011; Asamoah *et al.* 2011). When less biomass is removed, wood marginally loses weight and becomes more resistant to bio-degradation (Ashaduzzaman *et al.* 2011). In order to ensure increased service-life of manufactured products, while minimizing maintenance costs and protecting the environment from the harmful effect of preservative-chemicals against biodeterioration (Venmalar and Nagaveni 2005), naturally-durable timbers are highly recommended

(Connell 1991; Scottish Wood Ltd., 2000). Koch *et al.* (2013) and Ibach (2013) explained that wood durability is its resistance to bio-deterioration, and different wood species have different natural abilities to resist insect and fungal decay; timber utilization must be based on the level of resistance

to bio-deteriorators. Ali (2011) recommended tropical timbers such as *Acacia nigrescens* Oliv., *P. angolensis* (Baker) Meeuwen and *Pseudolachnostylis maprounaefolia* Pax for building and furniture-making based on their properties including durability. According to Australian Durability Standard (AS 5604, 2005), Podocarpus *totara* var. totara, *Manoao colensi* (Hook.) Molloy and *Callitropsis nootkatensis* (D. Don) Oerst. ex D.P. Little are employed in full weather-exposed applications (Hazard Class H1 - H4) because they are very durable. In order to successfully determine the uses of *K. gabonensis*, the durability of its sapwood and heartwood was determined in this study using visual assessment, which evaluates the durability of timber from signs of attack on stakes exposed to insects and decay organisms in the field (Eaton and Hale 1993; Australian Standard 2005), and mass loss techniques (Ashaduzzaman *et al.* 2011).

2.3.2 Mechanical and physical properties influencing the uses of wood

2.3.2.1 Mechanical properties

Mechanical properties of wood are its ability to resist forces that tend to deform it (Atar *et al.*, 2009; Smardzewski, 2015). They determine how much load wood can bear without fracture or undue distortion (Rowell and Winandy, 2005; Callister and Rethwisch, 2012). Wooden structures are subjected to varying forces during their life span, predominantly compression, bending and shear (Cai and Wang, 1993; Ali, 2011; Forest Products Development and Marketing Council of Guyana Inc., 2015). These forces affect wood in different ways. For instance, while compressive forces tend to shorten wood fibers (Desch and Dinwoodie, 1996; Abdolzadeh *et al.*, 2015), shear stress causes one section of a piece of wood to slide along the other section in a direction often longitudinal to the grain (Ritter *et al.*, 1998; Yuksel *et al.*, 2014). Shear stress normally results when one side of a piece of wood is subjected to tension forces and the other compression (Korkut and Guller, 2008; Abdolzadeh *et al.*, 2015).

Engineers choose wood for flooring, building, bridge and furniture construction based on how much stress the timber material will be able to withstand without failure. Ratanawilai *et al.* (2006), Tankut (2007) and Lima *et al.* (2014) mentioned that in predicting the uses of wood, its mechanical properties such as Modulus of Rupture (MOR), Modulus of Elasticity (MOE), compressive and shear strengths parallel to the grain need to be ascertained. Asafu-Adjaye

(2012) noted that based on mechanical properties such as MOE ($5253.0 - 25871.8 \text{ N/mm}^2$), MOR ($48.5 - 217.1 \text{ N/mm}^2$), Compression parallel to the grain ($27.6 - 99.8 \text{ N/mm}^2$) and shear parallel to the grain ($5.47 - 19.75 \text{ N/mm}^2$), the dermal zones of *Borassus aethiopum* could be similarly used as *P. elata, Pepdiniastrum africanum, T. grandis* and *E. cylindricum* for veneer, flooring and furniture construction. Forest Products Laboratory (1999) and Lemmens (2008) also observed that *T. grandis* and *K. ivorensis* were good for truss and furniture construction because they have great compressive strengths (57.98 Nmm^2 and $37 - 48 \text{ Nmm}^2$ respectively) and can resist stress that tends to crush wood fibres in columns, props, posts and spokes. According to

Green (2007), *Carya ovata* is suitable for flooring, cabinetry and furniture because its great MOR (138.6 Nmm⁻²) and MOE (15590 Nmm⁻²) make it stiff, harder to flex and return to its original shape without breaking when stress is removed. Studies on mechanical properties such as MOR, MOE, compressive and shear strengths parallel to the grain of timber would thus help to assign timber to their right uses (Hodgkinson, 2000; Ntalos and Grigoriou, 2002; Lima *et al.*

2014).

2.3.2.2 Physical properties

Physical properties are the quantitative characteristics of wood and its behavior to external influences other than applied forces (Winandy, 1994). The physical properties of great concern to the timber industry include density, moisture content (mc) and swelling and shrinkage characteristics (Johnson *et al.*, 2006; Ali, 2011).

2.3.2.2.1 Density

Wood density is defined by the amount of cell wall material, moisture and proportion of void space created by fibre and vessel cavities (Kollman and Côté, 1986; Canadian Wood Council, 1991; Desch and Dinwoodie, 1996; Antwi-Boasiako and Pitman, 2009). It influences other wood properties such as strength, dimensional stability, durability and treatability (Gryc and Horácek 2007) and subsequently identifies timber for a particular uses. Haygreen and Bowyer (1996), Zhang (1997), Persson (1997), Miller (1999), Dickson (2000) and Hernandez (2007) observed that wood strength greatly depended on its density; lower density species were suitable for nonload bearing applications like internal trim and ceiling construction due to their low strengths. Ali (2011) recommended medium (400 kg/m³) to high (1100 kg/m³) density woods for furniture production. Humar *et al.* (2008) and Antwi-Boasiako and Pitman (2009) also found that high density species were important materials for fencing, mine props, railway sleepers, floor bearers and joists.

2.3.2.2.2 Swelling and shrinkage characteristics

Antwi-Boasiako and Boadu (2013) explained that wood is hygroscopic and undergoes dimensional changes when its moisture varies below or above the Fibre Saturation Point (FSP). These changes can lead to reduction in wood strength, tightening and fracture of joints, splits, and change of cross-sectional shapes of wooden products (Kollman and Côté, 1986; Winandy, 1994). Since movement of wood in service cannot be entirely prevented, it is important to select wood that shrinks or swell less for structures. The age-long use of traditional species such as *K. ivorensis* (with a density of 420–570 kg/m³), *T. grandis* (with a density of 440–820 kg/m³) and *Quercus spp* (with a density of

750 kg/m³) for furniture, window and door frames and decking stem from their properties including dimensional stability (Richter and Dallwitz, 2009; Lemmens, 2008).

Therefore, knowledge on the mc, density as well as swelling and shrinkage characteristics of timbers would enhance their utilization.

2.4 WOODEN FURNITURE PRODUCTION

Furniture construction is one of the oldest jobs in the manufacturing sub-sector of many countries (Yang et al., 2012). Until the industrial revolution where materials such as aluminium, steel, plastic and glass were used, furniture was conventionally made of wood (Asomani, 2009) The introduction of automation, standardization in design and construction techniques and the use of composite materials have brought some advancement to the furniture industry (International Tropical Timber Organization, 2015). Global trade in wooden furniture witnessed a rapid growth from US\$42 billion in 1997 to US\$97 billion in 2007 (Xiao et al., 2009) and US\$128 billion in 2013 (International Tropical Timber Organization, 2015) with prospects for further growth. Joyce and Spielman (2000) and Tankut and Tankut (2009) noted that successful construction of wooden furniture depends on several factors including the choice of timber species and fasteners. Cordero and Kanninen (2002), Rowell and Winandy (2005) and Tankut (2007) asserted that not all wood species are suitable for furniture making and the biological, physical and mechanical properties of timber should be taken into account before their selection. Eckelman (2003), Likos et al. (2012) and Strong (2013) also explained that fasteners influence the overall strength of furniture and should be chosen based on the kind of product and the level of strength required.

2.4.1 Fasteners available for furniture and joinery production

Atar *et al.* (2009) explained that furniture making requires bringing together pieces of wood with the help of fasteners. McDonald (2013) noted that fasteners strengthen furniture and also help attach hardware to furniture parts. Fasteners employed for wood work include nails, bolts, dowels, hinges, screws, joints and adhesives (Kureli and Altinok, 2011). Yuksel *et al.* (2014) observed that nails and screws were the most common types for attaching wood members in light-frame structures, while bolts were used for heavy members such as the beam to the posts. Glued joints are also recommended for the construction of quality chairs and tables (Asomani, 2009). In most furniture firms in Ghana, glued joints are the most common fasteners used for wooden furniture construction because they are economical and impact great strength (Asomani, 2009). McDonald (2013) explained that since the overall integrity of wooden furniture depends on how its components are held together, a careful analysis of the strengths of these fasteners is required prior to their selection.

2.4.1.1 Joints

Jesberger (2007) and Koch *et al.* (2013) noted that joints are needed to put wood pieces together in furniture frame construction. They play a major role in the structural behavior of joinery products (Tankut, 2007; Tankut and Tankut, 2011). Several kinds are available for wood work including dowel, dado, rabbet, lap, tongue and groove, mitre, butt, dovetail and mortise-tenon (Jesberger, 2007). According to Corbett (2003), Baylor (2009) and Zwerger (2012) each type of joint is appropriate for specific uses and should be employed depending on the kind of product, its desired strength and ease of construction. For instance, dowels are recommended for joining chair rail to post, frames and boards at right angles to each other. Dado is also used in making book shelves to hold them in position (Smardzewski and Majewski, 2013). Rabbet commonly joins the
top and bottom ends of furniture. Zwerger (2012) found that tongue and groove (T&G) joints were suitable for putting together wood edge to edge in flooring and paneling. Dovetail and mortisetenon are also frequently used in joinery work (Eckelman, 2003; Hoadley, 2000). While dovetail is often used to attach the sides to fronts of drawers and boxes, mortise-tenon is employed for chair, beds, tables and door frame construction (Corbett, 2003; Baylor, 2009; Tankut and Tankut, 2011). Erdil (2005) mentioned that choosing the wrong kind of joint for furniture making could make construction difficult, affect the integrity of the design and cause early failure of the wooden product.

2.4.1.1.1 Mortise-tenon joint

Mortise-tenon is one of the oldest joints used to connect the rails and stiles of frames, panel doors and chairs, and aprons to the legs of tables (Tankut, 2007). They are mostly used where reliability and strength are highly demanded. Tankut and Tankut (2011) found that mortise-tenon have several advantages including great strength, neatness, and large surface for adhesive application. The tenon is produced by creating a tongue at the end of a piece of wood whereas the mortise is formed by cutting an equal size hole in another piece (Fig. 2.1). The tenon is cut to fit the mortise hole exactly by its length, width and thickness. Likos *et al.* (2012) noted that its width should be more than a third of the thickness of the wood from which it is made and its thickness one third of the thickness of the wood. The length of the tenon usually extends halfway or three-quarters into the stile (Eckelman *et al.*, 2001). Liu and Eckelman (1998) mentioned that the joint can be pinned or glued to firmly lock it in place. It could also be constructed without application of glue.

There are several kinds of this joint. The through mortise-tenon joint results when the mortise passes completely through the stile. A wedge may be slotted diagonally or straight across the width at the exposed end of the inserted tenon to make the joint stronger (Likos *et al.*, 2012). The blind

mortise-tenon joints have the mortise passing only partly through the stile. The tenon is therefore not visible after joint assemblage. It is currently the most used type of mortise-tenon joints (Liu and Eckelman, 1998). Other types include the haunched, wedged, pegged, loose tenon type, groove and stub tenon, those with mitered shoulders and stuck moulding (Rachel, 2012). For these joints, their rectangular shaped kinds are commonly used although round, square and diamond shaped types are available (Likos *et al.*, 2012). Rectangular mortise-tenon joints are commonly employed to join the back leg and the side rail of a chair frame whereas the round or square tenon is best suited for stretchers (Eckelman *et al.*, 2001; Tankut, 2007). Tankut and Tankut (2005) observed rectangular mortise-tenon joints to be about 15% stronger than their round counterparts.

Maguire (1990) and Davis (2005) observed some problems with the use of mortise-tenon in joinery and furniture construction. They explained that since mortise-tenon involves cross-grain joinery, it faces the risk of failure due to seasonal wood movement. MacDonald (2013) mentioned that in order to minimize wood movement, the tenon must be wedged or extended halfway into the stile. Judd *et al.* (2012) also explained that orienting the tenon radially with respect to the mortise grain improves stability of the wood members. Morris (2014) further observed that the mortise-tenon joint has poor mechanical restraint to direct withdrawal of the tenon from the hole. Thus, although this joint has great resistance to shearing forces and racking, it easily fails under bending and tensional forces. Meanwhile, wooden products such as chairs and tables are often subjected to great amount of tensional forces through activities such as rocking (Eckelman and Haviarova, 2006).

The use of pinned-, keyed through-, spline- and wedged-tenon has minimally improved mortisetenon resistance to tension (Landis, 1998; Tankut, 2007; Tankut and Tankut, 2011; Likos *et al.*, 2012). These modifications have not entirely overcome breakdown of mortise-tenon under bending and tensional forces. Chan (2002) asserted that some of the modifications reduce the

aesthetic characteristics of products, while increasing their cost of production. Smardzewski (2015) recommended further research that compares the resistance to shear, compression and tension forces of mortise-tenon and other joints. This will help identify other joints that have the potential to overcome the challenges associated with mortise-tenon (Landis, 1998).

Plate 2.1: Mortise-tenon joint showing the mortise and tenon

(Source: https://commons.wikimedia.org/wiki/File:Mortise_tenon.png) 2.4.1.1.2 Dovetail joint

Dovetail is a strong, aesthetically pleasing side-grain to side-grain joint used for constructing blanket chests and small box drawers (Lau, 1991). It consists of tails and pins that interlock to give a wedging effect, which can resist great amount of bending and tensile forces (Fig. 2.2). Halstead (1999) explained that dovetails could overcome wood movement associated with mortise-tenon and also provide resistance against tensile stress. Dovetail has large gluing area and can hold together even without adhesive (Lau, 1991). Due to its resistance against pulling forces, Asomani (2009) mentioned that dovetail is frequently used to join drawer sides to the front. However, it is seldom used for chair construction.

Several types of dovetail joints exist: through, half-blind, secret mitred and sliding. Through dovetail is the most basic type created by joining the ends of the pieces which are exposed on both sides of the joint. It is used to join the corners of boxes, frames and cabinets. The half-blind is often used to join drawer fronts to drawer sides and it hides the joint from the front end of the wood frame. Only one side of the joint is seen. The secret mitred joint conceals the joint internally, while the sliding dovetail allows the tail to slide into the socket.

Fairham (2007) mentioned that dovetail construction requires high precision and accuracy. As a result, many wood workers regard it as a very difficult joint and is seldom used for chair construction. However, Herren (2014) asserted that with quality hand or power tools, dovetail joints are easier to manufacture. Eiki (2012) found that dovetail strength depends on the number and angle of tails, shear strength parallel to the grain of the wood from which it was made and the strength of the adhesive bond between the side-grain faces. Ozkaya *et al.* (2010) noted that the slope of the tail should not be too wide or narrow to maintain the wedge-locking advantage.

Plate 2.2: Dovetail joint showing the various parts

(Source: http://www.wonkeedonkeetools.co.uk/wood-chisles/how-to-cut-a-dovetail-joint-with-awood-chisel/)

2.4.1.1.3 Factors affecting the strength of furniture joints

Tankut (2007) and Haviarova *et al.* (2013) observed that the wood strength properties and moisture content affect its joint strength. Erdil *et al.* (2005) explained that greater joint strength is often associated with greater wood shear strength. Haviarova *et al.* (2013) found that joints constructed with *Fagus orientalis* had greater strength than those with *P. sylvestris* because *F. orientalis* had greater shear strength (9.72 Nmm²) (Bektaş *et al.*, 2002) than *P. sylvestris* (8.82 Nmm²) (Ulker *et al.*, 2012). Similarly, Kamperidou *et al.* (2011) observed that joints constructed with *Populus Balsamifera* (shear strength = 5.446 Nmm²) had lower strength than those from *F. sylvatica* (shear strength = 14.84 Nmm²). Ratnasingam *et al.* (2010) also found that the bending moment capacity of rectangular mortise-tenon joints made from *Elaeis guineensis* (shear strength

= 7 Nmm²) was only half of those for joints from *Hevea brasiliensis* (shear strength = 11 Nmm²), *Pallaquim sp.* (shear strength = 12 Nmm²), *Shorea sp.* (shear strength = 11.5 Nmm²) and *Sindora sp.* (shear strength = 13 Nmm²).

According to Rowell and Winandy (2005) and Antwi-Boasiako and Boadu (2013), fluctuations in wood moisture content cause internal stresses in glue lines and subsequently decreases joint strength. Tankut (2007) noted that when wood was conditioned at a relative humidity (RH) of 85%, joint strength reduced by 15%. Dupont (1963) found 7-9% wood mc appropriate for strong joints. Therefore, timbers with great strength properties and low mc may be more appropriate for the construction of wooden products with strong joints.

Yang and Li (1986) further mentioned that joint design and type of adhesive also affect joint strength. In their study on mortise-tenon joints using two adhesives, Haviarova *et al.* (2013) observed that joints constructed with Polyvinyl acetate (PVAc) were stronger than those produced using Polyurethane (PU). Altun *et al.* (2010) had higher bending moment capacity under diagonal

compression for joints glued with PVAc compared to cyanoacrelate. Erdil *et al.* (2005) noted that PVAc was better than UF and resorcinol phenol adhesives in an experiment to determine the effect of wood species, adhesives, rail width, tenon depth and length, on bending strength and flexibility of some wood joints. They concluded that different adhesives would influence joint strength differently. Kamenicky (1975), Yang and Li (1986), Erdil *et al.* (2005) and Likos *et al.* (2012) found that joints designed with longer tenons had greater stiffness than those with shorter tenons. Wilczyński and Warmbier (2003) also observed that increasing tenon thickness from 6 to 12mm led to a 10% increase in joint strength. According to Tankut and Tankut (2005), rectangular end mortise-tenon was stronger than round end mortise-tenon. They recommended round end mortise-tenon for constructing the front leg-side rail joint in a chair frame where stresses were more uniformly distributed. Mihailescu (2001) and Haviarova *et al.* (2013) mentioned that manufacturers must carefully take into account the influence of joint design and adhesives on the strength of furniture joints during their construction.

2.4.1.2 Adhesives

Mahu't (1995) and the U.S. Department of Agriculture (2011) defined adhesives as materials used for sticking, or adhering, one surface to another. Yuksel *et al.* (2014) explained that manufacturers often prefer making joints without adhesives because it reduces shipping costs and enables furniture to be exported in the knock-down condition for assemblage on site. However, adhesives add great strength and rigidity to furniture when they are used (Haviarova *et al.*, 2013).

There are two groups of adhesives that could be used for joinery: natural and synthetic (Conner, 1996; Atar *et al.*, 2009). The natural adhesives are made from hides, bones, milk and other parts of animals and plants such as cassava and soybean. This group of adhesives is hardly used in recent times because they stain wood, have poor resistance to moisture and heat and could best be applied

when hot. Synthetic adhesives are of two basic types: thermosetting and thermoplastic. PVAc, polyvinyl alcohol (PVA), polyacrylates, polyester acrylics, acrylic solvent cement, cyanoacrylates (superglue) and silicone resins are examples of the thermoplastic type. Thermoplastic adhesives harden on cooling but soften and flow upon heating (Vick, 1999). They are easy to apply, durable against bio-deteriorating organisms, odorless and nonflammable. They develop very good bond between wood pieces within 15 min of application under room temperature (Atar et al., 2009). However, it is very expensive and not resistant to heat. Tout (2000) and Atar et al. (2009) recommended PVAc for indoor furniture. They cautioned against its usage in permanently stressed joints. Thermosetting adhesives require longer time for curing under room temperature (Mahu't, 1995). However, they do not soften on reheating once cured. They are resistant to moisture and other chemicals and have better gap-filling ability and good adhesion to wood (Tout, 2000; Frihart, 2005). Resorcinol, phenol-resorcinol, epoxy, phenol- and Urea-formaldehyde are examples of thermosetting glue. Asomani (2009) noted that most thermosetting adhesives contain formaldehyde and catalyst that controls the speed for curing.

Wengert (1998) explained that adhesives should be chosen based on their costs, moisture resistance, heat sensitivity, flexibility and ease of application. In Ghana, most furniture production companies employ Fevicol SH synthetic adhesive, which is thermosetting, due to their availability, great bonding strength, impact and fire resistance, quick setting time and nonstaining property (Asomani, 2009). BADW

2.5 Summary

The review of literature has discussed current problems with the supply of timber resources. It has explained the potential role secondary timber species could play in ensuring sustainable supply of wood and the need for research into the properties and uses of several of these neglected but abundant timbers in the forests. Little evidence was identified through literature about commercial utilization of *K. gabonensis* Pierre ex Engl., an abundant tropical LUS. In order to draw meaningful conclusions on the appropriateness of *K. gabonensis* for wooden products, empirical research needs to be conducted on its physical, mechanical and biological characteristics.

In recommending *K. gabonensis* for furniture construction, joints that ensure great strength of its products needs to be identified, as joint strength is a function of wood species. The review has indicated that mortise-tenon, the popular joint used in furniture work is fraught with problems including breakdown under bending and tensile forces. Although, there are speculations on the ability of dovetail joints to overcome these forces, research that compares the performance of dovetail and mortise-tenon joint under bending and tensile stress is non-existent. Therefore, in order to choose the appropriate joint for furniture construction, empirical research is needed on the level of strength produced by different joints constructed from *K. gabonensis*.

CHAPTER THREE

LEVEL OF UTILIZATION OF SECONDARY TIMBER SPECIES AMONG FURNITURE PRODUCERS

3.1 Introduction

Production activities of the wooden furniture industries continuously get hindered by the decline in the supply of raw materials (Shih, 2012). Purnomo *et al.* (2011) and Zhou *et al.* (2015) explained that increasing scarcity of preferred (especially the traditional/primary) timber species limits the output and growth of the timber firms. For instance, supply of *Hevea brasiliensis* (rubberwood), a major timber for furniture production in Malaysia, decreased from 489,378 m³ in 2001 to 91,605 m³ in 2008 due to overexploitation (Puasa *et al.*, 2010). Consequently,

Sarawak, a leading furniture producer contributed less than 0.5% of Malaysia's furniture export (Shih, 2012). Hashim (1998) reported that sustainability of Thailand's furniture industry continues to face serious risk because deforestation has reduced the country's forest cover from 53% to 28% of the total land area. A further reduction to 24% was anticipated by 2010. Currently, wooden furniture is giving way to the metal type in Taiwan, one of the world's largest furniture producing countries, due primarily to wood shortage (Hashim, 1998). The impacts of timber shortage on furniture industries in these countries are not different from those experienced in other parts of the world. Nutassey *et al.* (2014) noted that many companies in Accra and Kumasi have folded up because the traditional timbers for furniture are not available, while the few are very expensive to acquire.

Adupong (2011) reported that about 78% of furniture on the national market are imported from

Asia, Italy and South Africa partly due to a reduction in the processing capacities of the local industries from timber shortage. Importation increased by about 400% between 2005 and 2011 (Nutassey et al., 2014). This has led to a decline in the contribution of the industry to the national economy. For instance, Attah (2014) reported that the nation's timber industry's contribution to Gross Domestic Product (GDP) dropped from 4.1% in 2006 to 3.7% in 2010. The decline was attributed to poor performance of the industry on the export market due to operational challenges such as reduced supply of timber. Timber importation is one attempt at solving the challenge of inadequate raw material supply. In 2012, 66% of wood used for furniture production by Vietnam was imported from the USA (Cel consulting, 2010). Hansen et al. (2013) mentioned that logging ban placed by the Chinese Government on natural forests due to shortage of domestic timber supply has resulted in a surge in the amount of timber imported into the country, which is estimated at 70% of China's total timber consumption. Similarly, Ghana imports timber from neighboring countries including Cameroon to augment the local supply (Tarlue, 2014). However, continuous importation of wood increases the cost of operation and furniture products, which subsequently slows the growth of the local industries (Ogunwusi, 2012). Hansen et al. (2013) observed that China's continuous dependence on imported timber is a source of industry insecurity. Donovan and Nicholls (2003) and Smith et al. (2005) mentioned that the introduction of Lesser Utilized timber Species (LUS) with known properties on the market is one of the best strategies that would widen the raw material base and ensure continuous supply of timber resources for furniture production. In the USA, previously underutilized species such as *Alnus rubra* Bong, are making substantial contributions to the growth of the furniture sub-sector (Green et al., 1995). Manufacturers in Malaysia have accepted alternatives such as Dipterocarpus confertus v. Sloot, Pseudolachnostylis maprounaefolia Pax, Shorea spp. and Koompassia malaccensis Maingay ex Benth., which have similar properties as rubberwood (Puasa et al., 2010). In Ghana, several LUS (e.g., K. gabonensis Pierre ex Engl., Celtis spp., Borassus aethiopum Mart., Strombosia glaucescens Engl., Pycnanthus angolensis (Welw.) Warb., Canarium schweinfurthii Engl. and Azadirachta indica Adr. Juss.) that have the potential to substitute the scarce traditional timbers for furniture production have been investigated (AddaeMensah and Ayarkwa, 1998; Appiah-Kubi *et al.*, 2011; Asafu-Adjaye *et al.*, 2013). However, there is still high uncertainty about the survival of the industry due largely to persistent wood shortage (Brod, 2009; Ozarska, 2009; Muhtaman 2009). It is therefore unclear the extent to which manufacturers utilize LUS as alternatives to the dwindling primary timbers. This work sought to ascertain among manufacturers the level of utilization of LUS (including *K. gabonensis*) for furniture production and to identify the current challenges associated with their utilization by the furniture industry and their solution so as to ensure reliable timber supply.

3.2 Materials and methods

3.2.1 Study Area

The study was conducted in selected 300 (out of 550) active furniture manufacturing companies randomly sampled and interviewed in Accra and Kumasi between October 2014 and February 2015 since most of these firms which produce furniture and joinery products are concentrated in the two cities (Owusu, 2012). Kumasi lies in the moist semi-deciduous forest zone (60° 35' - 60° 40' N, 001° 30' - 001° 35' W), is Ghana's largest wood product manufacturing District (Center for International Forestry Research, 1996; Effah *et al.*, 2013) and dominated by small to medium-scale firms which produces every kind of furniture. Accra is located on latitude 5°33'N and longitude 0°15'W (GhanaDistricts.com, 2006) and hosts many of the large-scale furniture companies in Ghana (Nutassey *et al.*, 2014). These firms largely depend on timber markets in Kumasi and other forested areas for raw materials (Owusu, 2012).

3.2.2 Sampling technique

Data were collected from the Furniture and Wood Products Association of Ghana (FAWAG) Secretariat at Kumasi about the active Furniture Production Firms in the country. These have been stratified into Small-, Medium- and Large-scale companies based on staff strength, capacity of logs processed as well as the machinery and technology employed. Large companies included those with more than 80 workers and a processing capacity of over 20,000 m³ of wood per annum while medium-size had 60 - 80 workers with a processing capacity of 5,000 – 20,000 m³ of wood per annum. Small-scale furniture firms had 10 - 60 workers and processed about 5,000m³ of wood or less per annum. The number of companies (n) sampled from each stratum was determined by Slovin's formula (Tejada and Punzalan, 2012):

$$n = \frac{N}{1 + Ne^2}$$

Where: N = Total number of companies in each stratum; e = margin of error (0.05).

3.2.3 Data collection and analysis

Data were collected from respondents through questionnaires (Appendix H) and personal observation. Furniture producers provided information on the types of products they manufacture, their choice of timber species and the use of LUS in their operations. Statistical Package for Social Scientists (SPSS) and Microsoft Excel were used to analyze the data and presented in Figures and Tables.

3.2.4 Validity and Reliability of the questionnaire

Zikmund (2003) and Faux (2010) mentioned that pre-testing in survey research is essential for determining the validity and reliability of the questionnaire. Thus, the questionnaire was pretested before it was finally administered to respondents. Informal and individually-based expert review

was the first method used in evaluating the validity of the questions in respect of the objectives for this survey. Based on the responses obtained, the questionnaire was re-designed and subsequently administered to two groups: the target population (furniture manufacturers from all the strata) and a second group known to have little knowledge on the subject matter

(Second year Natural Resources Management students from KNUST) (Parmenter and Wardle, 2000). According to Baker (1994), 10-20% of the sample size for the actual study should be considered for a pre-test. Thus, 15% of the sample size for the survey were randomly selected from each group for the pre-test. The furniture manufacturers completed the questionnaires at two different periods; two weeks apart (Parmenter and Wardle, 1999). They were not privy to the second scheduled test until it was due. After the first test, the correctness of responses and the number of questions answered/unanswered by the groups were compared to determine the validity or the extent to which the survey instrument measures exactly what it is intended for.

The test-retest method was also employed to evaluate the reliability of the questionnaire (McIntire SA, Miller, 1999; Hogan, 2007). In this method, manufacturers' responses from the first and second tests were correlated. High Pearson's correlation coefficient (r) indicated a high degree of reliability of the questionnaire.

3.3 Results

3.3.1 Size of firm

Table 3.1 shows that majority of the firms in both Accra and Kumasi were small-scale (70%) while the least were large-scale (5%). More small-scale firms (56%) were observed in Kumasi than Accra (14%), while large scale-firms were greater in Accra (3%) than Kumasi (2%).

Location of fir	rm Cat	Category of firm (%)		
	Small Me	edium Lar	ge	
Accra	14	12	3	28
	56	13	2	72
Kumasi		25		
Total	70	25	5	100

Table 3.1: Respondents sampled from the various categories of firms in Accra and Kumasi

3.3.2 Furniture products manufactured by firms

Most of the firms (33%) manufactured office chair, tables as well as bedroom furniture (Table 3.2). Living room, dining furniture, bedroom furniture and others (e.g. garden benches and kitchen stools) were produced by about 1% of the firms. About 40% of the companies indicated that their choice of products depended only on market availability, 27% mentioned profitability and market availability, while 1% cited profitability and other reasons such as vocation (Table

3.3).

Table 3.2: Furniture products manufactured by the firms in Accra and Kumasi		
Furniture products	Respondents/Firms (%)	
Office chairs and tables; bedroom furniture	33	
Office chairs and tables; living room and dining furniture	27	
Office chairs and tables; living room, dining, bedroom furniture	22	
Office chairs and tables; living room, dining furniture; others (e.g. garden benches and kitchen stools)	STATE 3	
Office chairs and tables; others (e.g. garden benches and kitchen stools)	3	
Office chairs and tables; living room, dining, bedroom furniture; others (e.g. garden benches and kitchen stools)	2	

Living room, dining and bedroom furniture

Living room, dining, bedroom furniture; others (e.g. garden benches		1
and kitchen stools)	IZA ILIOT	
Office chairs and tables Total	KNUST	4 100

Reasons	Respondents/Firms (%
Market availability	40
Profitability; market availability	28
Market availability; ease of manufacturing	11
Profitability; market availability; others (e.g. vocation)	5
Profitability	5
Profitability; ease of manufacturing	5
Market availability; others (e.g. vocation)	4
Profitability; market availability; ease of manufacturing	1
Profitability; others (e.g. vocation)	
Total	100

3.3.3 Choice of markets for sale of furniture products

Fig. 3.1 shows that 93% of the manufacturing companies sold their products on the local market and 7% on the international market. About 92% of those who sold their products on the domestic market explained that their choice was due to their inabilities to meet international demand (Fig.

Fig. 3.1: Choice of market for sale of furniture products by the manufacturing firms

Fig. 3.2: Reasons for manufacturers' choice of market for furniture products

3.3.4 Timber materials used for furniture production

3.3.4.1 Choice of wood species

Timber species such as mixed red wood (e.g., *Cedrella odorata*, *Entandrophragma* spp., *Khaya* spp., *Afzelia africana*), *Aningeria robusta* (asanfena), *Guarea cedrata* (guarea) and *T. grandis* (teak) were used for furniture production by majority of the manufacturers (32%) (Table 3.4); 22% of these firms indicated that their choice of wood species was based on the timbers' strength, 20% attributed it to strength and durability and 14% due to strength and aesthetics (Table 3.5).

Timber species	Respondents/Firms (%)
Mixed red wood; A. robusta; G. cedrata; T. grandis	32
G. cedrata; T. grandis	11
Mixed red wood; A. robusta; M. excelsa; G. cedrata; T. grandis	9
Piptadeniastrum africanum; G. cedrata; T. grandis	5
Mixed red wood; A. robusta; M. excelsa	5
Mixed red wood; A. robusta; D. ogea; G. cedrata; T. grandis	4
Mixed red wood; A. robusta; Mansonia altissima; G. cedrata; T. grandis	3
A. robusta; G. cedrata; T. grandis	2
Mixed red wood; A. robusta	2
M. excelsa; P. africanum; G. cedrata; T. grandis	2
M. altissima; D. ogea; G. cedrata; T. grandis	2
Mixed red wood; A. robusta; M. excelsa; M. altissima; G. cedrata; T. grandis	1
Mixed red wood; A. robusta; Celtis spp.; P. africanum	1
Mixed red wood; A. robusta; M. excelsa; Celtis spp.; G. cedrata; T. grandis) 1
A. robusta; M. excelsa; P. africanum; G. cedrata; T. grandis	
Mixed red wood; A. robusta; M. excelsa; Celtis spp.; P. africanum	3/1
Mixed red wood; A. robusta; D. ogea; P. africanum; G. cedrata; T. grandis	1
Mixed red wood; <i>M. excelsa</i> ; <i>P. africanum</i> ; <i>G. cedrata</i> ; <i>T. grandis</i>	1
Mixed red wood; A. robusta; M. altissima; D. ogea	1
A. robusta; P. africanum; G. cedrata; T. grandis	1

Table 3.4: 7	Fimber sn	ecies used	d by f	firms for	furniture	production
1 abic 5.4.	rmoer sp	ceres used	u ny i	111111111111111111111111111111111111111	Iuimuic	production

A. robusta; M. excelsa; D. ogea; G. cedrata; T. grandis	1
	1
Mixed red wood; A. robusta; M. excelsa; D. ogea; G. cedrata; T. grandis	
Mixed red wood; A. robusta; P. africanum; G. cedrata; T. grandis	1
Mixed red wood; A. robusta; M. excelsa; P. africanum; G. cedrata; T. grandis	1
Mixed red wood; A. robusta; M. altissima; D. ogea; G. cedrata; T. grandis	1
Celtis spp.; P. africanum; G. cedrata; T. grandis	1
Mixed red wood; A. robusta; M. excelsa; D. ogea; P. africanum	1
Mixed red wood; A. robusta; M. excelsa; P. africanum,	1
A. robusta; M. excelsa; G. cedrata; T. grandis	1
M. excels; M. altissima; G. cedrata; T. grandis	
Mixed red wood; A. robusta; M. excelsa; D. ogea	-
Mixed red wood; A. robusta; D. ogea; P. africanum	1
Mixed red wood; M. excelsa; Celtis spp.; G. cedrata; T. grandis	1
Total	100

Reasons	Respondents/Firms (%)
Strength	22
Strength; durability	20
Strength; aesthetics	14
Durability	8
Strength; aesthetics; consumers' choice	6

	6
Strength; consumers' choice	
Strength; durability; aesthetics	6
Consumers' choice	3
Durability; consumers' choice	3
Strength; durability; consumers' choice	2
Strength; durability; others (good carving properties)	1
Durability; consumers' choice; others (good carving	1
Strength; consumers' choice; others(good carving properties)	1
Durability; others (good carving properties)	1
Strength; durability; consumers' choice; others (good carving properties)	1
Strength; aesthetics; others (good carving properties)	J.
Strength; others (good carving properties)	2
Strength; durability; aesthetics; consumers' choice	1
Durability; aesthetics; other (good carving properties)	1
Total	100

3.3.4.2 Utilization of LUS for furniture manufacturing

Only 15% of the manufacturers use LUS (e.g., *Celtis* spp., *Magnifera indica* and *A. indica*) for furniture production (Fig. 3.3). The others (i.e., 85%) rely on only the primary timbers. Specifically, none of the respondents use *K. gabonensis* in their operations. For those who do not

use any LUS for production, 32% attributed this to market unavailability, while 44% indicated lack of information about the properties and uses of LUS as challenges that hinder their utilization.

Table 3.6: Reasons for low level of utilization of LUS among furniture manufacturers

Reasons	Respondents/Firms (%)
LUS unknown; lack of technical data on the properties and uses of LUS	44
Unavailability of LUS on the market	32
LUS unknown; unavailability of LUS on the market	5
LUS unknown	5
Lack of technical data on the properties and uses of LUS	4
LUS unknown; unavailability of LUS on the market; lack of technical data on the properties and uses of LUS	1
None of the options	1
Total	100

3.3.4.3 Sources of timber materials

Timber markets; contractors served as the major suppliers of wood for most manufacturers (26%), followed by timber markets (23%), timber markets; sawmills (21%), timber contractors (18%), sawmills (8%) and then sawmills; timber contractors (4%) (Table 3.7).

Sources of raw materials	Respondents/Firms (%)
Timber markets; timber contractors	26
Timber markets	23
Timber markets; sawmills	21
Timber contractors	18
Sawmills	8
Sawmills; timber contractors	4
Total	100

For the major challenges faced by the companies, 31% mentioned non-availability of preferred wood, while 19% stated non-availability of preferred wood; competition from imported furniture (Table 3.8).

Table 3.8: Challenges faced by firms in furniture manufacturing		
Challenges facing firms	Respondents/Firms (%)	
Non-availability of preferred wood	31	
Non-availability of preferred wood; frequent power outage	31	

Competition from imported furniture	4
Competition from imported furniture; frequent power outage	3
Non-availability of preferred wood; competition from imported furniture; frequent power outage	2
Frequent power outage	2
Total	100
Non-availability of preferred wood; competition from imported furniture	19

3.4 Discussion

3.4.1 Size of firm

The Ghanaian wooden furniture industry is steadily declining in performance, productivity and profits due to lack of raw materials, skilled labour, competition brought about by trade liberalization and high operational costs (Ametsistsi *et al.*, 2009). These challenges are more pronounced among the large scale companies (Mukhopadyay and Pendse, 1984). According to Söderbom *et al.* (2006), many Ghanaian large-scale firms have shut down due to increasing costs of operations. A few of those remaining have reduced their production capacities drastically due to raw material shortage. It was therefore not surprising to find more small- (70%) and mediumscale (25%) furniture firms than the large type (5%). Small- and Medium-scale Enterprises (SMEs) are recognized as catalysts for sustainable development of many countries (Odeh, 2005; Ogbo and Nwachukwu, 2012). They provide about 50% of all jobs in Nigeria (Ojeka, 2011) and make up about 70% of all industrial establishments and 90% of all businesses in Ghana. According to Oppong *et al.* (2014), Ghanaian SMEs employ 60% of the labour force, contribute about 22% to the GDP and support the development of indigenous entrepreneurship. Ranabijoy (1993)

observed that a major bottleneck to the survival of small-, medium- and large-scale industries in the forestry sub-sector is the limited supply of timber materials. Policies aimed at boosting innovation and increasing the availability of raw materials would promote the competitiveness and growth of these firms (Nootebom, 1994). Zziwa *et al.* (2006) explained that in order to increase the raw material base for furniture product manufacturing, an increase in the use of LUS to supplement the supply of primary timbers need be encouraged. This, according to Ssseremba *et al.* (2011), would preserve firms, keep the sector operational and prevent job losses.

3.4.2 Furniture products manufactured by firms

The study revealed that most of the manufacturers (33%) engaged in the production of office chairs, tables as well as bedroom furniture. Centre for Industrial Studies (2015) observed a faster growth in the office furniture trade on the European market. Ponder (2013) explained that the emergence of new businesses and expansion of existing ones have led to the growth in sales of office chairs and tables. Ha (2007) and Kazemifar and Khodadadeh (2013) also noted that every individual spends about a third of their lives in bed for relaxation and privacy. As a result, most families rank bedroom furniture as the most important product to be purchased for the home. Consequently, Drayse (2008) and Kingsway Furniture Co. Ltd. (2009) observed that office and bedroom furniture were the main commodities traded on the global furniture market. Flow control magazine (2015) noted that the household and office furniture sectors accounted for about two-thirds of the total revenue for the furniture sector in USA over the last decade. The high availability of market for office chairs, tables and bedroom furniture could explain the frequency of their production among manufacturers. The high rate of production also implies that large amount of wood would be needed by the office and bedroom furniture manufacturers.

3.4.3 Choice of markets for sale of furniture products

Most of the firms (93%) sold their products on the domestic market; 92% of them attributed this to inability to meet international demand. According to Oppong et al. (2014), inadequate financial resources, lack of export marketing strategies and inability to meet international demands/standards are responsible for the reliance of the furniture industry on the local market for sale of products. Ward and Gilbert (2001) explained that firms choose to sell their products on the local market because export marketing requires more time, greater financial resources and greater ability to withstand far wider and more intense competition. As a result, about 73% of middle-market firms in North America currently sell their products on the domestic market (Economist Intelligence Unit, 2012). However, Julian (2014) observed that the international market helps local industries to grow fast, improve their innovation, credibility and competitiveness. Biggs (2013) mentioned that due to the relatively small size of domestic markets, firms looking to expand their businesses must take advantage of the export markets. Thus, the growth of the Ghanaian furniture sector could be enhanced when more firms are supported to produce furniture in quantities that meet international demand. However, this will partly be dependent on continuous supply of raw materials (Adebara et al., 2014). With decreasing quantities of popular timbers for furniture, producers could rely on secondary timber species to augment supply and promote the competitiveness of the sector.

3.4.4 Timber materials used for furniture production

3.4.4.1 Choice of wood species

Timber is the single most important raw material in the furniture industry (Boampong *et al.*, 2015). Adebara *et al.* (2014) noted that certain products require specific timber species.

Therefore, Ayarkwa (1998) asserted that timber users in Ghana are very selective in their choice of wood, such that furniture products are usually made from a small number of preferred timbers. It was observed from this study that mixed red wood (e.g., Cedrella odorata, E. spp., Khaya spp., A. africana), A. robusta, G. cedrata and T. grandis were the timber species used by majority of the manufacturers (32%) due to their strength, durability and aesthetics. In a study to determine the factors influencing the choice of timber for furniture and joinery production in Ghana, Dadzie et al. (2014) and Boampong *et al.* (2015) similarly found that among a list of 22 wood species, only few including mixed red wood, G. cedrata and T. grandis were mostly patronized by furniture manufacturers. Trevallion and Strazzari (2003), Zziwa et al. (2006), Louppe (2008), Binggeli (2008), Derkyi et al. (2009), Govorčin et al. (2010) and Chernyh et al. (2013) confirmed that factors such as strength, cost, durability, beauty and availability influenced the choice of timber for furniture. This accounts for the high patronage of mixed red wood, A. robusta, G. cedrata and T. grandis among manufacturers. Consumers preferred to spend more money to purchase products made from strong and durable timbers that would reduce maintenance and replacement cost (Boampong et al., 2015). Tropical timber species with great strength and good aesthetic properties such as K. anthoteca, P. elata, Simarouba versicolor and E. cylindricum are therefore common on the Italian furniture market (Centre for the Promotion of Imports from Developing Countries, 2015). Thus, in seeking alternatives for the over-dependent primary timbers, secondary timber species that are strong, durable and aesthetically good could gain acceptance by furniture manufacturers. For instance, K. gabonensis is a naturally durable and strong timber with attractive grain pattern; it is abundant in most tropical forests and has prospects for furniture-making (Oteng-Amoako and Obeng, 2012). Based on its characteristics, it could contribute to satisfying the raw material needs of the furniture industry.

3.4.4.2 Utilization of LUS for furniture manufacturing

Acquah and Whyte (1998) explained that the volume of high-valued commercial timbers that remains in the forests for furniture production faces stiff competition from all the other woodrelated sectors. Oteng-Amoako et al. (2008) found that LUS could serve as substitutes to and reduce the pressure on these commercial timbers. Boampong et al. (2015) noted that several secondary timber species whose properties make them suitable for furniture are in large quantities in the tropical forests. However, this study showed that only 15% of manufacturers use LUS such as Celtis spp., *M. indica* and *A. indica* for furniture production. Sseremba (2005) found *M. indica* among several other secondary timbers used for furniture-making in Uganda. It was further observed that none of the respondents had ever used K. gabonensis in their operations. Manufacturers indicated unavailability of secondary timbers on the market and lack of information regarding their properties and uses as some of the hindrances to their utilization. Smith (2000) found that utilization of timber by wood product manufacturers depends on accessibility on the market and availability of comprehensive technical data on its properties. Similarly, Ayarkwa (1998) and Effah and Osei (2014) mentioned that dissemination of research results among wood workers about new timber species that could serve the same purpose as their already utilized counterparts would enhance their utilization. Sseremba et al. (2011) found that accessibility of data regarding the characteristics and uses of LUS such as M. indica and Artocarpus heterophyllus improved their acceptance and utilization by Ugandan furniture manufacturers. It could be understood from the results that the level of utilization of LUS, the likely alternatives for furniture-making, is low among manufacturers because information on their characteristics and uses are not readily available. Therefore to increase the utilization of secondary timber species for wood products, adequate information about their abundance, properties and uses must be made available to manufacturers (Graham, 2012).

3.4.4.3 Sources of timber materials for furniture production

Raw materials supplied to furniture manufacturers are obtained through a network of buyers who purchase timber from both private and public forest landowners (Cubbage et al., 1996). About 26% of the respondents sourced wood from timber markets and contractors (loggers). Nketiah and Wieman (2004) and Marfo (2010) explained that wood procured from these two sources are comparatively cheaper than those sold by sawmills. Therefore, many furniture manufacturing firms prefer to buy lumber from the former. Since firms do not use secondary timber species due to market unavailability, it could be stated that timber contractors and operators do not supply LUS to furniture manufacturers. Boyes and Melvin (2015) mentioned that the level of supply of raw materials for any production process depends on demand for those materials by producers. In Northern India, although many secondary timber species that could be used for housing construction existed in great numbers in the forests, timber providers did not risk bringing them on the market due to their low demand among users (Tai and Sidel, 2012). Therefore, the failure by timber contractors and operators to supply LUS on the market may be due to low demand for the species. Venn and Whittaker (2003) also mentioned that most timber sellers are unaware of the properties and the prospective uses of a lot of the LUS in the forests as well as profits that might be obtained from their sales. This leads to total neglect of the non-traditional timbers in the timber trade. Providers of timber for furniture production do not make available LUS to manufacturers due likely to a lack of understanding of their quality and profitability (Quinlan, 2011). Thus, in encouraging the use of secondary timbers for furniture and other wooden products, information on the characteristics, uses and profitability of LUS should also be made available to wood suppliers.

SANE N

3.4.5 Challenges faced by furniture manufacturers

According to Center for Industrial Studies (CSIL) (2010), about US\$376 billion was obtained on the global market from the production of furniture in 2010. Ngui *et al.* (2011) explained that furniture has greater monetary value than other wood-based products such that furniture manufacturing is an ideal option for countries that seek to earn more from the timber-processing industry. Nonetheless, furniture industries face serious challenges that have led to the collapse of many (Nutassey *et al.*, 2014). Nutassey *et al.* (2014) explained that the number of industries in Ghana's tertiary wood sub-sector declined by over 60% between 1990 and 1999. Norini *et al.* (2009) estimated that only 26% of the total furniture firms in Sarawak State in Malaysia remained active as of 2009 due to myriad of problems such as decline in quantities of raw materials and rising costs of operations.

Respondents mentioned that non-availability of preferred wood and competitions from imported furniture were among the challenges confronting the furniture industry. Similarly, Adupong (2011) observed in a survey commissioned by Wood Workers Association of Ghana-Western Region (WWAG-WR) that decreasing quantities of primary timbers hindered the activities of furniture-making firms. Respondents from that survey explained that the volumes of timbers had declined drastically over the years. The few amounts remaining were difficult and expensive to acquire partly because sawmills that had large forest concessions were export-oriented and did not provide for the local market. Local manufacturers were therefore unable to meet customers' increasing demand for furniture and have resorted to their importation to supplement local production (Tettey *et al.*, 2003; Budu-Smith, 2005). This situation has led to stunted growth of the local industry, while rendering many manufacturers jobless (Dinh *et al.*, 2013). The challenges associated with the drastic decline in timber supply could be reduced by encouraging the use of

secondary timber species to widen the raw material base for the sector (Budu-Smith, 2005). However, the present study has shown that manufacturers hardly use LUS primarily due to market unavailability and lack of technical information about them. Thus, to increase the use of secondary timber resources by the wood industry, wood suppliers, product manufacturers and end users must be fed with reliable and sufficiently detailed information about the characteristics and uses of the large amount of neglected timber species in the forests. This will help meet the raw material requirement of the industry, while reducing pressure on the current commercial timber species.

3.5 Summary

This chapter investigated the level of utilization of LUS including *K. gabonensis* among furniture producers. Continuous decline and non-availability of preferred traditional timbers and competition from imported furniture were the main challenges confronting the furniture industry. Data obtained indicated that information on the properties of many LUS with prospects for furniture-making (such as *K. gabonensis*), that are available in great quantities in many tropical forests, are hardly available to local producers, which affects their popularity among timber suppliers and manufacturers. To improve on the level of utilization of secondary timbers, wood workers must be supplied with comprehensive information about their properties and economic values. This will contribute to reducing pressure on the primary timbers, ensuring consistent supply of timber and keeping the sector operational.

SAP J W J SANE

BADW

CHAPTER FOUR

PHYSICAL AND MECHANICAL PROPERTIES OF K. GABONENSIS

4.1 Introduction

Wood has a long history of use due to its beauty, strength, durability and workability (Tankut, 2007). However, many tropical timbers with varying properties remain neglected by end-users because their properties are unknown (Simeone, 2011). As the traditional —favouritesl for wooden products become increasingly rare, Lesser-Utilized Species (LUS) abound, which could be the probable substitutes. Forest Products Research and Development Institute (FPRDI) and International Tropical Timber Organization (ITTO) (1997) recommended the use of some LUS (e.g. *Koordersiodendron pinnatum, Diospyros pyrrhocarpa, Artocarpus blancoi* and *Ziziphus talanai*) in the Philippines for building construction and furniture production based on their physical (e.g., density) and strength (e.g., Moduli of Rupture and Elasticity) properties. Currently, *Hevea brasiliensis* (rubberwood), a former LUS, forms over 80% of wood used for furniture production in Malaysia (Boon-Kwee and Thiruchelvam, 2012). Other LUS could also provide alternative raw materials for the Timber Industry.

For instance, K. gabonensis occurs widely in several East and West African countries (OtengAmoako and Obeng, 2012). Oteng-Amoako and Obeng (2012) reported 940 – 1150 kgm⁻³ as its density; it has a beautiful grain pattern, saws well, dresses to a smooth finish and glues well. However, it is seldom utilized locally or internationally. Meanwhile, Simeone (2011) recommended that no timber species is useless if its strength properties are known. However, like several other LUS, it lacks comprehensive technical data on its properties and working performance, which affects its acceptance by wood product manufacturers and consumers (Smith, 2000). Cordero and Kanninen (2002) and Strong (2013) mentioned that the physical and strength

properties are predominantly important when choosing wood for structural works. Wood strength is largely influenced by its physical properties (Gryc and Horácek, 2007). Those of great concern are moisture content (mc), density, swelling and shrinkage (Johnson *et al.*, 2006; Ali, 2011). Dickson (2000) and Hernandez (2007) mentioned that lower density woods, due to their thin cell walls, have lower strength properties than the heavy types. Persson (1997) and Zhang (1997) also found Modulus of Rupture (MOR) of wood to be linearly related to its density. Thus, Ali (2011) stressed that medium-density woods (i.e., about 400 kg/m³) to highdensity types (i.e., about 1100 kg/m³) are preferred for most manufacturing products including furniture.

Wood hygroscopicity also renders it liable to dimensional changes such that when its moisture fluctuates around the fiber saturation point (FSP), it results in unequal degrees of either shrinkage or swelling in its three directions: longitudinal, tangential and radial surfaces (Rowell *et al.*, 2009; Antwi-Boasiako and Boadu, 2013). These changes often lead to reduction in timber strength, tightening and fracture of joints, splitting and change of cross-sectional shapes of wood structures (Winandy, 1994). Desch and Dinwoodie (1996) and Ali (2011) therefore suggested that dimensionally-stable timber should be employed in works that utilize wood externally. This explains the age-long use of medium to high density dimensionally-stable traditional timbers of great strength such as *E. cylindricum*, *K. ivorensis*, *T. grandis* and *Quercus spp.*, for building construction, flooring and furniture-making.

Different applications require specific mechanical properties from different wood types (Zwerger, 2012). In constructing wooden structures, timber is expected to possess great strength against bending, compression and shear stresses (Tankut, 2007). A designer's knowledge of all these properties predicts its suitability or compliance with established standards for manufactured products (Tankut, 2007). This chapter presents the physical and mechanical properties of *K*.

gabonensis as one of the substitutes to the over-utilized traditional timbers. Its properties were compared to those of *E. cylindricum*, a widely-used traditional timber for building, roofing and furniture construction.

4.2 Materials and methods

4.2.1 Study area and sampling of wood materials

Three trees (70-90cm diameter) each of *K. gabonensis* (Plate 4.1) and *E. cylindricum* (control) of 40–45 years (obtained from the Forest Services Division) were randomly harvested (at 1.3m above the ground) from the Bobiri Forest Reserve in the Ashanti Region of Ghana [Latitudes 6°

39'S and 6° 44'N; Longitudes 1° 15'E and 1° 23'W] (Fig. 4.1) (Addae-Wireko, 2008). Bolts (1m long) were taken from the butt (in order to avoid juvenile wood), quarter sawn into boards (to prevent the samples from cupping during drying) (Plate 4.1) and further sawn into the desired dimensions for the various tests at the Wood workshop of the Faculty of Renewable Natural Resources. Forty-eight defect-free (based on visual assessment) heartwood and sapwood samples each were randomly taken from the sections for determining the physico-mechanical properties.

Plate 4.1: *K. gabonensis* log (a), bolt (b) and quarter sawn samples (c)

Fig. 4.1: Map of Ghana (a) showing the position of Bobiri Forest Reserve (b).

