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ABSTRACT  

Eradicating malaria from Ghana has proven to be a difficult challenge  not only to the 

researchers and health organizations but also to  government .Despite great advances over 

the last decade, including the training of all health staff to control the disease, Ghana 

remains one of the countries worst affected by malaria. The goal of this thesis is to develop 

a mathematical model to help to assess the potential impact of protection and treatment 

strategies on the dynamics of  malaria in Ghana. A basic deterministic malaria model SEIR 

model was first formulated. The model consists of seven non-linear differential equations 

which describe the dynamics of malaria with 4 variables for humans and 3 variables for 

mosquitoes. Analysis of the model showed that there exists a domain where the model is 

epidemiologically and mathematically well-posed. Key to the analysis is the definition of 

the basic reproductive number R0 , which was derived by use of next generation method. 

The basic reproduction number for Ghana is found to be 

R0 0.7397 hence malaria can be eliminated from Ghana. The disease-free equilibrium 

point is asymptotically stable. This means that malaria free society can be achieved.   

In order to assess the potential impact of protection and treatment strategies on the 

transmission dynamics of malaria, two intervention strategies ,the protected and treated 

classes were added to the basic malaria model to formulate SPEITR model which consists 

of nine non-linear differential equations. The effective reproductive number was computed 

and was found to be Re 0.0060183.When the protection is not practiced and hence 

treatment is the only intervention strategy, then effective reproduction number Re becomes 
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Ret 0.7151.If protection is the only intervention strategy being practiced, the effective 

reproduction number becomes Rep 0.006019. The threshold for effective reproduction 

number and the basic reproduction number in the absence of the disease was compared. 

Re is the useful indication of the effort required to eliminate an infection. It was also noted 

that R R R Re ep et 0 which implied that increasing preventive and control measures 

has a great effect on reduction of Re. Numerical simulation of the model suggests that the 

most effective strategy for controlling or eradicating malaria is not only to reduce the 

biting rate of the female anopheles mosquito through the use of insecticide-treated bed 

nets and indoor residual spraying but to include prompt and effective diagnosis and 

treatment of infected individuals.  
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CHAPTER ONE  

INTRODUCTION   

This chapter deals with the background of the study which includes Economic burden of 

malaria and life cycle of the malaria parasite.It also states the objectives of the thesis  

,methodology  that will use and how the chapters are  organization in the thesis.  

1.0  Background of the Study  

Malaria disease has been of a great concern to human kind since the very beginning of our 

history. It is economic and social disease that burdens many nations globally with a 

mortality rate that is unmatched by any other modern disease other than tuberculosis 

(Sudhakar and subramani., 2007). In terms of lives lost and economic burden, malaria has 

had a very profound impact worldwide (Larry et al, 2005).World malaria report (2013) 

stated that one of the greatest tragedies of the 21st century is the fact that so many people 

are dying from mosquito bites.  

According to world malaria report (2013), 3.4 billion people (almost half the world’s 

population) are at risk of getting malaria, of which 1.2 billion are at high risk. In highrisk 

areas, more than one malaria case occurs per every 1000 population. Pregnant women and 

their unborn children are particularly vulnerable to malaria: it causes low birth weight and 

maternal anaemia. Infants born to mothers with malaria are likely to have low birth weight 

which has been the single greatest risk factor for death during the first three months of life. 

Another groups of people in the population that are at a high risk of getting the disease are 

travelers and migrants with no or partial immunity and are coming from areas with partial 

or no immunity.     

According to the world health organization (2013), 207 million people felt sick from the 

disease and an estimated 627 000 deaths were recorded in 2012, with most of the people 
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from the poorest parts of the world such as, Sub-Saharan Africa, parts of Latin America 

and Asia .Thirty thousand (1300) children die from malaria every day (one child die almost 

every minutes) .In 2012, malaria killed an estimated 483 000 children under five years of 

age accounting for 77% of related death cases.   

Houeto et al., (2007) agreed that malaria was the fourth leading cause of death among 

children under five years in developing countries including Africa and accounts for over 

one million deaths each year in areas with high malaria transmission, (WHO, 2007).  

Indeed, sub-Saharan Africa alone in 2012 accounts for 80% of the world’s estimated 207 

million case. In the same year, 90% of the estimated 627 000 global malaria deaths 

occurred in Africa.  

In Ghana, 11.3 million people contracted malaria in the year  2013 with the majority of 

cases being undocumented since they occur in areas where there are no health centers. Due 

to lack of transportation and the rural location, many people suffer from the disease 

without been treatment. Many of these people are too poor to afford access to hospitals 

and pharmacies or chemical stores even if they were within a walking distance.  

According to Pattanayak et al., (2003) many of the world’s poorest people live in areas of 

high rates of malaria. These People do not have access to effective health care due to 

financial constraint. It said that on the average 30,300 of such cases were seen each day in 

the county’s health facilities in 2013. Malaria is known as a major cause of child death in 

Africa, but a recent Report has revealed that the reality is much worse than what has been 

reported. (WHO, 2013). In Ghana alone, between 3.1 and 3.5 million annual cases of 

clinical malaria were reported in public health facilities, of which 900,000 cases were 

children under the age of five. UNICEF (2007) reported that children die from Malaria 

every year (25 per cent of the deaths of children under the age of five). Even if a child 
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survives, the consequences from severe malaria such as convulsions or brain dysfunction 

can hamper long-term development and schooling.  

1.1.1 Economic Burden of malaria  

Malaria has been an important public health problem in sub-Saharan Africa (SSA) and 

continues to have a severe socioeconomic impact on our populations. It imposes 

substantial costs to not only the individual but the society and the nation as a whole. The 

Nobel prize-winning economist Jeffrey Sachs said malaria is first and foremost a disease 

of poverty. It is a disease of poverty and a cause of poverty in SSA. This disease is 

frequently called disease of the poor because its prevalent rate is very high in the poorest 

continent and in the poorest countries (Worral et al., 2003)  

For developing economies, the gap in prosperity between countries with malaria and 

countries without malaria has become wider every single year. Annual economic growth 

in countries with high malaria transmission has historically been lower than in countries 

without malaria. Economists believe that malaria is responsible for a ‘growth penalty’ of 

up to 1.3% per year in some African countries. In a 2004 survey, nearly three-quarters of 

companies in the Africa region reported that malaria was negatively affecting their 

business.   

 Malaria also continues to prevent many school children from attending school due to 

illness, diminishing their capacity to realize their full potential (World malaria report 

2013). Roll Back Malaria (2011) reported that Malaria  caused economic losses of more 

than 12 billion USD annum and over 40% of public expenditure,30-50% of hospital 

admissions and over 50% of hospital visits mainly in poor countries in sub-Saharan  

Africa (O'Meara.,2010).  
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Roll Back Malaria report (2011) found that in sub-Saharan Africa, 72% of companies 

reported a negative malaria impact, with 39% perceiving these impacts to be serious. 

 International disbursements for malaria control rose from US$ 100 million in 2000 to US$ 

1.94 billion in 2012 and US$ 1.97 billion in 2013. National government funding for 

malaria programmes has also increased since 2004 but not at the same pace; the total for 

2012 was US$ 522 million.   

The currently available funding is far below the resources required to reach universal 

coverage of interventions. An estimated US$ 5.1 billion is needed every year for this 

purpose. In 2012, the global total of international and domestic funding for malaria was 

US$ 2.5 billion which is less than half of what is needed.   

  

1.1.2 Malaria parasite  

Malaria is caused by a protozoan parasite of the genus Plasmodium. Malaria parasites are 

eukaryotic single-celled microorganisms that belong to the genus Plasmodium (Tuteja,  

2007).Plasmodium spp. that cause malaria require two hosts throughout their lifecycle. 

They include man (vertebrate host) and mosquitoes (invertebrate female Anopheles spp.), 

with mosquitoes being the primary host. Anopheles gambiae is known to be the world's 

most efficient malaria vector larry etal (2005).  

It is spread in three ways. The most common one is by the bite of an infected female 

Anopheles mosquito. Human malaria could only be transmitted by Anopheles mosquitoes 

because they feed on blood meal.The parasites are transmitted   from person to person by 

a mosquito, of the genus Anopheles, each time the infected insect takes a blood meal. 

However, malaria could also be spread through a transfusion of infected blood and by 

sharing needle with an infected person. The symptoms of the disease are fever, chills, 

sweats, headache, nausea and vomiting, body aches, and general malaise.  
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Of the approximately 400 species of Anopheles throughout the world, about 60 are malaria 

vectors under natural conditions, 30 of which are of major importance (Tuteja, 2007). Only 

5 of the species of plasmodia are infectious to humans (Tuteja, 2007).   

These five species of Plasmodium parasites are Plasmodium falciparum, Plasmodium 

vivax, Plasmodium ovale, Plasmodium malariae and plasmodium knowlesi.   

Plasmodium falciparum are found worldwide. P. falciparum is known to cause the 

deadliest form of malaria. Majority of cases and almost all deaths are caused by 

Plasmodium falciparum (Snow et al., 2004). It is the agent of severe, potentially fatal 

malaria and is the principal cause of malaria deaths in young children in Africa (Snow et 

al., 2004) and generally 90% of all cases in Africa (Suh et al., 2004). The incubation period 

for this parasite is 5-12 days. They are resistant to most of the drugs used to treat or prevent 

malaria.  

Plasmodium vivax, Plasmodium ovale and Plasmodium malariae cause less severe disease 

(Suh et al., 2004). P. vivax are found worldwide but most commonly in India, Central and 

South America. The incubation period in the human body is approximately 8-13 days for 

the symptoms of the disease to become apparent. Infection by this parasite can sometimes 

lead to life-threatening rupture of spleen. They hide in liver and can return later once a 

person is infected.  

P. ovale are found mostly in Africa. This form of malaria has an incubation period of 817 

days in the infected person and can hide in the liver of partially treated people and return 

later.   
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P. malariae are found in most part of the world but are less frequent than other forms of 

the malaria parasite. The incubation period for this parasite is 2-4 weeks in the infected 

person. If the disease is untreated, it can last for many years.  

  

1.1.3 Life cycle of malaria parasite  

 
Picture Courtesy: MSN Encarta                            

Figure 1.0   Life cycle of malaria parasite  

  

Figure 1.0 above explains the development phase of the malaria parasite. The infection 

begins when the malaria parasite enters the human body through the bite of the infected 

female Anopheles mosquito from its blood meal. The sporozoites are transferred to a 

human host with the mosquito bite, injecting its saliva into the tiny blood vessels (A).The 

sporozoite travels with the blood to the liver and enters the liver cells (B). In the liver some 

of the sporozoites divide and become thousands of merozoites. The merozoites enters the 

blood after being released from the liver cell and are taken by the red blood cells (C). In 

the red blood cells some of the merozoites turn into a ring formed trophozoites , which 
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splits again to form schizonts . The schizonts burst the red blood cells (D) at a certain 

moment, releasing the merozoite which in turn infects more red blood cells.   

Each burst of red blood cells is associated with violent rise of temperature and severe body 

chill as seen during the attacks in malaria. The trophozoites that were left over during the 

division will develop into a sexual form, the male and female gametocyte (E) in the course 

of few days. The gametocyte is the form that infects mosquito and reproduces itself. When 

the uninfected mosquito has sucked blood (F) containing gametocytes, they pass into the 

salivary glands of the mosquito, where they develop into a new form, the sporozoites (G). 

The parasite matures inside the mosquito until it reaches the stage where it can again infect 

a human host when the mosquito takes her next blood meal (H), 10 to 14 or more days 

later. The incubation period (time from mosquito bite to development of the disease) is 

usually about 10 to 15 days. This period can be much longer depending on whether any 

antimalarial medication has been taken. Plasmodium ovale and Plasmodium vivax can stay 

in dormant form known as hypnozoite in liver cell, which can cause relapses of the disease 

months and even years after the original disease (relapsing malaria) (E. Schwartz,2003)  

  

1.2  Statement of Problem  

Good health is not only a basic human need but also a fundamental human right and a 

prerequisite for economic growth (Streeten, 1981).  It is both a cause and consequence of 

under-development in any nation. The 2013 World Malaria Report commissioned by the 

WHO, shows malaria claimed 627,000 lives globally in 2012. In Ghana, malaria is the 

number one cause of morbidity and mortality accounting for 40-60% of outpatient. In 

Ghana alone, between 3.1 and 3.5 million annual cases of clinical malaria were reported 

in public health facilities, of which 900,000 cases were children under the age of five.   
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Malaria is hyperendemic in all parts of the country, with the entire population of 25 million 

at risk. The Government of Ghana is committed to spending $86,217,602 between 2009 

and 2013 on malaria control, mainly on human resources and IPTp but yet malaria is 

number one killer among children. Several control programmes as such Intermittent 

Preventive Treatment in Infants (IPTI) by UNICEF, Roll Back Malaria (RBM) and 

Integrated Malaria Control Programme by AngloGold   

Ashanti have been initiated in Ghana. Despite great advances over the last decade, Ghana 

remains one of the country’s worst affected by malaria. The Yendi Municipal Director of 

Heath Service, Mrs. Denisia Agong Kara, on may 26, 2011  lamented that even though 

effective measures were being taken, including the training of all health staff to control 

malaria, the disease still continued to affect some people. Since all this strategies alone 

have not been able to eradicate malaria to our satisfaction, there is therefore the need to 

include a mathematical modelling to assist decision makers to formulate the best ideas to 

prevent, control and eradicate  the disease upright.  

  

  

  

  

  

  

1.3  Objectives  

The objectives of this thesis are the following;  

i. To formulate and analyze the basic malaria model (SEIRS)  ii. To formulate and 

analyze the basic malaria model with interventions (SPEITR) iii. Investigate the 
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transmission dynamics of malaria and assess the effects of control measures in terms of 

the basic reproduction number.  

iv. To simulate the impact of some of the intervention strategies of the models with 

numerical values.   

  

1.4  Methodology  

The data use for the analysis is a secondary data obtained from literature. Computations 

and Analysis were performed using mapple and matix laboratory (matlab).The basic  

SEIRS model was used to create the malaria model with interventions.  

  

1.5  Justification  

Good health is not only a basic human need but also a fundamental human right and a 

prerequisite for economic growth (Streeten, 1981).  It is both a cause and consequence of 

under-development in any nation. This mathematical model in the thesis will help decision 

makers and stakeholders to   understand the transmission and spread of malaria in order to 

make precise policy interventions.   

 It will also help to measure the performance of the interventions the nation has made so 

far in controlling the malaria disease. Finally, it will help researchers to further develop 

suitable models to help Ghana Health service make better strategies for controlling the 

disease.   

  

1.6  Organization of the Thesis  

Chapter One is the introduction which highlights on the background of the study, statement 

of the problem, objectives of the study, justification and the organization of the study. 

Chapter Two deals with the review of literature. Literature on malaria and some malaria 

intervention programme were reviewed. Highlights on the works of some of its 
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contributors that lead to the study of this thesis topic are also considered. Literature on SIR 

and SEIR models were also discussed in this chapter. In Chapter Three, the methodology 

used to achieve the objectives under study would be clearly stated. The basic malaria 

model without any intervention strategies and the model modified with intervention 

strategies were considered. The basic   reproductive numbers were also considered in this 

chapter. Numerical simulations of the basic malaria model in the absence of any 

intervention and the malaria model with intervention strategies were discussed in Chapter 

Four. Summary of findings, recommendation and conclusion would also appear in Chapter 

Five.  

  

  

  

  

  

  

  

  

  

  

    
CHAPTER TWO  

2.0  LITERATURE REVIEW  

This chapter deals with the review of literature. Literature on malaria, malaria models such 

as SIR and SEIR models and some malaria intervention programme are reviewed. 



 

11  

  

Highlights on the works of some of its contributors that lead to the study of this thesis 

topic are also considered.   

