A CONCEPTUAL FRAMEWORK FOR A COGENERATION PLANT AT

THE KNUST CAMPUS

By

Augustine Akuoko Kwarteng

(BSc. Aerospace Engineering)

A Thesis submitted to

The School of Graduate Studies

Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

In partial fulfilment of the requirements for the

Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Department of Mechanical Engineering

College of Engineering

September 2012

DECLARATION

I hereby declare that this submission is my own work towards the Master of Science degree in Mechanical Engineering and that, to the best of my knowledge, it contains no material previously published nor material which been accepted for the award of any other degree in this University or elsewhere, except where due acknowledgement has been made in the text.

ABSTRACT

Ghana is currently plagued with a persistent trend of inadequate power supply, which has a ripple effect on all sectors of the economy. Efforts are being made at the national level via the Ministry of Energy and Ghana Energy Commission to arrest the current situation, through policies and agreements with multinational investors.

Modular biomass-based generation of electricity presents a promising avenue to harness locally available fuel resources in order to increase the national installed capacity. In this study, the technical and economic viability of a 6MWe cogeneration plant to be sited at KNUST campus was assessed as a model of community based electricity generation system. In addition to analysing the cost and thermodynamic efficiencies of the proposed system, an exergy analysis was also performed in order to establish a correlation between the exergetic measures of performance and the overall system's performance in terms of cost, energy savings and greenhouse gas (GHG) emissions.

A 6MWe biomass-based cogeneration plant is proposed with a capital cost of 11.21 US\$ million and a levelised generation cost of US\$ 0.08079/kWh. It has a second law efficiency of 50.6% and exergy destruction of 0.45 kW per KW of useful power generated. It is observed that second law thermodynamic assessment of a thermal system gives diverse ways of quantifying its performance because measures like the second law efficiency and the rates of exergy destruction depend on the extent of irreversibilities in the system.

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to Prof. E.K. Glakpe and Prof. F.K. Forson, my supervisors for their keen support throughout the course of this study. This work would not have been, without their guidance and painstaking reviews.

I would also like to acknowledge the assistance of the entire lecturers at the Mechanical Engineering Department, KNUST, notably Prof. A. Brew Hammond, Dr. Joshua Ampofo, Mr. M.N. Sackey, Dr. Kwasi Bofah, and Mr. P.O. Tawiah. I am also grateful to the management of Ghana Oil palm Development Company (GOPDC), Kwae for allowing me access to their facility. I am especially thankful to Engineer Evans Tenkorang and Mr M. Mensah Kemeh, both of GOPDC for their dedicated assistance during my visits to their facility

My final appreciation goes to my colleague graduate students for their friendliness and the times we spent together discussing our project works. All those moments really paid off.

iii

W CORNE

DEDICATION

To Mary Serwaa Nyamekye, Kingsley Boahene and Kate Mpemaah.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	X

KNUSI

CHAPTER ONE	1
INTRODUCTION	1
1.1 BACKGROUND OF TH <mark>E STUDY</mark>	1
1.2 JUSTIFICATION	4
1.3 OBJECTIVES	6
1.4 SCOPE OF WORK AND THESIS ORGANISATION	6
1.5 EXPECTED OUTCOMES	8

CHAPTE <mark>R TW</mark> O	9
LITERATURE REVIEW	9
2.1 COGENERATION: DEFINITION AND FUNDAMENTALS	9
2.2 BIOMASS AS A FUEL	10
2.3 BIOMASS BASED COGENERATION PLANT TECHNOLO)GIES12
2.3.1 STEAM TURBINE CHP SYSTEMS	13
2.3.2 COMBINED CYCLE SYSTEMS	17

CHAPTER THREE	21
METHODOLOGY	21
3.1 SOURCES OF INFORMATION	21
3.2 ENERGY UTILISATION STUDIES ON CAMPUS	21
3.3 ALTERNATE CONCEPTS FOR PROPOSED FACILITY	23
3.4 ANALYSIS AND EVALUATION OF CONCEPTS	27
3.5 SITING THE FACILITY	29
KNUST	

CHAPTER FOUR	
SIZING, PERFORMANCE AND ECONOMIC ANALYSIS	
4.1 PERFORMANCE SIZING OF SYSTEM COMPONENTS	
4.1.1 CONCEPT A	
4.1.2 CONCEPT <i>B</i>	
4.2 EXERGY ANALYSIS	
4.3 ECONOMIC ANALYSIS AND GREENHOUSE GAS SAVINGS	43

CHAPTER FIVE	
RESULTS AND DISCUSSION	
5.1 PERFORMANCE AND SIZING	
5.2 FINANCIAL ANALYSIS	
5.3 GREEN HOUSE GAS SAVINGS	53

CHAPTER SIX	. 55
CONCLUSIONS AND RECOMMENDATIONS	. 55

EFERENCES
PPENDICES 60
APPENDIX A: RESULTS OF SIZING AND PERFORMANCE ANALYSIS 60
APPENDIX B: SITE SELECTION (Maps)
APPENDIX C: RESULTS FROM RETSCREEN® ANALYSIS

LIST OF FIGURES

Figure 2. 1 Representative temperature ranges for topping and bottoming
cogeneration systems [source: EDUCOGEN, 2001]13
Figure 2. 2: cogeneration plant with pressure turbine [Singh, 2006]16
Figure 2. 3: Cogeneration system with condensing steam turbine [EDUCOGEN,
2001]
Figure 2. 4: Joule-Rankine cogeneration system with back pressure steam turbine
[EDUCOGEN, 2001]
Figure 2. 5: ASEA STAL combined cycle system with extraction - condensing steam
turbine [IEA, 1988]
Figure 2. 6: Schematic of an IBGCC [Krigmont, 1999]
Figure 3. 1: Electricity demand curves for KNUST (2006 – 2008) [courtesy: Energy
Center, KNUST]
Figure 3. 2: Schematic diagram of concept A
Figure 3. 3: Schematic of concept <i>B</i>
Figure 3. 4: Absorption Refrigeration system to be couple to the thermal plants 26
Figure 3. 5: Proposed sites for the plant
Figure 4. 1: T-s diagram of concept A
Figure 4. 3: Extended control volume of system A
Figure 4. 4: Extended control volume of Concept B
Figure 5. 1: Sankey diagram showing 24% energy savings by using the CHP of
concept <i>B</i>
Figure 5. 2: Cumulative cash flow graph for Concept A
Figure 5. 3: cumulative cash flow for Concept <i>B</i>
Figure B. 1: Google Map of KNUST
Augusting Alucela Kugatang

Figure B. 2:Map of KN	JST [Courtesy: Geomatic Eng. Dept, k	KNUST] 66
Figure B. 3: proposed si	tes	67

LIST OF TABLES

Table 5. 1: Results of sizing analysis of the concepts	48
Table 5. 2: Results of exergy analysis	49
Table 5. 3: Project cost savings/ income summary for Concept A	50
Table 5. 4: Financial viability summary for Concept A	51
Table 5. 5: Project cost savings/ income summary for Concept B	52
Table 5. 6: Financial viability summary for Concept B	52
Table 5. 7: Emission reduction summary for Concept A	54
Table 5. 8: Emission reduction summary for Concept B	54
Table A. 1: Concept A	60
Table A. 2:Concept B	62

Х

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

The growing trends of industrialisation and population increase have brought increasing demands on energy resources worldwide, a situation from which Ghana is not exempted. Issues like electricity load rationing on the national grid, shortage of liquefied petroleum gas (LPG) for domestic and industrial activities, fossil fuel price hikes on the world market, along with the looming threat of the depleting stock of fossil fuels, among others give a premonition of severe crisis in the near future if proactive measures are not taken. Measures are not only needed to make more energy resources available but also to make efficient use of what we have now. Obviously, this calls for extensive studies to explore the various energy conversion technologies as well as sustainable fuel alternatives to augment the current stock. One such window is biomass-fired cogeneration as it presents an environmentally friendly alternative.

In line with the national vision of attaining energy sufficiency for sustainable economic growth, the Ghana Energy Commission recommended that government speeds up the passage of the Renewable Energy Law to allow wind and other bulk power renewable sources to be developed quickly to access the grid [Ghana Energy Commission, 2010]. Thus, in this project, the viability of community based generation is evaluated using the KNUST campus as a pilot case.

As a leading technological university in Ghana the onus lies on KNUST not only to seek solutions to problems, but also to lead the crusade of addressing the technological issues that affect the nation – one of which is the current energy situation. A facility such as proposed in this thesis would be needed to ensure that the academic and business activities on campus are not unduly interrupted as a result of frequent power outages by the national grid. Furthermore, excess power from the facility would be fed into the national grid which would not only boost the central system but also raise revenue for its operators. Another indirect benefit is that the central grid would be relieved from the load which would have otherwise been consumed by the university community.

Biomass energy resources, which are usually waste by-products from both industrial and domestic activities, serve as attractive fuel sources because it helps in waste management as well as reducing the demand for non-renewable fuel resources. Cogeneration provides an avenue to utilise low availability thermal energy which would otherwise be dumped into the environment – thus reducing thermal pollution and also increasing the efficiency of energy utilisation. The overall efficiency of energy utilisation in combined heat and power (CHP) mode can be as high as 80 per cent [Mujeebu et al, 2009]. Along with savings of the depleting stock of fossil fuels, biomass-fired cogeneration comes with an additional advantage of reducing greenhouse gas emissions (particularly CO_2 emission) per unit of useful energy output – a condition that helps in achieving the aims of the Kyoto Protocol of 1997 which seeks to attain a set reduction in global greenhouse gas emission rates by the year 2012 [UN, 1998]. On-site generation reduces the burden on the utility networks and eliminates transmission line losses. If the utilization of biomass waste as fuel is also incorporated with CHP, it will lead to effective waste management, an additional ecological benefit. Biomass, which emanates from both natural and human activities, incorporates by-products from the timber industry, agricultural crops, forestry residues, household wastes, and wood [Zafar, 2011]. These resources range from corn kernels to corn stalks, from soybean and canola oils to animal fats, from prairie grasses to hardwoods.

From the perspective of electricity generation, the cost of collection and/or processing of the biomass residue becomes a key factor that determines the viability of the project. In the quest to harness the abundant biomass resources that are available in the country, it may be possible to use either grid dependent plants that feed power to the central grid or grid independent stations which serve the immediate community close to it depending on the requirement of the project. The former is termed as dispersed generation whilst the latter is called distributed generation, but they both fall under decentralised generation and can be powered by a wide variety of fuels depending on availability and requirements of the project. Each method has its associated merits and demerits. Distributed generation is used mainly for onsite power generation and has the advantage of eliminating the need for transmission lines all the way from a central station. On the other hand, in dispersed generation plants are strategically located on the transmission grid to overcome bottlenecks in the transmission and distribution system and to improve the stability of the system. Regardless of which mode is chosen, the end result is that the total installed capacity of the country is increased in the long run [Dondi et al, 2002].

In the design of any power plant facility, a critical issue that needs to be properly addressed is the source of fuel, its ecological implications and availability - whether seasonal or continuous. It is worth stating that there is a direct interdependence between the type of fuel and the most appropriate energy conversion technology. Other concerns such as capital and or operating cost exert a major influence on the success of any such design, notwithstanding its ecological advantages and/or technical superiority. The most appropriate technology and fuel for a given application depends on factors like availability and the regulatory framework of the area in question as well as what the project seeks to achieve. For instance, factors like greenhouse effect and global warming will advocate for a technology that helps achieve remarkable greenhouse gas savings. Areas that are close to oil reserves where natural gas and petroleum based fuels are in abundant supply are likely to use gas turbine technology all things being equal. From the foregoing background, there is every indication that power plant design involves complex linkages between energy efficiency, economics, statutory regulations and environmental sustainability, all of which demand adequate attention.

1.2 JUSTIFICATION

Energy forms the backbone and perhaps the core support on which every economy thrives. Like many developing countries, Ghana has to reckon with a perennial trend of energy insufficiency especially with electricity supply. The Ghana Energy Commission indicated a supply shortfall of 2700 GWh for the year 2010 [Ghana Energy Commission, 2010]. The discrepancy between the overall national demand of energy and the quantities being made available now yields a deficit that cripples

many sectors of the economy. For instance, VALCO, a major producer of aluminium products for both local and international markets has a regrettable trend of shutting down or working below capacity due to shortfalls in national electricity supply.

A look at our daily schedules reveals how indispensable electricity becomes as far as the very execution of most of our routines at work is concerned; ranging from simple word processing to complex automated manufacturing and processing activities. Therefore, abrupt outages in power supply result in reduced productivity, loss of revenue, and occasional accidents, with a possible damage to both life and property. Thus, economically viable energy alternatives that would afford Ghanaians the luxury of uninterrupted electricity supply need to be developed and harnessed as a matter of urgency, if the country is to achieve its millennium development goals. This is because the aspirations of developing countries for higher living standards can only be satisfied through sustained development of electric power markets as part of the basic infrastructure requirement [Energy Center, KNUST, 2008]. From an in-depth assessment of how inadequate supply of energy affects all the sectors of the economy, an example of which is the disruption of academic studies as well as business activities on the KNUST campus, it is justified to research on the possibility of implementing community based generation to augment the existing electricity supply. Even though different locations may have varying biomass resources and technical capacity, the results of this work, will, to some extent highlight the key issues that underlie biomass-based power generation and serve as a stepping stone for future investigations.

1.3 OBJECTIVES

The main aim of the project is to investigate the technical and economic viability of a cogeneration plant that would produce electricity and process heat to meet the demand of the KNUST. The central focus of the study is the generation of electricity to meet the demand on campus using a thermal power plant, whilst harnessing the low temperature thermal energy which otherwise should have been rejected to the environment for productive uses.

The specific objectives are the following;

- Identify a suitable primary fuel and a corresponding conversion technology.
- Acquire data on energy usage at KNUST campus in order to determine the electrical power needs and possible uses of thermal output from a cogeneration facility.
- Provide a conceptual framework for the facility.
- Size major elements of the facility.
- Perform economic analysis on the proposed system.
- Perform a second law thermodynamic analysis of the proposed system

1.4 SCOPE OF WORK AND THESIS ORGANISATION

It is apparent that the emphasis of this study is on electric power generation, but advantage is taken of the fact that any cyclic conversion of heat to work must be accompanied by a corresponding heat rejection – a consequence of the second law of thermodynamics, to deliver a thermal energy output as well. The usage of this low level availability energy addresses an issue of thermal waste associated with

condenser cooling water and cooling towers. Furthermore, the sustained use of biomass in energy generation offers a very ecologically sound solution to waste disposal.

Chapter One presents a summary of the current energy situation in Ghana, with emphasis on KNUST – thus setting the stage for a thorough discourse on the subject matter with the aim of unravelling an ecologically friendly and long-term sustainable solution.

Various technologies available for biomass-based cogeneration were studied in order to be abreast with the technicalities involved in the power plant studies. This is presented in Chapter Two. In Chapter Three, the procedures undertaken in the course of this study have been outlined and explained. The proposed concepts are presented in Chapter Three.

Chapter Four gives a detailed analysis of the proposed systems. A summary of the results and findings made from the study is presented in Chapter five for discussion. Additionally, the chapter five presents some practical implications of these findings and the extent to which they contribute to the success or otherwise of the power plant facility.

Chapter six elaborates further on the findings in order to arrive at practical conclusions and make policy recommendations for stakeholders in the energy sector and other interested clients.

1.5 EXPECTED OUTCOMES

Demonstration of the techno-economic viability of a community based cogeneration technology at such a scale encourages investment decisions of company owners towards implementing such projects. Institutions that produce combustible waste in large quantities or are sited near easily exploitable biomass resources, such as Sokoban saw mill and Ejura farms can take advantage of CHP technology to cater for their own power as well as process heating, space heating (or cooling) needs.

The energy ministry, district and metropolitan authorities, as well as other stake holders in energy conversion and utilisation can consider biomass-based generation as a sustainable alternative in the provision of clean, efficient energy to meet the socio-economic needs of the country.