4.2.2 Determination of physical properties

4.2.2.1 Moisture content

Wood samples (2 x 2 x 2 cm) were kept in polythene bags to prevent moisture loss after initial weighing and drying at 103 ± 2 °C to a constant or final weight of each sample. The moisture content (mc) of each sample was calculated using Equation 4.1 (BS 373, 1957]:

$$Moisture\ Content\ (\%) = \frac{Initial\ weight - Final\ weight}{Final\ weight} \times 100 \qquad Equation\ 4.1$$

4.2.2.2 Density at 12% mc

Wood samples (2 x 2 x 2 cm) were soaked in distilled water for 14 days until full saturation and their volumes determined using the water displacement method. After oven-drying, basic density was calculated from Equation 4.2 (BS 373, 1957) and converted to specific gravity at 12% mc using Equation 4.3; density at 12% mc was then determined from Equation 4.4 (Forest Products Laboratory, 2010):

Basic density =
$$\frac{Mo}{Vf}$$
 (g/cm³) Equation 4.2

Where: Mo = oven-dried mass; Vf = green volume

$$G_{12} = G_b / [1 - 0.265G_b (1 - 12) / M_{fs}]$$
 Equation 4.3

Where: $G_{12} = Specific gravity at 12\%$ mc; $G_b = basic density$; $M_{fs} = Moisture content at FSP$ (i.e., 30%)

Density =
$$\rho w \times G_{12} \left(1 + \frac{12}{100} \right) \times 1000 \ (kg/m^3)$$

Equation 4.4

Where: $G_{12} =$ Specific gravity at 12% mc; $\rho W =$ density of water (0.9976 g/cm³)

4.2.2.3 Dimensional stability

4.2.2.3.1 Swelling

Using the water-soak method (ASTM D 1037-06a (24), 2006), directional and volumetric swellings of wood samples (152 x 76 x 5 mm), air-dried to 12% mc, were determined from Equations 4.5 and 4.6 respectively (Mantanis *et al.*, 1994; ASTM D 1037-06a (24), 2006; Antwi-

Boasiako and Boadu, 2013):

Swelling (%) =
$$\frac{Wda - Wdb}{Wdb} \times 100$$
 Equation 4.5

Where: Wda = Wood dimension after immersion (i.e., wet dimension); Wdb = Wood dimension before immersion (i.e., dry dimension).

$$Volumetric Swelling (\%) = \frac{Sl \times St \times Sr - Dl \times Dt \times Dr}{Dl \times Dt \times Dr} \times 100$$
Equation 4.6

Where: $Sand = respective Longitudinal, Tangential and Radial dimensions of stakes in swollen condition; <math>PanD^{\pm}$ respective Longitudinal, tangential and radial dimensions of stakes in dry condition.

4.2.2.3.2 Shrinkage

Green samples (2 x 2 x 10 cm) were weighed, arranged on wire racks and allowed to air-dry to approximately 12% mc at 25 °C and 65% RH. Directional and volumetric shrinkages were determined from Equations 4.7 and 4.8 respectively (BS 373, 1957; Mantanis *et al.*, 1994; Dilik *et al.*, 2007):

Shrinkage (%)
$$\frac{Wda-Wdb}{Wda}$$
 × 100 Equation 4.7

Where: Wda = Dimension of wood in wet condition; Wdb = Wood dimension after air-drying.

$$Volumetric Shrinkage (\%) = \frac{Sl \times St \times Sr - Dl \times Dt \times Dr}{Sl \times St \times Sr} \times 100$$
Equation 4.8

Where: Sl, St_{and} $Sr_{=}$ respective Longitudinal, Tangential and Radial dimensions of wood in wet condition pl pt Dand = respective Longitudinal, Tangential and Radial dimensions of wood after airdrying.

4.2.3 Determination of mechanical properties

Strength properties of wood were determined using Instron-4482 machine (at a loading speed of

3mm/sec) for shear parallel to the grain using sample dimension of 5 x 5 x 5 cm, compression parallel to the grain (2 x 2 x 6 cm) and Moduli of Rupture and Elasticity (2 x 2 x 30 cm). Strength values obtained were standardized to 12% mc using Equation 4.9 (BS 373, 1957):

T₁₂ = **T**ώ {1+
$$\alpha$$
 (w - 12)} Equation 4.9

 T_{12} = Standardized strength property at 12% mc; $T^{\dot{\omega}}$ = calculated strength property; w = mc of test sample; α = a constant (0.04)

4.2.4 Experimental design and data analysis

Data obtained from the measurements of all the properties of the wood samples were presented in Split-plot in Completely Randomized Design (CRD). The replicates were organized into 3 groups of 16 replicates each for analysis. Data were subjected to Analysis of Variance (ANOVA) and Fisher's Least Significant Difference (LSD) Test at 95% Confidence level.

4.3 Results

4.3.1 Physical properties of K. gabonensis and E. cylindricum

4.3.1.1 Moisture Content

K. gabonensis sapwood recorded the greatest mc (44.2±0.6%) followed by its heartwood (42.1±1.1%) and then *E. cylindricum* sapwood ($35\pm0.5\%$) and its heartwood ($34.8\pm1.2\%$) (Table 4.1). Significant difference (p<0.05) existed between mc for *K. gabonensis* heartwood and sapwood (Table 4.1; Appendix D).

4.3.1.2 **Density**

K. gabonensis was more dense than *E. cylindricum* (Table 4.1). Densities for the heartwood of *K. gabonensis* (958±19 kgm⁻³) and *E. cylindricum* (536±19 kgm⁻³) were greater than those of their
sapwood (932 \pm 31 kgm⁻³ and 490 \pm 13 kgm⁻³ respectively). No significant difference (p<0.05) existed between density for the heartwood and sapwood of *K. gabonensis* (Appendix D).

4.3.1.3 Dimensional Stability of K. gabonensis and E. cylindricum

4.3.1.3.1 Swelling

Swelling was greatest at the tangential direction for both *K. gabonensis* ($5.8\pm0.2\%-5.8\pm0.4\%$) and *E. cylindricum* ($7.7\pm0.1\%-8.0\pm0.3\%$) but least at the longitudinal directions ($0.2\pm0.1\%-0.4\pm0.1\%-0.4\pm0.1\%$, and $0.3\pm0.1\%-0.4\pm0.1\%$ respectively). Swelling was generally greater for *E. cylindricum* than *K. gabonensis* (Fig. 4.2). Tangential-Radial ratio (T/R) was 1.43 and 1.39 for *E. cylindricum* sapwood and heartwood respectively; 1.38 and 1.31 were respectively also recorded for *K. gabonensis*. Volumetric swelling for *K. gabonensis* sapwood was greater ($14.5\pm0.9\%$) than its heartwood ($10.6\pm0.3\%$). Similarly, that for *E. cylindricum* sapwood was greater ($14.6\pm0.8\%$) than

its heartwood (14.2±0.4%) (Fig. 4.2).

Fig. 4.2: Directional and volumetric swellings across the stems of *K. gabonensis* and *E. cylindricum* (Bar = Standard Error)

4.3.1.3.2 Shrinkage

Shrinkage was greatest at the tangential direction of *K. gabonensis* $(3.1\pm0.3\%-3.3\pm0.3\%)$ and *E. cylindricum* $(4.0\pm0.3\%-4.1\pm0.2\%)$ and least at the longitudinal direction $(0.3\pm0\%-0.4\pm0\%)$ and 0% respectively) (Fig. 4.3). Tangential and radial shrinkages were greater for *E. cylindricum* than *K. gabonensis* (Fig. 4.3). T/R was 2.22 and 2.06 for *E. cylindricum* heartwood and sapwood respectively; 1.63 for *K. gabonensis* heartwood and 1.58 for its sapwood. Volumetric shrinkage for *K. gabonensis* sapwood was greater (5.7\pm0.5\%) than its heartwood (5.1±0.3\%). Likewise, that for *E. cylindricum* sapwood was greater (6.7±0.5%) than its heartwood (6.1±0.4%) (Fig.

Fig. 4.3: Directional and volumetric shrinkages across the stems of *K. gabonensis* and *E. cylindricum* at 12% mc (Bar = Standard Error)

4.3.2 Mechanical properties of K. gabonensis and E. cylindricum

4.3.2.1 Shear strength parallel to the grain

K. gabonensis shear strength was greater for the heartwood $(33.5\pm1 \text{ Nmm}^{-2})$ than its sapwood $(32.2\pm0.4 \text{ Nmm}^{-2})$; the difference was significant (p<0.05) (Table 4.1; Appendix D). *E. cylindricum* heartwood was also greater $(15.6\pm1 \text{ Nmm}^{-2})$ than its sapwood $(15.5\pm1 \text{ Nmm}^{-2})$ (Table 4.1). *K. gabonensis* was stronger than *E. cylindricum* for both heartwood and sapwood.

4.3.2.2 Compressive strength parallel to the grain

The compressive strength of *K. gabonensis* heartwood was greater (90.6±1 Nmm⁻²) than its sapwood (80.7±1.4 Nmm⁻²); the difference was significant (p<0.05) (Table 4.1; Appendix D). It was similarly greater for *E. cylindricum* heartwood (63.6±1.2 Nmm⁻²) than its sapwood (56.4±4.5 Nmm⁻²). *K. gabonensis* also recorded greater compressive strength than *E. cylindricum*.

4.3.2.3 MOR and MOE

MOR was greater for *K. gabonensis* heartwood (214±4 Nmm⁻²) than its corresponding sapwood (204±4 Nmm⁻²); the difference was significant (p<0.05) (Table 4.1; Appendix D). *E. cylindricum* heartwood was also greater (121.3±10.6 Nmm⁻²) than its sapwood (99.4±4.7 Nmm⁻²). *K. gabonensis* MOE was greater for the heartwood (29493±822 Nmm⁻²) than its sapwood (28932±664 Nmm⁻²); the difference was not significant (p<0.05) (Table 4.1). It was also greater for *E. cylindricum* heartwood (10051±258 Nmm⁻²) than its sapwood (9987.4±207 Nmm⁻²). Generally, *K. gabonensis* had greater MOR and MOE than *E. cylindricum*.

Cythan Cunt							
Timber	Stem	Physical		Strength	p Nm	u -2)	
	position	property m	Density (kgm ⁻³)	(MOE	MOR	Compression	Shear
K. gabonensis	Heartwood	42.1±1.1ª	958±19 ^a	29493±822ª	214.2±4ª	90.6±1ª	33.5±0.7ª
	Sapwood	44.2±0.6 ^b	932±31ª	28932±664 ^a	204±4 ^b	80.7±1.4 ^b	32.2±0.4 ^b
E. cylindricum	Heartwood	34.76±1.2°	536±19 ^b	10051±258 ^b	121.3±10.6°	63.6±1.2°	15.6±0.6°
	Sapwood	35.03±0.5°	490±13°	9987.4±207 ^b	99.4±4.7 ^d	56.4±4.5°	15.5±0.9°

 Table 4.1: Physical and strength properties across the stems of K. gabonensis and E.

 cylindricum

Means in the same column with similar superscripts are not significantly different (p<0.05).

4.4 Discussion

Engineering applications of many timbers are restricted due to inadequate information about their properties (Barany *et al.*, 2003). Ozarska (2009) explained that the growth of the timber industry is unsustainable with over-dependence on only well-known traditional timbers. According to Borota (1991), many developed products from radiata pine, Douglas fir and several tropical LUS (e.g., *K. ivorensis* and *M. excelsa*) established good European markets because their properties were well investigated. *K. gabonensis* is rarely used due to lack of information about its physical and strength properties (Cordero and Kanninen, 2002). To ascertain its suitability as a useful raw material or an alternative to several of the traditional wood species for the timber industry, its properties with desirable physical and strength properties could be used where durability is not of great importance. Thus, physico-mechanical properties of both the sapwood and heartwood of *K. gabonensis* were studied.

4.4.1 Physical properties of K. gabonensis and E. cylindricum

4.4.1.1 Moisture Content

Moisture occurs in wood chiefly as bound water by the free hydroxyl groups of the main structural compounds (i.e., cellulose, lignin and hemicelluloses) within the cell walls through electro-static forces, and free water in the cell lumens and cavities (Rowell, 2005). Sherwood (1994) and Vick (1999) explained that moisture influences dimensional stability and growth of bio-degraders, which destroy woods structural rigidity in service. According to Anderson (2002), wood is dense with much water, which affects its processing and transportation cost. Thus, the great mc recorded for K. gabonensis (i.e., $42.1\pm1.1-44.2\pm0.6\%$) would create processing and transportation challenges, especially when it is freshly harvested. Wood moisture also affects glueability and strength of joints, depth of adhesive penetration and curing time (Kumaran, 1999; Rowell, 2005). Tankut (2007) found joint strength to reduce by 15% when the wood was conditioned at 85% relative humidity (RH) but there was an increase of 6% when conditioned at 35% RH. The great amount of moisture for K. gabonensis could affect its finishes and cause surface staining as well as leaching of extractives from wooden products made from wood particularly at green state (Pakarinen, 1999). In buildings, this could lead to a reduction in the mechanical stiffness of walls as the moisture begins to leave wood (Winandy, 1994). Sapwoods for both timbers contained more moisture than their heartwoods since the active cells in sapwood make them regularly involved in mechanical transport of water (Bekhta and Niemz, 2009; Rijsdijk and Laming, 2010). To avoid the challenges associated with much moisture in wood (e.g. bio-deterioration and movement in service), K. gabonensis would need thorough drying before utilizing it for any wooden structure.

4.4.1.2 Density at 12% mc

The performance of wooden products is largely a function of their density, which influences their strength (Niklas, 1997; Ocloo and Laing, 2003), dimensional stability and durability (Desch and

SANE

Dinwoodie, 1996; Gryc and Horácek, 2007). However, timbers with density above 1200 kgm⁻³ might be expensive for the manufacturing of products because of the costs involved in transportation and processing (Zobel and Jett, 1995; Shelly, 2001; Pinto *et al.*, 2004). Additionally, such woods are not dimensionally-stable; this could lead to distortion of the parts of their products with mc changes (Sherwood, 1994; Izekor *et al.*, 2010). Although the density of *K. gabonensis* (932±31–958±19 kgm⁻³) is greater than that of *E. cylindricum* (490±13–536±19 kgm⁻³), the former timber could overcome the problems associated with very dense timbers because of its recorded density. *K. gabonensis* recorded a lower density than was earlier reported by Oteng-Amoako and Obeng (2012) (940–1150 kgm⁻³). However, it compares well with those of *Dalbergia retusa* (880–980 kgm⁻³), *Chrysophyllum pomiferum* (950 kgm⁻³) and *Intsia bijuga* (780–930 kgm⁻³), which are all popular timbers often used for building construction, flooring, roofing and furniture manufacturing (Shelly, 2001; Gunduz *et al.*, 2009; Izekor *et al.*, 2010; Ali, 2011; Asamoah *et al.*, 2012, Forest Products Development and Marketing Council of Guyana Inc., 2015). *K. gabonensis* could therefore be equally employed for similar and other structural applications.

4.4.1.3 Dimensional Stability

Wood is hygroscopic and easily exchanges moisture with its surroundings (Winandy, 1994). It therefore shrinks and swells when it loses or gains moisture respectively. These lead to warping, checking or splitting that compromise the performance of wood (Bajwa *et al.*, 2011). For wooden products, the movement can only be minimized by selecting timber species that has the ability to maintain stable dimensions under extreme temperature and moisture conditions. Carli and Passarelli (2012) reported that most of the challenges of utilizing timber for engineering purposes involve the understanding of wood-moisture relationship and the influence on its properties. The

swelling and shrinkage characteristics of *K. gabonensis* were investigated to predict the dimensional stability of its products, especially in service.

4.4.1.3.1 Swelling

Swelling is mostly responsible for warping and other forms of distortions of wooden products (Winandy, 1994; Hagstrom, 2010). It also leaves wooden structures unsightly and weakens timber joints (Eckelman, 1998). Zhu *et al.* (2014) mentioned that the collective effect of swelling in the tangential (T) and radial (R) directions of wood has the greatest influence on its dimensional stability. To overcome these challenges, Minford (1991) recommended a T/R ratio of <1.6 for timbers used for building, roofing, flooring and furniture construction. The T/R ratio for *K. gabonensis* [1.31 (heartwood) and 1.38 (sapwood)] compares well with this recommendation and fits it for constructional purposes. Swelling was least in the longitudinal direction of *K. gabonensis* since microfibrils align more along the axis of cell walls to restrict moisture uptake (Murata and Masuda, 2006; Mecklenburg, 2007; Derome *et al.*, 2011; AntwiBoasiako and Boadu, 2013). Volumetric swelling for *K. gabonensis* was also less (10.6±0.3%– 14.5±0.9%) than that for *E. cylindricum* (14.2±0.4–14.6±0.8%). Thus, like *E. cylindricum*, *K. gabonensis* is a suitable raw material, which is dimensionally-stable and could resist great mc changes in harsh conditions.

4.4.1.3.2 Shrinkage

Wood shrinks as bound water escapes from the hemicellulose and cellulose chains in the cell wall thereby getting the chains closer together (Shmulsky and Jones, 2011; Engelund *et al.*, 2013). Understanding the degree of shrinkage for timbers (e.g. *K. gabonensis*) is essential for determining its stability in structures (Hernandez, 2007). It could contribute to define adequate clearance or allowance to be made on the initial dimensions of green wood before utilization or drying (Shmulsky and Jones, 2011). Since the in-service mc for timber products is usually within 8-14%

mc (Vick, 1999), volumetric shrinkage of *K. gabonensis* from the green condition to 12% mc was estimated to be less $(5.1\pm0.3\%-5.7\pm0.5\%)$ than that of *E. cylindricum* $(6.1\pm0.4\%-6.7\pm0.5\%)$. Haygreen and Bowyer (1996) asserted that dense woods shrink more than their lighter counterparts. Our current results agree with the observation made by Shmulsky and Jones (2011) that black walnut (density = 550 kgm⁻³) had a lower volumetric shrinkage (12.8%) than that of low-density Eastern Cottonwood (13.9%), which has a density of 400 kgm⁻³. Shrinkage in the tangential $(3.1\pm0.3\%-3.3\pm0.3\%)$ and radial surfaces $(1.9\pm0.2\%-2.1\pm0.3\%)$ was also less than the values (9.9-13.2% and 6.6-9.8% respectively) reported by Oteng-Amoako and Obeng (2012). These meet the acceptable values of <5% (for tangential surface) and <3% (for radial direction) for most industrial uses (Davis, 1962; Hernandez, 2007). Upton and Attah (2003) noted that T/R greater than 2.5 is not appropriate for wooden structures. Accordingly, the low T/R (1.58 – 1.63) for *K. gabonensis* would assist it to overcome the numerous problems associated with high T/R of a number of wood species such as *Delbergia melanoxylon* (1.7),

Acer saccharum (2.1) and *D. latifolia* (2.2) (Meier, 2014). 4.4.2 Mechanical properties

Ntalos and Grigoriou (2002) explained that the mechanical properties of wood assist engineers in product design, material selection and efficient usage of timber. Ratanawilai *et al.* (2006) and Tankut (2007) found shear and compressive strengths parallel to the grain and Moduli of Rupture and Elasticity very important for structural purposes and that the overall strength of any timber products depended on the mechanical properties for their wooden members. Therefore, to utilize *K. gabonensis* very effectively, its strength properties should be properly examined.

NO

WJSANE

4.4.2.1 Shear strength parallel to the grain

The shear characteristics of wood are important when the structural rigidity of the bond between its two surfaces is considered (Harris and Pond, 2012). Kémeuzé (2008) and Oteng-Amoako and Obeng (2012) reported shear strength parallel to the grain for E. cylindricum and K. gabonensis to be 7–18 and 14.5–18.5 Nmm⁻² respectively. On the contrary, $15.5\pm1-15.6\pm1$ Nmm⁻² and

 $32.2\pm0.4-33.5\pm1$ Nmm⁻² were respectively recorded for the current investigation. Wahab *et al.* (2012) and Massayuki (2014) noted that differences in wood density could be responsible for shear strength variation. Thus, K. gabonensis $(932\pm31-958\pm19 \text{ kgm}^{-3})$ would have greater shear strength than E. cylindricum (490 \pm 13–536 \pm 19 kgm⁻³). According to Shmulsky and Jones (2011), Lima et al. (2014) and Massayuki et al. (2014), such timbers with great shear strength would be suitable for trusses, columns and beams in bridges and buildings, as well as for the legs and rails of furniture. They further explained that when wood is loaded in bending, the cells attempt to slip past each other and behave like many independent cells. Thus, wood for structural construction must possess great shear strength to resist forces that tend to split its fibres especially along its neutral plane where induced stress changes from compression to tension (Lima et al., 2014; Massayuki et al., 2014). K. gabonensis could resist shearing from loads in wooden products due to its great shear strength. It could be similarly employed by the Timber Industry like E. cylindricum, Lophira alata (shear strength = 14–20 Nmm⁻²) (Doumenge and Séné, 2012) and *M. excelsa* (shear strength = 5.4) -14.1 Nmm⁻²) (Ofori, 2007). BADW

4.4.2.2 Compressive strength parallel to the grain

Compression parallel to the grain is a measure of wood resistance to crushing when load is applied at its ends (Meier, 2014). The compressive strength for K. gabonensis was greater for both its heartwood and sapwood (90.6 \pm 1 Nmm⁻² and 80.7 \pm 1.4 Nmm⁻² respectively) than that for E. *cylindricum* (63.6±1.2 Nmm⁻² and 56.4±4.5 Nmm⁻² respectively). It was also greater than those for several other timbers such as *P. elata* (63–71 Nmm⁻²) and *Pterocarpus angolensis* (50– 57 Nmm⁻²), which are greatly used for bridge and building construction, deck posts, chair and table legs where great compressive strength is required (Unger *et al.*, 2001). Thus, *K. gabonensis* could likewise be suitable for structures where great strength is required. Gunduz *et al.* (2009) observed that variation in density could affect compressive strength parallel to the grain. The authors noted a reduction in compressive strength of *Carpinus betulus* when its density was lowered after heat treatment. Gindl and Teischinger (2002) observed that density accounted for

84% of the differences in the axial compressive strength of Norway spruce, while Unsal and Ayrilmis (2005) made similar observation from *Eucalyptus camaldulensis*. The great compression strength for *K. gabonensis* could be partly attributed to its greater density. Meier (2014) asserted that high density timbers (including *Q. alba* and *Sequoia sempervirens*) are used in structural applications as a result of their great compression strengths (i.e., 51.3 Nmm⁻² and

39.2 Nmm⁻² respectively). Compared with *Q. alba, S. sempervirens and E. cylindricum, K. gabonensis* could be appropriately utilized as an alternative raw material for the construction industry.

4.4.2.3 MOR and MOE

Rivers and Umney (2007) reported that MOR (bending or flexural strength) and MOE determine the rigidity of the members of any wooden products. While MOR expresses the greatest load a piece of wood can carry and describes its overall strength before breaking, MOE is a measure of wood stiffness or elastic resistance to deformation (Ozcifci *et al.*, 2011; Meier, 2014). For instance, a structure made with wood of great MOR and MOE supports and returns to its original shape when load is removed (Postell, 2012). Green (2007) asserted that *C. ovata* (i.e., hickory, with MOR and MOE of 138.6 Nmm⁻² and 15590 Nmm⁻² respectively) has been extensively used for flooring, cabinetry and furniture because it is stiff, harder to flex and returns to its original shape without breaking when stress is removed. The MOR and MOE of *K. gabonensis* [i.e., $204\pm4.0-214\pm4.0$ Nmm⁻², and $28900\pm660-29500\pm820$ Nmm⁻² respectively] compare favourably with those from Oteng-Amoako and Obeng (2012) (167–250 Nmm⁻² and 15970–21280 Nmm⁻²) but they are greater than those of some well-known timbers such as *E. cylindricum* (i.e., 66–184 Nmm⁻² and 8900–13,800 Nmm⁻² respectively), *C. ovata* (i.e., 138.6 Nmm⁻² and 15590 Nmm⁻² respectively) and *Q. alba* (98.6 Nmm⁻² and 12500 Nmm⁻² respectively) (Kémeuzé, 2008; Meier, 2014). Haviarova *et al.* (2001) observed that the use of wood with great MOR and MOE for heavy construction ensures its longer resistance against heavy static and dynamic loads. Thus, MOR and MOE of *K. gabonensis* have proven its suitability for both non-building and building structures that demand great strength.

4.5 Summary

The physical and mechanical properties of *Klainedoxa gabonensis*, a Lesser-Utilized-Species and *Entandrophragma cylindricum* were compared in this chapter. *K. gabonensis* contained more moisture with greater density at 12% mc than *E. cylindricum*. Its Tangential-Radial ratio for swelling and shrinkage were 1.31–1.38 and 1.58–1.63, respectively, which are within acceptable thresholds for engineering/structural timbers. The mechanical properties of *K. gabonensis* were shear parallel to grain: $32.2\pm0.4-33.5\pm1$ Nmm⁻²; compressive parallel to grain:

80.7±1.4–90.6±1 Nmm⁻²; MOR: 204±4.0–214±4.0 Nmm⁻² and MOE: 28932±664–29493±822 Nmm⁻². These were superior to those of *E. cylindricum*: 15.5±0.9–15.6±0.6 Nmm⁻²; 56.4±4.5–63.6±1.2 Nmm⁻²; 99.4±4.7–121.3±10.6 Nmm⁻² and 9987.4±207–10051±258 Nmm⁻²,

respectively. These superior properties of *K. gabonensis* compare well with those of several traditional timbers for construction and furniture production. Its utilization would contribute to minimize pressure on the primary timbers in the forests and widen the raw material base for wooden products.

CHAPTER FIVE

BIOLOGICAL PROPERTIES OF K. GABONENSIS

5.1 Introduction

Adeniyi *et al.* (2012) mentioned that successful prediction of the utilization potential and processing of timber relies partly on the study of its biological properties (anatomy and durability) since wood is a complex tissue whose structure comprises vessels, tracheids, fibres and parenchyma. The number, size, arrangement and distribution of these cells as well as their chemical composition and deposits influence wood properties and its end-uses (Carlquist, 2001; Adeniyi *et al.*, 2012).

Sudo (2007) attributed the differences in wood properties such as density and strength to variations in anatomical properties. Thus, Dinwoodie (2002) observed that thick fibre-walled timbers (e.g., *Acer saccharum* Marsh. and *Robinia seudoacacia* L.) have great densities and strength. These are used for heavy construction (e.g., building, railway sleepers, furniture, joinery and roofing). Thick walled fibres resist more stress (Choong *et al.*, 2000). However, those with thin-walled fibres (e.g., *Ochroma pyramidale* (Cav. ex Lam.) Urb. and *Ceiba pentandra* (L.) Gaertn.) are light and weak in strength, which therefore make them only suitable for light construction (e.g., lightweight furniture, boxes, crates and particle boards). Uctimane *et al.* (2009) explained that the anatomical properties of *Sterculia appendiculata* K. Schum. (a tropical timber) make it less dense and only suitably utilized for purposes where great strength and durability are not of prime importance. The timber is diffuse-porous, has very few (<5/mm²) but wider vessels (195- 527 µm); it lacks extractives and has larger percentage of its volume occupied by thin-walled axial and ray parenchyma cells. Timbers with narrow vessels (e.g., *N. papaverifera* (A. Chev.) Capuron and *Diospyros mespiliformis* Hochst ex A. DC.) are most often fine-textured, dimensionally-stable,

durable and very stiff, and are important for strong engineering structures and aesthetic construction (Fonti *et al.*, 2010; Scholz, 2013). However, their small-sized lumen restricts adhesive penetration which could be disadvantageous in joinery and furniture manufacturing (Choong *et al.*, 2000). Deposits in wood cells have also considerable impacts on the glueability, sawing, strength and dimensional stability of the timber (Kurjatko *et al.*, 2006). Adeniyi *et al.* (2013) explained that *Xylia dolabriformis* Benth. is used extensively for flooring because its fibres are plugged with gum deposits that make it resistant to wear. Adeniyi *et al.* (2012) noted that the Forestry Research Institute of Nigeria found *Celtis mildbraedii* Engl. and *Bosqueia angolensis Ficalho* unsuitable for making matches because the cells contained deposits that produced an undesirable thick-smelling smoke when burnt. According to Kaiser (2003), wood with calcerous deposits is liable to checking and requires cautious handling during processing. These deposits also blunt tool surfaces and interfere with glueing of laminates and wood finishing (Adeniyi *et al.*, 2013).

Arowosoge and Tee (2010) found that the ability of timber to resist bio-deterioration is an important determinant of consumers' choice for wooden products. Resistance of wood to biodegradation can be a natural attribute or induced by treatment with chemicals (Florian 1995; Beckwith 1998; Chang *et al.* 2000; Nascimento *et al.* 2013). Ohmura (2000), Schultz and Nicholas (2000), Antwi-Boasiako and Pitman (2009) and Oliveira *et al.* (2010) found several factors including cell wall thickness, density, extractives and lignin content to be responsible for the natural durability of timber. In wood product manufacturing, naturally-durable timbers (such as *Quercus* spp., *E. cylindricum* (Sprague) Sprague, *M. excelsa* (Welw.) C.C. Berg, *Cedrus libani* A. Rich, *Robinia pseudoacacia* L. and *T. grandis* L.f.) are greatly preferred to non-durable ones that are chemically-treated (Humar *et al.* 2008; Asamoah *et al.* 2011) since chemicalpreservatives could be costly, harmful to life as well as the environment and render wood unable to receive finishes (Florian

1995; International Agency for Research on Cancer 1995; Nakayama *et al.* 2000). In Uganda, durable but Lesser utilized species (e.g. *Podocarpous latifolius* R.Br. ex Mirb., *Funtumia elastica* (P. Preuss) Stapf. and *Trichilia dregeana* E. Mey. Ex Harv. & Sond.) are progressively used to substitute the traditional timbers (e.g., *Milicia* spp. and *Khaya* spp.) in the furniture industry (Zziwa *et al.* 2006). For building and furniture-making, Ali (2011) recommended the under-exploited tropical timbers such as *Acacia nigrescens* Oliv., *Pericopsis angolensis* (Baker) Meeuwen and *Pseudolachnostylis maprounaefolia* Pax based on their relative abundance, expected biomass per tree and other properties including durability. Opoku (2007) noted that effective substitution could be properly achieved when adequate information on the properties of the LUS including anatomy and durability are available. However, these properties of *K. gabonensis* are poorly understood.

This chapter reports on the durability and anatomy (tissue proportion, and fibre and vessel morphology) of *K. gabonensis* as a potential substitute to the declining primary timbers from the tropical forests. This would increase its prospects of utilization, which would contribute to the widening of the raw material base for the Timber Industry.

5.2 Materials and methods

5.2.1 Sampling of wood material

Wood samples for anatomical studies were obtained from defect-free heartwood (within 8–15 cm from the pith) and sapwood (within 40–50 cm from the pith) positions of bolts (1m long) obtained from processing *K. gabonensis* and *E. cylindricum* (control) logs. Forty eight heartwood and sapwood samples each were also randomly taken from the bolts and their field performance (durability) tested against termites.

5.2.2 Determination of anatomical characteristics

5.2.2.1 Study of the anatomical features of K. gabonensis

K. gabonensis wood blocks (about 2 cm³) were softened by boiling to remove excess air and immersed in distilled water (Chowdhury *et al.*, 2012; Wan-Mohd-Nazri *et al.*, 2012). Transverse, radial and tangential sections (20-30µm thick) were sliced with a microtome knife, stained with Safranin red on a slide and sequentially washed in ethanol with increasing concentrations of 50, 95 and 100% until any excess stains were removed (Wan-Mohd-Nazri *et al.*, 2012). They were mounted in Canada balsam and oven-dried. The sections were examined under Fisher Scientific Micromaster Infinity Optics microscope [magnification = 10x (eye piece), 4x (objective lens)] at the Anatomy Department of Forestry Research Institute of the Council for Scientific and Industrial Research (CSIR), Ghana. Images were captured randomly at 5 different locations on each slide with Image J software at a scale of 200 microns. Guidelines approved by the International Association of Wood Anatomists (IAWA) (1989) were employed in describing the anatomical features of the timbers.

5.2.2.1.1 Determination of tissue proportions

A 25-point scale grid with an area of $90000 \mu m^2$ per point was laid on each image (resolution = 2048 x 1536 pixels) using the image J software. The number of points covering the tissues (fibres, vessels, ray and axial parenchyma) was counted and expressed as a percentage of the total points (i.e., 25). This represented the proportion (%) of each tissue in the wood (IAWA, 1989).

5.2.2.2 Determination of fibre and vessel morphological characteristics through maceration

Match-stick sized samples (heartwood and sapwood) (about 10mm long) were put in a heat resistant test tube and equal parts of 99.8% glacial acetic acid and 30% hydrogen peroxide (1:1) added to cover them and incubated at 65°C for maceration (IAWA, 1989, Wan-Mohd-Nazri *et al.*,

2012). The macerates were thoroughly washed with distilled water, while small sample was put in glycerol on a standard slide (i.e., 7.5 x 2.5 cm), teased with a pin (IAWA, 1989) and covered with slips for viewing under Fisher Scientific Micromaster Infinity Optics microscope using 10x for eye piece and objective lens and measuring scale of 200 μ m. Photomicrographs of straight and unbroken fibres were captured under magnification and measuring scales of 40x and 50 μ m respectively. The processes were repeated to obtain micrographs of fibres and vessels whose diameter, lumen width or diameter and double wall thickness could easily be measured with the Image J software. A total of 300 fibres and vessels each were measured for each timber.

5.2.3 Determination of durability

Forty eight *E. cylindricum* and *K. gabonensis* stakes (500 x 50 x 25 mm) (BS EN 252, 2014) were conditioned at 20°C and 65% RH until equilibrium moisture content was reached (Forest Products Laboratory 1999). *Ceiba pentandra* (L.) Gaertn. served as the control. Each stake was weighed. The moisture content (mc) of 10 other stakes from *C. pentandra* and each stem position of *K. gabonensis* and *E. cylindricum* was measured at 103 ± 2 °C to determine their corrected oven-dry weights (Antwi-Boasiako and Pitman, 2009) (Equation 5.1):

Corrected Oven Dry Weight $(CODW) = \frac{100 \times Fresh \ weight \ of \ sample}{100 + Moisture \ content \ of \ sample} Equation 5.1$ The replicates from each timber were randomly inserted into the soil to cover one third of their lengths at the test site $(50 \times 60 \text{ m}^2)$ of the Demonstration Farm of the Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology (Kumasi-Ghana) (Plate 5.1). The stakes were 50 cm apart. The site lies within the Semi-deciduous vegetation zone [6° 40'N and 1° 33'W] with moderate temperature (25 °C), high RH of 83% and dominated by Ochrosol soil (Kumasi Metropolitan Assembly 2006). The site contains many termite mounds (Plate 5.1) with high decay hazard index. Common insects at the test field include subterranean termites, *Anobium spp., Ancistrotermes* spp. and *Nasutitermes latifrons* (Usher, 1975). The stakes were exposed to termites for 24 months.

5.2.3.1 Visual durability ratings

The stakes were inspected every month and also after field exposure for termite and other damages. Stakes were graded as: 0 = No sign of attack, 1 = Slight attack, 2 = Moderate attack, 3 = Severe attack, 4 = Failure (BS EN 252, 2014).

5.2.3.2 Mass loss (%)

All debris were cautiously brushed off from the stakes, which were oven-dried at 103 ± 2 °C and their final weights determined. The mass loss (%) for each stake was calculated (BS EN 252, 2014) (Equation 5.2):

$$Mass \ loss \ (\%) = \frac{CODW - Final \ Weight}{CODW} \times 100$$
Equation 5.2

Mass loss (%) was related to natural durability ratings: 0 - 5% = very durable, 6 - 10% = durable, 11 - 40% = moderately durable, 41 - 100% = non-durable (BS EN 252, 2014).

Plate 5.1: Stakes inserted vertically at the test site (a); a termitarium located 2m from the test site (b).

5.2.4 Experimental Design and Data Analysis

The data on tissue proportion, fibre and vessel morphological characteristics (length, diameter, wall thickness, lumen width) and durability were subjected to ANOVA and Fisher's Least Significant Difference (LSD) Test (at 95% confidence level) to compare their means.

5.3 Results

5.3.1 Anatomical Characteristics

5.3.1.1 Anatomical description of K. gabonensis sapwood and heartwood

K. gabonensis growth ring boundaries indistinct or absent. Wood diffuse-porous. Vessels in tangential bands, cluster with simple perforation plates and sclerotic tyloses (Plate 5.2). Fibres have simple to minutely bordered pits, nonseptate and very thick-walled. Axial parenchyma winged-aliform, confluent, in narrow bands or lines up to three cells wide with over 8 cells per parenchyma

strand (Plates 5.2 and 5.3). Ray width 1-3 cells, larger and commonly 4- to 10seriate, procumbent with 1-row of upright and/or square marginal cells (Plates 5.3 and 5.4).

Prismatic crystals in chambered axial parenchyma cells common (Plate 5.3).

Plate 5.2: Transverse section of *K. gabonensis* heartwood (a), sapwood (b) with vessels (V), fibres (F), ray parenchyma (RP), aliform axial parenchyma (AP) and tyloses (arrowed). Scale bar = 200 µm

Plate 5.3: Radial section of *K. gabonensis* heartwood (a), sapwood (b) with fibres (F), procumbent ray parenchyma (RP), aliform axial parenchyma (AP) and prismatic crystals (arrowed) in chambered axial parenchyma. Scale bar = 200µm

Plate 5.4: Tangential section of *K. gabonensis* heartwood (a), sapwood (b) with 4- to 10-seriate procumbent ray parenchyma (RP), aliform axial parenchyma (AP) and fibres (F). Scale bar = 200μm

5.3.1.2 Fibre and vessel morphology

5.3.1.2.1 Fibre characteristics

Fibre dimensions observed for *K. gabonensis* sapwood and heartwood were respectively: 20.1±0.2 μ m and 22.7±0.2 μ m (diameter), 1860±20 μ m and 1890±10 μ m (length), 11.5±0.2 μ m and 13.7±0.2 μ m (lumen width) and, 8.9±0.3 μ m and 9.7±0.3 μ m (double wall thickness). Those for *E. cylindricum* sapwood and heartwood were respectively: 19.6±0.4 μ m and 19.7±0.3 μ m (diameter), 1590±10 μ m and 1540±10 μ m (length), 10±0.2 μ m and 10.7±0.2 μ m (lumen width) and, 8.6±0.2 μ m and 9.0±0.2 μ m (double wall thickness). Fibre dimensions were greater for *K. gabonensis* than *E. cylindricum* and for the heartwood than sapwood for both species except the

length and lumen width for the stem positions of *E. cylindricum* (Figs. 5.1 and 5.2). Significant differences (p<0.05) existed between the heartwood and sapwood of *K. gabonensis* for fibre diameter and lumen width (Fig. 5.1; Appendix E).

Stem positions of timbers

Fig. 5.2: Fibre dimensions across the stems of *K. gabonensis* and *E. cylindricum* (Bars=Standard Errors)

5.3.1.2.2 Vessel lumen diameter

Vessel lumen diameter ranked for the two timbers as: *E. cylindricum* sapwood $(184.4\pm2 \ \mu m) > K$. *gabonensis* sapwood $(176.9\pm4 \ \mu m) > K$. *gabonensis* heartwood $(144.8\pm2.2 \ \mu m) > E$. *cylindricum* heartwood $(115.6\pm1.4 \ \mu m)$ (Fig. 5.3).

Stem position of timber

Fig. 5.3: Vessel lumen diameter across the stems of *K. gabonensis* and *E. cylindricum* (Bars = Standard Errors)

5.3.1.3 Tissue proportions

Tissue proportions recorded for *K. gabonensis* generally ranked as: fibres $(42.4\pm4.5\% - 45.6\pm4.5\%)$ > ray parenchyma $(20.8\pm2.2\% - 26.4\pm2.1\%)$ > axial parenchyma $(15.2\pm2.3\% - 18.4\pm1\%)$ > vessels $(12.8\pm1.5\% - 15.1\pm2.7\%)$. A similar trend was observed for *E. cylindricum*: fibres $(35.2\pm1.5\% - 52\pm4.7\%)$ > ray parenchyma $(19.2\pm2\% - 24\pm3\%)$ > axial parenchyma $(15.2\pm2.3\% - 24\pm3.4\%)$ > vessels $(13.6\pm2.4\% - 16\pm2.2\%)$ (Fig. 5.4). For *K. gabonensis*, more fibres and vessels were obtained in the heartwood $(45.6\pm4.5\%$ and $15.1\pm2.7\%$ respectively) than its sapwood $(42.4\pm4.5\%)$ and 12.8±1.5% respectively). However, its rays and axial parenchyma were greater in the sapwood (26.4±2.1% and 18.4±1% respectively) than in the heartwood (20.8±2.2% and 15.2±2.3% respectively). Similar observations were made for *E. cylindricum* except for vessels which were greater in its sapwood (16±2.2%) than for the heartwood (13.6±2.4%). Significant differences (p<0.05) existed between the heartwood and sapwood of *K. gabonensis* for proportions of their ray parenchyma and vessels, and also fibres and axial parenchyma for *E. cylindricum* (Fig. 5.4; Appendix F). Generally, fibres and ray parenchyma were greater in *K. gabonensis* (42.4±4.5% - 45.6±4.5% and 20.8±2.2% - 26.4±2.1% respectively) than *E. cylindricum* (35.2±1.5% - 45.2±4.7% and 19.2±2% - 24±3% respectively), while vessels and axial parenchyma were greater in *E. cylindricum* (13.6±2.4% - 16±2.2% and

15.2±2.3% - 24±3.4% respectively) than *K. gabonensis* (12.8±1.5% - 15.1±2.7% and 15.2±2.3% - 18.4±1% respectively).

Fig. 5.4: Tissue proportion across the stems of *K. gabonensis* and *E. cylindricum* (Bars = Standard Errors)

5.3.2 Durability

5.3.2.1 Visual durability rating

The heartwood and sapwood of *K. gabonensis* were slightly deteriorated with visual durability rating of 1 (Table 5.1; Plate 5.5). *E. cylindricum* heartwood suffered moderate attack (rating = 2), while its sapwood was severely attacked (rating = 3) (Plate 5.5) and *C. pentandra* was heavily degraded (rating = 4). The differences between the ratings for the timber species were significant (p<0.05) (Table 5.1).

Table 5.1: Visual durability ratings for K. gabonensis, E. cylindricum and C. pentandra(Control)

Wood species	Stem position	Visual durability rating [*]	Interpretation
K. gabonensis	Heartwood	1 ^a	Slight attack
2	Sapwood	la	Slight attack
E. cylindricum	Heartwood	26	Moderate attack
10	Sapwood	3c	Severe attack
C. pentandra	Sapwood	4 d	Failure

*Ratings with the same letters are not significantly different (p < 0.05).

Plate 5.5: *K. gabonensis* heartwood (a), sapwood (b), *E. cylindricum* heartwood (c) and sapwood (d) after field exposure (Arrow = Termite attack). NB: C. pentandra stakes were completely destroyed.

5.3.2.2 Mass loss (%)

Mean mass losses for the respective stem positions of the timbers were in this order: *C. pentandra* (100%; i.e., non-durable) > *E. cylindricum* sapwood (13.1±0.6%; moderately durable) > *E. cylindricum* heartwood (10±0.7%; durable) > *K. gabonensis* sapwood (8.2±0.6%; durable) > *K. gabonensis* heartwood (4.8±0.3%; very durable). The differences between them were

significant (p < 0.05) (Fig. 5.5; Tables 5.2 and 5.3).

Source	DF	Squares M	Aean Square	F Value	Pr > F
	Y.			_	1
Model	11	33206.6	3018	3.9 (<mark>6491</mark> <.00
Replicates 2	2	0.1	0.1	0.2 0.9	97
Species	2	33169.4	16584.7	12656.5	<.0001#
Stem position	1.	21.2	21.2	45.7	0.0005^{*}
Replicates*Species	4	5.2	1.3	2.8	0.1
Species*stem position	2	10.7	5.3	11.5	0.0089
Error	6	2.8	0.5 Co	rrected	
Total 17	33209.4				
	R-Square 0.999916	Coeff Var 1.732540	Root MSE M 0.681961	/lass loss M 39.36192 #\$	lean Significant:

Table 5.2: ANOVA	for mass loss	for K. gab	onensis, E. c	ylindricum a	and C.	pentandra
------------------	---------------	------------	---------------	--------------	--------	-----------

Table 5.3: LSD for mass loss for K.	gabonensis, E.	cylindricum and C.	pentandra
-------------------------------------	----------------	--------------------	-----------

Wood species	Stem position	Least Significant	Interpretation
	SANE	mean	•
K. gabonensis	Heartwood	4.8 ^a	Very durable
	Sapwood	8.2ь	Durable

Fig. 5.5: Durability (mass loss) across the stems of K. gabonensis, E. cylindricum and C. pentandra (Bars=Standard Errors)

5.4 Discussion

5.4.1 Anatomical characteristics

Wood is a natural product of tree growth with a complex formation process that involves differentiation of cambial initials into several xylem tissues (Moutinho *et al.*, 2012). Variation in the arrangement, dimension and proportions of these tissues are fundamental to the properties of wood, processing and uses (Wheeler and Manchester, 2007). Since the mid-1960's, several researches have been carried out on the anatomy of tropical timbers that are lesser-utilized to the extent that the results have greatly influenced their processing and utilization (Sudo, 2007). LUS such as *Arpinus betulus* L., *Fagus orientalis* (Lipsky), *Parrotia persica* (DC.) C. A. Mey., *Diospyrus lotus* L., *Alnus glutinosa* (L.) Gaertn., *Acer insigne* var. velutinum (Boiss.), *A. leatum* C. A. Mey. and *Fraxinus excelsior* L. gained popularity in the global wood industry for structural

construction as well as pulp and paper production following successful experiments that established their properties including anatomy (Kiaei and Samariha, 2011). Essien *et al.* (2012) determined the tissue proportions and fibre morphology of two tropical LUS (*Ficus sur* Forssk. and *Cola gigantean* A. Chew.). Based on their mean fibre length (1.5 - 2.0mm), lumen diameter (14.8 - 23.9µm) and double wall thickness (9.9 - 7.5µm), they concluded that *F. sur* and *C. gigantean* were suitable for pulp and paper production. Adeniyi *et al.* (2013) also observed that *Xylia dolabriformis* Benth. was an excellent raw material for flooring because the fibres were plugged by gum which made the wood resistant to wear. Oyagade (1994) studied the anatomy of *Gmelina arborea* Roxb. and found it unsuitable for wood-cement board manufacture due to the presence of tyloses. *Holoptelea grandis* (Hutch.) Mildbr. was found easy to saw due to the absence of rhomboidal crystals which are capable of blunting saws (Alex and Regis, 2005). Thus, an understanding of the anatomy of LUS is required for efficient processing of timber and development of wood-based products.

5.4.1.1 Anatomical description of K. gabonensis wood

K. gabonensis is diffuse-porous with no growth ring boundaries. It has thick-walled fibres, simple pits, prismatic crystals and sclerotic tyloses common in axial parenchyma cells and vessels respectively. Anatomical description of wood belonging to its family (i.e., *Irvingiacaea*) is scanty except the attempt by Oteng-Amoako and Obeng (2012) about *K. gabonensis* as diffuse-porous. Coulson (2011) explained that most diffuse-porous tropical timbers often have indistinct or no growth ring boundaries. The even-sized pores are scattered throughout the wood since timber growth does not occur in discrete annual or seasonal pattern. This provides timber with straight grains and uniform texture (Sperry *et al.*, 1994). *K. gabonensis* is straight-grained and uniform texture textured. Sperry *et al.* (1994) and Hoadley (2000) noted that straight grains and uniform texture

improve the workability of timbers. For instance, *Dalbergia melanoxylon* Guill. & Perr. was the most preferred timber among wood carvers in Kenya because it performed better during planing, polishing and varnishing due to its uniform wood texture and straight grains

(Muga *et al.*, 1998). Based on its grain direction and wood texture, *K. gabonensis* would have good working characteristics. Its thick-walled fibres would give it superior mechanical properties and make it suitable for heavy construction, railway sleepers, mine props, flooring, paneling and furniture production (Lumbile and Oagile, 2008; Uetimane *et al.*, 2009). Simple pits of the fibres would also ensure efficient adhesive penetration, which would increase the bond strength in composite product manufactured from *K. gabonensis* (Pizzi and Mittal, 2011).

The sclerotic tyloses and prismatic crystals in *K. gabonensis* would affect its sawing, turning and boring characteristics as well as reduce the bondability of its members with adhesive in joinery and laminated product manufacturing (Oluyege, 2007). According to Oluyege (2007) and Quartey (2009), crystals stain and reduce the aesthetic value of unspecified timber species and affect its pulping characteristics, permeability to preservatives, fire retardants and finishes. Collardet (1976) also found that crystals and resins in some Malaysian timbers (e.g., *Hopea odorata* Roxb., *Dryobalanops camphora* Colebr. and *Dryobalanops oblongifolia* Dyer) clogged up saw teeth and abrasive papers. However, for easy machining of *K. gabonensis* to produce high quality timber surface, improve finishing and adhesive bonding, tungsten-carbide or polycrystaline diamond tipped tools and extensive sanding would be required (Killmann and Fink, 1996). Pressure methods would be necessary for chemical impregnation. Taylor *et al.* (2002) and Antwi-Boasiako (2004) observed that tyloses and crystals could increase wood durability by restricting pathogen movement and making browsing difficult. Tyloses in *Ulnus Americana* L. make it resistant to the Dutch Elm disease (Dickson, 2000). Scholz *et al.* (2007) mentioned that phenolic extractives and

other organic deposits are reasons for the great natural durability of Brosimum guianense (Aubl.)

Huber ex Ducke., a diffuse porous tropical timber

(Richter and Dallwitz, 2009). Therefore, it is worthy to note that although tyloses and crystals in *K. gabonensis* would pose challenges to its processing, in addition to the thick-walled fibres, they

would contribute to improving its durability for engineering construction.

5.4.1.2 Fibre and vessel morphology

5.4.1.2.1 Fibre characteristics

Fibres are produced from cambial fusiform initials; these determine characteristics such as fibre length, thickness and diameter (Izekor and Fuwape, 2011). According to Ziemińska *et al.* (2013), these characteristics give an indication of end-use of timbers. Muga *et al.* (1992) and AntwiBoasiako and Ayimasu (2012) found that fibre length is a major indicator of the quality of wood for pulping. Long fibres optimize strength and formation of paper; these fibres have the capacity to create bigger and stronger network than their shorter counterparts. Fibre length observed for

K. gabonensis (1860±20 - 1890±10 µm) compares with those of *Irvingia malayana* Oliv. ex Benn (>1600 µm) and other timbers, which are usually used for pulp and paper production. These include *Grevillea robusta* A. Cunn. (1890 µm), *Buclandia poplunea* R. Br. ex Griff. (1840 µm) and *C. pentandra* (L.) Gaertn. (1830 µm) (Muga *et al.*, 1992). Thus, based on fibre length, *K. gabonensis* would be suitable for pulping. However, the presence of crystals and tyloses would obstruct the flow of pulping liquor and consequently make pulping very difficult and costly (Kollmann and *Côté*, 2012). Other fibre morphological characteristics such as diameter, cell-wall thickness and lumen width greatly affect wood density, durability, sorption characteristics and strength (Wimmer, 1995, Ziemin´ska *et al.*, 2013). Fibre diameter and wall thickness were greater for *K. gabonensis* [20.1±0.2 μm (sapwood) - 22.7±0.2 μm (heartwood) and 8.9±0.3 μm (sapwood) - 9.7±0.3 μm (heartwood) respectively] than *E. cylindricum*

[19.6±0.4 μm (sapwood) - 19.7±0.3 μm (heartwood) and 8.6±0.2 μm (sapwood) - 9.0±0.2 μm (heartwood) respectively]. Izekor and Fuwape (2011) explained that such a variation could be due to the intrinsic physiological and genetic differences between the timbers. Wood with thinner and wider fibres (including Populus deltoids Marsh., Tilia Americana L., C. pentandra (L.) Gaertn. and Ochroma pyramidale (Cav. ex Lam.) Urban) has low density and strength; it also ruptures more easily when load is applied (Bosman et al., 1994; Jacobsen et al. 2007; MartínezCabrera et al., 2009). They are mostly used for light frame construction (Wiedenhoeft and Miller, 2005). Those with thickwalled fibres (e.g. E. cylindricum, A. saccharum Marsh., A. nigrum Michx. f., Robinia pseudoacacia L., Tabebuia serratifolia (Vahl) G. Nicholson. and Manilkara bidentata (A.de Candolle) Chevalier) have great strength and are normally recommended for structural works such as building, furniture production and bridge construction (Wiedenhoeft and Miller, 2005; Martínez-Cabrera et al., 2009). The greater diameter and wall thickness for *K. gabonensis* would likely make the timber heavier and tougher than E. cylindricum (Ziemińska et al., 2013). Thus, it would be similarly suitable for structural applications. Fibre dimensions were also greater for the heartwoods of the two timbers than their sapwoods. These variations are consistent with the differences in fibre morphology from the pith towards the bark of *C. equisetifolia* J.R. & G. Forst. by Chowdhury *et al.* (2012). The heartwoods of the two timbers would be more dense and stronger than their sapwoods due to the great wall thickness and diameter of the heartwoods. However, the thick walls and narrow pit openings between fibres of K. gabonensis could restrict adhesive penetration and create poor bonding and weak joinery and composite products (Malanit et al., 2009). However, pressure treatments for chemical and adhesive applications would overcome these challenges.

5.4.1.2.2 Vessel lumen diameter

Tangential diameters of the vessel lumina for *K. gabonensis* (144.8±2.2 - 176.9±4 µm) were far less than that ($\geq 200 \text{ µm}$) obtained by Oteng-Amoako and Obeng (2012). Those recorded for *E. cylindricum* (115.6±1.4 - 184.4±2 µm) also compare well with those (100 – 200 µm) reported by Kémeuzé (2008). Hemsley and Poole (2004) explained that most diffuse-porous tropical timbers have narrow vessels (<200 µm). Thus, the values recorded for *K. gabonensis* and *E. cylindricum* are consistent with this finding for diffuse-porous woods. The size of vessel lumina influences the water conduction efficiency of timber (Zimmermann, 1982; Antwi-Boasiako, 2004; AntwiBoasiako and Atta-Obeng, 2009). Quartey (2009) concluded that *Albizia ferruginea* (Guill. &

Perr.) Benth. had great capacity for water uptake due to its great vessel lumen diameter (310 μ m). Savidge (2003) explained that wider vessels reduce wood density and make timber unsuitable for production of paper and solid-wood products. However, their narrower counterparts improve resistance to embolism where gases fill the conduits and leads to cavitation. Thus, the narrow vessels of *K. gabonensis* could improve its density, reduce excessive moisture absorption and vessel cavitation (Hacke *et al.*, 2001; 2006). However, its permeability to chemicals could be challenging (Poorter *et al.*, 2010). Opoku (2007) recommended pressure methods of chemical application for timbers with narrow pores due to difficulty in penetration. Wider pores were also obtained for the sapwoods than heartwoods of the timbers.