  

2.1  Related Work on Malaria  

Vries (2000) used LEMRA (Local Eco-Epidemiological Malaria Risk Assessment) model 

to examine the disease (malaria) dynamics in the population in the context of spatial setting 

where the local condition determines the risk for the population to be exposed to malaria. 

He found that disease risk is mainly influenced by social-economic and social cultural 

factors like human migration and circulation patterns. The researcher selected Kenya as a 

case study to assess malaria risk, and found that humans traveling from the valley to the 

highlands and vice versa might significantly influence the malaria dynamics in the area. 

On the other hand people who travel can spread malaria in two ways. In the first case the 

traveler harbours the malaria parasite and transmits the disease through its movements to 

areas of low or sporadic transmission. In the second case, the travellers initiate from these 

areas of low and sporadic transmission and expose themselves to the disease through their 

movements to areas of high transmission.    

Also Yang (2001), developed a mathematical model for malaria that incorporates global 

warming and local socioeconomic conditions. The main objective was to apply sensitivity 

analysis to a mathematical model describing malaria transmission relating global warming 

and local socioeconomic conditions which represent the level of malaria infection in a 

community.   

Their work was mainly based on the infection and none of the interventions were tackled.  

Lee et al (2001) evaluated the factors that determine the transmission level of vivax 

malaria using vectorial capacity, by conducting entomological surveys   from June to 

August, 2000. From 6 nights of human-bait collection in Paju, the human biting rate (ma) 
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was counted as 87.5 bites/man/night. The parity of Anopheles sinensis from human baiting 

collections fluctuated from 41% to 71% (average 48.8%) of which the rate gradually 

increased as time passed on: 35.2% in Jun.; 55.0% in July; 66.2% in Aug. From this 

proportion of parous, they could estimate the probability of daily survival rate of An. 

sinensis to be 0.79 assumed with 3 days gonotrophic cycle and the expectancy of infective 

life through 11 days could be defined as 0.073. Blood meal analysis was performed using 

ELISA to determine the blood meal source. Only 0.8% of blood meals were from human 

hosts. They could conclude that An. sinensis is highly zoophilic (cow 61.8%). Malaria is 

highly unstable (stability index < 0.5) in this area. From these data, vectorial capacity (VC) 

was determined to be 0.081. In spite of a high human biting rate (ma), malaria transmission 

potential is very low due to a low human blood index. They concluded that malaria 

transmission by An. sinensis is causes by high population density, not by high transmission 

potential. They recommended that in order to eradicate malaria in Korea   more effort is 

needed to decrease vector population and vector-human contact.  

Li et al (2002), formulated a dynamic model for the transmission of malaria in both host 

human and vector mosquito populations. They included incubation periods for both 

infected human hosts and mosquitoes. The researchers further divided the infected human 

population into subgroups based on their infection history. Threshold conditions which 

determine whether the disease spreads in the human and vector populations or dies out 

were obtained. An explicit formula for the reproductive number is derived. The 

reproductive number is composed of key parameters in the disease transmission and those 

parameters are functional of environmental variables.   

Impact of environmental changes on the disease transmission was then discussed through 

the sensitivity of the reproductive number with respect to the environmental variable.  
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Gomez-Elipe et al, (2003) studied a mathematical model involving malaria incidence 

based on monthly case reports and environmental factors. They predicted malaria 

incidence in an area of unstable transmission by studying the association between 

environmental variables such as rainfall, temperature and vegetation density, and disease 

dynamics. Malaria control measures were not mentioned.   

Koella and Antia (2003)   presented an epidemiological framework to investigate the 

spread of anti-malarial resistance. In examining the processes and parameters that are 

critical in determining the spread of resistance, several mathematical models, based on the 

Macdonald-Ross model of malaria transmission was used. They concluded with their 

simplest model that, resistance does not spread if the fraction of infected individuals 

treated is less than a threshold value; if drug treatment exceeds this threshold, resistance 

will eventually become fixed in the population. They determined threshold value only by 

the rates of infection and the infectious periods of resistant and sensitive parasites in 

untreated and treated hosts, whereas the intensity of transmission has no influence on the 

threshold value. In more complex models, where hosts can be infected by multiple parasite 

strains or where treatment varies spatially, resistance is generally not fixed, but rather some 

level of sensitivity is often maintained in the population   

Teklehaimanot et al., (2004) found that malaria was associated with rainfall and minimum 

temperature (with the strength of the association varying with altitude) in Ethiopia. Chitnis 

(2005) derived and analyzed a mathematical model to better understand the transmission 

and spread of malaria disease. Their research was to use this model (which was obtained 

using ordinary differential equations) to compare intervention strategies for malaria 

control for two representative areas of high and low transmission. They analyzed the 

existence and stability of disease-free and endemic (malaria persisting in the population) 

equilibria. Global bifurcation theory was used to show   the bifurcation of endemic 
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equilibria at R  = 1. They then compile two reasonable sets of values for the parameters in 

the model: for areas of high and low transmission. They computed sensitivity indices of R

 and the endemic equilibrium to the parameters around the baseline values. R  is most 

sensitive to the mosquito biting rate in both high and low transmission areas. The fraction 

of infectious humans at the endemic equilibrium is most sensitive to the mosquito biting 

rate in low transmission areas, and to the human recovery rate in high transmission areas. 

This sensitivity analysis allows us to compare the effectiveness of different control 

strategies. According to their model, the most effective methods for malaria control are 

the use of insecticide-treated bed nets and the prompt diagnosis and treatment of infected 

individuals.   

In view of the ongoing discussion on phasing out DDT in India, Gunasekaran,(2005) et al 

investigated the impact of dichlorodiphenyl trichloroethane (DDT) indoor residual 

spraying on two districts of Orissa State which are endemic for Plasmodium falciparum 

transmitted by Anopheles fluviatilis and A. culicifacies, This Based on their high annual 

parasite incidence and logistical considerations, 26 villages in Malkangiri and 28 in 

Koraput district were selected for DDT spraying. For comparison, six and four unsprayed 

villages were chosen from the same districts. In each district, the prevalence of malaria 

infection and incidence of malaria fever, indoor resting density and parous rate of the 

vectors, and their susceptibility to DDT were monitored in six and three villages selected 

randomly from the sprayed and unsprayed groups respectively. Anopheles fluviatilis was 

susceptible to DDT while A. culicifacies was resistant. DDT residual spraying with 1 g/m2, 

was carried out in October–November 2001. Spraying 74– 86% of human dwellings and 

100% of cattle sheds brought down the indoor resting density of A. fluviatilis by 93–95%. 

This was associated with a significant reduction of incidence of malaria fever as well as 

prevalence of malaria infection from November to February in both districts. The spraying 
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also seemed to impact on vector longevity, and a residual effect of DDT on the sprayed 

walls was observed up to 10–12 weeks despite replastering. They concluded that DDT 

spraying can still be an effective tool for controlling fluviatilis-transmitted malaria. They 

further argued that, although this species is exophilic, its nocturnal resting behaviour 

facilitates its contact with the sprayed surfaces. DDT is still useful for residual spraying in 

India, particularly in areas where the vectors are endophilic and not resistant.  

In addition, Nakul et al., 2006, presented an ordinary differential equation mathematical 

model for the spread of malaria in human and mosquito populations. They assumed that 

both species follow logistic population model, with immigration and disease-induced 

death of humans. The sophistication of the epidemiological modelling efforts has grown 

steadily. A container-inhabiting mosquito simulation model was developed by Focks et 

al., (1993).  

Worall et al., (2007) used rainfall and maximum temperature at a lag of four months to 

successfully fit a biological transmission model to malaria case data in a district in  

Zimbabwe.    

Ruan et al (2008) argued that the feedback dynamics from mosquito to human and back 

to mosquito involve considerable time delays due to the incubation periods of the parasites. 

In this paper,taking explicit account of the incubation periods of parasites within the 

human and the mosquito, they first proposed a delayed Ross–Macdonald model and then 

calculated the basic  reproduction number R0 and carry out some sensitivity analysis of R0 

on the incubation periods. It was shown that the basic reproduction number is a decreasing 

function of both time delays. Thus, prolonging the incubation periods in either humans or 

mosquitos (via medicine or control measures) could reduce the prevalence of infection.   
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Li (2008) formulated and studied continuous-time models, based on systems of ordinary 

differential equations, for interacting wild and transgenic mosquito populations. He 

assume that the mosquito mating rate is either constant, proportional to total mosquito 

population size, or has a Holling-II-type functional form. The focus is on the model with 

the Holling-II-type functional mating rate that incorporates Allee effects, in order to 

account for mating difficulty when the size of the total mosquito populations is small. He 

investigated the existence and stability of both boundary and positive equilibria. He 

concluded that the Holling-II-type model is the more realistic and, by means of numerical 

simulations, it exhibits richer dynamics.   

Brigitte(2008) developed a matrix model integrating climate fluctuations in order to 

describe the dynamics of mosquito populations. The population was structured in five 

stages: two egg stages (immature and mature), one larval stage and two female flying 

stages (nulliparous and parous). The water availability in breeding sites were considered 

as the main environmental factor affecting the mosquito life-cycle. Thus, the model 

represents the evolution of the mosquito abundance in each stage over time, in connection 

with water availability.  

The model was used to simulate the abundance trends over 3 years of two mosquito 

species, Aedes africanus (Theobald) and Aedes furcifer (Edwards), vectors of the yellow 

fever virus in Ivory Coast. As both these species breed in tree holes, the water dynamics 

in the tree hole was reproduced from daily rainfall data. The results we obtained showed 

a good match between the simulated populations and the field data over the time period 

considered.   

In addition, another project was done by Li (2008) who formulated a mathematical model 

for malaria transmission that includes incubation periods for both infected human hosts 



 

17  

  

and mosquitoes. It was demonstrated that models having the same reproductive number 

but different number of progression stages can exhibit different transient transmission 

dynamics. He concluded that humans acquire partial immunity to malaria after infection, 

although the mechanisms of immunity are not fully understood. The acquired immunity 

appears to depend on both the duration and the intensity of past exposure to infection.   

Robert and  Hove-Musekwa (2008) said indoor residual spraying (spraying insecticide 

inside houses to kill mosquitoes) is an important method for controlling malaria vectors in 

sub-Saharan Africa. They proposed a mathematical model for both regular and nonfixed 

spraying, using impulsive differential equations. First, they determined the stability 

properties of the nonimpulsive system. Next, they derived minimal effective spraying 

intervals and the degree of spraying effectiveness required to control mosquitoes when 

spraying occurs at regular intervals. If spraying is not fixed, then they determined the  

“next best” spraying times. They also considered the effects of climate change on the 

prevalence of mosquitoes. They concluded that both regular and nonfixed spraying will 

result in a significant reduction in the overall number of mosquitoes, as well as the number 

of malaria cases in humans. They recommend that the use of indoor spraying be re-

examined for widespread application in malaria-endemic areas.   

Craig and colleagues linked inter-annual differences in malaria to rainfall and temperature 

in South Africa. In Malawi, the main malaria vector Anopheles culicifacies breeds 

primarily in river bed pools (WHO, 2009) which occur during dry periods, but also in 

other breeding sites such as seepage areas next to irrigation tanks, hoof prints, and 

abandoned pits   

Adams and Kapan (2009) investigates the impact of human movement and mosquito 

patchiness’ on the dynamics and persistence of vector-borne diseases at the city scale. 
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They examined how migrants, tourists and commercial travelers can affect the occurrence 

and persistence of vector-borne diseases. A series of metapopulation models was 

developed and analyzed. They have shown that in those models, the human population 

was assumed to live in a home patch free of mosquitoes but moves to and from patches 

with immobile (static) mosquito subpopulations. They pinpointed out that people play a 

key role in the spatial spread of dengue in urban areas, carrying the infection between 

patchily distributed mosquito communities. They concluded that even low transmission 

areas are prone to dengue epidemics if local residents visit high risk area.   

Chiyaka(2009)  presented a mathematical model for malaria treatment and spread of drug 

resistance in an endemic population. The model considers treated humans that remain 

infectious for some time and partially immune humans who are also infectious to 

mosquitoes although their infectiousness is always less than their non immune 

counterparts. The model was formulated by considering delays in the latent periods in both 

mosquito and human populations and in the period within which partial immunity is lost. 

Qualitative analysis of the model including positivity and boundedness of solutions was 

performed. Analysis of the reproductive numbers shows that if the treated humans become 

immediately uninfectious to mosquitoes then treatment will always reduce the number of 

sensitive infections. If however treated humans are infectious then for treatment to 

effectively reduce the number of sensitive infections, the ratio of the infectious period of 

the treated humans to the infectious period of the untreated humans multiplied by the ratio 

of the transmission rate from a treated human to the transmission rate of an untreated 

human should be less than one. They concluded that the spread of drug resistance with 

treatment as a control strategy depends on the ratio of the infectious periods of treated and 

untreated humans and on the transmission rates from infectious humans with resistant and 

http://www.sciencedirect.com/science/article/pii/S004058090800110X
http://www.sciencedirect.com/science/article/pii/S004058090800110X
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sensitive infections. Numerical analysis is performed to assess the effects of treatment on 

the spread of resistance and infection.   

The study provides insight into the possible intervention strategies to be employed in 

malaria endemic populations with resistant parasites by identifying important parameters.  

Li (2009) formulated and studied discrete-time stage-structured models, based on systems 

of differential equations, for wild and transgenic mosquito populations. He divided the 

mosquito population into two classes: the larvae class which consists of the first three 

aquatic stages in a mosquito's lifetime, and the adult class. Due to the intraspecific 

competition among larvae, they assumed that the density dependence is based on larvae 

not on adults. He investigated the existence and stability of fixed points and positive or 

synchronous 2-cycles of the model systems. He found out that the models, by means of 

numerical simulations, exhibit rich dynamics.  

Malaria creates serious health and economic problems which call for integrated 

management strategies to disrupt interactions among mosquitoes, the parasite and humans. 

In order to reduce the intensity of malaria transmission, malaria vector control may be 

implemented to protect individuals against infective mosquito bites (Lou and Zhao, 2011). 

As a sustainable larval control method, the use of larvivorous fish was promoted in some 

circumstances. To evaluate the potential impacts of this biological control measure on 

malaria transmission, the researchers proposed and investigated a mathematical model 

describing the linked dynamics between the host–vector interaction and the predator–prey 

interaction. The model, which consists of five ordinary differential equations, was 

rigorously analyzed via theories and methods of dynamical systems. They derived four 

biologically plausible and insightful quantities (reproduction numbers) that completely 

determined the community composition. Their results suggested that the introduction of 



 

20  

  

larvivorous fish can, in principle, have important consequences for malaria dynamics, but 

also indicatde that this would require strong predators on larval mosquitoes. Integrated 

strategies of malaria control are analysed to demonstrate the biological application of their 

developed theory.  

Calistus (2012) developed and analyzed a deterministic ordinary differential equation 

model for the dynamics of malaria transmission that explicitly integrates the demography 

and life style of the malaria vector and its interaction with the human population. The 

model is different from standard malaria transmission models in that the vectors involved 

in disease transmission are those that are questing for human blood. The model captures 

oscillations that are known to exist in the dynamics of malaria transmission without 

recourse to external seasonal forcing. Additionally, their model exhibits the phenomenon 

of backward bifurcation. Two threshold parameters that can be used for purposes of 

control were identified and studied, and possible reasons why it has been difficult to 

eradicate malaria were advanced.  

chitnis   et al (2012)  described and analyzed a periodically-forced difference equation 

model for malaria in mosquitoes that captures the effects of seasonality and allows the 

mosquitoes to feed on a heterogeneous population of hosts. They numerically show the 

existence of a unique globally asymptotically stable periodic orbit and calculate periodic 

orbits of field-measurable quantities that measure malaria transmission. They integrated 

this model with an individual-based stochastic simulation model for malaria in humans to 

compare the effects of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) 

in reducing malaria transmission, prevalence, and incidence. They found that ITNs are 

more effective than IRS in reducing transmission and prevalence though IRS would 

achieve its maximal effects within 2 years while ITNs would need two mass distribution 

campaigns over several years to do so. Furthermore, the combination of both interventions 
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is more effective than either intervention alone. However, although these interventions 

reduce transmission and prevalence, they can lead to increased clinical malaria; and all 

three malaria indicators return to preintervention levels within 3 years after the 

interventions were withdrawn.  

