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ABSTRACT 
Fund managers have to decide the amount of a fund's assets and the type of investment 

Options that should be undertaken, considering the interest rate and the tradeoff between 

being able to meet shareholder redemptions and minimizing the opportunity cost from 

lost investment opportunities. In addition, they have to consider redemptions by 

individuals as well as institutional investors, the current performance of the stock market 

and interest rates, and the pattern of investments and redemptions which are correlated 

with market performance. We formulated the provident fund investment problem of 

Ghana Community Network Services Limited, GCNet, a Ghanaian company as a 

dynamic program model. The objective is to determine the optimal investment policy in 

the company so that the business gets the optimum return of profit from the number of 

investment alternatives. The general practice is that most establishments do not have a 

well structured plan on how to allocate funds to various investment options in order to 

maximize returns from the investments. Investment funds are allocated by trial and error 

basis and at the discretion of people or departments in charge. These methods are faulted, 

and are basically inefficient as returns from the fund invested are not optimal. To 

overcome this problem, we proposed a dynamic programming algorithm in solving our 

problem. We use actual data from the funds coffers for market performance and interest 

rates, and demonstrate the quality of the solution as compared to the existing solution 

from the firm‟s investment strategy. We showed from our results that our solution to our 

investment problem gave an optimal investment returns of GH¢6,600.00, as against the 

firm‟s record of investing all the GH¢100 at a return of GH¢6,500.00. The result is a 

simple policy that describes when money should be moved into and out of cash based on 

market performance. 
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CHAPTER 1 

OVERVIEW OF CHAPTER 1 

This chapter presents an overview of the introduction, the background to the study, 

problem statement, objectives, methodology, justification, scope of the study, limitations 

of the study, organisation of the study and summary of the thesis. 

 

1.0 INTRODUCTION 

Unlike other management science techniques, dynamic programming does not have a 

rigid structure or set of equations associated with it. Rather than a technique, it is a 

procedure for systematically making a set of interrelated decisions that yield an optimum 

solution. Like linear programming problems, dynamic programming problems have 

objective functions and constraints, but the form of these functions may vary from 

problem to problem or even from one part of a problem to the next. The common 

characteristics of all dynamic programming problems is that they are complex, with many 

variables, but they can be broken down into several small problems and solved in such a 

way as to optimize the overall objective function. 

Dynamic programming is a useful technique for making a sequence of interrelated 

decisions. It requires formulating an appropriate recursive relationship for each individual 

problem. However, it provides a great computational savings over using exhaustive 

enumeration to find the best combination of decisions, especially for large problems.  

In this chapter of the study, we shall give an overview of dynamic programming model; a 

brief description of the problem statement of the study is also presented as well as the 

objectives, the methodology, the justification and the organization of the study. 
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 1.1 BACKGROUND OF STUDY 

Dynamic programming is a method for solving complex problems in mathematics and 

computer science by breaking them down into simpler sub problems. It is applicable to 

problems exhibiting the properties of overlapping, sub problems which are only slightly 

smaller and optimal substructure. When applicable, the method takes far less time than 

naive methods. The key idea behind dynamic programming is quite simple. In general, to 

solve a given problem, we need to solve different parts of the problem (sub problems), 

then combine the solutions of the sub problems to reach an overall solution. Often, many 

of these sub problems are really the same. The dynamic programming approach seeks to 

solve each sub problem only once, thus reducing the number of computations. This is 

especially useful when the number of repeating sub problems is exponentially large. The 

term dynamic programming was originally used in the 1940s by Richard Bellman to 

describe the process of solving problems where one needs to find the best decisions one 

after another. By 1953, the author refined this to the modern meaning, referring 

specifically to nesting smaller decision problems inside larger decisions. The word 

dynamic was chosen by Bellman to capture the time-varying aspect of the problems, and 

also because it sounded impressive. The word programming referred to the use of the 

method to find an optimal program, in the sense of a military schedule for training or 

logistics. Dynamic programming is both a mathematical optimization method and a 

computer programming method. In both contexts it refers to simplifying a complicated 

problem by breaking it down into simpler sub problems in a recursive manner. While 

some decision problems cannot be taken apart this way, decisions that span several points 

in time do often break apart recursively; Bellman called this the "Principle of Optimality" 



 12 

(R. Bellmand and S. Dreyfus, 1962). Likewise, in computer science, a problem that can 

be broken down recursively is said to have optimal substructure. If sub problems can be 

nested recursively inside larger problems, so that dynamic programming methods are 

applicable, then there is a relation between the value of the larger problem and the values 

of the sub problems. In the optimization literature this relationship is called the Bellman 

equation. In terms of mathematical optimization, dynamic programming usually refers to 

simplifying a decision by breaking it down into a sequence of decision steps over time. 

This is done by defining a sequence of value functions V1, V2 ... Vn, with an argument y 

representing the state of the system at times i from 1 to n. The definition of Vn(y) is the 

value obtained in state y at the last time n. The values Vi at earlier times i=n-1,n-2,...,2,1 

can be found by working backwards, using a recursive relationship called the Bellman 

equation. For i=2,...n, Vi -1 at any state y is calculated from Vi by maximizing a simple 

function (usually the sum) of the gain from decision i-1 and the function Vi at the new 

state of the system if this decision is made. Since Vi has already been calculated for the 

needed states, the above operation yields Vi -1 for those states. Finally, V1 at the initial 

state of the system is the value of the optimal solution. The optimal values of the decision 

variables can be recovered, one by one, by tracking back the calculations already 

performed. 

Dynamic programming is a useful mathematical technique for making a sequence of 

interrelated decisions. It provides a systematic procedure for determining the optimal 

combination of decisions. In contrast to linear programming, there does not exist a 

standard mathematical formulation of “the” dynamic programming problem. Rather, 

dynamic programming is a general type of approach to problem solving, and the 
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particular equations used must be developed to fit each situation. Therefore, a certain 

degree of ingenuity and insight into the general structure of dynamic programming 

problems is required to recognize when and how a problem can be solved by dynamic 

programming procedures. These abilities can best be developed by an exposure to a wide 

variety of dynamic programming applications and a study of the characteristics that are 

common to all these situations.        

Many at times we may come across situations, where we may have to make decision in 

multistage, i.e. optimization of multistage decision problems (Adam B. Levy, 2009). 

 Dynamic programming is a technique for getting solutions for multistage decision 

problems. A problem, in which the decision has to be made at successive stages, is called 

a multistage decision problem. In this case, the problem solver will take decision at every 

stage, so that the total effectiveness defined over all the stages is optimal. Here the 

original problem is broken down or decomposed into small problems, which are known 

as sub problems or stages which is much convenient to handle and to find the optimal 

stage. For example, consider the problem of a sales manager, who wants to start from his 

head office and tour various branches of the company and reach the last branch. He has to 

plan his tour in such a way that he has to visit number of branches and cover less distance 

as far as possible. He has to divide the network of the route connecting all the branches 

into various stages and workout, which is the best route, which will help him to cover 

more branches and less distance. We can give plenty of business examples, which are 

multistage decision problems. The computational technique used is known as Dynamic 

Programming or Recursive Optimization. We do not have a standard mathematical 

formulation of the Dynamic Programming Problem (D.P.P). For each problem, 

https://www.google.com.gh/search?newwindow=1&biw=1360&bih=546&tbm=bks&q=inauthor:%22Adam+B.+Levy%22&sa=X&ei=B0NiUtKBKpKZ0QXX6YGAAQ&ved=0CFoQ9AgwBw
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depending on the variables given, and objective of the problem, one has to develop a 

particular equation to fit for situation. Though we have quite good number of dynamic 

programming problems, sometimes to take advantage of dynamic programming, we 

introduce multistage nature in the problem and solve it by dynamic programming 

technique. Nowadays, application of Dynamic Programming is done in almost all day to 

day managerial problems, such as, inventory problems, waiting line problems, resource 

allocation problems etc. Dynamic programming problem may be classified depending on 

the following conditions. 

(i) Dynamic programming problems may be classified depending on the nature of data 

available as Deterministic and Stochastic or Probabilistic models. In deterministic 

models, the outcome at any decision stage is unique, determined and known. In 

Probabilistic models, there is a set of possible outcomes with some probability 

distribution.  (ii) The possible decisions at any stage, from which we are to choose one, 

are called „states‟. These may be finite or infinite. States are the possible situations in 

which the system may be at any stage. (iii) Total number of stages in the process may be 

finite or infinite and may be known or unknown.  

Dynamic programming is a technique that can be used to solve many optimization 

problems. In most applications, dynamic programming obtains solutions by working 

backward from the end of a problem toward the beginning, thus breaking up a large, 

unwieldy problem into a series of smaller, more tractable problems. 

 

One example of the usefulness of dynamic programming is the resource allocation 

problems (Murthy C. S. R and  Manimaran G. 2001). Resource allocation problems, in 

http://scholar.google.com/citations?user=vkOTo_EAAAAJ&hl=en&oi=sra
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which limited resources must be allocated among several activities, are often solved by 

dynamic programming. Even though such problems can be solved by linear 

programming, for example, the Giapetto problem), to use linear programming to do 

resource allocation, one must made three assumptions: (1) the amount of resource 

assigned to any activity may be any nonnegative value, (2) the benefit obtained from each 

activity is proportional to the amount of the resource assigned to the activity, and (3) the 

benefit obtained from more than one activity is the sum of the benefits obtained from the 

individual activities. 

Even if assumptions 1 and 2 do not hold, dynamic programming can be used to solve 

resource-allocation problems efficiently when assumption 3 is valid and when the amount 

of the resource allocated to each activity is a member of a finite set. 

      In addition to the above application, dynamic programming have been used to solve a 

number of real-life problems, including network problems (Gutierrez, 2007), and 

(Huschka, 2007), equipment replacement problems (Easton, et al., 2003), refinery 

capacity problems (Murthy, 2001), travelling salesman problem, and Minimax shortest 

route optimizations (Tomastik, 1993).  Thus, dynamic programming has played an 

important role in supporting managerial decisions in the areas of capital budgeting, 

warehouse location, and scheduling.  

       

1.2 PROBLEM STATEMENT 

This study seeks to apply dynamic programming in solving the provident fund investment 

problem of Ghana Community Network Services Limited (GCNet) Senior Staff 

Association. Many optimization problems that arise naturally in applications involve 
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scenarios where a sequence of interrelated decisions is to be made. Typically, these 

decisions are to be made over time. In an investment problem, one may need to assemble 

a new portfolio at the beginning of each day. In general, however, the required decisions 

may have nothing to do with time. Dynamic programming (DP) is a widely-used  

mathematical method for solving linear and nonlinear optimization problems. The term 

"dynamic" originates from the fact that in most applications, the method is used to derive 

a sequence of optimal decisions that are adapted to scenario changes that occur 

dynamically over time.  

Dynamic programming starts with a small portion of the original problem and finds the 

optimal solution for this smaller problem. It then gradually enlarges the problem, finding 

the current optimal solution from the preceding one, until the original problem is solved 

in its entirety. 

Formulation. Let the decision variables xn (n = 1, 2, 3, ..N) be the immediate destination 

on stage n (the nth stage problem to be solved). Thus, the problem selected is x1   x2 x3 

…  xn, where xn  J, and j is the ultimate destination. 

Let fn(s, xn) be the total cost of the best overall policy for the remaining stages, given that 

we are in state s, ready to start stage n, and selects xn as the immediate destination. Given 

s and n, let xn* denote any value of xn (not necessarily unique) that minimizes fn(s, xn), 

and let f n* (s) be the corresponding minimum value of fn(s, xn). Thus, 

f n*(s)  =  min fn(s, xn)  = fn(s, xn*), 

Where 
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 fn(s, xn) = immediate cost (stage n)  +  minimum future cost (stages n + 1 onward)  = csxn 

+  f* n+1(xn). 

The value of csxn is given by setting i = s (the current state) and j = xn (the immediate 

destination). Because the ultimate destination (state J) is reached at the end of stage n, f* 

n+1 ( J)  =  0. 

The objective is to find f* i (A) and the corresponding route. Dynamic programming finds 

it by successively finding f* n(s), f* n-1(s), f* n-2(s)… for each of the possible states s. 

