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ABSTRACT

The ever growing rate of infant and maternal mortality in districts, municipal, teaching, regional
and military Hospitals of Ghana have made the optimal assignment of nurses to shifts, a problem
of primary importance. We investigate the various soft constraints of each nurse and its
implications and conflicts. Graph colouring is applied. The investigation leads to the creation of
conflict graph for the nurses. The conflict graph is coloured using the greedy algorithm
approach. This results to a conflict free gfaph for the furses; W& Wiérefore applied the hospital
hard constraints to schedule the various nurses at the matetnityward of Ejura District Hospital to

the available shifts, namely Moming, Afternoon and Evening shifts.
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CHAPTER ONE

1.1 BACKGROUND TO THE STUDY

The investigation of graph colouning onginally rose from the well-known four-colour
theorem, which was posed as a conjecture in the 1850s [1][{25] The four- colour theorem
asks the question; whether the regions of any map, for instance the map of Kumasi
Township could be coloured with four colours so that suburbs with common border have
different colours. Many incorrect pyof§ of tha four-colgur theorem were published often
with hard-to-find errors. However, it _was finally proved by the Amencan

Mathematicians; Appel and Haken in 1976 [2]

Ever since and even before, graph colounng has been studied extensively and there are
several interesting -practical and feasible problems that can be modeled by graph
colouring. The surge in recent times has resulted m countlgss real world problem
applications, which includes; Time tabling Scheduling problems, Frequency Assignment,
Register allocation, Printed circuit Board testing 1 and 1 (Colours and Clique), Analysis

of Biological and Archacological Data and pattern Matching.

For instance with aircraft schedibing, assume that-we hdve P aircrafts and we have to

assign them to o flights, where the ith filghl is-during the ime interval (a, b;). Clearly if

two flights overlap, then we cannot assign the same aircraft to both flights. The vertices

of the conflict graph comrespond to the flight, two vertices are connected if the

corresponding time intervals overlap. The conflict graph 1s an interval graph, which can
e _H_,..--'-'-_'_'ﬁ_

be coloured optimally in polynomial time.
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With all the applications of graph colouring, scheduling is the most prominent.
Scheduling problems can anse n several different forms and areas of our world The
particular form of scheduling problem required is specific to the institution or
environment in which it is needed. For example a hospital schedule problem (duty
roster) for medical staff and nurses will be different from a senior high school timetable
schedule. Again in the health sector the schedule problem for medical staffs (Doctors
and nurses) is totally different from the schedule problem for non-medical staffs

(Cleaners, Labourers, Secunty Officers)

The scheduling problem can be defined as aproblem of finding the optimal sequence for
executing a finite set of operations (tasks or jobs) under a certain set of constraints that
must be satisfied. A scheduler usually tnes to maximise the utilization of individuals

and/or resources and minimise, the time required to complete the entire process being

scheduled.

For example, a genenc job-shop scheduling problem can be formulated as assigning
machines to workers or assigning workers to machines, Similarly, a school timetabling
problem can also bé'seen as allocation of courses to timeslots or allocation of timeslots to

COUrses.




1.2 STATEMENT OF PROBLEM

In a hospital, a new schedule for nurses (duty roster) must be generated for each ward
every two weeks or monthly. A hospital ward is an organisational unit that has to fulfil
some concrete task, and has both rooms and personnel, the nurses, at its disposal.
Usually, the wards of a hospital are completely distinct: each has its own rooms and its
own personnel. The schedules of a ward in a hospital can be done separately.

We consider the scheduling problefu for the: maternityward at Ejura District Hospital. Tn
general a maternity ward consist of about 10 — 20 health workers (staff) having different
qualifications and responsibilities. These staff are placed into categories based on their
qualifications, experience and job description which includes principal midwifery officers
(PMO), senior midwafery officers (SMO), nudwifery officers (MO), senior staff
midwifes (SSM), staff mudwifes (SM), pan-time  midwifes (PTM), student midwifes
(SM) and midwifery aids (MA) Some of the nurses can teplace people from another
category (depending on their qualifications). Each replacement by a person from another
category will raise the evaluation function by an amount.