Briet et al., (2008) explained that the extreme south west of Sri Lanka has always been 

virtually free of malaria. It is attributed to the wet climate in which rivers flow year round 

without pooling. This brings to our attention that some areas will affect our assumptions 

of the model because the continuous flow of rivers reduces the availability of mosquitoes 

hence reducing the rate of mosquito-human contacts. Interventions to prevent or reduce 

the transmission of malaria are currently being used, with a degree of success, in some 

parts of the world. Some of the methods include: the situation of irrigated lands far from 

residential areas and cities, house spraying with residual insecticides and most recently the 

use of mosquito treated bed nets. The methods operate by reducing the contact rates (and 

hence exposure to infection) between the mosquitoes and humans. Other measures that 

employ the use of antimalarial drugs as a control measure may not be very effective when 

compared with control measures that directly affect the dynamics of transmission of the 

parasite (that is based on the human mosquito interaction).   

This is because in endemic areas, drug coverage can only be effective if permanent 

prophylaxis is employed across an entire endemic human population. In most developed 

countries, where malaria has been eradicated but the mosquito vector is still present, 

changes in world  climate through global warming indicate that these malaria free zones 

risk being re-colonised by malaria (Martens et al, 1999). Given these challenges be it in 

endemic areas or otherwise, predictive mathematical modelling and computer simulations 

remain our greatest hope (Carter, 2002; Ritchie and Montague, 1995). Ngwa (2004), 
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formulated a variable humans and mosquitoes mathematical model consisting of 

susceptible-exposed-infectious-recovered-susceptible (SEIRS) pattern for humans and 

susceptible-exposed-infectious (SEI) pattern for mosquitoes. The primary objective was 

to study endemic malaria and the consequent disease related deaths in endemic regions. 

The importance of including demographic effects with net population growth was seen to 

enable the model to predict the number of fatalities that may arise as a result of malaria. 

This type of prediction is not evident in the constant population model and hence has been 

overlooked in previous models for malaria. However, no control measure was mentioned 

to contain the epidemic in any region. Malaria affects the health and wealth of nations and 

individuals alike. In Africa today, malaria is understood to be both a disease of poverty 

and a cause of poverty (Greenwood and Mutabingwa, 2002; Sachs and Malaney, 2002). 

Malaria has significant measurable direct and indirect costs, and has been shown to be a 

major constraint to economic development (Sacks and Malaney, 2002). This means the 

gap in prosperity between countries with malaria and countries without malaria has 

become wider every single year. Gallup and Sachs (2003) showed that where malaria has 

been eliminated, economic growth has increased substantially. Hence we need to find cost 

effectiveness of the intervention strategies.  

The Global Malaria Control Strategy is a concerted effort meant to bring about changes in 

the way malaria problem is addressed. As a result, this strategy stresses the selective use 

of preventive measures wherever they can lead to sustainable results (WHO, 1993). The 

measures are aimed at halting the deteriorating effects of the malaria situation, minimizing 

the wasteful use of resources and contributing appropriately to the development of health 

services, intersectoral cooperation and community participation. The ultimate goal of 

malaria control will be to prevent mortality and reduce morbidity and social and economic 

loss through the progressive improvement and strengthening of local and national 
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capacities (WHO, 1993; FMoH,2000). Several interventions have been recommended to 

curb the rising burden of the disease in endemic regions. These interventions form the 

pillar of the global campaign for effective malaria intervention, particularly in sub-Saharan 

Africa. In April 25, 2000, African Heads of State and Government at the Abuja, Nigeria 

summit on Roll Back Malaria expressed their political will to vigorously pursue the 

interventions.  

The target set at the Summit was that by 2005 at least 60% of those at risk of malaria 

particularly pregnant women and children under five years of age will benefit from the 

most suitable combination of personal and community protective measures such as 

insecticide-treated mosquito nets and other interventions which are accessible and 

affordable to prevent infection and suffering (FMoH, 2000).  

Oduro et al (2012) investigated the transmission dynamics of malaria in Ghana taking into 

account human and mosquito populations. Stability analysis of the model was performed 

and the basic reproduction number for Ghana was found to be R0 =  

0.8939.The disease-free and endemic equilibria were locally asymptotically stable. 

Numerical simulations indicate that reducing current biting rate of female Anopheles 

mosquitoes by 1/16 could assist Ghana to achieve malaria free status by the year 2037.If, 

in addition, the number of days it takes to recover from malaria infection were reduced to 

three 3 days malaria free status could be achieved by the year 2029.  

Chaves et al, (2008) suggested that the intervention using insecticide-treated bed nets 

represents an excellent example of implementing an infectious disease control programme. 

The results emphasize the need to implement infectious disease control programmes 

focusing on the most vulnerable populations which is the basis of this study. In addition, 

Morel et al, (2005) used a cost-utility analysis to examine the costs and the effects of 
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scaling-up seven interventions strategies against malaria and their promising 

combinations. They used efficacy data which came from the literature and researchers 

calculations supported by expert opinion. The results showed that high coverage with 

artemisinin based combination treatments was found to be the most cost effective strategy 

for control of malaria in most countries in sub-Saharan Africa. Since the researchers 

pointed out that, on the cost-effectiveness grounds, in most areas in subSaharan Africa, 

greater coverage with highly effective combination treatment should be the cornerstone of 

malaria control, this study will also determine the cost-effectiveness of the selected 

malaria control interventions using the estimated primary data obtained in Malawi.  

Compartmental SEIR (susceptible-exposed-infected-recovered) differential equations 

models including asymptomatic immune humans were studied by (Ngwa et al., 2004). 

SEIR differential equations models with different levels of acquired immunity and the loss 

of immunity among human host population were formulated in Yang (2000) and the 

effects of social and economic conditions and temperature on the transmission were 

investigated by using numerical simulations in some of these studies. However, it seems 

that gradual partial immunity is induced by infections and hence multiple interventions 

have not been considered. Similarly, the prospects for the success of malaria control 

depend on the reproductive number for malaria, R0 .Smith et al., (2007) explained that the 

large number of R 0 estimates strongly supports the long-held notion that malaria control 

presents variable challenges across its transmission spectrum. Therefore strategic planning 

malaria control should consider R0 , the special scale of transmission, human population 

density and heterogeneous biting. Most commonly used practices of combating vector-

borne diseases focus on the reduction of vectors and raising the public′s awareness about 

prevention of host-vector contacts. A number of field and laboratory research have been 
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conducted about vector control to find the most effective approaches to reduce vector 

population. This includes practicing and monitoring the efficacy of larvaciding, 

adulticiding, spraying pesticide (Peterson, 2005).  

  

  

  

2.2  Overview of Mathematical Model of Malaria  

Models have played great roles in the development of the epidemiology of a disease. A 

mathematical model is a mathematical description of a real world system or event. 

Mathematical models for transmission dynamics of malaria are useful in providing a better 

knowledge of the disease, to plan for the future and consider appropriate control measures. 

The study on malaria using mathematical modeling originated from the works of Ross 

.Nobel Prize winner Sir Ronald   Ross (1911) was the first to attempt to provide a 

quantitative understanding of the mathematical model of malaria. His model is made up 

of few differential equations which describes the changes in densities of susceptible and 

infected people, and susceptible and infected mosquitoes. Base on his modeling Ross 

(1911, cited in Ruan et al., 2008) introduced the concept of a threshold density and 

concluded that in order to counteract malaria anywhere we need not banish Anopheles 

there entirely but only to reduce their numbers below a certain figure. Lotka extended the 

analysis of Ross.  

Macdonald (1957) extended Ross’ basic model, analyzed several factors contributing to 

malaria transmission, and concluded that “the least influence is the size of the mosquito 

population, upon which the traditional attack has always been made” (Macdonald, 1956). 

The results from Macdonald's model were what led to the WHO campaign to eradicate 

malaria worldwide between 1955 and 1978.  
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Ross-Macdonald model is defined as   

dx abM  

y 1 x rx                                 2.1a dt N 

 

dy 

 ax 1 y y                                               2.1b  

dt 

  

where x is the fraction of infectious humans; 
y
 is the fraction of infectious female 

mosquitoes; a is the number of bites on humans by a single female mosquito per unit 

time, usually day; b is the probability of transmission of infection from an infected 

mosquito to a susceptible human per bite; M is the size of the total female mosquito 

population; N is the size of the total human population; r is the rate of recovery for 

infectious humans such that 1/r is the duration of the disease in humans(the average 

duration of the infectious period) ;and  is the death rate of the female mosquito 

population such that 1/μ is the life expectancy of mosquitos (the average lifespan of an 

adult mosquito)  

Aron and May (1982) in a survey, describe the properties of this model, including the 

derivation of the reproductive number, R 0, as  

M a2b 

 R0                                                                              

 2.2  

N r 

The reproductive number, R0, is defined as the number of secondary infections that one 

infectious person would produce in a fully susceptible population through the entire 
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duration of the infectious period. The idea is derived from the idea of a reproductive 

number in population dynamics which is defined as the expected number of R 0 spring that 

one organism will produce over its lifespan. Heesterbeek in (2002) conducts a review on 

the history of R0 .For simple homogeneous models, the reproductive number can be 

defined as the product of the number of contacts that one individual has per unit time, the 

probability of transmission per contact and the duration of the infectious period.  

For Ross model 2.1, R 0 is defined as the product of the number of mosquitoes that one 

infectious human infects and the number of humans that one infectious mosquito infects, 

through the duration of their infectious periods. The number of contacts with mosquitoes 

that one human has per unit time is (aM/N).  

Chitnis (2005) said for simple homogeneous models, the reproductive number can be 

defined as the product of the number of contacts that one individual has per unit time, the 

probability of transmission per contact and the duration of the infectious period.   

According to the Ross-Macdonald model as stated in equation 2.1, the reproductive 

number, R0 is defined as the product of the number of mosquitoes that one infectious 

human infects and the number of humans that one infectious mosquito infects, through  

aM  

the duration of their infectious periods.   is the number of contacts with  

N  

mosquitoes that one human has per unit time; the probability of transmission from an  

infectious human to a susceptible mosquito is assumed to be 1; and 
1
 is the average r 
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duration of the infectious period of the human. This means that (M/N) (a/r) is the number 

of mosquitoes that one human infects over the entire infectious period.  

In the same way, a is the number of contacts with humans that one mosquito has per unit 

time; b is the probability of transmission from an infectious mosquito to a  

1 

susceptible human; and   is the average duration of the infectious period of the  

 

ab 

mosquito (female mosquitoes are infectious till death). Thus,   is the number of  

 

humans that one mosquito infects through its infectious lifetime. The product of the two,  

MN a (M/N)(a/r)(   )= 

ab2b/ r ,  forms the reproductive number: the number of  

 

humans that one infectious human will infect, through a generation of infectious 

mosquitoes. Various characteristics of malaria, such as an incubation period in the 

mosquito, a periodically fluctuating density of mosquitoes, super infection and a period of 

immunity in humans were added to the model (Aron and May, 1928). In addition to the 

various characteristics of malaria, they also include a continuum model for immunity 

where the dynamical variables are the population of asexual blood stages of Plasmodium 

in humans, the population of gametocytes (sexual stages of Plasmodium in humans), and 

the level of human immunity. The variables in this system of partial differential equations 

depend on both time and age.   

The mosquitoes are modeled through V, the vectorial capacity, which is proportional to 

the mosquito density. There is a significant deviation of this model from the 
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RossMacdonald model (2.1) since it does not keep track of the number of infected humans 

and mosquitoes. Instead, this continuum model measures the number of parasites and level 

of immunity in the average human. This is useful for malaria because there can be a large 

difference in the parasitemia load in different humans, that the Ross-Macdonald model 

ignores.   

 Anderson & May (1991) revisit many of the ideas discussed by Aron and May and also 

compile numerous data sets for parameter values, including the latent period in mosquitoes 

and humans, the rate of recovery for humans, the expected adult lifespan of mosquitoes 

and malaria prevalence data across age distributions for humans. They also study the effect 

of adding age structure to the basic Ross-Macdonald model (2.1) and   look at different 

control strategies, discussing the effects of a vaccine and the reduction of transmission 

rates on the malaria age-prevalence profile of the human population.  

Nedelman (1985) surveys various data sets to statistically approximate parameters such as 

inoculation rates, rates of recovery and loss of immunity in humans, human-biting rates of 

mosquitoes and infectivity and susceptibility of humans and mosquitoes. Koella (1991) 

also begins with the Ross-Macdonald model (2.1) with an additional latent stage for the 

mosquitoes. He then studies the effect of variability of the parameters and adds an 

infection-rate dependent period of immunity. Using this model with immunity, he studies 

the effects of vaccines, comparing those that act on asexual blood stages and those that 

block transmission, to show that the asexual blood stage vaccines are more effective. 

Dietz, Molineaux and Thomas (1974) went further in the mathematical modelling by 

proposing inclusion of acquired immunity in the model.  
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Dietz et al added two classes of humans in their mathematical model, namely those with 

low recovery rate (more infections, greater susceptibility) and high recovery rate (less 

infections, less susceptibility).  

The model by Dietz et al. also included superinfection, a phenomenon usually associated 

with macroparasites. Superinfection is a significant increase of the parasite load, when an 

infected person is re infected from the outside (Aron and May 2003).This is usually 

modeled by making the recovery rate (r in the above equation (2.1)) a (usually 

monotonically nonincreasing) function of the inoculation rate. Various models, with 

superinfection, for the recovery rate, r, include:  

Ross (1911): r  (2.3a)   

Dietz (1974): exp 1     (2.3b)  

Macdonald [49]:  r      when    and   r 0 when     (2.3c)    

Where  is the inoculation rate    abM
N y and  is the reinfection-free rate of recovery,  

i.e. 1 is the average duration of the infectious period in the absence of further infection.   

Another important feature of malaria is the transient nature of acquired immunity. Aron 

(1982) reviews the compartmental and continuous models for temporary immunity in 

humans. In compartmental models, an additional recovered class is added. In the usual 

Susceptible-Infectious-Recovered-Susceptible (SIRS) or Susceptible-ExposedInfectious-

Recovered-Susceptible (SEIRS) model, the rate of loss of immunity, , is a constant 

parameter. However, sustained immunity to malaria requires continuous reinfection; thus 

in the absence of reinfection, immunity is lost quickly, while in the presence of a high 

infection rate, immunity is long-lived.  
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This non constant period of immunity can be modeled by making the rate of loss of 

immunity, , a function of the inoculation rate as in equation below.  

 ( ) 
e

                                             2.4  

1 e 

Where ¸  is again the inoculation rate and  is the average duration of the immune period 

in the absence of infection. Some of the more recent papers on the mathematical modeling 

of malaria have included environmental effects (Li et al, 2002). Yang (2000) describes a 

compartmental model where humans follow an SEIRS-type (with more than one immune 

class for humans) pattern and mosquitoes follow a Susceptible-ExposedInfectious (SEI) 

pattern. Additionally, some of the parameters related to mosquitoes are now a function of 

temperature. These include the time taken for mosquito eggs to develop into adults and 

the time taken for Plasmodium gametocytes ingested by the mosquito to develop into 

sporozoites and migrate to the salivary glands (the incubation time in the mosquito). Yang 

defines a reproductive number, R0 for this model and shows, through linear stability 

analysis, that the disease-free equilibrium is stable for R0 < 1. He also derives an 

expression for an endemic equilibrium that is biologically relevant only when R0 > 1. He 

uses numerical simulations to support his proposition that for R0 > 1, the disease-free 

equilibrium is unstable and the endemic equilibrium is  

stable.  