1.3 OBJECTIVES   

Proper investment decision making is key to success for every investor in their efforts to 

keep pace with the competitive business environment. Mitigation of exposure to risk 

plays a vital role, since investors are now directly exposed to the uncertain decision 

environment. The uncertainty (and risk) of an investment is increasing with the increased 

number of competing investors entering to market. As a result, the expected return on 

investment (ROI) of a decision quite often carries a high degree of uncertainty. 

Our main objectives are:  

(i) To formulate a dynamic programming mathematical model for the investment 

decision with incorporating this uncertainty in a probabilistic manner, 

(ii)  Apply policy iteration algorithm of the dynamic programming to solve the 

model, and  

(iii)To select the optimal action (i.e., investment decision) among alternative options 

for each state to maximize the total gain or reward.  
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1.4 METHODOLOGY  

For our methodology, we propose policy iteration algorithm of the dynamic programming 

in solving our problem. First, the algorithm will be presented. A real life computational 

study will be performed. 

 1.5 JUSTIFICATION  

Dynamic programming are widely used in financial decision making, and very interesting 

from the perspective of mathematical optimization and computer science because; it is 

able to simplify a complicated problem by breaking it down into simpler sub problems in 

a recursive manner. While some decision problems cannot be taken apart this way, 

decisions that span several points in time do often break apart recursively; Bellman called 

this the "Principle of Optimality". Likewise, in computer science, a problem that can be 

broken down recursively is said to have optimal substructure. If sub problems can be 

nested recursively inside larger problems, so that dynamic programming methods are 

applicable, then there is a relation between the value of the larger problem and the values 

of the sub problems. 

 In view of these, application of dynamic programming to solving real-life problems is an 

area of much interest in the contribution to academic knowledge, hence the reason for 

solving the dynamic programming problem. 

1.6 SCOPE OF THE STUDY 

As most organizations have embraced and cherished “employee well being”, they devised 

various plans such as in-service training, welfare contributions, provident fund and many 

more so as to accomplish their employee wellbeing ambition. This study therefore seeks 

to mathematically formulate a provident fund investment model which is a real life 
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problem in most Ghanaian companies for example Ghana Community Network Services 

Limited (GCNet) Senior Staff Association. The aim is to establish the most favourable 

investment policy with provident fund management so that the company accrues 

optimum return of profit from a various investment alternatives for its contributors.    

1.7 LIMITATIONS OF THE STUDY 

The study is limited to provident fund investment management using dynamic 

programming approach. This is a deliberate effort on the researcher‟s part to make the 

study manageable given the time and resources available to the researcher to complete 

the study. The study was limited to the perceived effect of application of dynamic 

programming on an institutional staff provident fund management of Ghana Community 

Network Services Limited (GCNet) Senior Staff Association. 

1.8 ORGANIZATION OF THE STUDY 

In chapter 1, we presented a background study of dynamic programming.  

In chapter 2, related works in the field dynamic programming will be reviewed. 

 In chapter 3, dynamic programming algorithm will be introduced and explained. 

Included in this chapter will be a formal definition of the algorithm.  

Chapter 4 will provide a computational study of dynamic programming algorithm applied 

to real-life instances.  

Chapter 5 will conclude this thesis with additional comments on dynamic programming. 

1.9 SUMMARY 

In this chapter, we considered the background, the problem structure and objective of the 

study - the justification, scope and limitations of the study were also put forward. The 

next chapter presents relevant literature on the application of dynamic programming.   
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CHAPTER 2 

LITERATURE REVIEW 

At present, investment decision making is a critical task because every investment 

exhibits at least some amount of risk and uncertainty. These risks and uncertainties are 

the results of huge business competition and vibrant market economy. As a result, recent 

research in investment decision making is undergoing a paradigm shift with much 

integration of new techniques with existing methods to develop robust decision making 

processes, Heikkinen et al., (2009). 

 

Net present value (NPV) is the most common method in investment evaluation, Wang 

(1998). Alkaraan and Northcott (2006) analyzed the use of conventional investment 

appraisal techniques such as payback, return on assets (ROA), return on investment 

(ROI), internal rate of return (IRR), NPV and risk analysis approaches such as sensitivity 

analysis, adjustment of the payback period, or discount rate.  

 

Handling risk and uncertainty in projects is currently one of the main topics of interest for 

researchers and practitioners working in the area of project investment decision making 

Raz and Michael (2001), Topaloglou et al., (2002) and Rockafellar et al., (2000) solved 

Portfolio optimization problems with dynamic programming and they used Monte Carlo 

simulations to capture the risk in each associated investment. 

 

Xu-song and Jian-mou (2002) studied the investment decision-making of a project with 

deterministic dynamic programming.  
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Yan and Bai (2009) formulated a deterministic dynamic programming model to allocate 

funds between stocks in a portfolio to maximize income. They captured the risk issues by 

incorporating the positive correlation between risks and returns of a stock to a large 

extent. 

Heikkinen and Pietola (2009) studied the use of stochastic programming approaches to 

make optimal investment decisions by modeling the problem as a Markov decision 

process. A dynamic uncertainty cost is presented with the modification of the classical 

expected value of perfect information to a dynamic setting. Dixit and Pindyck (1994) 

described the use of a Markov decision process (MDP) defined in continuous time and 

with a continuous state space for optimal investment decisions. 

 

Most of the prior research does not consider the inter-related dynamics of the systems 

that can be encountered by a stochastic dynamic investment model, Botterud (2007).The 

present research herein aims to handle this uncertainty and interrelated dynamics using 

infinite horizon stochastic dynamic programming and at the same time make optimal 

investment decisions for which the maximum total expected reward can be achieved.      

Mousavi and Karamouz (2003) developed a dynamic programming (DP) optimization 

model for long term planning of multiple-reservoir operations. To overcome the well-

known dimensionality problem associated with such a model, a heuristic approach is used 

to narrow the needed search algorithm within the state space of the DP model. This 

method can recognize many infeasible transitions from the initial to the final state of the 

DP stages. By diagnosing these infeasible transitions in advance and removing them from 

further computations, significant improvement in computational load was achieved so 
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that the computer time for solving the model was reduced more than 50 times for the 

reservoir system under study. This methodology was applied to a four-reservoir system 

located in Iran. 

The 0/1 knapsack (or knapsack without repetition) has a dynamic programming solution 

driven by a table in which each item is consecutively considered. Timothy (2007) 

approached the problem by generating a table in which the optimal knapsack for each 

knapsack capacity was generated, modeled on the solution to the integer knapsack 

(knapsack with repetition) and the solution to change-making. 

Alvarez et al. (1998) presented a model that used dynamic programming in resolving 

economic issues, particularly homogenous problems. This was made possible by defining 

the basic existence, uniqueness and convergence results generated from dynamic 

programming methods. The authors approach provided a concrete evidence for the 

Principle of Optimality, by showing that the dynamic program, itself, coincide accurately 

with the solutions of the original problem. The proposed strategy further provided a finite 

solution to the Bellman equation. 

Charnes and Cooper (1956) presented a solution for the generalization of the warehouse 

model by means of dynamic programming techniques of one version of what is called the 

“warehouse problem”. The purpose of the study was to indicate how problems of this 

general nature may be approached by means of the functional equation technique of the 

theory of dynamic programming, and thereby reduced to a very simple and straight-

forward computational problem.  
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In several of the earliest literatures on dynamic programming (DP), reference was made 

to the possibility that the DP approach might be used to advise players on the optimal 

strategy for board games such as chess. Since these papers in the 1950s, there have been 

many attempts to develop such strategies, drawing on ideas from DP and other branches 

of mathematics. David (2005) presented a survey of those problems where a dynamic 

programming approach has been useful, or where such a formulation of the problem will 

allow further insight into the optimal mode of play 

Hiroaki (1978) studied an optimum dynamic programming (DP) based time-

normalization algorithm for spoken word recognition. First, a general principle of time-

normalization was given using time warping functioning. Then, two time-normalized 

distance definitions, symmetric and asymmetric forms, were derived from the principle. 

These two forms were compared with each other through theoretical discussions and 

experimental studies. The symmetric form algorithm superiority was established. A new 

technique, called slope constraint, was successfully introduced, in which the warping 

function slope was restricted so as to improve discrimination between words in different 

categories, and investigations were made, based on the assumption that speech patterns 

are time-sampled with a common and uniform sampling period, as in most general cases. 

One of the problems discussed in the author‟s paper involves the relative superiority of 

either a symmetric form of DP-matching or an asymmetric one. In the asymmetric form, 

time-normalization was achieved by trans-forming the time axis of a speech pattern onto 

that of the other. In the symmetric form, on the other hand, both time axes were 

transformed onto a temporarily defined common axis. Theoretical and experimental 
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comparisons showed that the symmetric form gave better recognition than the 

asymmetric one.  

Zhang (2009) considered a nonlinear non-separable functional approximation to the value 

function of a dynamic programming formulation for the network revenue management 

(RM) problem with customer choice. The authors proposed a simultaneous dynamic 

programming approach to solve the resulting problem, which is a nonlinear optimization 

problem with nonlinear constraints. The authors showed that their approximation lead to 

a tighter upper bound on optimal expected revenue than some known bounds in the 

literature. Their approach can be viewed as a variant of the classical dynamic 

programming decomposition widely used in the research and practice of network RM. 

The computational cost of this new decomposition approach was only slightly higher than 

the classical version. A numerical study showed that heuristic control policies from the 

decomposition consistently outperform policies from the classical decomposition.  

Liu (2004) presented an approach based on multi-scale representation and Dynamic 

Programming for matching deformed and possibly occluded shapes, which was robust 

with respect to noise and invariant to scale, translation, orientation and starting point 

selection. The process of contour segmentation can adjust automatically while the 

amounts of noise and deformation change. And the correspondence of similar parts of 

shapes helps to analyze the object structure and can be used as prior knowledge to learn 

shape model. The authors tested and evaluated their method on a database of 1100 

images of marine animals with a vast variety of shapes with very good results.  
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The query optimizer is one of the most important components of a database system. Most 

commercial query optimizers today are based on a dynamic-programming algorithm, as 

proposed in Selinger et al., (1979). While this algorithm produces good optimization 

results (i.e, good plans), its high complexity can be prohibitive if complex queries need to 

be processed, new query execution techniques need to be integrated, or in certain 

programming environments (e.g., distributed database systems). Donald and Konard 

(2000) presented and thoroughly evaluated a new class of query optimization algorithms 

that are based on a principle that the authors called Iterative Dynamic Programming or 

IDP for short. IDP has several important advantages: First, IDP-algorithms produced the 

best plans of all known algorithms in situations in which dynamic programming are not 

viable because of its high complexity. Second, some IDP variants are adaptive and 

produce as good plans as dynamic programming if dynamic programming is viable and 

as good-as possible plans if dynamic programming turns out to be not viable. Three, all 

IDP-algorithms can very easily be integrated into an existing optimizer which is based on 

dynamic programming. 

Dynamic Programming Algorithms (DPA) based on Lagrange multiplier method is often 

used for obtaining an optimal bit allocation strategy to minimize the total distortion given 

a constrained rate budget in both source and channel coding applications. Due to possible 

large quantizer set and improper initialization, the algorithm often suffers from heavy 

computational complexity. There have been many solutions in recent years to the above 

question. YiSong et al. (2003) presented a simple but efficient algorithm to further speed 

up the convergence of the algorithm. This algorithm can be easily realized and get the 
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final solution much faster. The experimental result shows that this new algorithm can 

figure out the optimal solution with a speed 5-7 times faster than the original algorithm. 

Chisonge and Cole (2004) considered a network where nodes communicate by 

exchanging information packets whose fields include the address of the sending node and 

that of the destination node. In the absence of some verification mechanism, an attacking 

node can send packets to another node using a forged origin address. The author 

considered an optimization problem of identifying a minimum cardinality subset of 

verification nodes on a tree such that the number of attacks from any forged origin to any 

destination is limited to a prescribed level. For the case in which communication is 

permitted between every node in the tree, the authors developed an optimal polynomial-

time dynamic programming algorithm for this problem. The authors compared the 

performance of the dynamic programming algorithm against a mixed-integer 

programming model on randomly generated tree networks at varied levels of security and 

concluded that their algorithm outperformed that of the mixed-integer programming 

model.  