In Ghana, nurses work.in.shifts. Generally, there are three basie shifts in a day, namely
the Moming or (AM) shife (M), the Afternoon or PMshift (A) and Evening or Night shift
(N). An irregular shift (I) has a S[:Iiﬁ".f.‘:i—ﬂr"hﬂﬂfﬁﬁg hours either arrange by the nursing
officer or the midwifery officer. Nurses are entitled to different types of holidays. These
include day-off (D/0Q), compensation-off (C/0), public holiday-off (P/O) and vacation
leave (VL) _'I_'i_a.lrsing roastenng _is_. concemed with highly constrained resource allocation

G _'_'___,..--""-_-_'_
problems. The work head needs to be assigned to nurses penodically taking into account

—_— 3




a number of constraints and requirement.  Basically we consider two types of constraints

namely the Hard constrants (imperative planning rules) and the Soft constraints

(preferences planning rules)

Hard constraints are those that must be satisfied in order to have a feasible schedule due

to physical resource restrictions and legislation. When requirements are desirable but not

obligatory they are referred to as Soft constraints. Soft constraints are often used to

evaluate the quality of feasible ﬂchedutes In generating the roaster, we must ensure that

¥ m P W ]

every planning decision made 1s cehereqt'w%ihe ‘aﬁ'}-mle&

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

Each nurse is required to work one shlﬂ per da}.r.

Each nurse gets at least one DfO shift per week
Every nurse is entitled to three(3).days off after a night shift.
Every nightshift is taken continuous for four conservative days.

The minimumntumber of nurses for moming shift should not be less than

three Thatis M =3,

The number of nurses for both Aftemoon and Night shifis should be at
least two. Thatis’A > 2 and N

Only the Prnincipal M"ldiiﬁt? Officer (PMO) 1s entitled to Holiday off
duty.

Principal midwifery officer is scheduled for only moming shifis and has

day oﬂ"’_’_ii_t_l_ﬁg_nn both Saturdays and Sundays.




The soft rules should be satisfied as much as possible but they can be violated. Since

these preferences rules are mainly nurses choice on the timetable (duty roaster), they

define the goodness of the roaster generated. The more preference planning rules a

timetable respects, the better the timetable (roaster).

Rule 9:

Rule 10:

Rule 11:

Rule 12:
Rule 13:

Rule 14:

N shift are unwanted. Nurses should take tum to be assigned on N shift.
To be exact, if there are Y nurses of a particular rank to be scheduled for
N shift, each nursgin that group shguldhave.an N shift every Y days.
Immediately after ariyN [shifl] a:;-.nm;'ia #rmﬁ:vs to take on D/O shift. If itis
not possible, a nurse prefersito take A shift If it 1s possible, a nurse
accepts an M shift.

Immediately after a VL shaft, a.nurse staris to work on a Monday. The
nurse prefers to work in A ghift on Monday. M shifi-on Tuesday and N
shiften Wednesday.

If possible a nurse prefers to have consécutive holidays.

Each nurse should have equal opportunity to get D/O shift.

Asnurse prefers to work-with the following patterns;

Preferred Consecutive Pattemns
M—D/O—A
M—N—A
—— Table 1.1
5




1.3 OBJECTIVES

It is a big problem in hospitals in Ghana to create schedules (duty roaster) for health staff
(nurses), which do not victimize nurses in terms of both soft and hard constraints rules.
Manually created programs can not deal with these problems despite the great effon
required to form a duty roaster (imetable).

The purpose of this thesis is to develop an efficient and reliable solution to all these
problems. In this thesis, we Se¢k 18, construct @ sailiﬂlng constramt-based nurse
roastering system for the matemity ward of Ejura District Hospital in the Ashanti Region

of Ghana. Eliminating most conflicting soft constraint is also a sole aim of this work.

14 JUSTIFICATION

The traditional nurse'duty roaster (nurse schedule) construction for the maternity ward of
Ejura District Hospital has over the year's generated pt’t‘:b]é:mﬁ with the roaster planner
and nurses alike with the shifting methods of assignment The mode though not

egregious has many lapses, some of which are outlined below

< Yy
Conflict: There is the-problem of conflicts in the-gxisting méthod of nurse scheduling
and this can be said to be very embanamng to-both the maternity ward and the Ejura

Distnict Hospital as a whole.

Time: Due to the number of hard hospital rules and soft nurse preference rules to be
obeyed, it is evident that the construction of schedules for nurses is really a time
— L e

consuming and most of the ime ended up with lots of anomalies.

e E




The manual time takes not less than two to four days to construct with a not-so-accurate
result. The ume mvolved in the manually inefficient timetable (duty roaster) construction

could have been channelled into other departments of the Hospital

Irregularities: Due to the problem of the existence of initial nurse - nurse conflict (who

to go for night shift), the finalised roaster comes out with lots of conflictions.

Although there are relatively very few nurses, most of the hard rules are very tight and
many soft planning rules are ingompahble with edch éﬂfer The duty planner allows
nurses o request pre-assignments. The request often makes the roaster generation
process more difficult. For example, suppese a group of nurse's request to have a day-off
on Sunday. If this group is too large, it may over-reduce the available manpower to work
on Sunday. It may also disturb normal sequences of some wanted (or unwanted) shifts

and affect the faumess and quality of the roaster.