Yang and Ferreira (2000) use the model by Yang (2000) to study the effects of global 

warming. Using the estimated increase in temperature of 1.0 0 C -- 3.50C by the year  
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2100, they show that it is possible in some areas of the world for R0 to increase above 1; 

for areas to change from a stable disease-free endemic state to one with low levels of 

endemicity and for other areas to change from low levels of endemicity to high levels. 

They do, however, conclude by saying that economic   and social effects are still more 

important than temperature effects and a good health care system with good malaria 

control techniques can overcome the negative effects of an increase in temperature.  

Li et al. (2002) derive a model where humans move through multiple SusceptibleExposed-

Infectious-Recovered (SEIR) stages, where a history is kept of previous infections. They 

include a submodel for the mosquito population with subdivisions for juveniles and adults. 

They use the steady state value for the adult mosquito population, from this submodel, as 

the input into their model for malaria transmission. They introduce dependence of the 

parameters for the mosquito population submodel on an environmental parameter (eg. 

temperature or rainfall) and calculate the dependence of the reproductive number, for the 

full malaria model, on this environmental parameter.  

Other recent models have included the spread of drug-resistant Plasmodium   and of the 

evolution of immunity. Koella and Antia (2003) discuss a model where, starting with the  

Ross-Macdonald model and moving to more complicated models, they include a strain of 

disease that is resistant to treatment. Their results show that in their simplest models, there 

is a threshold value of fraction of infectious humans treated, below which there is no 

resistance to drugs, and above which, resistance to treatment spreads. In the more 

complicated models, this kind of resistance is usually not fixed, but there is some level of 

sensitivity to drugs that is maintained in the population.   
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Koella and Boete (2003) study a host-parasite evolution model of malaria where the host 

invests in its immune system over time and the parasite invests in its ability to evade the 

host's immune response.  

The model for malaria transmission that we analyze, is an extension of the equations 

introduced by Ngwa and Shu(2000). In the Ngwa and Shu model, humans follow an  

SEIRS-like pattern and mosquitoes follow a SEI pattern, similar to that described by Yang 

(2000) but with only one immune class for humans. Humans move from the susceptible 

to the exposed class at some probability when they come into contact with an infectious 

mosquito, and then to the infectious class, as in conventional SEIRS models. However, 

infectious people can then recover with, or without, a gain in immunity; and either return 

to the susceptible class, or move to the recovered class. A new feature of this model is that 

although individuals in the recovered class are assumed to be immune", in the sense that 

they do not suffer from serious illness and do not contract clinical malaria, they still have 

low levels of Plasmodium in their blood stream and can pass the infection to susceptible 

mosquitoes. After some period of time these recovered individuals return to the susceptible 

class. Susceptible mosquitoes get infected and move to the exposed class, at some 

probability when they come into contact with either infectious humans or recovered 

humans (albeit at a much lower probability). They then pass on to the infectious class. 

Both humans and mosquitoes leave the population through a density dependent natural 

death rate. This allows the model to account for changing human and mosquito 

populations. Variations in mosquito populations are crucial to the dynamics of malaria, 

and constant population models do not account for this. The model also includes human 

disease-induced death as mortality for malaria in areas of high transmission can be high, 

especially in infants.  
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Ngwa and Shu analyze this model assuming a linear per capita death rate. They convert 

the system to dimensionless quantities and in these new variables, define a reproductive 

number, R0  

They show that when R0 > 1, there exists an endemic equilibrium (non-negative solution 

distinct from the disease-free equilibrium), and furthermore, with no disease-induced 

death, this endemic equilibrium is unique. Using linear analysis, they also show that the 

disease-free equilibrium is locally asymptotically stable when R0< 1 and the unique 

endemic equilibrium (for no disease-induced death) is locally asymptotically stable when 

R0 > 1. They conclude by using numerical simulations to support their proposition that the 

endemic equilibrium is stable for R0 > 1.  

In a second paper (2004), Ngwa rewrites the reproductive number in terms of the original 

(with dimension) parameters. He also includes a small disease induced death rate, using 

perturbation analysis to evaluate a first order approximation to the endemic equilibrium 

with disease induced death. Finally, he conducts some numerical simulations on a 

stochastic expansion of the model. This profusion of models has been driven by the need 

to understand different aspects of the complex malaria epidemiology. In the model we 

analyze, we aim to capture some of the more important aspects of this epidemiology while 

still keeping it mathematically tractable. Some of the important factors that we include are 

the presence of an exposed state in mosquitoes and dynamically changing human and 

mosquito populations, including human immigration and disease-induced death.  
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CHAPTER THREE  

METHODOLOGY  

3.0  The Basic Malaria Model  

This chapter deals with the formulation and analysis of the basic malaria model without 

Protection and treatment (without any intervention strategies) using the SEIRS model.  

  

3.1  Formulation of the Basic Malaria Model  

In the formulation of the basic malaria model, the total population sizes of human (host) 

is denoted by NH(t) and total population size of female Anopheles mosquitoes(vector) is 

denoted by  NM(t).The total population of the model is divided into compartments and with 

assumptions about the nature and time rate of transfer from one compartment to another. 

The human population is divided into the SEIR compartmental model which consists of 

four classes: susceptible SH , exposed EH , infectious IH and recovered RH . In SEIR model 

the individual starts from the susceptible class, S, to the exposed class, E, then to infective 

class, I, and finally to the recovery class, R. SH (t) represents those individuals who are 

susceptible to the disease or the number of individuals who  are not yet infected with the 

malaria parasite at time t,  Blood meal taken by an infectious female Anopheline mosquito 

on a susceptible individual will cause sporozoites to be injected into the human 

bloodstream and will be carried to the liver. The individual will then move to the exposed 

class EH .  At the exposed class E (t), the individual is said to be infected but not infectious: 

after the latent period, humans who are exposed will be transferred to the infectious class 

as they are with gametocytes in their blood stream making them infectious to female 

Anopheles mosquitoes. R(t) denotes the number of individuals who have been infected and 

then removed from the possibility of being infected again or of spreading infection. Brauer 
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and Castillo-Chavez (2001) explain that R(t) denotes the number of individuals who have 

successfully recovered and gained immunity from the disease.  

The mosquito population is divided into three epidemiological classes, the susceptible 

class SM , the Exposed class EM   and infective class IM. The vector population does not 

include immune class as mosquitoes never recover from infection; that is, their infective 

period ends with their death due to their relatively short life-cycle. Anopheles male 

mosquitoes are not included in the model because only female mosquitoes bite humans for 

blood meals.    

  

3.2.1 Assumptions of the Model   

The following assumptions are made to characterize the model:  

(i) All newborns are susceptible to the disease.  

(ii) The infectious period of mosquitoes ends when they die.  

(iii) Susceptible individuals get infected through contact with infected mosquitoes  (iv)  

The model do not include immigration of infectious humans.   

 (v)  There is no immigration of the recovery human  

In this model, each sub compartment in both human host and malaria vector are link with 

epidemiological parameters representing the transfer rate.   

People enter the susceptible compartment through birth and immigration. The susceptible 

increases at a constant rate, .When female anopheles mosquito carrying the parasite bites 

a susceptible human, there is some finite probability, MH that the parasite which is in the 

form of sporozoites will be transfer on to the human. The infected person (human) will 

then move to the exposed class at a rate H .people also leaves the susceptible class through 

nature death. The parasite (in the form of thousands of merozoites) enters the blood stream 
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after a certain period of time, usually leaving signs like violent rise of temperature and 

severe body chill. Then the exposed individuals become infectious and moves to infected 

class at a constant rate H . After some time, individuals who have been infected may 

recover with natural immunity at a constant rate   and move to the recovered class. Some 

of the people in the infected class die through natural death and other related diseases at a 

constant rate H .   

The recovered individuals have some immunity to the disease and do not get clinically ill. 

Since disease-induced immunity due to malaria is temporary, this immunity is lost and a 

fraction   of individuals leave the recovered state to the susceptible state. We make the 

simplifying assumptions that there is no immigration of the recovered humans. Humans 

leave the population through natural death, H .  The disease-induced rate is very small in 

comparison with the recovery rate. Female anopheles mosquitoes enter the susceptible 

class through birth at a rate . Susceptible mosquitoes that feed on infectious   human 

become infected by biting the infectious humans at a rate .The parasites enter the 

mosquito with probability βHM, susceptible mosquitoes that feed on infectious human 

through biting moves from the susceptible to the exposed class. Depending on the ambient 

temperature and humidity, the parasite develops into sporozoites and enters the mosquito’s 

salivary glands, and the mosquito moves from the exposed class to the infectious class at 

a rate of   .Some of the mosquitoes die through nature death at a rate M while others also die 

through other means at the rate M  
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 Figure 3.1: The basic malaria flowchart Table 3.1  The state variables for the 

basic malaria model  

parameters  Description  

SH (t)  Number of susceptible humans host at time t  

EH (t)  Number of exposed humans host at time t  

IH (t)  Number of infectious humans host at time t  

R(t)  Number of recovered humans  at time t  

SM (t)  Number of susceptible mosquitoes vector at time t  

EM (t)  Number of exposed mosquitoes vector at time t  

IM (t)  Number of infectious mosquitoes vector  at time t  

NH (t)  Total human population at time t  

NM (t)  Total mosquito population at time t   

  

Table 3.2.  Parameters and their meaning for the basic malaria model    

parameters  Description  

         Recruitment rate of humans  
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        Birth rate of mosquitoes  

       H  Per capita natural death rate for humans   

      M  Per capita natural death rate for mosquitoes  

      H  Progression rate of humans from the exposed state to the 

infectious state  

      H  Per capita disease-induced death rate for humans  

     M  Per capita disease-induced death rate for mosquito   

         Per capita rate of loss of immunity  

         
Progression rate of exposed mosquitoes to infected mosquitoes  

         
Recovery rate for humans from the infected state to the recovered state 

with natural immunity  

     H  Force of infection for susceptible humans to exposed individuals  

    

    M  
Force of infection for susceptible mosquitoes to exposed 

mosquitoes  

       biting rate of mosquito   

   MH  Probability that a bite results in transmission of infection 

to the human  

   HM  Probability that a bite results in transmission of the  

parasite from an infectious human to the susceptible mosquito  

The parameters in Table 3. 1 and the state variables in Table 3.2 are used in Figure 3.1 to 

formulate the malaria model.  

3.3  Equations of the Basic Malaria Model  

Following the compartmental model in Figure 3.1 , applying the assumptions, definitions 

of state variables ,parameters above  and according to the Balance Law, the system of 

differential equations (non-linear differential equations)  describing the transmission of 

the disease are as follows :   

 dSdtH  S R H HS  

H H 

 

 dEdtH H HS H H EH  
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dIH E H H H I  
H H 

d

t 

 with initial conditions 

  

 SH 0 SH0,EH 0 EH0,IH 0 IH0,R 0 R0,SM 0 SM0,EM 0 EM0,IM 0 IM0 where   

 MH IM I 

H  NH , M HMNH H   

The rate at which the human hosts SH get infected by infected mosquitoes SM and   the rate at 

which the susceptible mosquitoes SM are infected by the infected human hosts  

IM is denoted by MH SH IM ,and HM SMIH respectively.  

                dR IH H R 

dt 

 dSM S M MS 

 

 dt M M 

dEM S M EM 

 

 dt M M 

dIM EM M M M I  

dt 

 

   

3.1  
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 NH NH 

It indicates that the rate of infection of susceptible human SH by infected mosquito IM is 

dependent on the total number of humans NH available per vector(Mwamtobe,2010).  

The total population sizes (total number of humans NH and total number of mosquitoes 

NM ) are NH SH EH IH R   and      NM SM EM IM with their respective differential equation 

dNH dSH dEH dIH dR are dNM dSM dEM dIM  

 dt dt dt dt dt dt dt dt dt 

  

3.4  Analysis of Basic Malaria Model  

3.4.1 Invariant Region  

The invariant region describes the region in which the solution of the system makes 

biological sense.   

We can determine the total population sizes NH and NM  from the differential equations  

dNH dSH dEH dIH dR dt dt dt 

dt dt 

dNH HSH R H HSH H H EH dt

   

H EH H H IH H R 

It can be further simplify to obtain   

 dNH dSH dEH dIH dR 

     

 
dt dt dt dt dt

                                             (3.2)  

dNH 
H N H H I 

H dt 

and similarly   
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 dNM dSM dEM dIM 

    

 
dt dt dt dt

                                             (3.3)  

dNM 
M NM M I M 

dt 

Assuming the disease does not kill   H 0 , ie if the Per capita disease-induced death rate 

for humans is zero, we have   

dNH HNH HIH HNH                                (3.4a) dt

   

 
dNH 

HNH                                                             (3.4b)  

dt 

 dNH NH                                                      

 (3.5)  

 this     H 

dt 

Theorem 1  

The solution set to model system (1) are feasible for all t 0if they enter the Invariant  

region H H .    

Proof: Let SH ,EH ,IH ,RH ,SM ,EM ,IM R 7  be any solution of the system with non- 

negative initial conditions.  

Using the differential inequality  
dNH 

H NH  as stated in (3.5)   and solving   for dt 

NH we   have N H Ke Ht .  

H 
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ie  Ke Ht 
H NH where K is constant                 (3.6) using 

the initial condition at   t 0, NH (0) NH0   

N H0 K  

H H 

1 

 N H 0 K   

H 

NH0 H K  

K NH H0  

NH0 ( NH0 H )  

 H H 

NH0 NH0 e Ht  

 H  H  

At t 0and   Applying the theorem of differential inequality (Birkhof & Rota, 1982), we 

have   

0 N H   

H 

Therefore, as t →∞, the human population NH  approaches   C , the parameter C H 

is     usually called the carrying capacity (Namawejje, 2011)  

 Hence all feasible solution set of the human population    only of the model system (1) are 

in the region.   
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H SH ,EH ,I H ,R R 4 : N H               (3.7) 

H 

Similarly, the feasible solutions of the mosquito population only are in the region  

 

Therefore, the feasible solutions set for model system (1) given by H H  is positive 

invariant and hence it is biologically meaningful and mathematically well-posed in the 

domain .  

Therefore, in this domain it is sufficient to consider the dynamics of the flow generated by 

the model (1). In addition, the usual existence, uniqueness and continuation of results hold 

for the system.  

  

  

  

 M SM ,EM ,I M R 3 : N M  .                    (3.8)  

M 

Thus, the feasible set for model system (1) is given by  

  

SH H H,E ,I ,R S, M M M,E ,I R 7 : SH H H,E ,I ,R S, M M M,E ,I 0; NH ;NM 

 

 H M 
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3.4.2 Positivity of Solutions  

Lemma 1   Let the initial data be  

 sH 0 ,SM 0 0,(EH (0),IH (0),R(0),EM (0),IM (0) 0  .  

then the solution set SH H H,E ,I ,R S, M M M,E ,I ( )t of the model system (1) is positive 

for allt 0.  

Proof: Using the first equation of the model (1) we obtain  

dSH H SH R H SH H SH H SH dt 

( H H )SH 

  

1 

SH dSH ( H H )dt 

SH ( )t SH (0)e ( Hdt Ht) 0. 

Also the second equation of model (1) gives  

dEH H SH ( H H )EH ( H

 H )EH dt 

 

E1H EH ( )t EH ( H H )t 0 

 (0)e  

 From the third equation of the model(1) we obtain  

dIH H EH ( H H )IH ( H H 

)IH dt 
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1 

 IH dIH ( H H )dt .  

IH ( )t IH (0)e ( H H )t 0 

From fourth equation of model (1) we obtain the following  

dR dt IH ( H )R (

H )R 

1 

 dt dR ( H )dt .  

