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Abstract

Differential equations play a very important role in the world of finance since most

problems in finance are modelled by means of differential equation. These problems

are sometimes nonlinear which can be solved by using numerical techniques. We

review option pricing models in general, the formulation of the Black-Scholes model,

and the Black-Scholes model with transaction costs.

This thesis takes a look at Black-Scholes model with transaction costs with special

reference to the model by Guy Barles and Halil Mete Soner. The resulting model is a

nonlinear Black-Scholes equation in which the variable volatility is a function of the

second derivative of the option price. We solve this nonlinear equation with a special

class of numerical technique, called, the meshfree approximation using radial basis

function. The method is analysed for stability and thorough comparative numerical

results are provided. The numerical results showed that, the value of the option in the

case of transaction cost is found to be higher than the analytical value of the standard

Black-Scholes model.
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Chapter 1

Introduction

1.1 Background of the Study

Since ancient times a lot of different cultures had been concern about numbers and how

to use them for different purposes, either if it was to establish patterns for Agriculture,

Medicine, Physics, Chemistry or Astrology or solving more complex problems. Math-

ematical knowledge has been developed through time; and in our time, we still use this

knowledge like the number pi (π) discovered by the Egyptians (Gomez, 2006).

Finance on the other hand is one of the fastest developing areas in the mod-

ern banking and corporate world. This, together with the sophistication of modern

financial products provides a rapidly growing impetus for new mathematical methods.

These mathematical methods are used in pricing financial derivatives which minimize

losses caused by price fluctuations of the underlying assets. These assets are financial

objects whose value is known at present but is liable to change in future. A derivative is

a financial instrument whose value depends on the values of other, more basic, under-

lying variables (Hull, 2009). Derivatives markets have attracted many different types

of traders. These types of traders are: hedgers, speculators and arbitrageurs. Hedgers

use derivatives to reduce risk that they face from potential movements in a market vari-

able. Speculators use derivatives to bet the future direction of a market variable hoping

to win a large amount with a small initial investment while arbitrageurs take offsetting
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positions in two or more instruments to lock in a profit (Hull, 2009).

The simplest derivatives are the forward, futures and options. A future or for-

ward contract is an agreements between two parties to buy or sell an asset at a certain

time in the future T, known as the expiration date for a certain price K called the strike

price. Each of the parties makes a binding engagement; it is impossible to change later

this contract. Unlike forwards, futures are traded on exchanges and more formalized.

The holder of the contract makes a profit or loss of S−K if at the expiration date the

asset is trading in the marketplace for price S . Futures are widely used to take positions

in assets that are not themselves easily traded, such as agricultural commodities.

An option is a security which gives it’s owner the right to trade in a fixed number

of shares of a specified common stock at a fixed price K, at any time on or before

a given date T . The act of making this transaction is referred to as exercising the

option. The fixed price is termed the strike price, and the given date, the expiration or

maturity date. There exist two types of options: the call option and the put option. The

call option gives the holder the right to buy the underlying stock for the strike price

K by the expiration date T, and the put option gives the holder the right to sell the

underlying stock for the strike price K by the expiration date T . Options are divided

into two styles by the dates on which they may be exercised. They are the European

or American options. The main difference between European and American options is

in different exercising time. An American option may be exercised at any time before

the expiration date whereas an European option may be exercised only at the maturity

date.

The value of the option V =V (S, t) depends on the price of the underlying asset

S and the time t. The final condition for V (S,T ) is called payoff function. The payoff

function for a call option is given by Vc(S,T ) =max{S(T )−K,0)}= (S(T )−K)+ and

the payoff function for a put option is Vp(S,T ) = max{K−S(T ),0)}= (K−S(T ))+.

Black and Scholes (1973) deduced a mathematical model in which the value of an

European option can be calculated. Their model was based on certain assumptions.

From the model, one can deduce the BlackScholes formula, which gives a theoretical
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estimate of the price of European-style options.

According to Klaes (2000), the concept of transaction costs came about as a result of

a seminal article by Ronald H. Coase, written in the 1930s. Transaction cost is the ex-

pense incurred in buying or selling a security. Transaction costs include commissions,

fees, and any direct taxes. In the 1970s, after the limits of the Arrow-Debreu epitome

had become apparent, several authors, including Oliver E. Williamson, Kenneth J. Ar-

row, Armen A. Alchian, and Harold Demsetz, took up the belief of transaction costs

and turned it into a useful analytical tool.

In the formulation of the Black-Scholes model, Black and Scholes made the

assumption that transactions cost do not exist in hedging a portfolio. In reality they

do exist. Ever since, there have been several and successful remodelling of Black-

Scholes model that take into account transaction costs. The resulting equation becomes

a nonlinear Black-Scholes model with a variable volatility which is a function of the

second derivative of the option price. In this case, it is not possible to compute the

solution by the analytical formula developed by Black and Scholes and hence the need

to resort to numerical methods.

Numerical methods such as the finite difference, finite volume method, and fi-

nite element were originally defined on meshes of data points. In such a mesh, each

point has a fixed number of predefined neighbours, and this connectivity between

neighbours can be used to define mathematical operators like the derivative. These

operators are then used to construct the equations to be simulated.

In simulations where the material being simulated can move around especially

as in computational fluid dynamics and option pricing problems the connectivity of

the mesh can be difficult to maintain without introducing error into the simulation. If

the mesh becomes tangled or degenerate during simulation, the operators defined on it

may no longer give correct values. The mesh may be recreated during simulation, but

this can also introduce error, since all the existing data points must be mapped onto a

new and different set of data points.

Meshfree approximation is one of the numerical methods which do not require
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a mesh connecting the data points of the simulation domain and are intended to remedy

the problems caused by the mesh based methods. In option pricing, Belova and Shmidt

(2011) used meshfree methods with radial basis function to approximate the option’s

value in the Black-Scholes model without transaction cost. This thesis is therefore

an extension on the previous research work by Belova and Shmidt (2011) in which

transaction cost is incorporated into the Black-Scholes equation.

1.2 Statement of the Problem

In a complete financial market, the value of an option can be obtained analytically by

solving the linear Black-Scholes equation

Vt +
1
2

σ
2S2 ∂2V

∂S2 + rS
∂V
∂S
− rV = 0,

where S is the price of the underlying asset, r is the risk-free interest rate, V is the op-

tion price, t is current date, σ is the volatility. The assumptions made in the derivation

of the the Black-Scholes model prove to be too restrictive in practice. Therefore dif-

ferent models have been proposed to weaken one or more of these assumptions (Dur-

ing, 2005). Thus when transaction cost is incorporated in the Black-Scholes model,

the resulting model is a nonlinear Black-Scholes equation with a variable volatility

which is a function of the second derivative of the option price. Analytical solution

to the valuation of the nonlinear Black-Scholes equation cannot be found and hence,

the need to resort to numerical methods. Many numerical methods in solving the

Black-Scholes equation such as the finite difference method, finite volume method and

binomial method amongst others. In this study, Meshfree Approximation using Radial

Basis Function will be employed in solving the Black-Scholes model when there is

transaction cost.
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1.3 Objectives

The objectives of the study are:

1. To implement meshfree methods using radial basis function for fast and accurate

numerical valuation of the nonlinear Black-Scholes model.

2. To compare the option prices with transaction cost computed by the radial basis

function with those obtained from the standard Black-Scholes model.

3. To compare the option prices with transaction cost obtained by the radial ba-

sis function with option prices without transaction cost in Belova and Shmidt

(2011).

1.4 Methodology

Analytical solutions to nonlinear Black-Scholes equations are seldom available. We

have to rely on numerical approaches such as binomial approximations, Monte-Carlo

methods, finite difference methods, finite element methods, finite vulume methods

and meshfree methods to get accurate option prices. Traditional methods such as the

finite difference scheme or the finite elements do not provide satisfactory results when

the dimension of the option pricing problem increases drastically and for nonlinear

problems as well. To resolve this issue, we use a special class of numerical methods,

namely, the meshfree approximation. These methods are often better suited to cope

with changes in the geometry of the domain of interest and for nonlinear problems as

well. In this thesis, we apply these methods to solve the Black-Scholes equation with

transaction cost. A Matlab programming language is used to implement the method in

generating the tables and graphs.
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1.5 Significance of the Study

This research will help know how nonlinear models such as the Black-Scholes model

with transaction cost can be handled easily using meshfree approximation. The results

of the research will go a long way to help financial institutions to know when to include

transaction cost in their day to day business activities. This will further boost the

confidence of stakeholders in the financial industry to do more business with less risk.

Other beneficiaries of the research are stock brokers, directors, and regulators as well

as researchers in the academia.

1.6 Organization Of The Thesis

The study is organized in five chapters as follows. The first one provides general

background issues of the study. It also provides the statement of problem and sets out

the objectives of the study, provides the methods to be use as well as the significance

of the study. Chapter 2 reviews pertinent literature related to option pricing models and

meshfree methods. Chapter 3 describes the formulation of the Black-Scholes model

with transaction costs as well as meshfree methods. Chapter 4 presents data analysis

and discussions. The final chapter, which is chapter 5, summarizes the findings of the

study.
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Chapter 2

Literature Review

2.1 Introduction

As explained in chapter 1, the main objective of this study is to price options with

transaction costs using meshfree methods. This Chapter describes, compares, contrasts

and evaluates the major theories, arguments, themes, methodologies, approaches and

controversies in the scholarly literature on the subject of this study. A general overview

of meshfree methods and option pricing models are presented and evaluated.

2.2 Option Pricing Models

The first attempt to explain option prices was by French PhD student Louis Bachelier

in 1900 in his thesis, Brownian motion as a model for speculative prices. He proposed

that the correct value of an option was the expected value of its payoffs, and by in-

troducing a specific probabilistic model for the underlying price motion, he was able

to calculate this expectation and compare his results with market prices. A botanist

Robert Brown in 1827 first described the unusual motion exhibited by a small par-

ticle that is totally immersed in a liquid or gas. Albert Einstein in 1905 expounded

more on this motion. Later, Norbert Wiener gave in a mathematically concise defini-

tion of the theory on Brownian Motion in a series of papers originating in 1918. The

economist Samuelson in the 1960’s proposed the exponential of Brownian motion (Ge-
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ometric Brownian motion) for modeling prices which are subject to uncertainty. The

geometric Brownian motion is the basic mathematical model for price movements and

Black, Scholes and Merton used this principle and came out with the Black-Scholes

model in 1973 based on certain assumptions. This has laid the foundation for the rapid

growth of markets for derivatives and the starting point for the pricing of other kinds

of financial derivatives. The modification of the Black-Scholes formula to cater for a

large number of derivatives has taken place while new pricing techniques and models

such as stochastic volatility, transaction cost and jump diffusion processes have been

developed.