Gimenez and Lopez (2000) and Rao *et al.* (2003) explained that vessel diameter in most timber species increases from the pith to the bark. Saravanan *et al.* (2013) observed an increase in vessel lumen diameter from the pith to the periphery of *Melia dubia* Cav., a diffuse porous tropical tree and concluded that water absorption and conduction increase with vessel lumen diameter. Thus, the sapwoods of *K. gabonensis* as well as *E. cylindricum* could contain more water and would be

more permeable to chemicals than their heartwoods. Greater potential for moisture absorption would create processing challenges and affect glueability and strength of joints (Kumaran, 1999;

Rowell, 2005).

5.4.1.3 Tissue proportions

Rahman *et al.* (2005) and Walker (2006) reported that ray parenchyma often forms about 15 - 30% of hardwood tissues. In consistence, the proportion of ray parenchyma cells obtained for *E. cylindricum* and *K. gabonensis* ranged between $19.2\pm2\%$ (heartwood) – $24\pm3\%$ (sapwood) and $20.8\pm2.2\%$ (heartwood) – $26.4\pm2.1\%$ (sapwood) respectively. Boyce *et al.* (1970), Beery *et al.* (1983), Mattheck and Kubler (1997) and Rahman *et al.* (2005) noted that ray proportion was positively correlated with the density and compression strength of most hardwoods. *K. gabonensis* has greater ray proportion [$20.8\pm2.2\%$ (heartwood); $26.4\pm2.1\%$ (sapwood)] than *E. cylindricum* [$20.8\pm2.2\%$ (heartwood); $26.4\pm2.1\%$ (sapwood)]; the former would have greater density and radial compression strength, which are important for timbers for construction. Generally parenchyma was greater in the sapwood than heartwood of the two timbers. AntwiBoasiako (2004), Adeniyi *et al.* (2012) explained that large amount of carbohydrate could lead to early growth of anaerobic bacteria, which produce compounds that make wood highly degradable and unworkable. Thus, products from the sapwoods of *K. gabonensis* and *E. cylindricum* could have limited service-life through bio-deterioration by the activities of wooddestroying organisms.

For both stem positions of the two timbers, fibres formed the greatest of wood tissues, while the least were vessels. However, *K. gabonensis* has more of these tissues than *E. cylindricum*. Walker (2006) explained that fibres make up a high proportion of the volume of most hardwoods. Chowdhury *et al.* (2012) observed in a study on the variation in anatomical properties of *C. equisetifolia* that, fibres formed the greatest proportion of tissues (54%) followed by rays (19%),

vessels (14%) and then axial parenchyma (13%). Similar trend was found in the wood of 24 Australian angiosperms by Ziemińska *et al.* (2013). Woodcock *et al.* (2000), Huda *et al.* (2012), Ogunwusi (2012b) and Ziemińska *et al.* (2013) noted that timbers with great amount of fibres and fewer quantities of vessels and parenchyma were more dense with greater mechanical properties than those with few fibres and great amount of vessels and parenchyma. According to Uetimane *et al.* (2009), MOR of the sapwood of *Pseudolachnostylis*

maprounaefolia Pax was greatly associated with fibre proportion but negatively correlated with proportion of parenchyma tissue and that greater proportion of vessels generally affects wood density and strength. Sreevani and Rao (2014) also explained that the least amount of vessels and parenchyma cells compared to fibres improve timber durability and shrinkage characteristics. Thus, based on the proportion of fibres, vessels and parenchyma tissues, *K. gabonensis* would be expected to be more dense, stronger and durable than *E. cylindricum* and could likely substitute *E. cylindricum* for structural works, which need timbers of greater strength and longer service-life.

Cox (2004) and Uetimane *et al.* (2009) explained that an understanding of the anatomy of wood is required for efficient processing and development of wood-based products. So far, the anatomy of *K. gabonensis*, including tissue proportion and the morphology of its fibres and vessels, has found it suitable for furniture production and heavy engineering construction. However, due to its thick-walled fibres and the presence of tyloses and crystals, power tools are recommended for its processing. In laminated product manufacturing, pressure method would be the best for the application of adhesives and finishes. It is anticipated the information would assist wood product manufacturers towards the processing and utilization of *K. gabonensis*.

Incorporation of *K. gabonensis* into the timber sector's stream of raw materials would increase the wood supply base and help meet growing demand for timber products.

5.4.2 Durability

Although wood is a desirable material for building and furniture production (Pakarinen, 1999), as a natural polymer, it is prone to bio-degradation by bacteria, fungi and insects (Khatib, 2009). Termites, carpenter bees, ants and powder-post beetles are the major insect pests to wooden structures (Abood, 2008). These organisms decompose the cellulose in wood for biochemical energy (Sonowal and Gogoi, 2010). To ensure increased service-life of manufactured products, while protecting the environment from the harmful effect of preservative-chemicals against biodeterioration (Venmalar and Nagaveni, 2005), naturally-durable timbers are highly recommended (Connell, 1991). Although *K. gabonensis* has desirable characteristics for several structural applications including flooring and furniture production (Oteng-Amoako and Obeng, 2012), dearth of knowledge on its durability could hinder its utilization.

According to Peralta *et al.* (2003), Antwi-Boasiako (2004) and Ravenshorst *et al.* (2013), the use of the field test is mostly preferred to the laboratory type since the former allows the collective effects of many biotic and abiotic factors of deterioration to be evaluated. However, Miltiz *et al.* (1996), Antwi-Boasiako and Baidoo (2010), Schultz and Nicholas (2000) and Sonowal and Gogoi (2010) explained that duration for field test could be shortened to produce useful results for reliable prediction of the durability of LUS. Thus, the wood stakes for the current investigation were exposed to bio-degraders through an accelerated field performance test.

5.4.2.1 Visual durability rating

This rating assesses the durability of timber from signs of attack on stakes, which have been exposed to insects and decay organisms in the field (Eaton and Hale, 1993; Australian Durability

Standard (AS 5604), 2005). Råberg et al. (2005) and Edlund et al. (2006) explained that the rating could be subjective as a measurement tool for durability. However, it could be an effective and easy-to-use method if meticulously employed (Kasal and Anthony, 2004). This method was employed to examine the extent of deterioration of the timbers to support the mass loss. K. gabonensis heartwood and sapwood were slightly attacked and had a visual durability rating of 1. The heartwood for E. cylindricum suffered moderate attack (2), while C. pentandra failed completely (4). Wagner et al. (2009) and Ncube et al. (2012) mentioned that visual durability rating could be verified by the Gulfport scale (0=no damage, 1=nibbles to surface etching, 2=light damage with penetration, 3=moderate damage, 4=heavy damage, and 5=block failure), which is a tool used to explain the extent of termite resistance. The current ratings for K. gabonensis, E. cylindricum and C. pentandra are in agreement with measurement by the Gulfport wood damage scale. Thus, K. gabonensis would be rated as more durable [and categorized into durability Class 1 under the European durability Standard, EN 252 (BS EN 252 2014)] than the popularly utilized traditional timber (E. cylindricum) for several wooden structures. Thus, it could be used in applications where they come into contact with the ground (i.e., European Hazard Class 4). According to the Australian Durability Standard (AS 5604, 2005), K. gabonensis could be placed in the same Durability Class (i.e., 1) as *Podocarpus totara* var. totara, *Manoao colensoi* (Hook.) Molloy and Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little, which are employed in full weather-exposed applications (Hazard Class H1 - H4). Information on the properties of K. gabonensis is scanty except its density $(940 - 1150 \text{ kgm}^{-3})$ and cell wall thickness (i.e., thick fibre walls), which are some of the few characteristics reported by Oteng-Amoako and Obeng (2012). Eaton and Hale (1993), Antwi-Boasiako and Atta-Obeng (2009) and Cookson and McCarthy (2013) explained that density and cell wall thickness could improve the resistance of timber to biodeterioration, as they make browsing difficult. E. cylindricum is lighter with a density of 560 – 750
kgm⁻³ (Kémeuzé 2008) than *K. gabonensis. C. pentandra* is the lightest with density of 380 – 450 kgm⁻³ (Duvall, 2011). They all have thin-tomedium walled-fibres according to the two authors. Based on these characteristics, they explain why *K. gabonensis* is more durable than *E. cylindricum* and *C. pentandra*.

5.4.2.2 Mass loss

Usually natural durability of wood is widely correlated with the amount of cellulolytic materials it loses from attacks by bio-degraders (Arango *et al.*, 2006; Ashaduzzaman *et al.*, 2011; Asamoah *et al.*, 2011). When less biomass is removed, wood marginally loses weight and becomes more resistant to bio-degradation (Ashaduzzaman *et al.*, 2011). *C. pentandra* (the control) lost the greatest mass (i.e., 100%) and would be ranked non-durable. *K. gabonensis* heartwood lost the least ($4.8\pm0.3\%$) and would be rated very durable. According to Duvall (2011), Walia *et al.* (2009) and Antwi-Boasiako and Boadu (2013), *C. pentandra* contains high amount of carbohydrates and less extractives, which make it easily attacked by micro-organisms for food. Festus and Nwala (2012) confirmed that most timber species of the family *Irvingiaceae* (including *Irvingia glaucescens, I. excelsa* and *K. trillessii*) are durable. Based on its rating, *K. gabonensis* could be classified into Use-Class 3 (i.e., suitable for exterior and above ground structures) and 4 (i.e., for exterior and in-ground applications) under EN 335 (Thompson, 1991;

Czichos, 2011). Thus, its utilization would be comparable to those of *Nauclea diderrichii* (De Wild. & T.Durand) Merr., *Chlorocardium rodiei* (R.Schomb.) R.R.W. and *Lophira alata* Banks ex P.Gaertn., which are traditional timber species for bridge construction, decking and flooring (Meaden *et al.*, 2011). Eaton and Hale (1993), Peralta *et al.* (2003), Antwi-Boasiako and AttaObeng (2009) and Cookson and McCarthy (2013) mentioned that density and cell wall thickness have good correlation with the durability of timber. Humar *et al.* (2008) observed that

Quercus sp. (a very dense and popular furniture-making material) was very resistant to biodeterioration.

The thick-wall materials of such timbers retard bio-degraders from penetrating and thereby degrading the wood substance (Schultz *et al.*, 2000). Pitman *et al.* (1999) also observed that durability is improved with the presence of tyloses, which makes wood impermeable to microorganisms by blocking the passage ways such as cell lumina and pits. Thus, the durability rating for *K. gabonensis* could be partly attributed to its thick-walled fibres, great density and the presence of tyloses, which were reported by Oteng-Amoako and Obeng (2012).

Manufacturers and consumers consider durability as a key factor in selecting timber for particular end-uses (Arowosoge and Tee, 2010). Lionetto and Frigione (2009) explained that the use of durable timbers prevent frequent breakdown and reduce replacement cost of wooden products, which contribute to the promotion of forest/timber conservation. Rahman and Chattopadhyay (2003) asserted that about AU\$1500-2500 was incurred per pole as replacement cost for more than 5.3 million wooden poles used to supply power in the Queensland region of Australia due to biodeterioration. Teles and Valle (2001) also estimated that about F300-400 million could be spent yearly to repair or replace wood destroyed through bio-degradation in France. Thus, naturallydurable timbers (e.g. *Larix decidua* var. polonica, *M. excelsa, Intsia palembanica* Miq. and *E. cylindricum*) are used effectively as stakes and posts for outdoor structures in contact with the ground (e.g. buildings) and for windows and doors, roofing, flooring and furniture construction (Eaton and Hale, 1993; Grace and Tome, 2005; Kémeuzé, 2008). The current durability status for *K. gabonensis* suggests its products could overcome the problems associated with frequent breakdown and replacement of wooden products due to bio-

deterioration.

5.5 Summary

Chapter 5 studied the anatomy (i.e., tissue proportion and arrangement, and fibre and vessel morphology) and durability of *K. gabonensis. K. gabonensis* is diffuse-porous, has sclerotic tyloses, prismatic crystals and thick-walled fibres, which formed the greatest proportion ($42.4\pm4.5-45.6\pm4.5\%$) of all its tissues, while its vessels had the least ($12.8\pm1.5-15.1\pm2.7\%$). Its fibre diameter ($20.1\pm0.2-22.7\pm0.2~\mu$ m) and double wall thickness ($8.9\pm0.3-9.7\pm0.3~\mu$ m) were greater than those of *E. cylindricum* ($19.6\pm0.4-19.7\pm0.3~\mu$ m and $8.6\pm0.2-9.0\pm0.2~\mu$ m respectively). Vessel lumen diameters for *K. gabonensis* ($144.8\pm2.2-176.9\pm4~\mu$ m) and *E. cylindricum* ($115.6\pm1.4-184.4\pm2~\mu$ m) compare with those reported for tropical diffuse-porous timbers (<200~\mum). *K. gabonensis* has very high termite resistivity. Based on its anatomy, *K. gabonensis* would be expected to be denser and stronger than *E. cylindricum*. Coupled with its termite resistivity, it could be similarly employed for furniture manufacturing, building construction and where great strength and durability are required. However, its thick walled fibres, tyloses and crystals would affect machining, and adhesive and finish application in wood composite manufacturing; power tools and extensive sanding could enhance processing, improve adhesive penetration and application of surface finishes.

BADW

MASCW CORSHE

CHAPTER SIX

THE BENDING STRENGTH OF MORTISE-TENON AND DOVETAIL JOINTS IN LEG-AND-RAIL CONSTRUCTED FROM *K. GABONENSIS* PIERRE EX ENGL. 6.1 Introduction

Wooden furniture (made by joining several pieces of wood together with a fastener) is found in almost every home and office; it is preferred to their plastic and metal counterparts because of the ecological and aesthetic properties of wood (Abdolzadeh et al., 2015). Its rigidity largely depends on the strength of its joints and members (Eckelman, 2003), as furniture mostly fails at the joints under static and cyclic loads (Eckelman, 1978; Zhang and Eckelman, 2003; Örs and Altınok, 1995; Ratnasingam et al., 1997). Its failure has economic implications. Consequently, furniture joints are designed to ensure great strength and reliability in service (Ratnasingam et al., 2010). Manufacturers' choice of joint usually depends on intended use of the product and the level of strength required (Zhang and Eckelman, 2003). According to Smardzewski (2015), joints that greatly resist bending, compression and tensile forces are the most preferred for working chairs, as these forces predominantly act on chair members. Tankut and Tankut (2005) and Eckelman et al. (2006) observed that mortise-tenon is the most used joint for manufacturing working chairs due to their strength against twisting and the ease of assembly. This joint, however, breaks down with time when chairs are subjected to bending stresses during the sitting process (Morris, 2014). Eckelman and Haviarova (2006) explained that when people sit, they exert undue pressure on chairs through activities (such as rocking and swinging) that cause the failure of glued joints.

Zhang and Eckelman (1993) and Hoadley (2000) noted that dovetail joints have great resistance to tension from bending forces and could offer an alternative to mortise-tenon. Its great resistance to

tensile forces and beauty has led to its success for drawer construction and cabinetry. However, it is seldom used for the construction of leg-and-rail of chairs because most manufacturers are not familiar with the extent to which its strength exceeds that of mortise-tenon in such applications (Landis, 1998; Van de Kuilen *et al.*, 2014). Smardzewski (2015) proposed that in order to select other joints that would overcome the problems associated with chairs constructed with mortise-tenon, extensive researches that compared their strengths were needed. However, most of the previous researches have failed to compare mortise-tenon and dovetail joints in chair construction.

The strength of any type of joint is influenced by the design of its parts and the wood species (Halstead, 1999; Kureli and Altinok, 2011). Tankut and Tankut (2011) observed that rectangularend mortise-tenon joint with wider and longer tenons were stronger than round end mortisetenon with narrow and shorter tenons. Erdil et al. (2005) found that a close tolerance maintained between the tenon and mortise resulted in strong joint. Love (1950) and Chan (2002) explained that dovetail joint derives its strength from careful design of the tail and socket that enhances their wedging effect. Albin et al. (1987), Erdil et al. (2005), Haviarova et al. (2013) and Abdolzadeh et al. (2015) also noted that, based on the desired level of joint strength, different wood species might be suitable for constructing certain kinds of joints. Jivkov and Marinova (2006) found that end corner miter joints made from J. regia L. had greater strength than those from Alnus spp. (L.) Gaertn. and P. sabiniana Douglas ex D.Don because of the superior mechanical properties of J. regia. When the appropriate wood species and joints are not chosen, furniture construction could become difficult, the integrity of joints would be undermined and the furniture piece could fail earlier than expected (Haviarova et al., 2013). According to Smardzewski and Majewski (2013), the decision to use a particular timber species and a corresponding joint design for furniture production must be based on experimental results of the performance of the wood-joint design combination. Therefore, to promote successfully any timber for furniture construction, information on the appropriate joint design that would give great strength was required (Ratnasingam *et al.*, 2010).

Most Lesser-Utilized-Species (LUS) with the potential for joinery-making lack information about the joint design that must be employed to produce strong furniture (Sseremba, 2011). Although the physico-mechanical properties of *K. gabonensis* would likely make it an excellent timber for joinery products (Oteng-Amoako and Obeng, 2012), the best joint design for the production of strong furniture need be ascertained. The current study assessed the strengths of two designs of dovetail and the traditional mortise-tenon joints in the leg-and-rail of working chairs constructed from *K. gabonensis* and *E. cylindricum*. It sought to provide fundamental information on the most suitable joint that would improve the strength characteristics of working chairs to furniture designers and manufacturers. A stress analysis of the joints was also done to determine their efficiency against bending, deflection and shear stresses.

6.2 Materials and methods

6.2.1 Choice of joint designs and fastener

The designs for the joints (Figs. 6.1–6.4) and fastener were chosen based on the responses of 300 furniture manufacturing firms (randomly selected from Accra and Kumasi) to a questionnaire that sought for the types of joints, their designs as well as the fasteners used to construct working chairs (Appendix A). Most of the firms, which produce furniture and joinery products in the West African sub-region, are concentrated in these cities (Owusu, 2012).

6.2.2 Construction of joints

6.2.2.1 Mortise-tenon joint

Air-dried (12% mc) defect-free and straight-grained sapwood and heartwood of *K. gabonensis* and *E. cylindricum* (control) were planned to the dimensions of leg and rail (Table 6.1; Figs. 6.1 and 6.2) of a standard working chair (Sitting height: 39 - 42cm; Sitting depth: 38 - 42cm; Backrest width: 40 - 42.04cm). The positions of mortise-tenon on the respective leg and rail were marked. The rail was put in a vice and a tenon saw was used to cut along the marked lines that created the tenon (Haviarova *et al.*, 2013). Securing the leg to a bench with a clamp, the mortise depth was cut with an auger bit, cleaned and squared with a chisel. The mortise-tenon pieces were pre-assembled to ensure the correct fitting before applying the glue. They were disassembled, while Fevicol SH synthetic adhesive was uniformly applied to all the faces of the tenon and to the sides and bottom of the mortise to ensure complete coverage. The joints were finally clamped together (Plate 6.1) at room temperature (25 °C) for 8 h to allow the glue to set; any excess adhesive was removed (Tankut, 2007). Squareness was checked and corrected. Ten replicates each were made for the Small-Sized (Type SS) and Large-Sized (Type LS) joints (Figs. 6.1 and 6.2 respectively) for all the wood species.

Plate 6.1: Leg (a), rail (b) with glue on the face of the tenon (arrowed); Leg and rail clamped together to produce a mortise-tenon joint (c).

Fig. 6.1: Schematic illustration of the rail (a) and leg (b) of Type SS mortise-tenon joint showing the final dimensions of the mortise and tenon (Scale = 1:2.5).

Fig. 6.2: Schematic illustration of the rail (a) and leg (b) of Type LS mortise-tenon joint showing the final dimensions of the mortise and tenon (Scale = 1:2.5).

				uorea	in joints				
Joint	Wood	Joint	No. of	al Dimens (mm)			Ι	Dimension	S
design	species	part	samples				after plan		
_	_	_	12	Length	Width	Thickness	Length	Width	Thickness
Туре	К.	Rail	20	320	60	35	300	50	25
SS	gabonensis	Leg	20	492	60	35	472	50	25
	Е.	Rail	20	320	60	35	300	50	25
	cylindricum	Leg	20	492	60	35	472	50	25
	К.	Rail	20	375	74	40	355	64	30
Type LS	gabonensis	Leg	20	517.2	61	40	497.2	51	30
	Е.	Rail	20	375	74	40	355	64	30
	cylindricum	Leg	20	517.2	61	40	497.2	51	30

 Table 6.1: Cutting list for the construction of rail and leg pieces for mortise-tenon and dovetail joints

6.2.2.2 Dovetail halving joint

With a bevel gauge and pencil, the tails (Figs. 6.3 and 6.4) of the dovetail joint were marked around the faces and sides of the rail piece (rail dimensions in Table 6.1) and cut with a tenon saw at a slope of 1 in 8 (Zhang and Eckelman, 1993). Once the tails were created, a chisel was used to clean up its surfaces. The leg board was secured in a vice to a bench. Using the tails as template, lines which created sockets that interlocked with the tails were marked on the faces of the board. The sockets were cut out using dovetail saw and chisel to ensure a perfect fit of the tail (Eckelman, 1978; Erdil *et al.*, 2005). The tail and socket were bonded together with Fevicol SH synthetic glue and clamped securely at 25 °C for 8 h for the glue to set (Plate 6.2) (Tankut, 2007). Excess adhesive was removed, while squareness was checked and corrected. Ten replicates were made for each of Type SS and Type LS joints for each timber.

Fig. 6.3: Schematic illustration of the rail (a) and leg (b) of Type SS dovetail joint showing the final dimensions of the tail and socket (Scale = 1:2.5).

Fig. 6.4: Schematic illustration of the rail (a) and leg (b) of Type LS dovetail joint showing the final dimensions of the tail and socket (Scale = 1:2.5).

Plate 6.2: Rail (a) and Leg (b) boards fitted to form a dovetail joint.

6.2.3 Strength of joints determination

Strength test was carried out in a Riehle Universal Testing Machine at the Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana. The leg member of the joint was clamped to a testing jig using a cast aluminum alloy angle plate, while load was applied by a cross head to the rail board (Plate 6.3) at a rate of 3 mm/sec. The maximum load (F) that caused rupture at the face of the joint (Plate 6.4) was recorded. The applied load created compound stresses including tension in the fibres at the upper part of the rail, shear at the neutral plane and compression in the fibres at its bottom. The bending deflection of the rail was proportional to the applied load. According to the Cantilever Beam Theory, the reaction of the wood fibres at the joint produced a moment that corresponds to the ultimate strength of the joint. Bending moment capacity (ultimate strength) of the joint (f (Nm)) was calculated using the formular by Tankut and Tankut (2005) and Tankut (2007) (Equation 6.1):

$$f = F \times L$$
 Equation 6.1

Where: L = distance between the point of application of the load and the face of the joint.

Plate 6.3: A universal testing machine for determination of the joint strength a – Machine cross head that applies the load; b - Horizontal member (rail board) of joint; c - Vertical member (leg board) of joint; d - Cast aluminum alloy angle plate that supports the leg board

Plate 6.4: Failure (arrowed) of dovetail (a) and mortise-tenon (b) joints.

6.2.4 Data Analysis

CARSA

The data on the strength of joints were subjected to ANOVA and Fisher's Least Significant Difference (LSD) test to compare their means at 95% confidence level.

6.2.5 Stress analysis of the design for the flexural member of Types SS and LS mortisetenon and dovetail joints

The two timbers were classified into the appropriate strength classes (*K. gabonensis*= D70; *E. cylindricum* = D30) according to their density and bending strength ranges (BS EN 338, 2003). Based on these, the standardized Minimum Modulus of Elasticity (E_{min}), bending ($\delta_{m.g.II}$) and shear stress parallel to the grain were obtained from Timber Grade stress Tables (BS 5268-2). The bending stress parallel to the grain ($\delta_{m.g.II}$) was adjusted to obtain the permissible bending stress ($\delta_{m.adm,II}$) for the rail member of the joint (Arya, 2009) as follows:

 $\delta_{m,adm,II} = \delta_{m,g,II} \times K_5 \times K_7 \times K_3 \qquad Equation \ 6.2$

Where: K_5 = Notch factor = 0.636; K_7 = Depth factor = 1.17; K_3 = Duration factor = 1.

The permissible bending stress $\binom{\delta_{m,adm,II}}{m,adm,II}$ and the design moment (M) of the rail were used to calculate its required section modulus $\binom{Z}{m}$ (mm³) about the x-x axis (Arya, 2009; Draycott, 2012):

$Z \ge \frac{M}{\delta_{m,adm,II}}$	Equation 6.3
$M = \frac{WL}{8}$	Equation 6.4

Where: W = Minimum load that caused failure of the joint; L = Span of the horizontal member.

Based on the calculated Section Modulus (Z), the Moment of Inertia (I) (mm⁴) about the x-x axis and the dimensions [breadth (mm), depth (mm) and area (mm²)] required for the rail member to resist the design moment (M) without failure were obtained from BS 5268-2. The dimensions were compared with those used for constructing the mortise-tenon and dovetail joints and any discrepancies noted. The accuracy of the new dimensions obtained from BS 5268-2 was verified by comparing the anticipated total deflection (shear and bending) of the rail (with the new dimensions) with the permissible deflection for flexural members (Arya, 2009; Draycott, 2012):

Permissible deflection $(mm) \ge Total deflection (mm)$ Equation 6.5

 $= 0.003 \times span \geq \frac{WL^3}{3EI} + \frac{96WL}{5EA}$

Where: W = Minimum load that caused failure of the joint; L = Span of the horizontal member; E = Minimum Modulus of Elasticity for the strength class of the timber species; I = Moment of Inertia corresponding to the new dimensions; A = Area of the section corresponding to the new dimensions.

According to Draycott (2012), when permissible deflection is greater than total deflection, the new dimensions for the joint member would be adequate for bending and deflection when used in cases where such design moments are expected. The new sections were also checked for their resistance to shearing forces (Equation 6.6) (Arya, 2009):

Permissible shear stress $(Nmm^{-2}) \ge Maximum$ shear stress at neutral axis (Nmm^{-2})

Shear stress parallel to the grain
$$\times K_5 \times K_3 \geq \frac{3 \times F_{\nu}}{24}$$

SANE

Where: K_5 Notch factor = 0.636; = Duration factor = 1; = Area of the section corresponding to the new dimensions; Draycott (20**f**2)-explained that when permissible shear stress is

greater than maximum shear at the neutral axis, the new dimensions for the joint member would adequately withstand shearing stress when subjected to the design moments.

6.3 Results

6.3.1 Strength of mortise-tenon and dovetail joints

Dovetail joints were stronger (e.g. *E. cylindricum* sapwood: 595.7±32.1; *K. gabonensis* heartwood: 913.8±49.2 Nm) than the mortise-tenon joints (*E. cylindricum* sapwood: 556.6±38.9;

K. gabonensis heartwood: 842.9 ± 39.5 Nm) (Fig 6.5). For both dovetail and mortise-tenon joints, Type LS was stronger (e.g., *E. cylindricum* sapwood mortise-tenon: 674.5 ± 47.1 ; *K. gabonensis* heartwood dovetail: 913.8 ± 49.2 Nm) than Type SS (e.g., *E. cylindricum* sapwood mortise-tenon: 556.6 ± 38.9 ; *K. gabonensis* heartwood dovetail: 745.9 ± 59.7 Nm). For wood species, joints manufactured from *K. gabonensis* also had greater strength (e.g., Type SS Mortise-tenon:

578.05±35.3; Type LS dovetail: 913.8±49.2 Nm) than those from *E. cylindricum* (e.g., Type SS Mortise-tenon: 556.6±38.9; Type LS dovetail: 759±7.5 Nm); their heartwoods produced joints with greater strength (e.g., *E. cylindricum* Type SS mortise-tenon: 612 ± 52.6 ; *K. gabonensis* Type LS dovetail: 913±49.2 Nm) than those from their sapwoods (e.g., *E. cylindricum* Type SS mortise-tenon: 556.6±38.9; *K. gabonensis* Type LS dovetail: 775.5±44.6 Nm). Mostly, Type LS dovetail constructed from *K. gabonensis* heartwood had the strongest joint (913.8±49.2 Nm), while Type SS mortise-tenon made from *E. cylindricum* sapwood was the weakest (556.6±38.9 Nm). Significant differences (p<0.05) were recorded between Type SS dovetail and Type SS mortise-tenon produced from *K. gabonensis* sapwood, and also between Type LS dovetail and Type LS mortise-tenon manufactured from *E. cylindricum* (Tables 6.2 and 6.3; Fig. 6.5).

Table 6.2: ANOVA for the strength of Mortise-tenon and Dovetail joints made from K.gabonensis and E. cylindricum

Source F	DF	Squares	Mean Square	F Value	Pr >
Model	87	2447513.2	28132.2	1.6	0.02 ⁱ
Replicates	9	138085.9	15342.9	0.9	0.5
Species	1	282828.3	282828.3	30.3	0.0004 ⁱⁱ
Stem position	1	169032.5	169032.5	11.1	0.0016 ⁱⁱⁱ
Joint Type	3	844528.8	281509.6	16.1	$<.0001^{iv}$
Replicates*Stem Position	9	84082.1	9342.5	0.5	0.8
Replicates*Stem Position*Joint Type	54	825273.6	15282.8	0.9	0.7
Species*stem position	1	<mark>24</mark> 181.8	24181.8	1.4	0.2
Species*Joint Type	3	44767.6	14922.5	0.9	0.5
Stem Position*Joint Type	3	10679.9	3559.9	0.2	0.9
Species*Stem Position*Joint Type	3	24052.5	8017.5	0.5	0.7
Error	72	1255988.5	17444.3		
Corrected Total	159	3703501.7			

	R-square	Coeff Var	Root MSE	Bending Moment Mean	
1.0	0.7	18.9	132.1	699.6	
	ⁱ Significant: p(0.02)<0.05;	ⁱⁱ Significant:	p(0.0004)<0.05;	ⁱⁱⁱ Significant: p(0.0016)<0.05; ^{iv} Signific	ant:
	p(<.0001)<0.05.		-	1	
	Table 6.3: LSD for	• the strengt	th of Mortise-te	enon and Dovetail joints made from	1 <i>K</i> .

Table	6.3: LSD	for the	e strength	of	Mortise-tenon	and	Dovetail	joints	made	from	<i>K</i> .
			gabonen	sis	and E. cylindrid	cum					

Timber species	Stem position	Joint Type	Least Significant mean [*]
K. gabonensis	Heartwood	Mortise-tenon SS Mortise-tenon LS Dovetail SS Dovetail LS	643.4 _{ag} 842.875 ^b 745.85 ^{cf} 913.75 ^d
THE TO J	Sapwood	Mortise-tenon SS Mortise-tenon LS Dovetail SS Dovetail LS	578.05 ^e 725.95 ^{cf} 708 ^{ch} 775.5 ^f
E. cylindricum	Heartwood	Mortise-tenon SS Mortise-tenon LS Dovetail SS Dovetail LS	612 ^{ae} 697.45 ^{cg} 642.175 ^{ag} 759.55 ^{cf}

Fig. 6.5: Strength of mortise-tenon and dovetail joints made from *K*. gabonensis and *E*. cylindricum.

6.3.2 Stress analysis of the design for the flexural member of Types SS and LS mortisetenon and dovetail joints

The design used for the construction of joints were all inefficient with respect to their moments in resisting bending, deflection and shear stresses since the breadth and depth of the flexural member were either less or greater than the required dimensions (Table 6.4). To be able to sustain the

respective moments without failure in shear, bending and deflection, Type SS (50 x 25 mm) and Type LS (64 x 30 mm) mortise-tenon and dovetail joints for *K. gabonensis* must have its breadth and depth re-designed to 25 mm and 75 mm respectively (Tables 6.4 and 6.5).

Timber species	Joint Type	Design moment (KNm)	Required section modulus (mm ³)	Total deflection of rail (mm)	Permissible deflection of rail (mm)	Section adequate for bending and deflection of rail
К.			6 30			
gabonensis	Type SS mortise-tenon	0.064	≥ 3724 .85	0.0061	0.9	25 x 75 mm
	Type LS mortise-tenon	0.084	≥ 4926.30	0.0149	1.07	25 x 75 mm
	Type SS Dovetail	0.075	≥4382.18	0.0118	0.9	25 x 75 mm
	Type LS Dovetail	0.084	≥4926.30	0.0149	1.07	25 x 75 mm
F						
E. Cylindricum	Type SS mortise-tenon	0.049	> 7279 29	0.0063	0.9	25 x 75 mm
Cytinaricum	Type LS mortise-tenon	0.532	≥ 79512.3	0.0003	1.07	25 x 75 mm
	Type SS Dovetail	0.075	≥ 11198.9	0.0354	0.9	25 x 75 mm
	Type LS Dovetail	0.710	≥ 106016.4	0.0548	1.07	25 x 75 mm

Table 6.4: Stress analysis of the rail for mortise-tenon and dovetail joints

Table 6.5: Shear stress analysis of the new dimensions for the rail for mortise-tenon and dovetail joints

	27	Applied Shear	Permissible Shear
K. gabonensis	Type SS mortise-tenon	0.4	1.7
The	Type LS mortise-tenon	0.5 0.5	1.7
15	Type SS Dovetail	0.5	1.7
AP.	Type LS Dovetail	E B	1.7
	Z W 2	20 5	
E. Cylindricum	Type SS mortise-tenon	0.3	0.9
	Type LS mortise-tenon	0.2 0.4	0.9
	Type SS Dovetail	0.4	0.9
	Type LS Dovetail		0.9

The new rail dimensions (25 x 75 mm) are efficient in shear since permissible shear stress \geq applied shear stress

KNUST

6.4 Discussion

dos Santos *et al.* (2015) indicated that about 80% of structural failures in timber structures could often be related to weak joints. Joint strength determines the load-bearing capacity of furniture frames (Smardzewski, 2015). According to Moavenzadeh (1990), Strong (2011) and Aicher *et al.* (2013), careful design of joints is the most important phase in any furniture design process, as it ensures their better resistance to forces imposed on them in service. Joints fail by sliding apart when wood fibers are stretched, compressed or they reach their allowable bending stress (Chan, 2002). The current load applied to the rail created compression in the fibres on the side to which the load was applied and tension in the fibres on the opposite side (Nandanwar *et al.*, 2013). In order to ensure great resistance of the working chair to bending and tensile stresses that could lead to early failure, joints with great strength are preferred (Smardzewski, 2015). Meanwhile, Zhang and Eckelman (1993) and Hoadley (2000) explained that dovetail joints made with specific timbers could improve the strength of mortise-tenon in working chairs. Thus, a comparative study on the strength of dovetail and mortise-tenon joints made from *K. gabonensis* was necessary.

WJSANE

6.4.1 Strength of mortise-tenon and dovetail joints

6.4.1.1 Kind of joints

Smardzewski and Majewski (2013) noted that the ultimate strength of furniture was mostly affected by the kind of joint selected for the work piece. Su and Wang (2007) observed in an experiment to compare the withdrawal strengths of dovetail, mortise-tenon and dowel joints that dovetail had greater strength (4915 N) than mortise-tenon (3400 N) and dowel (1654 N) joints. Asomani (2009) also determined the performance of dovetail halving joint in leg-and-rail construction and found that working chairs constructed with dovetail joints were 70% stronger than those with mortisetenon joint. Similarly, the dovetail joints were stronger (e.g. E. cylindricum sapwood: 595.7±32.1; K. gabonensis heartwood: 913.8 ± 49.2 Nm) than their mortise-tenon counterparts (E. cylindricum sapwood: 556.6±38.9; K. gabonensis heartwood: 842.9±39.5 Nm) under the current investigation. Lau (1991) noted that failure mode of joints depends largely on the geometry of the connection, which could give an indication of their strength. For instance, while the tenon for Types LS and SS made from K. gabonensis and E. cylindricum simply withdrew from the mortise at failure of the mortise-tenon joints, the tail in the dovetail joint under investigation gradually sheared off leaving several wedge-shaped sections behind in the sockets. This indicates the strong resistance of the dovetail to the bending stress as was observed by Lau (1991). Edwards (2012) explained that dovetail represents quality and artisanship in furniture and timber building construction, as it offers an admirable grain-tograin surface connection that overcomes warping. The pins and tails interlock to create a strong natural mechanical bond with good ability to resist bending and tensional forces better than mortise-tenon (Halstead, 1999; Strong, 2011; Derikvand and Ebrahimi, 2014). These characteristics explain why greater strength was obtained for dovetail than mortise-tenon joint. Alexander (1994) and Tankut and Tankut (2005) noted that the use of dovetail for joining legs, slats and stretchers to rails of chairs has not gained much prominence among manufacturers compared to mortise-tenon. This is because dovetail joints are difficult to construct and require higher level of care and practice (Fairham, 2007). Furthermore, wood workers are uncertain about the extent to which its strength surpasses that of mortise-tenon in chair construction (Van de Kuilen *et al.*, 2014; Herren, 2014). However, dovetail joints produced from *K. gabonensis* and *E. cylindricum* could offer resistance to stress acting on a working chair better than mortisetenon.

6.4.1.2 Joint size

Likos *et al.* (2012) mentioned that the dimensions selected for construction of joint parts affect joint strength. Erdil *et al.* (2005) and Haviarova *et al.* (2013) found that increasing tenon width and length increased the strength of mortise-tenon joints. Kasal *et al.* (2013) obtained greater strength (393 Nm) for joints made with 60mm wide and 45mm long tenon than those made with 30mm wide and 20mm long tenon (125 Nm). Erdil *et al.* (2005) observed an increase in joint strength when tenon length and width were also increased from 12.7 to 50.8 mm and 12.7 to 76.2 mm respectively. Likewise, dovetail and mortise-tenon joints with longer, wider and thicker tails and tenons (Type LS) was stronger (e.g., *E. cylindricum* sapwood mortise-tenon: 674.5±47.1; *K. gabonensis* heartwood dovetail: 913.8±49.2 Nm) than those with shorter, narrower and thinner tails and tenons (Type SS) (e.g., *E. cylindricum* sapwood mortise-tenon: 556.6±38.9; *K. gabonensis* heartwood dovetail: 745.9±59.7 Nm). Wider tails and tenons have more surface area for glue application and bonding and could offer greater strength than their narrow counterparts

(Fine Woodworking, 2004). Hajdarević and Martinović (2014) also noted that longer and thicker tenons are not easily pushed out of the mortise when stressed, making their joints stronger than those made with shorter and thinner tenons. Thus, Type LS could withstand great amount of stress than Type SS. Furniture designers would likely get stronger *K. gabonensis* and *E. cylindricum*

working chairs when their mortise-tenon and dovetail joints are designed with longer, wider and thicker tails and tenons.

6.4.1.3 Type of timber and joint strength

Mortise-tenon and dovetail joints manufactured from K. gabonensis were stronger (e.g., Type SS Mortise-tenon: 578.05±35.3; Type LS dovetail: 913.8±49.2 Nm) than those from *E. cylindricum* (e.g., Type SS Mortise-tenon: 556.6±38.9; Type LS dovetail: 759±7.5 Nm). Jivkov and Marinova (2006) explained that the type of timber used for joint construction has significant influence on the strength of the joint. The strength properties of the timber could be the major factor underlying the failure of wood members and joints (dos Santos et al., 2015). Hoadley (2000) found that the strength of dovetail joints linearly correlated with the shear strength parallel to the grain of the wood used for construction of the tails. Jivkov and Marinova (2006) stated that the greater mechanical properties of J. regia var. sinensis C. DC. Were responsible for its stronger joints than those of P. sylvestris L. and A. rubra Bong. Haviarova et al. (2013) similarly observed greater strength for joints made from F. orientalis Lipsky than P. sylvestris L. and asserted that the difference in the joint strength was due to variations in the shear strengths of the two timbers (*F. orientalis* = 9.72 Nmm^{-2} ; *P. sylvestris* $= 8.82 \text{ Nmm}^{-2}$). Tankut *et al.* (2014) also concluded that the modulus of elasticity (MOE) and shear strength of *P. sylvestris* (12000 and 8.82 Nmm⁻² respectively), *Fraxinus excelsior* L. (11900 and 16 Nmm⁻² respectively) and *M. 115xcels* (Welw.) C.C. Berg (9134 and 12 Nmm⁻² respectively) were responsible for the differences in their joint strengths. Kémeuzé (2008) and Oteng-Amoako and Obeng (2012) reported shear strength for E. cylindricum and K. gabonensis to be 7-18 and 14.5-18.5 Nmm⁻² respectively, while their respective MOEs were 8900 – 13,800 Nmm⁻² and 15970 – 21280 Nmm². The superior MOE and shear strength of K. gabonensis than those of E. cylindricum could account for the former's greater strength of joints than those from the latter.

Generally, dovetail joints designed with longer, wider and thicker tails (Type LS) and constructed from the heartwood of *K. gabonensis* had the greatest joint strength (913.8 \pm 49.2 Nm), while mortise-tenon joint with shorter, narrower and thinner tenons (Type SS) made from the sapwood of *E. cylindricum* was the weakest (556.6 \pm 16.8 Nm). This could be due to the great shear strength and MOE of *K. gabonensis* heartwood coupled with the better resistance of dovetail, and longer, wider and thicker tails to bending forces than mortise-tenon and shorter, narrower and thinner tails. Based on its great resistance to stress, dovetail could overcome early failure of mortise-tenon joints in furniture frames. The strength of working chairs could be improved when joints are designed with longer, thicker and wider tails and tenons in leg-and-rail construction. In joinery, timbers that produce strong furniture are desired (Eckelman *et al.*, 2001). *K. gabonensis* (a LUS) produced stronger joints than *E. cylindricum*, (popularly used for joinery) and could likely serve as raw material for the joinery and furniture industry. This will widen the wood resource base for the sector and reduce overexploitation of the few well-known timbers.

6.4.2 Stress analysis of the design for the flexural member of Types SS and LS mortisetenon and dovetail joints

The rail/flexural member of working chairs is subjected to loads applied transverse to its long dimension, which causes it to bend; the wood fibres at its bottom are stretched, while those at the top are compressed (Arya, 2009). This creates tensile and compressive stresses simultaneously on the transverse plane, which leads to deflection of the wood member from its normal geometry. Siddiqi (2014) explained that the deflection that occurs causes serious damage to the upper part of the rail member, surface finishes and the overall stability of the structure. Anderson and Anderson (2005) noted that deflection is a function of the applied load, material stiffness and the design/dimensions of the rails. Thus, the choice of an appropriate design for joint construction is

very important. Patel (2014) mentioned that stress analysis must be performed on all designs to ensure that they meet the standard specifications that would resist bending and deflection in service. According to Draycott (2012), although bending stresses are of greatest concern for beams/flexural members in bending, shear stresses exist when transverse loads are applied, which needs to be considered in stress analysis.

Stress analysis of engineering structures is prominent in the manufacturing, building and construction sectors. It determines the performance of structural products against applied loads (Danawade *et al.*, 2012). Siddiqi (2014) mentioned that such an analysis produces more reliable and efficient structural designs, while minimizing errors, cost of production and product failure. Smardzewski and Papuga (2004) further added that stress analysis ensures that a piece of furniture is characterized by strong elements and joints, which meet all the aesthetic requirements. Furniture designers could establish accurate relationships between structural configuration, loading and the expected strength of their construction.

The designs used for the construction of the joints [Type SS (50 x 25 mm); Type LS (64 x 30 mm)] were not adequate against bending, deflection and shear stresses with respect to their applied moments (0.049-0.710 KNm), since the required section modulus indicated different dimensions other than those that were used for the construction. This implies that the current dimensions (50 x 25 mm and 64 x 30 mm) used for constructing the rails of working chairs by furniture manufacturers cannot sustain loads that create moments ranging from 0.049 KNm to 0.710 KNm and would need to be re-designed under such loads. The appropriate rail dimensions (breadth and width) that could withstand failure were observed to be 25 x 75 mm respectively.

Patel (2014) and Hajdarević and Busuladžić (2015) noted that aesthetic, ergonomic and safety were the major factors considered in furniture design. Safety of a furniture piece depended on its strength. Smardzewski and Papuga (2004) explained that chairs are expected to be sturdy enough to withstand substantial weight. However, this could be achieved by paying key attention to the design of its joints. When the wrong dimensions of joint members are used, the chair would easily breakdown (Smardzewski and Papuga, 2004) as seen from the results. Therefore, although the test for joint strength indicated that dovetail and longer, wider and thicker tails would give more strength to furniture than mortise-tenon, the dimensions of the rail member used for the joint construction could lead to early failure of the chairs, especially when a moment of 0.0490.710 KNm is applied. A 25 x 75 mm rail designed with dovetail and thicker, wider and longer tails would likely produce stronger joints than those made from a 64 x 30 mm rail. This work has provided the need for furniture designers to conduct extensive stress analysis of designs intended for furniture manufacturing so as to ensure ergonomically and aesthetically acceptable and strong products. This will also reduce the cost of production by avoiding wastage of wood materials associated with over-sizing of joint members.

6.5 Summary

The bending strengths of two joint designs (dovetail and mortise-tenon) for leg-and-rail construction from *K. gabonensis* and *E. cylindricum* were studied in Chapter 6. Dovetail joints were stronger than those of mortise-tenon. For both joints, the design with longer, wider and thicker tails and tenons [Large-sized (Type LS)] was stronger than its counterpart [Small-sized (Type SS)]. Joints manufactured from *K. gabonensis* were also stronger than those from *E. cylindricum*. Thus, *K. gabonensis* could be an appropriate material for joinery/furniture production. This would broaden the raw material base for the furniture sector. However, its working chairs designed with Type LS dovetail joints would resist bending forces better and ensure stronger furniture than mortise-tenon.

CHAPTER SEVEN

GENERAL DISCUSSION

7.1 Challenges with utilization of LUS among furniture manufacturers

Although several secondary timber species that could substitute the scarce traditional timbers for many uses including furniture production abound in many forests, the timber industry continuously faces persistent timber shortages (Zziwa et al., 2006; Sseremba et al., 2011). The level of utilization of these LUS as alternatives by manufacturers and consumers is unclear and needed to be ascertained. Furniture manufacturers mainly use mixed red wood (e.g., C. odorata, Entandrophragma. spp., Khaya spp., A. africana), A. robusta, G. cedrata and T. grandis due to their strength, durability and aesthetics. This finding was in agreement with Dadzie et al. (2014) and Boampong et al. (2015) who found that among a list of 22 wood species, only few, including mixed red wood, G. cedrata and T. grandis, were mostly patronized by furniture manufacturers. Since the choice of timber for furniture-making depended on factors such as strength, durability and aesthetics (Zziwa et al., 2006), the many LUS with these characteristics could be suitable materials for the furniture industry. However, it was observed in the current work that only 15% of manufacturers use LUS such as *Celtis* spp., *M. indica* and *A. indica* for furniture production, while none had ever used K. gabonensis in their operations. Market unavailability and lack of information regarding the properties and uses of secondary timber species were some of the hindrances to their utilization by producers, thus, confirming the assertion by Smith (2000), Barany et al. (2003), Ozarska (2009), Sseremba et al. (2011) and Effah and Osei (2014) that utilization of timber depends on accessibility on the market and availability of technical data on its properties.

Therefore, the level of utilization of non-traditional timbers could be improved by supplying the timber industry with information about their charcteristics and application. This will widen the raw material stock and reduce pressure on the primary timber species (Graham, 2012).

According to Borota (1991), many developed products from *P. radiata, Pseudotsuga menziesii and* several tropical LUS (e.g., *K. ivorensis* and *M. excelsa*) established themselves in good European markets because their properties were well investigated. *K. gabonensis* is rarely used due to lack of information about its physical, mechanical and biological properties (Cordero and Kanninen, 2002). To ascertain its suitability as a useful raw material for the timber industry, its properties were worth-investigating.

7.2 Moisture content

K. gabonensis had great mc ($42.1\pm1.1-44.2\pm0.6\%$), which could affect its processing and transportation, especially when freshly felled (Anderson, 2002). If not properly dried, glueability and application of surface finishes would also be difficult. According to Winandy (1994), more moisture could lead to a reduction in the strength of manufactured joints and mechanical stiffness of walls as it leaves wood. To avoid these challenges, *K. gabonensis* needs thorough drying before utilizing it as any wooden structure.

7.3 Density

Pinto *et al.* (2004) and Izekor *et al.* (2010) asserted that timbers with density above 1200 kgm⁻³ are less preferred for construction and furniture production due to their poor dimensional stability and the costs involved in transportation and processing. The density of *K. gabonensis* (932 \pm 31–958 \pm 19 kgm⁻³) was greater than that of *E. cylindricum* (490 \pm 13–536 \pm 19 kgm⁻³). However, *K. gabonensis* could overcome the problems associated with very dense timbers because of its recorded density,

which compares with those of popular timbers (*Dalbergia retusa*: 880-980 kgm⁻³; *Chrysophyllum pomiferum*: 950 kgm⁻³; *Intsia bijuga*: 780-980 kgm⁻³) often used for building construction, flooring and furniture manufacturing (Forest Products Development and Marketing Council of Guyana Inc. 2015).

7.4 Dimensional stability

Zhu *et al.* (2014) noted that swelling and shrinkage in the tangential (T) and radial (R) directions of wood have the greatest influence on its dimensional stability. Minford (1991) and Upton and Attah (2003) recommended a T/R ratio of <1.6 (swelling) and <2.5 (shrinkage) for timbers used for wooden structures. The T/R ratio for *K. gabonensis* [swelling: 1.31 (heartwood) and 1.38 (sapwood); shrinkage: 1.58 (heartwood) and 1.63 (sapwood)] compares well with this

recommendation and fits it for structural purposes.

7.5 Mechanical properties

The mechanical properties of wood assist manufacturers in product design, material selection and efficient usage of timber (Ntalos and Grigoriou, 2002). *K. gabonensis* shear and compressive strengths $(32.2\pm0.4-33.5\pm1$ Nmm⁻² and $80.7\pm1.4-90.6\pm1$ Nmm⁻² respectively), MOR $(204\pm4.0-214\pm4.0$ Nmm⁻²) and MOE $(28900\pm660-29500\pm820$ Nmm⁻²) were greater than those of several timbers used for engineering purposes including *E. cylindricum* (i.e., $15.5\pm1-15.6\pm1$ Nmm⁻², $56.4\pm4.5-63.6\pm1.2$ Nmm⁻², 66-184 Nmm⁻² and 8900-13,800 Nmm⁻²

respectively), *L. alata* (shear strength = 14–20 Nmm⁻²) reported by Doumenge and Séné (2012), *Q. alba* (compressive strength = 51.3 Nmm⁻²) and *C. ovata* (MOR: 138.6 Nmm⁻²; MOE: 15590 Nmm⁻²) by Meier (2014). Based on its strength properties, *K. gabonensis* could resist heavy static and dynamic loads in both non-building and building structures (Haviarova *et al.*, 2001;

Meier, 2014). **7.6 Durability**

Venmalar and Nagaveni (2005) noted that naturally-durable timbers are highly recommended for the wood industry for increased service-life of manufactured products. *K. gabonensis* heartwood and sapwood were slightly attacked and had a visual durability rating of 1. The heartwood for *E. cylindricum* suffered moderate attack (2), while *C. pentandra* failed completely (4). *C. pentandra* recorded 100% mass loss (failure), *E. cylindricum* sapwood lost $13.1\pm0.6\%$ (Moderately durable), its heartwood and *K. gabonensis* sapwood lost $10\pm0.7\%$ and $8\pm0.6\%$ respectively (Durable), while *K. gabonensis* heartwood lost $4.8\pm0.3\%$ (Very durable). *K. gabonensis* would be categorized into Durability Class 1 (BS EN 252 2014) and Use-Classes 3 and 4 (EN 335). It would be suitable for exterior and above ground structures as well as exterior and in-ground applications (Thompson 1991; Czichos 2011).

7.7 Joint strength

According to dos Santos *et al.* (2015), most of the failure in timber structures could be attributed to weak joints resulting from its poor configuration and the wrong choice of timber. The traditional mortise-tenon joint used for constructing the leg-and-rail of chairs easily fails under bending and tensile forces (Aicher *et al.*, 2013). Although dovetail joint could overcome this challenge, its success depends on the design/dimension of its parts and the kind of timber employed (Smardzewski and Majewski, 2013). The strengths of two designs of dovetail and mortise-tenon produced from *K. gabonensis* were assessed to assist manufacturers with information on the best joint design that could give great strength to manufactured products. Dovetail joints were stronger (e.g. *E. cylindricum* sapwood: 595.7 ± 32.1 ; *K. gabonensis* heartwood: 913.8 ± 49.2 Nm) than mortise-tenon joints (*E. cylindricum* sapwood: 556.6 ± 38.9 ; *K. gabonensis* heartwood: 842.9 ± 39.5 Nm). Edwards (2012) explained that the pins and tails of dovetail joints interlock to create a strong

natural mechanical bond with good ability to resist bending and tensional forces better than mortise-tenon (Halstead, 1999; Strong, 2011; Derikvand and Ebrahimi, 2014). Thus, dovetail joints could resist stress acting on a working chair better than mortise and tenon (Herren, 2014). Dovetail and mortise-tenon joints with longer, wider and thicker tails and tenons (Type LS) were stronger (e.g., *E. cylindricum* sapwood mortise-tenon: 674.5 ± 47.1 ; *K. gabonensis* heartwood dovetail: 913.8±49.2 Nm) than those with shorter, narrower and thinner tails and tenons (Type SS) (e.g., *E. cylindricum* sapwood mortisetenon: 556.6 ± 38.9 ; *K. gabonensis* heartwood dovetail: 745.9 ± 59.7 Nm) because the wider and longer tails and tenons provided the joints with larger surface area for glue application and bonding, while preventing the rails from being pushed out easily under stress (Haviarova *et al.*, 2013; Kasal *et al.*, 2013). Joinery product manufacturers would likely get stronger furniture when joints are designed with longer, wider and thicker tails and tenons. Mortisetenon and dovetail joints manufactured from *K. gabonensis* had greater strengths (e.g., Type SS Mortisetenon: 578.05 ± 35.3 ; Type LS dovetail: 913.8 ± 49.2 Nm) than those from *E. cylindricum* (e.g.,

Type SS Mortise-tenon: 556.6±38.9; Type LS dovetail: 759±7.5 Nm). According to Hoadley (2000) and the U.S. Department of Agriculture (2011), timber with great density and mechanical properties have great capacity against heavy loads and provide joints with greater strength. Tankut *et al.* (2013) further explained that the modulus of elasticity (MOE) and shear strength of timber significantly influenced the strength of its manufactured joints. Stronger dovetail (e.g., Type LS: 913.8±49.2 Nm) and mortise-tenon (Type LS: 842.9±39.5 Nm) joints obtained for *K. gabonensis* than those for *E. cylindricum* (Type LS: 759.6±16.8 Nm and 697.5±22.5 Nm respectively) could be attributed to the mechanical properties of the timbers. U.S. Department of Agriculture (2011) mentioned that a major setback of joints constructed with dense wood is that, due to their thicker cell walls and narrow lumen, adhesive penetration is often poor, which limits the interlocking of

glue to a few cells. This could, however, be improved by pressure application of the adhesive to ensure its firm contact with the wood surface (U.S. Department of Agriculture,

2011).