CHAPTER TWO

LITERATURE REVIEW

2.1 COGENERATION: DEFINITION AND FUNDAMENTALS

Cogeneration, involves the thermodynamically sequential production of two or more useful forms of energy from a single primary energy source. The two most usual energy forms delivered from cogeneration systems are mechanical and thermal energy. Mechanical energy is usually used to drive an electric generator. Thus, even though restrictive, most literature defines cogeneration as the combined production of electrical (or mechanical) and useful thermal energy from the same primary energy source [EDUCOGEN, 2001] – hence it is also referred to as combined heat and power (CHP) system.

Auxiliary equipment such as compressors, pumps and fans can also be driven by the mechanical energy produced by the system, whilst the thermal energy output can be used either for heating or for cooling. Cooling is effected by an absorption unit, which can operate through hot water, steam or hot gases. In Ghana, institutions like Ghana oil Palm Development Company (GOPDC), Juaben Oil Mills, and Twifo Oil Palm Plantation make use of CHP's.

At GOPDC, by products from the oil processing namely palm kernel shells, palm kernel cake, palm fruit fibres and empty palm fruit bunches are used in firing the cogeneration plant. The facility operates a 2.5MWe two-stage extraction steam turbine at inlet pressure of 25 bars (2.5MPa). Steam is bled at after the first stage expansion at a pressure of 3 bars (0.3MPa) for sterilisation and heating at the oil mill.

Cogeneration systems often capture otherwise wasted thermal energy, usually from an electricity producing device like a heat engine and use it for space and water heating, industrial process heating, or as a thermal energy source for another system components [Lawn, 1981]. Since it provides a means of reducing primary energy consumption, it serves as an effective option in mitigating the environmental impacts associated with energy conversion, and can be adopted in various industrial sectors such as pulp and paper, brewery food processing among others.

INUS

The basic requirement for the implementation of a cogeneration system is that the industry must require both electrical power and heating (process heat) in its operations [UNEP, 2007]. In settings where there is a coordinated demand for both power and heat energy, cogeneration technology offers a promising energy conversion option as compared to the separate production of heat and centralised electricity [Fryling, 1966]. On the other hand, the potential of CHP could be limited due to the constraint of necessary heat demand.

2.2 BIOMASS AS A FUEL

Biomass is an ecological term for organic material, both above and below the ground, both living and dead, such as trees, crops, grasses, tree litter and roots. It excludes organic material which has been transformed by geological processes into substances such as coal or petroleum. The sources and quantities are wide and extensive such as industrial, agricultural, and municipal solid wastes [Sutton et al, 2012]. Generating electricity from biomass is a plausible way of utilising this

valuable resource because it presents an opportunity for eliminating waste/pollution problems and simultaneously producing electricity. Burning of biomass as a means of waste disposal has become rampant in communities and industries that are overwhelmed by their high levels of waste generation. For instance, at Oforikrom saw mill, heaps of wood residues are burnt. Thus, it would be laudable if a conscious effort is made to harness the energy stored in these waste products for productive purposes thereby freeing the surroundings from solid waste.

KNUST

Additionally, biomass fuels use the same technology that has become common in the power generation industry – burning fuel in furnaces to generate steam in boilers and then driving turbines with the steam's energy to produce mechanical or electrical energy. As a renewable energy resource biomass has become very attractive as a source of fuel due to its carbon neutral characteristics. Plants and trees extract CO_2 from the atmosphere and store it as they grow whilst burning of biomass in energy generation returns this captured CO_2 to the atmosphere, thereby keeping the atmospheric carbon cycle in a balance [UNEP, 2007].

Biomass fuel is very often available at low cost or may be available even free because in some cases wastes can only be disposed of at additional cost to a company or industrial entity. Hence, the generator of the waste will welcome any means to get rid of the waste at close to zero cost, if possible. From the perspective of electricity generation, the cost of collection of the residue becomes the key factor in determining its viability. If the fuel has a seasonal nature of supply, then the electric generating facility need to either have a large storage facility or alternative sources of fuel. Fuels such as rice husks and maize cobs are produced during processing of these crops. This takes place after harvesting of the crop, so the waste is already concentrated at a point and is an easily exploitable source of energy - particularly if it can be utilised on site to provide heat and power.

2.3 BIOMASS BASED COGENERATION PLANT

TECHNOLOGIES

Cogeneration systems may be classified either as topping systems or as bottoming systems depending on the sequence of production of outputs. In topping systems, a high temperature working fluid (either exhaust gases or steam) drives an engine to produce electricity, while low temperature heat is used for thermal processes or space heating (or cooling). In bottoming systems, the primary fuel produces high temperature thermal output, and the rejected heat is used to generate power through a recovery boiler and turbine generator. Bottoming systems are suitable for manufacturing processes, where high quality thermal energy is required and usually used in cement, steel, ceramic, gas and petrochemical industries. Figure 2.1 shows representative temperature ranges for topping and bottoming cogeneration systems.

Figure 2. 1 Representative temperature ranges for topping and bottoming cogeneration systems [source: EDUCOGEN, 2001]

A CHP facility essentially consists of a prime mover, power production system, and a heat recovery system. According to the prime mover used, a biomass-based CHP system can be classified either as using a steam turbine technology (CHP-ST) or an integrated Gasification Combined Cycle Technology (CHP-IGCC)

2.3.1 STEAM TURBINE CHP SYSTEMS

Steam turbine generation systems are traditional thermo-electric power stations, where fossil fuels or biomass are used in direct-flame boilers to produce steam. Steam is then partially bled from the turbine and sent to meet process heating requirements, or it is used to heat a secondary fluid, usually water. A system based on steam turbine consists of three major components: a steam generator, a steam turbine and a heat sink. The system operates on the Rankine cycle, either in its basic form or in its improved versions with steam reheating and regenerative water preheating. The most common steam generator is a boiler, which can either burn any

type of fuel or certain combinations of fuels, and may produce superheated steam. Steam turbine systems have a high reliability (which can reach 95%), high availability (in the range of 90-95%) and long life cycle (25-35 years). However, the installation period is rather long, requiring 12-18 months for small units, and up to three years for large systems [EDUCOGEN, 2001].

Steam turbines are the most commonly employed prime movers for cogeneration applications due to their simplicity and low capital cost. In the steam turbines, high pressure steam is expanded to a lower pressure level, converting part of its thermal energy to kinetic energy through nozzles and then to mechanical power through rotating blades. The types of steam turbine include back pressure steam turbines (BPST) and extraction-condensing type.

The back pressure turbine CHP arrangement becomes attractive due to its inherent high total efficiency because there is no rejection of heat through a condenser. There is a reduced or sometimes no need of cooling water and the avoidance of expensive low pressure turbine stages - thus resulting in a low capital cost. One drawback of BPST is that the flow rate of steam through the turbine depends on the thermal load. Consequently, the electricity generated by the steam is controlled by the thermal load, resulting in little or no flexibility in directly matching electrical output to electrical load. Due to this constraint BPST's are often used in CHP's where power and heat are needed simultaneously, and in rather stable shares, since they produce heat and electricity in a constant ratio. Therefore, it becomes necessary to provide a two-way connection to the grid for purchasing supplemental electricity or selling excess electricity generated. A rather inefficient and thus less elegant means of increasing the electricity production is by venting excess steam directly to the atmosphere, as any increase in power would require an increased steam flow rate.

The BPST is usually larger for the same power output than the extraction-condensing unit type, because the former operates under lower enthalpy difference as the steam is not expanded to the lowest permissible pressure in the cycle. The steam rather leaves the turbine at an intermediate pressure which is suitably high for the steam or process heating requirements. Generally, the steam leaving at high pressure from the BPST is superheated and therefore unsuitable for heating due to the low heat transfer rates of superheated steam [Singh, 2006]. Thus, it is usual to make provision for desuperheating as shown in Figure 2.2 in order to bring the steam to a saturated vapour state for higher heat transfer rates and convenient control of temperature in the process heater.

Extraction-condensing steam turbines, on the other, hand allow the extraction of steam from one or more intermediate stages at the appropriate pressures and temperatures for the process heating as shown in Figure2.3. The remaining steam is exhausted to the pressure of the condenser, which can be as low as 0.05 bar (5kPa) with corresponding condensing temperature of about 33°C. Generally, the condensing steam turbine has a higher capital cost and a lower total efficiency as compared to the back pressure system. However, the former allows to a certain extent, an independent control of the electrical power by proper regulation of the steam flow rate through the turbine.

Figure 2. 2: Cogeneration plant with pressure turbine [Singh, 2006]

Figure 2. 3: Cogeneration system with condensing steam turbine [EDUCOGEN, 2001]

2.3.2 COMBINED CYCLE SYSTEMS

Combined cycle systems operate based on two thermodynamic cycles, which are connected with a working fluid and operate at different temperature levels. The high temperature cycle (topping cycle) rejects heat, which is recovered and used by the low temperature cycle (bottoming cycle) to produce additional electrical (or mechanical) energy, thus increasing the electrical efficiency [EDUCOGEN, 2001]. A widely used combined cycle configuration is the Joule-Rankine cycle. Figure 2.4 illustrates a simplified schematic of a Joule-Rankine combined cycle system, whilst Figure 2.5 shows a more elaborate system with double pressure boilers. Double- or triple-pressure steam boilers increase the efficiency of the system by enhancing the heat recovery, but add extra complexity; thus making it suitable only in large systems [EDUCOGEN, 2001].

The arrangement in Figure 2.4 uses a back pressure steam turbine. Condensing turbine is also possible, while extraction can also be used with either the backpressure or the condensing turbine.

Figure 2. 4: Joule-Rankine cogeneration system with back pressure steam turbine [EDUCOGEN, 2001]

Figure 2. 5: ASEA STAL combined cycle system with extraction - condensing steam turbine [IEA, 1988]

In a combined cycle power station, a gas turbine (GT) is used to generate electricity, and the waste heat from the GT is used in a heat recovery steam generator to generate additional electricity. In conventional gas turbines, the use of distillate fuels usually diesel is common. In projects where the cost of a gas pipeline can be justified natural gas could be used.

Where the GT is fired on gas derived from the gasification of organic/ carbonaceous materials, the cycle is termed as Integrated Gasification Combined cycle. Integrated Biomass Gasification Combined Cycle (IBGCC) systems are such that the traditional combustor is replaced with a gasifier and gas turbine. Exhaust heat from the gas turbine is used to produce steam for a conventional steam turbine. The gas and steam turbines operate together as a combined cycle [Krigmont, 1999]. In essence, an IBGCC integrates a biomass gasification system into a typical combined cycle plant – hence its name (see Figure 2.6)

Figure 2. 6: Schematic of an IBGCC [Krigmont, 1999]

It is possible to attain high efficiencies with this technology based on a clean and renewable fuel. Such plants can run on low rank fuels at reasonable efficiencies of 35%-50% based on net heating value [Krigmont, 1999]. The attractive features of the IBGCC Power Generation technology include its environmental superiority to conventional green biomass fired plant, high thermal efficiencies, potential applicability to a variety of fuels and generation cost. The most pressing need for advanced gasification technology is the need to repower older coal-, oil-, and/or gas-fired boilers that typically have low efficiency and high emission levels. However, its inherent complexity and high capital cost does not make it attractive for small scale and modular generation. [Krigmont, 1999]

CHAPTER THREE

METHODOLOGY

3.1 SOURCES OF INFORMATION

In the course of this study, published literature materials were identified on areas such as cogeneration, biomass fuels and conversion technologies in order to gain an in-depth insight on the subject matter. Additionally, some Power plant facilities were visited, and observations were made on the systems and components. Places visited include the Ghana Oil palm development company (GOPDC), at Kwae, Takoradi Thermal Plant (TTP). Other areas like Sokoban wood village, dump fill sites, and saw mills in Kumasi were also visited in order to ascertain the viability of using biomass as a fuel. During the visits, questions like the type of fuel, the most suitable conversion technology, power plant specifications and operating conditions, economic and environmental sustainability among others were answered, thus leading to a clear cut path for the execution of the project. The RETScreen® software also has an in-built data which was utilised during the economic and emission analysis [Natural Resources Canada, 2012]. The Steamtab® companion, a steam property look up application was also used in reading the properties of the working fluids [ChemicaLogic®, 2003].

3.2 ENERGY UTILISATION STUDIES ON CAMPUS

Data on the electricity consumption at KNUST was acquired from the Energy Center, KNUST. The available data gives electricity consumption trends for the years 2006 through to 2008 as shown in Figure 3.1, having a peak demand of approximately 3.5MWe. The proposed concepts are designed to meet a requirement of 6MWe. In order to identify possible uses for the thermal energy output of the system, areas like absorption refrigeration, incubation in poultry rearing, crop drying, and space heating for farm animals during cold seasons were considered. In deciding on which need has to be satisfied in the execution of a cogeneration project on campus, attention was paid to the necessity to minimise capital as well as operating cost, whilst satisfying the needed purpose.

KNUST

The thermal energy output of a thermal plant can be classified in three ranges according to the temperature at which heat is supplied [Toussaint, 2012]. At temperatures below 60 °C, it is considered as low grade (or "waste") heat because it has little availability for any useful work. Thermal outputs at temperatures ranging between 70 and 100 °C are considered as medium grade temperature and can be used for space heating or absorption cooling. For the purpose of industrial heating, usually, high grade heat is required at temperatures of 120°C and above.

Figure 3. 1: Electricity demand curves for KNUST (2006 – 2008) [courtesy: Energy Center, KNUST]

3.3 ALTERNATE CONCEPTS FOR PROPOSED FACILITY

Two biomass fired concepts were developed and analysed as presented in the subsequent sections. Concepts A and B are both cogeneration plants, with their thermal outputs being used in absorption air conditioning as shown in Figure 3.4. The choice of absorption air-conditioning is due to the fact that predominantly high temperatures in a tropical location like Ghana makes it a more desirable, as compared to crop drying, and district heating. Though Ghana is mainly an agricultural country, the proposed facility would be sited in an academic community where there are several computers, laboratory instruments and laptops requiring low temperature environments for their usage – thus, making the choice of an absorption chiller a reasonable one.

Concept *A* utilises a back pressure steam turbine with the steam exhaust connected to the process heater. As shown in Figure 3.2, high temperature steam from the boiler is expanded in the turbine to produce power and the lower temperature exhaust steam is utilised in the process heater. The advantage of such a design lies in its simplicity, and low capital cost. However, it has an inherent limitation of constant heat to power ratio, which results in little or no flexibility of thermal/electrical load matching as the flow rate of the working fluid is determined by the thermal load. Additionally, the quality of thermal energy output needed may require that the turbine expansion is not carried out to the lowest permissible pressure in the system. Thus, a bigger steam turbine will be required for the same power output requirement due to the reduction in the enthalpy change across the turbine as a result of the constraint likely to be imposed by the process heater.

Figure 3. 2: Schematic diagram of concept A

Concept B uses a two stage steam turbine with inter-stage extraction (see Figure 3.3). The bled steam and the exhaust steam together exchange heat with the coolant without mixing. Thus, this heat exchanger replaces the condenser in a conventional plant. The only difference here is that the coolant in this case is a refrigerant which links the power plant facility to an absorption refrigeration circuit.

In the absorption refrigeration system coupled to the power plants, the traditional compressor as used in vapour compression systems is replaced by a rather intricate absorption compression system. The refrigerant used is aqueous ammonia. As shown in Figure 3.4, a low temperature, weak solution of the refrigerant enters a generator where it exchanges heat with the turbine exhaust steam from the steam cycle. The heat absorbed drives high pressure ammonia vapour out of the solution, and the
liquid returns to an absorber via a throttling valve. The high pressure vapour is sent to the condenser, expansion valve and then to an evaporator where it extracts heat from the refrigerated space. The low pressure strong solution from the evaporator is sent to an absorber where it absorbed by the liquid. The process in the absorber is exothermic, thus requiring air or water cooling. The low pressure, low temperature weak solution from the absorber is pumped back to the generator to complete the cycle.