Options have been traded for centuries, but they remained relatively obscure

financial instruments until the introduction of a listed options exchange in 1973. Since

then, options trading has enjoyed an expansion unprecedented in American securities

markets (Cox et al., 1979).

Option pricing theory has a long and illustrious history, but it also underwent

a revolutionary change in 1973. At that time, Fischer Black and Myron Scholes pre-

sented the first completely satisfactory equilibrium option pricing model called the

Black-Scholes model. In the same year, Robert Merton extended their model in several

important ways. These path-breaking articles have formed the basis for many subse-

quent academic studies. In the derivation of their model, Black and Scholes assumed

assume ideal ‘conditions’ in the market for the stock and option. These conditions are:

• ‘Frictionless’ markets: there are no transactions costs or differential taxes. Trad-

ing takes place continuously in time. Borrowing and short-selling are allowed

without restriction and with full proceeds available. The borrowing and lending

rates are equal.

• The short-term interest rate is known and constant through time.

• The stock pays no dividends or other distributions during the life of the option.

• The option is ‘European’ in that it can only be exercised at the expiration date.
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• The stock price follows a geometric Brownian motion through time which pro-

duces a log-normal distribution for stock price between any two points in time.

Merton (1973) later derived an alternative of the Black-Scholes formula and demon-

strated that their basic mode of analysis obtains even when the interest rate is stochas-

tic; the stock pays dividends; and the option is exercisable prior to expiration. More-

over, it was shown that as long as the stock price dynamics can be described by a

continuous-time diffusion process whose sample path is continuous with probability

one, then their arbitrage technique is still valid.

2.2.1 Black Scholes Model with Transaction Costs

According to Barles and Soner (1998) in a complete financial market without trans-

action costs, the celebrated Black-Scholes no-arbitrage argument provides not only a

rational option pricing formula but also a hedging portfolio that replicates the contin-

gent claim. However, the Black-Scholes hedging portfolio requires continuous trading

and therefore, in a market where there are transaction costs, it is prohibitively expen-

sive and leads to nonlinear Black Scholes equation.

As stated by Ankudinova (2008) nonlinear BlackScholes equations have been

increasingly, attracting interest over the last two decades, since they provide more ac-

curate values by taking into account more realistic assumptions, such as transaction

costs, illiquid markets, risks from an unprotected portfolio or large investor’s prefer-

ences, which may have an impact on the stock price, the volatility, the drift and the

option price itself. In the derivation of the Black-Scholes equation some basic as-

sumptions were made: one of such assumption is that there are no transaction costs in

hedging a portfolio. Ever since, there have been several and successful remodelling of

Black-Scholes that take into account transaction costs (Ankudinova, 2008).

Leland (1985) came out with an approximate option replication model featuring

transaction costs in the Black-Scholes model. He considered a model that allowed the

transactions only at discrete times. According to Mawah (2007), Leland took a finite

number of portfolio rebalancing periods which was not a perfectly hedged position
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with sufficient cash to cover all terminal option values. He then derived an option

price that was equal to the Black-Scholes price with adjusted volatility by using delta

hedging argument. His adjusted volatility was given as

σ̂ = σ

(
1+

√
2
π

µ
σ
√

∆t

) 1
2

where σ is the original volatility, µ is the proportional transaction cost and ∆t is the

transaction frequency. He assumed µ and ∆t to be small and kept the ratio µ/
√

∆t

order one. For typical market numbers, this is indeed the case. For example: when

σ = 0.2, µ = 0.01 and one transaction a week , the Leland volatility , σ̂, is equal to σ

times 1.13.

Leland, however, made implicit use of the approximation

W (t +∆t)−W (t)≈
√

2
π

√
∆t,

where W (.) is the one-dimensional Brownian motion
√

∆t→ 0,W (t+∆t)−W (t) con-

verges to zero like
√

∆t. Therefore, it is reasonable to use the approximation W (t +

∆t)−W (t)≈ c∗
√

∆t, where c∗ is an arbitrary constant. Then the adjusted volatility of

the option price is

σ̂ = σ

(
1+ c∗

µ
σ
√

∆t

) 1
2

.

The arbitrary constant c∗ is chosen in ways relating to the risk associated in market

models with transaction cost (Kusuoka, 1995). Leland derived his model by assuming

the convexity of the resulting option price.

Avellaneda and Paras (1994) made an extension of this approach to general

option pricing. Boyle and Vorst (1992) discussed option replication in a discrete time

framework with transaction costs. Their model was an extension of the Cox-Ross-

Rubinstein binomial option pricing model to cover the case of proportional transaction

costs. They used the central limit theorem and showed that, as the time step ∆t and

the transaction cost µ approaches zero, the price of the discrete option converges to a
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Black-Scholes price with an adjusted volatility σ̂(1) (Barles and Soner, 1998). Here,

Boyle and Vorst represented ∆t as the mean time length for a change in the value of

the stock, and not the transaction frequency.

A different approach to option pricing with transaction costs is to introduce

preferences. Hodges and Neuberger (1989) considered the difference between the

maximum utility from final wealth when there is no option liability and when there

is such a liability. They then, postulated that the price of the option should be equal to

the unique cash increment which offsets this difference. It is therefore surprising that

in the absence of market frictions, the option price obtained from utility maximization

is equal to the Black-Scholes price (Mawah, 2007). Therefore, the Black-Scholes op-

tion pricing theory can be extended by use of utility maximization approach. Davis

et al. (1993) further developed this theory in the presence of transaction costs.

Barles and Soner (1998) applied the utility function approach of Hodges and

Neuberger with the help of an asymptotic analysis of partial differential equations.

They then obtained a nonlinear BlackScholes equation with an adjusted volatility. The

volatility they obtained turned out to be a function of the second derivative of the

price of the option. The risk factor in the nonlinear model was represented by a free

parameter, a. Their derivation of the nonlinear Black-Scholes option pricing formula

uses the utility maximization definition and asymptotic analysis. They also derived an

upper estimate on the probability of missing the hedge by a given amount. Barles and

Soner (1998) used the exponential utility function given as

Uε(ξ) = 1− exp
(
−ξ

ε

)
, ξ ∈ R1

with a parameter ε > 0 , where 1/ε is equal to the product of the risk-aversion factor

and the number of options to be sold. They represented the proportional transaction

cost as µ, p as the stock price at time t, and Ψε,µ(p, t) as the option price with utility

function Uε and, studied the behavior of Ψε,µ as ε→ 0, µ→ 0, µ√
ε
= a, where a is any

constant.

Acccording to Barles and Soner (1998), Whalley and Wilmott in their recent
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paper studied the limit of Ψε,µ, as µ→ 0, while keeping ε fixed. They used formal,

matched asymptotics and obtained detailed information about the dependence of Ψε,µ,

and the optimal hedging strategy on the parameter µ.

2.3 Meshfree Methods

The valuation of financial options leads to mathematical models which are often chal-

lenging to solve. Since the Black Scholes equation was discovered in 1973, it has been

used as a standard pricing formula for different kinds of options. The assumptions

underlying this famous formula do not always hold and the original equation has been

generalised to accommodate many new kinds of options. This means that an exact so-

lution to the corresponding equation cannot always be found and we must then resort

to approximate or numerical methods. There are three numerical techniques that are

commonly employed in finance to price options. The methods are the numerical so-

lution of partial differential equations (PDEs), Monte Carlo Simulation and Binomial

methods. The binomial and numerical solution of partial differential equation meth-

ods require less computation time for problems of low dimensionality as compared to

Monte Carlo simulation (Forsyth et al., 1998).

As stated by Sidahmed (2011), meshfree methods originated about thirty years

ago. He stated that, the starting point which seems to have the longest continu-

ous history is the smooth particle hydrodynamics (SPH) method. Lucy (1977) used

smooth particle hydrodynamics(SPH) to model the astrophysical phenomena without

boundaries such as exploding stars and dust clouds. According to Sidahmed (2011),

comparing SPH method to other methods in these times of prolific academicians, the

rate of publications was very modest for many years and is mainly reflected in the

work of Monaghan. Monaghan (1988) described a turbulence model for the parti-

cle method, Smoothed Particle Hydrodynamics (SPH). His model made few assump-

tions, conserved linear and angular momentum, satisfied a discrete version of Kelvin’s

circulation theorem, and was computationally efficient. The model was based on a

Lagrangian similar to that used for the Lagrangian averaged Navier-Stokes (LANS)
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turbulence model, but with a different smoothed velocity. The results from the model

were in good agreement with the experimental and computational results of Clercx and

Heijst for two-dimensional turbulence inside a box with no-slip walls. The smoothed

velocity preserved the shape of the spectrum of the unsmoothed velocity, but reduces

the magnitude for short length scales by an amount which depended on a parameter e.

He called this the SPH-e model.

The most widely cited pioneering work that used the Radial Basis Function

approach was that of Kansa. Kansa (1990) first used it for solving some problems in

computational fluid dynamics. He presented multiquadrics (MQ) scheme developed

for spatial approximations for these problems. The MQ is a grid free scheme suited

for scattered data interpolation. Kansa later used Multiquadric RBFs for parabolic,

hyperbolic and elliptic PDEs. He showed that multiquadrics is more efficient than

finite difference schemes which require many more operations to achieve the same

degree of accuracy.

Swegle et al. (1995) showed the origin of the so-called tensile instability through

a dispersion analysis of the linearized equations and proposed a viscosity term to stabi-

lize it. They achieved this by carrying out a von Neumann stability analysis of the SPH

algorithm which identifies the criterion for stability or instability in terms of the stress

state and the second derivative of the kernel function. Their analysis explained the

observation that the method is unstable in tension while apparently stable in compres-

sion but showed that it was possible to construct kernel functions which were stable in

tension and unstable in compression. The analysis and the stability criterion provided

them the insight into possible methods for removing the instability.