Matthew et al., (2007) presented an approximate dynamic programming approach for 

making ambulance redeployment decisions in an emergency medical service system. The 

primary decision was to redeploy idle ambulances so as to maximize the number of calls 

reached within a delay threshold. The authors began by formulating this problem as a 

dynamic program. To deal with the high-dimensional and uncountable state space in the 

dynamic program, they constructed approximations to the value function that were 

parameterized by a small number of parameters. The authors tune the parameters using 

simulated cost trajectories of the system. Computational experiments demonstrated the 
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performance of the approach on emergency medical service systems in two metropolitan 

areas. They reported practically significant improvements in performance relative to 

benchmark static policies.  

Dynamic programming (DP) is a popular technique which is used to solve combinatorial 

search and optimization problems. Guangming et al. (2009) studied a model that focused 

on one type of DP, which is called Nonserial Polyadic Dynamic Programming (NPDP). 

Owing to the nonuniform data dependencies of NPDP, it was difficult to exploit either 

parallelism or locality. Worse still, the emerging multi/many-core architectures with 

small on-chip memory made these issues more challenging. In their paper, the authors 

addressed the challenges of exploiting the fine grain parallelism and locality of NPDP on 

multicore architectures. They described a latency-tolerant model and a percolation 

technique for programming on multicore architectures. On an algorithmic level, both 

parallelism and locality do benefit from a specific data dependence transformation of 

NPDP. Next, they proposed a parallel pipelining algorithm by decomposing computation 

operators and percolating data through a memory hierarchy to create just-in-time locality. 

In order to predict the execution time, they formulated an analytical performance model 

of the parallel algorithm. The parallel pipelining algorithm achieves not only high 

scalability on the 160-core IBM Cyclops64, but portable performance as well, across the 

8-core Sun Niagara and quad-cores Intel Clovertown. 

 

Ray directed volume-rendering algorithms are well suited for parallel implementation in 

a distributed cluster environment. For distributed ray casting, the scene must be 

partitioned between nodes for good load balancing, and a strict view-dependent priority 
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order is required for image composition. Frank (2009) studied the load balanced network 

distribution (LBND) problem and maps it to the NP-complete precedence constrained 

job-shop scheduling problem. The authors introduced a k-tree solution and a dynamic 

programming solution. To process a massive data set, either a parallel or an out-of-core 

approach is required. Parallel preprocessing is performed by render nodes on data, which 

are allocated using a static data structure. Volumetric data sets often contain a large 

portion of voxels that will never be rendered or empty space. Parallel preprocessing fails 

to take advantage of this. The authors slab-projection slice, introduced, tracks empty 

space across consecutive slices of data to reduce the amount of data distributed and 

rendered. It was used to facilitate out-of-core bricking and k-tree partitioning. Load 

balancing using each of our approaches was compared with traditional methods using 

several segmented regions of the Visible Korean data set. 

 

Deependra (2010) proposed a framework that includes a penalty function incorporated 

stochastic dynamic programming (SDP) model in order to derive the operation policy of 

the reservoir of a hydropower plant, with the aim to reduce the amount of spill during 

operation of the reservoir. SDP models with various inflow process assumptions were 

developed and executed in order to derive the reservoir operation policies for the case 

study of a storage type hydropower plant located in Japan. The policy thus determined 

consists of target storage levels (end-of-period storage levels) for each combination of the 

beginning-of-period storage levels and the inflow states of the current period. A penalty 

function was incorporated in the classical SDP model with objective function that 

maximizes annual energy generation through operation of the reservoir. Due to the 
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inclusion of the penalty function, operation policy of the reservoir changes in a way that 

ensures reduced spill. Simulations were carried out to identify reservoir storage guide 

curves based on the derived operation policies. Reservoir storage guide curves for 

different values of the coefficient of penalty function were plotted for a study horizon of 

64 years, and the corresponding average annual spill values are compared. It is observed 

that, with increasing values of, the average annual spill decreases; however, the simulated 

average annual energy value was marginally reduced.  

 

Operation of a storage-based reservoir modifies the downstream flow usually to a value 

higher than that of natural flow in dry season. This could be important for irrigation, 

water supply, or power production as it is like an additional downstream benefit without 

any additional investment. Mahesh (2001) undertook a study that addressed the operation 

of two proposed reservoirs and the downstream flow augmentation at an irrigation project 

located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies 

of the reservoirs were determined using a stochastic dynamic programming (SDP) model 

considering the maximization of power production. The modified flows downstream of 

the reservoirs were simulated by a simulation model using the optimal operating policy 

(for power maximization) and a synthetic long-term inflow series. Comparing the 

existing flow (flow in river without reservoir operation) and the modified flow (flow after 

reservoir operation) at the irrigation project, the additional amount of flow was 

calculated. The reliability analysis indicated that the supply of irrigation could be 

increased by 25 to 100 percent of the existing supply over the dry season (January to 

April) with a reliability of more than 80 percent. 
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A global mathematical model for simultaneously obtaining the optimal layout and design 

of urban drainage systems for foul sewage and storm water was presented by Freire 

(2000). According to the authors, their model can handle every kind of network, 

including parallel storm and foul sewers. It selects the optimal location for pumping 

systems and outfalls or wastewater treatment plants (defining the natural and artificial 

drainage basins), and it allows the presence of special structures and existing subsystems 

for optimal re-modelling or expansion. It is possible to identify two basic optimization 

levels: in the first level, the generation and transformation of general layouts (consisting 

of forests of trees) until a convergence criterion is reached, and in the second level, the 

design and evaluation of each forest. The global strategy adopted combines and develops 

a sequence of optimal design and plan layout sub-problems. Dynamic programming is 

used as a very powerful technique, alongside simulated annealing and genetic algorithms, 

in this discrete combinatorial optimization problem of huge dimension. 

 

The notion of being sure that you have completely eradicated an invasive species is 

fanciful because of imperfect detection and persistent seed banks. Eradication is 

commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on 

setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather 

than declaring eradication at some arbitrary level of confidence, Tracey (2006) studied an 

economic approach in which the search stops when the expected costs outweigh the 

expected benefits. The author developed theory that determines the number of years of 

absent surveys required to minimize the net expected cost. Given detection of a species is 
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imperfect, the optimal stopping time is a trade-off between the cost of continued 

surveying and the cost of escape and damage if eradication is declared too soon. A simple 

rule of thumb compares well to the exact optimal solution using stochastic dynamic 

programming. Application of the approach to the eradication programme of Helenium 

amarum reveals that the actual stopping time was a precautionary one given the ranges 

for each parameter. 

 

Francisco (2010) examined the labour market effects of incomplete information about the 

workers' own job-finding process. Search outcomes convey valuable information, and 

learning from search generates endogenous heterogeneity in workers' beliefs about their 

job-finding probability. The authors characterized this process and analyzed its 

interactions with job creation and wage determination. Their theory sheds new light on 

how unemployment can affect workers' labor market outcomes and wage determination, 

providing a rational explanation for discouragement as the consequence of negative 

search outcomes. In particular, longer unemployment durations are likely to be followed 

by lower reemployment wages because a worker's beliefs about his job-finding process 

deteriorate with unemployment duration. Moreover, their analysis provided a set of 

useful results on dynamic programming with optimal learning. 

 

Deependra (2010) proposed a framework that includes a penalty function incorporated 

stochastic dynamic programming (SDP) model in order to derive the operation policy of 

the reservoir of a hydropower plant, with an aim to reduce the amount of spill during 

operation of the reservoir. SDP models with various inflow process assumptions 
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(independent and Markov-I) are developed and executed in order to derive the reservoir 

operation policies for the case study of a storage type hydropower plant located in Japan. 

The policy thus determined consists of target storage levels (end-of-period storage levels) 

for each combination of the beginning-of-period storage levels and the inflow states of 

the current period. A penalty function is incorporated in the classical SDP model with 

objective function that maximizes annual energy generation through operation of the 

reservoir. Due to the inclusion of the penalty function, operation policy of the reservoir 

changes in a way that ensures reduced spill. Simulations are carried out to identify 

reservoir storage guide curves based on the derived operation policies. Reservoir storage 

guide curves for different values of the coefficient of penalty function are plotted for a 

study horizon of 64 years, and the corresponding average annual spill values are 

compared. It is observed that, with increasing values of, the average annual spill 

decreases; however, the simulated average annual energy value is marginally reduced. 

The average annual energy generation can be checked vis-à-vis the average annual spill 

reduction, and the optimal value of, can be identified based on the cost functions 

associated with energy and spill. 

 

Masafumi (2010) studied the optimal operation of railway systems minimizing total 

energy consumption. Firstly, some measures of finding energy-saving train speed profiles 

are outlined. After the characteristics that should be considered in optimizing train 

operation are clarified, complete optimization based on optimal control theory is 

reviewed. Their basic formulations are summarized taking into account most of the 

difficult characteristics peculiar to railway systems. Three methods of solving the 
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formulation, Dynamic Programming (DP), Gradient Method (GM) and Sequential 

Quadratic Programming (SQP), are introduced. The last two methods can also control the 

state of charge (SOC) of the energy storage devices. By showing some numerical results 

of simulations, the significance of solving not only optimal speed profiles but also 

optimal SOC profiles of energy storage are emphasized, because the numerical results are 

beyond the conventional qualitative studies. Future scope for applying the methods to 

real-time optimal control was also mentioned.  

 

Spjotvold (2009) considered the worst-case optimal control of discontinuous piecewise 

affine (PWA) systems, which were subjected to constraints and disturbances. The author 

seeks to pre-compute, via dynamic programming, an explicit control law for these 

systems when a PWA cost function is utilized. One difficulty with this problem class is 

that, even for initial states for which the value function of the optimal control problem is 

finite, there might not exist a control law that attains the infimum. Hence, the authors 

proposed a method that is guaranteed to obtain a sub-optimal solution, and where the 

degree of sub-optimality can be specified a priori. This was achieved by approximating 

the underlying sub-problems with a parametric piecewise linear program.  

 

When a Hybrid Electric Vehicle (HEV) is certified for emissions and fuel economy, its 

power management system must be charge sustaining over the drive cycle, meaning that 

the battery state of charge (SOC) must be at least as high at the end of the test as it was at 

the beginning of the test. During the test cycle, the power management system is free to 

vary the battery SOC so as to minimize a weighted combination of fuel consumption and 

exhaust emissions. Edward (2007) presented a model which argued that Shortest Path 
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Stochastic Dynamic Programming (SP-SDP) offers a more natural formulation of the 

optimal control problem associated with the design of the power management system 

because it allows deviations of battery SOC from a desired setpoint to be penalized only 

at key off. This method is illustrated on a parallel hybrid electric truck model that had 

previously been analyzed using infinite-horizon stochastic dynamic programming with 

discounted future cost. Both formulations of the optimization problem yield a time-

invariant causal state-feedback controller that can be directly implemented on the vehicle. 

The advantages of the shortest path formulation include that a single tuning parameter is 

needed to trade off fuel economy and emissions versus battery SOC deviation, as 

compared with two parameters in the discounted, infinite-horizon case, and for the same 

level of complexity as a discounted future-cost controller, the shortest-path controller 

demonstrates better fuel and emission minimization while also achieving better SOC 

control when the vehicle is turned off. Linear programming is used to solve both 

stochastic dynamic programs.  

 

The electric power industry is undergoing restructuring and deregulation. The authors 

incorporated the uncertainty of electric power demand or power generators into the unit 

commitment problem. The unit commitment problem is to determine the schedule of 

power generating units and the generating level of each unit. The objective is to minimize 

the operational cost which is given by the sum of the fuel cost and the start-up cost. 

Takayuki (2004) presented a new algorithm for the stochastic unit commitment problem 

which is based on column generation approach. The algorithm continues adding 

schedules from the dual solution of the restricted linear master program until the 
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algorithm cannot generate new schedules. The schedule generation problem is solved by 

the calculation of dynamic programming on the scenario tree. 