The nominal coefficient of performance (COP) of single-stage absorption chillers at generator heat input of 116°C (240°F) ranges from 0.65 to 0.70 (Cengel et al, 2006). It becomes a reasonable choice when the unit cost of heat (thermal energy) is low or thermal energy is available that would otherwise be wasted, such as in the steam turbine plant facility proposed in this work.

Figure 3. 4: Absorption Refrigeration system to be couple to the thermal plants

3.4 ANALYSIS AND EVALUATION OF CONCEPTS

The concepts were analysed and their performances were compared. The performance indices considered include overall efficiency, electrical efficiency, process heating efficiency, Fuel energy saving ratio (FESR)

• Electrical efficiency

$$\begin{split} \eta_{e} &= \frac{\dot{W_{e}}}{\dot{H_{f}}} = \frac{\dot{W_{e}}}{\dot{m_{f}}H_{u}} \end{split} \tag{3.1} \\ \text{where } \dot{W_{e}} &= \text{net electrical power output} \\ \dot{m_{f}} &= \text{mass flow rate of fuel} \\ H_{u} &= \text{lower heating value of fuel} \\ \dot{H_{f}} &= \text{rate of fuel energy supply} \end{split}$$

• Thermal efficiency

$$\eta_{\rm h} = \frac{\dot{\rm Q}}{\dot{\rm H}_{\rm f}} = \frac{\dot{\rm Q}}{\dot{\rm m}_{\rm f} {\rm H}_{\rm u}} \tag{3.2}$$

where $\dot{Q} = useful$ thermal output of the cogeneration sytem

• Utilisation factor

$$\zeta = \frac{\dot{W_e} + \dot{Q}}{\dot{H}_f}$$
(3.3)

It should be noted however that the quality of heat is lower than the quality of electricity, with the quality of heat further dependent on the temperature at which it is made available. For example, the quality of heat in the form of hot water is lower than the quality of heat in the form of steam. Consequently, it may be argued that adding heat and electricity is not very proper, as it appears in equation (3.3). It is true

that sometimes a comparison between systems based on the energy efficiency may be misleading. Even though energy efficiencies are most commonly used up to now, a thermodynamically more accurate evaluation and a more fair comparison between systems would be one based on the second law efficiency. Hence, exergy analysis is also performed on the systems in order to obtain the second law efficiencies, the rates of exergy destruction and entropy generation per unit of useful output produced.

Power to heat ratio

$$PHR = \frac{\dot{W}_e}{\dot{Q}}$$
(3.4)

• Fuel energy saving ratio

$$FESR = \frac{\dot{H}_{fs} - \dot{H}_{fc}}{\dot{H}_{fs}}$$
(3.5)

where \dot{H}_{fs} = total fuel power utilised for separate production \dot{H}_{fc} = fuel power for cogeneration producing the same \dot{W}_{e} and \dot{Q}

From the energy savings point of view, a cogeneration system will be worthwhile if it has FESR greater than zero as this value represents the percentage reduction in fuel demand attainable by using the cogeneration facility as against separate generation.

By combining equations (3.2), (3.4) and (3.5) we obtain;

$$\zeta = \eta_e \left(1 + \frac{1}{PHR} \right) \tag{3.7}$$

This can further be rearranged to give;

$$PHR = \frac{\eta_e}{\zeta - \eta_e}$$
(3.8)

For a system with known electrical efficiency, equations (3.6) and (3.7) help in the determination of the acceptable values of the power to heat ratio. It should be mentioned that the power to heat ratio is one of the main characteristics for selecting a cogeneration system for a particular application.

3.5 SITING THE FACILITY

The proposed sites were selected having in mind that the operation of the facility should not disturb the serene atmosphere for academic activities. Siting the facility near the banks of river Wiwi, guarantees the availability of water for running the plant and also minimises the pumping cost of water. Furthermore, the chosen locations are close to the electricity substation on campus as can be seen from figure 3.5 (see Appendix for B).

CHAPTER FOUR

SIZING, PERFORMANCE AND ECONOMIC ANALYSIS

4.1 PERFORMANCE SIZING OF SYSTEM COMPONENTS

The components of the various concepts were sized by a first law analysis of their thermodynamic cycles as presented in sections 4.11 and 4.12.

4.1.1 CONCEPT *A*

Mode of operation:

Heat supplied from the furnace is absorbed by the working fluid from state 9 to 2, as shown on the T-s diagram in figure 4.1. The superheated steam at 2 is expanded in a steam turbine to state 4 from pressure P_b to P_c . It is desired that at state for the working fluid possess thermal energy at a quality suitable to be used in a process heater, setting a constraint on the interval of expansion. Between state 4 and 5, the working fluid exchanges heat with a coolant. Essentially, this thermal energy extracted is the process heat output from this cogeneration system. The condensate at state 5 is pumped back to the boiler pressure P_b at state 8. The working fluid then enters an economiser section where it is preheated by the flue gases. The electrical generator coupled to the turbine converts the shaft power to electrical power.

Figure 4. 1: T-s diagram of concept A

Assumptions

- The system and all components operate in steady state.
- All heat transfer processes in the steam cycle occur at constant pressures.
- Heat losses through pipes as the working fluid moves from one component to another are negligible.
- The steam turbine and pump processes are adiabatic.
- For all the components, changes in potential energy and kinetic energy are negligible.
- he ambient behaves as a thermal reservoir.

Cycle efficiency:

$$\eta_{cy} = \frac{w_{net}}{q_{in}} = \frac{[h_2 - h_4] - [h_8 - h_5]}{[h_2 - h_8]}$$
(4.1)

Electrical generator efficiency:

$$\eta_{g} = \frac{\text{Electrical power output}}{\text{Shaft power}} = \frac{\dot{W}_{e}}{\dot{W}_{net}}$$
(4.2)

Steam generator efficiency:
$$\eta_{sg} = \frac{\dot{Q}_{cyle}}{\dot{Q}_{fuel}} = \frac{h_{2} - h_{8}}{\dot{m}_{f}H_{u}}$$
(4.3)

Turbine isentropic efficiency:
$$\eta_{T} = \frac{h_{2} - h_{4}}{h_{2} - h_{4s}}$$
(4.4)
$$h_{2} = \frac{h_{4} - \eta_{T}h_{4s}}{1 - \eta_{T}}$$
(4.5)

Net cycle work per unit flow through the boiler:

$$\frac{W_{\text{net}}}{\dot{m}} = [h_2 - h_4] - [h_8 - h_5]$$
(4.6)

Pump work:

Process 5-8_s is isentropic;

$$h_{8s} - h_5 = v_5 [P_8 - P_5]$$

$$h_{8s} = h_5 + v_5 [P_8 - P_5]$$
(4.7)

Pump efficiency

$$\eta_{P} = \frac{h_{8s} - h_{5}}{h_{8} - h_{5}}$$

$$h_{8} = h_{5} + \frac{h_{8s} - h_{5}}{\eta_{P}}$$

$$(4.8a)$$

$$(4.8b)$$

- The electrical output \dot{W}_e was set as 6MW.
- The generator efficiency η_g is known from the electrical generator.
- The net cycle power \dot{W}_{net} is calculated from equation (4.2)
- Boiler pressure (P_b) and Condenser (P_c) pressure are known from the proposed steam turbine to be used.
- Since state 5 is a saturated liquid at P_c , $h_5 = h_f @ P_c$

•
$$h_4 = h_f + x_4(h_g - h_f)$$
 (4.9)

Setting a suitable steam exit quality at state 4 helps to determine h_4

• The pump and turbine efficiencies, η_P and η_T can be obtained from manufacturers or assumed from literature.

- W_{net}/m is recognised to be proportional to the inverse of specific steam consumption (ssc) which can be set by the designer
- h_{8s}, h₈, h₂, η_{cy} can be calculated using equations
 (4.7), (4.8b), (4.6) and (4.1) respectively.
- The required flow rate through the boiler is calculated using equation (4.6)
- Size of turbine (gross turbine power required)

• Size of pump (pump power required)
$$(4.10)$$

$$\dot{W}_{\rm P} = \dot{m}[h_8 - h_5] \tag{4.11}$$

• Rate of heat rejection from steam cycle

$$\dot{Q}_{C} = \dot{m}[h_4 - h_5]$$
 (4.12)

- Heat input rate required by cycle $\dot{Q}_{cy} = \dot{m}[h_2 - h_8]$ (4.13)
- Heat available for the process heating

$$\dot{Q}_{h} = \varepsilon \dot{Q}_{C} = \varepsilon \dot{m} [h_4 - h_5]$$
(4.14)

Now,

$$\dot{Q}_{h} = \epsilon \dot{m} [h_{4} - h_{5}] = \dot{m}_{c} [h_{out} - h_{in}]$$
(4.15)

With the assumption that the coolant (aqueous ammonia refrigerant) undergoes a constant temperature process

$$\dot{m_{c}} = \frac{\varepsilon \dot{m} [h_{4} - h_{5}]}{c_{p} [T_{out} - T_{in}]}$$
(4.16)

where ϵ = heat exchanger effectiveness

 $\dot{m_c} = mass$ flow rate of coolant

 $c_{\rm p}=$ specific heat of coolant at constant pressure

 $T_{out} = temperature \ of \ coolant \ leaving \ heater$

 $T_{in} = temperature \ of \ coolant \ entering \ heater$

• Fuel Requirements:

From equation (4.3) the gross heating rate required in the furnace is

calculated as

$$\dot{H}_{fc} = \frac{\dot{m}[h_2 - h_8]}{\eta_{sg}}$$
 (4.17)

With a corresponding fuel supply rate given as

$$\dot{m}_{f} = \frac{\dot{m}[h_{2} - h_{8}]}{\eta_{sg}H_{u}}$$
(4.18)

Efficiency of electrical power generation

$$\eta_{e} = \frac{\dot{W}_{e}}{\dot{H}_{fc}} = \left(\frac{\dot{W}_{e}}{\dot{W}_{net}}\right) \left(\frac{\dot{W}_{net}}{\dot{Q}_{cy}}\right) \left(\frac{\dot{Q}_{cy}}{\dot{H}_{fc}}\right)$$
(4.19*a*)

$$\eta_{\rm e} = \eta_{\rm g} \eta_{\rm cy} \eta_{\rm sg} \tag{4.19b}$$

• Efficiency of thermal output

$$\eta_{\rm h} = \frac{\eta_{\rm sg} \epsilon [h_4 - h_5]}{[h_2 - h_8]} \tag{4.20}$$

• Utilisation factor

$$\zeta = \frac{\dot{Q}_{h} + \dot{W}_{e}}{\dot{H}_{fc}}$$
(4.21)

Comparison to separate generation of the same \dot{W}_e and \dot{Q}_h

• Assuming the same steam generator is used to provide the process heat, the fuel energy required for heating only is given as;

$$\dot{H}_{\rm fh} = \frac{\dot{Q}_{\rm h}}{\eta_{\rm sg}} \tag{4.22}$$

• Fuel energy required to generate electrical power only

$$\dot{H}_{fe} = \frac{\dot{W}_{e}}{\eta_{sg}\eta_{g}\eta_{cy}}$$
(4.23)

In equation (4.23), the only efficiency term that might differ from that of the cogeneration system is η_{cy} , because the absence of a thermal output requirement in the case of separate generation of electricity means that P_c can be made lower than in the former.

• Overall efficiency of separate generation

$$\eta_{c} = \frac{\dot{Q}_{h} + \dot{W}_{e}}{\dot{H}_{fc}}$$
(4.24)
Fuel energy saving ratio
$$FESR = \frac{\dot{H}_{fs} - \dot{H}_{fc}}{\dot{H}_{fs}}$$
(4.25)

All other things being equal, it will makes technical sense to operate in cogeneration mode if $\zeta > \eta_c$ and FESR > 0.

4.1.2 CONCEPT **B**

The operation of concept B is illustrated on the T-s diagram in figure 4.2.

Figure 4. 2: T-s diagram of concept B

Based on the same assumptions set forth for Concept A in section 4.11, concept B

was also analysed as follows;

Cycle efficiency

$$\eta_{cy} = \frac{w_{net}}{q_{in}} = \frac{[w_{23} + w_{34}] - [w_{56} + w_{78}]}{q_{82}}$$

$$\eta_{cy} = \frac{w_{net}}{q_{in}} = \frac{[h_2 - h_3] + (1 - y)[h_3 - h_5] - (1 - y)[h_6 - h_5] - [h_8 - h_7]}{[h_2 - h_8]}$$
(4.26)

Net cycle work per unit flow through the boiler

$$\frac{\dot{w_{net}}}{\dot{m}} = [h_2 - h_3] + (1 - y)[h_3 - h_5] - (1 - y)[h_6 - h_5] - [h_8 - h_7]$$
(4.27)

Turbine isentropic efficiency:

For process 2-3:

$$\eta_{T} = \frac{h_{2} - h_{3}}{h_{2} - h_{3s}}$$
(4.28)
For process 3-4
$$\eta_{T} = \frac{h_{2} - h_{3}}{h_{2} - h_{3s}}$$
(4.29)
Pump processes
Process 5-6_s is isentropic
$$h_{6s} - h_{5} = v_{5}[P_{6} - P_{5}]$$
(4.30)

From the definition of pump efficiency

$$\eta_{\rm P} = \frac{h_{6\rm s} - h_5}{h_6 - h_5} \tag{4.31a}$$

$$h_6 = h_5 + \frac{h_{6s} - h_5}{\eta_P}$$
(4.31b)

Process 7-8_s:

$$h_{8s} - h_7 = v_7 [P_8 - P_7]$$

$$h_{8s} = h_7 + v_7 [P_8 - P_7]$$
(4.32)

$$\eta_{\rm P} = \frac{h_{8\rm s} - h_7}{h_8 - h_7} \tag{4.33a}$$

$$h_8 = h_7 + \frac{h_{8s} - h_7}{\eta_P}$$
 (4.33b)

• Rate of heat rejection from steam cycle

$$\dot{Q}_{C} = \dot{m}\{[h_{3} - h_{10}] + (1 - y)[h_{4} - h_{5}]\}$$
(4.34)

- Heat available for process heating $\dot{Q}_{h} = \varepsilon \dot{m} \{ [h_{3} - h_{10}] + (1 - y) [h_{4} - h_{5}] \}$ (4.35)
- The electrical output

$$\dot{W}_{e} = \dot{m}\eta_{g} \{ [h_{2} - h_{3}] + (1 - y)[h_{3} - h_{4}] - (1 - y)[h_{6} - h_{5}] - [h_{8} - h_{7}] \}$$
(4.36)

• Power to heat ratio

$$PHR = \frac{\dot{W}_{e}}{Q_{h}} = \frac{\eta_{g}\{[h_{2} - h_{3}] + (1 - y)[h_{3} - h_{4}] - (1 - y)[h_{6} - h_{5}] - [h_{8} - h_{7}]\}}{\epsilon\{[h_{3} - h_{10}] + (1 - y)[h_{4} - h_{5}]\}}$$
(4.37)

• Size of turbine (gross turbine power required)

$$\dot{W}_{\rm T} = \dot{m}\{[h_2 - h_3] + (1 - y)[h_3 - h_5]\}$$
(4.38)

• Size of pump (pump power required)

Feed pump one: $\dot{W}_{P1} = \dot{m}\{(1-y)[h_6 - h_5]\}$ (4.39)

Feed pump two:
$$\dot{W}_{P2} = \dot{m}[h_8 - h_7]$$
 (4.40)

• Heat input rate required by cycle

$$\dot{Q}_{cy} = \dot{m}[h_2 - h_8]$$
 (4.41)

Equations (4.17) through to (4.23) for concept A also apply for concept B.

The equations developed in sections 4.11 and 4.12 for Concepts A and B respectively were executed with Microsoft[®] Excel worksheets. The detailed results can be found at Appendix A. A summary of the results is presented in Chapter 5 for discussion.