Stress analysis performed on the rail member of the joint indicated that its dimensions (50 x 25 mm and 64 x 30 mm) cannot efficiently withstand bending, deflection and shear stresses arising from the applied moments (0.049-0.710 KNm). This would lead to early failure of manufactured chairs. Appropriately, the rail dimension (breadth and width) needed to resist failure from such moments was observed to be 25 x 75 mm respectively. Thus, a 25 x 75 mm rail designed with dovetail and thicker, wider and longer tails would likely produce stronger joints than those made from a 64 x 30 mm rail. Furniture manufacturers would need to conduct extensive stress analysis of designs intended for furniture manufacturing so as to ensure ergonomically and aesthetically acceptable and strong products.

7.8 The relationship between the physico-mechanical and biological properties of K.

gabonensis

Eaton and Hale (1993) mentioned that the interaction of all the properties of wood influences its behaviour in service. Ultimane and Ali (2011) and Santini *et al.* (2012) explained that the physicomechanical and durability properties of wood were mainly influenced by its anatomy. Chowdhury *et al.* (2012) and Walker *et al.* (2013) noted that denser, stronger and durable timbers often have larger proportion of thick-walled fibres and vessels, tyloses and crystals, while low density timbers are characterized by thin-walled fibres and vessels, and greater proportion of parenchyma, which limits their uses for wooden products manufacturing. Similarly, the larger proportion of thicker walled fibres and ray parenchyma, narrower vessels, tyloses, crystals and lower proportion of axial parenchyma of *K. gabonensis* could be responsible for the timber's greater density (932 ± 31 - 958±19 kgm⁻³), mechanical properties (shear strength = $32.2\pm0.4-33.5\pm1$ Nmm⁻²; compressive strength = $80.7 \pm 1.4 - 90.6 \pm 1$ Nmm⁻²; MOR = $204 \pm 4.0 - 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 660 - 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm⁻²; MOE = $28900 \pm 600 + 214 \pm 4.0$ Nmm 29500 \pm 820 Nmm⁻²) and durability (mass loss = 4.8 \pm 0.3–8.2 \pm 0.6%) than those of *E. cylindricum* $[\text{density} = 490 \pm 13 - 536 \pm 19 \text{ kgm}^{-3}; \text{ shear strength} = 15.5 \pm 1 - 15.6 \pm 1 \text{ Nmm}^{-2}; \text{ compressive strength}$ $= 56.4 \pm 4.5 - 63.6 \pm 1.2$ Nmm⁻²; MOR $= 99.4 \pm 4.7 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nmm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 207 - 121.3 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 10.6$ Nm²; MOE = 9987.4 \pm 10.6 Nm²; MOE $= 9987.4 \pm 10.6$ Nm²; MOE $= 9987.4 \pm 10.6$ Nm²; MOE = 9987.4 \pm 10.6 Nm²; MOE = 9987.4 Nm²; MOE = 9987.4 Nm²; MOE = 10051 ± 258 Nmm⁻²; mass loss = $10\pm 0.7-13.1\pm 0.6\%$]. Uetimane and Ali (2011) and Cookson and McCarthy (2013) noted that thick-walled fibres and vessels generally have large sectional areas to support great amount of loads, while retarding bio-degraders from penetrating wood. Moreover, wood vessels encrusted with tyloses were dense, impenetrable to micro-organisms and therefore possessed great resistance to stress and bio-deterioration. de Lima et al. (2014) found a linear relationship between the proportion of the rays and shear strength of wood. They explained that rays act as reinforcing elements that lock the growth layers of wood and prevent slippage under shear stress. The rays in K. gabonensis could have offered the timber great resistance against shear stress. Thus, the presence of tyloses and proportion of thick-walled fibres and vessels contributed to the greater density, strength and durability of K. gabonensis than E. cylindricum.

The anatomical studies of *K. gabonensis* and *E. cylindricum* again showed that vessel lumen diameter for *K. gabonensis* was greater (144.8. \pm 2.2–176.9 \pm 4 µm) than *E. cylindricum* (115.6. \pm 1.4–184.4 \pm 2 µm). Moya *et al.* (2012) observed that vessel lumen diameter greatly affected wood moisture content. Wider vessels conduct more water than their narrower counterparts. Therefore, much more moisture was recorded from *K. gabonensis* (42.1 \pm 1.1–44.2 \pm 0.6%) than *E. cylindricum* (34.8 \pm 1.2–35 \pm 0.5%) due to the former's wider vessels. Thus, thorough drying would be needed to remove moisture from *K. gabonensis* before its utilization. K. *gabonensis* Glass and Zelinka (2010) and de Lima *et al.* (2014) found a linear relationship between shrinkage and the

density of timbers; denser timbers shrink more than less dense wood. However, *K. gabonensis* with its greater density $(932\pm31-958\pm19 \text{ kgm}^{-3})$ than that of *E. cylindricum* $(490\pm13-536\pm19 \text{ kgm}^{-3})$ shrank the least $(5.1 \pm 0.3-5.7 \pm 0.5\%)$. Okon (2014) explained that increasing fibre dimensions could lower wood shrinkage. For instance, Boyd (1977) explained that thick-walled fibres have high visco-elastic strain recovery abilities, which minimize dimensional changes due to shrinkage. The thick-walled fibres of *K. gabonensis* could have therefore lowered its volumetric shrinkage.

7.9 Prospects of K. gabonensis

Haviarova *et al.* (2001), Massayuki *et al.* (2014) and Meier (2014) observed that wood used in structural applications should be dimensionally-stable and possess superior mechanical properties that can withstand great stress. In addition, Eaton and Hale (1993) and Grace and Tome (2005) explained that they should withstand bio-deterioration when extensively exposed to the ground and water. The physico-mechanical and biological characteristics of *K. gabonensis* have proven it to be a suitable engineering material for structural applications. Its abundance in the forests of many African countries [mean basal area and volume (for diameter classes 30 -

130cm) in the Ghanaian forests are 10.77 m²km⁻² and \geq 396m³km⁻² respectively] (Ghana Forestry Commission 2012), straight and cylindrical bole, which could be branchless for up to 25m from the ground and great quantities of biomass (diameter: 120-150 cm; height = 45-50 m tall) would ensure its sustainable supply for the construction/building industry and other wood related sectors, while reducing pressure on the highly-exploited timbers.

CHAPTER EIGHT

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

- Furniture manufacturers select timber for furniture-making based on their strength, durability and aesthetics due to reduced future maintenance and replacement cost of their products. Thus, with decreasing quantities of the conventional timbers, many of the secondary timbers with comparable strength, beauty and durability (e.g., *K. gabonensis*) could substitute the traditional timbers to ensure regular wood supply.
- However, most manufacturers rely on only the well-known timbers (e.g. mixed red wood, G. cedrata and teak) and hardly use the secondary timber species due to market unavailability and lack of information about their characteristics and uses. This has led to pressure on the demand for and exploitation of few primary timbers.
- Thus, the furniture industry's ability to meet future demand for wood products is unsustainable, which requires adequate efforts for the promotion and utilization of the secondary timbers (or LUS). *K. gabonensis* is an abundant timber material with great amount of biomass and commercial potential; its utilization would ensure sustainable supply of wood for product manufacturing.
- Compared with commonly used timbers such as *E. cylindricum*, *Q. alba* and *C. ovata* for construction of rigid frame, beam-column, strut and truss, both *K. gabonensis* heartwood and sapwood have been established to be dense with corresponding superior mechanical properties.
- It had great mc which could pose challenges to processing and transportation, especially when it is freshly harvested. However, swelling and shrinkage were least for sapwood
and heartwood in all their directions, which resulted in their good T/R ratios and dimensional stabilities.

- *K. gabonensis* is diffuse-porous with sclerotic tyloses, prismatic crystals and more thickwalled fibres than vessels and parenchyma. It also had greater fibre dimensions, ray parenchyma and fibre proportions than *E. cylindricum* (control). These would make *K. gabonensis* more dense, strong and durable against bio-deterioration than the control.
- The presence of tyloses and crystals in *K. gabonensis* would create challenges for liquid movement, chemical preservation and processing. Tungsten-carbide tools and extensive sanding would facilitate machining and chemical treatment.
- *K. gabonensis* heartwood and sapwood were slightly deteriorated and lost the least mass making them very durable compared to *E. cylindricum* and *C. pentandra* (control).
- Dovetail joints were stronger than their mortise-tenon counterparts and could provide working chairs with great strength. Joints with longer, wider and thicker tails and tenons
 (Type LS) were stronger than those with shorter, narrower and thinner tails and tenons (Type SS); Type LS would be more appropriate for furniture leg-and-rail construction.
- A 25 x 75 mm rail would be adequate in bending, deflection and shear than the current dimensions (50 x 25 mm and 64 x 30 mm) used by furniture manufacturers under moments ranging from 0.049 to 0.710 KNm.

K. gabonensis joints had greater strength than those from *E. cylindricum* (traditional material for joinery) and could be a suitable material like *E. cylindricum* (traditional material for furniture) for joinery due to the great strength characteristics of its joint.

8.2 Recommendation

- To increase the level of utilization of the secondary timber species to ensure consistent wood supply for the furniture industry, adequate information about their abundance, properties and uses must be made available to wood workers.
- As the dwindling supply of preferred naturally-durable timbers requires the promotion of LUS with excellent properties as their substitutes, *K. gabonensis* could be a good alternative to widen the raw material base for the Timber Industry.
- *K. gabonensis* could be similarly used as *E. cylindricum*, *I. palembanica* and *Quercus sp.* for roofing, flooring, bridge, building and furniture construction, mine props and other wood-related sectors where great strength is required.
 - *K. gabonensis* would need thorough drying before utilizing it for any wooden structure in order to minimize the challenges associated with high wood moisture.
- Due to the presence of tyloses and crystals in *K. gabonensis*, tungsten-carbide or polycrystaline diamond tipped tools would facilitate machining. Extensive sanding would also improve timber surface quality for application of finishes and bonding with adhesives.
- Working chairs designed with dovetail joints and longer, wider and thicker tails would likely resist bending forces better and ensure greater strength of furniture than mortisetenon.
- *K. gabonensis* could be a suitable material like *E. cylindricum* (traditional material for furniture) for joinery due to the great strength characteristics of its joint.
- To ensure great strength of furniture products, wood species and joint design used in the construction must be carefully selected as the joint design and timber type affected the strength performance of joints.

8.3 Contribution to knowledge

- Reliable information on the bio-mechanical properties and uses of *K. gabonensis* have been provided, which will enhance its utilization to expand the raw material stock and contribute to solving the wood demand and supply imbalances.
- To offset frequent furniture breakdown, designers have been provided with information regarding joint strengths from different designs and timbers to guide selection.
- This work has added to the global debate on promotion of LUS as one of the best and sustainable strategies for the reduction of over-dependence on the endangered traditional timbers.

8.4 Limitations of the study

- The timbers were obtained from only the moist semi-deciduous ecological zone.
- Samples for the various tests were taken from the butt portion of trees.
- The chemical properties of *K. gabonensis* were not investigated.

WJSANE

• The effect of adhesive on the joints produced was not determined since only one type of adhesive was used.

8.5 Suggestions for further work

• Further studies should be conducted on the chemical properties of *K. gabonensis*, which will

enhance its utilization and processing.

The properties of *K. gabonensis* from other ecological zones should be investigated.

REFERENCES

- 1. Abdolzadeh, H., Ebrahimi, Gh., Layeghi, M. and Ghassemieh, M. (2015) Analytical and experimental studies on stress capacity with modified wood members under combined stresses. *Maderas. Ciencia y tecnología*, Vol. 17(2), 263 276.
- **2.** Abood, F. 2008. Degradation of wood by insects and the effects on furniture production. Malays For, 71, (1), 95-106.
- **3.** Acquah, E. T. and Whyte, C. (1998) The potential for Ghana's wood/wood products in the U.S market. Office of Sustainable Development, USAID Africa Bureau. pp. 8 133.
- 4. Addae-Mensah, A. G. and Ayarkwa, J. (1998) Some Machining Qualities Of Selected Lesser-Used Timber Species Of Ghana. *Ghana J. of Forestry*, Vol. 6, 8-14.
- **5.** Addae-Wireko, L. (2008) Mapping distribution of butterflies in Central Bobiri Forest and investigation of logging and stage of regeneration on butterfly species richness and diversity Reserve. MSc Thesis. International Institute for Geo-information Science and Earth Observation (The Netherland) and Kwame Nkrumah University of Science and Technology (Ghana).
- **6.** Adebara, S. A., Hassan, H., Shittu, M. B. and Anifowose, M. A. (2014) Quality and Utilization of Timber Species for Building Construction in Minna, Nigeria. *The International Journal of Engineering and Science*, 3 (5): 46-50.
- 7. Adekunle, V. A. J., Olagoke, A. O. and Ogundare, L. F. (2013) Timber Exploitation Rate in Tropical Rainforest Ecosystem of Southwest Nigeria and its implications on Sustainable Forest Management. *Applied Ecology and Environmental Research*, Vol. 11(1): 123-136.
- 8. Adeniyi, I. M, Areghan, S. E., Alao, O. J., Salaudeen, G. T. and Falemara, B. C. (2012) Deposits in Wood Micro-Structures of Some Wood Species. *Mediterranean Journal of Social Sciences*, Vol. 3(15), 203-208.
- 9. Adeniyi, I. M., Adebagbo, C. A., Oladapo, F. M. and Ayetan, G. (2013) Utilization of Some Selected Wood Species in Relation to their Anatomical Features. *Global Journal of Science Frontier Research Agriculture and Veterinary*, Vol. 13(9), 21-27.
- **10.** Adupong, R. (2011) Strategies for the Protection and Promotion of Local Manufactured Furniture in Ghana. Report on research commissioned by Wood Workers Association of Ghana-Western Region (Wwag-Wr) For the Busac Project. 31 pp.
- **11.** Agyarko, T. (2001) Forestry Outlook Study for Africa (FOSA) Ghana. 2nd Draft Report, Ministry of Lands and Forestry. 49 pp.
- 12. Agyeman, V. K., Appiah, S. K., Siisi-Wilson, E., Ortsin, G. and Pattie, D. (1999) Timber harvesting in Ghana: a review of ecological impacts and potentials for increased harvesting of timber resources. *Ghana Journal of Forestry*, Vol. 7, 1-14
- **13.** Aicher, S., Reinhardt, H. W. and Garrecht, H. (2013) Materials and Joints in Timber Structures: Recent Developments of Technology. Springer Science & Business Media, 855 pp.
- 14. Albin, R., Muller, M., Scholze, H. (1987) Investigations on the strength of corner joints in casetype furniture. *Holz als Roh- und Werkstoff*, Vol. 45(5), 171–8.
- **15.** Alex, C. W. and Regis, B. M. (2005) Structure and function of wood. In: Handbook of Wood Chemistry and Wood Composites. R. M. Rowell (ed.) CRC Press, 487 pages.
- **16.** Alexander, J. D. (1994) Making a chair from a tree: an introduction to working green wood. Fine woodworking.com (accessed on 20/08/15).

- **17.** Ali, A. C., Uetimane Jr., E., Råberg, U. and Terziev, N. (2011) Comparative natural durability of five wood species from Mozambique. Int. Biodeterior. Biodegradation, 65, (6), 768-776
- **18.** Ali, C. A. (2011) Physical-Mechanical Properties and Natural Durability of Lesser Used Wood Species from Mozambique. Thesis (PhD). Swedish University of Agricultural Sciences. 60 pp.
- **19.** Altun, S., Burdurlu, E and Kilic, M. (2010) Effect of adhesive types on the bending moment capacity of miter frame corner joints. *BioResources*, Vol. **5**(3), 1473–1483.
- 20. Ametsistsi, G. K. D., Kyereh, B., Duah-Gyamfi, A. and Agyeman, V. K. (2009) Quality control and Standardization of Ghanaian Wood Products. Identify local market requirements for timber and wood Products and priority areas for standards and grading rules development. ITTO Project PD 318/04 Rev. 2. (I) (Activity 2.2).
- **21.** Anderson, L. O. (2002) Wood-Frame House Construction. New York: The Minerva Group Inc. 236 pp.
- **22.** Anderson, T. L. and Anderson, T. L. (2005) Fracture Mechanics: Fundamentals and Applications, Third Edition. CRC Press. 640pp.
- **23.** Antwi-Boasiako, C. (2004). Assessment of Anatomy, Durability and Treatability of Two Tropical Lesser-Utilized Species and Two Related Species from Ghana. PhD Thesis. The University of Reading. UK. 319pp.
- 24. Antwi-Boasiako, C. and Atta-Obeng, E. (2009) Vessel-Fibre Ratio, Specific Gravity and Durability Of Four Ghanaian Hardwoods. *J Sci and Technol*, 29, (3), 8-23.
- 25. Antwi-Boasiako, C. and Ayimasu, A. (2012) Inter-family variation in fibre dimensions of six tropical hardwoods in relation to pulp and paper production. *Pro Ligno*, Vol. 8(2), 19-36. 26. Antwi-Boasiako, C. and Baidoo, A. H. (2010) Accelerated Field Durability Assessment of Two Non-durable Timbers (Ceiba pentandra (L) Gaertn. And Celtis Milbraedii Engl.) Impregnated with Natural and Inorganic Preservatives. *J Sci and Technol*, 30, (1), 18-29
- 27. Antwi-Boasiako, C. and Boadu, B. K. (2013) Swelling characteristics of conventional and organic preservative-treated porous tropical utility hardwood [*Ceiba pentandra* (l.) gaertn.], *Special Topics & Reviews in Porous Media An International Journal*, 4(2), 137-145.
- **28.** Antwi-Boasiako, C. and Pitman, A. J. (2009) Influence of density on the durabilities of three Ghanaian timbers. *Journal of Science and Technology*, Vol. 29(2), 34-45.
- **29.** Anwar, U. M. K., Paridah, M. T., Hamdan, H., Latif, A. M. and Zaidon, A. (2005) Adhesion and bonding of plybamboo manufactured from *Gigantochloa scortechinii*. *American Journal Applied Science*, 5:52-58.
- **30.** Appiah-Kubi, E., Adom-Asamoah, M., Frimpong-Mensah, K. and Tekpetey, S. L. (2011) Capacity of sawmills and carpentry workshops for processing Lesser Used Species (LUS) in Ghana. *Ghana J. Forestry*, Vol. 27(3), 63-70.
- **31.** Arango, R. A., Green, F., Hintz, K., Lebow, P. K, and Miller, R. B. (2006) Natural durability of tropical and native wood against termite damage by Reticulitermes flavis (Kollar). *Int. Biodeterior. Biodegradation*, 57, 146-150.
- **32.** Arowosoge, O. G. E. and Tee, N. T. (2010) Evaluation of Consumers' Choice of Wooden Dining Furniture in Southwestern Nigeria: A Market Strategy for Furniture Manufacturers and Marketers. *Afri J Biotechnol*, 9, (21), 3109-3115

- **33.** Arya, C. (2009) Design of Structural Elements: Concrete, Steelwork, Masonry and Timber Designs to British Standards and Eurocodes, Third Edition. CRC Press, 504 pp.
- **34.** Asafu-Adjaye, O. (2012) Characterization of the physico mechanical properties of the different zones of Borassus aethiopum (Mmaa Kube). MPhil Thesis. Kwame Nkrumah University of Science and Technology, Kumasi-Ghana. 229 pp.
- **35.** Asafu-Adjaye, O. A., Frimpong-Mensah, K. and Darkwa, N. A. (2013) Assessment of the effects of density on the mechanical properties variations of *Borassus aethiopum. Arch. Appl. Sci. Res.*, 5 (6):6-19.
- 36. Asamoah, A., Atta-Boateng, A. and Sarfowaa, A. (2012) Intsia bijuga (Colebr.) In: R. H. M.J.
- Lemmens, D. Louppe, & A. A. Oteng-Amoako (eds). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. Available from: <u>http://www.prota4u.org/search.asp</u> (accessed on 17/02/15).
- **37.** Asamoah, A., Atta-Boateng, A., Frimpong-Mensah, K. and Antwi-Boasiako, C. (2011) Efficacy of extractives from parts of Ghanaian Pawpaw, Avocado and Neem on the durability of Alstonia. Afri J Environ Sci and Technol, 5, (2), 131-135.
- **38.** Ashaduzzaman, M., Das, A. K., and Shams, M. I. (2011) Natural Decay Resistance of Acacia auriculiformis Cunn. ex. Benth and Dalbergia sissoo Roxb. *Bangladesh J. Sci. Ind. Res.*, 46, 225230.
- **39.** Asomani, J. (2009) The performance of dovetail halving joint in Leg-and rail construction using *Chrysophyllum albidum*. Case study: the working chair. M.Phil Thesis, Kwame Nkrumah University of Science and Technology, Kumasi. 71pp.
- **40.** ASTM D 1037 06a (24) (2006) Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. Linear Expansion with change in Moisture Content. American Standard for Testing Materials, 2006.
- **41.** Atar, M., Ozcifci, A., Altinok, M and Celikel, U. (2009) Determination of diagonal compression and tension performances for case furniture corner joints constructed with wood biscuits. *Materials and Design*, Vol. 30, 665–670.
- **42.** Attah, N. A. (2014) The contribution of forests to the economy of Ghana. <u>http://www.fornis.net/system/files/users/Contribution of forests.pdf</u> (accessed on 1/10/15).
- **43.** Australian Durability Standard (2005) Timber—Natural durability ratings. AS 5604. Standards Australia. 26pp.
- **44.** Ayarkwa, J. (1998) New marketable Ghanaian timber Species for furniture and construction. *Wood News*, pp. 13-18.
- **45.** Bajwa, S. G., Bajwa, D. S., Holt, G. D., Coffelt, T. and Nakayama, F. (2011) Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. *Industrial Crops and Products*, 33, 747–755.
- 46. Baker, T. L. (1994) Doing Social Research (2nd edn.). New York: McGraw-Hill Inc. 525 pp.
- **47.** Barany, M., Hammett, A. L. and Araman, P. A. (2003) Lesser used species of Bolivia and their relevance to sustainable forest management. *Forest Products Journal*. Vol. 53(7/8), 28-33.
- **48.** Barboutis, O. and Vassiliou, V. (2008) Bondability of Chestnut wood with PVAC adhesives for furniture production. In: *Proceeding from International Conference of Nábytok 2008*.
- **49.** Barnett, J. R. and Jeronimidis, G. (2003) Wood Quality and its Biological Basis. Blackwell Publishing Ltd. Oxford. 240 pp.

- **50.** Baylor, C. (2009) Wood Joinery Types, Various Methods for Connecting Wood. http://woodworking.about.com/od/joinery/tp/JoineryHub.htm (accessed 12/07/13).
- **51.** Beckwith, J. (1998) Durability of Wood. University of Georgia School of Forest Resources.www.warnell.forestry.uga.edu (accessed 30/10/09).
- **52.** Beery, W. H, Ifju, G., and Mclain, T. E. (1983) Quantitative wood anatomy-relating anatomy to transverse tensile strength. *Wood Fiber Sci.*, Vol. 15(4), 395–407.
- **53.** Bekhta, P. and Niemz, P. (2009) Effect of relative humidity on some physical and mechanical properties of different types of fibreboard. *European Journal of Wood Products*, 67(3), 339-342.
- **54.** Bektaş, İ., Güler, C. nd Baştürk, M. A. (2002) Principal Mechanical Properties of Eastern Beech Wood (Fagus orientalis Lipsky) Naturally Grown in Andırın Northeastern Mediterranean Region of Turkey. *Turk. J. Agric. For.*, Vol. 26, 147-154.
- **55.** Biggs, R. P. (2013) 10 reasons to go international. http://choosewashingtonstate.com/wpcontent/uploads/2013/06/10 Reasons to go International.p df (accessed on 10/05/2015).
- 56. Binggeli, C. (2008) Materials for Interior Environments. John Wiley & Sons. 339 pages.
- **57.** Bioversity International (2009) Forest genetic resources conservation and management: status in seven South and Southeast Asian countries. 151 pp.
- **58.** Boampong, E., Effah, B., Antwi, K., J. N. Asamoah and A. B. Asante (2015) Factors influencing the choice of timber for furniture and joinery production in Ghana. *European Journal of Engineering and Technology*, Vol. 3(5), 48-59.
- **59.** Bonney, E. K. (1998) The impact of the promotion of six lesser-used species on Ghana's timber trade and industry. MSc thesis, Kwame Nkrumah University of Science and Technology, Kumasi.
- **60.** Boon-Kwee, Ng and Thiruchelvam, K. (2012) The dynamics of innovation in Malaysia's wooden furniture industry: Innovation actors and linkages. *Forest Policy and Economics*, 14, 107–118.
- **61.** Borota, J. (1991) Tropical forests, some African and Asian case studies of composition and structure. *Development in agriculture and management*, Vol. 22, 1-274.
- **62.** Bosman, M. T. M., Kort, I. de, Genderen, M. K. van and Baas, P. (1994) Radial variation in wood properties of naturally and plantation grown light red meranti (*Shorea*, Dipterocarpaceae). *IAWA Journal*, Vol. 15(2), 111-120.
- **63.** Boulton, R. B., Singleton, V. L., Bisson, L. F. and Kunkee, R. E. (2013) Principles and Practices of Winemaking. Springer Science & Business Media, 604 pp.
- 64. Boyd, J. D. (1977) Relationship between fibre morphology and shrinkage of wood. *Wood Science and Technology*, Vol 11(1), 3-22.
- 65. Boyes, W. and Melvin, M. (2015) Microeconomics. Cengage Learning, 528 pp.
- 66. Boyce, S. G., Kaeiser, M., and Bey, C. F. (1970) Variation of some wood features in five walnut trees. *For. Sci.*, Vol. 16(1), 95–100.
- 67. British Standard Institution (1957) BS 373: Methods of testing small clear specimens of timber.
- **68.** Brod, A. (2009). The Survival of the Furniture Industry? NHFA's Home Furnishings Retailer. Nov. /Dec. 2009, 37. *https://libres.uncg.edu/ir/uncg/f/A_Brod_TheSurvival_2009.pdf* (accessed on 10/11/15).
- **69.** Brokaw, N. (2012) A Caribbean Forest Tapestry: The Multidimensional Nature of Disturbance and Response. OUP USA, 460 pp.

- **70.** BS 5268-2 (2002) Structural use of timber. Code of practice for permissible stress design, materials and workmanship.
- **71.** BS EN 252 (2014) Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact. European Committee for Standardisation. 28pp.
- **72.** BS EN 338 (2009) Structural timber. Strength classes. 14pp.
- **73.** Budu-Smith, J. (2005) The Need for Polytechnics to Assert and Create a Niche for Themselves among Tertiary Institutions in Human Resource Development. *Journal of Polytechnics in Ghana*, Vol. 1(1), 14-22.
- **74.** Cai, L. and Wang, F. (1993) Influence of the stiffness of corner joint on case furniture deflection. *Holz als Roh- und Wekstoff*; Vol. 51, 406–8.
- **75.** Callister, W. D. and Rethwisch, G. D. (2012) Fundamentals of Materials Science and Engineering: An Integrated Approach. John Wiley & Sons. 910 pp.
- **76.** Canadian Wood Council (1991) Wood Reference Handbook: A guide to the Architectural Use of Wood in Building Construction, Ottawa, Ontario Canada. 561pp.
- 77. Carli, L. and Passarelli, R. (2012) Dimensional Changes in Wood. Available from: <u>http://woodchanges.com/</u> (accessed on 11/09/14).
- **78.** Carlquist, S. (2009) Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. *Bot. J. Linn. Soc.* 161(1), 26–65.
- **79.** Castro, G. and Paganini, F. (1997) Parameters affecting end finger joint performance in Poplar wood. In: *Proceedings of International Conference of IUFRO S 5.02 Timber Engineering*, 10pp.
- **80.** Cel consulting (2010) Raw material shortage in furniture export sector. <u>http://www.celconsulting.com/en/category/market-news/Raw-material</u> shortage-infurniture%20export-sector) (accessed on 10/07/15).
- **81.** Center for Industrial Studies (CSIL) (2010) World Furniture Outlook 2010/2011. http://www.newsabahtimes.com.my/nstweb/fullstory/36916/ (accessed on 23/07/2015).
- **82.** Center for International Forestry Research (1996) Current Issues in Non-Timber Forest Products Research. *In* Pérez R. M. and Arnold, J. E. M. (eds.). Indonesia: CIFOR. 275 pp.
- **83.** Centre for the Promotion of Imports from Developing Countries (2015) CBI Product Factsheet: Tropical timber furniture components in Italy. <u>http://www.cbi.eu/sites/default/files/study/productfactsheet-tropical-timber-furniture components-</u> <u>italy-2014.pdf</u> (accessed on 14/08/15).
- 84. Chan, Y. (2002) Classic joint with power tools. Lark Books. 174 pp.
- **85.** Chang, S. T., Wang, J-H., Wu, C. L., Chen, P. F. and Kuo, Y. H. (2000) Comparison of the Antifungal Activity of Cadinane Skeletal Sesquiterpenoid from Taiwania (Tawania Crypromerioides Hayara) heartwood. Holzfor, 54, (3), 241-245.
- **86.** Chaowana P. (2013) Bamboo: An Alternative Raw Material for Wood and Wood-Based Composites. *Journal of Materials Science Research*, Vol. 2(2), 90-102.
- **87.** Chernyh, M., Kargashina, E. and Štollmann, V. (2013) Assessing the impact of aesthetic properties characteristics on wood decorativeness. *ACTA FACULTATIS XYLOLOGIAE ZVOLEN*, Vol. 55(1), 21–26.
- **88.** Choong, E. T., Roliadi, H. and Chin, Y. H. (2000) Wood properties of the Dipterocarpaceae. www.forestry.sarawak.gov.my/forweb.com (accessed on 11/06/15).

- **89.** Chowdhury, Md Q., Ishiguri, F., Hiraiwa, T., Matsumoto, K., Takashima, Y., Iizuka, K., Yokota, S. and Yoshizawa, N. (2012) Variation in anatomical properties and correlations with wood density and compressive strength in *Casuarina equisetifolia* growing in Bangladesh. *Australian Forestry*, Vol. 75(2), 95–99.
- 90. CIRADForestryDepartment,(2008)Eveuss.[Internet]Tropix 6.0.http://tropix.cirad.fr/africa/eveuss.pdf. (accessed on 12/12/2012).Tropix 6.0.
- **91.** Collardet, J. (1976) Processing hard-to-process and lesser used species. Unasylva, Vol. 28(112-3), 93-105.
- **92.** Connell, M. 1991. Industrial Wood Preservatives The History, Development, Use, Advantages and Future Trends In R. Thompson (ed.), The chemistry of wood preservation. The Royal Society of Chemistry, Cambridge, 16-33.
- **93.** Conner, A. H. (1996) Urea Formaldehyde Adhesive Resins. Forest Products Laboratory, USDA Forest Service, Madison, Wisconsin, USA, 1-8.
- **94.** Cookson, L. J. and McCarthy, J. K. (2013) Influence of Tree Age and Density on the Above ground Natural Durability of Eucalypt species at Innisfail. *Aust For*, Vol. 76(3-4), 113-120.
- 95. Corbett, S. (2003) The practical woodworker. Hermes House. 256 pp.
- **96.** Cordero, L. D. P. and Kanninen, M. (2002) Wood density and aboveground biomass of *Bombacopsis quinata* plantations in Costa Rica. *Forest Ecology and Management*, 165, 1–9.
- **97.** Coulson, J. (2011) Wood in Construction: How to Avoid Costly Mistakes. John Wiley & Sons. 208 pp.
- **98.** Cox, M. (2004) Domestic And Export Marketing Prospects For Small-Scale Growers In North Queensland. *Proceedings of the Conference on marketing of farm-grown timber in tropical North Queensland at the University of Queensland*, Brisbane, Australia on 18 June 2003, 149-155.
- **99.** Cubbage, F. W., New, B. D. and Moulton, R. J. (1996) —Evaluations of technical assistance programs for nonindustrial private forest landowners. in *Proceedings: Symposium on Nonindustrial Private Forests: Learning from the Past, Prospects for the Future.* Minnesota Extension Service. St. Paul, MN: University of Minnesota, 367–376.
- **100.** Czichos, H., Saito, T. and Smith, E. L. (2011) Springer Handbook of Meteorology and Testing. Springer, 1500 pp.
- 101. Dadzie, P. K., Amoah, M. and Tekpetey, S. L. (2014) Preliminary assessment of wealth creation in wood products' business in Ghana: The perspective of lumber and furniture production and implications for entrepreneurship. *International Journal of Business and Economics Research*, Vol. 3(6), 243-249.
- **102.** Danawade, B. A., Malagi, R. R. and Mulla, A. I. (2012) Study of Effect of Tolerance on Flexural Strength of Wood Reinforced Steel Tube. *International Journal of Engineering and Innovative Technology* (IJEIT), Volume 2, Issue 1, 156-163.
- **103.** Davis, E. M. (1962) Machining and Related Characteristics of United States Hardwoods. Technical Bulletin No. 1267.
- 104. Davis, R. (2005) Design & Technology. Letts and Lonsdale. 160 pp.
- 105. de Lima, I. L., Longui, E. L., Freitas, M. L. M., A. C. S. Z., Zanata, M., Florsheim, S. M. B., Bortoletto Jr., G. (2014) Physical-Mechanical and Anatomical Characterization in 26-Year-Old Eucalyptus resinifera Wood. *Floresta e Ambiente*, Vol. 21(1), 91-98.

- **106.** Derikvand, M. and Ebrahimi, G. (2014) Strength performance of mortise and loose-tenon furniture joints under uniaxial bending moment. *Journal of Forestry Research*, Vol. 25(2), 483486.
- 107. Derkyi, N. S. A., Bailleres, H., Chaix, G., Thevenon, M. F., Oteng-Amoako, A. A and Adu Bredu, S. (2009) Colour variation in teak (*Tectona grandis*) wood from plantations across the ecological zones of Ghana. *Ghana J. Forestry*, Vol. 25, 40-48.
- **108.** Derome. D., Griffa, M., Koebel, M., Carmeliet, J. (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. *Journal of Structural Biology*, 173, 180–190
- **109.** Desch, H. E and Dinwoodie, J. M. (1996) Timber: Structure, properties, conversion, and use. 7th ed.

New York: Food Products Press, 320 pp.

- **110.** DFID Human Development Resource Centre 2012. Helpdesk Report: Desk Construction Materials and their Longevity. http://www.heart-resources.org/wp-content/uploads/2012/05/DeskConstruction-Materials-Febraury-2012.pdf?577b65 (accessed on 18/11/14).
- 111. Dickson, W. C. (2000) Integrative plant Anatomy. Academic press. 533 pp.
- **112.** Dilik, T., Dündar, T., Kurtoğlu, A. and Hiziroglu, S. (2007) Effect of adhesive types on some of the properties of laminated window profiles. *Journal of Materials Processing Technology*, 189(1–3), 320–324.
- **113.** Dinh, H. T., Rawski, T. G., Zafar, A., Wang, L. and Mavroeidi, E. (2013) Tales from the Development Frontier: How China and Other Countries Harness Light Manufacturing to Create Jobs and Prosperity. World Bank Publications, 552 pp.
- 114. Dinwoodie, J. M. (2002) Timber: Its Nature and Behaviour, Second Edition. CRC Press, 272 pp.
- **115.** Discovery Communications (2013) A Guide to Furniture Woods, <u>http://tlc.howstuffworks.com/home/guide-to-furniture-woods-ga.htm (accessed on 9/03/14).</u>
- **116.** Donovan, G. and Nicholls, D. L. (2003) Consumer preferences and willingness to pay for character marked cabinets from Alaska birch. *Forest Prod. J.*, Vol. 53(11/12), 27–32.
- **117.** dos Santos, C. L., Morais, J. J. L. and de Jesus A. M. P. (2015) Mechanical behaviour of wood T joints. Experimental and numerical investigation. *Frattura ed Integrità Strutturale*, Vol. 31, 23-37.
- 118. Doumenge, C. & Séné, V.O. (2012) Lophira alata Banks ex C.F.Gaertn. In: R. H. M. J. Lemmens, D. Louppe & A. A. Oteng-Amoako (eds). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. Available from: http://www.prota4u.org/search.asp (accessed on 4/03/15).
- **119.** Draycott, T. (2012) Structural Elements Design Manual. Routledge, 244pp.
- 120. Drayse, M. H. (2008) Globalization and Regional Change in the U.S. Furniture Industry. Growth and Change, Vol. 39(2), 252–282.
- **121.** Dupont, W. (1963) Rationalization of glued joints in the woodworking industry. *Modeern Holzverarbeitung*, Vol. 30, 176-180.
- 122. Duvall, C. S. (2011) Ceiba pentandra (L.) Gaertn. [Internet] Record from Protabase. Brink, M. & Achigan-Dako, E.G. (Editors). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. www.database.prota.org/search.htm (Accessed 27/01/2015).

- **123.** Eastin, I., Addae Mensah, A. G and Appiah, S. K. (2003) The Marketing of Lesser Used Timber Species, *Proceeding of the XX IUFRO Conference*, University of Helsinki, Department of Forest Economics, Helsinki, Finland. Publication No 4, 23-31.
- 124. Eaton, R. A. and Hale, M. D. C. 1993. Wood Decay, Pest and Production. Chapman and Hall. London. U.K., Madison, No. 217. 28pp.
- 125. Eckelman, C. A. (1978) Strength Design of Furniture. Tim Tech. Inc.. 231 pp.
- **126.** Eckelman, C. A. (1998) The Shrinking and Swelling of Wood and Its Effect on Furniture. Purdue University Cooperative Extension Service, 26 pp.
- **127.** Eckelman, C. A. (2003) Textbook of product engineering and strength design of furniture. West Lafayette (IN): Purdue University Press.
- **128.** Eckelman, C. A., Erdil, Y., Haviarova, E. (2006). Effect of shoulders on bending moment capacity of round mortise and tenon joints. *Forest Prod J*, Vol. 56, 82–86.
- **129.** Eckelman, C. and Haviarova, E. (2006) Performance tests of school chairs constructed with round mortise and tenon joints. *Forest Prod. J.* Vol. 56(3), 51-57.
- **130.** Eckelman, C., Haviarova, E., Zhu, H. and Gibson, H. (2001) Considerations in the design and development of school furniture based on local resources. *Forest Prod. J.* Vol. 51(6), 56-63.
- 131. Edlund, M. L., Evans, F., Henriksen, K. and Nilsson, T. (2006) Testing Durability of Treated Wood according to EN 252: Interpretation of Data from Nordic Test fields. Stockholm: The International Research Group on Wood Protection (The International Research Group on Wood Protection. Document IRG/WP 06-20341).
- **132.** Edwards, C. (2012) Through, lapped or blind: the dovetail joint in furniture history. *In*: Proceedings of the 10th International Symposium for wood and furniture conservation: Reproduction and Reconstruction in Furniture Conservation, Amsterdam, The Netherlands, November 2010.
- **133.** Effah, B. and Osei, J. K. (2014) Development of Kiln-Drying Schedules for two lesser-known timber species in Ghana. *Journal of Science and Technology*, Vol. 6(1), 67-76.
- **134.** Effah, B., Antwi, K., Adu, G. and Boampong, E. (2013). The Safety Culture of Artisans at the Sokoban Wood Village Enclave, Ghana. *American International Journal of Contemporary Research*, 3(12): 121-128.
- **135.** Eiki, M. (2012) *Mechanical Design for 3D Printing Dovetail Joints.* <u>http://eikimartinson.com/engineering/3dparts/#dovetail.</u> (accessed on 27/10/15).
- **136.** Engelund, E. T., Thygesen, L. G., Svensson, S. and Hill, C. A. S. (2013) A critical discussion of the physics of wood–water interactions. *Wood Science and Technology*, 47, 141–161.
- **137.** Erdil, Y. Z., Kasal, A., Eckelman, C. A. (2005) Bending moment capacity of rectangular mortise and tenon furniture joints. *Forest Prod. J.*, Vol. 55(12), 209-213.
- **138.** Erfurth, T. (1976) Product development and the choice and effective application of promotional measures to advance the wider use of products from the tropical moist forest. FAO, Rome. http://www.fao.org/docrep/12015e/12015e04.htm (accessed on 10/09/15).
- **139.** Essien, C., Ofori, J., Sekyere, D., Owusu, W. F. and Tekpetey, L. S. (2012) Assessing the suitability of *Ficus sur* and *Cola gigantea* as raw material for pulp and paper production in Ghana. *Annals of Biological Research*, 3(10), 4650-4656.
- **140.** Fairham, W. (2007) Woodwork Joints; How they are Set Out, How Made and Where Used. Evans Brothers, Limited. 215 pp.

- **141.** FAO (1998) Global fibre supply model, FAO, Rome, Italy. <u>ftp://ftp.fao.org/docrep/fao/006/X0105E/X0105E.pdf</u> (accessed on 13/08/15).
- **142.** FAO (2005) Global Forest Resources Assessment 2005. <u>www.fao.org/forestry/fra2005</u> (accessed on 10/02/15).
- **143.** Faux J. (2010) Pre-Testing Survey Instruments. *Global Review of Accounting and Finance*, Vol. 1(1), pp. 100 111.
- 144. Festus, C. and Nwala, L. (2012) Extraction and Procession of Agbono cotyledon for Long Shelflife. Acad Res Int. J, 2, (1), 139-145.
- 145. Fine Woodworking (2004) Designing Furniture. Taunton Press. 154 pp.
- **146.** Florian, C. (1995) Wood Preservation student workbook. Ohio Pesticide Applicator Training. The Ohio State University Extension Bulletin 821-13. 40pp.
- 147. Flow Control Magazine (2015) 6 U.S. Manufacturing Subsectors With Highest Gains & Losses Over Last 10 Years. <u>http://www.flowcontrolnetwork.com/6-u-s-manufacturing-subsectors-with-highestgains-losses-over-last-10-years/ (accessed on 5/10/2015).</u>
- **148.** Fonti, P., VonArx, G., García-González, I., Eilmann, B., Sass-Klaassen, U. and Gärtner, H. (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. *New Phytol.* Vol. 185(1), 42–53.
- 149. Forest Products Development and Marketing Council (2014) The economic advantage of using the lesser

 used
 species

 http://www.stabroeknews.com/2014/business/02/21/economicadvantage-using-lesser-used-species-timber/ (accessed on 03/04/15).
- **150.** Forest Products Development and Marketing Council of Guyana Inc. (2015) Limonaballi. <u>http://www.fpdmcguy.org/SpeciesPages/speciespage.aspx?spid=Limonaballi</u> (accessed on 17/02/15).
- **151.** Forest Products Laboratory (1999) Wood handbook: Wood as an Engineering Material. General Technical Report FPL–GTR–113, US Department of Agriculture, Forest Service, Madison, USA.
- **152.** Forest Products Laboratory (2010) Wood handbook—Wood as an engineering material. Madison, Forest Products Society: General Technical Report FPL-GTR-190. 508 pp.
- **153.** Forest Products Research and Development Institute (FPRDI) and International Tropical Timber Organization (ITTO) (1997) Manual on the properties and uses of lesser-used species of philippine timbers. FPRDI-ITTO Project PD 47/88 Rev. 3(1). 98pp.
- **154.** Frihart, C. R. (2005) Interaction of copper wood preservatives and adhesives. *In*: Adhesion Fundamentals: From Molecules to Mechanisms and Modelling. Proc. of 26th Annual Meeting of Adhesion Soc., Blacksburg, VA, USA, 244-245.
- **155.** Fuwape, J. A. and Fabiyi, J. S. (2003) Correlation between fibre length characteristics and mechanical properties of *Tectona grandis* wood. *Journal of Tropical Forest Products*, 9(1&2):45-53.
- 156. Ghana Forestry Commission (2012) Guidebook of Some Lesser Used Timbers of Ghana. 38 pp.
- **157.** GhanaDistricts.com (2006) Greater Accra: Climate & Vegetation. <u>http://www.ghanadistricts.com/districts/?r=1&_=5&rlv=climate</u> (accessed on 01/08/15).
- **158.** Ghazoul, J. and Sheil, D. (2010) Tropical rain forest ecology, diversity, and conservation. Oxford, UK: Oxford University Press. 536 pp.

- **159.** Gimenez, A. M. and Lopez, C. R. (2000) Anatomical features determining wood variability in *Schinopsis quebrachocolorado* (schlecht) barkl et. Meyer, (Ancardiaceae). Invest. Agraria Sistemas Recursos Forestales, 9(2):219-235.
- **160.** Gindl, W. and Teischinger, A. (2002) Axial compression strength of Norway spruce related to structural variability and lignin content. *Composites Part A: Applied Science and Manufacturing*, 33(12), 1623–1628.
- 161. Glass S, Zelinka SL. (2010) Moisture Relations and Physical Properties of Wood. In: Ross R, editor. Wood Handbook. Wood handbook: wood as an engineering material: chapter 4. Centennial ed. General technical report FPL; GTR-190. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 4.1-4.19.
- **162.** Grace, J. K. and Tome, C. H. M. (2005) Resistance of the Indonesian Woods Bangkirai (Shorea laevis) and Merbau (Instia palembanica) to Formosan Subterrenean Termite attack. Sociobiol, 45, (2), 503-509.
- 163. Grant, J. (2008) Promoting responsible forest trade of lesser known timber species. WWF US. 6 pp.
- **164.** Green, D., Vonsegen, W. and Willits, S. (1995) Western hardwoods value-added research and demonstration program. USDA For. Serv. Gen. Tech. Rep. FPL-GTR-85. 43 pp.
- 165. Green, H. (2007) Wood: Craft, Culture, History. New York: Penguin. 464 pp.
- **166.** Gryc, V. and Horácek, P. (2007) Variability in density of spruce (*Picea abies*[L.] Karst.) wood with the presence of reaction wood. *Journal of Forest Science*, 53(3), 129-137.
- 167. Gunduz, G., Korkut, S., Aydemir, D. and Bekar, I. (2009) The density, compression strength and surface hardness of heat treated hornbeam (*Carpinus betulus* L.) wood. *Maderas. Ciencia y tecnología*, 11(1), 61-70.
- **168.** Guyana Forestry Commission (2013) Factors affecting competitiveness of tropical timber in Guyana. Strengthening market information systems to enhance trade and market intelligence in the forest sector of Guyana TMT-PD 006/11 Rev.3 (M).
- **169.** Ha, T. (2007) Greeniology: How to Live Well, be Green and Make a Difference. Melbourne Univ. Publishing, 324 pp.
- **170.** Hacke, U. G, Sperry, J. S., Pockman, W. T., Davis, S. D. and McCulloh, K. A. (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. *Oecologia*, Vol. 126, 457–461.
- **171.** Hacke, U. G., Sperry, J. S., Wheeler, J. K. and Castro, L. (2006) Scaling of angiosperm xylem structure with safety and efficiency. *Tree Physiology*, Vol. 26, 689–701.
- **172.** Hagstrom, C. (2010) Understanding Moisture Content and Wood Movement. Available from: <u>http://www.thisiscarpentry.com/2010/09/03/moisture-content-wood-movement/</u> (accessed on 9/09/14).
- **173.** Hajdarević, S. and Busuladžić, I. (2015) Stiffness Analysis of Wood Chair Frame. *Procedia Engineering*, Vol. 100, 746–755.
- 174. Hajdarević, S. and Martinović, S. (2014) Effect of Tenon Length on Flexibility of Mortise and Tenon Joint. *Procedia Engineering*, Vol. 69, 678 685.
- **175.** Halstead,G.R.(1999) AbriefHistoryofMedievalEuropeanJoinery(www.medievalwoodworking.com/articles/joinery.html)(accessed on 19/10/15).

- **176.** Hansen, E., Panwar, R. and Vlosky, R. (2013) The Global Forest Sector: Changes, Practices, and Prospects. CRC Press, 478 pp.
- **177.** Harris, D. J. (1996) A Revision of the Irvingiaceae in Africa. *Bulletin du Jardin botanique national de Belgique / Bulletin van de National Plantentuin van België*. Vol. 65(1/2), 143-196.
- **178.** Harris, T. and Pond, B., 2012. The Importance of Shear Testing in Process Design, Quality Control. Available from: <u>http://www.qualitymag.com/articles/90413-the-importance-of-shear-testing-inprocess-design--quality-control</u> (accessed on 9/09/14).
- **179.** Hashim, N. (1998) An Investigation of Factors Leading to Establishing Downstream Timber Processing in Malaysia, Ph.D. Thesis, Virginia Polytechnic Institute and State University, U.S.A.
- **180.** Haviarova, E., Eckelman, C. and Erdil, Y. (2001) Design and testing of environmentally friendly wood school chairs for developing countries. *Forest Products Journal*, 51(3), 58-64.
- 181. Haviarova, E., Kasal, A., Efe. H., Eckelman, C. A. and Erdil Y. Z. (2013) Effect of Adhesive type and tenon size on bending moment capacity and rigidity of T-Shaped furniture joints constructed of Turkish Beech and Scots Pine. *Wood and Fiber Science*, Vol. 45(3), 1-7.
- **182.** Haygreen, J. G. and Bowyer, J. L. (1996) Forest Products and Wood Science, 3rd ed. Iowa State: University Press.
- 183. Hemsley, A. R. and Poole, I. (2004) The Evolution of Plant Physiology. Academic Press. 512 pp.
- **184.** Hernandez, E. R. (2007) Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods. *Wood Science and Technology*, 41, 249–265.
- **185.** Herren, R. (2014) Agricultural Mechanics: Fundamentals & Applications. Cengage Learning. 960 pp.
- **186.** Hoadley, R. B. (2000) Understanding Wood: A Craftsman's Guide to Wood Technology. Taunton Press. 280 pp.
- **187.** Hodgkinson, J. M. (2000) Mechanical Testing of Advanced Fibre Composites. Woodhead Publishing, Ltd., 132–133.
- **188.** Huda, A. A, Koubaa, A. Cloutier, A. Hernandez, R.E and *Périnet*, P. (2012), Anatomical Properties of Selected Hybrid Poplar Clones Grown in Souther Quebec. *Bioresources* 7(3), 3779-3799.
- **189.** Humar, M., Fabčič, B., Zupančič, M., Pohleven, F. and Oven, P. (2008) Influence of Xylem Growth Ring Width and Wood Density on Durability of Oak Heartwood. Int. Biodeterior. Biodegradation 62, 368-371.
- **190.** Ibach, R. E. (2013) Chapter **5**: Biological Properties of Wood. In: Handbook of Wood Chemistry and Wood Composites, 2nd edition. CRC press. 99-126.
- **191.** International Agency for Research on Cancer (1995). Wood Dust and Formaldehyde. IARC Monogr Eval Carcinog Risks Hum, 62, 413 pp.
- **192.** International Association of Wood Anatomists (IAWA) (1989) List of microscopic features for hardwood identification. IAWA Bulletin. No.10, 219-232.
- **193.** International Tropical Timber Organisation (1997) The Database of Tropical Industrial Lesser-used Wood Species. ITTO Project PD 58/97 Rev. 1 (1), Reference Guide to Tropical Timber Species. Nagoya University Museum, Nagoya, Japan.
- **194.** International Tropical Timber Organization (2015) Global furniture trade rises up to US\$128 billion.

http://www.ihb.de/wood/news/CSIL_worldwide_furniture_trade_analysis_40820.html (accessed on 13/11/15)

- **195.** International Wood Products Association (2015) Lesser Known Species. http://www.iwpawood.org/?page=81 (accessed on 03/04/15).
- **196.** Izekor, D. N, Fuwape, J. A and Oluyege, A. O. (2010) Effects of density on variations in the mechanical properties of plantation grown *Tectona grandis* wood. *Archives of Applied Science Research*, 2(6), 113-120.
- **197.** Izekor, D. N. and Fuwape, J. A. (2011) Variations in the anatomical characteristics of plantation grown *Tectona grandis* wood in Edo State, Nigeria. *Archives of Applied Science Research*, Vol. 3(1): 83-90.
- **198.** Jacobsen, A. L., Pratt, R. B., Davis, S. D. and Ewers, F. W. (2007) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. *Plant, Cell and Environment*, Vol. 30, 1599–1609.
- **199.** Jesberger, L. A. (2007) Woodworking Terms and Joints. <u>http://www.prowoodworkingtips.com/</u> (accessed on 15/10/15).
- **200.** Jivkov, V. and Marinova, A. (2006) Ultimate bending strength and stiffness under compression test of end corner miter joints constructed of solid wood. International conference of Nábytok, ZvolenSlovakia, June 2006.
- **201.** Johnson, G. C., Tornton, J. D., Trajstman, A. C. and Cookson, L. J., 2006. Comparative in -ground natural durability of white and black cypress pines (*Callitris glaucophylla* and *C. endlicheri*). *Australian Forestry*, 69(4), 243-247.
- **202.** Joyce, E. and Spielman, P. (2000) Encyclopedia of Furniture Making. Sterling Publishing (NY). 519 pp.
- **203.** Judd, J., Fonseca, F., Walker, C. and Thorley, P. (2012) Tensile strength of varied-angle mortise and tenon connections in timber frames. *Journal of Structural Engineering*, Vol. 137(5), 636-644.
- 204. Julian, C. C. (2014) Research Handbook on Export Marketing. Edward Elgar Publishing, 456 pp.
- **205.** Kaiser, J. (2003) Calcerous deposits in Indian Rosewood. Available at <u>www.thefreelibrary.co.East+India</u> (accessed on 10/11/15).
- **206.** Kamenicky, J. (1975) The rigidity of mortise joints in furniture constructions. *Drevarsky Vyskum*, Vol. 20(4), 197-214.
- **207.** Kamperidou, V., Barboutis, I. AND Vassiliou, V. (2011) Correlation between bending and tension strength of corner and middle joints constructed with beech and poplar wood. *Annals of Warsaw University of Life Sciences SGGW. Forestry and Wood Technology*, No 73, 44-50.
- **208.** Kasal, A., Haviarova, E., Efe, H., Eckelman, C. A. and Erdil, Y. Z. (2013) Effects of adhesive type, and tenon size on bending moment capacity and rigidity of T-shaped furniture joints constructed of Turkish Beech and Scots pine. *Wood and Fiber Science*, Vol. 45(3), 1-7.
- **209.** Kasal, B. and Anthony, W. R. (2004) Advances in in situ Evaluation of Timber Structures. *Prog. Struct. Eng Mater*, Vol. 6, 94–103.
- **210.** Kazemifar, M. H. and Khodadadeh, Y. (2013) Factors Influencing Furniture Sales in High-Income Segments of Societ". *Key Engineering Materials*, Vol. 572, 143-146.
- 211. Kémeuzé, V. A. (2008) Entandrophragma cylindricum (Sprague). In: D. Louppe, A. A. OtengAmoako & M. Brink (eds). PROTA (Plant Resources of Tropical Africa/ Ressources végétales de l'Afrique tropicale). Wageningen, Netherlands. Available from: www.prota4u.org/search.asp (accessed on 16/03/2013).