R t( ) R(0)e ( H )t 0 

  

To solve forSM ( )t , we take into consideration the fifth equation of model (1) which gives  

dSM 
M SM M SM M SM M SM dt 

( M M )SM 

 1   

SM dSM ( M M )dt 

 SM ( )t S(0)e Mdt Mt 0 

We obtain the following from the six equation of model (1)  

dEM SM ( M )EM ( M )EM 

dt M 

1 

EdEM ( M )dt .  
M 

EM ( )t EM (0)e ( M )t 0 

The seventh equation of mode (1) gives   
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dIM EM ( M M )IM ( M M )IM 

dt 

 IM ( M M )dt   

IM ( )t IH (0)e ( M M )t 0 

 To show that the region  is positively invariant so that it suffices the dynamics of the 

above system, we use fact that the right hand sides of equations (3.2) and (3.3) are both  

bounded by H NH  and M NM , respectively. It then follows that   

                       

dNH 0 if NH ( )t  and dNM 0 if NM ( )t .  

 

 dt H dt M 

With a help of standard comparison theorem (Zhang, 1988), it has been shown above  

that  

NH ( )t 1 e( Ht) NH (0)e( Ht)  

H 

  

  

and  

NM ( )t 1 e( Mt) NM (0)e( Mt) .  

M 

In particular, if NH (0)  then NH ( )t  and if NM (0) then NM ( )t 

.  

 H H M M 
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Therefore    is positively invariant. If NM (0)  and NH (0) , then either the  

 M H 

   

solution enters  in finite time, or NM ( )t approaches   and NH ( )t approaches  

 M H 

asymptotically, and the infected state variables EH ,IH ,EM and  IH approaches zero.  

  

3.4.3 Existence and Stability of Steady-state Solutions  

Steady state solutions or equilibrium points  E SH ,EH ,I H ,R ,SM ,EM ,IM  

are the roots or solutions of the system of equations when the right-hand side of a nonlinear 

system is set to zero.    

At the steady state dSH 0, dEH 0, dIH 0, dR 0, dSM 0, dEM 0, dIM 0. dt dt

 dt dt dt dt dt 

 To calculated the steady state, the right hand side of the model (1) is equated to zero to  

give                                

H SH R H 0 

H SH H H EH 0 

H EH H H 0 

I H H R 0                                

M SM M SM 0 

M SM M EM 0 

M M I M 0 

  (3.10)  

Equation (3.10) is then solve to obtain E SH ,EH ,IH ,R ,SM ,EM ,IM .  
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3.4.4 The Existence of the Trivial Equilibrium Point  

So far as the mosquito recruitment term and the human recruitment term   are not zero, 

the population will not be extinct. This implies that there is no trivial equilibrium point, 

thus.  

    SH ,EH ,IH ,R ,SM ,EM ,IM (0,0,0,0,0,0,0)  

  

3.4.5 Disease-free Equilibrium Point E0   

Disease-free equilibrium points (DFE) are steady-state solutions where there is no malaria 

(disease) in the human population or plasmodium parasite in the mosquito population. We 

define the ”diseased” classes as the human or mosquito populations that are either exposed, 

or infectious, that is; EH , IH , E M , and I M in the system (1).  

In absence of the disease,E = I = E = I = 0H H M M .  

To obtain disease -free equilibrium point, the right-hand side of a system (1) is set to zero 

and we substitute E = I = E = I = 0H H M M . we have   

SH  

H  

SM  

M 

Hence, the DFE of the basic malaria model (1) is given by,   

E0 SH H H ,E ,I ,R ,SM M M ,E ,I  

                                                (3.11)  

,0,0,0, ,0,0 ,  

 H M  
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that represents the state in which there is no infection in the society and is known as the 

disease-free equilibrium point (DFE).  

  

3.4.6 The Reproduction Number R0  

The next generation operator approach as described by Diekmann, (1990) was used to 

define the basic reproductive number, R0 , as the number of secondary infections that one 

infectious individual would create over the duration of the infectious period, provided that 

everyone else is susceptible. It is an important parameter that plays a big role in the control 

of the malaria infection.  

R0 1 is a threshold below which the generation of secondary cases is insufficient to 

maintain the infection within human community. If R0 1, each individual produces, on 

average, less than one new infected individual and hence the disease dies out while if R0 

1, each individual produces more than one new infected individual and hence the disease 

is able to invade the susceptible population. It is therefore a useful quantity in the study of 

a disease as it sets the threshold for its establishment.  

The basic reproduction number cannot be determined from the structure of the 

mathematical model alone, but depends on the definition of infected and uninfected 

compartments. We define Xs to be the set of all disease free states. That is  

 Xs x0| xi 0,i1,...,m .  

In order to compute R0 , it is important to distinguish new infections from all other changes 

in the population. Let  

Fi  be the rate of appearance of new infections in compartmenti ,  
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Vi Vi Vi  is the difference between the rate of transfer of individuals out of 

compartment i ,(Vi ) , by all other means and the rate of transfer of individuals in the 

compartmenti ,(Vi )  by all other means.  

x0 be the disease-free equilibrium point.    

It is assumed that each function is continuously differentiable at least twice in each 

variable. The disease transmission model consists of non-negative initial conditions 

together with the following system of equations:  

x f xi ( ) F xi ( ) V x ii ( ), 1,..., .n .  

 

Let F Fi (x0)  and V Vi (x0)  with   1 i j, m .  

 xj  xj  

Since F is nonnegative, V is a nonsingular then   1  is nonnegative and also FV 1  is 

nonnegative.  

Hence R0 is the largest eigenvalue of   FV-1, where the (i j, )  entry of  F is the rate at which 

infected individuals in compartment j produce new infections in compartmenti ,the ( j k, )  

entry of V 1 is the average length of time this individual spends in compartment j during 

it’s lifetime, assuming that the population remains near the DFE and barring reinfection.  

Hence, the (i k, ) entry of the product FV-1 is the expected number of new infections in 

compartment i produced by the infected individual originally introduced into compartment 
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k . Following Diekmann et al., (2000), FV-1 is called the next generation matrix for the 

model and we set  

R0 (FV 1),  

where (A) denotes the spectral radius of a matrix A .  

Rewriting the system (1) starting with the infected compartments for both populations;  

EH,IH,EM ,IM , and then followed by uninfected classes; SH ,R,SM also from the two populations, 

gives  

dSH HSH R 

H dt 

dEH 
HSH H H 

EH dt 

dIH H EH H 

H dt dR 

 dt IH H R                  (3.12)  

 dSM S S 

M M M M dt 

dEM SM M 

EM dt M dIM

 dt M M IM 

 

The method of next generation matrix has been used to show the rate of appearance of 

new infection in compartments; EH and EM , from the system (3.12);  

 MHI SM H  
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  NH  

0 f   

 HMI SH M  

  NH  

   

  0   

The Jacobian matrix of f at the disease-free equilibrium point E0 (3.11) where  

 and NM  to form the Jacobian matrix;  N H 

H M 

Calculating the 

transfer of 

individuals out of the 

compartments of the 

system (3.12) by all 

other means  

  H H EH  

H H H I H HE   

  M EM  

   

M M M I EM  

0 

0 

 

F 0 

0 

 

0 

0 

HM H 

M 

0 

0 

0 

0 

0 

MH  

0  

                               (3.13)  

0  

 

0  
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The Jacobian matrix of  is  

To 

obtain FV 1 ,we have to calculate the product of the equations (3.13) and (3.15) which 

gives  

 0 0 a b  

0 0 0 0
 

 FV 1  .                                          (3.16)  

 c d 0 0  

   

0 0 0 0  

where  

 H H 0 0 0  

  0 0  

 

V  H H H                     

 0 0 M 0  

   

 0 0 M M  

  

The inverse of the Jacobian matrix (3.14) is obtain as   

     (3.14)  

  1 

 0 0 

  H H  

 

  H 1 0 

V 1 H H H H H H 

 
1 

 

 

0 

0 

0 

1 

 

 

 

 

 

  (3.15)  

 

 

 

  0 0 

  M  

   

  0 0 M M M  

 

 

M M  
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 a  MH  ,b  MH ,c  HM H H 

 M M M  M M  M H H H H   

and   

 d  HM H   

 

M H H  

  

The eigenvalues of FV 1 are calculated from M FV 1 0  

0 a b 

 0 0 0 

M 0 0 0 0. c d 0  

We calculate the eigenvalues from the matrix (3.16), and obtain   

  0  

  0  

   

  0  

 H H HM H MH H  

H H M M M  

i  M        (3.17)  

 

  H H H H M M M 

 
 

 HM H   H H H H M M M 

M MH H  

   

  H H H H M M M   
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Matrix (3.17) is further simplify to obtain     

  0  

  0  

   

  0  

 

H H H H M M M HM MH 2

 H H  

 

i  M     (3.18)  

     H H H H M M M   

 

 H H H H M M M HM

 MH 
2 

H H  

 

  M  

 
 

H H H H M M M   

  

  

  

The (spectral radius) dominant eigenvalue of FV 1 from equation (3.18) is the reproduction 

number, R0 ,and is giving by  

R0 H H H2 H M2 M M2 MH HM 22 H H  

H H H H M M M M  

 R0  MH HM 2 H H                    (3.19)  
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H H H H M M M M  

where  

H 

 is the probability of survival of individuals from latent (exposed) stage into the  

H H 

infectious stage.  

 

    is the probability of survival of mosquitoes from the exposed stage into the  

M 

infectious stage of the mosquito population.  

The term MH  describes the number of humans that one mosquito 

infects M M M  

(through contact) during the lifetime it survives as infectious, when all humans are  

susceptibles. On the other hand, the term, H 

HHM HH H describes the number of mosquitoes that are infected 

through contacts with one infectious human, while the human survives as infectious, 

assuming no infection among vectors.  

R0 , is the product of R0H defined as the number of humans that one mosquito infects through 

its infectious lifetime, assuming all humans are susceptible, and R0M defined as the number 

of mosquitoes that one human infects through the duration of the infectious period, 
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assuming all mosquitoes are susceptible. Our reproductive number includes the generation 

of infections of two populations, so is the square root.  

Therefore, manipulation of the R0 , gives  

 

 

H H H H  

and  

 HM  
                           R0M 

   (3.21)  

M M M M  

 

MH H 

 is the number of latent infections produced by a typical infectious  

H H  

individual during the mean infectious period.  

HM  

 is the number of latent infections produced by a typical infectious  

M M M  

mosquitoes during the mean infectious period.  

Since the mosquito biting rate controls transmission from humans to mosquitoes and from 

mosquitoes to humans,  therefore appears twice in the expression.  

Malaria infection exists in a community due to contact between the humans and mosquitoes.   

where    

 R0H  MH H H                         (3.20)  

        

M H 

M M M M 

HM 

H H H H 

H H MH 

R R R 

R 

0 0 0 

0 
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The magnitude of the basic reproduction number determines whether the disease becomes 

persistent or dies out. The basic reproduction number, R0 can be used to determine the 

local stability of the disease free equilibrium point.  

3.4.7 Local Stability of the Disease-free Equilibrium E0  

The local stability of the disease-free equilibrium can be discussed by examining the 

linearized form of the system (1) at the steady state E0. Referring to the results of Van den 

Driessche and Watmough (2002), the following theorem holds.  

Theorem 2 The disease-free equilibrium point E0 for the system (1) is locally asymptotically 

stable if R0 1 and unstable if R0 1.  

Proof: The Jacobian matrix of the model (1) with SH NH EH IH R  evaluated  

at the disease-free equilibrium point is given by      

                        

H H  0 

 

H H H  

 0  

 

 0 HM H 

 M 

 

 0 HM H 

 M 

 

 0 0 

0 0 

H  

0 

0 

0 

0 

0 

0 

M 

0 

0 

0 

0 

0 

0 

( M) 

 

MH 

0 

0 

0 

0 

 

 

 

 

 

 

 

 

 

 

   (3.22)  

 

M M 

 

The third and the fourth columns have diagonal entries. Therefore, the diagonal entries   

H and M are the two of the eigenvalues of the Jacobian.  
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 Thus, excluding these columns and the corresponding rows, we calculate the remaining 

eigenvalues. These eigenvalues are the solutions of the characteristic equation of the 

reduced matrix of dimension four which is given by  

2 

x M M x H H x M H x M 

MH HM H H 0   (3.23)  

M 

To simplify the notation, we let B0 M M ,B1 H H ,B2 H H  

2 

This   reduces (3.19)   to   R02 MH HMM B 0 B 1B 2 B 3H H and   (3.23) to  

 x4 Ax3 
3 A x2 

2 Ax A10 0,                                        

where  

  (3.24)  

A3 B1 B3 2B0 M 

A2 B3 B1 2B0 M B0B2 B1B3 

A1 B0B3B2 B1B3 2B0 M B0B1B2                         (3.25)  

A0 B0B1B2B3 H 2 HM MH H 

M 

The Routh-Hurwitz conditions (Murray, 1991), which usually have different forms are the 

sufficient and necessary conditions on the coefficients of the polynomial (3.24). These 

conditions ensure that all roots of the polynomial given by (3.24) have negative  

real  parts.  For  this  polynomial,  the  Routh-Hurwitz  conditions  are   

A2 0, A3 0, A0 0, A1 0,and H1 A3 0
,  
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 A3 1 

 A1 A2 

1 

A 

 3 2  

A0 

 1 0 

 A2 A3 

 H4  0 

 A0 A1 

 0 0 

Clearly H4 A H0 3. Since B0 0,B1 0,B2 0,B3 0, we have Ai 0,i 1,2,3
.
  

Moreover, if R0 0, it follows that A0 0 . Thus, it is enough to prove that  

H2 0 and H3 0 . Clearly H3 A A A1( 3 2 A1) A A0 3
2 and H2 A A3 2 A1.  

Using Maple, it is observe that   

                         

H AA A2 3 2 1  

 B B B B BB B B32( 0 2 1) 2 3(2 0 2 2B1)                                     (3.26)  

2( 

 B B B B B B B B0 3 1 2) 12( 0 2 3)  

 2BB B B B B B0 1( 3 2) 22( 1 0)  

which is positive.  

Using Maple again, we observe that    

2 

3 

1 

3 

1 

0 

0 

0 

H 

A 

H A 

A 

A 

 

 3 

1 

2 

0 

0 , 

0 

0 , 

0 

1 

A 

A 

A 

A 
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H3 A1 A3A2 A1 A0A32 

B3 B0 B0 B2 B3 B2 B1 B0 B3 B1 B1 

B2 H 2 HM MH H (3.27) M 

  which is clearly a positive quantity. Therefore, all of the eigenvalues of the Jacobian matrix 

have negative real parts when R0 1.  

However, R0 1 implies that A0 0, and since all of coefficients (A A and A1, 2, 3)  of the 

polynomial (3.24) are positive, not all roots of this polynomial can have negative real parts. 

This means, when R0 1, the disease-free equilibrium point is unstable.  

Note that the result in theorem (2) is local, that is, we could only conclude that solutions with 

fairly small initial size in the invariant set Ω are attracted to the disease-free  

equilibrium  point.  We  can  also  use  SM NM EM IM   and  

SH NH EH IH R  to reduce the dimension of the Jacobian in the proof of  

theorem (2) easily.  

  

  

  

3.4.8 The Endemic Equilibrium Point(E1)   

Endemic equilibrium point E1 is a steady-state solution where the disease persists in the 

population. All state variables are positive .That is, malaria infection will persists in the 

population and the endemic equilibrium point (EEP) of the model is given by   

     EEP= E1 SH ,EH ,IH ,R ,SM ,EM ,IM >0.  

For the existence and uniqueness of endemic equilibrium  
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E1 SH ,EH ,IH ,R ,SM ,EM ,IM ,where the co-ordinates endemic equilibrium 

should satisfied the condition  SH 0,EH 0,IH 0,R 0,SM 0,EM 0,IM 0  

To derive EEP, we need to solve the basic malaria model by equating to zero, at an arbitrary 

equilibrium  

E1 SH ,EH ,IH ,R ,SM ,EM ,IM .  