 

One partial solution to the problem of ever-increasing demands on our water resources is 

optimal allocation of available water. Bijan (2004) presented a Non-Linear Programming 

(NLP) optimization model with an integrated soil water balance. This model is the 

advanced form of a previously developed one in which soil water balance was not 

included. The author proposed a dynamic programming approach for solving the 

problem. The model can perform over different crop growth stages while taking into 

account an irrigation time interval in each stage. Therefore, the results are directly 

applicable to real-world conditions. However, the time trend of Actual Evapo-

Transpiration (AET) for individual time intervals fluctuates more than that for growth-

stage AETs. The proposed model was run for the Ardak area (45,km NW of the city of 

Mashhad, Iran) under a single cropping cultivation (corn) as well as a multiple cropping 

pattern (wheat, barley, corn, and sugar beet). The water balance equation was 

manipulated with net applied irrigation water to overcome the difficulty encountered with 

incorrect deep percolation. The outputs of the model, under the imposed seasonal 

irrigation water shortages, were compared with the results obtained from a simple NLP 

model. The differences between these two models (simple and integrated) became more 

significant as irrigation water shortage increased. Oversimplified assumptions in the 

previous simple model were the main causes of these differences.  
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Real-time signal control operates as a function of the vehicular arrival and discharge 

process to satisfy a pre-specified operational performance. This process is often predicted 

based on loop detectors placed upstream of the signal. Fang (2010) developed a signal 

control for diamond interchanges, a microscopic model to estimate traffic flows at the 

stop-line. The model considers the traffic dynamics of vehicular detection, arrivals, and 

departures, by taking into account varying speeds, length of queues, and signal control. 

As the signal control is optimized over a rolling horizon that is divided into intervals, the 

vehicular detection for and projection into the corresponding horizon intervals are also 

modeled. The signal control algorithm is based on dynamic programming and the 

optimization of signal policy is performed using a certain performance measure involving 

delays, queue lengths, and queue storage ratios. The arrival, discharge model is 

embedded in the optimization algorithm and both are programmed into AIMSUN, a 

microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic 

flow and implement the optimal signal control by accessing internal data including 

detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the 

effect of selecting different optimization criteria on the signal control performance. It was 

concluded that the queue length and queue storage ratio are the most appropriate 

performance measures in real-time signal control of interchanges.  

 

Jushan Bai (2003) considered practical issues for the empirical applications of the 

procedures. We first address the problem of estimation of the break dates and present an 

efficient algorithm to obtain global minimizers of the sum of squared residuals. This 

algorithm is based on the principle of dynamic programming and requires at most least-
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squares operations of order O(T
2
) for any number of breaks. Our method can be applied 

to both pure and partial structural change models. Second, we consider the problem of 

forming confidence intervals for the break dates under various hypotheses about the 

structure of the data and the errors across segments. Third, we address the issue of testing 

for structural changes under very general conditions on the data and the errors. Fourth, 

we address the issue of estimating the number of breaks. Finally, a few empirical 

applications are presented to illustrate the usefulness of the procedures. All methods 

discussed are implemented in a GAUSS program.  

 

An Approximate Dynamic Programming (ADP) method has shown good performance in 

solving optimal control problems in many small-scale process control applications. The 

offline computational procedure of ADP constructs an approximation of the optimal "cost 

- to - go" function, which parameterizes the optimal control policy with respect to the 

state variable. With the approximate "cost - to - go" function computed, a multistage 

optimization problem that needs to be solved online at every sample time can be reduced 

to a single-stage optimization, thereby significantly lessening the real-time computational 

load. Thidarat (2009) addressed stochastic uncertainties within this framework. 

Nonetheless, the existing ADP method requires excessive offline computation when 

applied to a high-dimensional system. A case study of a reactor and a distillation column 

with recycle was used to illustrate this issue. Then, several ways were proposed to reduce 

the computational load so that the ADP method can be applied to high-dimensional 

integrated plants. The results showed that the approach is much more superior to NMPC 

in both deterministic and stochastic cases. 
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Optical microscopy allows a magnified view of the sample while decreasing the depth of 

focus. Although the acquired images from limited depth of field have both blurred and 

focused regions, they can provide depth information. The technique to estimate the depth 

and 3D shape of an object from the images of the same sample obtained at different focus 

settings is called shape from focus (SFF). In SFF, the measure of focus, sharpness, is the 

crucial part for final 3D shape estimation. The conventional methods compute sharpness 

by applying focus measure operator on each 2D image frame of the image sequence. 

However, such methods do not reflect the accurate focus levels in an image because the 

focus levels for curved objects require information from neighboring pixels in the 

adjacent frames too. To address this issue, Seong (2009) proposed a new method based 

on focus adjustment which takes the values of the neighboring pixels from the adjacent 

image frames that have approximately the same initial depth as of the centre pixel and 

then it re-adjusts the center value accordingly. Experiments were conducted on synthetic 

and microscopic objects, and the results show that the proposed technique generates 

better shape and takes less computation time in comparison with previous SFF methods 

based on focused image surface (FIS) and dynamic programming. 

 

Approximate Dynamic Programming (ADP) is a broad umbrella for a modeling and 

algorithmic strategy for solving problems that are sometimes large and complex, and are 

usually (but not always) stochastic. It is most often presented as a method for overcoming 

the classic curse of dimensionality that is well-known to plague the use of Bellman's 

equation. For many problems, there are actually up to three curses of dimensionality. But 
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the richer message of approximate dynamic programming is learning what to learn, and 

how to learn it, to make better decisions over time. Warren (2009) presented a brief 

review of approximate dynamic programming, without intending to be a complete 

tutorial. Instead, our goal is to provide a broader perspective of ADP and how it should 

be approached from the perspective of different problem classes.  

 

Stochastic dynamic programming models are attractive for multi-reservoir control 

problems because they allow non-linear features to be incorporated and changes in 

hydrological conditions to be modelled as Markov processes. However, with the 

exception of the simplest cases, these models are computationally intractable because of 

the high dimension of the state and action spaces involved. Archibald (2006) proposed a 

new method of determining an operating policy for a multi-reservoir control problem that 

uses stochastic dynamic programming, but is practical for systems with many reservoirs. 

Decomposition is first used to reduce the problem to a number of independent 

subproblems. Each subproblem is formulated as a low-dimensional stochastic dynamic 

program and solved to determine the operating policy for one of the reservoirs in the 

system. 

 

Cheng-Liang Chen (2003) proposed a novel algorithm integrating iterative dynamic 

programming and fuzzy aggregation to solve multi-objective optimal control problems. 

First, the optimal control policies involving these objectives are sequentially determined. 

A payoff table is then established by applying each optimal policy in series to evaluate 

these multiple objectives. Considering the imprecise nature of decision-maker's 

judgment, these multiple objectives are viewed as fuzzy variables. Simple monotonic 
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increasing or decreasing membership functions are then defined for degrees of 

satisfaction for these linguistic objective functions. The optimal control policy is finally 

searched by maximizing the aggregated fuzzy decision values. The proposed method is 

rather easy to implement. Two chemical processes, Nylon 6 batch polymerization and 

Penicillin G fed-batch fermentation, are used to demonstrate that the method has a 

significant potential to solve real industrial problems.  

 

The Cramér-Lundberg insurance model is studied where the risk process can be 

controlled by reinsurance and by investment in a financial market. The performance 

criterion is the ruin probability. Manfred (2003) studied this problem by can imbedding in 

the framework of discrete-time stochastic dynamic programming. Basic tools are the 

Howard improvement and the verification theorem. Explicit conditions are obtained for 

the optimality of employing no reinsurance and of not investing in the market.  

The accuracy of an alignment between two protein sequences can be improved by 

including other detectably related sequences in the comparison. Marc (2004) optimized 

and benchmarked such an approach that relies on aligning two multiple sequence 

alignments, each one including one of the two protein sequences. Thirteen different 

protocols for creating and comparing profiles corresponding to the multiple sequence 

alignments are implemented in the SALIGN command of MODELLER. A test set of 200 

paire wise, structure-based alignments with sequence identities below 40% is used to 

benchmark the 13 protocols as well as a number of previously described sequence 

alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise 

sequence alignment by global dynamic programming with an affine gap penalty function 
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by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, 

Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence 

alignment relying on predicted local structure by SEA, and multiple sequence alignment 

by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols 

were significantly better than those of the other tested methods. For example, the fraction 

of the correctly aligned residues relative to the structure-based alignment by the best 

protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 

50%, 49%, 43%, and 43% for the other methods, respectively. The new method is 

currently applied to large-scale comparative protein structure modeling of all known 

sequences. 

 

Jacoboni (2001) presented a method based on neural networks and tested on non-

redundant set of,-barrel membrane proteins known at atomic resolution with a jackknife 

procedure. The method predicts the topography of trans-membrane, strands with residue 

accuracy as high as 78% when evolutionary information is used as input to the network. 

Of the trans-membrane, strands included in the training set, 93% are correctly assigned. 

The predictor includes an algorithm of model optimization, based on dynamic 

programming that correctly models eight out of the 11 proteins present in the 

training/testing set. In addition, protein topology is assigned on the basis of the location 

of the longest loops in the models. We propose this as a general method to fill the gap of 

the prediction of, barrel membrane proteins. 
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Tsai (2005) presented an automatic and more robust implementation of Multivariate 

Adaptive Regression Splines (MARS) within the Orthogonal Array (OA)/MARS 

continuous-state Stochastic Dynamic Programming (SDP) method. MARS is used to 

estimate the future value functions in each SDP level. The default stopping rule of MARS 

employs the maximum number of basic functions Mmax, specified by the user. To reduce 

the computational effort and improve the MARS fit for the wastewater treatment SDP 

model, two automatic stopping rules, which automatically determine an appropriate value 

for Mmax, and a robust version of MARS that prefers lower-order terms over higher-

order terms are developed. Computational results demonstrate the success of these 

approaches.  

 

In solving the boundary value problem resulting from the use of Pontryagin's maximum 

principle, a transformation matrix is used to relate the sensitivity of the final state to the 

initial state. This avoids the need to solve the (n × n) differential equation to give the 

transition matrix, and yields very rapid convergence to the optimum. To ensure 

convergence, Rein (2010) proposed an Iterative Dynamic Programming (IDP) for a 

number of passes to yield good starting conditions for this boundary condition iteration 

procedure. Clipping technique is used to handle constraints on control. Five optimal 

control problems were used to illustrate and to test the procedure.  

 

At times, the objective is to seek a bang-bang control policy for nonlinear time-optimal 

control problems. The usefulness of iterative dynamic programming (IDP) has been 

shown in the literature for solving such problems. However, the convergence to the 

optimal solution has been obtained from about 50% of the guessed values near the 
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optimum. Yash (2000) presented an improved IDP search method for seeking such 

solutions and a comparison is made with the IDP. The results show that the convergence 

can be obtained from a significantly higher number of guessed values chosen over a 

much wider region around the optimum.  

 

The discretized quadratic sub-optimal tracker for nonlinear continuous two-dimensional 

(2-D) systems is newly proposed by Chia-Wei Chen (2004). The proposed method 

provides a novel methodology for indirect digital redesign for nonlinear continuous 2-D 

systems with a continuous performance index. This includes the following features: (1) 

the 2-D optimal-linearization approach of the nonlinear 2-D Roesser's Model (RM), (2) 

the dynamic programming-based discretized quadratic optimal tracker for linear 

continuous 2-D systems, (3) the steady-state discretized quadratic sub-optimal tracker for 

linear continuous 2-D systems, and (4) the discretized quadratic sub-optimal tracker for 

nonlinear continuous 2-D systems. Illustrative examples were presented to demonstrate 

the effectiveness of the proposed procedure. 

A symbolic dynamic programming approach for modelling first-order Markov decision 

processes within the fluent calculus was studied by Grobmann et al. (2002). Based on an 

idea initially presented in [3], the major components of Markov decision processes such 

as the optimal value function and a policy are logically represented. The technique 

produces a set of first-order formulae with equality that minimally partitions the state 

space. Consequently, the symbolic dynamic programming algorithm presented here does 

not require enumerating the state and action spaces, thereby solving a drawback of 
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classical dynamic programming methods. In addition, we illustrate how conditional 

actions and specificity can be modelled by the approach.  

The curse of dimensionality gives rise to prohibitive computational requirements that 

render infeasible the exact solution of large-scale stochastic control problems. De Farias 

and Van (2001) studied an efficient method based on dynamic programming for 

approximating solutions to such problems. The approach “fits” a linear combination of 

pre-selected basis functions to the dynamic programming cost-to-go function. The 

authors developed error bounds that offer performance guarantees and also guide the 

selection of both basis functions and “state-relevance weights” that influence quality of 

the approximation. Experimental results in the domain of queueing network control 

provide empirical support for the methodology.  