Belytschko et al. (1996) examined meshless approximations based on moving

least-squares, kernels, and partitions of unity. They showed that the three methods

were in most cases identical except for the important fact that partitions of unity enable

p-adaptivity to be achieved. They then described methods for constructing discontin-

uous approximations and approximations with discontinuous derivatives. Next, they

reviewed: discretization (collocation and Galerkin), quadrature in Galerkin and fast
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ways of constructing consistent moving least-square approximations.

Johnson and Beissel (1996) proposed a normalized smoothing function algo-

rithm that can improve the accuracy of smooth particle hydrodynamics(SPH) impact

computations. Their approach consists of adjusting the standard smoothing functions

for every node (and every cycle) such that the normal strain rates are computed exactly

for conditions of constant strain rates (linear velocity distributions). This, in turn, gen-

erally improves accuracy for non-uniform strain rates and therefore significantly im-

proves the accuracy for free boundaries, for non-uniform arrangements of SPH nodes,

and for small smoothing distances.

Sharan et al. (1997) used the multiquadric (MQ) approximation scheme for the

solution of elliptic partial differential equations with Dirichlet and Neumann boundary

conditions. They took two-dimensional Laplace, Poisson, and biharmonic equations

describing the various physical processes as the test examples. They concluded that

the agreement found between the computed and exact solutions was very good.

Fedoseyev et al. (2002) formulated an improved Kansa-MQ method with PDE

collocation on the boundary (MQ-PDECB). They added an additional set of nodes

adjacent to the boundary and, correspondingly, added an additional set of collocation

equations obtained via collocation of the PDE on the boundary. They applied the MQ-

PDECB method to several model 1D and 2D linear and nonlinear elliptic PDEs and

have presented results of their numerical experiments.

Giinther and Liu (1998) described a computational algorithm based on d’Alembert’s

principle that can be used for general constraints both in meshless methods and finite

elements. They developed a method of partitioning meshless shape functions suitable

for imposing linear boundary conditions and then extended the approach for nonlinear

constraints.

Li et al. (2003) developed a meshless method for modelling groundwater con-

taminant transport using collocation method with radial basis functions. Their numer-

ical results are presented for several cases: pure diffusion; advection and dispersion

for continuous source; advection and dispersion for instantaneous source; advection
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and dispersion for patch-source. They showed from their results that their method was

accurate.

Wen et al. (2006) reproduced a mesh free method based on kernel approxima-

tion and point collocation for analysis of metal ring compression. They introduced cor-

rected kernel functions to the stabilization of free-surface boundary conditions. They

compared the solution of symmetric ring compression problem with a conventional

finite element solution.

Kindelan et al. (2010) introduced a radial basis function collocation method

for computing solutions to the time-dependent radiative transfer equation. They used

finite differences to discretize the time coordinate, a discrete ordinate method to dis-

cretize the directional variable, and an expansion in radial basis functions to approx-

imate the spatial dependence of the solution. They concluded that the radial basis

function method does not require any mesh or grid, achieves spectral accuracy in multi-

dimensions for arbitrary node layouts, and extremely simple to implement.

Islam et al. (2009) discussed meshfree interpolation method for the numerical

solution of the coupled nonlinear partial differential equations. This paper formulated

a simple classical radial basis functions (RBFs) collocation (Kansa’s) method for the

numerical solution of the coupled Korteweg-de Vries (KdV) equations, coupled Burg-

ers equations, and quasi-nonlinear hyperbolic equations. They assessed the accuracy

of their method in terms of the error in L1 and L2 norms, number of nodes in the do-

main of influence, time step length; and parameter free and parameter dependent RBFs.

They performed numerical experiments to demonstrate the accuracy and robustness of

the method for the three classes of partial differential equations (PDEs).

Tatari and Dehghan (2010) proposed a technique for solving partial differential

equations using radial basis functions. The radial basis functions are very suitable in-

struments for solving partial differential equations of various types. However, the ma-

trices which result from the discretization of the equations are usually ill-conditioned

especially in higher dimensional problems. They proposed a method for solving the

partial differential equations and generalized to solve higher-dimensional problems.
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Wang and Liu (2002) proposed a point interpolation meshless method based on

combining radial and polynomial basis functions. The interpolation function obtained

passes through all scattered points in an influence domain and thus shape functions are

of delta function property. They then suggested that the implementation of essential

boundary conditions was much easier than the meshless methods based on the moving

least-squares approximation. Wang and Liu further stated that, the partial derivatives

of shape functions are easily obtained.

In another paper by Wang et al. (2002), they studied the numerical analysis of

Biots consolidation process by radial point interpolation method. They proposed an

algorithm to solve Biots consolidation problem using meshless method called a radial

point interpolation method (radial PIM). They stated that, the radial PIM is advan-

tageous over the meshless methods based on moving least-square (MLS) method in

implementation of essential boundary condition and over the original PIM with poly-

nomial basis in avoiding singularity when shape functions are constructed. In time

domain they proposed fully implicit integration scheme to avoid spurious ripple effect.

They studied some examples with structured and unstructured nodes and compared

with closed-form solution or finite element method solutions.

Dai et al. (2004) proposed a mesh free model for the static and dynamic analysis

of functionally graded material (FGM) plates based on the radial point interpolation

method (RPIM). They studied the convergence rate and accuracy and compared with

the finite element method (FEM).

More recently, meshfree methods have been applied to options. Goto et al.

(2007) studied options valuation by using radial basis function approximation. They

described the valuation scheme of European, Barrier, and Asian options of single asset

by using radial basis function approximation. The option prices were governed with

BlackScholes equation. They discretized the equation with Crank-Nicolson scheme

and then, approximated the option with the radial basis functions with unknown pa-

rameters. It was concluded in their paper that, in the European and the Barrier options,

the prices were governed with Black-Scholes equation. The governing option of the
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Asian option, however, was different from the rest them. In that case, one has to adopt

the other radial basis functions than that for the original Black-Scholes equation.

Belova et al. (2008) presented meshfree approximation scheme based on the

radial basis function methods for the numerical solution of the options pricing model.

Their paper dealt with the valuation of the European, Barrier, Asian, American options

of a single asset and American options of multi assets. The option prices were mod-

elled by the Black-Scholes equation. They used the theta (θ) method to discretize the

equation with respect to time. The option price was then approximated in space with

radial basis functions (RBF) with unknown parameters using the multiquadric radial

basis functions (MQ-RBF). In case of American options a penalty method was used.

This was achieved by adding a small and continuous penalty term to the Black-Scholes

equation to remove the free boundary.
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Chapter 3

Methodology

3.1 Black-Scholes Model

According to Shcherbakov and Szwaczkiewicz (2010) the Black-Scholes model as-

sumes that the financial market consists of shares and risk-free financial instruments

(bonds, bank account). Buying and selling these instruments is a continuous process,

meaning that their prices processes can be modelled by stochastic differential equations

(SDE) in the case of a risk instrument or by ordinary differential equations (ODE) in

the case of a risk-free instrument. Stochastic differential equations are utilized in pric-

ing derivative assets because they give a formal model of how an underlying assets

price changes over time (Ntwiga, 2005). Ntwiga further stated that, if St is the price

of a security, a trader will be interested in knowing dSt ; the next instant’s incremental

change in the security price. He stated that the dynamic behaviour of the asset price in

a time interval dt can then be represented by the stochastic differential equation given

by

dSt = α(St , t)dt +σ(St , t)dWt f or t ∈ [0,∞)

where dWt is an innovation term representing an unpredicted event that occur during

the infinitesimal interval dt, α(St , t) is the drift parameter and σ(St , t) the diffusion

parameter which depends on the level of observed asset price St and on time t.
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3.1.1 Stochastic Process

Following Hull (2009), any variable whose value changes over time in an uncertain

way is said to follow a stochastic process. A stochastic process can be grouped into

two namely: discrete time and continuous time stochastic processes. A discrete time

stochastic process is one where the variable can change only at certain fixed points in

time whereas continuous time stochastic process is one where the changes occur at any

time.

Wiener Process

A wiener process is a particular type of Markov process with a mean change of zero and

a variance rate of 1.0 per year (Hull, 2009). A Markov process is a type of stochastic

process where the past history of the variable and the way the present has emerged from

the past are irrelevant but the present value of the variable id relevant for predicting the

future. Hull stated that a wiener process had been used in Physics to describe the

motion of a particle that is subject to a large number of small molecular shocks and is

sometimes referred to as Brownian motion (Hull, 2009).

Mathematically, a generalized Wiener process for a variable x can be defined in

terms of dz as

dx = adt +bdz

where a and b are constants known as drift rate and variance rate respectively. Thus a

generalized Wiener process has an expected drift rate of a and a variance rate of b2.

Itô Process

A further type of stochastic process known as an Itô process can be defined (Hull,

2009). An Itô process is a generalized Wiener process in which the drift rate and the

variance rate are functions of the value of the underlying variable and time t given as

dXt = a(Xt , t)dt +b(Xt , t)dWt ,
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where a(Xt , t) is the drift rate, b(Xt , t) is the variance rate and dWt is the Standard

Wiener process.

Itô Lemma

As stated by Hull (2009), the price of the stock option is a function of the underlying

stock’s price and time. That is, the price of any derivative is a function of the stochastic

variable underlying the derivative and time. Ito (1942) discovered a very important

result in the area of the behavior of functions of stochastic variables. This result is

known as Itô lemma.

Suppose that the value of a variable St follows the Itô process

dSt = a(St , t)dt +σ(St , t)dWt

where a and σ are functions of S and t. Itô lemma shows that a function G of x and t

follows the process

dGt =

(
∂G
∂St

at +
∂G
∂t

+
1
2

∂2G
∂S2

t
σ

2
t

)
dt +

∂G
∂St

σtdWt

where dWt is the Wiener process. Thus Gt follows an Itô process with the drift rate

∂G
∂St

at +
∂G
∂t

+
1
2

∂2G
∂S2

t
σ

2
t

and the variance rate (
∂G
∂St

)2

σ
2
t .

If a variable S(t) follows a Geometric Brownian motion, then it obeys a stochas-

tic differential equation of the form

dSt = µStdt +σStdWt ,
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and Itô’s lemma is given for any function G(S, t) as

dG =

(
∂G
∂S

µS+
∂G
∂t

+
1
2

∂2G
∂S2 σ

2S2
)

dt +
∂G
∂S

σSdW,

where µ and σ are constants.