- **212.** Khatib, J. (2009) Sustainability of Construction Materials. Elsevier. USA, Maryland Heights. 900 pp.
- **213.** Kiaei, M. and Samariha, A. (2011) Fiber dimensions, physical and mechanical properties of five important hardwood plants. *Indian Journal of Science and Technology*. Vol. 4(11), 1460-1463.
- **214.** Killmann, W. and Fink, D. (1996) Coconut Palm Stem Processing: Technical Handbook. http://www.fao.org/docrep/009/ag335e/AG335E00.htm. (accessed on 10/08/15). 204 pp.
- **215.** Kingsway Furniture Co. Ltd. (2009) The office furniture market demand has gradually become the main force of the market. http://www.public-seating.com/news/103.htm (accessed on 28/08/15).
- **216.** Koch, H., Eisenbut, L. and Seim, W. (2013) Multi-mode failure of form-fitting timber connections Experimental and numerical studies on the tapered tenon joint. *Engineering Structures*, Vol. 48, 727–738.
- **217.** Kollmann, F. F. P. and Côté W. A. Jr. (1986) Principles of Wood Science and Technology: I Solid Wood. Springer Science & Business Media, 592 pp.
- **218.** Korkut, S. and Guller, B., 2008. Physical and mechanical properties of European Hophornbeam (*Ostrya carpinifolia* Scop.) wood. *Bioresource Technology*, 99, 4780–4785.
- **219.** Krausmann, F., Erb, K., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C. and Searchinger, D. T. (2013) Global human appropriation of net primary production doubled in the 20th century. *PNAS*, Vol. 110(25), 10324–10329.
- **220.** Kumaran, M. K. (1999) Moisture diffusivity of building materials from water absorption measurements. *Journal of Thermal Envelope and Building Science*, Vol. 22, 349-355.
- **221.** Kumasi Metropolitan Assembly 2006. About this metropolis. http://www.kma.ghanadistricts.gov.gh (accessed 30/1/14).
- **222.** Kureli, I. and Altinok, M. (2011) Determination of mechanical performances of the portable fasteners used on case furniture joints. *African Journal of Agricultural Research*, Vol. 6(21), 48934901.
- 223. Kurjatko, S., Kúdela, J. and Lagaňa, R. (2006) Wood Structure and Properties '06. Arbora Publishers, 522 pp.
- 224. Landis, S. (1998) The Workbench Book. Taunton Press. 247 pp.
- **225.** Lau, J. (1991) Solder Joint Reliability: Theory and Application, Van Nostrand Reinhold, NY. 632 pp.
- 226. Lead, C., Sampson, R. N., Bystriakova, N. and Barber, C. V. (2005) Timber, Fuel, and Fiber. Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group. Vol. 1, 243 pp.
- 227. Lei, H., Gartner, B. L. and Milota, M. R. (1997) Effect of growth rate on the anatomy, specific gravity, and bending properties of wood from 7-year-old red alder (*Alnus rubra*). *Canadian Journal of Forest Research*, Vol. 27(1), 80-85.
- **228.** Leicester, R.H. (2001) Engineered Durability For Timber Construction. Progress In *Structural Engineering & Materials*. Vol. 3 (3):216–227.
- 229. Lemmens, R. H. M. J. (2008) *Khaya ivorensis* A.Chev. [Internet] Record from PROTA4U. Louppe, D., Oteng-Amoako, A.A. & Brink, M. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands.
 http://www.prota4u.org/search.asp>. (accessed on 28/07/15).

- **230.** Likos, E., Haviarova, E., Eckelman, C. A., Erdil, Y. Z. and Ozcifci, A. (2012) Effect of Tenon Geometry, Grain Orientation, and Shoulder on Bending Moment Capacity and Rotational Characteristics of Mortise and Tenon Joints. *Wood and Fiber Science*, Vol. 44(4), 1-8.
- **231.** Lim, S. C., Gan, K. S. and Choo, K. T. (2004) Identification and utilisation of lesser-known commercial timbers in Peninsular Malaysia 1: Ara, Bangkal, Bebusok and Bekoi. *Timber Technology* Bulletin. Timber Technology Centre (TTC), No. 29. ISSN: 139-258.
- **232.** Lima, I. L., Longui, E. L., Freitas, M. L. M., Zanatto, A. C. S., Zanata, M. (2014) Physicalmechanical and anatomical characterization in 26-year-old *Eucalyptus resinifera* wood. *Floresta e Ambiente*, 21(1), 91-98.
- **233.** Lionetto, F. and Frigione, M. (2009) Mechanical and Natural Durability Properties of Wood Treated with a Novel Organic Preservative/Consolidant Product. Mater Design, <u>30</u>, (8), 3303–3307.
- **234.** Liu, W. and Eckelman, C. A. (1998) Effect of Number of Fasteners on the strength of corner joints for cases. *Forest Prod. J.*, Vol. 48(1), 93-95.
- **235.** Longwood, F. R. (1962) Present and Potential Commercial Timbers of The Caribbean. Agriculture Handbook No. 207. <u>http://edicionesdigitales.info/biblioteca/caribbeanpotentialtimbers.pdf</u>, 167pp. . (accessed on 17/11/14)
- **236.** Louppe, D. (2008) Plant Resources of Tropical Africa: Timbers. D. Louppe; A. A. Oteng-Amoako (ed). General ed.: R. H. M. J. Lemmens. PROTA, 704 pp.
- **237.** Love, M. E. (1950) How to make dovetail joints. *In* Githens P. (ed.) Popular Science, Vol. 156(5). 290 pp.
- 238. Lumbile, A. U. and Oagile, O. (2008) Pericopsis angolensis (Baker) Meeuwen. [Internet] Record from PROTA4U. Louppe, D., Oteng-Amoako, A.A. & Brink, M. (Editors). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. <<u>http://www.prota4u.org/search.asp</u>>. Accessed 26 August 2015.
- 239. MacDonald, N. (2013) Woodworking. Cengage Learning. 896 pp.
- 240. Maguire, B. W. (1990) Cabinetmaking: From Design to Finish. Craftsman Book Company. 416 pp.
- **241.** Mahu't, J. (1995) Decorative Veneer and Plywood Production. Technical University in Zvolen, Slovak Republic, Russia, pp. 155-172.
- 242. Malanit, P., Barbu, M. C. and Fruhwald, A. (2009) The gluability and bonding quality of an Asian bamboo *Dendrocalamus asper* for the production of composite lumber. *J. Trop.Forest Sci.*, Vol. 21(4), 361-368.
- 243. Mantanis, G. I., Young, R. A., and Rowell, R. M. (1994) Swelling of wood Part 1. Swelling in water. *Wood Science and Technology*, 28, 119-134.
- **244.** Marfo, E. (2010) Chainsaw Milling in Ghana: Context, Drivers and Impacts. Tropenbos International, Wageningen, the Netherlands. xii + 64 pp.
- 245. Martínez-Cabrera, H. I., Jones, C. S., Espino, S., Schenk, H. J. (2009) Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. *Am. J. Bot.*, Vol. 96, 1388–1398.
- **246.** Massayuki, M., Matoski, A., Magajewski, C. and Machado, J. (2014) Shear strength parallel of the wood fiber stress by punching proposed test. *Revista ingeniería de construcción*, 29(1), 46-60.

- 247. Mattheck, C., and Kubler, H. (1997) Wood the internal optimization of trees. SpringerVerlag, Berlin, Germany. pp. 90–108.
- **248.** McGraw-Hill Concise Encyclopedia of Bioscience. (2002) wood anatomy. The McGraw-Hill Companies, Inc, <u>http://encyclopedia2.thefreedictionary.com/Wood+anatomy</u>. (accessed on 17/03/15)
- 249. Meaden, M., Williams, J. and Simm, J. (2011) Alternative Hardwood Timbers for use in Marine and

FreshWaterConstruction.EnvironmentAgency.30pp.https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291212/scho0411btpp -e-e.pdf (accessed on 23/02/15).

- **250.** Mecklenburg, M. F. (2007) Determining the acceptable ranges of relative humidity and temperature in museums and galleries, Part 1, Structural response to relative humidity. 1-57. Available from: <u>http://si-pddr.si.edu/dspace/handle/100887055</u> (accessed 5/11/14).
- **251.** Meier, E. (2014) The Wood Database. Availabile from: <u>http://www.wood-database.com/woodarticles/crushing-strength/</u> (accessed on 7/10/14).
- **252.** Mihailescu, T. (2001) An investigation of the performance of mortise and tenon joints using the finite element method. *J. of the Institute of Wood Sci.* Vol. 15(5/89).
- **253.** Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC. 245 pp.
- **254.** Miller, R. B. (1999) Structure of wood. In Wood handbook : wood as an engineering material. Madison, WI : USDA Forest Service, Forest Products Laboratory, 1999. General technical report FPL ; GTR-113, 2.1-2.4.
- **255.** Miltiz, H., Michon, S. G. L., Polman, J. E. and Stevens, M. (1996) Comparison between Different Accelerated Test Methods for the Determination of the Natural Durability of Wood. IRG/WP 9620099.
- **256.** Minford, J. D. (1991) Treatise on Adhesion and Adhesives. Vol. 7, Florida: CRC Press. 528 pp.
- **257.** Moavenzadeh, F. (1990) Concise Encyclopedia of Building and Construction Materials. MIT Press. 682 pp.
- **258.** Morris, S. (2014) How Strong is a Dowel Joint? https://www.canadianwoodworking.com/getmore/how-strong-dowel-joint (accessed on 27/09/15).
- **259.** Moutinho, V. H. P., Lima, J. T., Águiar, J. O. R. de. and Nogueira, M. G. de. O. (2012) Scientific determination and wood anatomical features of species know in Brazilian Amazonia as matá-matá (Eschweilera spp.). *Rev. Cienc. Agrar.* Vol. 55(2), 134-141.
- **260.** Moya, R., Tenorio, C. and Meyer, Í. (2012) Influence of wood anatomy on moisture content, shrinkage and during defects in *Vochysia guatemalensis* Donn Sm. *Scientia Forestalis*, Vol. 40(94), 249-258.
- 261. Muga, M. O., Githiomi, J. K. AND Chikamai, B. N. (1998) Anatomical and related properties of wood carving species in Kenya. A Study Undertaken for the WWF/UNESCO/KEW People and Plants Initiative. 110 pp.
- 262. Muga, M. O., Kalinganire, A. and Owino, F. (1992) Variation in wood density and fibre length among *Grevillea robusta* (A. CUNN EX R.BR.) families grown in western Kenya. Kenyan

Forestry Research Institute Online repository. <u>http://10.10.20.22:8080//handle/123456789/398</u> (accessed on 10/08/15).

- **263.** Muhtaman, D. R. (2009) Survey on Jepara export and furniture marketing. Research report. Annex 5, FVC Annual Report. CIFOR, Bogor, Indonesia.
- **264.** Mukhopadyay, A. K. and Pendse, S. (1984) Profit Sharing in small business: An analysis of risk and incentive. Journal of Small Business and Entrepreneurship, Vol. 1(3), 60 pp.
- **265.** Murata, K., and Masuda, M. (2006) Microscopic observation of transverse swelling of latewood tracheid: effect of macroscopic/mesoscopic structure. *Journal of Wood Science and Technology*, 52, 283–289.
- 266. Nakayama, F. S., Poo, C., Bajwa, D. S., Youngquist, J. A., Muehl, J. H., and Krzysik, A. M. (2000) Preliminary Investigation on the Natural Durability of Guayule (Parthenium argentatum)-Based Wood Products, The International Research Group on Wood Preservation, IRG/WP. 00-40154. USA.
- **267.** Nandanwar, A., Naidu, M. V. and Pandey, C. N. (2013) Development of test methods for wooden furniture joints. *Wood Material Science & Engineering*, Vol. 8(3), 188-197.
- 268. Nascimento, M. S., Santana, A. L. B. D., Maranhão, C. A., Oliveira, L. S. and Bieber L. (2013)
 Phenolic Extractives and Natural Resistance of Wood to Biodegradation. In Chamy R. (Ed.) Life of Science. ISBN: 978-953-51-1154-2, DOI: 10.5772/56358. Available from: http://www.intechopen.com/books/biodegradation-life-of-science/phenolic-extractives-and-naturalresistance-of-wood.
- **269.** Ncube, E., Chungu, D., Kamdem, P. D. and Musawa, K. (2012) Use of a Short Span Field Test to Evaluate Termite Resistance of Eucalyptus Grandis and Bobgunnia Madagascariensis in a Tropical Environment. BioResources, 7, (3), 4098-4108.
- **270.** Neuwinger, H. D. (2000) African traditional medicine: a dictionary of plant use and applications. Medpharm Scientific, Stuttgart, Germany. 589 pp.
- 271. Ngui, K. S., Agrawal, A. and Voon, J. P. (2011) Challenges Impeding Competitiveness of the Wooden Furniture Manufacturing Industry: the Case of Furniture Industry in Sarawak, Malaysia. *Australian Journal of Basic and Applied Sciences*, Vol. 5(9), 1135-1145.
- **272.** Niklas, J. K. (1997) Mechanical Properties of Black Locust (*Robinia pseudoacacia*) Wood: Correlations among Elastic and Rupture Moduli, Proportional Limit, and Tissue Density and Specific Gravity. *Annals of Botany*, 79, 479-485.
- **273.** Niklas, K. J. and Spatz, H. C. (2010) Worldwide correlations of mechanical properties and green wood density. *American Journal of Botany*, 97(10):1587-94.
- **274.** Nketiah, K. S. and Wieman, A. (2004) Chainsaw lumber production: a necessary evil? Workshop Proceedings, Tropenbos International-Ghana (2), 79 pp.
- **275.** Nootebom, B. (1994) Innovation and diffusion in small firms. *Small Business Economics*, Vol. 6, pp. 327-347.
- 276. Norini, H., Rohana, A. R., Ahmad, F. P. and Mohd Parid, M. (2009) Wooden Furniture Industry Productivity, Cost of Production For Certain Selected Products, Primary Input Content and Policies For Sustainability, Forest Research Institute Malaysia and International Tropical Timber Organization, Malaysia. PD 192/03 Rev.3 (M), Technical Report No. 2.
- **277.** Ntalos, G. A. and Grigoriou, A. H. (2002) Characterization and utilization of vine pruning as a wood substitute for particleboard production. *Industrial Crops and Products*, 16(1), 59-68.

- **278.** Nutassey, K. N., Agyei-Boakye, I. and Quayson, E. (2014) Key Factors that Contribute to the Performance of Furniture Companies in Ghana. *Industrial Engineering Letters*. Vol.4(9), 4 pp.
- 279. Ocloo, J. K. and Laing, E. (2003) Correlation of Relative Density and Strength Properties with Anatomical properties of the wood of Ghana Celtis species. *Discovery and Innovation*, 15(3/4), 186-197.
- **280.** Odeh, O. (2005) The Impact of Federal Government Reform Programme on the Development of the SMEs Sector^{II}. A paper presented at the National Seminar on Facilitating Easy Accessibility to the SMEEIS Funds by SME operators. Lagos, 10 11, October.
- 281. Ofori, D. A. (2007). *Milicia excelsa* (Welw.) C.C.Berg. *In*: D. Louppe, A. A. Oteng-Amoako & M. Brink (eds). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l'Afrique tropicale), Wageningen, Netherlands. Available from: <<u>http://www.prota4u.org/search.asp</u>> (accessed on 4/03/15).
- **282.** Ofori, J., Brentuo, B., Mensah, M., Mohammed, A. I. and Boamah-Tawiah, R. (2009) Properties of 10 Ghanaian high density lesser-used-species of importance to bridge construction-part 1: green moisture content, basic density and shrinkage characteristics. *Ghana J. Forestry*, Vol. 25, 67 -77.
- **283.** Ogbo, A. and Nwachukwu, A. C. (2012) The Role of Entrepreneurship in Economic Development: The Nigerian Perspective. *European Journal of Business and Management*, Vol 4(8), pp. 95 105.
- **284.** Ogunwande, I. A., Essien, E. E., Ogunbinu, A. O., Adebayo, M., Karioti, A., Saroglou, V. and Skaltsa, H. (2008) Essential oil constituents of *Klainedoxa gabonensis* Pierre ex Engl. (Irvingiaceae), *Brachystegia nigerica* Hoyle et A. Jones (Caesalpinioideae) and *Acalypha segetalis* (Muell.) Arg.
 - (Euphorbiaceae). Journal of Essential Oil Research, 20(3), 211–215.
- **285.** Ogunwusi, A. (2012a) Characterization of Wood Cellular Structures of Five Lesser Used Wood Species Growing in Nigeria. *Journal of Natural Sciences Research*, Vol. 2(7), 128-134.
- **286.** Ogunwusi, A. A. (2012b) The Forest Products Industry in Nigeria. *African Research Review*. Vol. 6(4), Serial No. 27, 191-205.
- **287.** Ohmura, W., Doi, S., Aoyama, M. and Ohara, S. (2000) Antifeedant Activity of Flavonoids and Related Compounds against the Subterranean Termite Coptotermes formosanus Shiraki. *J Wood Sci*, 46, (2), 149-153.
- **288.** Ojeka, S. A. (2011) Tax Policy and the Growth of SMEs: Implications for the Nigerian Economy. *Research Journal of Finance and Accounting*. Vol. 2(2), 16-26.
- **289.** Okon K. E. (2014) Relationships between fibre dimensional characteristics and shrinkage behavior in a 25 year old Gmelina arborea in Oluwa forest reserve, South West Nigeria. *Archives of Applied Science Research*, Vol. 6 (5), 50-57.
- **290.** Oliveira, L. S., Santana, A. L. B. D., Maranhão, C. A., Miranda, R. C. M., Galvão de Lima, V. L. A., Silva, S. I., Nascimento, M. S., and Bieber, L. (2010) Natural Resistance of Five Woods to Phanerochaete chrysosporium degradation. Int. Biodeterior. Biodegradation, 64, (8), 711-715.
- **291.** Oluyege, A. O. (2007) Wood: a versatile material for national development. *An Inaugural Lecture delivered at the Federal University of Technology*, Akure, on the 26th of June 2007, 4-23.
- **292.** Opoku, F. Y. (2007) A Study of the Suitability of Selected Lesser Utilized Ghanaian Hardwoods for Outdoor Furniture. MPhil thesis. Brunel University. 160 pp.

- **293.** Oppong, M., Owiredu, A. and Churchill, R. Q. (2014) Micro and small scale enterprises development in Ghana. *European Journal of Accounting Auditing and Finance Research*, Vol. 2(6), 84-97.
- **294.** Örs, Y and Altınok, M. (1999) Modelling for optimisation frame and crosscut on chair design. *Turk. J. Agric. For.*, Vol. 23(2), 473-547.
- 295. Oteng-Amoako, A. A. and Obeng, E. A. (2012) Klainedoxa gabonensis (Pierre) In: R. H. M. J. Lemmens, D. Louppe, & A. A. Oteng-Amoako (eds). PROTA (Plant Resources of Tropical Africa/ Ressources végétales de l'Afrique tropicale). Wageningen, Netherlands. Available from: www.prota4u.org/search.asp (Accessed 16 April 2013).
- 296. Oteng-Amoako, A., Odoom, F. K., Birikorang, G., Ghartey, K. P., Boateng Poku, O. K., Bitar, G., Cardoso, R., Kwofie, J. H. S. and Opoku, F. Y. (2008) Voluntary Partnership Agreement; Timber Industry Restructuring Group Final Report. 48 pp.
- **297.** Owusu, J. H. (2012) Africa, Tropical Timber, Turfs, and Trade: Geographic Perspectives on Ghana's Timber Industry and Development. Lexington Books, 280 pp.
- **298.** Oyagade, A. O. (1994) Compatibility of some tropical hardwood species with portland cement. *Journal of Tropical Forest Science* 6(4), 387-396.
- **299.** Ozarska, B. (2009) Engineering properties of young plantation-grown Australian hardwoods for furniture production. *Forest Products Journal*, Vol. 59(No7/8), 27-30.
- **300.** Ozcifci, A., Ayar, S., Baysal, E. and Toker. H. (2011) The effects of some impregnation parameters on modulus of rupture and modulus of elasticity of wood. *Wood Research*, 56(2), 277-284.
- **301.** Ozkaya, K., Burdurlu, E., Ilce, A. C. and Ciritcioglu, H. H. (2010) Diagonal tensile strength of an oriented strand-board (OSB) frame with dovetail corner joint. *BioResources*, Vol. 5(4), 2690-2701.
- **302.** Pakarinen, T. (1999) Success Factors of Wood as a Furniture Material. For Prod J, 49, 79-85.
- 303. Patel, N. (2014) Structural Stress Analysis How Is It Important? <u>http://www.hitechengineeringservices.com/news/structural-stress-analysis-</u>

(accessed on 9/12/2015).

- **304.** Peralta, R. C. G.; Menezes, E. B. Carvalho, A. G. Menezes, E. L. A. (2003) Feeding Preferences of Subterranean Termites for Forest Species Associated or Not to Wood Decaying Fungi. *Floresta e Ambiente*, 10, (2), 58-63.
- **305.** Persson, K. (1997) Modelling of wood mechanical properties by a micromechanical approach. Thesis (PhD). University of Lund.
- **306.** Pinto, I., Pereira, H. and Usenius, A. (2004) Heartwood and sapwood development within maritime pine (*Pinus pinaster Ait*) Stems. *Trees*, 18(3), 284-294.
- **307.** Pitman, A. J., Gongora, A. and Smith, G. (1999) The Decay Resistance of Four Belizean Timbers to Fungi and the Marine Borer Liminoria tripunctata. In Proceedings of the fourth International Conference on the Development of Wood Science, 149-156, Missenden Abbey, UK, 14-16 July 1999, Wood Technology and Forestry.
- 308. Pizzi, A. and Mittal, K. L. (2011) Wood Adhesives. CRC Press, 452 pp.
- **309.** Poku, K., Wu, Q. and Vlosky, R. (2001) Wood properties and their variations within the tree stem of Lesser-Used Species of tropical Hardwood from Ghana. *Wood and Fibre Science*, 33(2), 284-291.

- **310.** Ponder, N. (2013) Consumer Attitudes and Buying Behavior for Home Furniture. Report prepared for the Furniture Outreach Program at Franklin Furniture Institute. 43 pp.
- 311. Poorter, L., McDonald, I., Alarco'n, A., Fichtler, E., Licona, J., Pen^a-Claros, M., Sterck, F., Villegas, Z. and Sass-Klaassen, U. (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. *New Phytologist*, Vol. 185, 481–492.
- 312. Postell, J. (2012) Furniture Design. New York: John Wiley & Sons. 416 pp.
- **313.** Puasa, F., Rahman, R. A., Ahmad, I., Fui, L. H. and Roda, J. (2010) Rubberwood timber decreasing, wither the wooden furniture industry? *EAS Strategic Options*, Vol. 2010(05), 1-2.
- 314. Purnomo, H., Abdullah, L. and Irawati, R. H. (2011) Systems dynamics approach to balancing wood supply and demand for sustaining furniture industry. Paper presented in 19th International Congress on Modelling and Simulation, 12-16th December 2011 at Perth, W. A. Australia, 338-344.
- **315.** Quartey, A. G. (2009) Relationships between some anatomical, physical and durability properties of the wood of some lesser utilised Ghanaian hardwoods. PhD thesis, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana. 166 pp.
- **316.** Quinlan, P. (2011) Existing Uses and Market Development Opportunities for Naturally Regenerating Totara Timber. SFF Project (L10/145) Report For the Northland Totara Working Group. 98 pp. <u>http://www.landcare.org.nz/files/file/343/ntwg-report-june-2011.pdf</u> (accessed on 6/10/2015).
- **317.** Råberg, U., Edlund, M., Terziev, N. and Land, C. J. (2005). Testing and Evaluation of Natural Durability of Wood in Above Ground Conditions in Europe An Overview. *J. Wood Sci*, 51, (5), 429-440.
- **318.** Rachel, R. (2012) House-building in Ancient Niya. *IDP News* Vol. 39. http://idp.bl.uk/archives/news39/idpnews_39.a4d (accessed on 26/10/2012).
- **319.** Rahman, A. and Chattopadhyay, G. N. (2003) Estimation of Parameters for Distribution of Timber Pole Failure due to In-ground Decay; Proceedings of the 5th Operations Research Conference on Operation Research in the 21st Century, the Australian Society of Operations Research, Sunshine coast, Australia, 9-10 May, 2003.
- **320.** Rahman, M. Md. Fujiwara, S. and Kanagawa, Y. (2005) Variations in Volume and Dimensions of Rays and their Effect on Wood Properties of Teak. *Wood And Fiber Science*, 37(3), 497 504.
- **321.** Ranabijoy, D. R. S. (1993) Small Scale Industries in India: A Case Study from Assam. Mittal Publications, 240 pp.
- **322.** Rao R. V., Sujata M., Hemavathi, T. R. (2003) Radial variation in anatomical properties of plantation grown *Tecomella undulata*. J. Trop. Forest Prod., 9(1-2):68-76.
- **323.** Ratanawilai, T., Chumthong, T. and Kirdkong, S. (2006) An investigation on the mechanical properties of trunks of palm oil trees for the furniture industry. *Journal of Oil Palm Research* (Special Issue April 2006), 114-121.
- **324.** Ratnasingam, J., Ioras, F. and McNulty, T. (2010) Fatigue Strength of Mortise and Tenon Furniture Joints Made from Oil Palm Lumber and Some Malaysian Timbers. *Journal of Applied Sciences*, Vol. 10, 2869-2874.
- **325.** Ratnasingam, J., Perkins, M. and Reid, H. (1997) Fatigue: Its relevance to furniture. *Holz Roh Werkstoff*, Vol. 55, 297-300.

- **326.** Raven, P., Evert, R. and Eichhorn, S. (1999) Biology of Plants (6th ed.). W. H. Freeman, New York. 875 pp.
- **327.** Ravenshorst, G. J. P., Gard, W. F. and van de Kuilen, J. W. G (2013) The Importance of Characterisation and Sampling of Tropical Wood Species with regard to strength and durability classification. *HERON* Vol. 58 (2013) No. 2/3, 193-220.
- **328.** Richter, H. G., and Dallwitz, M. J. (2009) Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, Portuguese, and Spanish. Version: 25th June 2009. <u>http://delta-intkey.com</u>'. (accessed on 6/06/15).
- **329.** Rijsdijk, J. F. and Laming, P. B. (2010) Physical and Related Properties of 145 Timbers: Information for Practice. Netherlands: Springer. 380 pp.
- 330. Ritter, M. A., Faller, R. K., Bunnell, S., Lee, P. D. H. and Rosson, B. T. (1998) Plans for crashtested bridge railings for longitudinal wood decks on low-volume roads. Gen. Tech. Rep. FPL– GTR– 107. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 12 pp.
- **331.** Rivers, S. and Umney, N. (2007). Conservation of Furniture. UK: Routledge. 840 pp.
- **332.** Roelof, A. A. Oldeman, T. J. P. and Alkema, K. (2013) Tropical Hardwood Utilization: Practice and Prospects. Springer Science & Business Media. 584 pp.
- **333.** Rowell, M. R., Ibach, E. R., McSweeny, J. and Nilsson, T., 2009. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. *Wood Material Science & Engineering*, Vol. 4(1-2), 14-22.
- **334.** Rowell, R. M. (2005) Handbook of wood chemistry and wood composites. Florida: CRC Press. 487 pp.
- **335.** Rowell, R. M. and Winandy, J. E. (2005) Handbook of wood chemistry and wood composites. CRC Press, Washington, DC. 47 pp.
- **336.** Santini, N. S., Schmitz, N. and Lovelock, C. E. (2012) Variation in wood density and anatomy in a widespread mangrove species. *Trees*, Vol. 26(5), 1555-1563.
- **337.** Saravanan, V., Parthiban, K. T., Sekar, I., Kumar, P. and Vennila, S. (2013) Radial variations in anatomical properties of *Melia dubia* cav. at five different ages. *Scientific Research and Essays* Vol. 8(45), 2208-2217.
- **338.** Savidge, R. A. (2003) Tree growth and wood quality. *In*: Barnett, J. R. and Jeronimidis, G. (eds) Wood Quality and its Biological Basis. Blackwell Publishing, Oxford, 1-29.
- **339.** Scholz, A., Klepsch, M., Karimi, Z. and Jansen, S. (2013) How to quantify conduits in wood? *Front. Plant Sci.* Vol. 4(56), 1-11.
- **340.** Scholz, G., Liebner, F., Koch, G., Bues, C., Günther, B. and Bäucker, E. (2007) Chemical, anatomical and technological properties of Snakewood [*Brosimum guianense* (Aubl.) Huber]. *Wood Science and Technology*, Vol. 41(8), 673-686.
- **341.** Schulte, A., Schöne, D. H. (1996) Dipterocarp Forest Ecosystems: Towards Sustainable Management. World Scientific. 666 pp.
- **342.** Schultz, T. P, Thomas, N. and Nicholas, D. D. (2000) Synergistic Wood Preservatives: Terrestrial Microcosms (TMCs) and Exposure Efficacy Studies of the Synergistic Copper: Pyrithione Mixture. Wood Fiber Sci, 32(3), 346-353.
- **343.** Schultz, T. P. and Nicholas, D. D. (2000) Naturally Durable Heartwood: Evidence for a Proposed Dual Defensive Function of the Extractives. Phytochemistry, 54(1), 47-52.

- **344.** Scottish Wood Ltd. (2000) All about Hardwoods. http://www.scottishwood.co.uk/hardwoods.htm (accessed on 19/05/13)
- **345.** Sedighi-Gilani, M., Vontobel, <u>P</u>., Lehmann, E., Carmeliet, J. and Derome, D. (2014) Liquid uptake in Scots pine sapwood and hardwood visualized and quantified by neutron radiography. *Materials and Structures*, 47(6), 1083-1096
- **346.** Shelly, J. R. (2001) Wood: Materials for Furniture. *In*: Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd, 9658–9663.
- **347.** Sherwood, G. E. (1994) Moisture-Related Properties and the Effect of Moisture on Wood and Wood Products. *In*: Treschsel, R. H. (ed). Moisture Control in Buildings. ASTM International, 72-83.
- **348.** Shih, C. A. (2012) Shortage of raw materials hinders furniture industry <u>http://www.theborneopost.com/2012/07/06/shortage-of-raw-materials-hinders-</u> furnitureindustry/#ixzz3hqB3XAMt (accessed on 6/07/15).
- **349.** Shmulsky, R. and Jones, D. P. (2011) Forest Products and Wood Science. 6th ed. New York: John Wiley & Sons. 496 pp.
- **350.** Shupe, T. F., Aguilar, F. X., Vlosky, R. P., Belisle, M. and A. Chavez (2005) Wood properties of selected lesser-used Honduran wood species. *Journal of Tropical Forest Science*. Vol. 17(3), 438446.
- **351.** Siddiqi, Z. A. (2014) Mechanics of materials: 1st Edition. Help Civil Engineering Publisher. 300pp.
- **352.** Simeone, R., 2011. Tropical treasury: Lesser Known Species. Available from: www.nepcon.pl/newsroom/tropical-treasury-known-species (accessed on 20/10/14).
- 353. Smardzewski, J. (2015) Furniture Design. Springer. 649 pp.
- **354.** Smardzewski, J. and Majewski, A. (2013) Strength and Durability of Furniture Drawers and Doors. *Materials and Design*, Vol. 10(51), 61-66.
- **355.** Smardzewski J. and Papuga T. (2004) Stress distribution in angle joints of skeleton furniture, *EJPAU* 7(1), Available Online: <u>http://www.ejpau.media.pl/volume7/issue1/wood/art-05.html</u> (accessed on 9/12/15).
- **356.** Smith, P. M. (2000) Utilization of lesser-used species as alternative raw materials for forest-based industries. International Tropical Timber Organization. 95 pp.
- **357.** Smith, R. L., Mcdaniel, P. W. and Fell, D. (2005) Opportunities for the utilization of alternative species in secondary wood manufacturing. *Forest Prod. J.*, Vol. 55(4), 71–77.
- **358.** Söderbom, M., Teal, F., and Harding, A. (2006) The Determinants of Survival among African Manufacturing Firms. *Economic Development and Cultural Change*, Vol. 54(3), 533–555.
- **359.** Sonowal, J. and Gogoi, P. K. (2010) Dimensional Stability, Thermal Degradation and Termite Resistant Studies of Chemically Treated Wood. *Int Journal of Chemistry*, 2(2), 218-225.
- **360.** Sperry, S. J., Nichols, L. K., Sullivan, E. M. J. and Eastlack, E. S. (1994) Xylem Embolism in ringporous, diffuse-porous and coniferous trees of Northern Utah and Interior Alaska. *Ecology*, 75(6): 1736–1752.
- **361.** Sreevani P. and Rao R. V. (2014) Variation in Basic Density and Tissue Proportions of Eucalyptus Tereticornis SM. Clones. *International Research Journal of Biological Sciences*. Vol. 3(1), 64-66.

- 362. Sseremba, O. E., Kaboggoza, J. R. S., Ziraba, N. Y., Mugabi, P, Banana, A. Y., Zziwa, A, Kambugu, R. K., Kizito, S., Syofuna, A., Ndawula, J. (2011) Timber management practices and timber species used by small scale furniture workshops in Uganda. *Maderas. Ciencia y tecnología*, Vol. 13 (3), 347-358.
- 363. Strong, J. (2011) Woodworking For Dummies. John Wiley & Sons. 384 pp.
- **364.** Strong, J. (2013) Types of wood for woodworking. Available from: <u>http://www.dummies.com/howto/content/types-of-wood-for-woodworking.html (accessed on 15/09/14).</u>
- **365.** Su, W.C. and Wang, Y. (2007) Withdrawal Properties of Single Dovetail Joints. *Taiwan J For Sci*, Vol. 22(3), 321-8.
- **366.** Sudo, S. (2007) Wood Anatomy in Japan since its early beginnings. IAWA Journal, Vol. 28(3), 259 284.
- **367.** Tai, H. H. and Sidel, M. (2012) State, Society and the Market in Contemporary Vietnam: Property, Power and Values. Routledge, 249 pp.
- **368.** Tankut, A. N. and Tankut N. (2009) Investigations the effects of fastener, glue and composite material types on the strength of corner joints in case-type furniture construction. *Materials and Design*, Vol. 30, 4175-4182.
- **369.** Tankut, A. N. and Tankut, N. (2005) The Effects of Joint Forms (Shape) and Dimensions on the Strengths of Mortise and Tenon Joints. *Turkish J Agric Forestry*, Vol. 29(6), 493–8.
- **370.** Tankut, A. N. and Tankut, N. (2011) Section modulus of corner joints in furniture frames as engineering design criteria for their efficient construction. *Materials and Design*, Vol.32, 2391–2395.
- **371.** Tankut, N. (2007) The effect of adhesive type and bond line thickness on the strength of mortise and tenon joints. *International Journal of Adhesion & Adhesives*, Vol. 27, 493–498.
- **372.** Tankut, N., Tankut A. N. and Zor, Mustafa (2014) Mechanical properties of heat-treated wooden material utilized in the construction of outdoor sitting furniture. *Turk J Agric For*, Vol. 38, 148-158.
- **373.** Tarlue, M. (2014) Gov't To Import Timber. http://www.dailyguideghana.com/govt-to-importtimber/ (accessed on 12/08/15).
- **374.** Taylor, M. A., Gartner, L. B. and Morrel, J. J. (2002) Heartwood formation and Natural durability A review. *Wood and Fiber Science*, 34(4), 587 611.
- **375.** Tejada, J. J. and Punzalan, J. R. B. (2012) On the Misuse of Slovin's Formula. *The Philippine Statistician*, Vol. 61(1), 129-136.
- **376.** Teles, C. D. M. and Valle, Â. D. (2001) Wood Structures: Acting Before Deterioration. In P. B. Lourenço and P. Roca (Eds.), Historical Constructions, Guimarães. Province of Minho, Portugal, 857-866.
- **377.** Tettey, W. J., Puplampu, K. P. and Berman, B. J. (2003) Critical Perspectives in Politics and SocioEconomic Development in Ghana. BRILL, 451 pp.
- **378.** Thompson, R. (1991) The Chemistry of Wood Preservation. Royal Society of Chemistry. UK. 315 pp.
- **379.** Tout, R. (2000) A review of adhesives for furniture. *International Journal of Adhesion and Adhesives*, Vol. 20, 269-272.
- 380. Trevallion, D. and Strazzari, S. (2003) Design and Technology. Pascal Press, 236 pp.

- 381. Tsoumis, G., 1991. Science and Technology of Wood. London: Chapman and Hall. 494 pp.
- **382.** U.S. Department of Agriculture (2011) The Encyclopedia of Wood. Skyhorse Publishing, Inc. 496 pp.
- **383.** Uetimane Jr. E., Terziev, N. and Geoffrey, D. (2009) Wood Anatomy of Three Lesser Known Species from Mozambique. *IAWA Journal*, Vol. 30(3), 277 291.
- **384.** Uetimane, Jr. E. and Ali, A. C. (2011) Relationship between mechanical properties and selected anatomical features of ntholo (pseudolachnostylis maprounaefolia. *Journal of Tropical Forest Science*, Vol. 23(2), 166–176.
- **385.** Ulker, O., Imirzi, O. and Burdurlu, E. (2012) The effect of densification temperature on some physical and mechanical properties of Scots Pine (*Pinus sulvestris L.*). *BioResources*, Vol. 7(4), 5581-5592.
- **386.** Unger, A., Schniewind, A. and Unger, W. (2001) Conservation of Wood Artifacts: A Handbook. Berlin: Springer. 578 pp.
- 387. Union of Concerned Scientists (2011) What's Driving tropical Deforestation Today? The Root of the Problem.
 <u>http://www.ucsusa.org/sites/default/files/legacy/assets/documents/global_warming/UCS_Drivers</u> ofD eforestation_Chap7_Timber.pdf. 15pp.
- **388.** United Nations (2011) World Population Prospects. The 2010 Revision. Available at http://esa.un.org/wpp/unpp/panel_population.htm (accessed on 14/12/2012).
- **389.** Unsal, O., Ayrilmis, N. (2005) Variations in compression strength and surface roughness of heattreated Turkish river red gum (*Eucalyptus camaldulensis*) wood. *Journal of Wood Science*, 51, 405–409.
- **390.** Upton, D. A. J. and Attah, A. (2003) Commercial timbers of Ghana The potential for lesser used species. Forestry Commission of Ghana. 58 pp.
- **391.** Usher, M. B. (1975) Studies on a Wood Feeding Termite Community in Ghana, West Africa. Biotropica, 7, 217-233.
- **392.** Van de Kuilen, J. W. G., Van Otterloo, J., Ravenshorst, G. and de Vries, P. (2014) Load carrying capacity of large mortise and tenon joints in wooden mitre gates. World Conference on Timber Engineering. Quebec City Canada, August 10-14, 2014.
- 393. Venmalar, D. and Nagaveni, H. C. 2005. Evaluation of Copperised Cashew Nut Shell Liquid and Neem Oil as Wood Preservatives. Institute of Wood Science and Technology. Malleswaram.
 Bangalore, India. IRG/WP 05-05-0368368. [on line] http://www.navimpex.com/vertinnov/fic bdd/produits pdf fr fichier/12242579720 Neem+Cashe w wood preservative.pdf.
- **394.** Venn, T. J. and Whittaker, K. (2003) Potential Specialty Timber Markets for Hardwoods of Western Queensland, Australia. *Small-scale Forest Economics, Management and Policy*, 2(3): 377-395.
- **395.** Vick, C. B. (1999) Adhesive bonding of wood materials. *In*: Wood Handbook Wood as an Engineering Material. Madison, Forest Products Society, 23-76.
- **396.** Vlosky, P. R. and Aguirre, A. J. (2001) Increasing Marketing Opportunities of Lesser Known Wood Species and Secondary Wood Products in Tropical Central America and Mexico. 63pp.

397. Wagner, T., Mulrooney, J., Shelton, T., and Petersen, C. (2009). United States Department of Agriculture Forest Service Termiticide Report – Termiticide Efficacy Results for 2008, Pest Management Professional, 27-34.

398. Wahab, R., Mustafa, T., M., Shafiqur, R., Mohammed, S. A., Othman, S., Mahmud, S. and Mat, R. M. S. (2012) Relationship between Physical, Anatomical and Strength Properties of 3-year-old Cultivated

Tropical Bamboo *Gigantochloa scortechinii, ARPN Journal of Agricultural and Biological Science*, 7(10), 782-791.

- **399.** Walford, G. B. (1997) Effect of Finger Length on Fingerjoint Performance. In: *Proceedings of Engineering our nation's future* at the IPENZ Annual Conference, 105-109.
- 400. Walia, Y. K., Kishore, K., Vasu, D. and Gupta, D. K. 2009. Physico-chemical Analysis of *Ceiba* pentandra (Kapok). Int J Theor Applied Sci, 1, (2), 115-118.
- **401.** Walker, J. C. F. (2006) Primary Wood Processing: Principles and Practice. Springer Science & Business Media. 606 pp.
- **402.** Walker, J. C. F., Butterfield, B. G., Harris, J. M., Langrish, T. A. G. and Uprichard, J. M. (2013) Primary Wood Processing: Principles and practice. Springer Science & Business Media. 595 pp.
- **403.** Walter K, Paulsson M, Wackerberg E. (2009) Energy efficient refining of Black spruce TMP by using acid hydrogen peroxide: Part 1. A pilot plant study. Stockholm: SPCI; *Nordic Pulp & Paper Research Journal*, Vol. 24(3), 255-265.
- **404.** Wan-Mohd-Nazri, W., Jamaludin, K., Rudaini, M. H., Rahim, S. and Nor, Y. M. Y. (2012) Anatomical Properties of Leucaena leucocephala Wood: Effects on Oriented Strand Board. *Research Journal of Forestry*, Vol. 6(3), 55-65.
- 405. Wansi, J. D., Chiozem, D. D., Tcho, A.T., Toze, F.A., Devkota, K. P., Ndjakou, B. L., Wandji, J. and Sewald, N. (2010) Antimicrobial and antioxidant effects of phenolic constituents from *Klainedoxa gabonensis. Pharmaceutical Biology*, Vol. 48(10), 1124–1129.
- **406.** Ward, S. and Gilbert, S. (2001) Livelihoods among the Anloga Carpentry Cluster in Kumasi, Ghana. ITDG research report for DFID contract 745 620 007 CW 002.
- **407.** Wengert, G. (1998) Types and Properties of Woodworking Adhesives. <u>http://www.woodweb.com/knowledge_base/Types_and_Properties_of_Woodworking_Adhesives.</u> <u>ht ml</u> (accessed on 03/04/15).
- **408.** Wheeler, E. A. and Manchester, S. R. (2007) Review of the wood anatomy of extant Ulmaceae as context for new reports of late Eocene *Ulmus* woods. *Bulletin of Geosciences*, 82(4), 329–342.
- **409.** Wiedenhoeft, A. C. and Miller, R. B. (2005) Structure and Function of Wood. *In*: Handbook of wood chemistry and wood composites. Rowell, R. M. (ed.). London: CRC press. 9-33.
- **410.** Wilczyński, A. and Warmbier, K. (2003). Effect of joint dimensions on strength and stiffness of tenon joints. *Folia Forestalia Polonica* Seria B 34, 53-66.
- **411.** Wimmer, R. (1995) Intra-annual cellular characteristics and their implications for modeling softwood density. *Wood Fiber Science*, Vol. 27(4), 413-420.
- **412.** Winandy, J. E. (1994) Wood Properties. *In*: C. J. Arntzen (ed.) Encyclopedia of Agricultural Science. Academic Press. 549-561.
- **413.** Woodcock, D. (2000) Wood specific gravity of trees and forest types in southern Peruvian Amazon. *Acta Amazonica*, Vol. 30, 589-599.

- **414.** World Conservation Monitoring Centre (2012) Global Biodiversity: Status of the Earth's Living Resources. Springer Science & Business Media. 585 pp.
- **415.** World Wildlife Fund (2015) Overview. <u>http://www.worldwildlife.org/industries/timber (accessed on 2/11/15).</u>
- **416.** Xiao, H., Yali, W. and Shashi, K. (2009) The global competitiveness of the Chinese wooden furniture industry. *Forest Policy and Economics*, Vol. 11, 561–569.
- **417.** Yang, H., Ji, C., Nie, Y. and Hong, Y. (2012) China's Wood Furniture Manufacturing Industry: Industrial Cluster and Export Competitiveness. *Forest Products Journal*, Vol. 62, 214–21.
- **418.** Yang, M-J. and Lin, T-Y. (1986) Studies on the strength of mortise and tenon joints (I). *For. Prod. Ind.*, Vol. 5(2), 41-48.
- **419.** Yuksel, M., Yildirim, N., Kasal, A., Erdil, Y. Z.and Demirci, S. (2014) Effect of the Panel Type and Panel Thickness on Moment Resistance of Screw-Jointed Corner Joints and Stiffness of FourMember Cabinets. *BioResources*, Vol. 9(4), 6340-6349.
- **420.** Zhang, J. L. and Eckelman, C. A. (1993) The bending moment resistance of single-dowel corner joints in case construction. *Forest Prod J*, Vol. 43(6), 19–24.
- **421.** Zhang, S. Y. (1997) Wood specific gravity mechanical property relationship at species level. *Wood Sci Tech*, Vol. 31, 181-191.
- **422.** Zhou, J., *Fu*, *W.*, *Qing*, *Y.*, *Han*, *W.*, *Zhao*, *Z. and Zhang*, *B.* (2015) Fabrication and Performance of a Glue-Pressed Engineered Honeycomb Bamboo (GPEHB) Structure with Finger-jointed Ends as a Potential Substitute for Wood Lumber. *BioResources*, 10(2), 3302-3313.
- **423.** Zhu, Y., Wang, W. and Cao, J. (2014) Improvement of Hydrophobicity and Dimensional Stability of Thermally Modified Southern Pine Wood Pretreated with Oleic Acid. *BioResources*, 9(2), 24312445.
- **424.** Ziemińska, K., Butler, D. W., Gleason, S. M., Wright, I. J. and Westoby, M. (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS, Vol. 5, 1-14.
- **425.** Zikmund, W. G. (2003) Business Research Methods, 7th. edn, Thomson/SouthWestern, Ohio. 748 pp.
- **426.** Zimmermann, M. H. (1982) Functional xylem anatomy of angiosperm trees. *In*: P. Baas (ed.), New perspective in wood anatomy Vol. 1, 59-70.
- **427.** Zobel, B. J. and Jett, J. B. (1995) Genetics of Wood Production. New York: Springer-Verlag. 337 pp.
- **428.** Zwerger, K. (2012) Wood and Wood Joints: Building Traditions of Europe, Japan and China. Berlin: Walter de Gruyter. 304 pp.
- **429.** Zziwa, A., Bukenya, M., Sseremba, O. E. and Kyeyune, R. K. (2006) Non-traditional tree species used in the furniture industry in Masaka District, central Uganda. *Uganda Journal of Agricultural Sciences*, Vol. 12(1), 57-66.

WJ SANE NO

APPENDICES

Appendix A: Questionnaire for wooden furniture manufacturers

Dear participant, I am grateful to you for taking time to respond to this survey. Your answers will be coded for computer analysis. The purpose of this assignment is to explore furniture joint configuration types employed by manufacturers. At no time will your name be released or associated with your responses. There are no foreseeable risks to you as a participant in this study, nor are there any direct benefits. However, your participation is extremely valued.

PART A:

- Size of company a. Small scale [] b. Medium scale c. Large enterprise []
 d. others (specify).....
- 2. Location of Shop/Company a. Accra [] b. Kumasi []
- Furniture product(s) manufactured? a. Office chairs and tables [] b.. Living room and dining hall furniture [] c. Bedroom furniture (e.g., bed, wardrobe, dressing mirror) [] d. Others (specify)
- 4. Give reasons for your choice of furniture product(s). a. Profitability [] b. Market availability [] c. Ease of manufacturing [] d. Others (specify).....
- Where do you market your furniture products? Local/Domestic market [] Export/International market [] Reason(s): a. Market availability [] b. Profitability [] c. inability to meet international demand d. others (specify).....

Choice and source of timber materials

- 6. List the wood species used in furniture production
- 7. Give reason(s) for the choice of wood species provided. a. Availability []
 b. Strength [] c. Durability [] d. Aesthetics [] e. Profitability [] f. Consumers choice [] g. Price [] h. Others (please specify).....
- 8. Where do you get wood for furniture production? a. bought from timber markets []
 b. bought from sawmills [] c. bought from timber contractors directly from the forest[]
 d. others (specify)

9. Can you list any Lesser Utilized Species (LUS) you have ever used for furniture production?

10. If you have never used any LUS, can you explain

why?.....

11. If you have used any LUS for production, what advantages did it/they have over the traditional species widely used for furniture a. High strength [] b. Durability [] c. Aesthetics [] d. Workability (processing, finishing etc.) [] e. Profitability [] f. Easily marketable [] g. Availability [] h. None i. other (please specify)

Utilization of K. gabonensis

- 12. Have you ever used *Klainedoxa gabonensis* (Kroma) for furniture production? a. Yes [] b. No []
- 13. If no, why? a. Species unknown [] b. Unavailability of the species in the market []c. Difficulty to process [] d. Lack of technical data (properties, workability) []

e. Others (specify)

14. If yes: I.

II.

- How long have you been using it? a. less than 2 years [] b. between 2 and
- 5 years [] c. between 5 and 10 years d. over 10 years
- What advantage(s) do you derive from using the species for furniture? a. High strength [] b. beauty and durability [] c. ease of working []
 - d. Profitability [] e. Consumers preference [] f. others (specify) []
- III. What challenges do you encounter in using the species for furniture? a. drying challenges [] b. difficult to saw [] d. poor to finishes []e. others (specify)

Challenges faced as a furniture manufacturer

15. List the general challenge(s) you face as a furniture manufacturer?

PART B: Joint configuration for furniture

16. What kind of joints do you frequently use for standard office chair? Mortise and Tenon [

ANE

] Dovetail [] Tongue-in-groove [] Others (please specify).....

Reason(s): a. Consumer preference [] b. Cost [] c. Strength [] d. Preferred choice for furniture product manufactured [] d. others (specify)

.....

17. Give in the tables below, the specific dimensions for mortise and tenon and dovetail joints used for standard office chair:

joint	Leg and rail dime	ensions	Tenon dimen	isions	Mortise dimensions		
	Thickness Width	Length	Thickness Width	Length	Thickness	Width	Lengtl
Rail		100		6.			
Leg		5					
D							
Reaso	on(s) for using these din	nensions: .				1	
			75-2	1	-	5	
b.	Dovetail joint		KR	1-1	1	2	
Parts of	Leg and rail dim	nensions	Tail dimensions T	nickness	Socket	t dimensi	ons
joint	Thickness Width Len	gth	Width Leng	in	Thick	ness Wi Lengt	lth h
		34				0	
Rail		11.	Las F				
Leg							
Leg		un o					
Leg		2			ų	-1	
Leg Reaso	on(s) for using these din	nensions: .				5/	
Leg Reaso	on(s) for using these din	nensions: .			5	5	
Leg Reaso	on(s) for using these din	nensions: .			- The second	5	
Leg Reaso Choic	on(s) for using these din ce of fastener(s)	nensions: .			- The second	5	
Leg Reaso Choic	on(s) for using these din ce of fastener(s) 8. What fastener(s) do y	nensions: . you use for	• constructing office	chair? a. N	ails [] b. 5	Screws []	– c.
Leg Reaso Choic 18	on(s) for using these din ce of fastener(s) 8. What fastener(s) do y Glue [] d. Others (p	vou use for	• constructing office	chair? a. N	ails [] b. S	Screws []	C.
Leg Reaso Choid	on(s) for using these din ce of fastener(s) 8. What fastener(s) do y Glue [] d. Others (p 9. Give reason(s) for th	you use for please spec e choice of	• constructing office ify) f fastener:	chair? a. N	ails [] b. S	Screws []	C.