4.2 EXERGY ANALYSIS

Exergy represents the theoretical maximum amount of work that can be derived from a system when it is brought into thermodynamic equilibrium with its surroundings [Jørgensen, 2000]. In order to specify exergy as a property of any given system, a reference state has to be specified for the surrounding (also known as dead state) [Çengel et al, 2006]. It is often convenient to use it on a unit mass basis; thus specific exergy is defined as the exergy per unit mass of the system. It consists of both thermo-mechanical (which depends on its thermodynamic state) and chemical exergy if there is the potential for a chemical change to occur.

An extended control volume around system *A*, indicating the flux of exergy across the control volume is shown in Figure 4.3.

Figure 4. 3: Extended control volume of system A

System A was analysed as follows;

Invoking the exergy balance equation for the extended control volume:

$$\sum \text{ exergy flux in } -\sum \text{ exergy flux out } -\binom{\text{Rate of exergy}}{\text{destruction}} = \binom{\text{Rate of exergy}}{\text{change}}_{\text{volume}}$$

$$\dot{m}_{air}\psi_{air} + \dot{m}_{fuel}\psi_{fuel} - \dot{m}_{eg}\psi_{eg} - \dot{Q_L}\left(1 - \frac{T_o}{T_o}\right) - \dot{Q_R}\left(1 - \frac{T_o}{T_o}\right) - \dot{W_e} - \dot{X}_{des} = \left(\frac{\Delta X}{\Delta t}\right)_{cv}$$
(4.42)

Where ψ represents the specific exergy carried by the respective masses.

Since the system operates in steady state $\left(\frac{\Delta X}{\Delta t}\right)_{cv} = 0$

Additionally, the exergy flux due to the heat leaving the control volume in the equation (4.42) go to zero because they are both rejected at ambient temperature to

the surroundings. Thus the rate of exergy destruction associated with the plant is given obtained as;

$$\dot{X}_{des} = \dot{m}_{air} \psi_{air} + \dot{m}_{fuel} \psi_{fuel} - \dot{m}_{eg} \psi_{eg} - \dot{W}_{e}$$

$$\dot{X}_{des} = \dot{m}_{air} \{ (h - h_o) - T_o(s - s_o) \}_{air} + \dot{m}_{fuel} \{ (h - h_o) - T_o(s - s_o) \}_{fuel} - \dot{m}_{eg} \{ (h - h_o) - T_o(s - s_o) \}_{eg} - \dot{W}_{e}$$
(4.43)

If the air enters the system at ambient conditions as in the proposed case, then its specific exergy relative to the surroundings is zero as $(h - h_o)$ and $(s - s_o)$ will both be zero.

The rate of exergy destruction also represents the rate of lost work and it is related to the rate of entropy generation rate as;

$$\dot{S}_{gen} = \frac{\dot{X}_{des}}{T_{o}}$$
(4.45)
Second law efficiency:

$$\eta_{II} = \frac{exergy \ leaving}{exergy \ entering}$$

$$\eta_{II} = \frac{\dot{m}_{eg}\psi_{eg} + \dot{W_{e}}}{\dot{m}_{air}\psi_{air} + \dot{m}_{fuel}\psi_{fuel}}$$

$$\eta_{II} = \frac{\dot{m}_{eg} \psi_{eg} + W_e}{\dot{m}_{air} \psi_{air} + \dot{m}_{fuel} \psi_{fuel}}$$

(4.44)

$$\eta_{II} = \frac{\dot{m}_{eg}\{(h - h_o) - T_o(s - s_o)\}_{eg} + \dot{W}_e}{\dot{m}_{air}\{(h - h_o) - T_o(s - s_o)\}_{air} + \dot{m}_{fuel}\{(h - h_o) - T_o(s - s_o)\}_{fuel}}$$
(4.46)

From the exergy model for concept B as shown in figure 4.4, it is observed that it interacts in the same qualitative manner as Concept A. Thus equations 4.43 through to 4.46 also hold for Concept B.

Figure 4. 4: Extended control volume of Concept B

4.3 ECONOMIC ANALYSIS AND GREENHOUSE GAS SAVINGS

Both the economic and emission analyses were obtained with the aid of the RETScreen® software. The results obtained from the sizing analysis, together with other economic and empirical indices were entered into the RETScreen® spread sheet platform (see Appendix C). A summary of the results as retrieved from the RETScreen® application is presented and discussed in Chapter 5.

In any investment project, cost is usually a monetary valuation of effort, material, resources, time and utilities consumed, risks incurred, and opportunity forgone in production and delivery of a good or service (Business Dictionary, 2012). In the implementation of the project under consideration, the costs can be broken down into initial (or capital) cost and operating (or annual) cost.

The initial cost represents the initial investment or money used to start the project. The money is used to cover such start-up costs as purchasing building, purchasing equipment and supplies, and hiring employees all form part of the initial costs. The funds, or capital, may come from a bank loan, a government grant, outside investors, or the business owner's personal savings. The operating cost can be quantified as the cost per unit of a product or service, or the annual cost incurred on a continuous basis. It involves as maintenance, labour and cost of inputs such as fuel. Operating costs do not include capital outlays or the costs incurred in design and implementation phases of a new process.

One useful indicator of the feasibility of an energy project is the cost per unit of energy generated usually presented as cost/kWh. This cost build up has components from both the initial and annual costs and its instantaneous value depends on the prevailing macroeconomic environment as well as cost of inputs. However, for the sake of evaluation, the levelised generation cost can be defined on the premise that the requisite economic indicators remain the same over the period within which the plant will be operational

The levelised generation cost was calculated as

LGC =	(^{initial cost} /project life)+total annual cost	(4 47)
Luu	Annual energy supplied	(,)
44	Augustine Akuoko Kwarteng	MSc. Thesis 2012

CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 PERFORMANCE AND SIZING

Both systems A and B were designed to meet an electrical output requirement of 6MWe. For a plant that is available 85% of the time, each plant is expected to generate 42394 MWh of electricity annually. The slightly varying configurations of the two plants resulted in different thermal energy outputs, efficiencies, among others as shown in Table 4.1. Concept B which has an extraction condensing type steam turbine was designed to have a maximum extraction of 15%. Thus, results of the analysis are presented for both zero extraction and maximum extraction.

Both systems were observed to have a similar performance in terms of energy efficiencies, with Concept B performing slightly better than Concept A. For instance, it can be seen from Table 4.1 that a gross energy of 29.44 MW is required by Concept A, whilst Concept B requires 26.13 MW at no extraction to provide the same power output (representing a difference of about 3MW). The quantity of biomass (with a heating value of approximately 15 MJ/kg) required per day is 141 tonnes and 133 tonnes respectively for Concepts A and B.

Additionally, Concept B has a relatively high power to heat ratio (PHR), which can also be varied between 0.4 and 0.44 by adjusting the turbine bypass ratio. On the other hand, Concept A has a fixed PHR of 0.38 implying no flexibility in electricity to thermal load matching.

Comparing Concepts A and B to a system that separately generates the same respective amounts of electricity and thermal outputs, it is observed that fuel energy savings of 20% and 24% can be achieved respectively using the cogeneration plants. These resulting energy savings translated into higher overall efficiencies than the combined efficiency for separate generation. A sankey diagram illustrating the energy savings achieved by Concept B is shown in Figure 5.1.

Figure 5. 1: Sankey diagram showing 24% energy savings by using the CHP of concept *B*

The results of the exergy analysis show second law efficiencies of 47%, 49%, and 51% respectively for systems A, B at full extraction and B at no extraction. These values give an indication of the extent to which the available potential of the exergy supplied is utilised to provide useful outputs. The rather low second law efficiencies

of the systems is due to the fact that they are also producing thermal output in addition to the electrical loads, knowing that heat has a lower quality than work.

With regards to entropy generation and exergy destruction, Concept B performs better. For every kW of useful power generated using system A, 0.49 kW of exergy is destroyed alongside, whilst B destroys 0.45 kW of exergy for the same output. It is worth stating that since energy in itself cannot be destroyed, this exergy destruction represents the amount of energy that has been degraded or rendered useless by the system.

A cursory glance through Tables 5.1 and 5.2, reveal that the lower energy efficiencies of Concept A resulted in lower second law efficiency and were carried through to give high rates of exergy destruction and entropy generation, whilst Concept B performed better at all those levels. Thus, it can be deduced that exergy analysis provides a potent tool for assessing power plants because any of the exergetic measures of a system's performance carry an implied indication of the overall system's performance.

	Co	ncept		A	B	B (m. 0)	
	~				(y=0.15)	(y=0)	.
Quantity	Syı	mbol		Value	Value	Value	Units
electrical power output	V	Ņ _e		6	6	6	MW
specific enthalpy at 8		h ₈	5	515.05	491.15	427.8	kJ/kg
return temp	,	T ₈		121.4	115.7	100.6	°C
specific steam consumption	5	SSC		5.50	5.14	4.73	kg/kWh
steam flow rate		ṁ		10.19	9.53	8.76	kg/s
	1	1. 1	1	36.67	34.30	31.55	tons/hr
steam inlet temperature		T ₂		440	440	440	°C
			6	\mathcal{I}			
Heat input required by cycle	, Ż	cycle		27.97	26.39	24.83	MW
gross turbine power	1	Ŵt	1	6.77	6.76	6.76	MW
Pumping power	I	Żγ _p	1	105	97	90	kW
Available process heat		Żh	-	15.98	14.79	13.62	MW
		10					
Fu	el Re	equiren	nent	t and effi	ciencies	1	
Fuel energy required	I	I _{fc}		29.44	27.78	26.13	MW
Flow rate of fuel required	m	fuel	Ý	1.64	1.54	1.45	kg/s
				141.3	133.3	125.4	tonnes/day
thermal cycle efficiency	r	lcy	\leq	23.84	25.26	26.85	%
efficiency of electrical power generation		η _e	2	20.38	21.6	22.96	%
efficiency of thermal output	2	η _e	5	<mark>54.</mark> 27	53 <mark>.2</mark> 5	52.11	%
Utilisation factor		ζ		74.65	74.85	75.08	%
power to heat ratio	P	HR		0.376	0.406	0.441	
	0	SAN	Е 1	NO			
Comparing to separate production of electricity and thermal energy						nergy	
Total fuel energy required for separate production		H _{fs}		36.82	35.57	34.34	MW
combined efficiency of separate generation		η_{co}		59.69	58.45	57.14	%
Fuel energy saving ratio		FES	R	0.20	0.22	0.24	

Table 5. 1: Results of sizing analysis of the concepts

Exergy Analysis									
	Concept	Α	B (y=0.15)	B (y=0)					
Rate of exergy destruction	Χ _{des}	10.71	9.77	8.83	MJ/s				
Rate of entropy generation	İgen	36	33	30	kJ/s.K				
Rate of exergy into system	Χ _{in}	20147.1	19010.2	17883.4	kJ/s				
Rate of exergy out of system	Χ _{out}	9438.3	9244.3	9052.0	kJ/s				
second law efficiency	η_{II}	46.85	48.63	50.61	%				
Entropy generation per unit output	॑ _{gen} /k₩	0.001635	0.001576	0.001511	/K				
Exergy destruction kW of useful power	X _{des} /kW	0.49	0.47	0.45	kW/kW				

Table 5. 2: Results of exergy analysis

5.2 FINANCIAL ANALYSIS

As shown in tables 5.3 and 5.4, Concept *A* has a total initial cost of 10.7 million US\$ and an annual cost of 3.04 million US\$. For a project life of 24 years, this represents a levelised generation cost of US\$ 0.08219/kWh. It has an equity payback period of 2.9 years and a net present value of 37.8 million US\$. Figure 5.1 shows the cumulative cash flow over the entire project life for Concept *A*.

Concept *B* has a total initial cost of 11.2 million US\$ and an annual cost of 2.96 million US\$, as shown in table 5.5 and 5.6. For a project life of 24 years, this represents a levelised generation cost of US\$ 0.08079/kWh. It has an equity payback period of 2.8 years and a net present value of 39.7 million US\$. Figure 5.2 shows the cumulative cash flow over the entire project life of Concept *B*.

The results of the economic analysis suggests that it would be more profitable to operate Concept B, because even though it has a higher initial cost, it has a lesser

annual cost – hence making it cheaper to operate and accruing a grater net present value.

Table 5. 3: Project cost savings/ income summary for Concept A

Project costs and savings/income summary			
rioject costs and savings/meome summary			
Initial costs			
Feasibility study	0.4%	\$	40 000
Development	0.0%	\$	0
Engineering	9.4%	\$	1 000 000
Power system	72 4%	\$	7 706 672
Heating system	0.0%	\$	0
Cooling system	0.0%	\$	0
Balance of system &	0.070	Ŷ	0
misc.	17.8%	\$	1,896,694
Total initial costs	00.0%	\$	10,643,365
6.1.1.7			
Incentives and grants		\$	0
Annual costs and debt payments			
O&M		\$	1,050,000
Fuel cost - proposed case		\$	1,990,079
Debt payments - 0 yrs		\$	0
Total annual costs		\$	3,040,079
A CONTRACT		•	
ATTN I ATTO		\$	0
End of project life – cost		\$	0
1111	/	•	
Annual savings and income			
Fuel cost - base case		\$	6.843.954
CE production income - vrs		\$	0
Total annual savings and income	1	\$	6.843.954
AND CON		*	-,,
W			

Table 5. 4: Financial viability summary for Concept A

Financial viability		
Equity payback	Yr	2.8
Net Present Value (NPV) Annual life cycle savings	\$ \$/yr	37,759,408 1,573,309
Benefit-Cost (B-C) ratio Debt service coverage		4.55 No debt

Figure 5. 2: Cumulative cash flow graph for Concept A

Project costs and savings/income summary		
Initial costs		
Feasibility study	0.4%	\$ 40,000
Development	0.0%	\$ 0
Engineering	10.7%	\$ 1,200,000
Power system	71.6%	\$ 8,023,042
Heating system	0.0%	\$ 0
Balance of system &		
misc.	17.3%	\$ 1,944,200
Total initial costs	100.0%	\$ 11,207,242
Annual costs and debt payments		
O&M		\$ 1,050,000
Fuel cost - proposed case		\$ 1,908,270
Debt payments - 20 yrs		\$ 0
Total annual costs		\$ 2,958,270
End of project life – cost		\$ 0
Annual savings and income		
Fuel cost - base case		\$ 6,843,954
Electricity export income		\$ 0
Total annual savings and income		\$ 6,843,954

Table 5. 5: Project cost savings/ income summary for Concept B

Table 5. 6: Financial viability summary for Concept B

Financial viability		
Equity payback	Yr	2.9
Net Present Value (NPV) Annual life cycle savings	\$ \$/yr	39,734,088 1,655,587
Benefit-Cost (B-C) ratio		4.55

Figure 5. 3: cumulative cash flow for Concept *B*

5.3 GREEN HOUSE GAS (GHG) SAVINGS

The greenhouse gas emission reduction summary as presented in Tables 5.7 and 5.8, shows a net annual reduction equivalent to 16, 947 tons of CO_2 for Concept *A* (representing 3104 cars and light truck not used), whilst Concept *B* has 17,022 tons (representing 3118 cars and light trucks not used). This emission reduction as obtained from the RETScreen® software is based on a global average GHG displacement. For Ghana, the GHG emission displacement factor is 0.56 tonnes/MWh (Ghana Energy, 2009). For an annual energy generation of 42394 MWh, this gives a corresponding emissions reduction of 23740 tonnes of GHG's per annum for the selected Concept B.