Black Scholes Equation

In the early 1970s, Fischer Black, Myron Scholes and Robert Merton achieved a major

breakthrough in the pricing of stock options (Hull, 2009). This involved the develop-

ment of what has become known as the Black-Scholes model. The model has had a

huge influence on the way that traders price and hedge options.

Let a stock price S, follow

dS = µSdt +σSdW (3.1)

where µ is the drift rate, σ is the volatility and W follows a Wiener process. Now,

suppose that V is the price of a call option or other derivative contingent on S. The

variable V must be some function of S and t. Hence, by Itô lemma

dV =

(
∂V
∂S

µS+
∂V
∂t

+
1
2

∂2V
∂S2 σ

2S2
)

dt +
∂V
∂S

σSdW. (3.2)

The discrete forms of equations 3.1 and 3.2 are

∆S = µS∆t +σS∆W (3.3)

and

∆V =

(
∂V
∂S

µS+
∂V
∂t

+
1
2

∂2V
∂S2 σ

2S2
)

∆t +
∂V
∂S

σS∆W (3.4)

The Wiener process underlying V and S are the same and can be eliminated by

choosing an appropriate portfolio of the stock and the derivative. We, thus, choose a
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portfolio of

−1 : derivative

+
∂V
∂S

: Shares

The holder is short one derivative and long an amount ∂V
∂S of shares. We define Π as

the value of the portfolio and we have

Π =−V +
∂V
∂S

S. (3.5)

The change ∆Π in the value of the portfolio in time ∆t is given by

∆Π =−∆V +
∂V
∂S

S (3.6)

We substitute equations 3.3 and 3.4 into equation 3.6 to give

∆Π =−
(

∂V
∂S

µS+
∂V
∂t

+
1
2

∂2V
∂S2 σ

2S2
)

∆t− ∂V
∂S

σS∆W +
∂V
∂S

(µS∆t +σS∆W ) (3.7)

Rearranging equation 3.7, we obtain

∆Π =−∂V
∂S

µS∆t +
(
−∂V

∂t
− 1

2
∂2V
∂S2 σ

2S2
)

∆t− ∂V
∂S

σS∆W +
∂V
∂S

µS∆t +
∂V
∂S

σS∆W

(3.8)

We further simplify to obtain the change of the portfolio as

∆Π =

(
−∂V

∂t
− 1

2
∂2V
∂S2 σ

2S2
)

∆t. (3.9)

Since the portfolio is now risk-less due to the elimination of the ∆W term, it must then

earn a return similar to other short term risk-free securities. Therefore

∆Π = rΠ∆t, (3.10)
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where r is the risk-free interest rate. Substitutions of equations 3.5 and 3.9 into equa-

tion 3.10 yields (
∂V
∂t

+
1
2

∂2V
∂S2

)
∆t = r

(
V − ∂V

∂S
S
)

∆t (3.11)

Further simplification leads to the the Black-Scholes differential equation given by

∂V
∂t

+ rS
∂V
∂S

+
1
2

σ
2S2 ∂2V

∂S2 = rV. (3.12)

3.2 Nonlinear Black-Scholes type equations

The value of an option can be determined by the classical Black-Scholes theory in an

idealized financial market. The assumptions that are made in the derivation of this

model prove to be too restrictive in practice. Therefore, in recent years different mod-

els have been proposed to weaken one or more of these assumptions (During, 2005).

During further stated that, these models would result in strongly or fully nonlinear,

possibly degenerate, parabolic diffusion-convection equations for the option value V

as a function of the underlying security S and the time t

Vt +
1
2

σ̂(S, t,Vs,Vss)
2S2Vss + rSVs− rV = f (S, t,Vs), S > 0, t ∈ (0,T )

where r denotes the riskless interest rate, σ̂ is the nonlinear volatility, and the nonlinear

function f models different effects.

The source of such nonlinearities is so called market incompleteness. A market is

said to be complete if and only if there exists a unique equivalent martingale mea-

sure (During, 2005). On the other hand, a market is called incomplete if not every

contingent claim is reachable. The presence of transaction costs, trading restrictions

and additional randomness in the model are some of the typical reasons for market

incompleteness.
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3.2.1 Volatility Models

In the standard Black-Scholes model, the essential parameter that is not directly ob-

servable and is assumed to be constant, is the volatility σ. Many approaches have been

proposed to improve the model by treating the volatility in different ways using a mod-

ified volatility function σ̂(.) to model the effects of transaction costs, illiquid markets

and large traders (Ankudinova, 2008).

3.2.2 Transaction Costs Models

One of the assumptions in the Black-Scholes model is that, the model requires a con-

tinuous portfolio adjustment in order to hedge the position without any risk. This

adjustment easily becomes expensive in the presence of transaction costs since an in-

finite number of transactions is needed (Kwok, 2008). Ankudinova (2008) stated that

the hedger needs to find the balance between the transaction costs that are required to

rebalance the portfolio and the implied costs of hedging errors. Because of this “im-

perfect ” hedging the option might be over or underpriced up to the extent where the

riskless profit obtained by the arbitrageur is offset by the transaction costs, so that there

is no single equilibrium price but a range of feasible prices. In a market with transac-

tion costs, it has been shown that there is no replicating portfolio for the European Call

option and the portfolio is required to dominate rather than replicate the value of the

option.

3.2.3 The Transaction Cost Model of Leland

The main idea of Leland (1985) was to relax the hedging conditions so as to trade at

discrete times, which reduce the expenses of the portfolio adjustment. He made the

assumption that the transaction cost µ|α|S/2 where µ denotes the transaction cost and

α the number of assets bought (α > 0) or sold (α < 0) at price S is proportional to the

monetary value of the assets bought or sold.

Consider a replicating portfolio with ∆ units of the underlying assets and the bond B,
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then we have

Π = αS+B.

The change in the portfolio after a small change in time ∆t becomes

∆Π = α∆S+ rB∆t− µ
2
|∆α|S, (3.13)

where ∆S is the change in price S, α∆S represents the change in value, rB∆t represents

the change the bond growth in ∆t time and ∆α represents the change in the number

of assets such that the last term becomes the transaction cost due to portfolio change.

Applying Itô lemma to the value of the option V (S, t), this gives us

∆V =Vs∆S+
(

Vt +
σ2

2
S2Vss

)
∆t. (3.14)

If the option V is replicated by the portfolio Π, then their values have to match at all

times and there can be no risk-free profit. With this no-arbitrage argument we get

∆Π = ∆V (3.15)

Comparing equations (3.13) and (3.14), we get α =Vs and

rB∆t− µ
2
|∆α|S =

(
Vt +

σ2

2
S2Vss

)
∆t (3.16)

Leland then showed that,
µ
2
|∆α|S =

σ2

2
LeS2|Vss|∆t, (3.17)

where Le is the Leland number, given by

Le =

√
2
π

(
µ

σ
√

∆t

)
(3.18)
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where ∆t is the transaction frequency and µ is the transaction cost. Substituting (3.17)

and B = Π−αS =V −SVs into equation (3.16) becomes

rV − rSVs−
σ2

2
LeS2|Vss|=Vt +

σ2

2
S2Vss. (3.19)

Therefore the option price is the solution of the nonlinear Black-Scholes equation

Vt +
1
2

σ̂
2S2Vss + rSVs− rV = 0 (3.20)

where σ̂ is the modified volatility given as

σ̂
2 = σ

2(1+Le sign(Vss)), (3.21)

with σ representing the historical volatility and Le the Leland number.

3.2.4 The transaction cost model of Boyle and Vorst

Boyle and Vorst (1992) used the central limit theorem derived from the binomial model

with transaction costs and discrete trading processes that as the time step ∆t and the

transaction cost µ approach zero, the price of the option converges to a Black-Scholes

price with the modified volatility σ̂ of the form

σ̂
2 = σ

2
(

1+Le

√
π

2
sign(Vss)

)
. (3.22)

Boyle and Vorst assumed convexity of V such that σ̂2 = σ2(1+Le
√

π/2) and equation

(3.20) turns into the linear Black-Scholes equation.

3.2.5 Transaction Cost Model of Hodges and Neuberger

A different approach to model transaction costs was suggested by (Hodges and Neu-

berger, 1989). They consider a utility function and made the assumption that the behav-

ior of the investor is characterized by this function. The utility function is the measure
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of the relative satisfaction of the investor from the input. Hodges and Neuberger show

that the BlackScholes price is the difference between the maximum utility from the fi-

nal wealth with and without option liability. They conclude that the price of the option

in a market with transaction costs should be equal to the unique cash increment which

offsets this difference.

3.2.6 Transaction Cost Model of Barles and Soner

They apply the utility function approach of Hodges and Neuberger with the help of an

asymptotic analysis of partial differential equations.

Let us consider a financial market which consists of one bond and one stock, the price

is governed by the dynamics:

dS(l) = S(l)[αdl +σdW (l)], l ∈ [t,T ] (3.23)

with initial data S(t) = s, W (.) a standard one-dimensional Brownian motion, α is the

constant mean return rate and σ is the constant volatility.

Consider the process of bonds owned X(s) and the process of shares owned Y (s).

We let the trading strategy (L(s),M(s)) be a pair of non-decreasing processes with

L(t) = M(t) = 0, which are interpreted as the cumulative transfers measured in shares

of stock. M(s) is measured in shares from stock to bond and L(s) is measured in shares

from bond to stock. Let µ∈ (0,1) be the proportional transaction cost and initial values

x and y, s ∈ [t,T ], The processes X(s) and Y (s) evolve according to

X(s) = x−
∫ s

t
S(τ)(1+µ)dL(τ)+

∫ s

t
S(τ)(1−µ)dM(τ), s ∈ [t,T ] (3.24)

and

Y (s) = y+L(s)−M(s), s ∈ [t,T ] (3.25)

where the first integral represents buying shares of stock at a price increased by the

proportional transaction cost µ and the second integral represents selling stock at a
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reduced price of the transaction cost. We add the amount of the stocks bought and

subtract the amount for the stocks sold to the initial amount of stocks owned in equation

(3.25). According to the utility maximization approach of Hodges and Neuberger, the

price of a European Call option can be found by the difference between the maximum

utility of the terminal wealth when there is no option liability and when there is such a

liability. Let the exponential utility function be

U(ξ) = 1− e−γξ, ξ ∈ R, (3.26)

where γ > 0 is the risk aversion factor. Boyle and Vorst (1992) considered two opti-

mization problems. The first value function is the expected utility from the final wealth

when there are no option liabilities taken over the transfer processes

Va(x,y,S(t), t) := sup
L(.),M(.)