22. What challenge(s) is/are encountered in using the glue type mentioned?

				1 1 5			
	Timber	Physical j	property Density	Strength	1 property (N	(mm ⁻²)	
Replicate	species	MC (%)	(kgm ⁻³)	MOR	MOE	Shear (Compressive
	K			Heartwood			
	N. 1 gal	bonensis 4 92.0669	13.90462	993.5849	245.1013	3138	2.9
	2 41. 97.507702	1547213 9	945.4 <mark>398</mark>	176.0423	23665.52	24.53	3592
	3 41. 87.016142	2640449 9 7	061.3415	201.5461	31432.58	33.91	215
	4 43. 94.158200	6157864 7 8	75.8379	271.4331	36781.75	32.03	869
	5 42. 79.9272512	9772918 8 2	306.9544	240.6298	33585.5	38.27	604
1	6 42. 90.3301994	5420778 8 4	398.59 <mark>0</mark> 7	229.0372	34529.47	37.55	5748
	7 40. 103.76364	2203857 8	359.6657	264.3119	32492.48	35.87	7502
	8 41. 89.639032	074856 1 5	202.871	222.4128	30455.49	27.97	/095
	9 41. 90.737810	245242 9 7	077.3892	224.7314	31217.29	28.74	208
	10 40. 83.560308	4980729 7 1	794.0313	197.2403	27424.84	38.38	3119
12	11 40. 88.735198	557554 8 8	399.4972	132.2719	19806.83	31.70	0391
	12 38. 98.358369	7205387 8	319.9781	231.8525	36583.02	29.04	001
	13 39. 90.294755	<mark>3762751</mark> 9	061.3415	169.0868	<mark>28517.86</mark>	31.31	.835
	14 39. 78.101861	1608392 8 7	319.9781	200.0556	33784.23	23.67	716

	15 88.203	39.7837223 532	870.7251	188.463	27921.67	34.66575
	16	39.6414343	1202.871	267.7897	37046.72	40.01108
	80.636	28 (520727	045 4200	122 5902	02012.02	20.00/.07.7050210
	17	38.6520737	945.4398	133.5802	23913.93	28.006 87.7250318
	18 86.307	46.1538462 2535	993.5849	218.4382	28468.18	37.01419
	19	42.4971363	1161.6 202.04	29 31366.	34 33.877	1 98.12798
	20	48.7465181	870.7251	270.7707	29312.79	30.6699
	100.43	5187				
	21	50.2463054	961.3415	194.0937	32012.21	39.9585
	91.925	52				
	22	51.806113	1161.6 203.03	<mark>66</mark> 26398.	07 38.906	96 85.7755867
	23	52.0598108	846.3326	205.0239	29610.88	38.38119
	83.737	/5304				
	24	52.7084601	961.3415	209.3297	34165.13	29.42558
	98.801	4247	/0			
	25	52.7846535	819.9781	238.8081	30852.95	38.03068
	78.775	3063				
	26	53.4536403	945. <mark>439</mark> 8	257.8532	32774.01	32.00185
	93.307	5338				
-	27	53.3882204	794.0313	226.0562	32641.53	34.06988
	94.158	2008	2		X	
	28	52.8843156	794.0313	181.0106	23367.42	42.0791
	94.051	8674	N 1			
	29	51.6525024	1034.18	207.0112	2898.157	31.54618
	96.976	0352				
	30	32.1486706	977.3892	223.5721	29991.78	34.50802
_	92.315	089	-			
Z	31	31.3858696	833.1038	205.0239	24741.98	<mark>34.665</mark> 75
1-2	102.55	8537	~			21
17	32	27.3035613	1223.854	267.7897	32012.21	32.43999
	80.636	51404		-	22	
	33	30.3393214	961.3415	235.4959	23533.03	29.09259
	90.294	755	25000	NO	3	
	34	31.6903295	977.3892	218.4382	20601.75	38.38119
	88.203	532				
	35	34.2055056	1182.121	209.3297	33999.52	32.24721
	98.801	4247				

36	35	1052.0)26	205.0239	29710.	.25	35.875	02	102.558537
37	35.29	7212	977.389	02 133	3.5802	29610.	88	30.1967	71
93.307	75338								
38	32.69	93226	859.665	57 240).6298	35125.	66	33.8771	l
83.737	75304								
39	66.43	3957	819.978	31 128	8.9597	32774.	01	35.6997	76
78.775	53063	1.2		1 1	$\mathcal{I} \sim$	/			
40	44.88	77147	1141.30	05 202	2.0429	30273.	32	28.006	92.8644781
41	40.49	80729	1182.12	21 229	9.0372	32633.	25	41.5533	33
86.307	72535								
42	40.55	7554	833.103	38 209	9.1641	30852.	95	27.9709	95
85.775	55867								
43	38.72	05387	928.759	222	2.4128	32774.	01	34.0874	1
99.191	13137								
44	39.37	62751	819.978	81 271	1.4331	34165.	13	37.014	19
98.801	14247								
45	39.16	08392	1182.12	21 221	1.4192	28468.	18	31.3183	35
100.43	3187			6					
46	39.78	37223	833.103	38 201	1.5461	30852.	95	31.7039	91
84.180)5861		-		-2-	1			
47	39.64	14343	1161.6	193.9 <mark>2</mark> 81	26000.	.61	40.011	08	78.1018617

48 38.6520737 961.3415 251.7256 23152.13 30.79258 87.7250318 Mean

42.0948548 958.0711 214.1586 29493.4 33.45137 90.577203

	TUCA	Sapy	wood		
1	42.0664207 8	3 <mark>06.9544 186.3</mark>	3945 30146.29	34.53556 98	3.1872644
2	48.2561464 71.7128455	945.4398	183.1301	28987.44	27.59571
3	43.75 <mark>17791</mark> 79. <mark>5437316</mark>	977.3892	225.5667	28057.1	33.35709
4 40	40.8474576 66.3065222	806.9544	220.9966	31745.82	38.10369
5	39.5677473 76.6523275	977.3892	232.4218	29705.6	30.4764
6	39.2206336 95.8530579	977.3892	234.054	32627.2	32.32594
7	45.9248555 79.3329001	703.8556	223.2817	32529.26	28.25041

	8	44.4718117 76.3511396	885.0506	267.6768	33443.28	36.67971
	9	46.0228858 85.6879654	806.9544	176.1118	28285.61	33.04611
	10	44.6573751 70.477975	728.2805	250.2126	36887.17	32.70239
	11	41.8717802 84.5886294	819.9781	200.1048	29460.77	29.88717
	12	41.4437734 84.4380355	714.8595	218.5483	34585.81	32.99701
	13	42.1052632 73.8663392	794.0313	208.7553	27942.85	35.17389
	14	43.1878113 86.0644503	856.519	148.6423	19129.1	35.69766
	15	47.8014184 80.5978894	929.682	250.8654	31223.52	34.73197
	16	43.9858811 89.0010326	806.9544	244.4999	31158.24	32.86607
	17	40.8242829 70.2520841	899.4972	223.1184	28595.72	<mark>30.2</mark> 6362
	18	43.3086013 95.8530579	794.0313	248.7436	31092.95	33.16068
	19	45.542522 66.0655719	833.1038	197.3301	28775.26	29.167
	20	46.1803561 92.6152877	945.4398	199.4519	32153.86	38.16916
	21	40.6993007 86.6969449	1182.121	246.2953	34585.81	31.52393
-1	22	58.0934695 72.0592117	977.3892	189.9853	26114.81	27.79212
1	23	38.22 <mark>17403</mark> 84.0314318	977.3892	229.9736	319 <mark>58</mark> 30.967	43
	24	38.9084031 77.0739906	977.3892	242.5413	34063.51	27.82486
	25	46.1453744 9' 40.035482 961. 1202 871 114 8	77.3892 194.2 .3415 185.5784 .362 21153 32	289 26620.79 26180.1 32.735 32594 72 96277	28.49593 70. 13 96.425315 2 254 28 44 19063	1767871 26 7 50.1456876 373 945 4398

40.035482 961.3415 185.5784 26180.1 32.73513 96.425315 27 50.1456876 1202.871 114.8562 21153 32.32594 72.9627754 28 44.1906373 945.4398 139.2736 16680.84 33.5535 70.6737472 29 47.6506198 977.3892 111.9183 18835.31 30.86922 83.850719 30 45.8863444 768.4827 118.8061 24988.61 31.24568 81.6219283

Mean	44.1830066 9	32.343	203.9754 28932.02	32.21955	80.6684803
	85.53/3/14	ANE	NO		
48	44.5607271	703.8556	194.0657	26310.67	33.16068
AND.	82.179126		5 RA		
47	58.0934695	652.8299	166.8084	29526.06	27.79212
	95.8530579	1107.211	210.0991	20075.12	52.10259
46	40.6993007	1467 244	240.0931	28595 72	32,70239
45	46.1803561	833.1038	237.1552	32153.86	35.17389
	97.1331066				
44	45.542522	1182.121	220.6702	28285.61	34.83017
43	43.3086013 65.1620081	833.1038	214.4679	33443.28	38.16916
12	70.2520841	022 1020	014 4670	22442.29	20.1/01/
42	40.8242829	725.9384	170.2359	<mark>332</mark> 96.39	32.65329
	98.8649372	055.1050	139.19 51092.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.5007
41	43 9858811	833 1038	159 79 31092	95 29 3	3067
40	42.9997228	977.3892	173.6635	17496.93	36.67971
	66.3065222	200 1107	202.1000	21000.21	02,001
39	42.2570016	2034 407	262 7803	31060 31	32,99701
38	41.6919262	961.3415	222.3024	34585.81	26.61366
57	96.425315	715.1570	203.1002	52755.05	20.25011
37	44 5607271	945 4398	209 4082	32953 63	28 25041
36	38.6363636	945 <mark>.43</mark> 98	214.3047	23992.98	30.96743
33	40.3339838 66.5775914	943.4398	185.4500	28773.20	33.09700
25	85.3566587	045 4208	192 4566	28775 26	25 60766
34	45.1161489	961.3415	184.7623	31092.95	30.4764
33	44.8076367 76.3511396	961.3415	225.5667	27143.08	28.25041
32	70.1767871	870.7231	200.1048	24304.23	55.04011
32	80.5978894 44 5462353	870 7251	200 1048	24564 25	33 04611
31	45.6235698	961.3415	197.8197	26653.43	33.22615
Heartwood

1	Е.					
1		cylindricum	39.1076115	479.3142	182.3754	9143.863
		21.14566	57.6480102			
2		43.5897436	498.4325	69.6509	11743.52	1.048545
3		35.839599	498.4325	2.749378	8856.11	19.44177
		68.8074805	VU			
4		23.5682819 70.8246982	595.3681	113.9464	13856.58	19.17964
5		29.5121951 65.4207756	530.1515	33.90899	13214.39	18.69905
6		39.1076115	508.0828	183.5973	7482.802	18.45876
_		67.1789011	1	1		
7		43.5897436 70.1954744	420.4918	211.0911	8179.336	10.22331
8		43.0079156	509.6122	39.40775	10017 17.0	1701
0		46.4515267	450 4402	01 64500	11864 51	10 110 11
9		74.8221204	459.4483	91.64592	11/64.51	13.41264
10		29.5121951	509.6122	219.0338	8911.685	16.36167
		51.5778505			11	
11	0	38.9542484	<mark>499.44</mark> 54	217.2008	<mark>1149</mark> 0.34	13.41264
		72.212692			75	
12		43.4227331	449.613 <mark>2</mark>	7.026187	9661.323	18.5243
12		63.5701172	410.0105	212 (195	C 1 17 00	15 70010
15		42.8383706	410.9105	212.0185	044/.88	15./2818
14		23.4906696	350.4968	70.26187	7589.011	16.05585
_		51.2632386	11			
15		29.40 <mark>46</mark> 173	511.3133 196.	<mark>427</mark> 8 7753.264	· 3.189 <mark>324</mark> :	51.0781727 16
F	1	38.9572439	405.1915 45.8	2296 9483.48	5 21.23304	59.258083 17
	5	43.4259955	479.3142 193.	0674 11732.4	15.99031 7	71.2688562 18
	AP.	42.8416821	511.3133	62.9302	111/6.66	3.12379
	10 22 40	06.0394279	2462 177 1	921 11017	124 107	0201
	70 7506719	21005 409	J+0J 177.1	1101/	.)4 19.7	0371
	20 29.40	67191 519.3	8473 98.36	662 9636.0	623 18.1	7478
	61.3123139			,		
	21 39.01	54491 519.8	8473 50.40	526 11164	.31 17.0	607
	59.4061357					

163

	22	43.4893835	460.4354	44.29553	7424.757	18.58983
	65.883	4402	510 8/73	151 2158	7138 317	18 60005
	67.363	42.9000279	519.0475	131.2130	7430.342	18.09903
	24	23.5216531	511.3133	200.0936	9163.622	19.92236
	68.844	4937				
	25	29.4475541	382.5358	46.12845	10992.64	17.0607
	71.120	08036		\sim		
	26	39.017252	489.9056	226.0599	11979.4	14.63594
	09.029	12 1012160	108 1225	224 5225	10041 7	10 00/88
	51.355	43.4913409	490.4323	224.3323	10041.7	19.00400
	28	42.9080211	479.3142	8.859106	10265.23	11.62137
	65.328	32427				
	29	23.5225656	459.4483	102.3379	9765.062	15.55342
	72.934	4488				
	30	29.4488189	479.3142	165.8791	14159.16	15.50973
	45.526	01974	555.0506	44.00550	11176.66	10 0005
	31 74 822	38.8628065	555.0506	44.29553	11176.66	18.69905
	32	43 3231397	479 3142	151 2158	9483 485	13 41264
	51.263	2386	177.5112	101.2100	7105.105	13.11201
	33	42.7372837	401.3912	70.26187	8911.685	11.90535
	72.212	.692	227	-155	ST	
	34	23.4443471	555.0506	62.9302	11380.43	15.55342
	65.883	34402	C. A.			
	35	29.3404462	488.8431	98.9776	7438.342	17.01701
	64.773	20.0675771	522.02(1	010 (105	10502.25	12.26005
	36 56 260	38.86/5//1	533.0261	212.6185	10523.35	13.36895
	37	43 3283358	615 8391	88 59106	7589 011	21 23304
è	<u>61.016</u>	52085	010.0091	00.59100	1509.011	21.23301
	38	42.7425575	713.2829	180.848	11017.34	13.41264
	59.258	8 <mark>083</mark>		<	As	
	39	12.7051646	914.0663	98.36662	12007.8	11.38108
	51.078	31727	SANE	NO	>	
	40	29.3437946	552.2803	50.40526	10017 17.912	64 68.6594279
	41	35.0923483	852.986	25.35537	9636.623	16.05585
	63.570	011/2				

42	23.5682819	577.3936	193.0674	11764.51	11.9272			
61.312	3139							
43	29.5121951	934.9187	200.0936	9163.622	18.45876			
59.4061357								
44	39.1076115	934.9187	64.45763	11164.31	15.99031			
67.363	9669							
45	43.5897436	615.8391	196.4278	7753.264	19.17964			
70.750	6719		\sim \sim					
46	43.0079156	533.0261	211.0911	11490.34	10.22331			
68.844	4937							
47	19.2493738	489.3463	183.5973	9385.921	18.5243			
71.268	8562							

48 27.1209947 543.999 39.40775 10992.64 16.36167 51.5778505 Mean 34.757284 535.973 121.2526 10051.01 15.59165 63.5597072

Sapwood

	1	33.1	1103679 463.56	54	136.4744 9	943.582	28.39395 78	3.6561125 2
	32.	197615	380 <mark>.375</mark> 8	44.26741	7815.	.743	9.851641	80.8470906
	3		33.2783505	463.	5654 (54.0 <mark>5</mark> 36	12800.1	19.43792 28.4827148
4		32.259	432 577.3936	116.70	5 799	94.275	3.051687	16.4323355
5		29.36740	68 <mark>577.3</mark> 936 20.	45691 1127	73.9 <mark>8 19.3</mark> 38	841 74.274	<mark>1564 6</mark> 36.390	6651 498.4325
		117.52	66 9698.927 10.	581 <mark>3</mark> 9 70.4	<mark>39944</mark> 8 7 30	0.1636603	479.3142 99.5	50107 8643.603
		8.69067	73 104.947849 8	33.821849	3 361.9407	119.7903	11042.55 20.5	9889 84.9004 9
			35.60665	548 <u>447</u> .	9803 1	122.8085	11426.06	21.29547
								92.0210787
	10		32.751091	7 463.5	6 5 4 12	26.8664	11329.52	22.32375
			64.41475	51				
	11		33.6 <mark>794</mark> 79	7 <u>394</u> .1	104 12	22.8085	10075.83	18.675
	12		39.21850	74			13	E
	12	6	30.177712	5 369.4	805 9	6.76789	8059.076	14.76088
		5	1.0954890)3		_	21	
	13	A.D.	36.519166	447.9	9803 93	5.44322	9501.88	21.32864
		~	1.3145868	34	-	~		
	14		35.616037	2 514.2	256 10	01.9492	8104.039	19.63694
			29.24955	72	2			
	15		35.525948	9 311.1	456 12	20.7293	10739.7	9.718959
			82.380775	52				

16	37.6006441 57.0749786	343.2613	46.95028	6770.999	14.80068
17	33.8898164 30.1259484	290.1303	87.57905	8094.782	19.33841
18	38.0079681 10.9548903	321.7709	62.37681	9669.833	15.02624
19	36.3597973 68.3585156	387.2269	129.1133	10860.05	16.31989
20	52.1256039 100.784991	557.2705	117.3539	8902.806	22.95399
21	32.5111201 85.6672423	402.1821	79.81548	7871.286	11.01261
22	38.6333771 47.3251262	417.2911	121.3413	9702.894	26.27104
23	33.149 <mark>1713</mark> 60.3614457	407.9749	146.0489	11271.33	19.83596
24	36.1331729 71.5354338	479.3142	35.21271	9989.868	10.38237
25	33.9991913 35.1651979	479.3142	24.31354	10454.05	10.28286
26	39.0570078 35.1651979	479.3142	111.8926	12022.49	4.743383
27	33.9905839 77.7797213	537.4058	132.6346	12564.7	19.43792
28	31.6434474 5 <mark>5.869940</mark> 7	514.256	126.8664	11149.67	4.345337
29	33.4784488 53.6789626	577.3936	119.7735	11136.44	13.59991
30	31.3674706 58.0 <mark>60</mark> 9187	557.2705	122.7582	10514.89	6.965807
31	37.36 <mark>68262</mark> 20.8142916	479.3142	117.3539	8359 <mark>.27</mark> 4	9.718959
32	35.9363785 33.6315133	577.3936	87.57905	9434.435	10.38237
33	34.7412245 26.4012857	428.3775	46.95028	9669.833	15.68965
34	37.6391097 28.6652964	577.3936	96.76789	11042.55	26.27104
35	30.7475884 29.2495572	577.3936	35.21271	9708.184	4.743383

	15.49851	56.4481154			
	51.8531475 M	lean 35.0	340045 490.4176	5 99.37056	9987.389
48	37.791532	577.3936	88.03178	11288.52	19.63694
	57.0749786	2	Las S		
47	33.1441735	597.7804	118.2141	10739.7	19.43792
46	34.9270731 39.2185074	597.7804	86.18731	8902.806	14.76088
	84.9004	250	21	-	5
45	32.3344476	450.3675	146.0489	10860.05	10.28286
44	33.2906778 64.4147551	577.3936	117.4847	10824.34	11.01261
	68.3585156				
43	40.713496	557.2705	111.8926	8094.782	19.83596
42	33.1330034 30.1259484	577.3936	121.7354	11426.06	19.33841
12	82.3807752	555 202 f	101 505 4	1110000	10.00041
41	34.4146079	57 <mark>7.39</mark> 36	95.44322	11329.52	16.31989
40	31.7149406 23.2243675	597.7804	129.1133	8104.039	14.80068
	37.6117901				
39	38.3428451	597.7804	87.52874	8097.427	22.95399
38	37.4044134	618.4359	91.38537	9415.92	19.0067
37	35.3410283 165.053681	514.256	120.7293	11398.29	8.060433
36	40.2365918 64.9990159	557.2705	101.9492	11273.98	18.675

		Sw		Shrinkage (%)					
<u>Replicate</u>	Species	Longitudinal Ta	ngential Ra	dial <mark>Volu</mark> r	netric L	ongitudinal Tang	gential	Radia	l Volumetric
			Hear	twood					
1	К.	anhonansis	0.040234253	6 24/17521	5 536271	12 171253	0 0205	45007	2 75 1 45
1		4.1884409	0.040234233	0.24417321	5. 550271	12.171255	0.0295	43007	2.75 1.45
2		0.071043225	6.31453535	5.524111	12.26717	0.216663384	1.35	0.25	1.8098291
3		0.031592012	3.76532399	3.337945	7.2628288	0.019685039	2.1	1.05	3.1470193
4		0.063375659	2.71633683	4.831625	7.7474476	0.38408509	3.65	2.25	6.1796145
5		0.037856857	3.17220544	4.209309	7.5557437	0 2.75	2.05	<mark>4</mark> .7436	25
6		0.088908646	5.64629025	3.118192	9.0374017	0.177270041	<u>3.05</u>	1.75	4.9154807
7		0.141971831	7.67045455	4.9 <mark>2</mark> 9319	13.13 <mark>8</mark> 271	0.098483356	2.1	1.35	3.5167636
8		0.0423049 <mark>52</mark> 6.0890066	5.39007092	4.357747	10.029232	0.009848336	4.75	1.3960	7
9		0.084717423	7.56953944	3.118 11.01	7529 0.27	5753398 1.65	1.8518	35	3.7374775
10		0.064595166 3.7426602	7.87578758	4.372904	12.665822	0.049241678	1.25	2.4761	9
11		0.147108747	6.08439647	5.668954	12.263179	0.029545007	2.15	0.75	2.912568
12		0.17368843	7.08705357	4.707396	12.322819	0.128028363	1.85	1.05	3.0049154
13		0.117984907	9.471965 <mark>16</mark>	3.920168	13.897674	1.024226906	3.25	1.2	5.3900483
14		0.18552461 2.7261323	7.375815 <mark>35</mark>	2.31201	10.062169	0.216663 <mark>384</mark>	0.05	2.4661	5
		SAD	2		6	BADH			
			W J	SANE	NO	5			
				168					

Appendix C: Swelling and shrinkage characteristics of K. gabonensis and E. cylindricum

SAD WO SAME 168

				\square				
15	0.194157424 2.8118904	6.67759115	5.647976	12.921537	0.433326768	0	2.3889	2
16	0.137952518 3.1769694	5.23038605	5.290363	10.950304	0.019696671	0	3.1578	9
17	0.073521221 3.7141623	7.53205128	4.280814	12.217742	0.275753398	2.25	1.2254	9
18	0.198319852	6.59109992	5.083229	12.231506	0.433326768	1.6	0.35	2.3693012
19	0.033432144 5.1104947	4.19392074	3.417812	7.7910978	0.659838487	2.25	2.2815	5
20	0.147644401	4.2997543	3.097543	7.6892473	0.837108529	7.25	4.25	11.935295
21	0.255330586	8.1732734	4.267631	13.077696	0.54165846	6.55	3.15	9.9839102
22	0.362448541	4.54 <mark>963235</mark>	3.81171	8.9281434	0.393933425	5.5	4.35	9.9668235
23	0.251476301 7.7251044	7.15736041	5. <mark>43</mark> 6937	13.267565	0.748473508	6.1	0.9896	1

0.170163222 8.46153846 5.540754 14.665913 1.063620248 5.3 2.85 8.9774918 25 0.166885472 5.53505535 5.304205 11.318316 0 6.15 2.2 8.2147 26 0.086838414 5.51142006 4.181736 10.019085 0.078786685 6.55 3.05 9.4716056 27 0.109382325 6.60853603 4.858205 11.910074 0.344691747 5.6 4.8 10.44097

28 0.029254242 3.45821326 3.436273 7.0446256 0.039242617 6 3.95 9.748431 29 0.093886219 4.55469703 5.17288 10.066426 0 6.7 2.4 8.9392

24

30	0.093635046	6. <mark>38477</mark> 801	3.793338	10.523704	0.0295	545007	4 1.083	374
5.0684499								
31	0.109265247	4.31388661	3.661587	8.251583	0.019696671	0.65	2.04878	2.7046311
32	0 <mark>.1156660</mark> 81	4.39330544	4. <mark>42</mark> 0414	9.1340074	0.994681899	3.3 <mark>5</mark>	0.75 5.029	90249
33	0. <mark>570786517</mark>	6.92906929	2. <mark>504979</mark>	10.233246	0.029545007	2.3	0.54563	2.8617933
34	0.06 <mark>46239</mark> 55	1.02871839	2.882011	4.0075473	0.098280098	4.05	1.65773	5.7333265

SANE NO SANE 169

35	0.33832228	4.17690418	3.441196	8.1264181	0.177270041	3.4	2.2308	4 5.7224178
36	0.109885181	5.90640618	4.473001	10.765182	0.049154542	1.65	2.4154	6 4.0727796
37	0.064610997	6.70241287	3.399535	10.401084	0.029417533	1.4	1.7943	7 3.1977384
38	0.046782062	7.43691899	4.783305	12.62862	0.068938349	0.3	1.8482	5 2.2101655
39	0.027163456	3.42172797	4.836915	8.4536012	0.019696671	2.4	1.05	3.4438221
40	0.04479785	5.12477718	2.70926	8.0212503	0.196367207	0.25	1.0628	1.5039394
41	0.701155108	8.17669173	5.567307	14.999934	0.009848336	6.7	2.4	8.948168
42	0.293058889	5.1010101	3.287352	8.8741836	0.768170179	4	1.0837	4 5.7698455
43	0.036125536	6.89655172	5.437767	12.750054	0 0.65	2.0487	8	2.6854634
44	0.107150032	4.4444444	5.013636	9.7984322	0.994681899	3.35	0.75	5.0290249
45	1.3191836	5.87412587	4.861298	12.485553	0.029545007	2.3	0.5456	3 2.8617933
46	1.643612325	4.98164181	3.287782	10.215431	0 0.65	2.0487	8	2.6854634
47	0.151697675	5.3133515	2.156081	7.7471946	0.009848336	3.35	0.75	4.084322

48 1.749745677 8.15118397 3.727707 14.145656 0.019696671 2.3 0.54563 2.852224 Mean 0.233101398 5.82659138

4.22951 10.564594 0.251518328 3.0739583 1.86237 5.1073818

Sapwood

1 0.256444864 6.38646288 3.941436 10.863193 0.965136892 2.1728634 1.93237 4.9891638 2 0.004456527 4.7501237 4.391361 9.354953 0.354540083 3.7662965 1.25543 5.311349 3 0.077982265 4.34083601 3.702219 8.2881417 0.531810124 3.1385804 2.65572 6.212389

4	0.073414905 4.2618577	5.656759 <mark>35 3.66853</mark> 9	<mark>9.613</mark> 232	0.551506 <mark>795</mark> 1.9797199	1.78658
	240		2	S AN	
	-	W JEAN	NO	br	
		170	1		

			\mathbb{N}	15			
5	0.075896245 4.7181529	5.88780714	4.39738	10.627995	0.039393343	3.0420087	1.69
6	0.075911496 4.1760352	6.12048193	4.195021	10.656196	0.118180028	2.2694351	1.83486
7	0.004444938 6.9136845	7.46867168	4.084672	11.863387	0.38408509	3.8145823	2.84887
8	0.180328599 5.0	9927798 4.110	626 <u>9.6168311</u>	0.019667617	1.5451473 1.01	4 2.5626497	9 0.159953791
	4.07582938 4.567	78 9.0038616 0	.039342972 1.2	.071463 1.11057	2.342751		
10	0.017794386 4.383405	4.6253469	4.589534	9.4466346	0.039219531	2.3177209	2.07629
11	0.352450423 5.0549425	5.49199085	4.100411	10.204649	0.03936233	3.6214389	1.44858
12	1.120945278 4.9973311	4.65793304	2.75034	8.7418059	0.482568446	2.7522936	1.83486
13	0.9 <mark>15546425</mark> 3.9345252	9.90415335	8.841642	20.716675	0.295450069	3.2351521	0.42857
14	1.35277622 4.9884556	8.95447724	8.705618	20.041861	0.768170179	2.5591502	1.73829
15	1.001999506 4.3595526	13.6549841	9.025222	25.154202	0.059008655	2.8488653	1.49686
16	0.865067333 4.6347797	12.5895599	11.21048	26.294551	0.393933425	2.945437	1.352
17	0.755011136 6.2297856	4.721435 <mark>32</mark>	3.214542	8.9038239	0.147725034	3.8628682	2.31772
18	0.01780389 4.7504492	7.1040724	3.930348	11.333454	0.118180028	3.283438	1.40029
		R		S	BA		
		W J	SANIE	NO			
			171				

IZA ILIOTE

		K	Ν	US	Т		
19	0.582882823 3.3090838	6.66666667	7.082191	14.886779	0.590900138	1.6900048	1.06229
20	0.862088219 1.9426861	14.4408252	11.48274	28.681635	0.649990152	1.0622887	0.24143
21	0.383141762 5.4832377	12.2975709	11.27093	25.433303	1.132558598	3.0902945	1.352
22	0.280432539 4.5070034	7.46768789	4.797015	12.93876	0.216663384	2.5108643	1.83486
23	0.018080322 4.8664118	6.30272953	3.922987	10.492945	0.098483356	2.8971511	1.93143
24	0.284849165 2.4907644	6.98230512	5.15524	12.817948	0.334843411	1.5451473	0.62772
25	0.294504808 5.7493824	9.2724679	5.45667	15.574479	0.285601733	<mark>3.3</mark> 800097	2.17286
26	0.20 <mark>8207401</mark> 5.6386599	4.79683973	4.772156	10.026516	0.47272011	3.8628682	1.38095
27	0.271866295 5.8797722	6.31353665	4.544218	11.44682	0.620445145	3.3317238	2.02801
28	0.133618386 2.0479774	6.59444183	4.956557	12.027345	0.029354207	1.4002897	0.62772
29	0.247149982 3.1519913	7.44525547	4.626303	12.693834	0.039254171	1.5934331	1.54515
30	0.109323754 3.4186448	7.2815534	5.170696	12.952105	0.019696671	1.9797199	1.44858
		CWS	5 A N	NO			

				K	Ν	П		5	Τ				
31	0.175825 3.4947	5154 7169	1.429	93327	1.0210	02	2.645	5953	0.1969	966713	1.8348	8624	1.49686
32	0.084576 3.3237	007 753	7.827	78865	5.0839	87	13.40	5572	0.1178	366614	1.8831	1482	1.352
33	0.123523 5.6808	335 3714	4.896	51691	4.2404	89	9.479	7086	0.2166	563384	2.9454	137	2.60744
34	0.542475 5.5342	5127 2413	6.263	3833	5.2555	67	12.454	4874	0.5022	265117	3.2351	1521	1.88315
35	0.833389 3.8599 1.4002	9191 9312 36 29	4.958 0.284 3.903	67769 862242 7053	4.6866 14.953	58 7792	10.793 11.170	3441 59	0.5705 28.166	585342 5103	2.3177 0.3742	7209 236754	1.014 2.1728634
37 6.0175757	0.824341532	8.9064	2616	8.1903	91	18.797	7579	0.2265	51172	3.0420	0087	2.8488	37
38 4.2634433	0.81 <mark>3533633</mark>	8.5436	8932	6.8130	98	16.882	2079	0.1477	725034	3.1868	3662	0.9657	72
39 6.1977837	0.821483581	11.421	9114	7.1280	19	20.344	1722	0.5121	113453	3.5731	531	2.2211	15
40 6.1044377	0.917881948	14.365	4822	12.556	52	29.907	7364		1.1073	375915	2.7040	0077	2.41429
41 19.704844	0.240158011	5.4485	4155	4.1858	16	10.126	5267	0.2166	563384	7.7740)222	12.747	75
42 14.961962	0.332412461	7.0667	9574	4.1694	.75	11.901	661	0.5022	265117	12.892	2323	1.8831	15
43	0. <mark>1030696</mark> 84	2.3449	7134	4. <mark>82</mark> 76	517	7.3963	3737	0.4628	871775	2.3 <mark>177</mark>	209	1.014	3.755781
44 18.561157	1. <mark>50969716</mark> 1	10.834	4859	8.0380	78	21.551	1211	1.0292	295329	7.4843	3071	11.057	75
			1	43	SAI	73	NC	2	BA				

45 0.883199144 13.8003136 11.25979 27.732243 0.029545007 7.8705939 3.33172 10.966404 46 0.146842878 7.31964192 5.155008 13.017693 0.147725034 3.1868662 0.96572

4.2634433

E.

47 0.069113123 9.68229955 4.343737 14.525708 0.512113453 9.7054563 2.70401 12.596935 48 0.348369406 8.17518248 5.113205 14.10252 0.487368212 3.4282955 3.38001 7.1471799 Mean 0.417481819 7.61649799 5.831465 14.456849 0.358290606 3.3387655 2.12005 5.7009388

Heartwood

1 cylindricum 0.147984907 7.29417521 5.646271 12.191253 0.003054501 1.02 3.81 11.43097 2 0.19552461 7.26453535 6.234111 11.28717 0.021766338 3.27 3.96 10.738431

3	0.052304952	8.71 <mark>53239</mark> 9	4.447945	12.182829	0.002068504	2.62	2.41	9.9292
4	0.147952518	8.16633683	5.941625	12.267448	0.038508509	3.27	1.0937	4
	6.0584499							
5	0.083521221	8.12220544	5.319309	7.5757437	0 6.27	2.0587	8	3.6946311
6	0.073375659	8.79629025	5.128192	16.057402	0.017827004	6.57	0.76	6.0190249
7	0.073432144	8.62045455	5.939319	13.558271	0.009948336	6.52	0.5556	3
	3.902568		10					
8	0.178908646	8.24007092	5.367747	14.149232	0.001084834	7.12	1.6677	3
	3.9949154							
9	0.481592012	8.51953944	6.128 12.195	295 0.0276	6.32	2.2408	4	4.4338221
10	0.119382325 2.4939394	8.925787 <mark>58</mark>	5.382904	14.685822	0.005024168	7.17	2.4254	6
11	0.204157424	7.13439 <mark>647</mark>	4.178954	12.283179	0.00 <mark>305450</mark> 1	7.57	1.0728	9.938168
	540	-			5%			
					38			
		Wi		50	5			
			SANE	N				

12	0.18368843	8.33705357	6.717396	15.342819	0.012902836	6.62	1.46	6.7598455
13	0.208319852	10.4219652	4.211679	14.917674	0.102522691	6.02	0.26	3.6754634
14	0.067856857	8.52581535	5.32201	11.082169	0.021766338	6.72	1.06	6.0190249
	15 0.0392	54242 7.6275	9115 <u>6.15</u> 79	13.941	537 0.0434	32677	2.27	2.26
	3.8517933							

16 0.184717423 6.88038605 4.800363 16.970304 0.002069667 3.77 2.06 3.6754634 17 0.074595166 8.48205128 5.590814 18.237742 0.02767534 3.77 1.76 5.074322

18 0.487108747 8.54109992 6.593229 13.251506 0.043432677 1.67 1.36 3.842224 19 0.119265247 8.14392074 5.427812 10.811098 0.066083849 3.12 1.40607 3.7161323

20	0.157644401 3.8018904	7.3497543	5.107543	13.709247	0.083810853	7.72	1.8618	5
21	0.275330586 10.97391	9.1232734	5.377631	16.097696	0.054265846	5.02	<mark>2</mark> .4861	9
22	0.372448541	7.49963235	5.82171	13.948143	0.039493343	4.37	0.76	10.956823
23	0.2 <mark>61476301</mark>	8.50736041	4.646937	15.287565	0.074947351	3.32	1.06	8.7151044
24	0.220163222	9.41153846	5.750754	17.685913	0.107362025	2.37	1.21	9.9674918
25	0.103635046	8.48505535	5.714205	15.338316	0 1.32	0.5556	3	9.2047
26	0.176885472 10.461606	6.66142006	5.591736	16.039085	0.008178669	4.67	1.0937	4
27	0.096838414 4.7274775	7.55853603	6.868205	14.930074	0.034769175	1.67	1.8582	5
28	0.070234253	7.40821326	5.446273	8.8646256	0.004224262	4.07	1.06	4.7326602
29	0.183886219	6.504697 <mark>03</mark>	5.38288	15.086426	0.0003 3.12	0.76	6.1004	947
30	0.323058889	7.33477801	5.803338	15.543704	0.003254501	5.07	1.8043	7

31	0.081043225	7.26388661	4.771587	16.271583	0.002269667	2.67	0.76	4.1669694
32	0.125666081 4.7041623	6.44330544	5.930414	15.154007	0.09976819	2.67	2.058	78
33	0.580786517 3.8517933	7.87906929	3.614979	13.253246	0.003254501	3.17	2.476	15
34	0.037163456 6.7233265	5.97871839	4.892011	11.027547	0.01012801	2.87	2.398	92
35	0.34832228 6.7124178	6.12690418	4.551196	10.346418	0.018027004	4.37	3.167	89
36	1.653612325 5.0627796	6.85640618	4.483001	12.785182	0.005215454	3.42	1.2354	49
37	0.074610997	7.6 <mark>524</mark> 1287	4.509535	16.421084	0.003241753	1.27	0.36	4.1877384
38	0.451697675 3.2001655	8.68691899	4.993305	16.64862	0.007193835	5.77	2.291:	55
39	0.711155108	6.37172797	5.946915	10.373601	0.002269667	5.02	3.26	5.1784409
40	0.05479785	6.57477718	3.81926	11.04125	0.019936721	4.27	3.16	2.7998291
41	0.126782062	9.12669173	5.677307	18.019934	0.001284834	4.37	4.36	6.3800483
42	1.794745677 7.1696145	6.0510101	<mark>4.6</mark> 97352	11.894184	0.077117018	1.02	0.999	61
43	0.062125536	7.84655172	6.947767	19.770054	0.0003 1.67	2.86	5.733	625
44	0.119885181	6.59444444	6.146364	18.818432	0.09976819	2.42	2.21	3.3593012
45	0.574623955 0.187150032	6.824125 <mark>87</mark> 6.63164181	5.671298 4.297782	16.505553 12.935431	0.003254501 0.0003 4.42	3.32 2.41	3.06 7.079	4.5067636 46 0066
47	1.9791836 5.9054	6.5633515 807	4.166081	17.867195	0.001284834	1.07	0.555	63
		W3	SA 176	NO				

			k	$\langle N \rangle$	111	ST		
	48	0.49 4.	9.185118 1370193	34 5.7377	707 16.16	55656 0.0022	269667 3.32	1.95878
Mean		0.308706152	7.73459001	5.352099	14.183714	0.02536224	49 3.9897917	1.82862 6.0973818
				Sapwood				
	1 0.083414	905 6.38646288 4	.761436 11.8′	73193 0.096	813689 3.565	1473 1.10681	5.9791638 2 0.9	925546425 5.70123701
	4.511361 11.	164953 0.03575400	08 2.2271463	1.04575 6.301	349			
	3 1.362	77622 5.3408360	4.822219	9.2981	417 0.053	3481012 3.337	7209 1.0634	48 7.202389
	4 0.299	849165 6.3567593	4.788539	7.6232	0.055	545068 4.6414	4389 1.0654	5.2518577
	5 0.169	953791 6.3878071	4 5.51738	11.637	0.004	4239334 3.772	2936 1.7	5.7081529
	6 0.07 <mark>7</mark>	9 <mark>82265 7.220481</mark> 9	03 5.4 <mark>1502</mark> 1	11.666	5196 0.012	2118003 3.192	8634 1.9423	5.1660352
	7 0.280	432 <mark>539 7.66867</mark> 16	58 <u>4.204672</u>	2 12.873	3387 0.038	3708509 3.9654	437 2.0862	7.9036845
	8 0.143	61838 <mark>6 6.299277</mark> 9	98 4.130626	5 10. <mark>6</mark> 26	5 <mark>831 0.00</mark> 2	2266762 4.917	1511 1.8448	3.5526497
	9 0.592	882823 5.2758293	4.58778	10.013	3862 0.004	1234297 4.400	0 <mark>097</mark> 2.6657	3.332751
	10 5.373405	0.028080322 5.3	8253469 5	.309534	9.4566346	0.004221953	4.3517238	2.85887
	11 6.0449425	0.413141762 6.4	59199085 4	.120411	10.214649	0.004236233	2.4202897	1.45858
	12 5.9873311	0.304504808 5.7	7 <mark>5793304 3</mark>	.47034	9.7518059	0.048556845	3.6577161	1.12057
	13 4.9245252	1.062088219 6.7	70415335 8	.861642	20.726675	0.029845007	2.0873585	1.84486
	14	0.8 <mark>235</mark> 3363 <mark>3</mark> 9.	15447724 7	.725618	17.051861	0.077117018	2.6134331	1.024 5.9784556
		S.A.	»Zw	JSA	177	BAD	*/	

15	0.266444864	6.85498407	9.045222	22.164202	0.006200865	2.5651473	2.01423		
5.3495526									
16 5.6247797	0.250158011	7.78955988	11.23048	23.304551	0.039693343	4.8828682	1.01424		
17 7.2197856	1.011999506	5.42143532	4.334542	9.9138239	0.015072503	10.725456	2.02212		
18 5.7404492	0.875067333	8.3040724	4.32 <mark>34</mark> 83	13.043454	0.012118003	4.4482955	3.04871		
19 4.2990838	0.775011136	7.56666667	8.841912	15.196779	0.059390014	3.0322668	2.01227		
20 2.9326861	0.02780389	9.64082519	10.50274	28.691635	0.065299015	3.077572	2.05757		
21 6.4732377	0.352412461	10.4975709	12.29093	23.443303	0.11355586	3.0923445	3.06053		
22 5.4970034	0.294862242	8.66768789	4.817015	14.54876	0.021966338	<mark>4.0805</mark> 265	2.07234		
23 5.8564118	0.085896245	7.70272953	4.842987	11.50 <mark>294</mark> 5	0.010148336	2.7100048	3.01324		
24 3.4807644	1.017881948	7.98230512	6.27524	13.727948	0.033784341	2.0822887	1.02209		
25 6.7393824	0.095911496	10.4724679	6.17667	16.584479	0.028860173	4.1102945	2.01227		
26	0. <mark>01879438</mark> 6	5.99683973	5.192156	14.036516	0.047572011	4. <mark>0332354</mark>	1.53 6.6286599		
27 6.8697722	0.3 <mark>62450423</mark>	7.51353665	5.264218	12.45682	0.062344514	4.2551521	1.03197		
SAME NO BANK									

			\mathbb{N}	111	CT		
28 3.0379774	0.821483581	7.79444183	5.776557	12.037345	0.003235421	3.5791502	1.43857
29 4.1419913	1.532697161	8.64525547	5.346303	12.703834	0.004225417	3.8688653	1.26543
30 4.4086448	0.257149982	8.4815534	6.090696	14.962105	0.002269667	2.5268614	1.79658
31 4.4847169	0.190328599	7.62993327	2.041002	4.5556953	0.019996671	2.3820039	1.84486
32	0.119323754	9.02778865	6.103987	11.415572	0.012086661	3.9997199	1.362 4.3137753
33 6.6708714	0.014456527	7.09651691	5.060489	10.489709	0.021966338	3.3477209	1.41029
34 6.5242413	0.094576007	7.3633833	6.075567	11.164874	0.050526512	2.8548624	1.74829
35 4.8499312	0.281866295	6.15867769	5.506658	11.403441	0.057358534	3.9 <mark>6143</mark> 41	0.55143
36 4.8937053	0.070113123	16.1537792	11.1969	23.076103	0.037723675	4.7862965	2.32772
37	0.123723335	9.90642616	8.210391	16.607579	0.022951172	4.1585804	1.362 7.0075757
38 5.2534433	0.360369406	9.74368932	7.733098	16.592079	0.015072503	4.9997199	1.94143
39 7.1877837	0.552475127	12.6219114	8.04809	20.254722	0.051511345	4.0620087	1.07229
40 7.0944377	0. <mark>8433891</mark> 91	15.5654822	11 <mark>.5</mark> 7652	27.917364	0.111037591	3.2894351	1.50686
	10:	AP3 P	2		S BAD	~	
		Z	ASCV	179	25		

			KN		SΤ		
41	0.834341532	6.64854155	5.105816	11.136267	0.021966338	6.5931531	2.63772
42	0.176842878	8.26679574	4.189475	11.911661	0.050526512	3.7240077	1.06736
43	1.123945278	6.54497134	4.847617	9.2063737	0.046587177	8.7940222	3.39001
4.745781 44	0.185825154	7.03448594	8.0 <mark>58078</mark>	20.561211	0.103229533	9.0922887	1.024 19.551157
45 11.956404	0.113069684	8.00031364	11.27979	27.742243	0.003254501	4.8345823	2.97572
46 5.2534433	0.228207401	8.51964192	6.075008	13.027693	0.015072503	4.8828682	3.34172
47 13.586935	0.893199144	8.88229955	5.063737	15.935708	0.051511345	4.303438	2.71401
48	0.014444938	8.37518248 6.0	33205 16.21252	0.049036821	4.5308643 11.	0675 8.137179	9 Mean 0.434048485

48 0.014444938 8.37518248 6.033205 16.21252 0.049036821 4.5308643 11.0675 8.1371799 Mean 0.434048 7.99256285 6.349649 14.614765 0.036129061 4.1003555 2.01219 6.6909388

Appendix D: ANOVA and LSD for physical and mechanical properties of *K. gabonensis* and *E. cylindricum*

Source	DF	Sum of Squares	Mean	F Value	P > F
			Square		
Model	7	214.1	30.5854001	109.66	0.0002
Replicate	2	10.64	5.31	19.07	0.0090 ⁱ
Species	1	181.88	181.88	45.78	0.0212 ii
Stem position	1	8.06	8.06	28.91	0.0058 iii
Replicate*Stem position	2	10.64	5.32	19.07	0.0090 ^{iv}
Species*Stem position	1	5.57	5.57	19.97	0.0111 v
Error	4	1.1156528			
Corrected Total	11	215.2134534	0.2789132		
	R-Square C	oeff Var Root MS	E MC Mean		
	0.994816	1.361533 0.52812	22 38.78879		
ⁱ Significant at p(0.0090)<0.05; ⁱⁱ	Significant at p(0	0.0212)<0.05; ⁱⁱⁱ Significa	ant at p(0.0058)<0.	05; ^{iv} Significant	at
p(0.0090)<0.05; 'Significant at p	(0.0111)<0.05				
					-
			1		_
Table D2	: LSD for mc	fo <mark>r K</mark> . g <i>abonensis</i> an	nd E. cylindricum	n	
Wood species		Stem position	Least S	<mark>ignifican</mark> t mea	ın*
K. gabonensis		Heartwood	4	<mark>2.1808</mark> 676ª	
1		Sapwood	4	4.1830066 ^b	
	- CC				
E. cylindricum		Heartwood	3.	4.7572840°	
	alla	Sapwood	3	5.0340045°	
*Least Signi	ficant Means with	h same superscripts not s	significantly differe	ent	
Table D3: ANG)VA fo <mark>r the D</mark>	ensity of K. gabonen	sis and E. cylin	dricu <mark>m</mark>	S
Source	DF	Sum of	Mean	F Value	$\mathbf{P} > \mathbf{F}$
E		Squares	Sauara	5	

Table D1: ANOVA for mc for K. gabonensis and E. cylindricum

Source	DF	Sum of Squares	Mean Square	F Value	P > F
Model	7	597651.21	85378.74	59.64	0.0007
Replicate	2	32280.42	16140.2	11.27	0.0227 ⁱ
Species	1	560364.76	560364.76	1284.55	0.0008 ⁱⁱ
Stem position	W 1) a	3849.24	3849.24	2.69	0 1764
Replicate*Stem position	2	872.47	436.23	0.30	0.1704
Species*Stem position	1	284.33	284.33	0.20	0.7331 0.6789
Error	4	5726.39	1431.60		

Corrected Total 11 603377.61

	R-Square 0.990509	Coeff Var 5.188121	Root MSE 37.83646	Density Mean 729.2903	
ⁱ Significant at p(0.0227)<0.05 Table D	; ⁱⁱ Significant at 4: LSD for D	t p(0.0008)<0.0 Pensity of <i>K</i> . §	5 gabonensis a	and E. cylindricum	
Wood species	Ster	n position		Least Significant mean*	
K. gabonensis	He	eart wood		958.427763ª	_
	S	apwood		932.342963ª	
E. cylindricum	H	eartwood		535.972989 ^b	
·	S	apwood		490.417605°	
*Least S	onificant Mean	s with same sur	perscripts not s	ignificantly different	

Table D5: ANOVA for Swelling of the anisotropic directions of K. ga	abonensis and E.
<i>cylindricum</i>	1

Source	DF	Sum of	Mean	F Value	$\mathbf{P} > \mathbf{F}$
	0	Squares	Square	1	
Model	31	1088.961304	35.127784	152.11	<.0001
Replicate	2	8.11	4.06	17.56	<.0001 ⁱ
Species	1	7.28	7.28	2.78	0.2376
Stem position	1	22.05	22.04	34.36	<.0001 ii
Type of swelling	3	1020.43	340.14	1472.89	<.0001 iii
Replicate*Stem position	2	5.24	2.62	11.35	0 0009 iv
Replicate*Stem position*Type of swelling	12	7.70	0.64	2.78	0.0294 v
Species*Stem position	1	3.14	3.14	13.61	0.0294
Species*Type of swelling	3	3.09	1.03	4.47	0.0020 vi
Stem position*Type of swelling	3	<mark>8.</mark> 79	2.93	12.69	0.0104 m
Species*Stem position*Type of swelling	3	3.12	1.04	4. 51	0.0002 viii
14			154	7/	0.0179 ^{ix}
Error	16	3.694966	0.230935		
Corrected Total	47	1092.6 <mark>56270</mark>	38		
144					
R-Square	Coeff V	Var Root MS	Swelling	Mean	
0.99	6618 7.	.351966 0.48	0557 6.5	536447	

ⁱSignificant at p(<.0001)<0.05; ⁱⁱSignificant at p(<.0001)<0.05; ⁱⁱⁱSignificant at p(0.0009)<0.05; ^vSignificant at p(0.0294)<0.05; ^{vi}Significant at p(0.0020)<0.05; ^{viii}Significant at p(0.0184)<0.05; ^{viii}Significant at p(0.0002)<0.05; ^{viii}Significant at p(0.0179)<0.05

Wood species	Stem position	Type of swelling	Least Significant Mean
K. gabonensis	Heartwood	Longitudinal	0.2331014ª
		Radial	4.2295103 ^b
	1	Tangential	5.8265914°
0		Volumetric	10.5645938 ^d
X	Sapwood	Longitudinal	0.4174818ª
	202	Radial	5.8314646°
	THE	Tangential	7.6164980°
		Volumetric	14.4568486 ^f
E. cylindricum	Heartwood	Longitudinal	0.3087062ª
Z		Radial	5.3520986 ^g
3	~	Tangential	7.73459 <mark>00</mark> °
135	-	Volumetric	14.1837139 ^f
A.P.	Sapwood	Longitudinal	0.4340485ª
	hu	Radial	6.3496490°
	N 33	Tangential	7.9925629°
		Volumetric	14.6147653 ^f

Table D6: LSD for Swelling of the anisotropic directions of K. gabonensis and E. cylindricum

*Least Significant Means with same superscripts not significantly different

Table D7: ANOVA for shrinkage of the anisotrop	oic directions	of <i>K</i> .	gabonensis	and E.
cvlindricum			-	

Source	IR.	DF	Sum of	Mean	F	P > F
			Squares	Square	Value	
Model		31	222.46	7.18	7.82	<.0001
Replicate	1 1	2	0.95	0.47	0.52	0.6068
Species		1	6.62	6.62	2.17	0.2786
Stem position		1	0.14	0.14	0.19	0.6671
Type of shrinkage		3	190.8	63.6	69.29	<.0001 ⁱ
Replicate*Stem position		2	6.1	3.05	3.33	0.0620
Replicate*Stem position*Type of shrinka	ige	12	8.45	0.70	0.77	0.6742
Species*Stem position		1	1.32	1.31	1.44	0.2482
Species*Type of shrinkage		3	7.19	2.40	2.61	0.0873
Stem position*Type of shrinkage		3	0.08	0.27	0.03	0.9929
Species*Stem position*Type of shrinkage		3	0.81	0.27	0.30	0.8284
Error		16	14.69	0.92		
Corrected Total		47	237.15			1
R-Squ	are Coe	eff Var	Root MS	Shrinka	ge Mean	-
0	<mark>.93807</mark> 4	3 <mark>5.1</mark> 4	326 0.95	8049	2.726125	
ⁱ Significant at $p (< 0001) < 0.05$; Equation = 3.24	<f (34="" 36<="" td=""><td></td><td>15.1</td><td></td><td></td><td></td></f>		15.1			

ificani ai p

Table D8: LSD for shrinkage of the anisotropic directions of K. gabonensis and E. cylindricum

Wood species	Stem position	Type of shrinkage	Least Significant mean*
K. gabonensis	Heartwood	Longitudinal	0.25151833ª
T	E	Radial	1.86237326 ^b
13		Tangential	3.0739 <mark>5833</mark> °
1250	-	Volumetric	5.10738176 ^d
	Sapwood	Longitudinal	0.35829061ª
	WJS	Radial	2.12004523 ^b
		Tangential	3.33876549 ^{ce}
		Volumetric	5.70093880 ^{dh}

E. cylindricum	Heartwood	Longitudinal	0.02536225 ^f	—
		Radial	1.82862326 ^b	
	1	Tangential	3.98979167 ^{ce}	
		Volumetric	6.09738176 ^{gh}	
	Sapwood	Longitudinal	0.03612906 ^f	-
		Radial	2.01218635 ^b	2
	201	Tangential	4.10035553°	
	A.C.	Volumetric	6.69093880 ^{gh}	

*Least Significant Means with same superscripts not significantly different

Table D9: ANOVA for Shear strength parallel to the grain	in of K. gabonensis and E.
cylindricum	

Source	DF	Sum of Squares	Mean Square	F Value	P > F
Model	7	907.87	129.70	290.70	<.0001
Replicate	2	0.3	0.14	0.34	0.7336
Species	1	897.83	897. 83	2012.39	<.0001 ⁱ
Stem position	1	1.28	1.28	2.87	0.1655
Replicates*Stem position	2	7.52	3.76	8.43	0.0368 ⁱⁱ
Species*Stem position		0.94	0.94	2.11	0.2200
Error	4	1.7845975	0.4461494	5	
Corrected Total	11	909.6509705	-		
R-S	quare Coe	ff Var Root	MSE Shear	strength Mean	
0.9	98038 2.7	760686 0.667	/944 24.19	9486	

Sp	oecies	Ster	n position	Least Sig	nificant m	ean*
K. ga	bonensis	He	eartwood	33.4	4513680ª	
		S	apwood	32.2	2379218 ^b	
E. cyl	indricum	He	eartwood	15.:	5916460°	
		S	apwood	15.4	4985052°	
*]	Least Significar	nt Means with s	ame superscripts	not significantly d	ifferent	
Table Dourte	OVA for Con	nppessive str	ength parallel	to the grain of	KFgyhme	nsispandefE.
		cylindricu	m Sum of Squ	uareSquare		
Model		7	2050.36	292.91	2.87	0.1623
Replicates		2	125.67	62.84	0.62	0.5843
Species		1	1394.07	1394.07	13.67	0.0209 ⁱ
Stem position		1	474.2	474.19	4.65	0.0972
Replicate*Stem po	osition	2	56.37	28.19	0.28	0.7718
Species*Stem pos	ition	1	0.05	0.05	0.00	0.9832
Error		4	407.797541	101.949385		-
Correct <mark>ed Total</mark>	-	11 2	458.161995		7 F	7
-	R-Square	Coeff Var	Root MSE	Compressive	strength M	lean
ⁱ Significant at p (0.02	0.834105 0.9 < 0.05	13.72289	10.09700	13.5777	9	
biginneant at p (0.02	07) <0.05	Tin.				
		allas				
Table D12: LSD fo	or Compress	ive strength	parallel to the	grain of K. gab	<i>onensis</i> ar	nd <i>E</i> .
cylind <mark>ricum</mark>		8		8 8		
131		15			V	Vood specie
K. g	gabonensis	H	leartwood	90.57	72030 ^a S	tem positio

Table D10: LSD for Shear strength parallel to the grain of K. gabonensis and E. cylindricum

*Least Significant Means with same superscripts not significantly different

Source	DF	Sum of Squares	Mean Square	F Value	P > F
Model	7	30826.56	4403.79	77.99	0.0004
Replicate	2	64.66	32.33	0.57	0.6044
Species	1	29693.48	29693.47	525.87	<.0001i
Stem position	1	843.20	843.20	14.93	0.0181 ⁱⁱ
Replicate*Stem position	2	110.48	55.24	0.98	0.4509
Species*Stem position	1	114.73	114.73	2.03	0.2272
Error	4	225.86014	56.46503		
Corrected Total	31052.4162	8			
ⁱ Significant at p(<.0001)<0.05; ⁱⁱ Si	gnificant at p(0.0181)<0.05			1
Table D14:		OD of V ashana	main and E aut	a dai arres	
Wood species		OR of <i>K. gabone</i>	nsis and E. cyli	ndricum Least Square n	nean*
Wood species		OR of <i>K. gabone</i> Stem position Heartwood	nsis and E. cyli	ndricum Least Square n 214.556275	nean*
Wood species K. gabonensis		OR of <i>K. gabone</i> Stem position Heartwood Sapwood	nsis and E. cyli	<i>indricum</i> Least Square n 214.556275 203.975396	nean* 5ª
Wood species K. gabonensis E. cylindricum		OR of <i>K. gabone</i> Stem position Heartwood Sapwood Heartwood	nsis and E. cyli	indricum Least Square n 214.556275 203.975396 121.252646	nean* 5 ^a 5 ^b

Table D13: ANOVA for the MOR of K. gabonensis and E. cylindricum

*Least Significant Means with same superscripts not significantly different

2

~~

Source	DF	Sum of Squares	Mean Square	F Value	P > F
Model	7	1109640401	158520057	85.01	0.0003
Replicate	2	39000504	1950252	1.05	0.4312
Species	1	1105172367	1105172367	592.66	<.0001 ⁱ
Stem position	20	292980	292980	0.16	0.7121
Replicate*Stem position	2	88726	44363	0.02	0.9766
Species*Stem position	1	185825	185825	0.10	0.7680
Error	4	7459054	1864764		

orrected Total		11 11	17099456	
	R-Square	Coeff Var	Root MSE	MOE Mean
	0.993323	6.961493	1365.563	19615.96
ⁱ Significant at p (<.0001)	o<0.05	K	JL	JST
Tab Wood specie	le D16: LS	D for MOE o Stem nos	f <i>K. gabonen</i>	sis and E. cylindricum
K aabonans	is	Heartw	bod	20/03 /037a
K. gubonens	15	Sapwo	od	28932.0171ª
E cylindricu	m	Heartwo	bod	10051 0139
L . cytharten		Sapwo	od	9987.3888 ^b
~	X	El	S.	VIII
		G.Z	-	- FEEL
		aler		
		2	7	
13 Fr	2	12	25	
AL	27	2		E BADT
	~	251	NE T	

		Fibre length	Fibre diameter	Fibre lume	n Fibre double wall	Vessel lumen
Replicate	Species	(µm)	(µm)	width (µm)) thickness (µm)	diameter (µm)
			Heartwood			
К.				1.1		
1		gabonensis	1504.012	32.406 22.298	10.108 12.683	
2		1933.336	31.751 19.98	11.771 19.792		
3		1643.712	24.989 15.435	9.554 25.542		
4		1354.946	25.302 12.999	12.303	10.43	
5		1615.658	20.796 14.15	6.646 10.43		
6		1399.161	24.999 12.806	12.193	15.625	
7		1913.741	19.659 9.219	10.44 21.475	077	5
8		1825.504	30.674 15.206	15.468	14.741	1
9		1672.293	15.62 7.071	8.549 19.833	1950	
10		2168.702	23.161 12.589	10.572	19.819	
11		2200.245	22.298 9.34	12.958	13.76	
12		1693.287	21.828 15.787	6.041 25.286		
13		2084.165	26.076 15.206	10.87 14.024		
14		1591.553	22.343 8.062	14.281	30.98	
15	1	2109.552	20.987 11.768	9.219 30.32		
16	17	1560.698	23.376 11.715	11.661	22.597	2
17		1762.751	25.044 14.008	11.036	19.833	2
18		16 <mark>34</mark> .948	18.179 7.5	10.679	24.962	/
19		1977.062	17.499 8	9.499 21.337	5 an	
			WJ	189	NO	

Appendix E: Fibre and vessel characteristics of K. gabonensis and E. cylindricum

.