Table 5. 7: Emission reduction summary for Concept A

GHG emission red	duction su	mmary			
	Base case GHG emission	Proposed case GHG emission		Gross annual GHG emission reduction	Net annual GHG emission reduction
-	tCO2	tCO2		tCO2	tCO2
Power project	19,317.5	2,370.8	5	16,946.7	16,946.7
Net annual GHG emission reduction	16,947	tCO2	equivalent 3,104	Cars & light truc	ks not used

Table 5. 8: Emission reduction summary for Concept B

GHG emission red	luction su	mmary		1		
B	Base case GHG emission	Proposed case GHG emission			Gross annual GHG emission reduction	Net annual GHG emission reduction
	tCO2	tCO2			tCO2	tCO2
Power project	19,317.5	2,295.7		13	17,021.8	17,021.8
Net annual GHG emission reduction	17,022	tCO2	equivalent	3,118	Cars & light truck	ks not used

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

The proposed system is concept B, with the following specifications:

- Fuel: Biomass at 133 tons/day
- Steam generator: 35 metric tonnes/ hr CFBC boiler
- Turbine: 7MW two stage extraction steam turbine
- Net Electric power: 6MW
- Thermal power: 13.6 to 14.8 MW
- Electrical efficiency: 23%
- Utilisation factor: 75%
- Second law efficiency: 50.6%
- Annual emissions reduction: 23740 tCO₂ (ie 4354 cars not used)
- Initial cost: US\$ 11.21 million
- Levelised generation cost: 8.079 US cents/kWh

Since biomass has low heating values, large amounts are required for the purpose of power generation. For instance, 133 metric tonnes/day of biomass is required to generate 6MWe using the proposed system. Thus, in order to meet the high fuel requirements, the unhindered operation of any biomass-based generation facility will require the collaboration of a competent waste management organisation. In that way the power station serves a dual purpose; energy generation and incineration of waste.

Urban/ domestic waste presents a good potential for the purpose of energy generation. Data received from the Waste Management Division of the Kumasi Metropolitan Assembly indicates that an average of 1000 tons of solid waste is

collected daily within the metropolis representing approximately 23MWe of generation capacity based on the performance of the proposed concept. The only issue that requires attention is that the collected wastes always have non-biomass materials like glasses, metal scraps and stones commingled with them – which would impose an additional cost of separation. Thus in order to use the collected waste in thermal plants, provision has to be made for urban waste to be collected separately, combustibles from incombustibles.

KNUST

A second law assessment of thermal systems gives diverse ways of quantifying the performance of the system, such as the second law efficiency, rates of exergy destruction, and entropy generation. They are all complimentary as they say virtually the same things in slightly different representations. As was observed from the results, these exergetic measures of performance have a direct dependence on the extent of irreversibilities in the system. These irreversibilities will ultimately reflect in the total cost/profit build up as well as environmental degradation. For instance, adiabatic efficiency losses in the turbine means lost enthalpy, requiring more heating to make up, and friction related irreversibilities increase the rates of wear and tear in addition to increasing the fuel cost.

For further study, an investigation into the prospects of an absorption refrigeration system to be used in conjunction with the proposed power plant is recommended.

Additionally, it is recommended that provision be made by waste management organisations for combustible wastes to be collected separately from scraps and metals in order to be used in power generation. The enormous generation capacity

presented by the vast amounts of municipal and urban waste might even pass to enjoy the economies of scale of integrated biomass gasification (IBGCC) generation facility, making it even more efficient and cheaper to operate. This ultimately leads to a long lasting sustainable solution to the national energy situation, as well as helping in the management of solid waste. This is an option that requires further study to determine the economic and technical feasibility of a biomass generation facility which doubles as an incineration facility and the production of electrical energy.

REFERENCES

- Ghana Energy Commission, (2010)," 2010 Energy Supply and Demand Outlook for Ghana", pp6-9
- Mujeebu, M.A, Abdullah, M.Z. (2009)," Biomass Based Cogeneration and Trigeneration for Effective Heat Recovery and Waste Management". www.kuwaitwaste.com/archive/papers/29.pdf (accessed: 28-06-2011). pp1-2
- UN, (1998), "Kyoto Protocol to the United Nation Framework Convention on Climate Change'. www.untreaty.un.org/cod/avl/ha/kpccc (accessed: 20-07-2011)
- Zafar,S, "Woody Biomass Utilization for Power Generation An Overview" www.hedon.info/docs/Zafar Woody BiomassUtilization-1.doc (accessed: 27-06-2011)
- Dondi,P., Bayoumi,D., Haederli,C., Julian,D., Suter,M.,(2002),"Network integration of distributed power generation", Journal of Power Sources 106 (2002) pp.1–9
- Energy Center, KNUST (2008), "Energy my vision: Flag bearers on Energy in Ghana", University Printing Press, KNUST, Kumasi. pp3
- EDUCOGEN, (2001), "European Educational Tool on cogeneration". www.cogen.org/projects/educogen.htm (accessed: 2/01/2012). pp 2-40
- Lawn J., (1981), "Cogenerators see new promise, face old problems". Energy Manage, vol1981. pp 43–8.
- UNEP, (2007), "Technical Study Report on Biomass Fired Fluidised Bed Combustion Boiler Technology for Cogeneration". www.unepdtie.org/energy (accessed: 20-07-2011).pp10, 27
- Fryling G.R. (1966), Combustion Engineering, 2nd edition. Combustion Engineering Inc., New York. pp 2-4
- Sutton,D., Ross, J.R.H., O' Reilly, N., "The Future's A Gas" Centre for Environmental Research, University of Limerick. http://www3.ul.ie/~childsp/CinA/Issue58/TOC14_FutureA.htm (accessed:02/02/2012)
- Singh,O.,(2006), Engineering Thermodynamics. New Age International Publishers, New Delhi. pp 233-365

- IEA (1988), "Workshop on the Regulatory and Institutional Aspects of Combined Heat and Power Production and District Heating." International Energy Agency, Copenhagen.
- Krigmont, H.V., (1999), "Integrated Biomass Gasification Combined Cycle Power Generation Concept: the Gateway to a Clearer Future". Allied Technologies Inc. pp 4-7
- 15. Natural Resources Canada, (2012), RETScreen® software. http://www.retscreen.net/ang/home.php (accessed: 06-02-2012)
- ChemicaLogic®,(2003), SteamTab[™] Companion version 2. http://www.chemicalogic.com/steamtab/companion (accessed: 15-06-2011)
- Toussaint, A., "Small scale heat and power from biomass", www.btg-btl.com (accessed: 15th May, 2012)
- JΦrgensen, S. E,(2000), "Application of exergy and specific exergy as ecological indicators of coastal areas", Aquatic Ecosystem Health and Management 3 (2000) 419-430
- Çengel, Y.A., Boles, M. (2006) Thermodynamics: An Engineering Approach
 5th edition. McGraw-Hill, USA. pp 423-433
- 20. Business dictionary, 2012, http://www.businessdictionary.com/definition (accessed: 29-09-2012)
- 21. Ghana Energy Commission, (2009), http://new.energycom.gov.gh/pgs/newdetails.php (accessed: 29-9-2012)

59

SC M COLSHAN

APPENDICES

APPENDIX A: RESULTS OF SIZING AND PERFORMANCE

ANALYSIS

Table A. 1: Concept A

Quantity	Symbol	Value	Units	Remarks
Electrical power		6000	kW	
generator efficiency	η _e	0.9		
Net cycle power		6666.667	kW	
boiler pressure	P _b	8000	kPa	
turbine exhaust pressure	Pc	200	kPa	
quality at turbine exhaust	X4	0.95		
<u>hg @pc</u>	hg	2706.23	kJ/kg	
<u>hf@pc</u>	h _f	504.71	kJ/kg	
<u>vf@pc</u>	v _f	0.001061	m3/kg	
specific enthalpy at 4	h ₄	2596.154	kJ/kg	
turbine efficiency	ητ	0.85		
pump efficiency	η _p	0.8		
specific enthalpy at 8s	h _{8s}	512.9819	kJ/kg	
specific enthalpy at 8	h ₈	515.0499	kJ/kg	
return temp	T ₈	121.4	°C	
specific steam consumption	SSC	5.5	kg/kWh	
net power per unit flow rate	W _{netcy}	654.5455	kJ/kg	
steam flow rate	m	10.18519	kg/s	
specific enthalpy at 2		3 <mark>261.0</mark> 39	kJ/kg	
121		3		<u>read@h2, and</u>
steam inlet temperature	T ₂	445	°C	<u>Pb</u>
E Car	Sale			
gross turbine power	Ŵ _T	6771.98	kW	
pump power	Ŵ _P	105.3135	kW	
Heat rejected from cycle	, Q _c	21301.74	kW	
Heat input required by cycle	Q _{cycle}	27968.41	kW	
Effectiveness	3	0.75		
Available process heat		15976.31	kW	
cycle efficiency	η_{cy}	0.238364		
work ratio	r _w	0.984449		
steam generator efficiency	η _{sg}	0.95		
gross heating rate		29440.43	kW	

Augustine Akuoko Kwarteng

MSc. Thesis 2012

Lower heating value of fuel		18000	kJ/kg	Variable
fuel flow rate		1.63558	kg/s	141.3141
efficiency of electrical power				
generation	η _e	0.203801		
efficiency of thermal output	η_h	0.542666		
utilization factor	ζ	0.746467		
power to heat ratio	PHR	0.375556		
Comparing to separate production				
of electricity and thermal energy				
Fuel energy required for heating only	H _{fh}	16817.17		
Fuel energy required for electrical		20000 00		
Fuel energy required to separately	П _{fe}	20000.00		
generate both		36817.17		
Utilisation factor	η _c	0.5969		
Fuel energy saving ratio	FESR	0.2000		
	1/2			
Exergy Analysis				
Ambient temperature	To	298	к	
Air fuel ratio	AFR	1.3		
mass flow rate of air		2.126253	kg/s	
flow rate of flue gases	m _{eg}	3.761833	kg/s	
specific enthalpy of inlet air	$h_a'' < h - h_0 > ''$	0	kJ/kg	
specific entropy of inlet air	$s_a'' < s - s_0 > ''$	0	kJ/kg.K	
specific enthalpy of fuel	h_{fuel} " < h - h ₀ > "	15000	kJ/kg	
specific entropy of fuel	S_{fuel} $< S - S_0 >$ "	9	kJ/kg.K	
specific enthalpy of flue gases	h_{eg} " < h – h_o > "	3000	kJ/kg	
specific entropy of flue gases	$s_{eg}'' < s - s_0 > ''$	/ 7	kJ/kg.K	
Rate of exergy destruction	Żdes	10708.75	KJ/s	
Rate of entropy generation		35.93542	kJ/s.K	
Rate of exergy into system	, Xin	20147.07	kJ/s	
Rate of exergy out of system	X out	9438.315	, kJ/s	
second law efficiency	nu	0.468471	· · · · · · · · · · · · · · · · · · ·	
Entropy generation per unit output		0.001635	/к	
Exergy destruction kW of useful	5011/			
power	X _{des}	0.487286	kW/kW	
Table A. 2:Concept B

		At			
		maximum	At no		
		extraction	extraction		
Quantity	Symbol	Value	Value	Units	
Electrical power		6000	6000	kW	
generator efficiency	η _g	0.9	0.9		
Net cycle power	Ŵ _{net}	6666.667	6666.667	kW	
boiler pressure	Pb	8000	8000	kPa	
turbine exhaust pressure	Pc	100	100	kPa	
Saturation temperature at					
boiler pressure	T _{bsat}	295	295	°C	
saturation temperature at	$\langle \rangle \rangle$				
2nd stage turbine exit	VI V C			0 -	
pressure	T _{csat}	99.6	99.6	°C	
saturation temperature at					
1 Stage turbine exit	т	107 3	107 3	°c	
Saturation pressure	lisat	157.5	157.5		
corresponding to 1 st stage	C.V.C.	1			
turbine exit	Pisat	1475	1475	kPa	read@Tisat
bypass ratio	V	0.15	0		
	h5	417.504	417.504	kJ/kg	hf@pc
	h ₁₀	840.977	840.977	kJ/kg	hf@pi
	Vr	0.001043	0.001043	m ³ /kg	vf@pc
10	V ₁₀	0.001153	0.001153	m ³ /kg	vf@pi
-	h _c	418,9383	418,9383	kJ/kg	
	h.	419,2969	419,2969	kl/kg	
-	116				read@h6 and
	T ₆	99.8	99.8	°C	pi
Z	T ₂	445	445	°C	
- 24 -	h ₂	3261	3261	kJ/kg	
Ap.	\$2 \$2	6.54075	6.54075	kJ/kg.K	read@T2,h2
	S2c	6.54075	6.54075	kJ/kg.K	
	- 35	0			read@s3s and
_	h _{3s}	2834.36	2834.36	kJ/kg	pi
_	h ₃	2898.356	2898.356	kJ/kg	
_	\$3 \$3	6.6689	6.6689	kJ/kg.K	read@h3,pi
	S _{4.s}	6.6689	6.6689	kJ/kg.K	
	h _{4s}	2417.8	2417.8	kJ/kg	read@s4s,pc
	h ₄	2489.883	2489.883	kJ/kg	
steam quality at 4	XA	0.91	0.91		
, <u>, , , , , , , , , , , , , , , , </u>	h-7	482.5489	419.2969		
-		114.8	99.8	°C	read@h7.ni
-	V ₇	0.001055	0.001043	m ³ /kg	<u></u>
-	• /	0.001000	0.001010	סיי <i>ו</i>	

_	h _{8s}	489.4328	426.1025		
_	h ₈	491.1538	427.8039		
Return temperature	T ₈	115.7	100.6		read@h8,Pb
turbine efficiency	η_{T}	0.85	0.85		
pump efficiency	η_P	0.8	0.8		
specific steam consumption	SSC	5.144938	4.731757	kg/kWh	
net power per unit flow rate		699.7169	760.8167	kJ/kg	
steam flow rate	ṁ	9.527663	8.762513	kg/s	
steam cycle efficiency	η _{cy}	0.252619	0.268537		
work ratio	r _w	0.887158	0.887979		
		$\mathcal{I}\mathcal{I}$			
high pressure turbine					
output	Ŵ _{T1}	3455.15	3177.673	kW	
low pressure turbine output	Ŵ _{T2}	3308.021	3579.247	kW	
gross turbine power	<mark>Ŵ</mark> T	6763.171	6756.92	kW	
lp_pump power	Ŵ _{P1}	14 .51994	15.71043	kW	
hp pump power	W _{P2}	81.98405	74.54243	kW	
Gross pump power	Ŵ _P	96.50399	90.25286	kW	
Heat rejected from cycle	, ,	19723.49	18159.25	kW	
Heat input required by cycle		26390.16	24825.92	kW	
Effectiveness	3	0.75	0.75		
Available process heat		14792.62	13619.44	kW	
	9	1000			
	11				
steam generator efficiency	η _{sg}	0.95	0.95		
gross heating rate		27779.12	26132.55	kW	
Lower heating value of fuel	H _u	18000	180 <mark>0</mark> 0	kJ/kg	
required fuel flow rated	m _{fuel}	1.543284	1.451808	kg/s	
40.			5/		
efficiency of electrical		200			
power generation	η _e	0.21599	0.229599		
efficiency of thermal output	η_h	0.532509	0.521168		
Utilisation factor	ζ	0.748498	0.750766		
power to heat ratio	PHR	0.405608	0.440547		
Comparing to separate					
and thermal energy					
Fuel energy required for					
heating only	Ĥ _{fb}	15571.18	14336.25	kW	
Fuel energy required for					
electrical power only		20000.00	2000.00	kW	

Augustine Akuoko Kwarteng

Fuel energy required to					
separately generate both		36260.8	34336.25	kW	
combined efficiency of					
separate generation	η _{co}	0.5784	0.5713		
Fuel energy saving ratio	FESR	0.2191	0.2389		
Exergy Analysis					
Ambient temperature	T _o	298	298	К	
Air fuel ratio	AFR	1.3	1.3		
mass flow rate of air	m _a	2.00627	1.887351	kg/s	
flow rate of flue gases	m _{eg}	3.549554	3.339159	kg/s	
specific enthalpy of inlet air	h _a " <h-h<sub>o>"</h-h<sub>	0	0	kJ/kg	
specific entropy of inlet air	s _a " <s-s<sub>o>"</s-s<sub>	0	0	kJ/kg.K	
specific enthalpy of fuel	h _{fuel} " <h-h<sub>o>"</h-h<sub>	15000	15000	kJ/kg	
specific entropy of fuel	S _{fuel} " <s-s<sub>o>"</s-s<sub>	9	9	kJ/kg.K	
specific enthalpy of flue		2			
gases	h _{eg} " <h<mark>-ho>"</h<mark>	3000	3000	kJ/kg	
specific entropy of flue	N. 11	12			
gases	S _{eg} " <s-s<sub>o>"</s-s<sub>	7	7	kJ/kg.K	
Rate of exergy destruction	X _{des}	9765.884	8831.381	KJ/s	
Rate of entropy generation	Š _{gen}	32.77142	29.63551	kJ/s.K	
Rate of exergy into system	X _{in}	19010.18	17883.37	kJ/s	
Rate of exergy out of system	Х _{оцt}	9244.292	9051.991	kJ/s	
second law efficiency	η _{II}	0.486281	0.506168	%	
Entropy generation per unit		300	X		
output	Ś _{gen} /kW	0.001576	0.001511	/К	
Exergy destruction kW of					
useful power	॑X _{des} /kW	0.46968	0.450134	kW/kW	

A Cars

APPENDIX B: SITE SELECTION (Maps)

Figure B. 1: Google Map of KNUST

65

Figure B. 2:Map of KNUST [Courtesy: Geomatic Eng. Dept, KNUST]

66

Figure B. 3: proposed sites.