E[U(X(T )+Y (T )S(T ))], (3.27)

and the second value function is the expected utility from the final wealth assuming

that we have sold N European call options taken over the transfer processes

Vb(x,y,S(t), t) := sup
L(.),M(.)

E[U(X(T )+Y (T )S(T )−N(S(T )−K)+)]. (3.28)

According to Hodges and Neuberger (1989) the price of each option is equal to the

maximal solution Λ of the algebraic equation

Va(x+NΛ,y,S(t), t) =Vb(x,y,S(t), t).

This means that the option price Λ equals the increment of the initial capital at time t

that is needed to cope with the option liabilities arising at T (Ankudinova, 2008). By a

linearity argument selling N options with risk aversion factor of γ yields the same price

as selling one option with risk aversion factor γN.
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This leads to performing an asymptotic analysis as γN→ inf. We then consider

U(ξ) = 1− e−γNξ.

We set

γN = 1/ε.

Then, we have

Uε(ξ) = 1− e−ξ/ε, ξ ∈ R.

Our optimization problem then becomes

Va(x,y,S(t), t) = 1− inf
L(.),M(.)

E[e−1/ε(X(T )+Y (T )S(T ))]

and

Vb(x,y,S(t), t) = 1− inf
L(.),M(.)

E[e−1/ε(X(T )+Y (T )S(T )−(S(T )−K)+)].

Now, define za and zb : R× (0,∞)× (0,T )→ R by

Va(x,y,S(t), t) = 1− e−1/ε(x+yS(t)−za(y,S(t),t))

Vb(x,y,S(t), t) = 1− e−1/ε(x+yS(t)−zb(y,S(t),t)).

Then,

za(y,S(t),T ) = 0 and zb(y,S(t),T ) = (S(T )−K)+

and the option price is given by

Λ(x,y,S(t), t;1/ε,1) = zb(y,S(t), t)− za(y,S(t), t).

Barles and Soner (1998) state that the value functions Va and Vb are the unique solutions

of the dynamic programming equation

min{−Vt +
1
2

σ
2S2Vss− rSVs,−Vy +S(1+µ)Vx,Vy−S(1−µ)Vx}= 0 (3.29)
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by the theory of stochastic optimal control. This leads to a dynamic programming

equation for za and zb, which are independent of the variable x.

Supposing that the proportional transaction cost µ = a
√

ε for some constant a > 0,

Barles and Soner prove that as ε→ 0 and µ→ 0,

za→ 0 and zb→V,

where V is the unique (viscosity) solution of the nonlinear BlackScholes equation

Vt +
1
2

σ̂
2S2V 2

ss + rSVs− rV = 0 (3.30)

where

σ̂
2 = σ

2(1+Ψ(er(T−t)a2S2Vss)) (3.31)

is the nonlinear volatility. σ denotes the constant volatility of the underlying, a= µ/
√

ε

and Ψ(x) is the solution to the following nonlinear ordinary differential equation

Ψ
′(x) =

Ψ(x)+1
2
√

xΨ(x)− x
, x 6= 0, (3.32)

with the initial condition

Ψ(0) = 0. (3.33)

Barles and Soner analysed the ordinary differential equation in equations (3.32) and

(3.33) and stated that

lim
x→∞

Ψ(x)
x

= 1 and lim
x→−∞

Ψ(x)
x

=−1 (3.34)

Because of equation (3.34), the function Ψ(·) is treated as identity for large arguments.

The volatility then becomes

σ̂
2 = σ

2(1+ er(T−t)a2S2Vss) (3.35)
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3.3 Meshfree Approximation

In this section we give a short description of a modern method that is a competitor

of the finite difference method (FDM) and the finite element method (FEM) (Duffy,

2006). Thus, we discuss the meshless method that attempts to resolve some of the

shortcomings of Finite Difference Method and Finite Element Method. A mesh is de-

fined as any of the open spaces or interstices between the strands of a net that is formed

by connecting nodes in a predefined manner. In the traditional difference schemes such

as the finite element, finite volume and finite difference methods, the spatial domain is

discretised into meshes. The meshfree method is used to establish a system of alge-

braic equations for the whole problem domain without the use of a predefined mesh.

Meshfree methods essentially use a set of nodes scattered within the problem domain

as well as on the boundaries to represent the problem domain and its boundaries.

Meshless methods are being used nowadays in many different areas of sciences

and engineering, for example, scattered data modeling, problems involving moving

discontinuities such as cracks and shocks, multi-scale resolution, non-uniform sam-

pling, computer graphics, neural networks, etc (Sidahmed, 2011). The most important

features of mesh free methods which make them very powerful are as follows:

• The shape functions of meshfree method can be constructed to have any desired

order of continuity.

• Meshfree method does not require mesh alignment sensitivity.

• In meshless methods, the connectivity of the nodes is determined at run-time,

hence no a-priori mesh is required.

• Meshfree method is easy to program and understand. (Sidahmed, 2011)

The key idea of the meshfree methods is to provide a stable and accurate numerical so-

lutions for partial differential equations or integral equations with all kinds of possible
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boundary conditions with a set of arbitrarily distributed nodes ( or particles) without

using any mesh that provides the connectivity of these nodes or particles.

3.4 Constructing the meshfree shape functions

There are different approaches of constructing the meshfree shape function. Smooth

Particle Hydrodynamics Approach(SPH) and Moving Least-Squares Approach were

suggested by Belytschko et al. (1996) while Liu (2002) proposed Point Interpolation

Method.

3.4.1 Smooth Particle Hydrodynamics Approach

Smooth Particle Hydrodynamics Approach(SPH) is the oldest of the meshfree methods

according to (Liu and Liu, 2003). Sidahmed stated that the rationale for this method

was provided by invoking the notion of a kernel approximation for solution v(x) on a

domain Ω generated by

vh(x) =
∫

Ω

Z(x−ξ,h)v(ξ)dξ. (3.36)

Z(x−ξ,h) is a weight function or kernel,vh(x) is the approximation,and h is a measure

of the size of the support.

The weight function Z is a monotonically decreasing function and satisfies the proper-

ties below.

Z(x−ξ,h)> 0 over Ω (3.37)

Z(x−ξ,h) = 0 outside Ω (3.38)∫
Ω

Z(x−ξ,h)dξ = 1 (3.39)

Z(s,h). −→ δ(s) as h−→ 0 (3.40)

Exponential, cubic spline and quardratic spline functions are the three commonly used
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weight functions. These are:

The exponential weight function

Z(c̄) =

 e−(
c̄
α
)2

for c̄≤ 1

0 for c̄ > 1,

The cubic spline weight function

Z(c̄) =


2
3 −4c̄2 +4c̄3 for c̄ < 1

2

4
3 −4c̄+4c̄2− 4

3 c̄3 for 1
2 < c̄≤ 1

0 for c̄ > 1,

The quadratic spline weight function

Z(c̄) =

 1−6c̄2 +8c̄3−3c̄4 for 1
2 < c̄≤ 1

0 for c̄ > 1,

The following weight function is normally used (for 1-D problems) in Smooth

Particle Hydrodynamics methods.

Z(c̄) =
2
3h


1− 2

3 c̄2 + 3
4 c̄3 for c̄≤ 1

1
4(2− c̄)3 for 1 < c̄≤ 2

0 for c̄≥ 2,

where α is constant, c̄ = c/h and h is the smoothing length.

In Smooth Particle Hydrodynamics, the main idea is to obtain a simple formula for

vh(x) in terms of nodal values vI ≡ v(xI), I = 1 : nN . Quadrature approaches are usually

used. For example, the quadrature can be performed by the trapezoidal rule in one

dimension, which gives

vh(x) = ∑
I

Z(x− xI)vI∆xI (3.41)
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for a sequentially numbered set of nodes xI . For interior nodes ∆x, is

∆x = (xI+1− xI−1)/2.

On the left end,

∆xnN−1 = (xI+1− xb)/2

where xb is coordinate of the left boundary, with a similar expression on the right. The

sum needs to be taken only over the point xI where z(x− xI)> 0 (Sidahmed, 2011).

The quadrature is more difficult to come to the grips with in multi dimensions. We use

formulas of the type

vh(x) = ∑
I

Z(x− xI)vI∆UI (3.42)

are used, where ∆UI represents the volume of node I. We can write equation (3.42) in

the following form

vh = ∑
I

φ(x)vI, (3.43)

where φI(x) are the Smooth Particle Hydrodynamics shape functions given by

φI(x) = Z(x− xI)∆UI.

3.4.2 Moving Least-Squares Approach

In this method, we let v(x) be the function of a field variable defined in the domain

Ω. vh(x) is the approximation of v(x) at point x. The Moving Least-Squares (MLS)

approximates the field function in the form of series representation

vh(x) =
m

∑
j=1

q j(x)a j(x)≡ QT (x)a(x) (3.44)

where m is the number of terms of monomials (polynomial basis), qi(x) are monomial

basis functions, and a(x) is a vector of coefficients given by

a(x) = [ao(x),a1(x), · · · ,am(x)]T , (3.45)
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which are functions of x.

A complete polynomial basis of order m in 1 dimensional space is given by

Q(x) = [Qo(x),Q1(x), · · · ,Qm(x)]T = [1,x,x2, · · · ,xm] (3.46)

whereas in 2D space, it is given by,

Q(x) = Q(x,y) = [1,x,y,xy,x2,y2, · · · ,xm,ym]T , (3.47)

If we assume that the support domain of x contains a set of n local nodes x1,x2, · · · ,xn,

then equation (3.44) is used to calculate the approximated values of the field function

at the nodes

vh(x,xI) = QT (xI)a(x), I = 1,2, · · · ,n. (3.48)

We then construct a functional of weighted residual using the approximated values of

the field function and the nodal parameters vI = v(xI)

J =
n

∑
I

Z(x− xI)[vh(x,xI)− v(xI)]
2 (3.49)

=
n

∑
I

Z(x− xI)[QT (xI)a(x)− v(xI)]
2 (3.50)

where weight function is Z(x− xI), and vI is the nodal parameter of the field

variable at node I with compact support the same weight functions as in SPH are used.