Bertossi and Mei (2000) presented several dynamic programming algorithms which can 

be efficiently implemented using parallel networks with reconfigurable buses. The bit 

model of general reconfigurable meshes with directed links, common write, and unit-time 

delay for broadcasting is assumed. Given two sequences of length m and n, respectively, 

their longest common subsequence can be found in constant time by an O(mh)×O(nh) 

directed reconfigurable mesh, where h=min{m, n}+1. Moreover, given an n-node 

directed graph G=(V, E) with (possibly negative) integer weights on its arcs, the shortest 

distances from a source node ν ε V to all other nodes can be found in constant time by an 

O(n
2
w) x O(n

2
w) directed reconfigurable mesh, where w is the maximum  weight. 

Godfrey and Powell (2000) studied an adaptive dynamic programming algorithm for 

stochastic dynamic resource allocation problems, which arise in the context of logistics 
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and distribution, fleet management, and other allocation problems. The method depends 

on estimating separable nonlinear approximations of value functions, using a dynamic 

programming framework. That paper considered only the case in which the time to 

complete an action was always a single time period. Experiments with this technique 

quickly showed that when the basic algorithm was applied to problems with multi-period 

travel times, the results were very poor. In this paper, we illustrate why this behavior 

arose, and propose a modified algorithm that addresses the issue. Experimental work 

demonstrates that the modified algorithm works on problems with multiperiod travel 

times, with results that are almost as good as the original algorithm applied to single 

period travel times.  

The most common application of linear programming in agricultural situations has been 

to the problem of resource allocation between competing farm activities. Given relevant 

input-output information for a specific farm, together with real or assumed price and cost 

patterns, the technique of linear programming enables calculation of the combination of 

enterprises which maximizes net profit, within the limitations imposed by the availability 

of farm resources. It is necessary in some linear programming analyses to make explicit 

allowance for the peculiar influence of time on the structure of the system under study. 

Of the many ways in which this may be achieved, Throsby (1962) studied four proposals, 

which have been, or are likely to be, of relevance in an agricultural context: (i) 

Parametric programming, which allows consideration of resource or price variation 

between time periods; (ii) extension of the time-span of an activity to cover a series of 

sequential processes, for example the treatment of rotational sequences as single 

activities; (iii) the referencing of some resources and/or activities to specific time periods; 
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a common example is the fragmentation of labour supply into months; and (iv) the so-

called "multi-stage" or "dynamic" linear programming where a single matrix is used to 

describe, in an orderly fashion, a system's structure over a time-span of several periods. It 

is the latter with which we are primarily concerned here. In its simplest form a dynamic 

linear programming problem may be set up as a large matrix composed of a series of 

smaller matrices lying down the diagonal. In its more advanced form allowance can be 

made for interactions between resources and activities in different periods. In general, 

dynamic linear programming problems are characterized by large "sparse" matrices (i.e., 

matrices in which many coefficients are zero) and usually a "block diagonal" or "block 

triangular" pattern is evident. The size of such matrices is frequently forbidding; 

however, computational algorithms are available which allow overall solutions to be 

obtained by solving a series of smaller problems. With the aid of a little ingenuity a great 

variety of time-dependent restrictions, resources, activities and opportunities can be 

accounted for in a dynamic linear programming analysis. From an agricultural 

economist's viewpoint it would not seem extravagant to claim that dynamic linear 

programming can be used to provide a more adequate analytical description of whole-

farm situations over time than most other tools at present available in his kit. 

Milios and Petrakis (1999) presented a shape matching algorithm for deformed shapes 

based on dynamic programming. Our algorithm is capable of grouping together segments 

at finer scales in order to come up with appropriate correspondences with segments at 

coarser scales. The authors illustrated the effectiveness of our algorithm in retrieval of 

shapes by content on two different two-dimensional (2-D) datasets, one of static hand 

gesture shapes and another of marine life shapes. The authors also demonstrated the 
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superiority of their approach over traditional approaches to shape matching and retrieval, 

such as Fourier descriptors and geometric and sequential moments. Our evaluation is 

based on human relevance judgments following a well-established methodology from the 

information retrieval field. 

Tohru (2007) studied capacity expansion problems for telecommunication network 

facilities, based on fuzzy dynamic programming. Although cost functions, discount rates, 

demand functions, and so on should be given; they usually cannot be defined clearly 

because of technical developments or business fluctuations. This paper represents 

undefined factors by fuzzy numbers with Triangular Membership Functions (TFN). 

Multiplication or division of TFN does not give rigid TFN, but we approximate them to 

TFN for ease of calculation. Three methods based on this approximation are compared, 

using numerical examples. Approximation accuracies are confirmed by strict calculation 

using removal of defining orders of fuzzy numbers. 

An investigation of the single-vehicle, many-to-many, immediate-request dial-a-ride 

problem was developed in two parts (I and II) by Harilaos (1980). Part I focuses on the 

“static” case of the problem. In this case, intermediate requests that may appear during 

the execution of the route are not considered. A generalized objective function is 

examined, the minimization of a weighted combination of the time to service all 

customers and of the total degree of “dissatisfaction” experienced by them while waiting 

for service. This dissatisfaction is assumed to be a linear function of the waiting and 

riding times of each customer. Vehicle capacity constraints and special priority rules are 

part of the problem. A Dynamic Programming approach was proposed. The algorithm 
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exhibits a computational effort which, although an exponential function of the size of the 

problem, is asymptotically lower than the corresponding effort of the classical Dynamic 

Programming algorithm applied to a Traveling Salesman Problem of the same size. Part 

II extends this approach to solving the equivalent “dynamic” case. In this case, new 

customer requests are automatically eligible for consideration at the time they occur. The 

procedure is an open-ended sequence of updates, each following every new customer 

request. The algorithm optimizes only over known inputs and does not anticipate future 

customer requests. Indefinite deferment of a customer‟s request is prevented by the 

priority rules introduced in Part I. Examples in both “static” and “dynamic” cases are 

presented.  

Dan (2009) considered a nonlinear non-separable functional approximation to the value 

function of a dynamic programming formulation for the network revenue management 

(RM) problem with customer choice. The authors proposed a simultaneous dynamic 

programming approach to solve the resulting problem, which is a nonlinear optimization 

problem with nonlinear constraints. We show that our approximation leads to a tighter 

upper bound on optimal expected revenue than some known bounds in the literature. Our 

approach can be viewed as a variant of the classical dynamic programming 

decomposition widely used in the research and practice of network RM. The 

computational cost of this new decomposition approach is only slightly higher than the 

classical version. A numerical study shows that heuristic control policies from the 

decomposition consistently outperform policies from the classical decomposition.  

To reduce delay in ship operations in automated container terminals, it is important to 

make different types of container handling equipment to operate harmoniously during 
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this operation. Delivery operations by Automated Guided Vehicles (AGVs) play an 

important role for synchronizing operations of container cranes with yard cranes. Kap 

and Jong (2000) studied how to dispatch AGVs by utilizing information about locations 

and times of future delivery tasks. A mixed-integer programming model was provided for 

assigning optimal delivery tasks to AGVs. A heuristic algorithm is suggested for 

overcoming the excessive computational time needed for solving the mathematical 

model. Objective values and computational times of the heuristic algorithm are compared 

with those of the optimizing method. To test performances of the heuristic algorithm, a 

simulation study is performed by considering the uncertainties of various operation times 

and the number of future delivery tasks for looking ahead. Also, the performance of the 

heuristic algorithm is compared with those of other dispatching rules.  

Car pooling is a transportation service organized by a large company which encourages 

its employees to pick up colleagues while driving to/from work to minimize the number 

of private cars travelling to/from the company site. The car pooling problem consists of 

defining the subsets of employees that will share each car and the paths the drivers should 

follow, so that sharing is maximized and the sum of the path costs is minimized. The 

special case of the car pooling problem where all cars are identical can be modeled as a 

Dial-a-Ride Problem. Roberto et al., (2000) presented a dynamic programming model for 

the car pooling problem, based on integer programming formulations of the problem. The 

method was based on a bounding procedure that combines three lower bounds derived 

from different relaxations of the problem. A valid upper bound is obtained by a heuristic 

method, which transforms the solution of a Lagrangean lower bound into a feasible 

solution. The computational results show the effectiveness of the proposed methods.  
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The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of 

finding a minimum-cost path visiting a set of cities exactly once, where each city must be 

visited within a specific time window. Filippo et al., (2001) presented a dynamic 

programming approach for solving the TSPTW that merges Constraint Programming 

propagation algorithms for the feasibility viewpoint (find a path), and Operations 

Research techniques for coping with the optimization perspective (find the best path). 

The authors showed with extensive computational results that the synergy between 

Operations Research optimization techniques embedded in global constraints, and 

Constraint Programming constraint solving techniques, makes the resulting framework 

effective in the TSPTW context also if these results are compared with state-of-the-art 

algorithms from the literature.  

Dynamic programming solutions to a number of different recurrence equations for 

sequence comparison and for RNA secondary structure prediction were considered by 

Eppstein et al (1992). These recurrences are defined over a number of points that is 

quadratic in the input size; however only a sparse set matters for the result. Efficient 

algorithms for these problems are given, when the weight functions used in the 

recurrences are taken to be linear. The time complexity of the algorithms depends almost 

linearly on the number of points that need to be considered; when the problems are sparse 

this results in a substantial speed-up over known algorithms. 

 

Andrew et al., (1997) developed a dynamic programming based system for managing 

inventory at Jeppesen Sanderson, Inc., a major provider of aviation-information products. 

The system determines order quantities for charts used in flight manuals. These charts 
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contain essential safety information that changes frequently, making standard methods 

for inventory management ineffective. We formulated the problem as a dynamic 

programming model and developed a simple heuristic-solution procedure for determining 

order quantities. Based on this procedure, we also developed a decision support system 

(DSS) and implemented it for 600 of the most expensive Jeppesen charts. The system has 

been in use since August 1998, generating actual annual cost reductions of over 

$800,000.  

Current methods for identification of potential triplex-forming sequences in genomes and 

similar sequence sets rely primarily on detecting homopurine and homopyrimidine tracts. 

Procedures capable of detecting sequences supporting imperfect, but structurally feasible 

intra-molecular triplex structures are needed for better sequence analysis. Matej et al., 

(2010) presented a dynamic programming algorithm for detection of approximate 

palindromes, so as to account for the special nature of triplex DNA structures. From 

available literature, we conclude that approximate triplexes tolerate two classes of errors. 

One, analogical to mismatches in duplex DNA, involves nucleotides in triplets that do not 

readily form Hoogsteen bonds. The other class involves geometrically incompatible 

neighboring triplets hindering proper alignment of strands for optimal hydrogen bonding 

and stacking. We tested the statistical properties of the algorithm, as well as its 

correctness when confronted with known triplex sequences. The proposed algorithm 

satisfactorily detects sequences with intra-molecular triplex-forming potential. Its 

complexity is directly comparable to palindrome searching.  

The substitution rate in a gene can provide valuable information for understanding its 

functionality and evolution. A widely used method to estimate substitution rates is the 
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maximum-likelihood method implemented in the CODEML program in the PAML 

package. A limited number of branch models, chosen based on a priori information or an 

interest in a particular lineage(s), are tested, whereas a large number of potential models 

are neglected. A complementary approach is also needed to test all or a large number of 

possible models to search for the globally optional model(s) of maximum likelihood. 

However, the computational time for this search even in a small number of sequences 

becomes impractically long. Thus, it is desirable to explore the most probable spaces to 

search for the optimal models. Using dynamic programming techniques, Chengiun et al., 

(2010) developed a simple computational method for searching the most probable 

optimal branch-specific models in a practically feasible computational time. We propose 

three search methods to find the optimal models, which explored O(n) (method 1) to 

O(n
2
) (method 2 and method 3) models when the given phylogeny has n branches. In 

addition, we derived a formula to calculate the number of all possible models, revealing 

the complexity of finding the optimal branch-specific model. We show that in a 

reanalysis of over 50 previously published studies, the vast majority obtained better 

models with significantly higher likelihoods than the conventional hypothesis model 

methods.  

Allocating water between different users and uses, including the environment, is one of 

the most challenging task facing water resources managers and has always been at the 

heart of Integrated Water Resources Management (IWRM). As water scarcity is expected 

to increase over time, allocations decisions among the different uses will have to be 

found taking into account the complex interactions between water and the economy. 