APPENDIX C: RESULTS FROM RETSCREEN® ANALYSIS

See the following pages

CONCEPT A

RETScreen Energy Model - Power project

Show alternative units

Base load power system								
Technology		Hydro turbine						
Analysis type	⊙ N	lethod 1						
	0 M	lethod 2						
Hydro turbine #1	=							
Power capacity	kW		0.0%	-			See prod	luct database
Manufacturer				-				
Capacity factor	9/							
Electricity delivered to load	⁷⁰	0	0.0%					
Electricity exported to road	MWb	0	0.078					
Electricity experted to grid	WWWII	0						
Intermediate load power system								
Technology		Steam turbine						
Availability	%		95.0%	8,322 h				
,	·	·						
Fuel selection method		Single fuel						
Fuel type		Biomass						
Fuel rate	\$/t	40.000						
Steam turbine #2								
Steam flow	kg/h	36,666						
Operating pressure	bar	80						
Saturation temperature	<u>د</u>	295						
Superneated temperature	L k l/kg	3 250						
Entrapy	KJ/Kg	3,259						
Entropy	KJ/Kg/K	0.54						
Back prossure	kPa	150						
Temperature	°C	111						
Mixture quality	0	0.99						toom is wat
Enthalow	k l/ka	2,420					×	itediti is wet
Theoretical steam rate (TSP)	ka/kW/b	4 34						
Steam turbine (ST) efficiency	%	85.0%						
Actual steam rate (ASR)	ka/kWh	5.11						
Summary		0.11						
Power capacity	kW	7.178	120.8%					
Minimum canacity	%	50.0%	120.070					
Manufacturer	,,,	00.070					See pro	luct database
Model and capacity				-			000 p.0.	dot datababb
Electricity delivered to load	MWh	45.012	95.0%	-				
Electricity exported to grid	MWh	0						
Seasonal efficiency	%	85.0%						
Return temperature	°C	113						
Fuel required	GJ/h	120.2						
Heating capacity	kW	0.0						
Electricity rate - base case	\$/MWh	130.00						
Fuel rate - proposed case power system	\$/MWh	7.81						
Electricity export rate	\$/MWh	100.00						
Electricity rate - proposed case	\$/MWh	150.00						
				Remaining		-	• "	
	,	The statistics of a line and the local set	Electricity	electricity		Power	Operating	- #
On and the starte set	E	lectricity delivered to load es	xported to grid	required		system fuel	protit (loss)	Efficiency
Operating strategy		MWn	MWN	MIVIN		MWn	\$	% 04.5%
Full power capacity - without extraction		45,012	14,727	2,369		2/7,887	5,107,331	21.5%
Power load following - without extraction		45,012	U	2,369		209.302	4.103.4/3	21.5%
							.,,	
							.,,	
Select base load nower system	Powe	r system #1		Hydro turbine #1			.,,	
Select base load power system	Powe	r system #1		Hydro turbine #1			.,,	
Select base load power system	Powe	r system #1		Hydro turbine #1			.,,	
Select base load power system Select operating strategy	Power Power	r system #1	n	Hydro turbine #1			,,	
Select base load power system Select operating strategy	Power	r system #1	n	Hydro turbine #1	Ţ			
Select base load power system Select operating strategy Proposed case system characteristics	Powe	r system #1	n %	Hydro turbine #1	7	System des	sign graph	
Select base load power system Select operating strategy Proposed case system characteristics Power	Powe Power Unit	r system #1 load following - without extractio Estimate	n %	Hydro turbine #1	7	System des	sign graph	
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system	Power Power Unit	r system #1 load following - without extractio Estimate	n %	Hydro turbine #1	7	System des	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology	Powe Powe Unit	r system #1 load following - without extractio Estimate Hydro turbine	90 %	Hydro turbine #1	7	System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy	Powe Powe	r system #1 load following - without extractio Estimate Hydro turbine Full power capacity output	n %	Hydro turbine #1	7	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity	Powe Powe Unit	r system #1 load following - without extractio Estimate Hydro turbine Full power capacity output 0	n % 0.0%	Hydro turbine #1	7	System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load	Powe Power Unit KW	er system #1 Load following - without extraction Estimate Hydro turbine Full power capacity output 0 0	0.0% 0.0%	Hydro turbine #1		System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid	Unit KW MWh MWh	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0	n % 0.0%	Hydro turbine #1	250%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity exported to load Electricity exported to grid Intermediate load power system	Powe Powe Unit KW MWh MWh	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0	0.0% 0.0%	Hydro turbine #1	250%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology	Unit KW MWh MWh	er system #1 load following - without extractio Estimate Hydro turbine Full power capacity output 0 0 0 0	n % 0.0% 0.0%	Hydro turbine #1	250%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load Electricity delivered to grid Intermediate load power system Technology Operating strategy	RWW WWh WWh WWh	r system #1 load following - without extractio Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio	n % 0.0% 0.0%	Hydro turbine #1	250%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity sported to grid Intermediate load power system Technology Operating strategy Capacity	Power Power Unit KW MWh MWh MWh MWh	er system #1 load following - without extraction Estimate Full power capacity output 0 0 Steam turbine load following - without extraction 7,178	n % 0.0% 0.0%	Hydro turbine #1	250% 200% 150%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load	RW Power	r system #1 load following - without extractio Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio 7,178 45,012	n 0.0% 0.0% 120.8% 95.0%	Hydro turbine #1	250% 200% 150%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to load Electricity exported to load	Power Unit KW MWh WVh WWh MWh MWh MWh	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extraction 7,178 45,012 0	n % 0.0% 0.0% n 120.8% 95.0%	Hydro turbine #1	250% 200% 150% 100%	System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity conted to grid Peak load power system	Powe Powe Unit KW MWh MWh WWh WWh	er system #1 Load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 Steam turbine Load following - without extraction 7,178 45,012 0	n % 0.0% 0.0% 120.8% 95.0%	Hydro turbine #1	250% 200% 150% 100%	System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Electricity exported to grid Peak load power system Technology	Powe Powe Unit WW MWh WWh WWh	r system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine Ioad following - without extraction 7,178 45,012 0 Grid electricity	n 9% 0.0% 0.0% 120.8% 95.0%	Hydro turbine #1	250% 200% 150% 100% 50%	System des Base	sign graph ■Interm. ■Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Suggested capacity	Powe Powe Unit KW MWh MWh MWh MWh KW KW	er system #1 Load following - without extractic Estimate Full power capacity output 0 0 Steam turbine Ioad following - without extractio 7,178 45,012 0 Grid electricity 5,940,0	n % 0.0% 0.0% 0.0%	Hydro turbine #1	250% 200% 150% 100% 50%	System des	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Electricity delivered to load Electricity delivered to load Electricity appressing Capacity Suggested capacity Capacity	RWV WWh WWh WWh WWh WWh WWh WWh WWh WWh W	r system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940,0 5,940	m % 0.0% 0.0% 120.8% 95.0% 100.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base	sign graph	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to load Electricity delivered to load Electricity delivered to load	Powe Powe Unit WW MWh MWh MWh WWh MWh KW KW KW	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extraction 7,178 45,012 0 Grid electricity 5,940,0 5,940 2,369	n % 0.0% 0.0% n 120.8% 95.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base	sign graph Interm. Pe Compared to the second	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Back-up power system (optional)	RW Power Unit KW MWh MWh MWh KW RW KW KW	r system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940,0 6,840 2,369	n 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base Capacity	sign graph Interm. Pe Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity elevered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology	Powe Powe Unit WW MWh WWh WWh WWh WWh WWh WWh WWh WWh	er system #1 load following - without extractio Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940,0 5,940 2,369 0	n % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base	sign graph Interm. Pe Linterm. Pe Linterm. Pe Linterm. Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology Capacity	Powe Powe Unit KW MWh MWh MWh KW KW KW KW KW	er system #1 load following - without extraction Estimate Full power capacity output 0 0 Steam turbine Ioad following - without extraction 7,178 45,012 0 Grid electricity 5,940,0 5,940,0 2,369 0	n % 0.0% 0.0% 95.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base	sign graph Interm. Pe Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology Capacity	Powe Unit KW MWh MWh KW	r system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940 2,369 0	m % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base	sign graph Interm. Pe Linterm.	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Back-up power system (optional) Technology Capacity Electricity delivered to load Back-up power system (optional) Technology	Powe Powe Unit WW MWh MWh WWh WWh KW KW KW KW KW	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extraction 7,178 45,012 0 Grid electricity 5,940,0 5,940,0 2,369 0	n % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0%	System des Base Capacity Energy delivered	sign graph Interm. Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity sported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Back-up power system (optional) Technology Capacity Electricity delivered to load Back-up power system (optional) Technology Capacity	Powe Unit kW MWh MWh NWh kW kW	er system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940,0 5,940,0 5,940 2,369 0 Fuel type	n 0.0% 0.0% 120.8% 95.0%	Fuel consumption - Fuel consumption - Fuel	250% 200% 150% 100% 50% 0%	System de: Base Capacity Energy delivered (MWh)	sign graph Interm. Pe Compared to the second	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology Capacity Proposed case system summary Power	RWV RWV WWh WWh WWh WWh WWh KW RWV KW KW KW KW	r system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 Steam turbine load following - without extraction 7,178 45,012 0 Grid electricity 5,940 2,369 0 Fuel type	n % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0% Capacity (kW)	System des Base Capacity Energy delivered (MWh)	sign graph Interm. Pe	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity exported to grid Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity exported to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology Capacity Proposed case system summary Power Base load	Powe Powe Unit KW MWh MWh MWh KW KW KW KW KW	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extraction 7,178 45,012 0 Grid electricity 5,940,0 5,940 2,369 0 Fuel type Hydro	n % 0.0% 0.0% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 0% 50% 0%	System des Base	sign graph Interm. Pe Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity delivered to load Back-up power system (optional) Technology Capacity Proposed case system summary Power Base load Intermediate load	Powe Powe Unit KW MWh MWh MWh MWh KW KW KW	r system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940 2,369 0 Fuel type Hydro Biomass	n % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 0% 0% Capacity (kW)	System des Base Capacity Capacity Energy delivered (MWh) 0 0 0	sign graph Interm. Pe Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Back-up power system (optional) Technology Capacity Proposed case system summary Power Base load Intermediate load Peak load Peak load	Powe Powe Unit KW MWh MWh KW KW KW KW KW KW KW KW	er system #1 load following - without extraction Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extraction 7,178 45,012 0 Grid electricity 5,940,0 5,940 2,369 0 Fuel type Hydro Biomass Electricity	n % 0.0% 0.0% 120.8% 95.0% 100.0% 5.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0% Capacity (KW)	System des Base Base Capacity Energy delivered (MWh) 0 (8 45,013 0 2,036	sign graph Interm. Pe Energy delive	ak
Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Capacity Electricity delivered to load Back-up power system (optional) Technology Capacity Proposed case system summary Power Base load Intermediate load Peak load	Powe Powe Unit KW MWh MWh MWh KW KW KW KW KW	r system #1 load following - without extractic Estimate Hydro turbine Full power capacity output 0 0 0 Steam turbine load following - without extractio 7,178 45,012 0 Grid electricity 5,940,0 5,940,0 5,940,0 2,369 0 Fuel type Hydro Biomass Electricity	n 0.0% 0.0% 120.8% 95.0%	Hydro turbine #1	250% 200% 150% 100% 50% 0% Capacity (kW) 7,17 5,9% al 13,11	System des ■Base ■Base Capacity Energy delivered (MWh) 0 0 2,368 8 47,368	sign graph Interm. Pe Energy delive	ak

RETScreen Cost Analysis - Power project

Settings						
Method 1	Notes/Ra	nge				
Method 2	Second c	urrency	Notes/F	Range	None	
	Cost alloc	ation		-		
	11	0				Bulation
Initial costs (credits)	Unit	Quantity	Ur	III COST	Amount	Relative costs
Feasibility study		0	¢	20,000	40.000	
Peasibility study	COSL	2	Ą	20,000	40,000	0.40/
Sub-total:				1	40,000	0.4%
Development			-			
Development	COSL			1	-	0.0%
Sub-total:				1		0.0%
Engineering		4	¢	1 000 000	1 000 000	
Engineering	COSt		¢	1,000,000	1,000,000	
Sub-total:				9	5 1,000,000	9.4%
Power system						
Base load - Hydro turbine	κW	0.00		9		
Intermediate load - Steam turbine	kW	7,178.46	\$	600	4,307,074	
Peak load - Grid electricity	kW	5,940.00		4	-	
Road construction	km		_	9	-	
I ransmission line	km			9	-	
Substation	project	2	\$	50,000	100,000	
Energy efficiency measures	project		-	9		
Heat exchanger	cost	1	\$	500,000	500,000	
FBC Boller and accessories		1	\$	2,799,598	2,799,598	
Sub-total:				5	7,706,672	72.4%
Balance of system & miscellaneous			-			
Spare parts	%			4	-	
Transportation	project		-		-	
Training & commissioning	p-d			9	-	
Miscellaneous (Training, comissioning, Transportation	cost	1	\$	1,000,000	1,000,000	
Contingencies	%	5.0%	\$	9,746,672	487,334	
Interest during construction	12.00%	8 month(s)	\$	10,234,005	409,360	
Sub-total:			-		1,896,694	17.8%
Total initial costs					10,643,365	100.0%
Annual costs (credits)	Unit	Quantity	11.	ait cost	Amount	
O&M	Onit	Quantity	0	in cost	Amount	
Parts & labour	project	1	\$	1 000 000	1 000 000	
User-defined	cost		Ψ	.,000,000		
Contingencies	%	5.0%	\$	1.000.000	50.000	
Sub-total:	70	0.070	Ψ	.,000,000 4	1 050 000	
Fuel cost - proposed case					1,050,000	
Piomass	+	40.969	¢	40.000	1 634 720	
Electricity	د M\//b	2 360	ş	150,000	355 350	
	111111	2,309	φ	130.000	4 000 070	
Sub-total:					1,990,079	
Annual savings	Unit	Quantity	Ur	nit cost	Amount	
Fuel cost - base case	onic	quantity	UI	in soor	Amount	
Flectricity	MWb	52 646	S	130.000	6 843 954	
Sub-total:		52,040	¥		6 8/3 95/	
			_		0,043,954	
Periodic costs (credits)	Unit	Year	Ur	nit cost	Amount	
User-defined	cost			9		2 2
	-			9		
End of project life	cost		1	9	-	