We rewrite equation (3.50) in the form

J = (Qa− v)T Z(x)(Qa− v) (3.51)

where
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Q =



q1(x1) q2(x1) · · · qm(x1)

q1(x2) q2(x2) · · · q(x2)

...
... . . . ...

q1(xn) q2(xn) · · · qm(xn)


,

v = [v1,v2, · · · ,vn]
T

and

Z(x) =



Z(x− x1) 0 · · · 0

0 Z(x− x1) · · · 0
...

... . . . ...

0 0 · · · Z(x− x1)


,

We obtain the extremum of J in order to find the coefficients a(x)

∂J
∂a

=C(x)a(x)−D(x)v = 0, (3.52)

where C is the moment matrix and is given by

C(x) = QT Z(x)Q

and D is also given by

D(x) = QT Z(x).

Rearranging equation (3.52), we have

a(x) =C−1(x)D(x)v. (3.53)

The approximation vh(x) can then be expressed as

vh(x) =
n

∑
I=1

φ
k
I vI, (3.54)
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where the shape functions are given by

Φ
k = [φk

1(x), · · · ,φk
n(x)] = QT (x)C−1(x)D(x) (3.55)

where k is the order of the polynomial basis.

3.4.3 Point Interpolation Method

In this method, a function v(x) is defined in the problem domain Ω with a number of

scattered field nodes. For a point of interest xP , the field function v(x) is approximated

by using the following series representation:

vh(x,xP) =
n

∑
i=1

Ai(x)ai(xP)

where the number of nodes in support domain of a given point xP is n, Ai(x) are the

basis functions and ai(xP) is a coefficient for the basis function Ai(x) corresponding to

the given point xP.

The Point Interpolation Method (PIM) obtains its approximation by letting the interpo-

lation function passing through the function values at each scattered node (Sidahmed,

2011).

The formulation of polynomial PIM begins with the following representation:

vh(x,xP) =
n

∑
i=1

qi(x)ai(xP) = Q(x)a(xP) (3.56)

where n is the number of nodes in support domain of a given point xP, qi(x) is the basis

function of monomials and ai(xP) is a coefficient for the monomial qi(x) corresponding

to the given point xP. The vector a is defined as

a(xP) = [a1,a2, · · · ,an]
T .
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The coefficients ai in equation (3.56) can be determined by enforcing that equation

(3.56) be satisfied at the n nodes in support domain of point xP. At node i we can have

equation

vi = QT (xi)ai, i = 1 : n (3.57)

where the nodal value of v at x = xi is vi.

We can write Equation (3.57) in a matrix form as:

Vs = QPa, (3.58)

where the vector that collects the values of field variables at all the n nodes in the

support domain is Vs:

Vs = [v1,v2,v3, · · · ,vn]
T .

The moment matrix,QP, given by

QP = [QT (x1),QT (x2),QT (x3), · · · ,QT (xn)]
T . (3.59)

Assuming that the inverse of the moment matrix QP exists and using equation (3.58),

we have,

a = Q−1
P Vs (3.60)

Substituting equation (3.60) into equation (3.56), we obtain

vh(x) =
n

∑
i=1

φi(x)vi. (3.61)

Equation (3.61) can be written in a matrix form as

vh = Φ(x)Vs (3.62)
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where φ(x) is a matrix of Point Interpolation Method shape functions φi defined by

Φ(x) = QT (x)Q−1
P = [φ1,φ2, · · · ,φn].

3.4.4 Radial Basis Functions

A radial Basis function is a real valued function whose value depends only on the

distance from some other point, c, called center such that

φ(x,c) = φ(‖ x− c ‖).

According to Fasshauer (2006), the RBF interpolation deals with univariate basis func-

tions and a specific norm (Euclidean norm) to reduce a multi-dimensional problem into

a one-dimensional issue. Duffy (2006) stated that the radial basis function method is

independent of the dimension of the problem. Fasshauer explain that, the radial basis

function method approximates the value of a function as the weighted sum of radial

basis functions. These functions are evaluated on a set of points called centers, which

are quasi-randomly scattered over the domain of the problem, (Guarin et al., 2012).

The weights are found by matching the approximated and observed values of the func-

tion. Once the weights are calculated, they are used to approximate the value of the

function at any point over the entire domain.

Following Fasshauer (2006), we consider the set of nodes or centers

X = [x1,x2, · · · ,xN ]
′ with x j ∈ Rs, s≥ 1 and the data values g j ∈ R. We assumed that

g j = f (x j, t) j = 1,2, · · · ,N,

where f is an unknown function and t is the time. Let f (X , t) be a linear combination

of N certain basis functions such that

f (X , t)w
N

∑
j=1

b j(t)φ(‖ X− x j ‖) (3.63)
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where the coefficients b j(t) are the unknown weights, φ(·) is the radial basis function

and ‖ · ‖ is the Euclidean norm. Equation 3.63 can be represented as a system of linear

equations given as



f (x1, t)

f (x2, t)
...

f (xN , t)


=



φ(‖ x1− x1 ‖) φ(‖ x1− x2 ‖) · · · φ(‖ x1− xN ‖)

φ(‖ x2− x1 ‖) φ(‖ x2− x2 ‖) · · · φ(‖ x2− xN ‖)
...

... . . . ...

φ(‖ xN− x1 ‖) φ(‖ xN− x2 ‖) · · · φ(‖ xN− xN ‖)





b1(t)

b2(t)
...

bN(t)


.

(3.64)

The above system of linear equations are solved to obtain the coefficients b j(t). Once

we obtain the weights b j(t), the value of the function f can be estimated at any set of

nodes X̃ = [x̃1, x̃2, · · · , x̃M]′ with x̃M ∈ Rs for m = 1,2, · · · ,M and time t as

f (X̃ , t)w
N

∑
j=1

b j(t)φ(‖ X̃− x j ‖). (3.65)

Table 3.1: Some well-known radial basis functions

Name of RBF φ(r),r ≥ 0 Type
Multiquadric

√
(r2 + c2) Smooth, global

Inverse multiquadric
1√

(r2 + c2)
Smooth, global

Inverse quadratic
1

r2 + c2 Smooth, global

Gaussian e−(cr)2
Smooth, global

Cubic | r |3 Piecewise smooth,
global

Thin plate spline r2ln | r | Piecewise smooth,
global

Source : (Sidahmed, 2011) page 24
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Figure 3.1: Multiquadric and Inverse multiquadric RBFs

Figure 3.2: Cubic and Thin plate spline RBFs

We now consider the invertibility of collocation matrix since the direct method

expressed in equation 3.64 entails inverting the collocation matrix in order to find the

coefficients b j(t).

Definition 3.1. Fasshauer (2006)

A real symmetric matrix A is called positive semi-definite if its associated quadratic

form is non-negative, i.e,

dT Ad =
N

∑
j=1

N

∑
k=1

d jdkA jk≥ 0.., , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

(3.66)

for d = [d1,d2, ...,dN ]
T ∈ RN . If the only vector d that turns (3.66) into an equality is
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the zero vector, then A is called positive definite.

A very important property of matrices which are positive definite is that, all its

eigenvalues are positive. This means that a positive definite matrix is non-singular. We

therefore introduce the concept of positive definite function.

Definition 3.2. Fasshauer (2006)

A real-valued continuous function Φ is positive definite on Rs if and only if it is even

and
N

∑
j=1

N

∑
k=1

d jdkΦ(x j− xk)≥ 0 (3.67)

for any N pairwise different points x1, ...,xN ∈ Rs, and d = [d1, ...,dN ]
T ∈ RN . The

function Φ is strictly positive definite on Rs if the only vector d that turns (3.67) into

an equality is the zero vector.

It means that the basis functions should be positive definite functions

P f (x) =
N

∑
k=1

dkΦ(x− xk), x ∈ Rs (3.68)

According to Belova and Shmidt (2011), the function P f (x) will yield an interpolant

that is translation invariant. Positive definite functions, which are also radial functions,

are invariant under all Euclidean transformations: translations, rotations and reflec-

tions.

Definition 3.3. Fasshauer (2006)

A function Φ : Rs −→ is called radial provided there exists a univariate function ϕ :

[0,∞) −→ R such that Φ(x) = ϕ(r), where r =‖ x ‖, and ‖·‖ is some norm on Rs -

usually the Euclidean norm.

Definition (3.3) implies that for a radial function Φ,

if ‖ x1 ‖=‖ x2 ‖ then Φ(x1) = Φ(x2), x1,x2 ∈ Rd . An important application of

radial functions is the fact that the interpolation problem becomes insensitive to the

dimension s of the space in which the data sites lie. We can work with univariate

function ϕ for all choices of s instead of dealing with a multivariate function Φ (whose
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complexity increases with increasing space dimension s). The univariate function ϕ is

called a positive definite radial function on Rs if and only if the associated multivariate

function Φ is positive definite on Rs and radial.

An important part of the theoretical analysis of the radial basis functions is the integral

characteristics.

Definition 3.4. Fasshauer (2006)

The Fourier transform of f ∈ L1(Rs) is given by

f̂ (ω) =
1√
(2π)s

∫
Rs

f (x)exp−iω.x dx, ω ∈ Rs, (3.69)

and its inverse Fourier transform is given by

f̌ (x) =
1√
(2π)s

∫
Rs

f (ω)expix.ω dω, x ∈ Rs

Theorem 3.1. Fasshauer (2006) Let Φ ∈ L1(Rs) be continuous and radial,

Φ(x) = ϕ(‖ x ‖). Then its Fourier transform Φ̂ is also radial, i.e., Φ̂(ω) = ϕ(‖ ω ‖)

with

Fsϕ(r) =
1√
rs−2

∫
∞

0
ϕ(t)t

s
2 J(s−2)/2(rt)dt,

where Js−2/2 is the Bessel function of the kind of order (s−2)/2.

The transform in the above theorem is also known as a Bessel transform.

Definition 3.5. Fasshauer (2006) The Laplace transform of a piecewise continuous

function f that satisfies | f (t) |≤Me−st for some constants a and M is given by

L f (s) =
∫

∞

0
f (t)e−stdt, s > a.

The theorem below is one of the most important results on positive definite

functions.

Theorem 3.2. Bochner’s Theorem

A (complex-valued) function Φ is positive definite on Rs if and only if it is the Fourier
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transform of finite non-negative Borel measure µ on Rs, i.e.,

Φ = µ̂(x) =
1√
(2π)s

∫
Rs

e−ix.ydt, x ∈ Rs.

For our well-posed interpolation problem to be guaranteed, we need to extend

the Bochner’s characterization to strictly positive definite functions. The following

theorem gives the extention of Bochner’s characterization.