When we solve second equation f (3.1) for E  we get  

EH
MH I M  SM                                      

 (3.28) N H H H  

The sixth and seventh equations of (3.1) gives  

EM
HM I H  SM                             

 (3.29) NH H  

and  

IM EM                                (3.30) H M  

respectively. putting (3.29) into (3.30) for EM ,we obtain  

I M
HM I M                          (3.31) N H M 

M M  

  

But from fifth equation of model (3.1), we recall that  

  NH 

 SM  IM H NH                                   (3.32)  
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HM  

We than substitute the equation (3.32) into (3.31) to get  

 IM  HM   IH    with equation (3.21) we get  

M M M HM IM M NH  

 R0 M M I H                                              

   (3.33)  

 

( HM I H M NH ) 

Furthermore, from the second equation of (3.1), we have  

HM I M SH H H EH 0                       (3.34) N H 

We can now substitute equation (3.33) into (3.34) to get  

 MH R0M M I H  S 

 N H HM I H M N H H H H EH 0         (3.35)  

But from the third equation of (1) we get  

EH
H H IH   which    can be substituted into 

(3.34) to give H 

 MH R0M M I H SH  H H H H I H 0     (3.36)  

  N  

 N H HM I H M H H 

Where IH 0 or   
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MH ROM M HSH NH H H H H HM IH MNH 0 

which means by  

algebraic manipulation with N H  and R0
2 R0H R0M we have H 

MH H H ROM M SH HM I H M 0 with equation 

(3.20)  

H H H H   H  

R0HR0M MSH HM IH M 0 H 

M R02SH HM IH M 0 which gives H 

SH
HM H I H R02

M .                                  (3.37) H M 

We can solve for IM  by considering equation (3.34), (3.37) and (3.33), with a lengthy algebraic 

manipulation, to get the following  

MH M R0M IH SH IH HSH 0 NH HM IH M 

NH H  

NH H HM IH M NH MH R0M M H IH NH IH HM IH

M NH  

H NH H HM IH M NH 0 

  

Lastly we get  
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 A IH
2 BIH C 0,                                     

  HM 2 HM R0M H (3.38 b)  

 A MH NH  R02  

 

(3.38 a)  

   

B HM NH H MH M R0M2 H 

M NH2 H1 ,   

  H R0  

C H M( M)2 NH
2 

H R0
2 

1
(3.38)  

 

with H1 HM H NH H , which gives     

(3.38 c)  

B B2 4AC 

 
IH  

2A                           (3.39)  

Hence,  

 IH                                                       3.40  

  

We can now solve equation (3.37) using (3.40) to get  

 SH
HM H R02 

M                                                           (3.41)  

H M 

from the third and fourth equations of (3.1), and the substitution of (3.40) we get  

E H H                                                                   

 (3.42)  
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 H H 

and  

 R
 

.                                                                        

   (3.43)  

H  

In addition we are required to solve the SM  and EM  for the susceptible and exposed  

mosquitoes in a malaria endemic area using (3.40) and  N H , we get  

H 

SM ,                                         (3.44) HM H M  

EM
M M M HR0M                                  (3.45) 

HM H M  

We now consider the possibility of multiple endemic equilibria for the quadratic. The 

equation may indicate three distinct situations which we have to consider depending on 

the signs of B and C since A is always positive. The letter C is negative if R0 1and  

positive if R0 1  . Hence, we have established the following result:  

Remark 1 The basic malaria model (1) has  

(1). precisely one unique endemic equilibrium if B 0, and C 0 or B2 4AC 0,  

(2). precisely one unique endemic equilibrium if C 0 R0 1,  

(3). precisely two endemic equilibria if C 0,B 0 and B2 4AC 0 ,  

(4). no endemic otherwise.  
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3.5  Summary  

A basic deterministic malaria model SEIR model was formulated. The model took into 

consideration a varying total human population that includes recruitment of new 

individuals into the susceptible class through either birth or immigration. The result from 

the analysis of the model proved that there exists a domain where the model is 

epidemiologically and mathematically well-posed. The model has been qualitatively 

analyzed for the existence and stability of the disease-free equilibrium and endemic 

equilibrium points. The reproduction number R0 was then calculated using the next 

generation method. It was shown that disease-free equilibrium E0  is locally asymptotically 

stable if R0 1, and unstable when R0 1.  

  

THE  MALARIA  MODEL  WITH  PREVENTION  AND  TREATMENT  

STRATEGIES  

3.6  Formulation of the Model.  

 Due to the use of insecticide treated bed nets (ITN) and indoor residual spraying (IRS) as 

the preventive measures, and treatment as a control measure, two different epidemiological 

compartments of individuals in the protected class denoted by P t( ) and treated class T t( ) 

are added to the human population system (1). The transfer rates between the subclasses 

are composed of several epidemiological parameters.  

The fraction of the susceptible recruited individuals, stated in the basic malaria model 

(1), are taken to be under preventive control and join the protected class. The likelihood of 

infection is assumed to be reduced by a factor of . Since this parameter is defined as the 

reduction of likelihood of infection by protection, the protection is ineffective if 1 and 
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effective if 0. According to Mwamtobe(2010), for the protection to be effective there 

should be no progression of individuals from the protected class to the exposed individuals. 

This happens when   0. Since we have the protected class, susceptible individuals who 

migrate to malaria free-areas, and thus become partially protected, but become exposed 

once they return to the malaria endemic areas by the force of infection HP is  represented 

by the proportion Lwhere 0 L 1.The proportion L is due to the use of the protected 

mosquito bed nets and indoor residual spray.  

In order that there is a nonzero flow of humans into the protected class, we assume that 

L 0. The exposed individuals as discussed in the system (1) progress to infected 

class at a constant rate H . Individuals who have experienced infection may be treated at a 

constant rate  and they enter a treated class. After they have been treated successfully, 

they recover temporarily at acquired immunity rate . Since diseaseinduced immunity due 

to malaria is  temporary, a fraction  of individuals leave the recovered state to the 

susceptible state while the complementary fraction 1   move to the protected class 

due to noncompliance to treatment. They did not comply fully and their recovery is 

temporal. The rate of infection of susceptible individual is H , and the rate at which the 

infected individuals infect the susceptible mosquito is M , see Figure (3.2)  
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Figure 2  The  malaria  model with  prevention and treatment flow chat  

The flow-diagram of the model is shown in Figure (3.2). The malaria model with 

prevention and treatment strategies has additional state variables in Table 3.3 and 

parameters in Table 3.4 which satisfy the system of equations (3.46).   

  

Table 3.3: State variables of the model with prevention and treatment strategies  

Symbol  Description  

P(t)  Number of protected humans at time t  

T(t)  Number of treated humans at time t  
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Table 3.4: Parameters of the model with prevention and treatment   strategies  

Symbol  Description  

   Fraction of the susceptible recruited individuals who are protected  

  
Reduction of likelihood of infection by protection  

L  Progression rate of susceptible humans to protected class  

   Treatment rate for humans from infected state to treated class  

  Recovery rate for humans from the treated state to the recovered state  

  

The following deterministic system of nonlinear ordinary differential equations which describe 

the progress of the disease with prevention and treatment strategies are obtain  

below.  

dS
dtH (1 ) H HS R (L H )SH  

 

dt  

(3.46) 

  

dEH S HpP ( H H )EH  

dt H H 

dIH E Σ H KH IH  

dt H H 

dT 

dt H H T I 

dR 

T I 

dt H 1 R H R 

dSM S M MS 
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dP 

LSH 1 

R HpP HP 

 

Where.  

 𝜹𝐼𝑀 𝜹𝐼𝐻 𝐼𝑀 

  

𝜹 𝐼𝑀 𝑃 

   𝑀𝐻  denotes the rate at which the protected individuals P , get infected by  

𝑁𝐻 

infectious mosquitoesIM . It indicates that the rate of infection for the protected individuals 

is reduced by a factor   

  

3.7  Mathematical Analysis of the Model with prevention and treatment  

Strategies  

When we add the first six equations of the model (3.46), and if there is no disease- 

induced death, that is, 𝐾𝐻 = 𝐾𝑀 = 0 , gives  , so that        as  

t . Thus,  is an upper bound of  NH t   provided that N H 0 . Also, if  

 H H 

dt M M 

dEM SM M EM  

dt M 

dIM EM ( M KM ) IM 

 

dt 

 

 

 

𝑁 ℎ ( 𝑡 ) → 
𝜀 

𝜙 𝐻 
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N H 0 , then NH t  will decrease to this level, .    

 H H 

Using the same calculation for the vector equations, it is shows that  as t .  

As a result of this, the following feasible region;  

1 SH ,P,EH ,I H ,R,SM ,E ,I R 9 : NH H NH

,NM M NM   
 M M 

 

is positive-invariant and attracting.  

  

3.7.1 Disease-free Equilibrium E2  

The disease-free equilibrium E2 of the mathematical model with prevention and treatment 

strategies (46) is given by  

E2 SH ,P ,EH ,IH ,T ,R ,SM ,EM ,IM   

If we Set the system (3.46) equal to zero, we obtain SM , which is defined as the  

M 

asymptotic carrying capacity of the mosquito population. Solving for SM  and P  from the 

following equations  

1 L H SH
* 0  

              (3.47)  

LSH
* 

HP* 0 
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From first equation of (47), making SH   and setting    , We obtain  

SH* 1   

 

L H 

 = 𝑚1𝜀  

Substituting in the second equation of (3.47), we obtain  

𝜓𝜀 + 𝐿𝑚1𝜀 − 𝜙𝐻𝑃∗ = 0  

Making 𝑃∗ the subject,                      

  

Where     

  

                         
 
 

  

E2 SH ,P ,EH ,IH ,T ,R ,SM ,EM ,IM  

1L H , H LH HL ,0,0,0,0, M 

,0,0                      (3.48)  

  

3.7.2 The Effective Reproduction Number, Re  

The associated next generation matrices F2 and V2 can be found from f2 and v2 

respectively, where f2 and v2 gives the next generation matrices of F2 and V2 

respectively   
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 E
I

H1H1 MH NHI SM H 0 MH NH I PM  

 

 f2 EM1    

TIM1   ( HM I SH 

M00 ) / NH  

 1    

  ( H H )EH  

( H H H )IH 

HE v2 ( M 

( M )MIM)E M EM   

  ( H )T IH  

The Jacobian matrix of f2 is given by  
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m MH MH H , and n HM H  H 

(1 ) (1 ) 

The Jacobian matrix of v2 is given by  

 0 0 0  

 0 0 0  

e 0 0                                           

 (3.50)  

 f q 0  

 0 0 j  

Where  

a ( H H),b H ,c H H ,e M , f ,q M M ,r , j 

H  

Then the inverse matrix of V2 is given by  

 1  

  0 0 0 0 

 a  

   

 b 1 0 0 0  

 ac c  

  
1 

 

 V2
1 0 0 e 0 0 .                                             (3.51)  

  f 1  

 0 0  0  

  eq q  

 0 0 0 m 0  

 0 0 0 0 0  

   

 F2 0 n 0 0 0                            

   

 0 0 0 0 0  

 0 0 0 0 0  

Where   

 ( L) (L ) 

  (3.49)  

a 

b 

 

 

V2 0 

 

0 

 

0 

0 

c 

0 

0 

r 
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 rb r 1  

   0 0  

 ajc jc j  

The product of matrices (3.49) and (3.51) gives  

  mf m  

 0 0 eq q 0  

   

 0 0 0 0 0  

 FV2 2 1 nb n 0 0 0   

 

 ac c  

 0 0 0 0 0  

   

 0 0 0 0 0  

While   the eigenvalues are   

  0 

  0 

 

  0 

 

 

 

 

  

 i  aceqnbmf .                                                 (3.52)  

 
 

aceq  

 

  aceqnbmf  

 

  aceq  

  

  

Hence the effective reproduction number for the model (3.46), which is denoted by Re is given 

by  
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Re (FV2 2 1) 

aceqnbmf .  

 (aceq

)2 nbmf  

aceq 

Substituting the original values back and after lengthy algebraic manipulation, the effective 

reproductive number Re is obtain as   

Re  MH HM 2 H H 1 H m2                     (3.53)  

M H H H H M M M  

With  m2 0 ,  

Where   

 ReM HM    

M M M M  

is the contribution of mosquito population when it infects the humans, while  

 ReH MH H H 1 Hm2    

 

H H H H  

is the human contribution when they infect the mosquitoes.  

Substituting m2 in the Re, we get  

MH HM
2

H H L 1 H 1 M L H H H 

H M M M  

Re                         (3.54)  
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The expression for the effective reproduction number, Re has a biological meaning that is 

readily interpreted from terms under the square root. The term  

HM M M M M  

  
represents the number of secondary human infections caused by one infected mosquito  

vector. The second term                                             

MH H H[L 1 H 1 ] 

  

H L H H H H  

represents the number of secondary mosquito infections caused by one infected humans 

host. The square root represents the geometric mean Re for an average individual of both 

species combined. This effective reproduction number serves as an invasion threshold both 

for predicting outbreaks and evaluating control strategies that would reduce the spread of 

the disease in the country through the reduction of the effective reproduction number and 

the parameters that enhance the spread of the disease due to the increase in the effective 

reproduction number.  

The main control measures that have been in place include use of insecticide treated bed nets 

(ITN), indoor residual spraying (IRS) and treatment.  

For the population to be below the threshold is to reduce the number of susceptible by 

providing them protection from the disease. From the expression for the effective 

reproduction number Re, we note that the parameters , and  play important roles in the 

spread of the disease. The following cases can be considered:  
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We can obtain the value of the basic reproduction number from the value of the effective 

reproduction number when control measures are effective 0 since this is the reduction 

of likelihood of infection by protection in a sense that   0 . Thus the basic reproduction 

number of the model (3.46) without control measures is given by  

MH HM
2

H H 

R0   

M H H H H M M M  

From the two reproduction numbers, we notice that  

Re R0  

For 0 , due to reduction of likelihood of infection by protection. This shows that control 

intervention strategies (prevention and treatment) have a positive impact on reduction of 

the spread of malaria.  

The Jacobian matrix, JE , of the model (3.46) evaluated at the disease-free equilibrium  

b 

 

L 

0 

 

0 

0 

 

0 

0 

 

0 

0 

H 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a 

H 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

c 0 

j 

 

0 

0 0

 

0 

d 

0 

0 

0 

h 

0 

0 

0 

0 

0 

0 

0 

0 

0 

M 

0 

0 

0 

0 

0 

0 

0 

0 

0 

e 

 

MH  

 

  (3.55)  

f 

0 

0 

0 

0 

0 

q 
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2 

point (3.48) is given by   

where    

 

MH  H L ' HM L H ,a H H,b L H,c  H H,d 

1 , 

 H 1  M 1  

e M, f MH 
MH  H L ,h 1 H, j H,q 

M M 

H 1  

  

and L H , H, H , 1 H and Mare the five distinct negative  

eigenvalues of the   first, second, fifth ,sixth and seventh columns of matrix (3.55)  

respectively. The remaining four eigenvalues are obtained from the 4 × 4 block matrix 

given by  

 a 0 0 f  

 v c 0 0  

 D    

0 e 0  

   

0 0 q  

 

0 
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whose trace and determinant are given by  

T(D) H H H H M M M 
0
  

D H H H H M M M 1 Re
2 . 0 

if Re 1  

where
                              

 
 

Re M L MHH HMH 
2

H H H 

L 1H H H 1 M M M      .  

Hence we establish the following results  

Lemma 2 The disease-free equilibrium E2, of the malaria model with prevention and 

treatment strategies (3.46), given by (3.48) is locally asymptotically stable if Re 1, and 

unstable if Re 1.  

The threshold quantity, Re, measures the average number of secondary cases generated by 

a single infected individual in a susceptible human population, where a fraction of the 

susceptible human population is under prevention and the infected class is under treatment.  