			1	Ν	П		CT
					11		5
20		1646.946	21.953	7.211	14.742		14.024
21		1645.339	22.298	9.617	12.681		10.725
22		1731.28	25.109	18.384	6. <mark>725</mark>	10.95	
23		1928.647	19.006	13.341	5.665	10.272	
24		1691 754	21 799	13 124	8 675	11 808	
25		1539.957 30.4	9.552 20).848 21	.411 26	1693.9	8 22.769 12.999 9.77 24.76 27 1915.446 19.646
-		8.514 11.132 1	9.633				E
28		1834.616	15.913	11.313	4.6	22.613	
29		2195.27	30.869	11.236	19.633		25
30		1692.588	25.553	11.236	14.317	1	11.506
31		1614.079	31.035	23.048	7.987	11.99	1
32		1834.388	28.656	15.2 <mark>3</mark> 6	13.42	13.021	THE
33		1823.317	26.385	11.543	14.842		11.47
34		1738.248	25.538	7.632	1 <mark>7.9</mark> 06	2	11.47
35		2210.484	25.004	11.543	13.461	-12	10.338
36		2109.889	13.462	12.337	1.125	13.176	
37		1560.575	25.123	11.648	13.475		13.542
38		1489.376	27.499	17.182	10.317		17.815
39		2098.153	17.356	14.3	3.056	9.827	
40	-	2030.898	18.397	10.198	8.199	<u>11.24</u> 3	
41	Z	1942.019	20.024	16.446	3.578	10.95	3
42	1 Sel	1913.707	23.031	17.463	5.568	10.938	2
43	12	1947.153	25.518	7.632	17.886		13.114
	-	102	>			-	AA
			-		_	~	
		<	2	SAI	NE	NC	

44	1850.6	16.65 12.727 3.923 15.625	
45	1693.611	16.918 7.5 9.418 12.204	
46	2287.603	20.717 19.006 1.711 8.621	
47	2085.531	17.923 8.139 <mark>9.784</mark> 12.608	
48	1793.257	13.756 10 3.756 8.136	
49	1734.542	20.011 10.977 9.034 19.935	
50	1806.419	19.999 10.511 9.488 13.052	
51	1864.184	21.4 14.84 6.56 15.634	

52

1504.273 18.453 13.224 5.229 12.292 53 1406.446 26.385 10.965 15.42 9.827 54 2148.259 21.259 13.5 7.759 11.423 55 1694.114 20.26 14.577 5.683 8.869 56 1582.103 16.56 11.412 5.148 16.869

57	1863.857	19.588 10.2	65 9.323	13.512	1	2
58	1825.885 20.85	5 12.97 7.88 <mark>5</mark>	<mark>5 14.226 59</mark>	2004.64	43 <mark>21.318 11.51 9.808 9.60</mark> 4	
60	1823.455	22.326 13.5	09 8.817	9.389	1373	
61	1976.863	16.193 12.9	03 3.29	12.672	XXX S	
62	1792.288	17.008 14.5	23 2.485	19.278	XXX I	
63	2012.032	18.336 16.6	5 1.686	11.458		
64	1760.689	23.055 17.1	55 5.9	13.052		
65	194 <mark>3.982</mark>	17.999 8.27	6 9.723	25.313		
66	1690.168	21.309 11.6	61 9.648	15.023		
67	2003.544	23.435 16.8	807 6.628	<mark>13.79</mark>		
68	1978.697	21 <mark>.12</mark> 9 13.4	03 7.726	<u>11.13</u> 4	13	
69	1699.987	26.612 15.9	024 10.688		14.024	

WJ SANE NO BADY

70		1937.913	12.815	7.566	5.249	11.049	
71		1927.695	23.716	14.088	9.628	42.861	
72		1875.951	21.1	11.236	9.864	26.337	,
73		1525.085	24.499	10.977	13.522		14.593
74		1842.553	23.999	11.884	12.115		10.546
75		1623.899	20.717	8.5	12.217		12.148
76		1940.096	21.505	10.307	11.198		13.062
77		1435.047	20.099	15.008	5.091	13.176	i i
78		1919.701	23.448	16.51	6.938	23.257	
79		1724.71	24.998	15.732	9.266	22.78	
80		1551.732	28.07	19.499	8.571	15.167	
81		1968.484	29.515	12.815	16.7	10.469	
82		1822.217	14 <mark>.4</mark> 99	6.5	7.999	13.35	1773
83		2135.914 19.99	99 14.50	8 5.491	7.933 8	34 1710.	<mark>.896 17.499 11.423 6.</mark> 076 13.701
85	1587.587	26.999 13.462	13.537	11.506	86	1650.52	13 24.285 12.348 11.937 22.613
87		2346.395	23.9	16.03	7.87	24.083	and the second
88		1999.431 24.999	9 11.013	13.986	25.398	89 2158	8.191 25.223 18.506 6.717 23.53 90 2197.341
0.1		22.499 12.499 1	0 21.37	3		01165	
91		1507.86	25.004	20.554	4.45	24.167	
92		2060.281	26.574	12.97	13.604		21.167
93		1659.237	30.102	10.499	19.603		22.94
94	131	1791.112	23.333	12.499	10.834	1	13.34
95	The	1503.519	25.479	18.499	6.98	20.307	
	15	San					S. A.
		COR.	7			1	BA
		1 k	V -	_		250	
			2	SAI	NE	1 ac	

19.811 7 96 1880.7 12.811 21.974 25.401 18.867 6.534 29.208 97 1807.231 1788.249 25.401 12.499 12.902 19.633 98 99 1903.981 19.137 19.038 0.099 21.582 27.383 16.92 10.463 100 1928.999 12.259 101 26.626 20.596 6.03 7.292 2047.462 26.743 20.651 6.092 22.828 102 2108.828 103 1710.758 18.384 14.999 3.385 26.172 104 26.399 19.505 6.894 26.172 1552.004 105 1896.556 19.038 18.607 0.431 24.694 20.155 14.499 5.656 22.207 106 1473.977 26.766 21.029 5.737 20.588 107 1982.442 2200.181 22.202 14.508 7.694 22.094 108 1779.999 31.502 21.707 9.795 29.792 109 23.333 10.124 13.209 27.333 110 2070.002 111 2123.532 20.055 15.7 4.355 9.786 28.177 11.313 16.864 15.66 112 1879.842 20.717 15.811 4.906 10.338 1487.629 113 23.435 14.883 8.552 114 1668.555 29.729 22.553 17.67 4.883 22.402 1553.416 115 23.033 16.905 6.128 22.691 117 2160.664 17.658 11.661 5.997 9.317 118 116 1817.498

2036.564 20.717 16.799 3.918 14.996

NSAP J

193

WJ SANE NO

BADW

119 1943.399 20.933 11.423 9.51 16.957 120 1827.54 24.964 12.539 12.425 9.389 121 1966.087 11.768 8.86 2.908 16.901

122	2262.532	25.499	24.186	1.313	15.625	
123	1734.882	25.317	17.733	7.584	20.286	
124	1389.483	24.422	19. <mark>091</mark>	5.331	10.272	
125	2202.701	22.637	14.212	8.425	13.062	
126	2018.99	35.105	9.656	25.449		14.593
127	2139.902	16.324	13.999	2.325	8.102	
128	1791.427	22.298	14.703	7.595	8.869	
129	1807.116	17.204	14.577	2.627	15.185	
130	1815.218	18.384	9.823	8.561	7.882	
131	2169.655	19.999	11.768	8.231	8.086	1 T
132	2165.556	21.271	9.192	12.079		34.9
133	2056.685	25.104	10.547	14.557	1	12.511
134	2340.516	22.802	10.404	12.398		12.768
135	2043.468	29.739	16.324	13.415	15	17.061
136	2000.254	1 <mark>7.6</mark> 13	12.499	5.114	12.811	
137	19 <mark>80.8</mark> 35	21.592	8.276	13.316		14.741
138	2053.762	22.61	12.806	9.804	12.081	
139	2023.019	19.234	14.115	5.119	14.024	
140	2106.475	25.004	13.601	11.403	-	9.389
141	1501.104	19.678	14.577	5.101	<mark>19.38</mark> 3	13
142	2071.567	24.999	18.914	6.085	13.021	5
13	90					ST/
	2M					Br
	ZV	4.5	C.A.	1.1.1	NO	2
		_	3 AL	ALC:	-	

22.05 12.747 9.303 11.558 143 2309.848 144 2209.638 28.305 12.379 15.926 21.161 1633.934 13.647 12.093 1.554 23.51 146 2069.162 23.048 12.419 10.629 16.383 147 2007.948 145 27.576 14.421 13.155 18 148 1727.089 23.816 19.911 3.905 22.75 149 1424.718 24.417 13.792 10.625 11.256 150 2253.031 16.378 9.34 7.038 11.74 151 2190.755 23.753 21.271 2.482 12.771 152 1827.568 26.076 13.341 12.735 11.22 153 1575.758 24.999 14.317 10.682 11.22 154 18.006 15.239 2.767 10.088 2112.674 14.499 9.486 5.013 12.926 155 2118.605 156 2078.805 23.43 12.97 10.46 13.292 27.499 13.086 14.413 157 1734.905 17.565 18.027 13.582 4.445 9.577 158 2021.582 22.005 16.03 5.975 10.993 159 1852.233 24.02 17.327 6.693 10.7 160 1973.983 1647.2 23.504 7.5 16.004 10.688 161 162 20.886 13.2 7.686 12.864 1928.424 1893.73 28.934 22.637 6.297 15.375 163 164 2078.456 25.112 13.901 11.211 11.954 165 2213.008 25.499 14.395 11.104 8.371 20.505 11.045 9.46 13.302 166 2036.681 23.307 15.115 8.192 25.563 167 1995.351 168 31.751 16.918 14.833 2211.297 15.273 169 1800.003 25.499 10.44 15.059 14.04 BADW

WJ SANE NO

RP3

1701534.0430.80411.5119.29411.3841712020.05619.99911.0118.98814.2741721861.22214.07910.73.37911.2991731740.26516.18.6027.49843.1111742169.60829.7188.521.21819.5871752147.81626.49916.9779.52214.8431761752.72919.31216.0073.30510.7961771847.32719.03814.1414.89712.3981782030.7116.77613.42610.7191834.17425.9611802020.3123.30716.17613.42610.71918424726.92214.00812.91513.1212.99518315.41719.03814.3276.52610.7191842547.29226.92414.00812.91512.9331852219.86521.86821.1890.67920.421861605.41224.00912.74711.26221.7921871562.6222415.0488.95210.681882029.82419.96115.74.26110.681891995.1319.14311.0118.13215.8751901979.85626.63719.8086.82921.7251911714.40823.34417.5065.83814.9911921938.08115.29611.6613.63520.083<
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1802020.3123.30716.0767.23123.5071811960.83126.19513.212.99523.031822488.52620.83813.0057.83315.4171832344.78324.88318.3576.52610.7191842547.29226.92414.00812.91612.9331852219.86521.86821.1890.67920.0421861605.41224.00912.74711.26221.7921871562.6222415.0488.95210.681882029.82419.96115.74.26110.681891995.1319.14311.0118.13215.8751901979.85626.63719.8086.82921.7251911714.40823.34417.5065.83814.9911921938.08115.29611.6613.63520.0831931896.75116.00710.9775.0320.069
7.83315.4171832344.78324.88318.357 6.526 10.719 1842547.29226.924 14.008 12.916 12.933 1852219.86521.868 21.189 0.679 20.042 1861605.41224.009 12.747 11.262 21.792 1871562.6222415.048 8.952 10.68 1882029.82419.961 15.7 4.261 10.68 1891995.1319.143 11.011 8.132 15.875 1901979.85626.637 19.808 6.829 21.725 1911714.40823.344 17.506 5.838 14.991 1921938.08115.296 11.661 3.635 20.083 1931896.75116.007 10.977 5.03 20.069
183 2344.783 24.883 18.357 6.526 10.719 184 2547.292 26.924 14.008 12.916 12.933 185 2219.865 21.868 21.189 0.679 20.042 186 1605.412 24.009 12.747 11.262 21.792 187 1562.622 24 15.048 8.952 10.68 188 2029.824 19.961 15.7 4.261 10.68 189 1995.13 19.143 11.011 8.132 15.875 190 1979.856 26.637 19.808 6.829 21.725 191 1714.408 23.344 17.506 5.838 14.991 192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
1842547.29226.92414.00812.91612.9331852219.86521.86821.189 0.679 20.0421861605.41224.00912.74711.26221.7921871562.6222415.0488.95210.681882029.82419.96115.74.26110.681891995.1319.14311.0118.13215.8751901979.85626.63719.8086.82921.7251911714.40823.34417.5065.83814.9911921938.08115.29611.6613.63520.0831931896.75116.00710.9775.0320.069
1852219.86521.86821.189 0.679 20.0421861605.41224.00912.74711.26221.7921871562.6222415.048 8.952 10.681882029.82419.96115.74.26110.681891995.1319.14311.011 8.132 15.8751901979.85626.63719.8086.82921.7251911714.40823.34417.5065.83814.9911921938.08115.29611.6613.63520.0831931896.75116.00710.9775.0320.069
1861605.412 24.009 12.747 11.262 21.792 1871562.62224 15.048 8.952 10.68 1882029.82419.961 15.7 4.261 10.68 1891995.1319.143 11.011 8.132 15.875 1901979.856 26.637 19.808 6.829 21.725 1911714.408 23.344 17.506 5.838 14.991 1921938.081 15.296 11.661 3.635 20.083 1931896.751 16.007 10.977 5.03 20.069
187 1562.622 24 15.048 8.952 10.68 188 2029.824 19.961 15.7 4.261 10.68 189 1995.13 19.143 11.011 8.132 15.875 190 1979.856 26.637 19.808 6.829 21.725 191 1714.408 23.344 17.506 5.838 14.991 192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
188 2029.824 19.961 15.7 4.261 10.68 189 1995.13 19.143 11.011 8.132 15.875 190 1979.856 26.637 19.808 6.829 21.725 191 1714.408 23.344 17.506 5.838 14.991 192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
189 1995.13 19.143 11.011 8.132 15.875 190 1979.856 26.637 19.808 6.829 21.725 191 1714.408 23.344 17.506 5.838 14.991 192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
1901979.85626.63719.8086.82921.7251911714.40823.34417.5065.83814.9911921938.08115.29611.6613.63520.0831931896.75116.00710.9775.0320.069
191 1714.408 23.344 17.506 5.838 14.991 192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
192 1938.081 15.296 11.661 3.635 20.083 193 1896.751 16.007 10.977 5.03 20.069
193 1896,751 16,007 10,977 5,03 20,069
194 2012.697 23.021 13.865 9.156 14.01
40
WJ SANE NO

195	1601.403	30.804 23.6	7.204	25.536	
196	1635.44	19.319 18.607	0.712	14.274	
197	2121.456	20.554 19.299	1.255	31.23	
198	1801.387	23.837 14.705	9.132	30.57	
199	2037.964	26.569 11.543	15.026		21.847
200	2044.799	21.919 10.735	11.184		20.083
201	1928.94	25.238 17.007	8.231	18.212	
202	2067.487	24.863 12.499	12.364		21.587
203	2363.932	26.418 8.5	17.918		14.274
204	1836.282	18.58 9.013	9.567	10.975	
205	1490.883	24.04 16.984	7.056	11.2	
206	2304.101	20.939 10.793	10.146	-2	10.522
207	2120.39 18.82	.1 9.708 9.11 <mark>3</mark> 1	12.3 <mark>58</mark> 2	208 224	1.302 26.507 18.499 8.008 7.886 209 1892.827
	22.202 18.607	3.595 19.685 2	10	1908.5	16 25.163 19.724 5.439 12.802
211	1216.618	26.475 13.829	12.646	15.384	SCR
212	2271.055 24.62	21 7.905 16.71	6 12.04	2 213	2266.956 17.563 12.348 5.215 9.577 214
	2158.085 18.50	6 15.628 2.878	11.173		
215	2141.916	22.901 16.62	6.281	8.619	
216	2144.868	33.134 15.556	17.578		16.619
217	2101.654	22.901 17.923	4.978	13.262	
218	2082.235	21.359 15.296	6.063	13.976	
219	2155.162	24.079 12.507	11.572		9.354
220	2024.419	26.404 10.816	15.588	-	9.139
10	-An-				1000
	CO R	7			BA
		11			
				the second se	3

221	2007.875	20.303	11.629	8.674	12.422				
222	1602.504	19.793	12.029	7.764	19.028				
223	2172.967	18.721	12.419	6.302	11.208				
224	2111.248	26.162	8.902	17.26	13.1				
225	2311.038	26.87	11.8	15.07	7.683				
226	1735.334	28.315	10.92	17.395		13.451			
227	2170.562	23.299	17.269	6.03	11.256				
228	2109.348	18.799	11.629	7.17	22.363				
229	1828.489	16.299	10.44	5.859	23.833				
230	1126.118	25.799	10.92	14.879		25.148			
231	2356.431	32.085	14.159	17.926		23.28		-	
232	2298.155	27.7	21.58	6.12	21.123		T		
233	<u>1928.968</u>	23.799	14.4 <mark>9</mark> 9	9.3	23.917		× +		
234	1 <mark>677.158</mark>	24.023	13.647	10.376		21.917	77		
235	2014.074	21.299	9.899	11.4	22.69	52	S		
236	2220.005	23.804	15.692	8.112	13.09				
237	2180.205	2 <mark>5.3</mark> 74	<mark>13.3</mark> 41	12.033		19.057			
238	183 <mark>6.305</mark>	28.902	18.746	10.156		21.724			
239	2122.982	22.133	13.434	8.699	28.958				
240	1953.633	24.279	14.212	10.067	19.383	241	2075.383	18.611 12.94	41 5.67
	21.332		_		_				

242 1748.6 24.201 11.886 12.315 12.009 243 1924.717 24.201 15.392 8.809 7.042 244 1539.648 23.937 14.876 9.061 22.578 7 BADH

1411.884 30.183 12 18.183 25.922 245

WJ SANE NO
25.426 15.805 9.621 25.922 246 2011.289 247 25.543 12.157 13.386 24.444 1661.975 22.184 12.808 9.376 16.811 248 1590.776 249 2099.553 25.199 14.989 10.21 12.561 17.838 11.547 6.291 14.491 250 2132.298 251 2043.419 18.955 12.848 6.107 11.831 252 2015.107 25.566 14.5 11.066 13.774 21.002 9.811 11.191 253 1548.553 9.139 254 30.302 13.608 16.694 19.133 1952 255 1595.011 22.133 16.306 5.827 22.457 2189.003 18.855 10.461 8.394 20.838 256 26.977 9.777 17.2 22.344 257 2186.931 258 1894.657 19.517 12.665 6.852 30.042 259 1835.942 22.235 12.4 9.835 27.583 260 1907.819 17.353 10.184 7.169 10.036 261 1965.584 26.323 11.993 14.33 15.91 28.699 18.908 9.791 10.588 262 1605.673 263 1507.846 18.556 15.199 3.357 29.979 264 1949.659 25.597 16.807 8.79 22.652 265 1795.514 21.224 17.924 3.3 22.941 1683.503 24.231 15.029 9.202 9.567 266 1965.257 26.718 13.105 13.613 15.246 267 BADWE 268 1927.285 17.85 13.548 4.302 17.207

IP3

WJ SANE NO

			K	\mathbb{N}	П		ST
0.00		2005.042	10 110 12	000 5 6		070.10	
269	2078 262	2006.043	18.118 12	2.828 5.2	29 9.639 070	1902 (924.855 21.917 17.82 4.097 17.151
271	2078.263	19.123 12.75	0 0.30/	15.8/5	272 4 715	10 522	88 17.956 10.123 7.833 20.536
273		1862 089	21.211	17 707	4.713	13 312	
275		1345 382 22 6	5 12 016 1	0 584 14	4 843 2	76 1791	568 18 653 12 829 5 824 8 352
277		2104 944	27 585	18 229	9 356	9 1 1 9	
278		2080 097	22.459	14 807	7 652	15 435	
279		1638 865	21.46	16 289	5 171	8 132	
280		2068 208	17 76	12.847	4 913	8 336	
281		2046 416	27 788	12.148	15 64	35.15	
282		1651 329	28.055	15.8	12.255	55.15	12 761
283		1745 927	22.518	11 111	11 407	A.c.	13.018
284		1952.52	23 526	12,908	10 618	-	13.271
285		1332.774	17 393	11 606	5 787	21 957	
286		1918 91	16 208	11.761	4 447	30 338	22-3
280		1859 431	19 536	11.701	8 4 5 9	31 844	
287		2387 126	21 255	13 965	7.29	15 5/2	
280		2307.120	18 100	12.705	5 /00	20.083	
200		1645 802	23 500	12.7	11 261	20.005	0.536
290		2118 465	16 625	11.529	5 107	15 /1	9.550
291		1402 612	10.035	12.52	12 800	13.41	10.022
292	T	1402.012	23.329	12.32	12.809	-<	10.088
293	2	1631.936	27.812	15.456	12.356	12.051	8.183
294	124	1542.312	21.015	14.823	6.192	13.951	- 54
	1	10					ST
		21					Br
		Z	WS	SAI	NE	NC	25

295		1253.546	24.916	15.196	9.72	11.756		
296		1514.258	22.3	11.407	10.893		22.863	
297		1297.761	25.699	10.716	1 <mark>4.98</mark> 3		21.333	
298		1215.341	25.199	11.529	13.67	25.648		
299		1724.104	13.833	12. <mark>929</mark>	0.904	<mark>23</mark> .78		
300		1575.893	21.458	11.507	9.951	21.623		
Mean	1885.382	22.7280933	13.690	38333	9.0377	5	16.5828	Sapwood
1		1499.361	25.267	16.807	8.46	12.683		
2		1336.421	21.69	10.511	11.179		19.792	
3		1982.056	18.11	11.884	6.226	25.542		
4		1676.843	17.182	8.732	8.45	10.43	1	
5		2129.5 21.224	10.63	10. <mark>59</mark> 4		10.43		83
6		2185.587	18.9	7.5	11.4	15.625	15	
7		2169.425	22.343	9.924	12.419		21.475	2
8		2285.895	12.539	6.041	6.498	14.741		
9		2052.734	16.378	8.544	7.834	19.833		
10		2041.754	23.837	12.539	11.298		19.819	
11		2142.989	23.004	11.499	11.505		13.76	
12		1408.068	27.503	8.485	19.018		25.286	
13		1865.773	24.04	10.124	13.916	1	14.024	[]
14	131	2190.598	14.865	9.219	5.646	<mark>30.98</mark>		121
15	EL	1510.584	<mark>19.811</mark>	6.8	13.011	-	30.32	2
	10	30					15	2
		C'S R	7			1	SBR	
		YK	V -	_				
			2	SAI	NE	100		

16	1825	.717 16.324	11.28	5.044	32.597	
17	2158	.268 21.076	7.159	13.917		19.833
18	2067	.457 14.534	14.141	0.393	24.962	
19	2308	.46 24.621	9.434	15.187		31.337
20	2125	.451 21.029	10. <mark>594</mark>	10.435		14.024
21	1948	.989 17.463	9.5	7.963	10.725	
22	1753	.878 13.582	8.141	5.441	10.95	
23	1710	.077 21.259	12.806	8.453	10.272	
24	1958	.177 17.102	15.787	1.315	11.808	
25	2241	.317 11.543	9.055	2.488	21.411	
26	2069	.189 20.517	18.607	1.91	24.76	
27	1708	.282 15.999	14. <mark>32</mark> 6	1.673	19.633	1 TO T
28	2354	.967 25.004	9.51 <mark>3</mark>	15. <mark>4</mark> 91		22.613
29	<mark>1644</mark>	.092 18.667	9.013	9.654	25 30	2279.285 19.006 7.211 11.795 11.506 3
	1689	.035 18.927 10.2	.59 8.66	8 11.99	32 187	8.123 14.999 10.259 4.74 13.021 33 1374.73
	15.44	43 6.726 8.717 11	.47		12	
34	2146	.018 18.787	12.999	5.788	11.47	
35	1805	.914 <u>19.811</u>	15.033	4.778	10.338	
36	1915	.717 23.333	8.845	14.488		13.176
37	2279	.644 19.525	13.647	5.878	13.542	
38	1804	.784 23.048	8.276	14.772	1	17.815
39	1843	.821 17.029	9.434	7.595	<mark>19.82</mark> 7	12
40	2148	.259 24.823	9.5	15.323	-	11.243
	150	-				St.
	100	200			1	BA
		1 W	_			
		10	SAI	NE	1ª	

41	1939.186	18.172 8.381	9.791	10.95			
42	1804.351	16.378 7.905	8.473	10.938			
43	1835.912	16.977 9.434	7.543	13.114			
44	1883.442	24.514 11.884	12.63	15.625			
45	2173.34	20.717 11.18	9.537	12.204			
46	1663.928	15.8 <mark>89</mark> 11.499	4.39	18.621			
47	2007.627	20.554 13.756	6.798	12.608			
48	1879.689	19.234 9.617	9.617	18.136			
49	1504.052	24.828 6.726	18.102		19.935		
50	1802.059	22.588 9.5	13.088		13.052		
51	2353.874	22.939 13.656	9.283	15.634			
52	1660.172	20.407 9.219	11.188	-2	12.292	12	
53	1645.394	18.336 14.508	3.828	19.827	1-	X F	
54	2179.741	13.509 12.999	0.51	11.423	1	73	
55	1851.096	17.867 15.499	2.368	18.869	$\leq \times$	R	
56	1740.763	19.924 12.02	7.904	16.869			
57	1430.774	22.101 10.124	11.977		13.512		
58	2337.993	22.022 15.206	6.816		14.226		
59	1915.117	25.738 8.86	<u>16.878</u>	19.604			
60	2172.201	16.999 9.219	7.78	19.389	61	1466.189	21.931 10.688 11.243
17	12.672						-
62	1782.635	22.14 9.962	12.178	19.278			Z/
63	1785.889	18.247 16.1	2.147	11.458		1.0	5/1
64	1936.781	16.999 10.607	6.392	13.052	_	A.	
	TAD -	~		-	-	SV/	
	~			_		-	
		AZCY	ME	NO	2		
		2.54	a second				

65	2169.258	25.346	11.715	13.631	25.313	
66	2023.445	23.199	8.139	15.06	15.023	
67	1880.909	24.758	8.845	15.913		13.79
68	1799.877	17.413	11.313	6.1	11.134	
69	1879.478	18.384	12.01	6.374	14.024	
70	1966.31	21.799	12.747	9.052	11.049	
71	2211.575	24.519	12.348	12.171		42.861
72	1267.188	24.823	10.63	14.193		26.337
73	2087.888	21.318	14.326	6.992	14.593	
74	1628.138	19.557	13.453	6.104	10.546	
75	1955.496	16.807	13.086	3.721	12.148	
76	2007.278	18.224	12.999	5.225	13.062	The second
77	1502.845	24.206	14.9 <mark>9</mark> 9	9.207	13.176	171
78	2005.447	22.846	13.038	9.808	23.257	320
79	1268.464	24.437	9.617	14.82	22.78	STOR
80	1956.825	23.711	12.103	11.608		15.167
81	1422.878	20.651	<mark>12.175</mark>	8.476	10.469	
82	159 <mark>4.2</mark> 1	14.15	8.944	5.206	13.35	
83	1329.033	17.888	12.499	5.389	17.933	
84	1502.044	22.387	6.726	15.661		13.701
85	1492.057	14 <mark>.57</mark> 7	9.617	4.96	11.506	
86	1527.067	15 <mark>.507</mark>	10.124	5.383	22.613	
87	1721.384	16.507	12.97	3.537	24.083	5
	Ap.	-				-27
	2 P	~			5	201
	ZV	45	SA	NE	NO	25
			0	04	and the second se	

			<	\mathbb{N}		J	ST
88		2284.561	15.507	9.192	6.315	25.398	
89		1687.28 20.155	5 9.394	10.761	23.53 90	1559.2	09 21.029 13.509 7.52 21.373
91 1:	556.725	15.889 11.672	4.217	24.167	92 2062	2.928 19	9.499 11.473 8.026 31.167 93 2109.736 18.721
10.7 8.0	21 22.94						
94 2022	.045 26.869 9	.3 17.569 13.34	95 168	8.131 1	9.722 17	<mark>.923</mark> 1.7	799 30.307
96		1585.911	15.531	10.735	4.796	21.974	
97		1412.987	24.667	14.577	10.09	29.208	
98		1253.824	24.697	11.067	13.63	19.633	
99		1796.177	15.008	8.86	6.148	21.582	
100		2122.54	20.395	8.902	11.493		12.259
101		2059.043	19.038	8.86	10.178	1	7.292
102		2120.179	14.84	12.01	2.83	22.828	1
103		2248.186	16.007	8.902	7.105	26.172	253
104		1841.349	19.006	13.2	5.806	26.172	1377
105		1800.649	19.143	13.601	5.542	24.694	JAC STATE
106		1725.492	18.309	10.547	7.762	22.207	252
107		1677.441	20.155	19.608	0.547	30.588	
108		1778.245	21.505	14.499	7.006	32.094	
109		1969.239	24.758	11.412	13.346		29.792
110		2002.85	27.972	14.534	13.438		27.333
111	_	1820.894	20.862	6.8	14.062		19.786
112	Z	1743.424	21.052	4.472	16.58	15.66	3
113	121	1235.61	14.159	7.826	6.333	10.338	
-	12	1 2					5
	1	7.0	~			1	- As
		~	-			~	
			2	SA	NE	NC	

114	1850.753	10.547 9.434 1.113 29.729	
115	1431.76	19.104 8.139 10.965 22.402	
116	2294.116	19.234 10.295 8.939 22.691	
117	2243.456	13.829 7.826 6.003 19.317	
118	1663.64	18.117 8.3 <mark>81 9.736 14</mark> .996	
119	1913.759	14.98 <mark>3 9.531 5.452 16.957</mark>	
120	1619.312	12.9 <mark>8 10.816 2.16</mark> 4 19.389	
121	1848.595	25.019 7.211 17.808 16.901	
122	2046.871	19.905 10.594 9.311 15.625 123 2104.436 14.159 6.02 8.13	9
	20.28	6	
124	2303.531	23.307 8.902 14.405 10.272	
125	1951.937	15.02 9.499 5.521 13.062	
126	1880.783	23.307 16.507 6.8 14.593	
127	1893.6	25.499 15.976 9.523 18.102	
128	187 <mark>5.14</mark> 8	21.914 20.505 1.409 18.869	
129	1943.15	25.019 12.298 12.721 15.185	
130	1763.257	23. <mark>264 12.041 11.223 17.88</mark> 2	
131	2202.509	20.554 13.434 7.12 18.086	
132	1 <mark>986.449</mark>	21.638 12.776 8.862 34.9	
133	1842.217	24.458 15.944 8.514 12.511	
134	2001.272	25.238 16.77 8.468 12.768	
135	1820.122	24 <mark>.186 6.265 17.921 17.061</mark>	
136	1914.212	18. <mark>58 10.124 8.456 12.81</mark> 1	
137	1428.081	21.54 14.088 7.452 14.741	
	A.P.	200	
	~		
	Z.I	J SAME NO 3	
		STUTE .	

138		2042.753	18.397	10.404	7.993	12.081	
139		1465.515	19.241	12.082	7.159	14.024	
140		1666.824	16.1	8.2	7.9	19.389	
141		1421.971	16.807	12.97	3.837	19.383	
142		1688.593	19.234	10. <mark>062</mark>	9.172	13.021	
143		1873.355	22.61	14.577	8.033	15.893	
144		2171.682	16.62	8.544	8.076	22.946	
145		1934.086	19.025	10	9.025	18.102	
146		1543.592	18.438	11.51	6.928	19.951	
147		1861.815	20.572	12.529	8.043	16.526	
148		1992.743	15.572	6.519	9.053	13.031	
149		1530.083	14.999	7.5	7.499	17.69	
150		1831.416	17.733	11.18	6.553	16.61	
151		1735.986	20.303	11.715	8.588		14.802
152		1442.769 2	1.73 10.5	511 11.	<mark>219</mark> 16	.791 1	53 2104.762 24.458 14.773 9.685 11.99 154
		2437.	244	19.557	15.115	4.442	21.663
155		2228.621	19.98	13.499	6.481	10.737	
156		2128.737 18.3	309 8.27	6 10.0 <mark>3</mark>	3 10.73	87 157	1409.184 20.024 13.462 6.562 8.479 158
		1724.317 15.9	52 10 5.9	52 11.4	23		
159		2056.868	16.807	7.382	9.425	12.424	
160	-	1966.057	11.715	9.178	2.537	17.512	
161	121	2207.06	14.3	8.845	5.455	10.43	13
162	E	2024.051	21.661	8.602	13.059		9.91
	1.5	5					- A
		TAP .	>				AA
			-			-	
			20	SAI	NE	NC	
			and the second second			and the second division of the second divisio	