Hydro-economic optimization models can capture those interactions while prescribing 
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efficient allocation policies. Many hydro-economic models found in the literature are 

formulated as large-scale Non Linear Pptimization problems (NLP), seeking to maximize 

net benefits from the system operation while meeting operational and/or institutional 

constraints, and describing the main hydrological processes. However, those models 

rarely incorporate the uncertainty inherent to the availability of water, essentially because 

of the computational difficulties associated stochastic formulations. Goor et al., (2008) 

presented a dynamic programming model that can identify economically efficient 

allocation policies in large-scale multipurpose multireservoir systems. The model is 

based on Stochastic Dual Dynamic Programming (SDDP), an extension of traditional 

SDP that is not affected by the curse of dimensionality. SDDP identify efficient 

allocation policies while considering the hydrologic uncertainty. The objective function 

includes the net benefits from the hydropower and irrigation sectors, as well as penalties 

for not meeting operational and/or institutional constraints. To be able to implement the 

efficient decomposition scheme that remove the computational burden, the one-stage 

SDDP problem has to be a linear program. Recent developments improve the 

representation of the non-linear and mildly non- convex hydropower function through a 

convex hull approximation of the true hydropower function. This model is illustrated on a 

cascade of 14 reservoirs on the Nile river basin.  

 

Hybrid Electric Vehicles (HEVs) combined with more than one power source offer 

additional flexibility to improve the fuel economy and to reduce pollutant emissions. The 

Dynamic-Programming-Based Supervisory Controller (DPSC) was studied by G-Qaoi et 

al.,(2008) which investigates the fuel economy improvement and emissions reduction 

potential and demonstrates the trade-off between fuel economy and the emission of 
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nitrogen oxides (NOx) for a state-of-charge-sustaining parallel HEV. A weighted cost 

function consisting of fuel economy and emissions is proposed in this paper. Any 

possible engine-motor power pairs meeting with the power requirement is considered to 

minimize the weighted cost function over the given driving cycles through this dynamic 

program algorithm. The fuel-economy-only case, the NOx-only case, and the fuel-NOx 

case have been achieved by adjusting specific weighting factors, which demonstrates the 

flexibility and advantages of the DPSC. Compared with operating the engine in the NOx-

only case, there is 17.4 per cent potential improvement in the fuel-economy-only case. 

The fuel-NOx case yields a 15.2 per cent reduction in NOx emission only at the cost of 5.5 

per cent increase in fuel consumption compared with the fuel-economy-only case.   

     Khaneja et al., (1988) presented Dynamic programming algorithms for automated 

generation of length minimizing geodesics and curves of extremal curvature on the 

neocortex of the macaque and the Visible Human. Probabilistic models of curve variation 

are constructed in terms of the variability in speed, curvature, and torsion in the Frenet 

representation. 

In cricket, when a batsman is dismissed towards the end of a day's play, he is often 

replaced by a lower-order batsman (a 'night watchman'), in the hope that the remaining 

recognised batsmen can start their innings on the following day. Clarke and Norman 

(2003) studied a dynamic programming analysis which suggests that the common 

practice of using a lower-order batsman is often sub-optimal. Towards the end of a day's 

play, when the conventional wisdom seems to be to use a night watchman, it may be best 

to send in the next recognised batsman in the batting order. Sending in a night watchman 

may be good judgement when there are several recognised batsman and several lower 
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order batsmen still to play (say four of each). However, with smaller numbers (two of 

each, for example), then, with very few overs left to play, it may be better to send in a 

recognised batsman. 

Rust (1987) presented a model of retirement behavior based on the solution to a dynamic 

programming problem. The workers objective is to maximize expected discounted utility 

over his remaining lifetime. At each time period the worker chooses how much to 

consume and whether to work full-time, part-time, or exit the labor force. The model 

accounts for the sequential nature f the retirement decision problem, and the role of 

expectations of uncertain future variables such as the worker's future lifespan, health 

status, marital and family status, employment status, as well as earnings from 

employment, assets, and social security retirement, disability and Medicare payments. 

This method applies a "nested fixed point" algorithm that converts the dynamic 

programming problem into the problem of repeatedly recomputing the fixed point to a 

contraction mapping operator as a subroutine of a standard nonlinear maximum 

likelihood program. The goal of the paper is to demonstrate that a fairly complex and 

realistic formulation of the retirement problem can be estimated using this algorithm and 

a current generation supercomputer, the Cray-2. 

 

Proper investment decision making is key to success for every investor in their efforts to 

keep pace with the competitive business environment. Mitigation of exposure to risk 

plays a vital role, since investors are now directly exposed to the uncertain decision 

environment. The uncertainty (and risk) of an investment is increasing with the increased 

number of competing investors entering to market. As a result, the expected return on 
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investment (ROI) of a decision quite often carries a high degree of uncertainty. Noor and 

Doucette (2009) studied a model which objective was to formulate a dynamic 

programming mathematical model for the investment decision with incorporating this 

uncertainty in a probabilistic manner. Policy iteration algorithm of the dynamic 

programming was adopted to solve the model. The authors simulation result showed that 

the algorithm was able to help in taking optimum investment decision.  
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CHAPTER 3 

METHODOLOGY 

3.0 INTRODUCTION 

 This chapter provides an in depth explanation of the dynamic programming.  

In order to understand the value of dynamic programming, it is necessary to have a good 

understanding of some key terms as used in dynamic programming problems – we shall 

first put forward the organizational of the company under discussion. 

 

3.1.0 PROFILE OF THE COMPANY 

The Ghana Community Network Services Limited (GCNet) in Ghana in December 2003 

to facilitate a fast and effective processing of cargo clearance related operations. The 

GCNet system consists of two main components: 

3.1.1 Ghana Customs Management System (GCMS)  

This is intended to provide the Ghana Customs, Excise and Preventive Service with a 

complete integrated computerised system for the processing and management of Customs 

Declarations and related activities. This system is designed to work in an EDI (Electronic 

Data Interchange) environment in which Manifests and Customs Declarations are 

electronically received and automatically processed. 

3.1.2 Ghana TradeNet  

It is a platform which enables GCMS to share data with the various parties involved in 

the processing of trade documents and customs clearances. 

The illustration below indicates how the system is designed: 
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GCNet is designed to cater for the following activities:  

 Electronic submission of Master Manifests by Shipping Agents and Airlines.  

 Electronic submission of House Manifests by Forwarding Agents / Consolidators.  

 Electronic submission of Customs Declarations by Clearing Agents or Self-

Declarants.  

 Payment of Duties & Taxes confirmed electronically by the banks.  

 Electronic transmission of Customs clearance approvals to Terminal Operators  

 Electronic transmission of Delivery Orders from Shipping Agents to Terminal 

Operators  

 Integrated system for the sharing of files between Customs Officers.  
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 Transfer of electronic messages between Customs, Traders and other parties 

concerned.  

 Import, Export, Warehousing, Free Zone and Transit operations. 

GCNet offers major benefits to Customs and to the Trading Community as a whole:  

 Submission of Declarations 24 hours a day, 7 days a week.  

 Validation of Declarations performed automatically by the system.  

 Front-End Software for Declarants enabling internal statistics.  

 Integrated Risk Assessment Module for Customs.  

 Payment of Duties and Taxes may be effected at any of the participating banks  

 A powerful monitoring tool for Customs.  

 An integrated database enabling accurate trade statistics. 

3.2 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS 

One way to recognize a situation that can be formulated as a dynamic programming 

problem is to notice that its basic features. 

These basic features that characterize dynamic programming problems are presented and 

discussed here. 

1. The problem can be divided into stages, with a policy decision required at each stage. 

Dynamic programming problems require making a sequence of interrelated decisions, 

where each decision corresponds to one stage of the problem. 

2. Each stage has a number of states associated with the beginning of that stage. 

In general, the states are the various possible conditions in which the system might be at 

that stage of the problem. The number of states may be either finite or infinite. 

3. The effect of the policy decision at each stage is to transform the current state to a state 

associated with the beginning of the next stage (possibly according to a probability 

distribution). 
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This procedure suggests that dynamic programming problems can be interpreted in terms 

of the networks. Each node would correspond to a state. The network would consist of 

columns of nodes, with each column corresponding to a stage, so that the flow from a 

node can go only to a node in the next column to the right. The links from a node to 

nodes in the next column correspond to the possible policy decisions on which state to go 

to next. The value assigned to each link usually can be interpreted as the immediate 

contribution to the objective function from making that policy decision. In most cases, 

the objective corresponds to finding either the shortest or the longest path through the 

network. 

4. The solution procedure is designed to find an optimal policy for the overall problem, 

i.e., a prescription of the optimal policy decision at each stage for each of the possible 

states. 

 For any problem, dynamic programming provides this kind of policy prescription of 

what to do under every possible circumstance (which is why the actual decision made 

upon reaching a particular state at a given stage is referred to as a policy decision). 

Providing this additional information beyond simply specifying an optimal solution 

(optimal sequence of decisions) can be helpful in a variety of ways, including sensitivity 

analysis. 

5. Given the current state, an optimal policy for the remaining stages is independent of 

the policy decisions adopted in previous stages. Therefore, the optimal immediate 

decision depends on only the current state and not on how you got there. This is the 

principle of optimality for dynamic programming. 
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For dynamic programming problems in general, knowledge of the current state of the 

system conveys all the information about its previous behavior necessary for determining 

the optimal policy henceforth. Any problem lacking this property cannot be formulated as 

a dynamic programming problem. 

6. The solution procedure begins by finding the optimal policy for the last stage. 

The optimal policy for the last stage prescribes the optimal policy decision for each of the 

possible states at that stage. The solution of this one-stage problem is usually trivial, as it 

was for the stagecoach problem. 

7. A recursive relationship that identifies the optimal policy for stage n, given the optimal 

policy for stage n + 1, is available. 

Therefore, finding the optimal policy decision when you start in state s at stage n requires 

finding the minimizing value of xn. 

This property is emphasized in the next (and final) characteristic of dynamic 

programming. 

8. When we use this recursive relationship, the solution procedure starts at the end and 

moves backward stage by stage - each time finding the optimal policy for that stage - 

until it finds the optimal policy starting at the initial stage. This optimal policy 

immediately yields an optimal solution for the entire problem. 

 

3.3 The Algorithm 

• Identify the decision variables and specify objective function to be optimized under 

certain limitations, if any. 
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• Decompose or divide the given problem into a number of smaller sub-problems or 

stages. Identify the state variables at each stage and write down the transformation 

function as a function of the state variable and decision variables at the next stage. 

• Write down the general recursive relationship for computing the optimal policy. Decide 

whether forward or backward method is to follow to solve the problem. 

• Construct appropriate stage to show the required values of the return function at each 

stage. 

• Determine the overall optimal policy or decisions and its value at each stage. There may 

be more than one such optimal policy. 

 

The basic features, which characterize the dynamic programming problem, are as 

follows: 

(i) Problem can be sub-divided into stages with a policy decision required at each stage. 

A stage is a device to sequence the decisions. That is, it decomposes a problem into sub-

problems such that an optimal solution to the problem can be obtained from the optimal 

solution to the sub-problem. 

(ii) Every stage consists of a number of states associated with it. The states are the 

different possible conditions in which the system may find itself at that stage of the 

problem. 

(iii) Decision at each stage converts the current stage into state associated with the next 

stage. 

(iv) The state of the system at a stage is described by a set of variables, called state 

variables. 
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(v) When the current state is known, an optimal policy for the remaining stages is 

independent of the policy of the previous ones. 

(vi) To identify the optimum policy for each state of the system, a recursive equation is 

formulated with „n‟ stages remaining, given the optimal policy for each stage with (n – 1) 

stages left. 

(vii) Using recursive equation approach each time the solution procedure moves 

backward, stage by stage for obtaining the optimum policy of each stage for that 

particular stage, still it attains the optimum policy beginning at the initial stage. 

3.4 SUMMARY 

This chapter discussed the researched methodology of the study. In our introduction, we 

discussed the characteristics of dynamic programming problems. The dynamic 

programming algorithm was also presented. 

The next chapter presents the data collection and analysis of the study. 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 

In this chapter, we shall consider a computational study of dynamic programming for 

solving provident fund investment problem of Ghana Community Network Services 

(GCNet) Limited Senior Staff Association. The choice of the provident fund investment 

model is a real life problem in Ghanaian company. The aim is to determine the optimal 

investment policy in the company so that the business gets the optimum return of profit 

from the number of investment alternatives. The general practice is that most 

establishments do not have a well structured plan on how to allocate funds to various 

investment options in order to maximize returns from the investments. Investment funds 

are allocated by trial and error basis and at the discretion of people or departments in 

charge. These methods are faulted, and are basically inefficient as returns from the fund 

invested are not optimal. 