When the protection is not practiced and hence treatment is the only intervention strategy, then 

effective reproduction number Re becomes  

MH HM
2

H H 

Ret   
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M H H H H M M M  

  

Similarly, if the protection is the only intervention strategy being practiced, the effective 

reproduction number becomes  

 Rep  MH HM
2

H H L 1 H 1    

M L H H H H H M M M  

  

3.7.3 Existence and Stability of Endemic Equilibrium Point E3   

System (3.46) is analyze to obtain the endemic equilibrium point E3 of the system and  

its stability.   

We take into consideration the equations for the proportions. Here new variables are use to 

scale the subpopulations for NH and NM first.  

Using fractions of population, we let:   

p, EH e, IH i, T , R r, SM x, EH y, IM z  SH s, P 

    

NH NH NH NH NH NH NH NH NH 

Where dNH H NH HIH , dNM M NM M IM , and NH NM 1  in dt dt 

the classes SH,P,EH,IH,T,R,SM ,EM ,IM in the populations and then differentiating each class with 

respect to time respectively. This is done by differentiating the fractions with respect to 

time t and simplifying as follows:  

ds 1 dSH s dNdtH  



 

84  

  

  dt  

dt NH  

 1 s 

1 MH zsNH NH L H sNH NH N 

H HiNH   

H 

   

1 NH NH L H
i s

MH zs  

dP 1 dpdtp dNdtH  

   

dt NH  

 1 p 

  LsNH 1 NH MH pNH 

H pNH  H NH H iNH  

 NH NH 

N H 1 N H H i p MH zp Ls 

  

de 1 de dNH  

dt NH dt e dt  

 1 e 

 
 

MH zsNH MH zpNH 

H eNH H eNH 
 

H NH H iNH   

 NH NH 

   

NH H H i e MH zs MH zp 
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dtdi N1 dIH i dNH  

 dt dt 

 H  

 1 i 

 
 

HeNH HiNH iNH HiNH 

H NH HiNH  

 NH NH 

   

NH H
i

i He 

  

 ddt N1 dT t dNH  

  dt  dt  
H 

 1 t 

 iN 

 NH H HtNH tNH NH H NH HiNH  

 i NH 

H
i

t 

dr 1 dR

 dN

H r 

dt N H dt  dt  

 1 r 

 tNH iNH rNH 1 rNH H rNH  H N H H iNH 

 

 N H N H 

   

t i N H 1 H 
i

r 

 

 dx 1 dX dNM  
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dt NM dt x dt  

 1 x 

 
 

 

 NM HM ixNM H xNM N H H NM M zNM  

 

 1 x HM ix M xz 

NM 

 dy 1 dY y dNM  

  dt  dt  

 dt NM 

  

 1 y 

HM ixNM M yNM M NM M zNM  

 NM NM 

   

HM ix NM M 
z

y 

 

 dz 1 dZ z dNM    

 dt NM dt dt  

 1 z 

yNM M zNM M zNM M NM M zNM  

 NM NM 

y N M M M z z 

dNdtH H H i NH  

 NH  

and  
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dNdtM H M z NM  

 NM  

  

  

  

Thus we have the following reduced system of equations  

dSdtH 1 N NH L Hi s MH zs   

 H  

dP 

dt NH NH  

de   

dt NH H Hi e MH zs MH

 zp  

di   

dt H NH H
i i

e 

d    

 i i t 

dt NH H  

dr   

t i 

dt NH 1 Hi r  

dx  

  1 x ix 

dt NM HM M xz 

dy   

HM ix NM M z 

y dt  

dz  y NM 

M M z z  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.56) 
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Ls 1 H
i p

MHzp  

together with total population sizes  NH and  NM satisfying  

dNdtH N H H H i NH  

 dNdtM N M z NM  

  H M 

The system of proportions involves the total human population size NH in the proportions 

for human population and the total mosquito population size NM in the proportions for 

mosquito population. We can now reduced the system to a ninedimensional system by 

eliminating s and  x since s 1 p e i r and   

x 1 y

z, respectively in the feasible region where the model makes biological sense  

dt  
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that can be shown to be positively invariant with respect to the system (3.57) where R 9  

denotes the non-negative cone of R 9 including its lower dimensional faces. Thus, we  

have the following system of equations  

dP L 1 e i r 1  p 

r H
i p

MH 
zp
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dt N N  

 H H  

de   

dt NH H H
i e

MH z 1 p e i r MH 

zp  

di  H e NH 

Hi i dt  

d   i NH 

Hi t dt  

dr  t 

i NH 1 H
i r

dt  

dNH NH HiNH 

dt H 

dy   

dt HM i 1 y z NM M 
z 

y
 

dz   

dt NM M M z z y  

dNM NM M zNM 

dt
 M 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.57) 
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The steady states of the system (3.57) is calculated, by setting the derivatives with respect 

to the time in (3.57)   to zero. Below results are obtain after simplifying it.   

 

 

 

 

 

 

     

r N 1 L 1 p e i 

r NH H
i p

MH zp  

 H  

 

 

 e   

H NH H Hi i  

   

i NH Hi t  

 

 

t i N H 1 Hi r  

 

 

 

NH H Hi 

 

HM i 1 y z N M M z 

y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.58) 
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MH z 1 p e i r MHzp N H 

H Hi e   

  

  

  

Hence the dimensionless proportions are calculated in terms of i as follows:  

 d i2 
2 d i1 d3  

 

p d i4 d5 e ci1  

t c i2  

 r c i3  (3.59)  

 

 

   

y NM M M z z  

 

 

 

NM M M z 

 

 

 



 

93  

  

y HM i[ HM i ( HM i )( M M )] HM2 2i  

 

 ( HM i M )[ HM i HM i M ( M M )]  

q i1  

z q i6 q5  

 

for     

c1 H H ,c2 ,c3 

  , H H ( H )( H 1) 

d1 L H q6 ( H (1 )c3 c1L L c2L 

c3L)q5 d2 H (1 )c3 c1L L c2L c3L, 

d3 [L(1 ) H (1 )]( M M )( M ) d4 MH q1 ( H L)q6, 

d5 ( H L)q5,q1 HM ,q5 ( M M )( M ),q6 HM ( M M ), 

where i can be obtained by substituting for e into the equation two of the system (3.58) gives  

c1i c4i c4 pi c5i c7i 

c8 

It is clear that either i 0 (for the disease-free equilibrium point E0) or  

p d i6 d7                                     (3.60) 

c4 

(endemic equilibrium point E3 ) for              

c4 MH HM 2 ,c5 MH q1,c7 MH HM 2 ( H H )( M M ) HM , 
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c8 ( H H )( M M )( M ),d6 c6c7 c5 and d7 c1c8 c4 

We make more 

realistic 

assumption that 

the protective 

control measures 

may not be totally 

effective in order 

to establish 

whether the 

unique endemic equilibria exist, and  

thus0 1.  

  

3.7.4 Existence and Uniqueness of Endemic Equilibrium E3  

The existence of the endemic equilibrium in 2, can be obtained by assuming i 0, that  

 k3 H H H 1  HH H L H 0 

B d4d7 a5a6 c4d1 

k1[( H H ) MH HM
2 ( H H )( M M )( M )] ( H L)( M M 

)( M )k2 H 

  2 H ( H 1) ( H 1)  

 

MH HM  H H 1   

MH HM
2 L H M M HM k4 M M M 0 

  

is the equations for p in (3.59) and (3.60) will be used.  

Equating (3.59) and (3.60) we get  

  

 Ai2 Bi C 0                                   

   

where   

  (3.61)  

A d4d6 c4d2 

 

 k [( H H )( 2 ( )( ) )] 

  1 MH HM H H M M HM   

H 

  1    
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with  

 H L  L  L , 

H H H 1 k1 MH HM 2 H L M 

M HM , k2 HH H 

MH HM 2 H H M M HM , k3 MH HM 2  

      

k4 H H 1 1 HH H L L H L H 

L H 1 , 
H 

C d5d7 c4d3 

H L M M 2 M 2 M 2 HH H H H 

 

 

MH HM
2 L 1 H 1 M M M  

H L M M 2 M 2 HH H H H 

1 Re2   
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For Re 1, the existence of endemic equilibria is determined by the presence in (0,1] of positive 

real solutions of the quadratic expression (3.61).  

C (L H ) M M 2 M 2 HH H H H 1

Re2 0  

 

From the quadratic theorem, if x x1, 2 are the roots of equation (61), then their product  

C 

xx1 2  . 
A 

Since C 0 and A 0, then 
C 

. Hence, there exists exactly one positive endemic A 

equilibrium for i (0,1] whenever Re 1. This gives the threshold for the endemic persistence.  

Therefore, we have proved the existence and uniqueness of the endemic equilibriumE3  for the 

system (3.56). This result is summarized in the following theorem:  

Theorem 3. If Re 1, the system (3.56) has a unique endemic equilibrium E3 .  

 3.8 Summary  

We have maintained that the transfer rates between the subclasses are composed of several 

epidemiological parameters.  

Due to the control measures, prevention and treatment two distinct epidemiological 

compartments of populations who are in the protected class (P t( )) and treated ( ( ))T t were 

added to the basic malaria model. The transfer rates between the subclasses are still 

composed of several epidemiological parameters.  
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Mathematical analysis of the model has proven that the existing domain is positive 

invariant and attracting. The model was analyzed qualitatively for the existence and 

stability of the disease-free equilibrium points.  

Effective reproduction number, Re, was identify as a tool for effective disease management 

after comparing it Rep (if the protection is the only intervention strategy being practiced), 

Ret (if the treatment is the only intervention strategy being practiced), If 

Re 1, the disease cannot persist in a country, hence Re is the useful indication of the 

effort required to eliminate an infection. It has been noted that R R R Re ep et 0 

which implied that the increasing preventive and control measures has a great effect on the 

reduction of Re  

  

  

  

    

CHAPTER FOUR  

RESULT AND DISCUSSION  

 4.1  Introduction  

This chapter presents the results and discussion of the study. Mathematical model is 

formulated for both the basic malaria model in the absence of any intervention and the 

malaria model with intervention strategies, stability analysis of the models are performed 

and numerical simulations carrying out on the models.  
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 4.2  Estimation of Parameters  

Clinical malaria data, demographic statistics of Ghana and that of world health 

organisation were used to estimate the parameters in the malaria model. Those that were 

not available were obtained from literature published by researchers in malaria endemic 

countries which have similar environmental conditions compared to Ghana. According to 

the Ghana Living Standards Survey Report of the six Round (GLSS 6), 2013, the estimated 

number of households in Ghana is 6.6015 million.it is assumed that there are 10 female 

Anopheles mosquitoes per household in Ghana. The female Anopheles mosquito 

population is then approximately given by: 6,601,500×10 = 66,015,000 mosquitoes.  

  

  

  

  

4.3 Parameter Values Of The Model  

Table 4.1: Parameter values of the Model  

  PARAMETER     VALUE  SOURCE  

  
Recruitment rate of humans  

  
0.00005079   (2010 est.) by 2011 CIA World  

Factbook  
Birth rate of mosquitoes  

  
0.071  Niger, 2008  

Per capita natural death rate for humans  
H  

1/(60×365)  At a glance: Ghana, UNICEF, 

2012  
Per capita natural death rate for mosquitoes  

  
M   0.03  estimated    

  
Progression rate of humans from the exposed 

state to the infectious state  
  H  1/14  Malaria.com, 2011  

Per capita disease-induced death rate for humans  

  
H  0.0000027  World Malaria Report 2010 for 

Ghana  

Per capita disease-induced death rate for 

mosquito  
  

M  0.06  estimated  
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Per capita rate of loss of immunity    1/90    Blayneh, et al. 

(2009)     
Progression rate of exposed mosquitoes to 

infected Mosquitoes  
  1/11    Chitnis, 2005   

Recovery rate for humans from the infected state 

to the recovered state with natural immunity  
  

  1/7   MOH (2009)   

biting rate of mosquito  

  
  0.4   

  

Chitnis (2005)   

  
Probability that a bite results in transmission of 

infection to the human  
  

MH  0.42   

  

Estimated  

Probability that a bite results in transmission of 

the parasite from an infectious human to the 

susceptible mosquito  

HM  0.0655   

  

Niger et al. (2008)   

  

Fraction of the susceptible recruited individuals 

who are protected  
  

0.11  Miranda, 2009  

Reduction of likelihood of infection by 

protection     
0.475  Estimated  

Progression rate of susceptible humans to 

protected class  
L  0.0833   NSO, 2008  

Treatment rate for humans from infected state to 

treated class  
  

0.01   NSO, 2008  

Recovery rate for humans from the treated state 

to the recovered state  
  

0.00722  Gumel, 2009   

  

  

  

 4.4 SEIR data of Ghana from 2004-2014:   

Table 4.2 provides the overview of the SEIR data of the human population. The infected 

data represents the number of confirmed malaria cases. Data of the columns labelled 

susceptible, exposed and recovered were calculated as shown:   

Recovered=infected – death   

Exposed=infected   

Susceptible=Total population - (Infected + Recovered +Exposed)   

Using the year 2004 as an example, we can calculate the recovered, exposed and susceptible 

data as follows   

(i) Recovered=3,416,033-1,575=3,414,458  
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(ii) Exposed=3,416,033  =18,718  

(iii) Susceptible=21,119,910-(3,416,033+3,414,458+18,718) = 14270701  

Table 4.2: SEIR data of the Year 2004-2012  

Table 4.2: SEIR data of the Year 2004-2012    Total 

population   

Year  
Total population  

Deaths  Susceptible  Exposed  Infected  Recovered  

2004  21,119,910  1,575  14270701  18,718  3,416,033  3,414,458  

2005  21,639,810  2,037  14716989  18,920  3,452,969  3,450,932  

2006  22,170,560  3,125  15131540  19,241  3,511,452  3,508,327  

2007  22,712,560  4,622  16453775  17,113  3,123,147  3,118,525  

2008  23,264,180  3,889  16927976  17,535  3,200,147  3,196,258  

2009  23,837,261  3,378  18542201  10,408  1,899,544  1,896,166  

2010  24,391,823  3,859  19096763  14,477  2,642,221  2,638,362  

2011  24,965,816  3,259  18469735  17,758  3,240,791  3,237,532  

2012  25,366,462  2,855  7772205  48,080  8,774,516  8,771,661  

  

  

  

  

4.5 Equations of the Basic Malaria Model  

After substituting the estimated parameter values in table 4.1 into model (3.1), we have the 

following system of non-linear differential equations  

dSH 0.00005079 0.168 
I SM H 0.011111R 0.000045662SH  



 

101  

  

 dt

 N 

With 

initial 

conditions  

SH 

0 14270701,EH 0 1 8718,IH 0 3416033,R 0 3414458, 

  

SM 0 24878462,EM 0 927401,I M 0 40209136 

  

dNH 

0.00005079 0.00004566NH 0.0000027IH  

If  we  substitute  the  values  from  table  4.1  into  the  expression    

H 

dEH 0.168 
I SM H 0.0714742EH  

dt NH 

dIH 0.071429EH 

0.1429055IH dt dR 

0.142857I 
dSM 0.071 0.0262 

I 

SH M 0.04SM  

dt H 0.01115677R 

dt NH 

dEM 0.0262 I SH M 0.12091EM  

dt NH 

dIM 0.0909091EM 0.09IM  

dt 

 

 

 

 

 

 

 

    

(4.1 )a 

 

 

 

 

 

 

 

 

 

 

  

dt 

dNM 0.071 0.04NM 0.07IM  

dt 

 

(4.1 )b 

 

 

4.5.1  Disease-free equilibrium point   
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E0 ,0,0,0, ,0,0 , and multiply through by the initial conditions, we have the  

 H M  

disease-free equilibrium point of the model system to be   

E0 15873315,0,0,0,58879027,0,0   

4.5.2 Basic reproduction number R0  

The basic reproduction number is given by:   

 R0  MH HM 2 H H   

H H H H M M M M  

0.42 0.0655 0.4 2 

1/14 1/11 0.071 1/ 60 365 R0  

1/14 1/ 60 365 1/ 7 1/ 60 365

0.0000027 1/11 0.03 0.03 0.06 0.03 0.00005079  

R0 0.7397  

Since, R0 0.7397 1, we can conclude that malaria can be wiped out from Ghana.   