RETScreen Emission Reduction Analysis - Power project

Emission Analysis

Method 1

O Method 2

O Method 3

Base case electricity system (Baseline)

		factor	1&D	GHG emission
		(excl. T&D)	losses	factor
Country - region	Fuel type	tCO2/MWh	%	tCO2/MWh
Ghana	All types	0.275	25.0%	0.367
				4

□ Baseline changes during project life

Base case system GHG summary (Baseline) Fuel GHG emission factor tCO2/MWh 0.367 Fuel mix Consumption MWh 52,646 GHG emission Fuel type Electricity Total % 100.0% 100.0% tCO2 19,317.5 19,317.5 52,646 0.367

Proposed case system on	G Summary (Power project)				
	Fuel mix		Fuel consumption	GHG emission factor	GHG emission
Fuel type	%		MWh	tCO2/MWh	tCO2
Biomass	98.9%		209,382	0.007	1,501.5
Hydro	0.0%		0	0.000	0.0
Electricity	1.1%		2,369	0.367	869.3
Total	100.0%		211,751	0.011	2,370.8

GHG emission reduction summary

	Base case GHG emission tCO2	Propos <mark>ed case</mark> GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
Power project	19,317.5	2,370.8			16,946.7		16,946.7
Net annual GHG emission reduction	16,947	tCO2	is equivalent to	3,104	Cars & light trucks r	not used	

RETScreen Financial Analysis - Power project

Financial parameters				Project costs and savings/income	summary			Yearly c	ash flows		
General Fuel cost escalation rate	%		2.0%	Initial costs Feasibility study	0.4%	s	40 000	Year #	Pre-tax \$	After-tax \$	Cumulative
Inflation rate	%		10.0%	1 cusionity study	0.470	Ŷ	40,000	0	-10,643,365	-10,643,365	-10,643,365
Discount rate Project life	% \/r		0.0%	Engineering Power system	9.4% 72.4%	\$	1,000,000	1	3,795,952	3,795,952	-6,847,413
	y		24	i ower system	72.470	Ŷ	1,100,012	3	3,753,421	3,753,421	685,479
Finance	¢							4	3,716,685	3,716,685	4,402,164
Debt ratio	\$ %		0.0%					6	3,606,034	3,606,112	11,676,310
				Balance of system & misc.	17.8%	\$	1,896,694	7	3,529,423	3,529,423	15,205,733
				l otal initial costs	100.0%	\$	10,643,365	8	3,436,320	3,436,320	18,642,053
								10	3,193,417	3,193,417	25,160,454
				Annual costs and dobt navmonts				11	3,039,411	3,039,411	28,199,865
				O&M		\$	1,050,000	13	2,654,120	2,654,120	33,714,521
Income tax analysis				Fuel cost - proposed case		\$	1,990,079	14	2,417,211	2,417,211	36,131,732
				Total annual costs		\$	3,040,079	16	1,838,608	1,838,608	40,116,906
				Poriodio costo (oradito)				17	1,489,403	1,489,403	41,606,309
				Periodic costs (credits)				19	649,474	649,474	43,350,398
								20	148,727	148,727	43,499,126
				·				21 22	-413,408	-413,408 -1.043.297	43,085,718 42,042,421
				Annual savings and income				23	-1,747,946	-1,747,946	40,294,475
Annual income				Fuel cost - base case		\$	6,843,954	24	-2,535,066	-2,535,066	37,759,408
Electricity export income											
				Total annual savings and income	е	\$	6,843,954				
GHG reduction income											
	10001										
Net GHG reduction Net GHG reduction - 24 yrs	tCO2/yr tCO2	4	16,947 06,721	Pre-tax IRR - equity		%	34.1%				
				Pre-tax IRR - assets		%	34.1%				
				After-tax IRR - equity		%	34.1%				
				After-tax IRR - assets		%	34.1%				
				Simple payback		vr	2.8				
Customer premium income (rebate)				Equity payback		yr	2.8				
				Net Present Value (NPV)		s	37 759 408				
				Annual life cycle savings		\$/yr	1,573,309				
				Benefit Cost (B.C) ratio			4 55				
							4.00				
				GHG reduction cost		\$/#002	(03)				
Other income (cost)	_			GITO TEGRCIOT COST		9/10/02	(55)				
				Cumulative cash flows graph	-		4				
			~	50,000,000	-			_	-		
Clean Energy (CE) production income				40,000,000		13					
			7-								
			ſ.,								
				30,000,000	1	-					
				(\$							
				% 20,000,000							
				1 flo							
					/						
			-	2							
				nlat							
				O O O O	4 5 6	7 0	0 10 11	12 12	14 15 16 1	7 19 10 20	21 22 22 21
			_		4 5 6	/ 0	9 10 11	12 13	14 15 10 1	/ 16 19 20	21 22 23 24
			200	-10,000,000		_					
			-								
				-20,000,000	: 14	0					
				of Part and							
						1	fear				

CONCEPT B

RETScreen Energy Model - Power project

Base load power system									
Technology		Hydro turbine							
Analysis type		0. Mathad 4							
		Method 1 Method 2							
Hvdro turbine #1									
Power capacity	kW	0	0.0%					See	product database
Manufacturer									
Model	0/	0.6%							
Electricity delivered to load	% M\//b	0.6%	0.0%						
Electricity exported to grid	MWh	ŏ	0.070						
Intermediate load power system									
l echnology	9/	Steam turbine	0E 0%	0 222 h					
Availability	70		95.0%	0,322 11					
Fuel selection method		Single fuel							
Fuel type		Biomass							
Fuel rate	\$/t	40.000							
Steam turbing #2									
Steam furbine #2	ka/h	34 300							
Operating pressure	bar	80							
Saturation temperature	°C	295		°F	563.0				
Superheated temperature	°C	440							
Enthalpy	kJ/kg	3,259		Btu/lb	1,401.0				
Extraction port	KJ/KG/K	Yes		Blunbr IX	1.0				
Maximum extraction	%	15.0%							
Extraction	kg/h	5,145		lb/h	2,333.7				
Extraction pressure	kPa	1,475			007 5				
Temperature Mixture quality	-0	197		1	387.5				
Enthalpy	k.l/ka	2.832		Btu/lb	1.217.6				
Theoretical steam rate (TSR)	kg/kWh	8		lb/kWh	18.6				
Back pressure	kPa	100							
Temperature	°C	100		°F	211.3				
Mixture quality	k l/ka	0.86	_	Dtu/lb	1 0 1 9 4				Steam is wet
Theoretical steam rate (TSR)	ka/kWh	4.05		lb/kWh	8.9				
Steam turbine (ST) efficiency	%	85.0%		10/11/1	0.0				
Actual steam rate (ASR)	kg/kWh	5.53		lb/kWh	12.2				
Summary									
Power capacity - with extraction	kW	6,198	104.3%						
Power capacity - without extraction	KVV 9/2	7,207	121.3%						
Manufacturer	78	30.078						See	product database
Model and capacity									
Electricity delivered to load	MWh	45,012	95.0%						
Electricity exported to grid	MWh	0							
Seasonal efficiency Beturn temperature	%	85.0%							
Fuel required	GJ/h	114.7		million Btu/h	108.7				
Heating capacity - without extraction	kW	0.2		million Btu/h	0.0				
Heating capacity - with extraction	kW	3,451.1		million Btu/h	11.8				
	0.0.0.0	100.00		0.0.00	0.400				
Electricity rate - base case	\$/MVVh	130.00		\$/KWN	0.130				
Contraction of the second s	\$/M/W/D	/ 81		S/KW/D					
Electricity export rate	\$/MWh	100.00		\$/kWh	0.100				
Electricity export rate Electricity rate - proposed case	\$/MWh \$/MWh \$/MWh	100.00 150.00		\$/kWh \$/kWh \$/kWh	0.100 0.150				
Electricity export rate Electricity rate - proposed case	\$/MWh \$/MWh \$/MWh	1.81 100.00 150.00		\$/kWh \$/kWh	0.100 0.150				
Electricity rate - proposed case	\$/MWh \$/MWh \$/MWh	100.00 150.00	Electricity	\$/kWh \$/kWh \$/kWh Remaining	0.100 0.150		Power	Operating	
Electricity rate - proposed case	\$/MWh \$/MWh \$/MWh	L.ST 100.00 150.00	Electricity	\$/kWn \$/kWh \$/kWh Remaining electricity required	0.100 0.150		Power system fuel	Operating	Efficiency
Electricity rate - proposed case power system Electricity rate - proposed case Operating strategy	\$/MWh \$/MWh \$/MWh	List 100.00 150.00 Electricity delivered to load MWh	Electricity exported to grid MWh	s/kWh \$/kWh \$/kWh Remaining electricity required MWh	0.100 0.150		Power system fuel MWh	Operating profit (loss) \$	Efficiency %
Operating strategy Full power capacity - without extraction	\$/MWh \$/MWh \$/MWh	Loo 100.00 150.00 Electricity delivered to load MWh 45.012	Electricity exported to grid <u>MWh</u> 14,967	S/KWh S/KWh Remaining electricity required MWh 2,369	0.100 0.150	7	Power system fuel <u>MWh</u> 265,040	Operating profit (loss) \$ 5,231,615	Efficiency % 22.6%
Operating strategy Pull power capacity - without extraction Power load following - without extraction	\$/MWh \$/MWh \$/MWh	L.51 100.00 150.00 Electricity delivered to load MWh 45.012 45.012	Electricity exported to grid <u>MWh</u> 14,967 0	s/kWh \$/kWh \$/kWh Remaining electricity required MWh 2,369 2,369	0.100 0.150	7	Power system fuel <u>MWh</u> 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Full power capacity - without extraction Power load following - without extraction	\$/MWh \$/MWh \$/MWh	L.50 100.00 150.00 Electricity delivered to load MWh 45.012 45.012	Electricity exported to grid <u>MWh</u> 14,967 0	S/kWh S/kWh S/kWh electricity required MWh 2,369 2,369	0.100 0.150	7	Power system fuel <u>MWh</u> 265,040 198,904	Operating profit (los 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system	\$/MWh \$/MWh \$/MWh	Lietricity delivered to load of MWh 45,012 45,012 45,012 Power system #1	Electricity exported to grid <u>MWh</u> 14,967 0	S/KWh S/KWh S/KWh Remaining electricity required MWh 2,369 2,369	0.100 0.150	7	Power system fuel <u>MWh</u> 265,040 198,904	Operating profit (loss) \$.5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system	\$/MWh \$/MWh \$/MWh	Lo1 100.00 150.00 Electricity delivered to load MWh 45.012 45,012 Power system #1	Electricity exported to grid <u>MWh</u> 14,967 0	S/KWh S/kWh S/kWh electricity required <u>MWh</u> 2,369 2,369	0.100 0.150		Power system fuel <u>MWh</u> 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy	S/MWh S/MWh S/MWh	Lo1 100.00 150.00 Electricity delivered to load MWh 45,012 45,012 Power system #1 Power load following - without extracti	Electricity exported to grid MWh 14,967 0	S.KWh S/KWh S/KWh electricity required <u>MWh</u> 2,369 2,369	0.100 0.150		Power system fuel <u>MWh</u> 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy	\$/MWh \$/MWh \$/MWh	Lot 1 100.00 150.00 Electricity delivered to load MWh 45.012 45.012 Power system #1 Power load following - without extraction	Electricity exported to grid <u>MWh</u> 14,967 0	S.KW/h S/KWh S/KWh Remaining electricity required MW/h 2,369 2,369	0.100 0.150		Power system fuel MWh 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Coperating strategy Coperating strategy Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics	S/MWh S/MWh S/MWh	Lot 1 100.00 150.00 Electricity delivered to load MWh 45.012 45.012 Power system #1 Power load following - without extracti Estimate	Electricity exported to grid <u>MWh</u> 14,967 0	S.KW/h S/kWh S/kWh Remaining electricity required MWh 2,369 2,369	0.100 0.150		Power system fuel <u>MWh</u> 265,040 198,904 System det	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power	S/MWh S/MWh	Lo1 100.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extraction Estimate	Electricity exported to grid <u>MWh</u> 14,967 0	S.KW/h S/KWh S/KWh Remaining electricity required MWh 2,369 2,369	0.100 0.150		Power system fuel MWh 265,040 198,904 System det	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system	S/MWh S/MWh	Lo1 100.00 150.00 Electricity delivered to load MWh 45.012 45.012 Power system #1 Power load following - without extraction Estimate	Electricity exported to grid <u>MWh</u> 14,967 0	S.KWh S.KWh S.KWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150		Power system fuel MWh 265,040 198,904 System der Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Coperating strategy Generating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology	S/MWh S/MWh S/MWh	Lot 1 1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti EstImate Hydro turbine	Electricity exported to grid MWh 14,967 0	S.KW/h S.KW/h S.KW/h Remaining electricity required MW/h 2,369 2,369	0.100 0.150		Power system fuel MWM 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity	S/MWh S/MWh	Lo1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extract Estimate Hydro turbine Full power capacity output 0	Electricity exported to grid MWh 14,967 0 0	SrkWh SrkWh SrkWh Remaining electricity required MWh 2,369 2,369	0.100 0.150		Power system fuel MWh 265,040 198,904 System des Base	Operating profit (loss) \$ 5,251,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load	S/MWh S/MWh	Lot 1 1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti Estimate Hydro turbine Full power capacity output 0 0	Electricity exported to grid <u>MWh</u> 14,967 0 0 0	S.KW/h S/KWh S/KWh Remaining electricity required MWh 2,369 2,369 2,369	0.100 0.150		Power system fuel MWh 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity exported as	S/MWh S/MWh	Lot 1 1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti Estimate Hydro turbine Full power capacity output 0 0 0	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KW/h S.KW/h S.KW/h Remaining electricity required MW/h 2,369 2,369	0.100 0.150	250%	Power system fuel MWh 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Operating strategy Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to grid Electricity exported to grid Electricity capacity to grid Electricity capacity to grid Electricity exported to grid	S/MWh S/MWh S/MWh	Lot 1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti Estimate Hydro turbine Full power capacity output 0 0 0	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KWh S.KWh S.KWh Remaining electricity required MWh 2,369 2,369	0.100 0.150	250%	Power system fuel MWh 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Operating strategy Electricity export rate Electricity rate - proposed case Operating strategy Full power capacity - without extraction Power load following - without extraction Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to grid Intermediate load power system Technology Capacity	S/MWh S/MWh S/MWh	Lot 1 100.00 150.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extract Estimate Estimate Hydro turbine Full power capacity output 0 0 Steam turbine Page load following	Electricity exported to grid MWh 14,967 0 0	S.KWh S.KWh S.KWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250%	Power system fuel <u>MWh</u> 265,040 198,904 System des Base	Operating profit (loss) \$ 5.231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Full power export rate Electricity rate - proposed case Operating strategy Full power capacity - without extraction Power load following - without extraction Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity exported to grid Intermediate load power system Technology Operating strategy Operating strategy Capacity Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity	S/MWh S/MWh S/MWh	Loc 1 Loc 2 L	Electricity exported to grid <u>MWh</u> 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KW/h S/KWh S/KWh Remaining electricity required MWh 2,369 2,369 2,369	0.100 0.150	250%	Power system fuel MWh 265,040 198,904 System des Base	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Operating strategy Operating strategy Operating strategy Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load Electricity strategy Operating strategy Operating strategy Operating strategy Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity delivered to load	S/MWh S/MWh S/MWh	Loid 1 100.00 150.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti EstImate Hydro turbine Full power capacity output 0 0 Steam turbine Power load following - without extracti 7.207 45.012	Electricity exported to grid <u>MWh</u> 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SrkWh SrkWh SrkWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250%	Power system fuel MWM 265,040 198,904 System det Base	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6% ■ Peak
Operating strategy Electricity rate - proposed case Operating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load	S/MWh S/MWh S/MWh S/MWh KW MWh MWh	Lot 1 1 100.00 150.00 1	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SrkWh SrkWh SrkWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250% 200% 150%	Power system fuel MWh 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Operating strategy Operating strategy Select operating strategy Operating strategy Select operating strategy Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricit	S/MWh S/MWh S/MWh S/MWh S/MWh S/MWh S/MWh Wh MWh MWh	Lot 1 100.00 150.00	Electricity exported to grid <u>MWh</u> 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KWh S.KWh S.KWh Remaining electricity required MWh 2,369 2,369 2,369	0.100 0.150	250% 200% 150% 100%	Power system fuel MWh 265,040 198,904 System des Base	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to enocitic	S/MWh S/MWh S/MWh S/MWh Wh WWh WWh WWh	Loi 1 1 100.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 45.012 Power system #1 Power load following - without extracti EstImate Hydro turbine Full power capacity output 0 0 Steam turbine Power load following - without extracti 7.207 45.012 0 Grid electricity 0 Grid electricity 0	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SikWh SikWh SikWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250% 200% 150% 100% 50%	Power system fuel MWM 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Poperating strategy Capacity Electricity delivered to load Electricity delivered to load Electricity exported to grid Pack load power system Technology Suggested capacity Suggested capacity	S/MWh S/MWh S/MWh S/MWh KW MWh MWh MWh KW KW KW	Loi 1 100.00 150	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SrkWh SrkWh SrkWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250% 200% 150% 100% 50%	Power system fuel MWh 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load	S/MWh S/MWh S/MWh S/MWh S/MWh KW MWh MWh KW KW KW KW KW	Loi L	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KW/h S/KWh S/KWh Remaining electricity required MWh 2,369 2,369 2,369	0.100 0.150	250% 200% 150% 100% 50% 0%	Power system fuel MWh 265,040 198,904 System des Base	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load	S/MWh S/MWh S/MWh S/MWh S/MWh KW MWh KW KW KW KW KW KW KW KW	Loid Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SikWh SikWh SikWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250%	Power system fuel MWM 265,040 198,904	Operating profit (los) 5.231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6% Peak	
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Control - proposed case - proposed case Control - proposed case - proposed - proposed case - proposed -	S/MWh S/MWh S/MWh S/MWh S/MWh S/MWh Wh Wh WWh WWh WWh WWh	Loid Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KWh S.KWh S.KWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150	250%	Power system fuel MWM 265,040 198,904 System det Base	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6% Peak Peak	
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Elect	S/MWh S/MWh S/MWh S/MWh S/MWh S/MWh WWh WWh WWh WWh WWh KW KW KW	Log L	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KW/h S/KW/h S/KW/h Remaining electricity required MW/h 2,369 2,369 2,369 4/ydro turbine #1	0.100 0.150	250% 200% 150% 100% 50% 0%	Power system fuel MWh 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load	S/MWh S/MWh S/MWh S/MWh Wh WWh WWh WWh WWh KW KW KW KW	Lot 1 1 100.00 150.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti EstImate Hydro turbine Full power capacity output 0 0 Steam turbine Power load following - without extracti 7,207 45.012 0 Grid electricity 5,940 5,940 2,369 0	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 121.3% 95.0% 100.0% 5.0%	SikWh SikWh SikWh Remaining electricity required MWh 2,369 2,369 4ydro turbine #1	0.100 0.150		Power system fuel MWM 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6% Slivered
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Elect	S/MWh S/MWh S/MWh S/MWh WWh WWh WWh WWh WWh KW KW KW	Loid 1 100.00 15	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SikWh SikWh SikWh Remaining electricity required WWh 2,369 2,369 -iydro turbine #1	0.100 0.150	250% 200% 150% 50% 0% 0%	Power system fuel MWM 265,040 198,904 System det Base Base	Operating profit (loss) 5.231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Electricity delivered to load Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity exported to grid Peak load power system Technology Suggested capacity Electricity delivered to load Electricity delivered	S/MWh S/MWh S/MWh S/MWh MWh kW MWh MWh kW kW kW kW kW kW kW kW	Loi 1 100.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.01 45.012 45.012 45.012 45.012 100wer load following - without extract Estimate Hydro turbine Full power capacity output 0 0 Steam turbine Power load following - without extract 0 0 Steam turbine Power load following - without extract 0 0 Steam turbine Power load following - without extract 0 0 Grid electricity 5.940 2.369 0 Euel type	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SrkWh SrkWh SrkWh Remaining electricity required MWh 2,369 2,369 1ydro turbine #1	0.100 0.150	250% 200% 150% 0% 0%	Power system fuel MWh 265,040 198,904 System der Base Base	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered	S/MWh S/MWh S/MWh S/MWh S/MWh KW KW KW KW KW KW KW KW KW	Lot 1 1 100.00 150.00 150.00 150.00 Electricity delivered to load MWh 45.012 45.012 45.012 Power system #1 Power load following - without extracti Estimate Hydro turbine Full power capacity output 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extracti 0 0 Steam turbine Power load following - without extraction 0 0 Steam turbine Power load following - without extraction 0 0 Steam turbine Power load following - without extraction 0 0 Steam turbine Power load following - without extraction 0 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - without extraction 0 Steam turbine Power load following - w	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 121.3% 95.0% 100.0% 5.0%	S.KW/h S.KW/h S.KW/h S.KW/h electricity required MW/h 2,369 2,369 4/ydro turbine #1	0.100 0.150	250% 200% 150% 0% 0% Capacity (kW)	Power system fuel MWh 265,040 198,904	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity delivered to load Electricity sponted to grid Intermediate load power system Technology Operating strategy Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity Electricity delivered to load Eact-up ower system Technology Capacity	S/MWh S/MWh S/MWh S/MWh MWh MWh KW KW KW KW KW KW KW	Loid 1 100.00 15	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s.ktWh skWh skWh electricity required MWh 2,369 2,369 - 1ydro turbine #1	0.100 0.150	250% 200% 150% 50% 0% Capacity (kW)	Power system fuel MWM 265,040 198,904 System det Base Base Capacity Energy delivered (MWh)	Operating profit (loss) 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6%
Contract - proposed case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Electricity delivered to load Electricity delivered to load Electricity exported to grid Intermediate load power system Technology Suggested capacity Zapacity Proposed case system summary Proposed case system Technology Suggested capacity Capacity Electricity delivered to load Electricity exported to grid Technology Suggested capacity Capacity Electricity delivered to load Electricity adjustresy Capacity Proposed case system summary Power Base load Intermediate load Paek load	S/MWh S/MWh S/MWh	A 5 1 100.00 150.00	Electricity exported to grid MWh 14,97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S.KW/h S.KW/h S.KW/h S.KW/h Remaining electricity required MWh 2,369 2,369 4ydro turbine #1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.100 0.150	250% 200% 150% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	Power system fuel MWh 265,040 198,904 System de: Base Base Base Capacity Energy delivered (MWh)	Operating profit (icss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6%
Constant Proposed Case power system Electricity rate - proposed case Electricity rate - proposed case Coperating strategy Full power capacity - without extraction Power load following - without extraction Select base load power system Select operating strategy Proposed case system characteristics Power Base load power system Technology Operating strategy Capacity Electricity delivered to load Electricity delivere	S/MWh S/MWh S/MWh S/MWh S/MWh KW KW KW KW KW KW KW KW KW	A 5 1 1 100.00 150.00 150.00 150.00 150.00 150.00 150.00 150.01 45.012 45.012 Power system #1 Power load following - without extracti Estimate Hydro trubine Full ppe Hydro Biomass Electricity	Electricity exported to grid MWh 14,967 0 0 0 0 0 0 0 0 121.3% 95.0% 100.0% 5.0%	s.kWn skWh skWh Remaining electricity required WWh 2,369 2,369 4ydro turbine #1	0.100 0.1500	250% 200% 150% 0% 0% Capacity (kW) 0 7.207 5.940 0 0 7.207	Power system fuel MWh 265,040 198,904 System det Base Base Capacity Capacity Energy delivered (MWh)	Operating profit (loss) \$ 5,231,615 4,251,288	Efficiency % 22.6% 22.6% 22.6% Peak