 

4.1 Data Collection and Analysis 

The senior staff association of Ghana Community Network Services (GCNet) Limited, 

operates a provident fund and the management of the fund is considering investing an 

amount of GH¢100, 000 for the next financial year and that there are four alternatives 

available. 

1. Only GH¢40, 000 or less may be invested in corporate bonds that will return 4%. 
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2. Venture A may be financed at various levels and will return 10% on all 

investments above the GH¢20, 000 machinery lease. No more than GH¢70, 000 

may be invested in venture A. 

3. Venture B may be financed at various levels and will return 8% on all investment 

above the GH¢10, 000 franchise fee. Investment in venture B may not exceed 

GH¢60, 000. 

4. Investment C may be financed at various levels and will return 0.05%. Investment 

C may not exceed GH¢30, 000. 

All GH¢100,000 must be invested, and decisions are restricted to GH¢10, 000 

increments. The problem at hand is to determine the optimal investment policy that will 

generate an optimum total return on investments. 

In this problem each investment option can be considered as a stage, amount in each 

stage as decision variables. The amount available for investment at a stage is the state 

variable of the problem. 
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Figure 4.1 shows the investment opportunities as well as the returns 

            C                                    B                        A                         Bonds 

           Stage 4                          Stage 3               Stage 2                  Stage 1 

        I4       R4                       I3      R3             I2       R2                I1       R1 

        ø0         0                      ø0      0                ø0       0                 ø0        0 

        10      500                     10      0                10       0                 10      400 

 X4   20        0          X3       20    800        X2   20       0       X1     20     800     X0 = 0 

       30     1500                    30     1600            30     1000             30     1200 

                                            40     2400            40     2000             40     1600 

                                            50     3200            50     3000                            

                                            60     4000            60     4000                                     

                                                                         70     5000  

  If Ri represents the return from stage I, Xi represents available funds passed from stage 

to stage, and Ii represents the amount invested in alternative I, the objective is to 

maximize total return (TR) for stage I and all subsequent stages 

                    Tri
*
 = Max {Rj + Tri-1

*
} 

The transition function is 

                             Xi-1 = Xi - Ii  

Thus, in words, the amount passed out of a stage is equal to the amount passed in less the 

amount invested. 

Stage 1: The stage 1 calculations are presented in Table 4.2. The limits of X1 and I1 are 

both GH¢0 minimum and GH¢40,    maximum. X1 may be as little as GH¢0 because it is 

possible to exhaust the entire GH¢100, 000 in the other three stages. I1 may be GH¢0 
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because we are not required to invest in bonds. There is only one value of I1 for each 

value of X1 because the same amount must be invested as is passed in. 

Table 4.2 An Investment calculation for stage 1 (Investment in Bonds) 

Available funds for 

Investment (X1) 

Amount 

Invested (I1
*
) 

Return on 

Investment R1
*
 

X0
*
 Total 

Return 

0 0 0 0 0 

10 10 400 0 400 

20 20 800 0 800 

30 30 1200 0 1200 

40 40 1600 0 1600 

 

 

Stage 2: The stage 2 calculations are presented in Table 4.3. In stage 2, I2 may range from 

GH¢0 to GH¢70, 000, and X2 may range between 10, 000 and 100, 000. Ten thousand 

cedis is the amount that would be passed if the maximum amount were absorbed in stage 

3 and 4, and 100,000 would be passed if none were absorbed in stages 3 and 4. There are 

no entries for X2 = 20 and I2 = 30, because the amount invested cannot exceed the 

amount passed in. The same holds true for X2 = 30, I2 = 40, and on down the table to X2 

= 60, I2 = 70. There are no entries from X2 = 50, I2 = 0 to X2 = 100, I2 = 50, because X1 

may not exceed 40 and X1 = X2 – I2. Thus X2 – I2 may not exceed 40. 
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Table 4.3 An Investment calculation for stage 2 (Investment in Venture A) 

Available funds for 

Investment (X2) 

Amount 

Invested (I2
*
) 

Return on 

Investment R2
*
 

X1
*
 Total 

Return 

10 0 

10                                   

0 

0 

10 

0 

400 

0 

20 0 

10 

20 

0 

0 

0 

20 

10 

0 

800 

400 

0 

30 0 

10 

20 

30 

0 

0 

0 

1000 

30 

20 

10 

0 

1200 

800 

400 

1000 

40 0 

10 

20 

30 

40 

0 

0 

0 

1000 

2000 

40 

30 

20 

10 

0 

1600 

1200 

800 

1400 

2000 

50 10 

20 

30 

40 

50 

0 

0 

1000 

2000 

3000 

40 

30 

20 

10 

0 

1600 

1200 

1800 

2400 

3000 
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60 20 

30 

40 

50 

60 

0 

1000 

2000 

3000 

4000 

40 

30 

20 

10 

0 

1600 

2200 

2800 

3400 

4000 

70 30 

40 

50 

60 

70 

1000 

2000 

3000 

4000 

5000 

40 

30 

20 

10 

0 

2600 

3200 

3800 

4400 

5000 

80 40 

50 

60 

70 

2000 

3000 

4000 

5000 

40 

30 

20 

10 

3600 

4200 

4800 

5400 

90 50 

60 

70 

3000 

4000 

5000 

40 

30 

20 

4600 

5200 

5800 

100 60 

70 

4000 

5000 

40 

30 

5600 

6200 

 

Stage 3: stage 3 calculations are similar to that of sage 2 calculations and are shown in 

Table 4.4. 
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Table 4.4 An Investment calculation for stage 3 (Investment in Venture B) 

Available funds for 

Investment (X3) 

Amount 

Invested (I3
*
) 

Return on 

Investment R3
*
 

X2
*
 Total 

Return 

70 0 

10 

20 

30 

40 

50 

60 

                                   

0 

0 

800 

1600 

2400 

3200 

4000 

70 

60 

50 

40 

30 

20 

10 

5000 

4000 

3800 

3600 

3600 

4000 

4400 

80 0 

10 

20 

30 

40 

50 

60 

0 

0 

800 

1600 

2400 

3200 

2400 

80 

70 

60 

50 

40 

30 

20 

5400 

5000 

4800 

4600 

4400 

4400 

4800 

90 0 

10 

20 

30 

0 

0 

800 

1600 

90 

80 

70 

60 

5800 

5400 

5800 

5600 



 71 

40 

50 

60 

2400 

3200 

4000 

50 

40 

30 

5400 

5200 

5200 

100 0 

10 

20 

30 

40 

50 

60 

0 

0 

800 

1600 

2400 

3200 

4000 

100 

90 

80 

70 

60 

50 

40 

6200 

5800 

6200 

6600 

6400 

6200 

6000 

 

Stage 4: The stage 4 calculations are presented in Table 4.5. When the returns for all 

feasible combinations of Xi and Ii have been calculated for each table, determine the 

optimum value and record it in the R
*
 column. In the I* column record the I value for 

which the optimum R
*
 value occurs. 

Table 4.5 An Investment calculation for stage 4 (Investment in Venture C) 

Available funds for 

Investment (X4) 

Amount 

Invested (I4
*
) 

Return on 

Investment R4
*
 

X3
*
 Total 

Return 

100 0 

10   

20 

30                                 

0 

500 

1000 

1600 

100 

90 

80 

70 

6600 

6300 

6400 

6500 
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After completing the tables of stages, we begin with the last table completed and work 

back through the tables to identify the overall optimum strategy, shown in Table 4.6 

Table 4.6 Solution to our Investment Problem 

Stage Xi* Ii* Si-1* R* 

4 100 0 100 0 

3 100 30 7 1600 

2 70 70 0 5000 

1 0 0 0 0 

Total Return: 6,600 

 

4.2 Results 

From the summarized Table 4.6 above, which shows the solution to our investment 

problem, it could be seen that the optimal investment policy is revealed in stages three 

and two, with respective returns of GH¢1,600.00 by investing in GH¢30 and 

GH¢5,000.00 by investing in GH¢70, given a total return of GH¢6,600.00, as against the 

firm‟s record of investing all the GH¢100 at a return of GH¢6,500.00. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

 The aim of this chapter is to give an overall summary of the main concepts presented in 

these studies, the use of the dynamic programming for provident fund investment 

allocation and distribution problem for Ghana Community Network Services (GCNet) 

Limited Senior Staff Association.  

5.1 FINDINGS AND CONCLUSIONS 

The fund managers have to decide the amount of fund‟s assets that should be kept in 

cash, considering the tradeoff between being able to meet shareholder redemptions and 

minimizing the opportunity cost from lost investment opportunities. In additions, they 

have to consider redemptions by individuals as well as institutional investors, the current 

performance of the stock market and interest rates, and the pattern of investment and 

redemptions which are correlated with market performance. We formulated the problem 

as a dynamic program. We also adapted the dynamic programming algorithm to solve the 

problem. We use actual data for market performance and interest rates, and demonstrated 

the quality of the solution for the four alternatives investments. Our results show that the 

optimal solution obtained outperforms that of the existing model. The result is a simple 

policy that describes how much money should be moved into and out of cash based on 

market performance.  
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5.2 RECOMMENDATIONS 

      The use of mathematical model in computer application gives a systematic and 

transparent solution as compared with an arbitrary method. Using the more scientific 

dynamic programming model for the provident fund allocation and distribution problem 

of the Ghana Community Network Services (GCNet) Senior Staff Association gives a 

better result. Management may benefit from the proposed approach for the investment 

allocation and distribution to guarantee optimal allocation policy and maximum returns. 

We therefore recommend that the dynamic programming model should be adopted by the 

management of the association‟s fund for its product allocation and distribution to the 

various investment alternatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

REFERENCE 

1. AGroBmann Holldobler S and Skvortsover O (2002). Symbolic Dynamic Prigramming 

within the fluent calculus. Academicconcepts.net/concepts/222/dynamic_programming. 

2. Alvarez F. and Stokey N. (1998). Dynamic programming with homogenous functions 

Journal of Economic Theory ISSN: 0022-0531. 

3. Archibald T. W. (2006). Modeling the operation of multireservoir systems using 

decomposition and stochastic dynamic programming. NAVAL RESEARCH 

LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 3. 

4. Aristide M., Lucio B. and Salvatore R. (1997). Dynamic Programming Strategies for 

the Traveling Salesman Problem with Time Window and Precedence Constraints. Journal 

of the institute of operations research and management science. 

5. Bertossi A. A. and Mei A. (2000). Constant time dynamic programming on directed 

reconfigurable networks. http://ieeexplore.ieee.org/xpl/freeabs. 

6. Bijan G. (2004). Linear and non-linear optimization models for allocation of a limited 

water supply. Irrigation and Drainage, Issue. 

7. Cheng-Liang C. (2003). Solving multi-objective dynamic optimization problems with 

fuzzy satisfying method. OPTIMAL CONTROL APPLICATIONS AND METHODS, 

Issue 5. 

8. Chia-Wei C. (2004). Discretized Sub-optimal tracker for nonlinear continuous two-

dimensional systems. Asian journal of control, issue 3. 

9. Chisonge M. E. and Cole S. J. (2004). A Dynamic Programming Algorithm for the 

Generalized Minimum Filter Placement Problem on Tree Structures. INFORMS Journal 

on Computing Spring 2009 vol. 21 no. 2 322-332. 

http://or.journal.informs.org/search?author1=Aristide+Mingozzi&sortspec=date&submit=Submit
http://or.journal.informs.org/search?author1=Lucio+Bianco&sortspec=date&submit=Submit
http://or.journal.informs.org/search?author1=Salvatore+Ricciardelli&sortspec=date&submit=Submit
http://joc.journal.informs.org/search?author1=E.+Chisonge+Mofya&sortspec=date&submit=Submit
http://joc.journal.informs.org/search?author1=J.+Cole+Smith&sortspec=date&submit=Submit


 76 

10. Fonnesbeck C. J. (2005).Solving dynamic wildlife resource optimization problems 

using reinforcement learning. Natural resource modeling, Issue 1.  

11.  Zhang D. (2009). An Improved Dynamic Programming Decomposition Approach for 

Network Revenue Management. Transportation Science. The Informs Journal of 

Operations Management. 

12. David K. S. (2005). Dynamic programming and board games: A survey. Journal of 

the institute of operations research and management science. 