  

4.5.3 Local stability of the disease-free equilibrium E0  

The Jacobian matrix of V from equation (3.22) is  

 H H  0 0 0 0 MH  

   

 H H H  0 0 0 
0 

 

  0  H  0 0 0  

   

  0 HM H 0 M 0 0   

M 
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  0 HM M H 0 0 ( M) 0  

   

  0 0 0 0  M M  

The eigenvalues are the solutions of the characteristic equation of the reduced matrix of dimension 

four which is given by   

2 

x M M x H H x M H x M MH HM

 H H 0  

M 

x 0.09 x 0.07147 x 0.2029 x 0.12091 0.00006081 0  

x4 0.48521x3 0.0832x2 0.00604x 0.00009684 0  

The solution has two negative real part -0.021769 and  -0.228736  

Also  since  the  coefficients  of  the  polynomial  

0.48521, 0.0832, 0.00604, 0.00009684 0 by the Routh-Hurwitz stability criteria 

the disease-free equilibrium point is asymptotically stable. This means that malaria free 

society can be achieved.  

  

4.5.4 The endemic equilibrium point  

From equation (3.38) A IH
2 BIH C 0,  

HM NH MH 2 HM MRR020  A 

H , 

Where 

 



 

104  

  

B HM NH H MH M RR0M02 H M NH2 H1 ,  

  H 

C H M( M)2 NH
2 

H R0
2 1

  

R0M HM    

M M M M  

0.0655 0.09091 0.4 0.071  

R0M    0.518017,and     

0.03 0.09091 0.03 0.03 0.06  

H1 HMH HN H  

  

 H =0.0655 0.41 (1/(60 365)) 21119910 ((1/(60 36 5))+(1/90)) 

H1  0.12819  

Substituting the values of ROM ,H and R10 into A, B and C where necessary   

0.42 0.4 2 0.0655 0.518017 0.0111 0.0000456621

A 0.0655 0.4 0.14286 0.0111 21119910

  

  0.54716  

A 867.55  

B [ 0.0655 0.4 0.00005079 21119910 0.0111 0.0000456621   

0.42 0.4 0.03 0.00005079 0.518017 0.011 0.0000456621   2 

2  0.0111   

0.1429 0.03 21119910 0.000012819] 

0.0000456621 0.7397  

  

B 2.1 1010  
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C 0.000045662 0.09 2 0.00005079 21119910 2 

0.0111 0.000045662 0.73972 1   

C 42.334  

Substituting the parameter values of A, B and C into equation (3.38)  

867.55 IH
2 2.1 1010IH 42.334 0  

IH 2.0159 10 9  

IH 2.0159 10 9  

Again, we calculate the susceptible, exposed and recovered humans as well as the susceptible, 

exposed and infected mosquitoes in the malaria endemic area as follows  

SH HM H 2 M  

H M R0 

0.0655 0.4 0.0000456621 2.0159 10 9 0.03 0.00005079  

SH  2   

0.0000456621 0.03 0.7397  

SH 2.0329  

EH H H 

       

H 

 (1/ 7) (1/ (60 365))  0.0000027 (2.0159 10 )  9 

EH     

1/14  

EH 4.03312 10 9              

  R .    
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H  

 1/ 7 2.0159 10  9  

R    

0.011 0.0000456621  

R 2.6072 10 8  

     SM
 

,        

HM H M  

    SM 0.0655 0.4

 0.0000456621 2.0159 10 ) 0.071 0.00005079 9 (003 0.0000  5079 ,  

 

    SM 2.3667  

 

     EM M M M HR0M      

HM H M  

  0.03 0.06 (0.03 0.0000456621 0.518017    2.0159 1 0 9) 

 

     EM 0.0655 0.4 0.0000456621 2.0159 10 9) (0.03 0.000  05079)   

EM 8.4495 10 11  

  R0 M M  IH   

    IM  

( HM IH M HN ) 

0.518017 0.03 2.0159 10 9  

 

    IM (0.0655 0.4  2.0159 10 ) 9 (0.03 21119910)    
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    IM 4.944 10 17  

If we multiply through by the initial conditions, the endemic equilibrium point is given by   

2.901 10 ,7.5492 10 ,6.8864 10 ,0.08902,5.888 1 7 4 3 0 

,7.8361 10 ,1.988 10 8 5 9   

Since C 42.334 and R 1, it implies that the malaria model for Ghana has one unique endemic 

equilibrium point.   
  

  

  

  

4.6  Equations of the model with prevention and treatment strategies   

After substituting the estimated parameter values in table 4.1 into model (3.46), we have 

the following system of non-linear differential equations as the malaria with prevention 

and treatment strategies.  

dSH 0.0000452 0.168 
I SM H 

0.011R 0.08335SH dt NH 

dP 
 

I PM 0.00004566P  

 0.000005587 0.0833SH 0.99R 0.1995  

dt NH 

dEH 0.168 I SM H 0.1995 I PM

 0.07147EH dt NH NH 

dIH 0.07143EH 

0.15291IH dt 

dT dt 0.01IH 

0.007266T dR 
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dt 0.00722T 0.14286IH 1.001157R 

dSM 0.071 0.0262 
I SH H 0.03S 

    M 

dt NH 

dEM 0.0262 I SH M 

0.12091EM  

dt NH 

dIM 0.09091E 

 

dt M 0.09 IM 
 
 

  

4.6.1 Disease-free equilibrium point    

E2 SH ,P ,EH ,IH ,T ,R ,SM ,EM ,IM  

1L , H L ,0,0,0,0, ,0,0   

  H H L H  M  

1 0.11 0.00005079 0.00005079 (0.11 0.00004566  21) 0.0833

 0.071  

 

E2 (0.0833 0.0000456621) 
, 

0.0000456621 0.0833 0.0000456621

 
,0,0,0,0, 

0.03 
,0,0

7739.81,12468008.65,0,0,0,0,58879027,0,0   
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Similarly, if the protection is the only intervention strategy being practiced, the effective reproduction 

number becomes  

MH HM 
2 

H H  

Rep  L 1 H 1     

M L H H H H M M M  

 0.42 0.0655 0.4 1/11 0.071 1/ (60 365  1/14 0.0833 

Rep  2 
 1 0.475 (1/ (60 365) 1 (0.11) 0.475

  

 0.03 0.00005079 0.0833 1/ 60 365 1/ 60 365  1/14 (1/ 

7) 0.01 0.0000027 1/11 0.03 0.03 0.06  

Rep 0.006019  

 Re  L 1 H 1       

MH HM 
2 

H H  

M L H H H H H M M M  

Re 0.0060183  

This implies that control intervention strategies have a positive impact on reduction of the 

spread of malaria.  

  

4.6.2   Effective reproduction number  e R   

  
  

        M M M H H H H M 

H H HM MH 
et R 

           

      

       

 
 

2 

  

              

                

2 
365 1 / 14 0.0655 0.0711/(60 11 / 1 0.42 0.4 

(1 365 60 / 7) 1 / 1 0.01 60 (1/14) 0.00005079 0.03 / 0.03 0.06 365 0.0000027 1 / 11 0.03 
et R  

 
        

0.7151 et R    
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4.7  Numerical Simulations   

Numerical analysis of the model is presented in this section using ODE solvers coded in 

Matlab programming language. This is conducted to find out the dynamics of the disease 

in the human population. The malaria model is simulated without any intervention and 

then with intervention strategies, and find out the effects of varying intervention 

parameter. The figures are plotted using the initial conditions and the parameter values 

presented in Table 4.1  

SH 0 14270701,P0 11214672,EH 0 1 8718,IH 0 3416033,T0 8194525,R 0

3414458, 

SM 0 24878462,EM 0 927401,I M 0 40209136 

The rates are given per year. The time-axes in all the phase portraits start from the year 2004.  

4.7.1 Dynamics of Human Population State Variables of the Basic Model  

To find out the dynamics of the disease in the population when there is no intervention to 

reduce or eradicate the disease,the simulation of basic model has been conducted. The 

susceptible populations will initially decreases with time and then increases exponentially 

as shown in Figure 4.1 when there is no intervention strategies in the model.This explains 

that the susceptible population will continue being exposed to the disease, because of that, 

the exposed population will increase. The infected population increases small due to the 

increase in the exposure to the disease. Without any intervention strategies it will take the 

country about five hundred and fifty years from now to attain malaria free nation; since 

the infectious human population ends somewhere 2565 on time-axis in figure 4. 1.   
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7 Plot of human population against time x 10 

 
  

Figure 4.1: Illustrates the changes in the four state variables of the basic malaria 

model showing the dynamics, with time, of susceptible human individuals, exposed 

human individuals, infected human individuals and shows the dynamics of recovered 

human individuals.  
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4.7.2 Prevalence in the Basic Malaria Model  

We define prevalence as the ratio of the number of cases of a disease in a population to 

the number of individuals in the population at a given time. The prevalence graph, 

increases with bigger gradient for a while and then drops asymptotically to 0 in the year 

2600. This happens as a result of a reduction in the number of susceptible individuals who 

are affected by the disease with time as most of the individuals in the society become 

affected with the disease.  

 
  

Figure 4.2: Represents changes of prevalence with time.  
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4.7.3 Simulation of the behavior of mosquito population  

From figure (4.3) below that there is an exponential decrease in all the   mosquitos’   

populations with time. The susceptible population will decrease and as such, a lot of the 

population will not be exposed to the disease. As a result of this, the exposed population 

will decrease. This implies that the plasmodium parasite cannot multiply .This is proof 

that the disease can be eradicated from the nation but will take a longtime since more work 

have to be done.  

 x 107 Plot of mosquitoes Population vrs Time 

 
  

Figure 4.3: Illustrates the changes in the three state variables of the mosquito population in the 

model with time.  
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4.7.4 Simulation of biting rate of mosquitoes on the model  

 x 107 Simulation of Biting Rate of mosquito vrs Time 

 
  

Figure (4.4): Illustrate the dynamics of vector population with time  

The Figure (4.4) contains the plot of the susceptible mosquito population, the exposed 

mosquito population and the infected mosquito population.The graph shows the 

decreasing survival probability of a mosquito as more humans are covered by insecticide-

treated bed nets and indoor residual spraying. These control measures reduce the 

availability of hosts, and kill mosquitoes that are attempting to feed, in such way reducing 

the spread of malaria.  
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4.7.5 Simulation of Protected and Treated Human Populations  

Protected and treated individuals graph in figure (4.5) show that treatment has more effect 

at early stage compare to prevention. The trend changes with time as prevention measure 

plays a bigger part in reducing the spread of malaria disease. More evidence has been 

shown further with the variation in the prevention rate L as in Figure (4.6) and the treated 

rate . Treatment is highly needed when there are more infected individuals, In 

perspective, one could conclude from the controls in Figure (4.6) and Figure (4.7) that we 

should give full prevention effort in the beginning of emergence of the disease while 

giving full treatment effort in the middle of time interval when control efforts are practiced. 

This means that prevention is more important in the beginning of the disease outbreak.  

x 107 

 
  

Figure 4.5: Shows the graphs of the protected human individuals and treated human 

individuals with time.  
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Treatment programs must be added to other interventions (such as vector reduction 

strategies and personal protection) to have a realistic chance of effectively controlling the 

disease spread. We can therefore conclusion that intervention practices that involve both 

prevention and treatment controls produces a relatively better result. Combination of these 

interventions can play a positive role in reducing or eradicating the disease in Ghana. This 

can be achieved by prompt provision of effective prevention measures and anti-malaria 

drug for treatment to reduce transmission and morbidity.  

   

  

  

  

    

CHAPTER FIVE  

CONCLUSION AND RECOMMENDATIONS  
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5.1  Conclusion  

A basic deterministic malaria model SEIR model was first formulated .The model took 

into consideration a varying total human population that includes recruitment of new 

individuals into the susceptible class through either birth or immigration. In order to assess 

the potential impact of protection and treatment strategies on the transmission dynamics 

of the disease, protected and treated classes were added to the basic model to formulate 

the malaria model with intervention strategies (SPEITR model).  

Features that will be useful to control the transmission of malaria disease in the country 

was included in the model. The result from the analysis of the model proved that there 

exists a domain where the model is epidemiologically and mathematically well-posed.  

The basic reproduction number, R0 ,which is used to determine the seriousness of the 

disease and measures how fast the disease will be spread through a population was 

calculated to be 0.7397. This result confirmed that malaria can be eliminated from Ghana.  

The model was then analyzed qualitatively for the existence and stability of their 

associated equilibria. It was showed that under the condition that R0 1 the disease-free 

equilibrium E0 is locally asymptotically stable, and when R0 1 the endemic equilibrium 

E1, appeared.   

The threshold for effective reproduction number and the basic reproduction number in the 

absence of the disease was compared. The effective reproductive number was computed 

and was found to be Re 0.0060183.When the protection is not practiced and hence 

treatment is the only intervention strategy, then effective reproduction number Re becomes 

Ret 0.7151.If protection is the only intervention strategy being practiced, the effective 
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reproduction number becomes Rep 0.006019. Re is the useful indication of the effort 

required to eliminate an infection. It was also noted that   

R R R Re ep et 0 which implied that increasing preventive and control measures has a 

great effect on reduction of Re.Thus, malaria can be eradicated out of Ghana by 

combination of strategies such as effective mass drug administration (treatment measure) 

and vector control(protection measure) that are of important in its fight.  

Numerical simulation of the model also suggests that the most effective strategy for 

controlling or eradicating malaria is not only to reduce the biting rate of the female 

anopheles mosquito through the use of insecticide-treated bed nets and indoor residual 

spraying but to include prompt and effective diagnosis and treatment of infected 

individuals.  

This study concurs with the Chavez (2008) suggestion that the intervention using 

insecticide-treated bed nets represents an excellent example of implementing an infectious 

disease control programme, and Smith et al, (2008)′s study, which showed that both 

regular and non-fixed spraying resulted in a significant reduction in the overall number of 

mosquitoes, as well as the number of malaria case in humans. Therefore, the combination 

of these interventions can play a bigger role in reducing or eradicating the transmission of 

the disease and malaria relate death cases in the Ghana. This study provides useful tools 

for assessing the potential impact of prevention and treatment strategies on the dynamics 

of malaria in Ghana.  

  

 5.2  Recommendations to stakeholders  

1. Since most of the reductions in transmission come from the protection of a few 

humans, it is very  important to improve the killing effects of insecticide mosquito treated 

bednets (ITNs) and indoor residual spray (IRS) around those who are mostly exposed to 
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the disease. however, complete coverage and improved killing effects may be necessary 

to reach control goals.  

2. Vector control interventions such as insecticide-treated nets (ITNs) and indoor 

residual spraying (IRS) are proving effective to combat and prevent the disease in Ghana. 

ITNs and IRS, with insecticidal and diversionary properties, would reduce the availability 

of hosts, and kill mosquitoes that are attempting to feed on human’s blood, and reducing 

malaria transmission.  

3. For the protection strategy to be more effective,reduction of likelihood of infection 

by protection should be reduce to a number close to zero.  

  

5.3  Recommendations for future work  

The following recommendations should be considered in:   

(1) Future models to include the effects of the environment on the spread of malaria. 

Some parameters, such as the incubation period in mosquitoes and mosquito birth rate 

depend on seasonal environmental factors such as rainfall, temperature, and humidity. We 

can include these effects by modelling these parameters as periodic functions of time. This 

would provide a more accurate picture of malaria transmission.  

(2) Cost-utility analysis can be used to determine the costs and effects of protection 

and treatment strategies  against malaria and their combinations.  
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