RETScreen Cost Analysis - Power project

Settings							
C Method 1	Notes/Ran	ae					
Method 2	Second cu	rrency	Notes/R	lange		None	
-	Cost alloca	ition		0			
Initial costs (credits)	Unit	Quantity	Un	it cost		Amount	Relative costs
Feasibility study	aget	2	¢	20,000	¢	40.000	
Feasibility study	COSL	2	φ	20,000	ф ¢	40,000	0.49/
Sub-total:					Þ	40,000	0.4%
Development	cost				\$		
Sub-total:	0001				¢	-	0.0%
Engineering					Ŷ		0.070
Engineering	cost	1	\$	1,200,000	\$	1.200.000	
Sub-total:			1 *	.,	\$	1,200,000	10.7%
Power system					•	-,,	
Base load - Hydro turbine	kW	0.00			\$	-	
Intermediate load - Steam turbine	kW	7,207.27	\$	620	\$	4,468,510	
Peak load - Grid electricity	kW	5,940.00			\$	-	
Road construction	km				\$	-	
Transmission line	km				\$	-	
Substation	project	1	\$	50,000	\$	50,000	
Energy efficiency measures	project				\$	-	
Heat exchangers	cost	1	\$	600,000	\$	600,000	
FBC boiler and accessories		1	\$	2,904,532	\$	2,904,532	
Sub-total:					\$	8,023,042	71.6%
Balance of system & miscellaneous			-				
Spare parts	%				\$	-	
Iransportation	project		-		\$		
I raining & commissioning	p-a	4	¢	1 000 000	\$	-	
Miscellaneous (Training, comissioning, Transportation	COSL	F 0%	\$	10,262,042	¢	1,000,000	
Interest during construction	12 00%	3.0% 8 month(s)	- °	10,203,042	¢ ¢	131 048	
Sub-total:	12.00%	o monun(s)	_ v	10,770,194	ş	1 944 200	17.3%
Total initial costs					ŝ	11 207 242	100.0%
					Ψ	11,207,242	100.070
Annual costs (credits)	Unit	Quantity	Un	it cost		Amount	
O&M			_				
Parts & labour	project	1	\$	1,000,000	\$	1,000,000	
User-defined	cost				\$		
Contingencies	%	5.0%	\$	1,000,000	\$	50,000	
Sub-total:					\$	1,050,000	
Fuel cost - proposed case							
Biomass	t	38,823	\$	40.000	\$	1,552,911	
Electricity	MWh	2,369	\$	150.000	\$	355,359	
Sub-total:					\$	1,908,270	
	Linit -	Quantity	L.	it east		Amount	
Annual savings	Unit	Quantity	Un	in cost		Amount	
Fuel Cost - Dase Case	M\A/b	52 646	¢	130.000	¢	6 943 OF4	
	IVIVII	52,040	¢	130.000	¢ ¢	0,043,934	
รมม-เอเลเ:					\$	6,843,954	
Periodic costs (credits)	Unit .	Year	Un	it cost		Amount	
User-defined	cost		- OI		\$	-	1
	0000				\$	13.	
End of project life	cost		-		\$		
- p george			-				100 M

RETScreen Emission Reduction Analysis - Power project

Emission Analysis

Method 1

O Method 2

O Method 3

Base case electricity system (Baseline)

		GHG emission factor (excl. T&D)	T&D losses	GHG emission factor
Country - region	Fuel type	tCO2/MWh	%	tCO2/MWh
Ghana	All types	0.275	25.0%	0.367

□ Baseline changes during project life

Fuel summary (Baseline) Fuel type 6HG emission consumption Factor GHG emission Fuel type % MWh tCO2/MWh tCO2 Electricity 100.0% 52,646 0.367 19,317.5 Total 100.0% 52,646 0.367 19,317.5

Proposed case system GHG summary (Power project)

		Fuel	GHG emission	
	Fuel mix	consumption	factor	GHG emission
Fuel type	%	MWh	tCO2/MWh	tCO2
Biomass	98.8%	198,904	0.007	1,426.4
Hydro	0.0%	0	0.000	0.0
Electricity	1.2%	2,369	0.367	869.3
Total	100.0%	201,273	0.011	2,295.7

GHG emission reduction summary

	Base case GHG emission tCO2	Propos <mark>ed case</mark> GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
Power project	19,317.5	2,295.7	\sim		17,021.8		17,021.8
Net annual GHG emission reduction	17,022	tCO2	is equivalent to	3,118	Cars & light trucks r	not used	

RETScreen Financial Analysis - Power project

Financial parameters				Project costs and savings/income	summary			Yearly ca	ash flows		
General				Initial costs				Year	Pre-tax	After-tax	Cumulative
Fuel cost escalation rate	%	1	2.0%	Feasibility study	0.4%	\$	40,000	#	\$ _11 207 242	\$ _11 207 242	\$ _11 207 242
Discount rate	%		0.0%	Engineering	10.7%	\$	1,200,000	1	3,879,397	3,879,397	-7,327,844
Project life	yr		24	Power system	71.6%	\$	8,023,042	2	3,864,585	3,864,585	-3,463,259
Financo								3	3,840,237	3,840,237	376,978
Incentives and grants	\$							5	3,758,358	3,758,358	7,940,574
Debt ratio	%		0.0%					6	3,698,242	3,698,242	11,638,816
				Balance of system & misc.	17.3%	\$	1,944,200	7	3,623,396	3,623,396	15,262,212
				Total Initial costs	100.0%	ð	11,207,242	9	3,532,172	3,532,172	22.217.138
								10	3,293,141	3,293,141	25,510,279
				Annual costs and dabt normants				11	3,141,130	3,141,130	28,651,408
				O&M		s	1.050.000	12	2,964,290	2,964,290	31,615,699
Income tax analysis				Fuel cost - proposed case		\$	1,908,270	14	2,525,156	2,525,156	36,900,804
				Total appual conta			2 059 270	15	2,256,670	2,256,670	39,157,473
						ş	2,950,270	17	1,603,955	1,603,955	42,712,342
				Periodic costs (credits)				18	1,211,458	1,211,458	43,923,801
								19	768,655	768,655	44,692,455
								20	-289.413	-289.413	44,962,747
								22	-916,822	-916,822	43,756,512
L				Annual savings and income		¢	6 0 40 0 5 4	23	-1,618,942	-1,618,942	42,137,570
Annual income				Fuel Cost - Dase Case		3	0,843,954	24	-2,403,482	-2,403,482	39,734,088
Electricity export income											
						-	_				
				Total annual savings and income	- 1	\$	6,843,954				
GHG reduction income					\smile		-				
Net GHG reduction	tCO2/yr	17	7,022	Financial viability							
Net GHG reduction - 24 yrs	tCO2	408	3,524	Pre-tax IRR - equity		%	33.1%				
				Ple-lax IRR - assels		70	33.1%				
				After-tax IRR - equity		%	33.1%				
				After-tax IRR - assets		%	33.1%				
				Simple payback		vr	2.9				
Customer premium income (rebate)				Equity payback		yr	2.9				
				Net Present Value (NDV)			20 724 000				
				Annual life cycle savings		\$ \$/vr	1.655.587				
						. ,					
				Benefit-Cost (B-C) ratio			4.55				
				/0							
				GHG reduction cost		\$/tCO2	(97)				
Other income (cost)				Cumulative cash flows graph		< - c		-			
					_			_			
			\leq	50,000,000	_			-			
Clean Energy (CE) production income				40,000,000							
			7-								
			1	30,000,000							
			-	9							
				0 20,000,000							
				t f		/					
				5 10,000,000	/						
			_	tive	/						
				Inla							
						7 0	0 10 11	12 12	4 15 16 1	7 19 10 20 1	21 22 22 21
					. 5 0	1 0	9 10 11	12 13	14 15 10 1	10 19 20 2	21 22 23 24
			-	-10,000,000							
			~								1
			-								
				-20,000,000	-						
				SANE							
						,	loar				
L				l			cdl				