Theorem 3.3. Fasshauer (2006)

Let µ be a non-negative finite Borel measure on Rs whose carrier is not a set of

Lebesgue measure zero. Then the Fourier transform of µ is strictly positive definite

on Rs.

The carrier of a non-negative Borel measure defined on some topological space

Y is given by Y \
⋃
{O : O is an open and µ(O) = 0}.

The following describes the way to construct strictly positive definite functions.

Collolary 3.1. Fasshauer (2006)

Let f be a continuous non-negative function in L1(Rs) which is not identically zero.

Then the Fourier transform of f is strictly positive definite on Rs.

The following theorem gives the criterion to check whether a given function is

strictly positive definite.

Theorem 3.4. Fasshauer (2006)

Let Φ be a continuous function in L1(Rs). Φ is strictly positive definite if and only if Φ

is bounded and its Fourier transform is non-negative and not identically equal to zero.

We therefore shift our attention to positive definite radial functions. The the-

orems below gives the criterion to check whether a given function is positive definite

and radial.

Theorem 3.5. Fasshauer (2006)

A continuous function ϕ :[0,∞)−→ Rs is positive definite and radial on Rs if and only

44



if it is the Bessel transform of a finite non-negative Borel measure µ on [0,∞], i.e.,

ϕ(r) =
∫

∞

0
Ωs(rt)dµ(t)

where

Ωs(r) =

 cos r for s = 1,

Γ( s
2)(

2
r )

(s−2)/2J(s−2)/2(r) for s≥ 2,

and J(s−2)/2 is the classical Bessel function of the first kind of order (s−2)/2.

Theorem 3.6. Fasshauer (2006)

A continuous function ϕ : [0,∞) is positive definite and radial on Rs for all s if and

only if it is of the form

ϕ(r) =
∫

∞

0
e−r2t2

dµ,

where µ is a finite non-negative Borel measure on [0,∞).

3.5 Application of radial basis functions

In this section, we develop efficient mesh free methods based on the radial basis func-

tions (RBFs) to solve nonlinear Black-Scholes model using the transaction costs model

of Guy Barles and Halil Mete Soner. The application of RBFs leads to systems of dif-

ferential equations which are then solved by a time integration scheme. This is done

by using a theta (θ) method. The method is analyzed for stability.

3.5.1 Discretization

We approximate the unknown function V (the value of the option in the nonlinear

Black-Scholes equation) using the radial basis functions as

V (S, t)'
N

∑
j=1

b j(t)φ(S,S j) (3.70)
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where b j are unknown coefficients and φ(S,S j) are the radial basis functions. Multi-

quadric radial basis function (MQ-RBF) would be used for this problem

φ(S,S j) =
√

c2+ ‖ S−S j ‖2 (3.71)

where S j is the asset price at the collocation point j for approximating the option price

V , ‖ S−S j ‖ denotes the radial distance of each of the N scattered data points S j . The

parameter c is positive and known as shape parameter.

It is well known that the following nonlinear Black-Scholes equation holds for the

option price V (S, t) with asset price S at time t

∂V (S, t)
∂t

+
1
2

σ̂
2S2 ∂2V (S, t)

∂S2 + rS
∂V (S, t)

∂S
− rV = 0 (3.72)

with the nonlinear term given as

σ̂
2 = σ

2(1+(er(T−t)a2S2Vss). (3.73)

Substituting equation (3.73) into equation (3.72) gives

∂V (S, t)
∂t

+
1
2

S2
σ

2
(

1+(er(T−t)a2S2 ∂2V (S, t)
∂S2 )

)
∂2V (S, t)

∂S2 + rS
∂V (S, t)

∂S
− rV (S, t) = 0

(3.74)

Differentiating equation (3.70), we obtain the following

∂V (S, t)
∂t

=
N

∑
j=1

db j(t)
dt

φ(S,S j), (3.75)

∂V (S, t)
∂S

=
N

∑
j=1

b j
∂φ(S,S j)

∂S
, (3.76)

∂2V (S, t)
∂S2 =

N

∑
j=1

b j
∂2φ(S,S j)

∂S2 , (3.77)

Substituting equations (3.75)-(3.77) into equation (3.74) gives
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N

∑
j=1

db j(t)
dt

φ(S,S j)+
1
2

S2
σ

2
N

∑
j=1

b j(t)
∂2φ(S,S j)

∂S2

(
1+ er(T−t)a2S2

N

∑
j=1

b j(t)
∂2φ(S,S j)

∂S2

)

+ rS
N

∑
j=1

b j(t)
∂φ(S,S j)

∂S
− r

N

∑
j=1

b j(t)φ(S,S j) = 0

(3.78)

Simplifying 3.78 leads to,

N

∑
j=1

db j(t)
dt

φ(S,S j)+
1
2

S2
σ

2
N

∑
j=1

b j(t)
∂2φ(S,S j)

∂S2 + rS
N

∑
j=1

b j(t)
∂φ(S,S j)

∂S

− r
N

∑
j=1

b j(t)φ(S,S j)+
1
2

S2S2
σ

2a2er(T−t)
N

∑
j=1

b j(t)
∂2φ(S,S j)

∂S2

N

∑
j=1

b j(t)
∂2φ(S,S j)

∂S2 = 0

(3.79)

By using matrix algebra, we can define the matrix vector products as

[φ]{b}=



φ1,1 φ1,2 · · · φ1,N

φ2,1 φ2,2 · · · φ2,N

...
... . . . ...

φN,1 φN,2 · · · φN,N





b1

b2

...

bN



[φ′]{b}=



φ′1,1 φ′1,2 · · · φ′1,N

φ′2,1 φ′2,2 · · · φ′2,N
...

... . . . ...

φ′N,1 φ′N,2 · · · φ′N,N





b1

b2

...

bN



[φ′′]{b}=



φ′′1,1 φ′′1,2 · · · φ′′1,N

φ′′2,1 φ′′2,2 · · · φ′′2,N
...

... . . . ...

φ′′N,1 φ′′N,2 · · · φ′′N,N





b1

b2

...

bN
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Writing equation 3.79 in matrix notation, the fully discretised nonlinear Black-Scholes

equation becomes

[φ]{ḃ}+ 1
2

S2
σ

2[φ′′]{b}+ rS[φ′]{b}− r[φ]{b}

+
1
2

S2S2
σ

2a2er(T−t)[φ′′]{b}[φ′′]{b}= 0
(3.80)

By rearranging the terms in the above equation, we have

{ḃ}+ 1
2

S2
σ
[
φ]−1[φ′′]{b}+ rS[φ]−1[φ′]{b}− r[φ]−1[φ]{b}

+
1
2

S2S2
σ

2a2er(T−t)[φ]−1[φ′′]{b}[φ′′]{b}= 0
(3.81)

From equation (3.81)

{ḃ}= rI{b}− 1
2

S2
σ

2[φ]−1[φ′′]{b}− rS[φ]−1[φ′]{b}

− 1
2

S2S2
σ

2a2er(T−t)[φ]−1([φ′′]{b})2
(3.82)

where I is the identity matrix. If we define the matrix [F ] and the term contain-

ing the nonlinearity as [C′′]{b}, then, equation (3.82) becomes

{ḃ}= [F ]{b}− [C′′]{b} (3.83)

where

F = rI− 1
2

S2
σ

2[φ]−1[φ′′]− rS[φ]−1[φ′] (3.84)

and

[C′′]{b}= 1
2

S2S2
σ

2a2er(T−t)[φ]−1([φ′′]{b})2 (3.85)

An application of the theta-method for the time discretization of equation (3.83) leads

to

{b(t +∆t)}−{b(t)}
∆t

=−(1−θ)[F ]{b(t +∆t)}−θ[F ]{b(t)}

+(1−θ)[C′′]{b(t +∆t)}−θ[C′′]{b(t)}
(3.86)
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The nonlinear term gives rise to a nonlinear system of equations whose solution is

usually found by Newton’s method. By replacing {b(t)} in the nonlinear term by

{b(t +∆t)}, we obtain linearly implicit scheme given by

{b(t +∆t)}−{b(t)}
∆t

=−(1−θ)[F ]{b(t +∆t)}−θ[F ]{b(t)}

+[C′′]{b(t +∆t)}
(3.87)

where 0 ≤ θ ≤ 1 denotes the implicitness parameter. After rearranging the terms in

(3.87) we obtain

[I +(1−θ)∆tF−∆tC′′]{b(t +∆t)}= [I−θ∆tF ]{b(t)} (3.88)

Now, let H = I +(1−θ)∆tF−∆tC′′ and G = I−θ∆tF ,

then equation (3.88) becomes

[H]{b(t +∆t)}= [G]{b(t)}. (3.89)

Holding the above equation for the collocation points, we have

Ax = b (3.90)

where

A = [G]

x = {b(t)} and

b = {b(t +∆t)}[H]

The matrices H and G are calculated analytically. The parameter b is determined from

the numerical result at the previous time-step t = T −∆t. We therefore solve equation

(3.90) for {b(t)}. Thus equation (3.90) is solved iteratively from the expiration date

t = T to the date of purchase t = 0. Once the parameter {b(0)} is obtained at the date
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t = 0, the option price at the date of purchase is estimated from {b(0)} by using

V (S, t)'
N

∑
j=1

b j(t)φ(‖ S−S j ‖).

3.6 Stability Analysis of the Numerical Method

To study the stability of the schemes numerically, we define the error at the nth time

level by equation

en =V n
exact−V n

app (3.91)

where V n
exact is the exact solution and V n

app is the approximate numerical solution ob-

tained by equation (3.86). For the scheme given by equation (3.86) the error equation

at (n+1)th level can be written as

en =Cen+1 (3.92)

where C is the amplification matrix given by

C = [I +θ∆tF ][I− (1−θ)∆tF ]−1, (3.93)

where I is the identity matrix. The numerical scheme is stable if ρ(C)≤ 1, where ρ(C)

is the spectral radius of C. Substituting equation (3.93) into equation (3.92), we obtain

en = [I +θ∆tF ][I− (1−θ)∆tF ]−1en+1. (3.94)

Simplifying equation (3.94), we obtain

[I− (1−θ)∆tF ]en = [I +θ∆tF ]en+1. (3.95)
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It is clear from equation 3.95 that the numerical scheme is stable if all the eigenvalues

of the matrix [I− (1−θ)∆tF ]−1[I +θ∆tF ] are less than unity, which means that

∣∣∣∣ 1+θ∆tλF

1− (1−θ)∆tλF

∣∣∣∣≤ 1, (3.96)

where λF is the eigenvalues of the matrix F .