207

163		1847.589	20.796	10.965	9.831	10.378				
164		1652.478	20.886	11.768	9.118	15.13				
165		1908.677	15.074	11.401	3.673	11.506				
166		1856.777	16.77	8.514	8.256	11.979				
167		2139.917	20.554	8.2 <mark>76</mark>	12.278		8.235			
168		1947.789	27.059	10	17.059		18.237			
169		1604.882	18.705	11.448	7.257	18.398				
170		2253.567	20.005	11.236	8.769	17.777				
171		1542.692	21.359	10.511	10.848		14.593			
172		2173.885	17.327	8.86	8.467	13.582				
173		1587.635	20.814	14.141	6.673	13.031				
174		1776.723	19.025	12.02	7.005	18.9 <mark>5</mark> 9		12		
175		1273.331	19.905	15.4 <mark>3</mark> 5	4.47	13.582		X X	1	
176		2044.618	18.821	15.507	3.314	10.623	7	20		
177		1700.659	20.862	13.601	7.261	20.995		SK		
178		2252.474	19.905	14.577	5.328	16.272				
179		1758.772	1 <mark>8.3</mark> 97	<mark>12.6</mark> 19	5.778	19.317				
180		15 <mark>43.99</mark> 4	25.597	10.606	14.991		12.715			
181		2078.341	24.823	12.348	12.475		22.486			
182		1749.696	29.205	11.715	17.49		13.671			
183	T	1639.363	15.296	12.776	2.52	10.482			5	
184	121	1526.374	38.667	18.56	20.107	11.049	185	2236.593	22.36	18.445 3.915
	12	11.267					-	15	5/	
	1	9.0	-			-	_	2		
		~~~	2			5		0.		
		ZM	15	SAL	JE	NO		h		
					1 Bar					

186 1813.717 20.401 11.704 8.697 14.072 187 2070.801 19.508 15.208 4.3 5.208 188 1364.789 19.557 8.902 10.655 23.582 189 1681.235 20.155 13.124 7.031 31.63

190	1624.489	20.669	11.499	9.17	13.701	
191	1835.381	24.253	9.013	15.24	13.582	
192	2267.858	15.008	7.211	7.797	10.482	
193	1922.045	20.614	8.746	11.868		16.087
194	1779.509	24.697	7.071	17.626		10.687
195	1698.477	16.324	15.181	1.143	14.062	
196	1778.078	17.442	8.631	8.811	8.542	
197	1864.91	16.77	8.321	8.449	10.546	
198	2110.175	21.69	15.231	6.459	13.021	
199	1165.788	20.999	11.423	9.576	17.69	1 ar
200	1986.488	20.796	12.2 <mark>0</mark> 6	8.59	14.823	
201	1526.738	27.003	9.3	17.703	11	16.552
202	1854.096	27.972	11.236	16.736		14.024
203	1905.878	19.319	12.499	6.82	9.575	
204	1401.445	22.676	9.34	13.336		12.543
205	1904.047	19.006	16.499	2.507	13.021	
206	1167.064	15.952	12.419	3.533	15.841	
207	1855.425	29.333	9.823	19.51	10.059	
208	1321.478	24 <mark>.98</mark> 9	12.02	12.969	-<	10.725
209	1492.81	21.271	15.652	5.619	10.482	1 3
210	1227.633	16.499	13.829	2.67	11.134	5/5
12	10					ST/
	2×					- Br
	ZH	1.5	5.0	110	NO	5
		-	2 AL	ME	-	

17.499 8.381 9.118 10.43 211 1400.644 212 1600.761 20.155 11.401 8.754 13.552 19.234 11.101 8.133 17.882 1437.821 213 214 18.309 11.401 6.908 11.564 2083.456 1778.243 19.473 12.379 7.094 14.805 216 215 2230.9 23.584 16.007 7.577 14.406 217 2286.987 16.324 8.746 7.578 18.117 218 2270.825 12.529 7.382 5.147 11.243 18.867 13.086 5.781 10.987 219 2387.295 23.048 13.829 9.219 17.313 220 2154.134 16.918 9.219 7.699 13.75 221 2143.154 222 2244.389 17.087 10.816 6.271 18.869 223 1509.468 15.913 8.746 7.167 13.582 224 1937.173 24.025 18.927 5.098 13.868 225 2291.998 20.08 10.124 9.956 18.152 1907.314 23.264 12.103 11.161 10.005 226 227 2017.117 20.796 12.648 8.148 14.593 228 2381.044 15.402 8.381 7.021 13.441 229 1906.184 25.123 15.787 9.336 17.402 230 1945.221 15.304 10.124 5.18 19.389 231 2249.659 18.794 9.604 9.19 11.99 232 16.71 6.726 9.984 11.47 2040.586

233 234 1905.751

1937.312

AP3

210

WJ SANE NO

20.554 8.485 12.069

23.021 14.508 8.513 12.672

16.354

BADHE

235	1984.842	2 18.438	8.845	9.593	25.264						
236	2274.74	27.734	17.102	10.632		10.113					
237	1765.328	8 19.104	13.086	6.018	15.823						
238	2109.027	7 22.46	13.865	<mark>8.595</mark>	11.375						
239	1981.089	9 19.799	7.1 <mark>59</mark>	12.64	11.646						
240	1605.452	2 19.596	9.932	9.664	18.479						
241	2344.856	5 21.803	11.83	9.973	19.561						
242	1765.04	21.972	8.7	13.272		18.398					
243	2015.159	9 18.119	11.124	6.995	16.074						
244	1720.712	2 21.476	7.241	14.235		17.95					
245	1949.995	5 1 <mark>7.806</mark> 9.7	44 8.06	52 16.2	8 246	2148.271	14.752	13.739	1.013	17.313	247
	2	205.836	28.133	12.699	15.434	19.111	5	-			
248	2404.	931 23.789	9.68 <mark>5</mark>	14.104	13.145						
249	2053.	337 20.071	11.324	8.747	11.183	17					
250	1982.	183 15.299	10.419	4.88	11.979	1					
251	1995	16.299	8	8.299	18.237		2				
252	1976.	548 18.955	12.48	6.475	10.113						
253	2044.	55 <u>18.034</u>	8.359	9.675	34.693						
254	1864.	657 17.109	15.341	1.768	14.216						
255	2303.	909 18.273	10.634	7.639	13.114						
256	2087.	849 22 <mark>.384</mark>	11.794	10.59	<mark>19.73</mark>						
257	1943.	617 15. <mark>124</mark>	10.7	4.424	<u>11.888</u>			3			
258	2102.	672 <u>21.329</u>	15.341	5.988	<mark>29.58</mark> 2		1	Z			
	13	10.				-	3	4/			
	A.P.				1	a	No.				
	~	1.			~	- C					
	<	W3	SAL	NE	NO	2					
				and the second							

259	1921.	522 17.667	14.006	3.661	12.347		
260	2015.	612 21.467	16.987	4.48	11.47		
261	1529.	481 21.16	10.255	10.905		8.869	
262	2144.	153 19.201	13.807	5.394	13.839		
263	1566.	915 19.308	12. <mark>526</mark>	6.782	11.72		
264	1768.	224 18.357	10.713	7.644	16.604		
265	1523.	371 17.808	13.699	4.109	12.922		
266	1789.	993 19.414	13.619	5.795	25.514		
267	1974.	755 21.497	11.023	10.474		10.363	
268	1390.	657 18.118	13.22	4.898	16.073		
269	1425.	667 18.287	16.852	1.435	11.625		
270	1619.	984 17.113	15.029	2.084	11.896		1
271	2183.	161 25.225	9.581	15.644		18.729	+ + 3
272	1585.	88 21.28	12.601	8.679	19.811		7-5
273	1457.	809 24.464	12.301	12.163	-15	19.648	3
274	1455.	325 21.996	12.601	9.395	21.324		
275	1961.	528 16.602 13	6 <mark>.579</mark> 3.0	)23 23.2	276 200	08.336 21	.323 17.207 4.116 16.53 277 1920.645
	16.50	4 9.946 6.558	27.563	278	1586.73	31 1	19.994 8.582 11.412 21.361
279	1484.51	1 17.91	14.286	3.624	26.395		
280	1311.58	7 21.754	15.029	6.725	11.433		
281	1642.024	4 24.221	10.419	13.802	12.229		
282	1134.21	19. <mark>638</mark>	12.016	7.622	10.232		12
283	2035.48	6 <u>26.934</u>	9.946	16.988	-	10.884	5
	San	-				-	St.
	~	2			1		SAL
		W	_			X	
		10	SAI	NE	Le.	_	

#### 1355.224 20.304 20.127 0.177 29.18 284 285 1897.577 23.66 11.324 12.336 13.302 2223.94 19.597 13.303 6.294 21.632 286 287 2160.443 25.797 13.848 11.949 11.314 288 2221.579 21.023 9.581 11.442 14.555 22.405 16.987 5.418 14.156 289 2349.586 16.496 11.324 5.172 17.867 290 1942.749 291 1902.049 21.355 10.804 10.551 10.993 292 1826.892 21.869 7.926 13.943 10.737 293 1778.841 24.453 9.685 14.768 17.063 294 1879.645 17.524 15.708 1.816 19.5 18.642 10.045 8.597 21.619 295 2070.639 296 2104.25 27.97 18.302 9.668 13.332 297 1922.294 21.66 14.286 7.374 13.618 298 1749.353 20.597 13.498 7.099 17.902 299 1330.36 22.934 13.241 9.693 29.755

 19.304
 14.634
 4.67
 24.343

 20.05342
 11.47688667

8.576533333

16.6608933

Heartwood

2274.755

1862.561

**E**.

2

300

Mean

 cylindricum
 1435.145
 16.124
 10.558
 5.566
 39.614

 1360.054
 21.505
 15.404
 6.101
 22.899

WJ SANE NO

3 1755.788 13.829 5.831 7.998 14.923 1849.061 25.163 15.556 9.607 25.216 4 1450.182 25.869 18.845 7.024 19.151 5 6 1284.287 15.264 10.403 4.861 19.606 7 1554.745 27.734 18.1 9.634 17.508 1486.22 16.347 7.433 8.914 18.815 8 9 1373.345 10.793 4.527 6.266 17.407 10 1418.732 19.006 7.017 11.989 19.165 14.705 7.632 7.073 24.351 1693.424 11 12 1992.652 22.191 15.853 6.338 18.88 13.829 3.905 9.924 21.092 13 2048.197 1653.005 10.606 3.605 7.001 17.337 14 15 20.814 14.648 6.166 21.373 2228.664 16 1564.078 15.507 5.831 9.676 17.243 14.035 10.1 3.935 15.634 17 1337.989 18 1181.588 23.031 9.861 13.17 23.616 18.336 11.768 6.568 19.278 19 1618.515 20 1459.634 16.71 7.35 9.36 20.426 21 1667.613 16.65 4.242 12.408 19.799 1235.622 23.52 13.038 10.482 24.351 22 23 1389.011 18.741 9.899 8.842 24.351 8.121 31.358 24 1491.841 14.141 6.02 BADHE 11.884 6.02 25 1369.701 5.864 23.064

PJ

WJ SANE NO

26	1618.643	21.569	10.259	11.31	24.546		_		
27	1483.99	16.155	8.246	7.909	17.959				
28	1854.142	24.004	11.51	12 <mark>.49</mark> 4		29.171			
29	1616.958	17.065	7.017	10.048		26.047			
30	1603.806	20.303	7.5	12.803		11.888			
31	1164.565	19.6 <mark>78</mark>	8.746	10.932		22.372			
32	1469.906	20.808	12.041	8.767		26.088			
33	1380.642	22.637	14.705	7.932	29.942				
34	1593.654	16.77	7.28	9.49	23.117	35	1703.02	19.557 7.5	12.057
	27.412			Z					
36	1389.653	15.976	5.59	10.386	45.673				
37	1557.336	12.747	5.315	7.432	33.402	~	1		
38	1489.143	22.824	12.7 <mark>4</mark> 7	10.077	27.683		JF		
39	1166.48	11.18	4.61	6.57	33.954				
40	1633.24	17.102	8.139	8.963	22.372	Z	27		
41	1447.424	17.356	6.726	10.63	17.815		3		
42	1640.782	19.999	5.408	14.591		25.526			
43	1572.903	22.588	12.999	9.589	20.037				
44	15 <mark>58.575</mark>	14.395	6.8	7.595	19.46				
45	1642.338	14.141	9.708	4.433	14.923				
46	1181.788	13.536	8.062	5 <mark>.47</mark> 4	18.779				
47	1307.817	9.4 <mark>86</mark>	7.905	1.581	25.441			S	
48	1515.709	21.953	9.861	12.092		15.668	13	5/	
49	1606.942	17.356	10.44	6.916	17.469	-	134		
	40	-				_	21		
		2			5		0.		
	ZV	15	SAL	JE	NO		h		
			2 241	1 Bar					

50	1626.81	13.124	8.381	4.743	21.354	
51	1563.688	20.717	10.511	10.206		13.279
52	1331.495	27.585	9.924	17.661		15.841
53	1734.281	13.656	5.852	7.804	15.318	
54	1769.282	15.507	8.944	6.563	13.75	
55	1418.312	12.806	5	7.806	14.216	
56	1303.746	24.504	10.999	13.505		12.148
57	1474.684	12.419	6.02	6.399	18.59	
58	1403.135	21.1	13.038	8.062	21.751	
59	1512.274	24.621	15.206	9.415	26.228	
60	1224.014	16.492	9.192	7.3	15.185	
61	1648.194	18.027	9.708	8.319	20.833	
62	1388.503	18.309	7.5	10.809		8.854
63	1291.19	24.747	15.499	9.248		16.667
64	1388.097	16.03	7.5	<mark>8.5</mark> 3	19.334	SCR
65	1334.833	27.389	12.97	14.419	21.512	66         1420.776         16.378         7.905         8.473         28.432         67
	1326.882 33.7	07 1 <mark>7.8</mark> 8	3 <mark>8 15.8</mark> 1	9 26.69	68 1682	2.603 28.713 14.602 14.111 39.928
69	1400.23	17.334	7.5	9.834	45.691	
70	1234.464	37.511	18.499	19.012	19.122	
71	1076.209	21.638	13.601	8.037	18.057	
72	1120.149	23.69	14.848	8.842	<mark>36.09</mark> 9	
73	1170.546	23.344	14.499	8.845	15.14	3
74	1036.585	20.247	7.106	13.141		15.389
12						- A
1	9,0,	>			1	- all
	~	-			~	1
		0	SAI	NE	NC	
		and the second se	_		and the second division of the second divisio	

75	1202.521	23.9	12.499	11.401		35.771	_		
76	1419.36	26.518	11.401	15.117		25.005			
77	1051.139	14.865	8.2	6.665	23.011				
78	1455.541	20.179	9.219	10.96	23.553				
79	1393.828	31.483	10.606	20.877		22.25			
80	1321.859	34.09	18.999	15.091		18.296			
81	1428.254	26.195	14.602	11.593		21.974			
82	1332.04	17.116	10.999	6.117	23.409				
83	2058.977	24.601	14.764	9.837	22.029				
84	1563.185	24.621	8.5	16.121		16.74			
85	1559.17	23.113	13.792	9.321	23.776				)
86	1645.167	13.647	6.708	6.939	18.959	~	-		
87	1916.498	23.376	14.3	9.076	22.486				
88	1675.673	21.376	13.601	7.775	11.785	7	1		
89	1175.452	20.124	8.321	11.803		37.745	SX		
90	1878.555	19.137	7.615	11.522		28.66			
91	1200.067	1 <mark>9.7</mark> 22	<mark>8.94</mark> 4	10.778		21.449			
92	1413.911	15.889	9.013	6.876	29.435				
93	1818.837	16.007	7.615	8.392	22.268				
94	1639.454	27.72	11.313	16.407		39.864			
95	1570.21	22 <mark>.72</mark> 6	14.602	8.124	23.149				
96	2013.322	17.144	9.008	8.136	1 <u>5.17</u> 3	97	1282.768	22.525 1	10.854 11.671
	25.466				-	-	15	5/	
	40					/	ST	/	
	21						ar		
	ZV	4.5	C.A.	110	NO		5		
		-	2 AL	ALC.	-				

98	1598.494	14.849	6.281	8.568	19.401	
99	1788.113	26.183	16.006	10.177	19.856	
100	1466.667	26.889	9.295	17 <mark>.59</mark> 4	17.758	
101	1619.748	16.284	6.853	9.431	19.065	
102	1908.264	28.754	16. <mark>55</mark>	12.204		17.657
103	1739.294	17.367	7.883	9.484	19.415	
104	1350.696	11.8 <mark>13</mark>	4.977	6.836	24.601	
105	1224.842	20.026	7.467	12.559		19.13
106	1950.69	15.725	8.082	7.643	21.342	
107	1929.67	23.211	12.303	10.908		17.587
108	1600.167	14.849	4.355	10.494	1	21.623
109	1402.154	11.626	4.055	7.571	17.493	1-
110	1747.186	21.834	13.0 <mark>9</mark> 8	8.736	15.884	171
111	1522.572	16.527	6.281	10.246		23.866
112	1434.056	15.055	6.45	8.605	19.528	255
113	1532.794	24.051	10.311	13.74	20.676	
114	1362.911	19 <mark>.35</mark> 6	12.218	7.138	20.049	
115	1933.709	17.73	7.8	9.93	24.601	
116	2083.084	17.67	4.692	12.978		24.601
117	1830.48	24.54	13.488	11.052		31.608
118	1578.429	19. <mark>76</mark> 1	10.349	9.412	<mark>23.314</mark>	
119	1688.459	15.161	<u>6.47</u>	8.691	<mark>24.79</mark> 6	13
120	1435.753	12.904	6.47	6.434	18.209	- 15
10	-					1
	2A	2				SBA
	ZM	15	SAI	NE	NO	> 5
			2	18		

121		1973.679	22.589	10.709	11.88	29.421				
122		1831.831	17.175	8.696	8.479	26.297				
123		2011.351	25.024	11.96	13.064		12.138			
124		1740.253	18.085	7.467	10.618		22.622			
125		1688.355	21.323	7.9 <mark>5</mark>	13.373		26.338			
126		1524.107	20.698	9.196	11.502	30.192				
127		1719.915	21.828	12.491	9.337	23.367	128	1561.034	23.657 15.155	8.502
		27.662								
129		1569.013	17.79	7.73	10.06	45.923				
130		1337.022	20.577	7.95	12.627	33.652				
131		1490.411	16.996	6.04	10.956	27.933				
132		1499.241	13.767	5.765	8.002	34.204				
133		1471.101	23.844	13.1 <mark>9</mark> 7	10.647	-	22.622	TF	2	
134		1720.043	12.2	5.06	7.14	18.0 <mark>65</mark>				
135		1585.39	18.122	8.589	9.533	25.776	2	1		
136		1955.542	18.376	7.176	11.2	20.287		2		
137		1718.358	21.019	5.858	15.161		19.71			
138		1706.206	23.608	13.449	10.159		15.173			
139		1265.965	15.415	7.25	8.165	19.029				
140		1576.306	15.161	10.158	5.003	25.691				
141	-	1482.042	14.556	8.512	6.044	1 <mark>5.9</mark> 18				
142	Z	1339.745	10.506	8.355	2.151	17.719			S	
143	121	1258.654	26 <mark>.3</mark> 69	10.311	16.058		21.604	13	5/	
144	12	1654.388	15.358	10.89	4.468	13.529	-	124		
	-	1.P	-			-	-	N.S.		
		~	~			2		0		
		L M	2	SAL	ME	NO		h		
			-		No. Orac					

219

145	1747.661	32.687 8.83	31 23.856		16.091
146	1348.782	27.693 10.9	061 16.732		15.568
147	1189.887	16.314 10.3	874 5. <mark>94</mark>	14	
148	1453.345	36.491 6.30	)2 <u>30.18</u> 9		14.466
149	1384.82	20.618 9.39	94 11.224		12.398
150	1271.945	22.67 5.4	5 17.22	18.84	
151	1317.332	22.324 11.4	49 10.875		22.001
152	1592.024	19.227 6.47	12.757		26.478
153	1891.252	22.88 13.4	188 9.392	15.435	
154	1946.797	25.498 15.0	556 9.842	21.083	
155	1551.605	13.845 9.64	4.203	9.104	
156	1967.264	19.159 10.1	58 9.001	-2	16.917
157	1638.64	30.463 7.95	5 <u>22.513</u>	19.584	
158	1548.824	33.07 24.9	949 8.121	21.762	<b>159 1742.182 25.175</b> 17.95 7.225 28.682 160
	1674.30 <mark>3 16.</mark> 0	096 13.42 2.6	<mark>76 26.94</mark> 1	61 1659	<mark>.975 23.581 8.3</mark> 55 15.226 40.178
162	1743.738	23.601 18.3	338 5.263	45.941	
163	1283.188	22.093 15.0	)52 7.041	19.372	
164	1409.217	12.627 7.95	5 4.677	18.307	
165	1617.109	22.356 18.9	949 3.407	36.349	
166	1608.342	20.356 17.0	051 3.305	15.39	
167	1728.21	19.104 15.2	298 3.806	<mark>15.63</mark> 9	
168	1665.088	18 <mark>.117</mark> 14.9	949 3.168	<u>36.021</u>	13
169	1432.895	18.702 13.5	56 5.146	25.255	- 2
	132				- A
	AP.	>			AP
				2	
		125	ANE	NC	
		and the second se			

170	1835.681	14.869	12.949	1.92	23.261		_	
171	1870.682	14.987	11.851	3.136	23.803			
172	1469.01	26.7	18.65	8.05	22.5			
173	1912.122	21.706	9.669	12.037		18.546		
174	1181.568	20.933	15. <mark>056</mark>	5.877	22.224			
175	1497.294	16.336	12.449	3.887	23.659			
176	1686.913	12.104	11.052	1.052	22.279			
177	1365.467	19.697	16.449	3.248	16.99			
178	1518.548	26.565	20.214	6.351	24.026			
179	1707.064	12.636	11.95	0.686	19.209			
180	1638.094	14.487	14.242	0.245	22.736			
181	1249.496	11.786	7.158	4.628	12.035		-	
182	1123.642	23.484	14.7 <mark>5</mark>	8.734	37.995			
183	<mark>1649.49</mark>	16.399	14.051	2.348	28.91	7	7	
184	1728.47	20.08	8.771	11.309		21.699	SX	
185	1398.967	23.601	8.065	15.536		29.685		
186	1300.954	1 <mark>5.4</mark> 72	<mark>9.394</mark>	6.078	22.518			
187	16 <mark>45.9</mark> 86	17.007	9.463	7.544		39.364		
188	1421.372	17.289	8.065	9.224	22.649			
189	1431.594	23.727	11.763	11.964	14.673	190	1261.711	15.864 10.052 5.812
	24.966		_		_			-
191	1832.509	20.549	8.108	12.441	18.901			F/
192	1981.884	15.135	9.954	5.181	19.356		10	2
193	1729.28	22.984	5.381	17.603	17.258	-	1	/
	AND -	>			1		Nº1	
		-			~		-	
	~	10	SAL	ME	NO			
				No. Oak				

194	1477.229	16.045 15.	106 0.939	18.565	
195	1587.259	19.283 8.3	95 10.888		17.157
196	1954.879	18.658 5.9	53 12.705		18.915
197	1933.031	19.788 15.	.65 <b>4</b> .138	24.101	
198	1925.551	21.617 6.9	83 14.634		18.63
199	1841.453	15.75 4.0	77 11.673		20.842
200	1789.555	18.537 6.5	67 11.97	17.087	
201	1625.307	14.956 7.1	82 7.774	21.123	
202	1536.953	11.727 11.	.403 0.324	16.993	
203	1303.721	21.804 3.4	55 18.349		15.384
204	1520.56	10.16 3.1	55 7.005	23.366	
205	1152.339	16.082 12.	.198 3.884	19.028	The second
206	1556.741	16.336 5.3	8 <mark>1 10.955</mark>		20.176
207	149 <mark>5.02</mark> 8	18.979 5.5	5 13.429	11	19.549
208	1423.059	21.568 9.4	11 12.157	-15	24.101
209	1529.454	13.375 11.	318 2.057	24.101	
210	1433.24	13.121 6.9	6.221	31.108	
211	2160.177	12.516 3.7	92 8.724	22.814	
212	1664.385	12.466 8.5	88 3.878	24.296	
213	1660.37	21.144 9.4	49 11.695		17.709
214	1746.367	20.157 5.5	7 14.587	-<7	28.921
215	2017.698	20.742 5.5	7 15.172		25.797
216	1776.873	16.909 9.8	09 7.1	11.638	5/54/
	Ap.				200
	21	~			B
	ZV	4.25	ALLE	NO	2
		- 31	ANE	-	
			222		

17.027 7.796 9.231 22.122 217 1276.652 218 1779.755 28.74 11.06 17.68 25.838 1301.267 23.746 6.567 17.179 29.692 220 1316.912 22.973 7.05 15.923 22.867 221 219 1202.346 18.376 8.296 10.08 27.162 14.144 11.591 2.553 45.423 222 1373.284 21.737 14.255 7.482 33.152 223 1301.735 28.605 6.83 224 21.775 27.433 1410.874 225 1122.614 14.676 7.05 7.626 33.704 226 16.527 5.14 11.387 1546.794 22.122 227 1287.103 13.826 4.865 8.961 17.565 228 1189.79 25.524 12.297 13.227 25.276 229 13.439 4.16 9.279 19.787 1286.697 22.12 7.689 14.431 230 1233.433 19.21 231 1319.376 25.641 6.276 19.365 14.673 232 1225.482 17.512 4.958 12.554 18.529 233 1581.203 19.047 12.549 6.498 25.191 234 1298.83 19.329 6.35 12.979 15.418 235 1565.21 25.767 9.258 16.509 17.219 22.939 7.612 15.327 236 2008.322 21.104 237 1277.768 17.525 7.455 10.07 13.029 25.374 9.411 15.963 238 1593.494 15.591 239 1783.113 18.435 9.99 8.445 15.068 1461.667 21.673 7.931 13.742 13.5 BADHE

240

APJ

WJ SANE NO

241	1614.748	21.048	10.061	10.987	222	13.966				
242	1703.264	22.178	9.474	12.704		11.898				
243	1734.294	24.007	5.402	18.605		18.34				
244	1345.696	18.14	8.494	9.646	21.501					
245	1219.842	20.927	4.5 <mark>5</mark>	16.377		25.978				
246	1683.355	17.346	10.549	6.797	14.935					
247	1519.107	14.117	5.57	8.547	20.583					
248	1430.753	24.194	12.588	11.606		8.604				
249	1638.24	14.55	12.756	1.794		16.417				
250	1452.424	18.472	8.742	9.73	19.084					
251	1645.782	18.726	9.258	9.468	21.262	252 1577.903 21.369 7.05 14.319 28.182 253				
	1563.575 23.9	58 15.04	9 8.909	26.44 2	254 164	7.338 15.765 7.05 8.715 39.678				
255	1186.788	15.511	12. <mark>52</mark>	2.991	45.441	1775				
256	1312.817	14.906	7.455	7.451	18.872	1373				
257	1520.709	17.856	10.438	7.418	17.807	JAT S				
258	2088.084	30.113	14.152	15.961	-1-	35.849				
259	1835.48	32.72	7.05	25.67	14.89					
260	1583.429	<mark>24.825</mark>	18.049	6.776	15.139					
261	2016.351	15.746	<u>13.151</u>	2.595	35.521					
262	1745.253	23.231	14.398	8.833	24.755					
263	1112.614	23.251	14.049	9.202	<mark>22.76</mark> 1					
264	1536.794	21.743	6.656	15.087	-	23.303				
265	1277.103	12.277	12.049	0.228	22	- 12				
12	-					- A				
	9,0	>				- all				
	SANE NO									
	a stat the									

266	1179.79	22.006	10.951	11.055		18.046	
267	1276.697	20.006	7.75	12.256		21.724	
268	1223.433	18.754	8.769	9.985	23.159		
269	1309.376	17.767	10.156	7.611	21.779		
270	1215.482	18.852	18. <mark>349</mark>	0.503	<u>16.49</u>		
271	1606.351	14.519	14.152	0.367		23.526	
272	1799.555	14.637	10.549	4.088		18.709	
273	1635.307	26.35	14.314	12.036		22.236	
274	1546.953	21.356	17.05	4.306		11.535	
275	1313.721	20.583	18.342	2.241		37.495	
276	1530.56	15.986	6.258	9.728		28.41	
277	1162.339	13.754	11. <mark>85</mark>	1.904	-2	21.199	1
278	1566.741	19.347	13.1 <mark>5</mark> 1	6.196		29.185	7 7 3
279	1505.028	26.215	7.871	18.344	11	22.018	73
280	1433.059	22.939	7.165	15.774	-15	45.941	3
281	1744.294	17.525	8.494	9.031	19.372		
282	1355.696	25.374	8.563	16.811	18.307	283	1229.842 18.435 7.165 11.27
	36.349	284	1693.3	55	21.673	10.863	10.81 15.39 285 1529.107
	21.048	14.152	6.896	15.639			
286	1440.753	22.178	8.108	14.07	36.021		
287	1648.24	24.007	9.954	1 <mark>4.05</mark> 3	25.255		
288	1462.424	18.14	5.381	12.759	$\sim$	23.261	3
289	1553.575	20.927	18.106	2.821		23.803	1 E
290	1637.338	30.113	8.395	21.718		22.5	- And
-	9,0	-			-		- Par
	~				2		
	Z V	15	SAL	ME	NO		
				No. One			

291 292 293 294 295	1176.788 1302.817 1510.709 2078.084 1825.48	32.72       5.953       26.767         24.825       15.65       9.175         15.746       10.008       5.738         23.231       10.854       12.377         23.251       6.281       16.97	45.441 18.872 17.807 35.849 14.89
296	1573.429	21.743 18.006 3.737	15.139
297	1186.788	12.277 9.295 2.982	35.521
298	1312.817	22.006 6.853 15.153	24.755
299	1520.709	20.006 16.55 3.456	22.761
300	1508.084	8.516 7.883 0.633	23.303
Mean	1535.657	19.7225 10.03824	9.68426 22.5993533

#### Sapwood

					- Y
1		1926.359	17.463 12.369	5.094 28.703	CX-X
2		1743.354	21.782 12.348	9.434	33.309
3		1453.93	12.747 6.726	6.021	25.011
4		1640.167	15.115 6.519	8.596	18.192
5		1726.275	17.007 12.041	4.966	23.776
6		1750.485	17.613 8.558	9.055	19.46
7		1444.95	22.802 9.552	13.25	19.799
8	131	1632.144	23. <mark>716 10.965</mark>	12.751	19.151
9	EL	1498.82	21.147 10.049	11.098	18.699
	13	20			100
		C A			BA
		ZV	1250	in MC	25
			AL	NE IS	

10		1429.21	16.155	6.8	9.355	19.327	
11		1578.365	20.401	9.962	10.439	19.108	
12		1452.668	20.892	8.544	12.348	16.796	
13		1511.675	28.181	18.56	9.621	18.815	
14		2121.683	12.815	7.159	5.656	14.216	
15		1853.408	8.5 <mark>58</mark>	6.67	1.888		17.815
16		1199.689	26.099	18.117	7.982		18.495
17		1841.363	21.505	10.049	11.456		13.062
18		1780.568	18.741	11.401	7.34		15.327
19		1908.57	15.944	6.403	9.541		20.373
20		1533.337	21.505	7.615	13.89	Ard I	16.045
21		1550.627	13.829	7.81	6.019		21.663
22		1487.484	26.518	13.086	13.432		18.08
23		987.24	15.239	7.071	8.168	~	17.959
24		1477.804	21.476	10.547	10.929	-12	18.259
25		1541.292	12.093	10.387	1.706		29.463
26		1608.493	23.631	16.03	7.601		29.472
27		14 <mark>54.914</mark>	20.352	10.404	9.948		25.436
28		1406.618	17.556	10.688	6.868		25.874
29	_	1416.784	24.051	12.999	11.052		20.01
30	Z	1737.877	11.412	4.031	7.381	$\sim$	28.168
31	1-EI	1168.414	29.469	17.24	12.229		17.982
	12	1					- A
	-	7.0	-			-	As
		~	-			~	20
		~	13	SAI	NE	NO	
				2	707		

		К	$\land$	Л	J	S	Т		
32	1805.858	12.419	10.3	2.119	-	22.146			
33	1540.114	4.242	3.286	0.956		25.441			
34	1601.413	9.394	6.585	2.809		22.25			
35	1895.65	9.823	7.999	1.824		20.259			
36	1763.426	6.519	4.607	1.912		16.675			
37	1699.813	8.276	5.051	3.225		23.438			
38	1830.04	9.899	6.711	3.188		15.104			
39	2067.408	9.3	5.811	3.489	21.361				
40	1456.174	9.552	5.189	4.363	22.493	41	1560.746	10.062 8.051	2.011
	23.95	58		2					
42	1475.313	12.499	9.724	2.775	23.011				
43	1661.337	11.884	11.008	0.876	17.219	>	1		
44	1927.518	6.403	6.00 <mark>5</mark>	0.398	19.523		25	3	
45	1338.418	10.012	9.507	0.505	18.937				
46	2058.798	18.5	10.1	8.4		24.229	Z		
47	1750.876	19.038	7.28	11.758	-12	21.875			
48	1472.321	22.802	9.708	13.094		35.363			
49	1671.039	<mark>26.4</mark> 18	11.412	15.006		37.86			
50	14 <mark>61.263</mark>	27.54	9.513	18.027		35.209			
51	1619.287	27.28	10.511	16.769		28.028			
52	1433.223	30.301	15.556	1 <mark>4.74</mark> 5		25.141			
53	1605.295	30.301	14.916	15.385	-<	21.676		5/	
54	1524.709	22.726	11.335	11.391		26.104	13	5/	
55	1087.81	20.796	13.582	7.214		14.923	1.59		
	AP3	K W S	SAI	NE	NC	2	BADT		

		$\mathbb{Z}\mathbb{N}$	TT T	СТ
		( )	JU	21
56	955.745	24.253 14.141	10.112	23.582
57	1620.137	24.909 9.924	14.985	22.613
58	1495.912	20.426 6.519	13.907	21.98
59	1742.611	34.123 19.848	14.275	39.367
60	1614.279	28.376 17.463	10.913	38.766
61	1612.951	14.317 3.905	10.412	24.875
62	1598.73	20.933 8.139	12.794	8.854
63	2060.926	25.302 13.892	11.41	19.833
64	1799.174	24.823 11.51	13.313	35.478
65	1706.676	9.899 4.61	5.289	22.993
66	1614.079	25.999 14.499	11.5	22.613
67	1813.632	23.853 10.404	13.449	25.141
68	1886.903	18.787 8.276	10.511	31.085
69	1529.151	12.298 5	7.298	22.846
70	1984.594 24.	02 12.509 11.	<mark>511 27.173 7</mark> 1	1967.294 29.003 16.378 12.625 8.731 72
	1652.7	'37 <u>10.816</u>	5 5.816	38.106
73	1823.544	18.667 9.617	9.05 30.557	
74	191 <mark>6.87</mark> 7 21.27	1 9.848 11.423	41.891 75 1719	9.056 21.707 12.98 8.727 36.57 76 1913.599
	18.179 11.18 6	.999 26.644		
77	2050.364	18.199 7.382	10.817	35.543
78	1823.408	28.411 17.334	11.077	20.525
79	1596.62	26. <mark>85</mark> 5 18.787	8.068	21.531
80	1413.33	25.806 12.093	13.713	22.42
15	San			and a second sec
	5	7		S BAY
		4 m		
	-	SA	NE NC	

#### 81 22.41 9.552 12.858 26.404 1739.294 82 1760.176 22.36 14.079 8.281 25.542 83 1659.467 25.738 20.395 5.343 25.521 1897.003 20.124 9.656 10.468 22.97 84 18.767 7.071 11.696 85 1558.811 19.799 1706.626 21.965 11.8 10.165 40.158 86 27.72 15.62 12.1 12.864 87 1757.69 88 1727.247 21.965 12.369 9.596 27.253 89 1875.148 26.724 16.155 10.569 29.486 90 2051.946 26.461 12.093 14.368 12.715 23.435 12.041 11.394 91 1574.616 20.755 17.867 8.077 9.79 92 1345.346 29.241 93 1304.248 13.341 5.59 7.751 27.844 94 1477.668 21.224 10.688 10.536 19.101 95 1456.202 17.719 5.831 11.888 17.685 96 1422.651 30.515 18.499 12.016 16.445 1427.206 15.531 9.617 5.914 28.646 97 17.528 8.514 9.014 1074.208 19.792 98 22.45 99 1199.752 18.499 8.514 9.985 18.821 8.381 10.44 100 1450.88 15.703 101 1403.627 22.504 16.007 6.497 17.219

1401.126 23.926 13.038 10.888 14.593 103 14.072

NSAP 3

102

1650.491

**18.999** 10 **8.999** 

WJ SANE NO

15.811 5.701 10.11 20.833 104 1561.456 15.181 8.276 6.905 14.072 105 1429.971 106 1499.062 24.051 13.453 10.598 21.411 107 1047.22 21.271 12.093 9.178 11.99 108 1687.038 24.232 9.394 14.838 19.792 1370.168 22.939 16.155 6.784 109 13.114 110 1190.476 25.631 9.617 16.014 16.045 1441.906 14.773 7.5 7.273 16.667 111 112 17.556 12.175 5.381 26.156 1661.874 113 15.337 7.615 7.722 17.716 1450.297 114 1720.729 10.307 4.472 5.835 24.479 115 1699.08 18.336 9.962 8.374 30.28 116 1535.278 17.613 6.946 10.667 38.28 117 1786.331 12.999 4.031 8.968 29.628 118 1624.609 25.163 15.041 10.122 26.69 22.802 7.211 15.591 119 1483.012 21.246 17.913 12.719 5.194 120 1432.629 28.432 121 1622.132 22.232 12.698 9.534 24.485 122 13.197 7.076 6.121 1415.919 29.167 123 1546.814 15.565 6.869 8.696 16.146 124 1252.742 17.457 12.391 5.066 18.93 125 1126.702 18.063 8.908 9.155 24.529 1579.091 126 23.252 9.902 13.35 23.958 BADWE 127 1460.056 24.166 11.315 12.851 21.98

231

WJ SANE NO

IP3

			К	Ν	П	J	ST
128		1328.571	21.597	10.399	11.198	~	18.779
129		1397.662	16.605	7.15	9.455		26.042
130		945.82	20.851	10.312	10.539		14.914
131		1585.638 21.	342 8.89	94 12.44	8 21.15	132 120	
133	1079.076	13.265 7.509	5.756	20.226	134 13	40.506	9.008 7.02 1.988 22.366 135 1560.474 26.54
18.46	7 8.082 16.47 13	6 1348.897 21.	955 10. <mark>3</mark>	99 11.5	56 18.3	18	
137		1619.329	19.191	11.751	7.44	26.357	
138		1797.68	16.394	6.753	9.641	37.242	2
139		1433.878	21.955	7.965	13.99		28.432
140		1684.931	14.279	8.16	6.119		29.656
141		1523.209	26.968	13.436	13.532	1	20.098
142		1481.612	15.689	7.421	8.268	14	12.587
143		1199.21	21.926	10.8 <mark>9</mark> 7	11.029		14.75
144		1057.145	12.543	11.737	0.806		20.373
145		1721.537	24.081	16.38	7.701		22.128
146		1597.312	20.802	10.754	10.048	-12	17.624
147		1844.011	18.006	11.038	6.968		18.93
148		1715.679	24.501	13.349	11.152		18.458
149		1754.351	11.862	4.381	7.481		21.757
150		1740.13	29.919	17.59	12.329		20.846
151	-	2162.326	12.869	12.65	0.219		32.127
152	Z	1900.574	4.692	3.636	1.056	$\sim$	19.962
153	E	1808.076	9. <mark>84</mark> 4	6.935	2.909		17.005
	id.	12 Cal	23	SA	NE	N NC	BADH

			K	$\backslash$	П		$\subseteq$	Г				
154		1795.479	17.013 1	6.349	0.664		19.383					
155		1915.032	21.332 1	8.957	2.375		14.302					
156		1988.303	12.297 9	9.401	2.896		35.554					
157		1630.551	14.665 1	2.061	2.604		11.183					
158		2085.994	16.557 1	5.161	1.396		21.354					
159		2068.694	17.1 <mark>63</mark> 1	6.539	0.624		34.41					
160		1598.413	22.352 1	8.401	3.951		28.665					
161		1728.64	23.266 1	6.074	7.192		17.313					
162		1966.008	20.697 1	5.358	5.339		13.35					
163		1354.774 1	5.705 11.3	55 4.3	6.771	164	1459.346	19.951	16.857	3.094 2	28.453	165
		1373	.913 2	20.442	10.45 9	9.992	33.059			-		
166		1559.937	27.731 7	⁷ .63	20.101 2	24.761	L			5		
167		1826.118	12.365 1	2.019	0.346 1	7.942			7			
168		1237.018 8.1	0 <mark>8 6.998 1.1</mark>	1 23.5	526 169 1 [°]	957.39	08 25.649 6.3	376 19.	<mark>273</mark> 19.2	21		
170		1649.476	21.055 6	5.169	14.886		19.549	7				
171		1370.921	18.291 1	1.691	6.6	R	18.901					
172		1569.639	15.494 8	3.208	7.286		18.449					
173		1359.863	21.055 9	0.202	11.853		19.077					
174		1517.887	13.379 1	0.615	2.764		18.858					
175		1331.823	26.068 9	0.699	16.369		16.546					
176	-	1503.895	14. <mark>789</mark> 6	5.45	8.339		18.565					
177	Z	1423.309	21.026 9	0.612	11.414	$\leq$	13.966		3			
178	TE	986.41	11.643 8	8.194	3.449		17.565		21			
	13	5					-	2	4/			
		AP.	-			1	al	2				
		~	La			~	2º					
		<	10	SA.	SIE	NO	2					
					1. Date:	-						

		$\langle$	$\backslash$	JU	ST
179	854.345	23.181	18.21	4.971	18.245
180	1518.737	19.902	6.809	13.093	12.812
181	1394.512	17.106	6.32	10.786	15.077
182	1641.211	23.601	17.767	5.834	20.123
183	1597.68	10.962	9.6 <mark>99</mark>	1.263	15.795
184	1433.878	29.019	11.051	17.968	21.413
185	1684.931	11.969	6.053	5.916	17.83
186	1523.209	4.792	3.265	1.527	17.709
187	1481.612	8.944	7.46	1.484	18.009
188	1331.229	10.349	8.736	1.613	29.213
189	1520.732	9.75	6.721	3.029	29.222
190	1314.519	10.002	8.197	1.805	25.186
191	1445.414	10.512	5.037	5.475	25.624
192	1151.342	12.949	11.68	1.269	19.76
193	1760.867 12.3 10 462 7 649	334 10.0 2 813 2	54 2.28	27.918 194 19 96 1808 026 1	98.403 6.853 3.338 3.515 17.732 195 1660.211 8 95 3 681 15 269 25 191 197 1859 09 19 488

1859.09 19.488 16.89 2.598 22 198 1828.647 23.252 13.95 9.302 20.009

199	1976.548	26.868 15.936 10.932	16.425		
200	2153.346	27.99 17.235 10.755	23.188		
201	1676.016	27.73 19.649 8.081	14.854		
202	1546.746	30.751 18.257 12.494	21.111		
203	1405.648	30. <mark>75</mark> 1 23.701 7.05	22.243	3	
204	1579.068	23.176 13.361 9.815	23.708	2	
	1.2		A.	/	
	AP.	~	E all		
	$\sim$	SANE	NO		
205	1557.602	21.246	19.461	1.785	22.761
-----	-------------------------	----------	-----------------------	----------------	------------------------------------------
206	1524.051	24.703	20.839	3.864	16.969
207	1528.606	25.359	23.701	1.658	19.273
208	1175.608	9.449	6.374	3.075	18.687
209	1301.152	8.85	4.6 <mark>58</mark>	4.192	23.979
210	1552.28	14.102	10.655	3.447	21.625
211	1505.027	9.612	5.157	4.455	35.113
212	1502.526	12.049	9.75	2.299	37.61
213	1751.891	11.434	6.93	4.504	34.959
214	1662.856	9.953	4.762	5.191	27.778
215	1531.371	9.562	4.863	4.699	24.891
216	1600.462	18.05	10. <mark>86</mark> 1	7.189	21.426
217	1148.62	18.588	15.9 <mark>0</mark> 6	2.682	25.854
218	1788.438	22.352	15.266	7.086	14.673
219	1471.568	25.968	11.685	14.283	23.332
220	1291.876	27.09	13.932	13.158	22.363
221	1543.306	26.83	<mark>14.4</mark> 91	12.339	21.73
222	17 <mark>63.27</mark> 4	21.851	10.274	11.577	39.117
223	1551.697	29.851	6.869	22.982	38.516
224	1822.129 22.27	76 20.19	<mark>8 2.078</mark>	24.625 225 132	28.102 20.346 17.813 2.533 9.104 226 182

24.959 23.803 4.255 19.548 20.083 227 1641.954 24.459 8.489 15.97 35.728

1452.53 34.573 14.242 20.331 23.243 1538.767 28.826 11.86 16.966 22.863 7 BADH

1 COR

228

230	1624.875	14.767	4.96	9.807	25.391		_	
231	1649.085	21.383	11.062	10.321	31.335			
232	1343.55	25.752	9.163	16.589		23.096		
233	1530.744	25.273	10.161	15.112		27.423		
234	1397.42	12.349	7.2 <mark>06</mark>	5.143		8.981		
235	1327.81	26.449	14.566	11.883		38.356		
236	1476.965	24.303	10.985	13.318		30.807		
237	1351.268	19.237	13.232	6.005		42.141		
238	1410.275	13.748	11.791	1.957		36.82		
239	2020.283	24.47	9.574	14.896		26.894		
240	1752.008	29.453	6.169	23.284		35.793		
241	2027.759	14.266	11.498	2.768	-7	20.775	5	
242	1844.754	19.117	17.1 <mark>1</mark> 3	2.004		21.781		
243	1555.33	21.721	3.555	18.166	11	22.67	23	
244	1741.567	22.157	7.789	14.368		26.654	7	
245	1827.675	18.629	13.542	5.087		25.792		
246	1851.885	1 <u>8.6</u> 49	11.16	<mark>7.489</mark>		25.771		
247	154 <mark>6.3</mark> 5	28.861	4.26	24.601		23.22		
248	1733.544	27.305	7.754	19.551		20.049		
249	1600.22	26.256	8.626	17.63		40.408		
250	1530.61	22.86	5.35	17.51	-<1	13.114		-
251	1679.765	22.81	12.859	9.951		27.503	13	$\geq$
252	1554.068	34.123	16.728	17.395		29.736	150	
1	10					-	51	
	21					26		
	ZH	15	5.0.	110	NO	2 5		
			2 AL	ALC:	-			

253	1613.075	28.376 5.35	23.026	12.965		
254	2223.083	14.317 9.967	4.35	21.005		
255	1954.808	20.933 10.198	10.735	29.491		
256	1350.568	25.302 13.33	<b>11.972</b> 28.094			
257	1409.575	24.823 11.53	13.293 19.351	258 2019.583	9.899 7.732	2.167
	17.9	35				
259	1751.308	25.9 <mark>99 17.68</mark> 4	8.315 16.695			
260	1648.385	23.853 19.137	4.716 28.896	5		
261	1342.85 18.7	787 12.443 6.344 2	0.042 262 1530	0.044 12.298 9.902	2.396 22.7	
263	1396.72	24.02 14.429	9.591	15.953		
264	1327.11	29.003 10.054	18.949	17.469	1	
265	1624.175	10.816 7.926	2.89	14.843		
266	1648.385	18.667 4.65	14.017	14.322	R	
267	1342.85	21.271 12.159	9.112	21.083	-	
268	1733.344	21.707 16.028	5.679	14.322		
269	1600.02	18.179 4.65	13.529	21.661		
270	1530.41	18.199 9.267	8.932	12.24		
271	1844.554	28.411 9.498	18.913	20.042		
272	1555.13	26.855 12.63	14.225	13.364		
273	1741.367	25.806 10.83	14.976	16.295		
274	1827.475	22.41 7.032	1 <mark>5.378</mark>	16.917		
275	1553.868	22 <mark>.36</mark> 16.984	5.376	26.406	131	
276	1612.875	19.217 18.437	0.78	17.966	2	
277	2222.883	22.415 11.743	10.672	24.729	24/	
	AP.			An	/	
	~	-		20		
	~	WJSAI	NE NO			
		274	a state of the sta			

			N		CT	
			$  \rangle$		2	
278	1844	.554 28.17	9.202 1	18.968	30.53	
279	1555	.13 22.415	13.729 8	8.686	38.53	
280	1743	.354 21.174	10.006 1	1.168	29.878	
281	1453	.93 26.911	7.421 1	<mark>19.49</mark>	26.94	
282	1640	.167 23.885	12.15 1	1.735	21.496	
283	1726	.275 18.317	15.97 2	2.347	28.682	
284	1998	.403 13.791	12.719 1	1.072	24.735	
285	1175	.608 21.674	16.505 5	5.169	29.417	
286	1808	.026 18.169 12.44	3 5.726 1	5.896 287 1579	9.068 23.965 12.391 11.574	18.68 288 1976.548
	18.31	17 8.427 9.89 24.2	79 289 2	153.346 21.51	5 5.94 15.575 23.708 290 14	46.746 21.27 9.306
	11.96	54 21.7 <mark>3 2</mark> 91 1859	.09 19.51	15 6.721 12.79	4 18.529	
292	1301	.152 21.274	11.45 9	9.824 25.792	1	T
293	1557	.602 21.011	10.27 1	10.741 15.164	1777	
294	1524	.051 22.985	12.019 1	10.966	21.4	
295	1528	.606 17.417	15.805 1	1.612	37.023	
296	1502	.526 12.891	11.743 1	1.148	20.476	
297	1676	.016 20.774	11.691 9	9.083	22.616	
298	1562	.28 17.269	7.727 9	9.542	16.72	
299	1505	.027 22.065	<b>5.24</b> 1	6.825	18.568	
300	1828	.647 11.081	6.861 4	1.22	26.607	
Mean	1596.7	37 <b>19.6</b>	432667 1	10.7231233 <mark>3</mark>	8.920143333	22.8047933
	131		_		13	
	E				121	
	15	-				
	4.0	2 -		~	AB	
		- Hu	_			
		~~>	SAN	IE NO		
				and the second se		

Appendix F: Tissue proportions for K. gabonensis and E. cylindricum



	$\langle N \rangle$	US	ST.	
		1		
				1
	-12	P-2-	353	
1 E. cylindricum Heartwood	20	32	24	
2	20	40	12	
3	16	32	20	
4	8	36	32	
5	16	36	32	
	10	33.2	24	
Z	2	22	3	
EL E			13	
580			1	
Con a		6	all	
1 W			-	
Z W	SAN	ENO	-	

	<	$\langle N \rangle$	US	Т	
1	Sapwood	20	40	16	24
2	_	16	48	20	16
3		8	68	8	16
4		16	48	20	16
5		8	56	12	24
Mean		13.6	52	15.2	19.2
	Stem				

<u>Replicate</u>	<b>Species</b>	position	Vessels (%)	Fibres (%)	<u>Axial parenchyma (%)</u>	<u>Ray parenchyma (%)</u>
1	K. gabonensis	Heartwood	28	40	12	20
2			16	36	24	24
3			12	52	16	20
4			20	40	12	28
5			16	60	12	12
			18.4	45.6	15.2	20.8
Mean	MARY	A Co	SAN	E NO	BADHU	
			241			



11	1634.4	148.58	3.95	0.0307
4	715.2	178.8	4.76	0.0293 ⁱ
1	0.8	0.8	0.02	0.8876
1	231.2	231.2	6.15	0.0381 ⁱⁱ
4	187.2	46.8	1.24	0.3659
on 1	0.8	0.8	0.02	0.9023
8	300.8	37.6		
19	1935.2			
	11 4 1 4 2 5 1 8 19	11       1634.4         4       715.2         1       0.8         1       231.2         4       187.2         on 1       0.8         8       300.8         19       1935.2	11       1634.4       148.58         4       715.2       178.8         1       0.8       0.8         1       231.2       231.2         4       187.2       46.8         on 1       0.8       0.8         8       300.8       37.6         19       1935.2	11       1634.4       148.58       3.95         4       715.2       178.8       4.76         1       0.8       0.8       0.02         1       231.2       231.2       6.15         4       187.2       46.8       1.24         on 1       0.8       0.8       0.02         8       300.8       37.6       19

Table F1: ANOVA for fibre proportion in K. gabonensis and E. cylindricum

ⁱSignificant: p(0.0293)<0.05; ⁱⁱSignificant: p(0.0381)<0.05.

Table F2: LSD for	Table F2: LSD for fibre proportion in K. gabonensis and E. cylinaricum						
Wood species	Stem position	Least Significant mean*					
K. gabonensis	Heartwood	45.6ª					
	Sapwood	42.4ª					
E. cylindricum	Heartwood	52 ь					
	Sapwood	35.2c					

*Least Significant Means with same superscripts are not significantly different (p<0.05).

Source	DF	Sum of Squares	Mean Square	F Value	<b>Pr</b> > <b>F</b>
Mala	11	(22.9	57.5	1.27	0 2240
Model	11	632.8	57.5	1.57	0.3349
Replicate	4	276.8	69.2	1.65	0.2537
Species	1	20	20	0.40	0.5614
Stem position	1	0.8	0.8	0.02	0.8936
Replicate*Species	4	200	50	1.19	0.3849
Species*stem position	ı 1	135.2	135.2	3.22	0.1105
Error	8	336	42		
Corrected Total	19	968.8	10		
		a state and			

#### Table F3: ANOVA for ray parenchyma proportion in K. gabonensis and E. cylindricum

Table 14. LSD for Tay pareneryina proportion in K. gubonensis and E. Cytinarcum					
Wood species	Stem position	Least Significant mean*			
K. gabonensis	Heartwood	20.8ª			
	Sapwood	26.4 ^b			
E. cylindricum	Heartwood	19.2a			
,	Sapwood	24 _{abc}			

#### Table F4: LSD for ray parenchyma proportion in K. gabonensis and E. cylindricum

*Least Significant Means with same superscripts are not significantly different (p<0.05).

Source	DF	Sum of Squares	Mean Square	F Value	<b>Pr</b> > <b>F</b>
Model	11	368	33.5	2.04	0.1605
Replicate	4	195.2	48.8	2.98	0.0886
Species	1	3.2	3.2	0.17	0.7040
Stem position	1	80	80	4.88	0.0582
Replicate*Species	4	76.8	19.2	1.17	0.3921
Species*stem position	1	12.8	12.8	0.78	0.4028
Error	8	131.2	16.4		
<b>Corrected Total</b>	19	499.2			

Table F5: ANOVA for vessel proportion in K. gabonensis and E. cylindricum

#### Table F6: LSD for vessel proportion in K. gabonensis and E. cylindricum

Wood species	Stem position	Least Significant mean*				
K. gabonensis	Heartwood	18.4ª				
	Sapwood	12.8 ^b				
	11. Jac					
E. cylindricum	Heartwood	13.6 ^{bc}				
	Sapwood	16abc				

*Least Significant Means with same superscripts not significantly different (p<0.05).

Table F7: ANOVA for axial	parenchyma pro	portion in K. gal	bonensis and E. c	ylindricum

Source	DF	Sum of Squares	Mean Square	F Value	e Pr > F
Model	11	530.4	48.2	1.53	0.2802
Replicate	4	43.2	10.8	0.34	0.8426
Species	1	39.2	39.2	0.69	0.4543
Stem position	1	39.2	39.2	1.24	0.2977
Replicate*Species	4	228.8	57.2	1.81	0.2202
Species*stem position	1	180	180	5.70	0.0441 ⁱ
Error	8	252.8	31.6		

Corrected Total	19	783.2
-----------------	----	-------

ⁱSignificant: p(0.0441)<0.05.

Wood species	Stem position	Least Significant mean
K. gabonensis	Heartwood	15.2ª
	Sapwood	18.4ª
E. cvlindricum	Heartwood	15.2ab
2	Sapwood	24c

*Least Significant Means with same superscripts not significantly different (p<0.05).

Source	DF	Sum of Squares	Mean Squa	are F Valu	e Pr > F
Model	7	22.9	- P	3.3	7.09 0.0386
Replicates 2	-	2.1	1.0	2.26 0	.2205
Species	1	<mark>8</mark> .9	8.9	13.84	0.0653
Stem positions	1	5.6	5.6	12.13	0.0253 ⁱ
Replicates*stem position	is 2	1.3	0.6	1.38	0.3494
Species*stem positions	1	5.1	5.1	11.09	0.0291 ⁱⁱ
Error	4	1.8	0.5		
Corrected Total	11	24.8			

#### Table F9: ANOVA for fibre diameter of K. gabonensis and E. cylindricum

ⁱSignificant: p(0.0253)<0.05; ⁱⁱSignificant: p(0.0291)<0.05.

Wood species	Stem position	Least Sig <mark>nificant m</mark> ear
K. gabonensis	Heartwood	22.73ª
AP 2	Sapwood	20.05 ^b
E. cylindricum	Heartwood	19.7 ^b
	Sapwood	19.бь

*Least Significant Means with same superscripts not significantly different (p<0.05).

#### Table F11: ANOVA for fibre length of K. gabonensis and E. cylindricum

Source	DF	Sum of Squares	Mean Square	F Value	<b>Pr</b> > <b>F</b>
Model	7	307123.4	43874.7	64.55	0.0006
Replicates	2	3141.9	1570.9	2.31	0.2152
Species	1	284175.6	284175.6	42.32	0.0228 ⁱ
Stem positions	1	1097.7	1097.7	1.62	0.2727
Replicates*Stem positions	2	13428.6	6714.3	9.88	0.0283 ⁱⁱ
Species*Stem positions	1	5279.6	5279.6	7.77	0.0495 ⁱⁱⁱ
Error	4	2718.6	679.7		
<b>Corrected Total</b>	11	309842			

ⁱSignificant: p(0.0228)<0.05; ⁱⁱSignificant: p(0.0283)<0.05; ⁱⁱⁱSignificant: p(0.0495)<0.05.

Table F12: LSD for fibre length of K. gabonensis and E. cylindricum					
Wood species	Stem position	Least Significant mean*			
K. gabonensis	Heartwood	1885.4ª			
	Sapwood	1862.6ª			
E. cylindricum	Heartwood	1535.7b			
	Sapwood	1596.7c			

*Least Significant Means with same superscripts not significantly different (p<0.05).

#### Table F13: ANOVA for fibre lumen width of K. gabonensis and E. cylindricum

Source	DF	Sum of Squares	Mean Square	F Value	<b>Pr</b> > <b>F</b>
Model	7	24.8	3.5	28.89	0.0029
Replicates	2	0.8	0.4	3.14	0.1513
Species	1	14.5	14.5	19.64	0.0473 ⁱ
Stem positions	1	1.7	1.7	13.92	0.0203 ⁱⁱ
Replicates*stem position	s 2	1.5	0.7	6.01	0.0623
Species*stem positions	1	6.4	6.4	51.95	0.0020 ⁱⁱⁱ
Error	4	0.5	0.1	20	/
Corrected Total	11	25.3		Br	

ⁱSignificant: p(0.0473)<0.05; ⁱⁱSignificant: p(0.0203)<0.05; ⁱⁱⁱSignificant: p(0.0020)<0.05.

Table F14. I SD	for fibro lumon	width of K	anhonensis one	F aslindriaum
Table F14: LSD	for fibre lumen	wiath of A.	gabonensis and	1 E. cyunaricum

Wood species	Stem position	Least Significant mean*

K. gabonensis	Heartwood	13.7ª	
	Sapwood	11.5 ^b	
E. cylindricum	Heartwood	10°	
	Sapwood	10.7a	
*Least Significant Means with same superscripts not significantly different (p<0.05).			
	NNUS		

Table F15: ANOVA for fibre double wall thickness of K. gabonensis and E. cylindricum				
DF	Sum of Squares	Mean Square	F Value	$\mathbf{Pr} > \mathbf{F}$
7	4.7	0.7	1.43	0.3847
2	2.7	1.4	2.94	0.1641
1	0.7	0.7	639.01	0.0016 ⁱ
1	1.1	1.1	2.39	0.196
s 2	0.002	0.001	0.00	0.9976
1	0.07	0.07	0.15	0.7212
4	1.9	0.47		
11	6.6			
0		1	1	
	r fibr DF 2 1 1 5 2 1 4 11	7       4.7         2       2.7         1       0.7         1       1.1         5       0.002         1       0.07         4       1.9         11       6.6	7       4.7       0.7         2       2.7       1.4         1       0.7       0.7         1       1.1       1.1         3.2       0.002       0.001         1       0.07       0.7         1       1.1       1.1         5.2       0.002       0.001         1       0.67       0.07         1       0.66       0.47	7       4.7       0.7       1.43         2       2.7       1.4       2.94         1       0.7       0.7       639.01         1       1.1       1.1       2.39         3       2       0.002       0.001       0.00         1       0.07       0.47       0.15         4       1.9       0.47       0.47

ⁱSignificant: p(0.0016)<0.05.

Table F16: LSD for fibre	Table F16: LSD for fibre double wall thickness of <i>K. gabonensis</i> and <i>E. cylindricum</i>			
Wood species	Stem position	Least Significant mean*		
K. gabonensis	Heartwood	9.7ª		
	Sapwood	8.9ab		
E. cylindricum	Heartwood	9 _{ab}		
	Sapwood	8.6b		

5/3

*Least Significant Means with same superscripts not significantly different (p<0.05).

T ~~

#### Table F17: ANOVA for vessel lumen diameter of K. gabonensis and E. cylindricum

Source	DF	Sum of Squares	Mean Square	F Value	<b>Pr &gt; F</b>
Model	7	9586.9	1369.6	7.7	0.0322
Replicates	2	111.5	55.8	0.32	0.7430
Species	1	353.4	353.4	1.5	0.3514
Stem positions	1	7626.7	626.7	43.8	$0.0027^{i}$
Replicates*stem positions	2	486.6	243.3	1.4	0.3466
Species*stem positions	1	1008.7	1008.7	5.8	0.0738 ⁱⁱ

Error 4	<b>696.7</b>	174.2
---------	--------------	-------

 Corrected Total
 11
 10283.6 ⁱSignificant:

 p(0.0027)<0.05; ⁱⁱSignificant: p(0.0738)<0.05.</td>
 0.05.

Table F18: LSD for vessel lumen diameter of K. gabonensis and E. cylindricum			
Wood species	Stem position	Least Significant mean*	
K. gabonensis	Heartwood	144.8ª	
	Sapwood	176.9ь	
E. cylindricum	Heartwood	115.6°	
	Sapwood	184.4a	

IZNII IC

**T** 

*Least Significant Means with same superscripts not significantly different

### Appendix G: Mass loss and visual durability ratings for K. gabonensis and E. cylindricum

	Replicate	Species	Mass loss V (%)	/isual durability rating
F		5	Heartwood	THE
	1		K. gabonensis	6.388013509 1
	2	20%	2.604683698	T S
	3	000	5.802881903	1
	4	2 in	<b>3.090854346</b>	1
	5	allan	4.925059063	1
	6		5.286248366	1
	7	-	5.066871209	1
-	8		4.265072509	1
Z	9		5.219226578	1
S	10	-	7.27743733	1
	5 11		5.931262821	1 2
40	12		4.409820809	1 al
	13	-	3.478010878	1
	14	WJSI	5.710371174	1
	15		4.871631455	1
	16		5.863324012	1

	17	4.095987805	1
	18	4.268316678	1
	19	4.624976223	1
	20	4.029903693	1
	21	3.651247368	1
	22	7.568518704	1
	23	3.515756098	1
	24	4.991282086	1
	25	4.776783582	1
	26	5.933349296	1
	27	3.364520297	1
	28	2.130220788	1
	29	4.270084142	1
	30	6.919933512	1
	31	8.65656199	1
	32	2.360878697	1
	33	8.249402423	1
	34	5.834431239	1
	35	6.324638416	1
	36	4.396486273	1
	37	1.581571632	1
	38	3.985948185	1
-	39	3.741077465	1 7
-	40	3.30248876	1
7	41	5.521936089	1
	42	8.993838204	1
	43	4.265072509	1
	44	2.237854387	1
	45	3.24648523	1
	46	8.361791695	1
	47	2.62075817	1
	48	3.622138154	1
Mean		4.825729364	1 2
E			121
15		Sapwood	32
44	2		2
	-	9.103787189	1
	2	10.67561415	1
	3	8.058224905	1
	4	10.00613873	1
	5	4.749796444	1
	6	7.500020127	1
	7	8.126451538	1
	2	249	





Mean

#### Heartwood

1		E. cylindricum	15.44917761	2
2		7.611671485	2	
3	EZ N	15.93899719	the second	
4		5.240563733	2	
5		7.820196581	2	
6		12.29243062	2	
7		6.386292272	2	
8		7.673838953	2	
9		7.07388556	2	
10		8. <mark>63348</mark> 7385	2	
11		8.054185417	2	
12		6.223083868	2	
13		6.24050347	2	
14		8.877864029	2	
15		13.68679576	2	
16		12.28116575	2	
17		4.495567568	2	
18		6 <mark>.35910</mark> 8384	2	6
19		4.051206667	2	3
20	Server.	9.633981336	1	
21	are	16.44196861	1	
22	Tin 1	7.311359876	1	
23	alarts	15.04251044	2	
24		11.92083327	2	
25		8.326190148	2	
26		11.68993931	2	
27	1	5.987348325	2	121
28		8.04661898 <mark>3</mark>	2	21
29		7.474144704	2	
30	2	6.28864776	2	
31	Les .	12.60630927	2	
32	SAN	18.34180887	2	
33		6.319850125	2	
34		11.62319012	2	
35		8.111222945	2	

36		5.01456687	2
37		6.190848791	2
38		2.923261809	2
39		11.68906352	2
40	IZN.	14.81490243	2
41		24.41805008	2
42		27.09202132	2
43		8.877059445	2
44		9.233728207	2
45		15.75637018	2
46		6.314670431	2
47		6.309702297	2
48		11.86997716	2
Mean		10.00125352	1.91666667

Sapwood

BADHE

NO

WJSANE

CORSHELM

1	15.19192119	2	
2	10.93159146	2	
3	10.67652998	3	
4	10.85648914	3	
5	9.968425028	3	
6	4.556976356	3	
7	14.85775045	3	
8	7.765679388	3	
9	13.56167705	3	
10	10.24482124	3	
11	8.787431608	3	
12	<mark>14.78</mark> 218614	3	
13	14.8983077	3	
14	<mark>9.9905828</mark> 74	3	
15	18.89023086	3	
16	14.64995499	3	
17	15.91297879	3	
18	8.391493587	3	
19	10.33817875	3	
20	17.3012282	3	
21	10.09730933	3	
22	7.828744815	3	
23	7.482075938	3	
24	9.726033223	3	
25	14.44586917	3	2
26	29.08261223	3	
27	15.53645	3	
28	14.09132569	3	
29	10.88323808	3	
30	15.58911588	3	
31	15.82291041	3	
32	21.76209117	3	13
33	13.36395356	3	344
34	19.69340033	3	5
35	7.206112859	3	
36	15.41783083	3	
37	12.5312765	3	
38	10.24935204	3	
39	19.71807459	3	
40	9 110616508	3	
40	9.110010308	5	

Z

41	8.390675848 2
42	14.12064515 2
43	17.77930061 2
44	13.54852899 2
45	11.69134131 2
46	17.31453966 3
47	13.61718683 3
48	11.88818223 3
Mean	13.1363126 2.85416667
1	<i>C. pentandra</i> 100 4
2	100 4
3	100 4
4	100 4
5	100 4
6	100 4
7	100 4
8	100 4
9	100 4
10	100 4
	100 4
12	100 4
13	100 4
14	100 4
15	100 4
16	100 4
17	100 4
18	100 4
19	100 4
20	100 4
21	100 4
22	100 4
23	100 4
24	
25	100 4
26	100 4
27 28	100 4
20	



Appendix H: Strength of mortise-tenon and dovetail joints constructed from K. gabonensis and E. cylindricum

<b>Replicate</b>	Species	Stem position	Joint type	Joint strength (Nm)
HYP	1540.	R	33	<i>K.</i> <i>gabonensis</i> Heartw ood Mortise- tenon SS 810
2	~	R		840
3		WJSAL	IF NO	650
4		JAI	IL .	520
5				840
6				540
7				459
		25	6	













#### **Appendix I: List of Publications**

- 1. **Boadu Boakye**, K., Antwi-Boasiako, C. and Frimpong-Mensah, K. (*In press*) Physical and Mechanical Properties of *Klainedoxa gabonensis* Pierre ex Engl., a Tropical LesserUtilized Species with Engineering prospects. *Journal of Forestry Research*.
- 2. **Boadu Boakye**, **K.** and C. Antwi-Boasiako (*In press*) Anatomical characteristics of *Klainedoxa gabonensis* Pierre ex Engl. in relation to its processing and prospective enduse. *Archives of Applied Science Research*.
- 3. Antwi-Boasiako, C. and **Boadu Boakye, K.** (2016) The level of utilization of secondary timber species among furniture producers. *South-east Eur for* 7(1):16-08.
- Boadu Boakye, K. and C. Antwi-Boasiako (2016) Assessment of the bending Strength of Mortise-Tenon and Dovetail Joints in Leg-and-Rail Construction using *Klainedoxa* gabonensis Pierre ex Engl. and *Entandrophragma cylindricum* (Sprague) Sprague. Wood Materials Science & Engineering. http://dx.doi.org/10.1080/17480272.2016.1174883.
- Antwi-Boasiako, C. and Boadu Boakye, K. (2016) Relationship between BioMechanical Properties of *Klainedoxa gabonensis* Pierre ex engl. and the Bending Strength of its Dovetail and Mortise-tenon joints. *In:* 70th Forest Products Society Convention, June 27th – 29th 2016, Portland, Oregon.