13. Deependra K. (2010). Incorporating Penalty Function to Reduce Spill in Stochastic 

Dynamic Programming Based Reservoir Operation of Hydropower Plants 

IEEJ transactions on electrical and electronic engineering. 

14. DeFarias D. P. and Van R. B. (2001). The Linear Programming Approach to 

Approximate Dynamic Programming. Journal of the institute of operations research and 

management science. 

15.  Kossmann D. and Konrad S. (2009). Iterative dynamic programming: a new class of 

query optimization algorithms. Journal ACM Transactions on Database Systems (TODS) 

Volume 25 Issue 1. 

16. Tate E. D. J. (2008). Shortest path stochastic control for hybrid electric vehicles 

international journal of robust and nonlinear control. 

17. Fang C. F. (2010). Modeling and simulation of vehicle projection arrival,discharge 

process in adaptive traffic signal controls. Journal of advanced transportation, Issue 3. 

18. Gonzalez F. M. (2010). An Equilibrium Theory of Learning, Search, and Wages 

econometrica, Issue 2 

http://msom.journal.informs.org/search?author1=Dan+Zhang&sortspec=date&submit=Submit
http://or.journal.informs.org/search?author1=D.+P.+de+Farias&sortspec=date&submit=Submit
http://dl.acm.org/author_page.cfm?id=81100626540&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228


 77 

19. Frank S (2009). Out-of-Core and Dynamic Programming for Data Distribution on 

Volume Visualization Cluster. Journal of computer graphics forum. 

20. Freire A. D. (2000). Three-Dimensional Optimization of Urban Drainage Systems 

computer-aided civil and infrastructure engineering, Issue 6. 

21. Ceballos G. A. (2008). Pattern recognition in capillary electrophoresis data using 

dynamic programming in the wavelet domain. Electrophoresis, Issue 13. 

22. Gregory A. G. and Warren B. P. (2000). An Adaptive Dynamic Programming 

Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times. Journal of the 

institute of operations research and management science. 

23. Guang R. G., Guangming T. and Ninghui S. (2008). Improving Performance of 

Dynamic Programming via Parallelism and Locality on Multicore Architectures. Journal 

of IEEE Transactions on Parallel and Distributed Systems. 

24. Psaraftis H. N. (1980). A Dynamic Programming Solution to the Single Vehicle 

Many-to-Many Immediate Request Dial-a-Ride Problem. Journal of the institute of 

operations research and management science. 

25. Held M and Karp R. M. (1961). A dynamic programming approach to sequencing 

problems. Proceedings of the 16th ACM national meeting, page 71.201-71.204.  

26. Hiroaki S. (1978). Dynamic programming algorithm optimization for spoken word 

recognition. citeseerx.ist.psu.edu/viewdoc/summary. 

27. Topalogl H., Matthew S. M., Restrepo M, and Shane G. H. (2007). Approximate 

Dynamic Programming for Ambulance Redeployment. A journal of the institute of 

Operations Research and Management Science. 

http://dl.acm.org/author_page.cfm?id=81100134147&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://dl.acm.org/author_page.cfm?id=81312482056&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://dl.acm.org/author_page.cfm?id=81100446659&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://www.citeulike.org/user/gale82/author/Held:M
http://www.citeulike.org/user/gale82/author/Karp:RM


 78 

28. Jacoboni I. (2001). Prediction of the transmembrane regions of ,-barrel membrane 

proteins with a neural network-based predictor. Journal of protein science, Issue 4. 

29. Johnson D. S. and Niemi K. A. (1983). On Knapsacks, Partitions, and a New 

Dynamic Programming Technique for Trees. Mathematics of Operations Research vol. 8 

no. 1 114. 

30. Tsai J. C. C. (2005). Flexible and Robust Implementations of Multivariate Adaptive 

Regression Splines Within a Wastewater Treatment Stochastic Dynamic Program. quality 

and reliability engineering international, Issue 7. 

31. Jushan B. (2003). Computation and analysis of multiple structural change models. 

Journal of applied econometrics, Issue 1. 

32. Kap Hwan K, and Jong W. B. (2000). A Look-Ahead Dispatching Method for 

Automated Guided Vehicles in Automated Port Container Terminals. 

Journal of the institute of operations research and management science 

 33. Karamouz M and  Mousavi S J  (2003). Computational improvement for dynamic 

programming models by diagnosing infeasible storage combinations Advances in Water 

Resources Vol. 26, No. 8.  pp. 851-859. 

34. Liu S (2004). Shape Matching using Dynamic Programming.The Informs Journal of 

Operations Management. 

35. Mahesh K. S. (2001). Reservoir Operation ani evaluation of downstream flow 

augmentation.  Journal of the american water resources association, Issue 3. 



 79 

36. Manfred S. (2003). Stochastic optimization for the ruin probability proceedings in 

applied mathematics and mechanics, Issue 3. 

37. Marti-Renom M. A. (2004). Alignment of protein sequences by their profiles. 

Journals of protein science, Issue 4.  

38. Masafumi M. (2010). Optimization of Train Speed Profile for Minimum Energy 

Consumption. ieej transactions on electrical and electronic engineering. 

39. Rein L. (2001). Further developments in the new approach to boundary condition 

iteration in optimal control. the canadian journal of chemical engineering, Issue 6. 

40. Bellman R. (1956). On the Theory of Dynamic Programming-A Warehousing 

Problem. A journal of the institute of operations research and management science. 

41. Rolf V. D. (1986). A Note on Positive Dynamic Programming  Journal of the institute 

of operations Research and Management science vol. 11 no. 2 383-384.  

42. Sahid B. (2010). Exploring the performance of massively multithreaded architectures 

concurrency and computation: practice & experience, issue 5. 

43. Scott D S. and Yanhong L. A. (2002). Program optimization using indexed and 

recursive data structures. In PEPM '02: Proceedings of the 2002 ACM SIGPLAN 

workshop microscopy research and technique on Partial evaluation and semantics-based 

program manipulation, Vol. 37, pp. 108-118.  

44. Seong-O S. (2009). Accurate shape from focus based on focus adjustment in optical 

microscopy., Issue 5. 

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1469-896X/issues
http://mor.journal.informs.org/search?author1=Rolf+Van+Dawen&sortspec=date&submit=Submit
http://www.citeulike.org/user/pejo/author/Stoller:SD
http://www.citeulike.org/user/pejo/author/Liu:YA


 80 

45. ShiHai D, YiSong C. and GuoPing W. (2003). Further improvement on dynamic 

programming for optimal bit allocation. Journal of Computer Science and Technology. 

46. Spjøtvold J. (2009). Inf,sup control of discontinuous piecewise affine systems 

International journal of robust and nonlinear control, Issue 13. 

47.  Lippman S. A. (1975). On Dynamic Programming with Unbounded Rewards a 

journal of the institute of operations Research and Management science vol. 21 no. 11 

1225-1233. 

48. Takayuki S. (2004). Stochastic unit commitment problem. international transactions 

in operational research. 

49. Thidarat T. (2009). Approximate dynamic programming based optimal control 

applied to an integrated plant with a reactor and a distillation column with recycle. aiche 

journal, Issue 3. 

50. Rolfean T. J. (1983). Alternative Dynamic Programming Solution for the 0/1 

Knapsack Bulletin of the ACM SIG on Computer Science Education, Vol. 39, No. 4 , 

pp. 54-56. 

51. Tohru U. (2007). Capacity expansion problems based on fuzzy dynamic 

programming. onlinelibrary.wiley.com/doi/10.1002/ecja. 

52. Tracy J R. (2006). Optimal eradication: when to stop looking for an invasive plant 

ecology letters, Issue 7. 

53. Warren B P. (2009). What you should know about approximate dynamic 

programming. naval research logistics: an international journal, Issue 3.  

http://dl.acm.org/author_page.cfm?id=81100275941&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://dl.acm.org/author_page.cfm?id=81311484426&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://dl.acm.org/author_page.cfm?id=81100213064&coll=DL&dl=ACM&trk=0&cfid=54237023&cftoken=67434228
http://mansci.journal.informs.org/search?author1=Steven+A.+Lippman&sortspec=date&submit=Submit


 81 

54. Yash Bang-Bang G. P (2001). Solution of nonlinear time-optimal control problems 

using a semi-exhaustive search. THE CANADIAN JOURNAL OF chemical engineering, 

Issue 1. 

 55. http://www.gcnet.com.gh/procedures/procedure.asp 

 

56. Adam B. L (2009). The Basics of Practical Optimization 

http://books.google.com.gh/books 

  

57. Bellman R. and Dreyfus S. (1962) Applied Dynamic Programming. Princeton 

University   Press Princeton, New Jessey.  

 

58.  Heikkinen T., Pietola K (2009) Investment and the dynamic cost of income 

uncertainty: European Journal of Operational Research, - Elsevier 

 

59. Wang A. J. (1998). Key concepts in evaluating outcomes of ATP funding of medical 

technologies. The Journal of Technology Transfer. 

 

60. Alkaraan F, Northcott D (2006). Strategic capital investment decision-making: A role 

for emergent analysis tools? A study of practice in large UK manufacturing companies. 

 The British Accounting Review. 

 

61. Raz T, Michael E (2001). Use and benefits of tools for project risk management 

International Journal of Project Management. 

 

62. Topaloglou N, Vladimirou H,  Zenios S. A. (200). CVaR models with selective 

hedging for international asset allocation. Journal of Banking & Finance. 

 

63. Rockafellar R. T, Uryasev S. (2000) Optimization of conditional value-at-risk 

 Journal of risk. 

 

64. Xu-song X, Jian-mou W. (2002). A dynamic programming algorithm on Project-

Gang investment decision-making. Wuhan University Journal of Natural Sciences. 

 

65. Murthy C. S. R,  Manimaran G (2001). Resource management in real time systems 

and networks. books.google.com 

 

http://www.gcnet.com.gh/procedures/procedure.asp
https://www.google.com.gh/search?newwindow=1&biw=1360&bih=546&tbm=bks&q=inauthor:%22Adam+B.+Levy%22&sa=X&ei=B0NiUtKBKpKZ0QXX6YGAAQ&ved=0CFoQ9AgwBw
http://books.google.com.gh/books
http://www.sciencedirect.com/science/article/pii/S0377221707010028
http://www.sciencedirect.com/science/article/pii/S0377221707010028
http://link.springer.com/article/10.1007/BF02509893
http://link.springer.com/article/10.1007/BF02509893
http://www.sciencedirect.com/science/article/pii/S0890838905000685
http://www.sciencedirect.com/science/article/pii/S0890838905000685
http://www.sciencedirect.com/science/article/pii/S0263786399000368
http://scholar.google.com/citations?user=k4xbV8kAAAAJ&hl=en&oi=sra
http://www.sciencedirect.com/science/article/pii/S0378426602002893
http://www.sciencedirect.com/science/article/pii/S0378426602002893
http://www.pacca.info/public/files/docs/public/finance/Active%20Risk%20Management/Uryasev%20Rockafellar-%20Optimization%20CVaR.pdf
http://link.springer.com/article/10.1007/BF02828237
http://link.springer.com/article/10.1007/BF02828237
http://scholar.google.com/citations?user=vkOTo_EAAAAJ&hl=en&oi=sra
http://books.google.com/books?hl=en&lr=&id=z5yQniJ0OxkC&oi=fnd&pg=PA1&dq=dynamic+programming+on+resource+allocation+by+murthy+2001&ots=xoU_xfzjV5&sig=j6tIXE_gTJ9sHFOt8VOs32rwcgA
http://books.google.com/books?hl=en&lr=&id=z5yQniJ0OxkC&oi=fnd&pg=PA1&dq=dynamic+programming+on+resource+allocation+by+murthy+2001&ots=xoU_xfzjV5&sig=j6tIXE_gTJ9sHFOt8VOs32rwcgA


 82 

65. Mousavi S. J,  Karamouz M (2003). Computational improvement for dynamic 

programming models by diagnosing infeasible storage combinations 

Advances in water resources. 

 

66. Alvarez F, Stokey N. L. (1998). Dynamic programming with homogeneous functions. 

Journal of economic theory. 

 

 

 

http://scholar.google.com/citations?user=-FZP2akAAAAJ&hl=en&oi=sra
http://www.sciencedirect.com/science/article/pii/S0309170803000617
http://www.sciencedirect.com/science/article/pii/S0309170803000617
http://www.sciencedirect.com/science/article/pii/S0022053198924310