Now we consider different cases for θ. Firstly, when θ = 1, we have explicit

Euler method. Thus, equation 3.96 reduces to

|1+θ∆tλF | ≤ 1 (3.97)

which upon simplification implies that the explicit Euler method will be stable if

∆t ≥ −2
λF

and λF ≤ 0. (3.98)

Secondly, when θ = 0, we have implicit Euler method which is unconditionally

stable. This can be seen from equation 3.96 since λF ≤ 0. Finally, when θ = 0.5, we

have the Crank- Nicholson’s method. The Crank-Nicholson’s method is uncondition-

ally stable since the inequality 3.96 will hold as long as λF ≤ 0 and this does happen.
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Chapter 4

Analysis and Results

4.1 Introduction

This chapter presents analysis of the nonlinear Black-Scholes models with transaction

cost with special reference to the model by Guy Barles and Halil Mete Soner using

multi quadric radial basis approximation. We study the behaviour of the option value

at the strike price E for different values of the parameter, a. We present the analysis

for the option’s delta.

4.2 Numerical Results

Using the multi quadric radial basis function approach, the resulting problems for the

Black-Scholes model with transaction cost is solved via Crank-Nicolson’s method.

We use the same parameters from Belova and Shmidt (2011) with the exception of the

parameter a from (Mawah, 2007).

The parameters are presented in Table 4.1.
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Table 4.1: Parameter Values

Parameter Description Value
S∗max Maximum asset

price
30

N∗ Number of asset
data points

121

∆t∗ Number of time
steps

0.05

T ∗ Expiration date 0.5
E∗ Exercise price 10
r∗ Risk free interest

rate
0.05

σ∗ Volatility 0.2
θ∗ Crank-Nicholson

method
0.5

c∗ Shape parameter 0.01
a∗∗ Transaction cost

parameter
0.005−0.01

Source: The parameters with (*) are from Belova and Shmidt (2011) and the

parameter with (**) is from Mawah (2007).

We will be comparing prices of call options at the strike price for different values

of a . When a = 0 , we have a Black-Scholes option price which is going to form

the basis of the comparisons. Thus, fig 4.1 is a Black-Scholes option price. In figure

4.1, the exact value for the standard Black-Scholes option price for a maximum asset

price is 20.2469 whereas the payoff function which is the option price at the expiration

date is 20. Thus there is no much difference between the exact value and the payoff

function.

Figure 4.2 represents the values of the option with transaction cost and that

of the payoff function. The upper curve features transaction costs and the lower one

represents te payoff function.
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Figure 4.1: Plot of Exact Values versus Asset Price, S

Figure 4.2: Values of the Nonlinear Option Price when a = 0.005
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Figure 4.3 shows a comparison of results between the options values with trans-

action cost and the exact values. Even though the results seems identical, there is a

substantial difference in the results as shown in table A.2 in the appendix. From table

A.2 in appendix A, the exact value of the option and the option value with transaction

cost are 20.2469 and 20.2743 respectively for a maximum asset price of 30.0.

Figure 4.3: Values of the Nonlinear Option price in comparison with the Exact Solution
when a = 0.005.
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Figure 4.4 depicts the superiority of options with transaction cost over options

without transaction cost as the graph of the options without transaction cost diverges

slightly away for higher values of the asset price, S.

Figure 4.4: The Option Values with and without Transaction Cost when a = 0.005.

Due to the introduction of transaction cost, there is a rise in the value of option

as compared to the option values without transaction cost indicating that transaction

cost increases the value of the option as shown in figure 4.4.
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Figure 4.5: Comparison of Exact Values, Option Values with transaction cost and with-
out transaction cost.

The results in figure 4.6 look identical as the difference between the option

values with a = 0.005 and a = 0.01 is not much. For maximum asset price of 30, the

option values with transaction costs a = 0.005 and a = 0.01 are 20.2743 and 20.3056

respectively. This can be confirmed from Table A.3 in Appendix A. It can clearly be

seen that when the higher the value of a, the higher the value of the option price.
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Figure 4.6: Option Values with transaction cost when a is 0.01 and 0.005.

Since the radial basis functions are infinitely differentiable, the computations

of the derivatives of the options values are readily available from the derivatives of

the basis functions. We can calculate the value of the delta of the option delta from

equation 3.76. Table 4.2 gives the values of delta for European options with transaction

cost using radial basis function method. From table 4.2, the numerical values of the

option’s delta lie between 0 and 1 which is in agreement with what is mentioned in

(Hull, 2009).

Table 4.2: Values of option’s delta when a = 0.01.
Asset Price,S Exact Values of the Option’s delta Numerical Values of the option’s delta

8.0 0.1243 0.1241
10.0 0.6643 0.6642
12.0 0.9567 0.9564
14.0 0.9975 0.9972
16.0 0.9999 0.9996
18.0 1.0000 0.9998
20.0 1.0000 0.9999

In order to assess the accuracy of the numerical solution, we calculate the
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percentage absolute relative error Er as

Er(S, t) =
|Vrb f (S, t)−Vexact(S, t)|

Vexact(S, t)
×100.

We present the results in figure 4.7.

Figure 4.7: Plot of percentage error, Er versus asset price, S.

From the figure 4.7, the error decreases for larger values of the asset price S.

The modest number of the asset price, S = 8, the radial basis function approximation

error is almost 63 percent or 63 basis points (bps). For an asset price of 26, the RBF

approximation error is only 0.45 basis points.
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Chapter 5

Conclusion and Recommendation

5.1 Introduction

In this chapter we conclude based on the discussed results obtained from the analysis in

chapter four. Recommendations suggested by the researcher have also been included

in this section.

5.2 Conclusion

In this study, we first reviewed option pricing and meshfree methods in general. We

used a special class of numerical methods, namely, Meshfree Methods, to study the

differential models for pricing options. We applied this method to solve the European

options. Our attention was confined to the Black-Scholes model (European option)

with transaction cost. The application of radial basis functions led to a system of dif-

ferential equations which were solved by the Crank- Nicholson Scheme. The method

was analysed for stability and we found that it was unconditionally stable. The numer-

ical results describing the payoff function and the values of the option were presented.

Some simulations for Greeks, in particular, the option’s delta was also performed.

Unlike finite difference method where the derivative of the solution are approx-

imated by finite quotients, the radial basis function method provides a global interpo-

lation formulae for the solution as well the derivatives of the solution. This helps to
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compute the Greeks such as the delta without a need to use extra interpolation method.

We compared the influence of transaction costs on the value of the option to that

of the standard Black-Scholes option price as well as the value of the option obtained

by Belova and Shmidt (2011) without transaction cost. The option values obtained in

the presence of transaction costs were slightly higher than the option values in the stan-

dard Black-Scholes option and the values of the option in Belova and Shmidt (2011).

The levels of transaction can be viewed as deviations from the Black-Scholes option

price in reality. These deviations are within 5% of the Black-Scholes price. The option

values with transaction cost obtained by using radial basis function deviated from the

standard Black-Scholes options were not more than 5%. Therefore the values found in

this study are within the acceptable range of option prices with transaction costs.

5.3 Recommendation

We conclude that, the values found in this study when transaction cost are taken into

account when valuing option prices using the Black-Scholes model are slightly higher

than both the option values without transaction cost and the standard Black-Scholes

option pricing model. Even though the difference was not that much, financial insti-

tutions such the banks can earn a lot when the transaction under consideration is big

enough.

This study looked at the valuation of a fair price of an European option with

transaction cost where the asset follows the process

dS
S

= µdt + σ̂dz,

with µ and σ̂ being the drift rate and variable volatility respectively. We recommend

that future research on this thesis topic should includes a jump-diffusion part in which

the asset price motion is given by a process of the form

dS
S

= µdt + σ̂dz+(n−1)d p,
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where µ is the drift rate, σ̂ is the volatility of the Brownian part of the motion, d p is

the Poisson process and n−1 is an impulse function giving a jump from S to Sn.
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Appendix A

Tables

The numerical results obtained when the shape parameter is c = 0.01 from Belova and

Shmidt (2011) are shown in Table A.1.

Table A.1: Option Values without Transaction Cost when c = 0.01

Asset Price,S Exact Value Option Value
without transac-
tion cost

0.0 0.0000 0.0000
2.0 0.0000 0.0000
4.0 0.0000 0.0000
6.0 0.0000 0.0000
8.0 0.0456 0.0415
10.0 0.6888 0.5866
12.0 2.2952 2.0421
14.0 4.2496 3.9125
16.0 6.2470 5.9956
18.0 8.2469 7.9654
20.0 10.2469 9.9665
22.0 12.2469 11.9665
24.0 14.2469 13.9662
26.0 16.2469 15.9788
28.0 18.2469 17.9785
30.0 20.2469 19.9611
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Table A.2: Option Values with Transaction Cost when c = 0.01 and a = 0.005

Asset Price,S Exact Value Option Value
with transaction
cost

0.0 0.0000 0.0000
2.0 0.0000 0.0000
4.0 0.0000 0.0000
6.0 0.0000 0.0000
8.0 0.0456 0.0561
10.0 0.6888 0.6983
12.0 2.2952 2.3104
14.0 4.2496 4.2681
16.0 6.2470 6.2781
18.0 8.2469 8.2500
20.0 10.2469 10.2960
22.0 12.2469 12.2877
24.0 14.2469 14.3010
26.0 16.2469 16.2899
28.0 18.2469 18.2654
30.0 20.2469 20.2743

Table A.3: Option Values with transaction cost

Asset Price,S Option Price with
a = 0.005

Option Value
with a = 0.01

0.0 0.0000 0.0000
2.0 0.0000 0.0000
4.0 0.0000 0.0000
6.0 0.0000 0.0000
8.0 0.0561 0.0745
10.0 0.6983 0.7179
12.0 2.3104 2.3461
14.0 4.2681 4.2895
16.0 6.2781 6.3263
18.0 8.2500 8.3041
20.0 10.2960 10.3254
22.0 12.2877 12.3085
24.0 14.3010 14.3432
26.0 16.2899 16.3204
28.0 18.2654 18.2871
30.0 20.2743 20.3056
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