The system to be designed will primanly perform the miost important task to eliminate
conflicts by carefully studying the soft preference of nurses and to consider whose shift

request to reject.

Time: Instead of solving a very Targe problem over a fong tinde horizon, we seek to solve
a sequence of smaller problems ‘associated with shorter periods. With this, the time in

constructing the roaster 1s reduced considerably.

Efficiency: Once the basic problem of conflict of interest with respect to shifts

assignment 1s eliminated and computation is made on vanably small number of nurses in

o——r
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a short period of time, the efficiency of making the schedule is appreciably higher

compared to the former, though hundred percent efficiency achievements is impossible.

1.5 METHODOLOGY

Funding a suitable schedule (duty roaster) is not as simple as obtaining the best graph
colouring algorithm. The algorithm may form the basis for a system, assigning nurses to
schedules but there are many other’paints to consider. One major problem is how to
allocate the nurses to various shifts. Grouping a set of nurses with a set of shifts is a
problem, which must be solved for each time period. One common requirement is to

minimise the number of consecutive or same day shift for a nurse to work.

We present the methods behind a spreadsheet type system motivated by the need for
automatic assistanee for nurse reastering (nurse schedulng) However, the system is
designed to be a general purpose roastéring spreadshéet. 'We create roastering, based on
graph colounng, which will find times and shifis for each nurse. The method is the basis
of a spreadsheet system. It uses a heuristic algorithm to find a series of almost maximal
independent colour sets from the vertices of the graph, which are then assigned in tumn to

shifts using an algorithm wath both-hard and soft constraints:

We also use and study the structural properties of conflict graph instances that anse from
nurse roastering problems and is based on the effectiveness of vanety of graph colouring
approaches. We seek intelligently ordered and intelligently — searched sequential

mluuﬁug_ltleﬂlﬁds, as well-asam mteger and constraint programming formulations of

graph colounng to arrest the problem of this work.

e 8




1.6 SCOPE AND LIMITATIONS

As previously discussed, this thesis seeks to study graph colouring with its associated
applications 10 a real world problem. We proceed to the prominent one of all the

applications. That is scheduling,

Specifically, we consider nurse scheduling system focussing primarily on the shift
structure for the Ejura District Hospital. We limit our study to nurse roastering problem
only and also consider a matermtgr'aﬂ'uf' a c"ﬁsm?t:.hgsﬁ-;-!I with the hope that the work
can be replicated to other district, municipal, general ‘hospitals in Ghana There is more
room for using this work as basis or reference for further studies to investigate other

schedule problems in other sectors of'our economy.
1.7 ORGANISATION

This work 1s structurgd in a well planned manner. Chapter ane gives a brief history of
graph colouring and investigates the various pracrical applications of graph colouring, It
discusses the forms of tmetabling problems and tries 1o elaborate more on nurse
scheduling system_ Chapter two gives brief history on what otheis have studied around
this subject area. Chapter three presents an overview of graph c6louring, Basic terms are
defined and explained. Theories and lemmas 1 help in our study are presented and
proved. The nurse schedule model is discussed extensively in chapter four. Chapter five
studies the results obtained and the necessary conclusion is made. Recommendation 1s

seen in the chapter six.




CHAPTER TWO

2.1 LITRETURE REVIEW

Valls et al., (1996) examined a heterogeneous workforce assignment problem where the
minimum number of workers needed to perform a machine load plan was calculated.
The problem was represented as a restricted vertex colouring problem and a branch and
bound algonthm was shown. The special charactenstics of the graph to be coloured
enable an efficient application of the brangh|and beun®, Computational results indicated
that the algorithm could solve problems of 50 tasks, 5, 10 and 15 machines and between 2

to 15 different kinds of workers in a few seconds,

Juhos et al., (2004) described a novel representaton and ordering mode! that, aided by an
evolutionary ﬂgqriihm, was used in solving the graph k-colouring problem. Hs strength
hes in reducing the mumber of neighbours that need to'be.checked for validity. An
empirical companson was made with two other alponithms on a popular selection of
problem instances and on a suite of msiances in the phase transiion. The new
representation i combination with a heunistic mutation operator showed promising

results,

Bouchand et al., (1986) studied mmaneally the (planar) graph colouring problem with ¢
colours. For ¢ = 4, when a perfect colouring could be achieved, the solutions were
scaltered "randomly" (as far as triangle correlations are concemed) in configuration
space. On the contrary, for ¢ = 3, colounng was always imperfect, but the optional

solutions seem to mgaﬁﬁﬁ;nselves in an ultrametric way. This illustrated rather well

S 1”




the role of frusiration on the configuration space landscape. The authors discussed the

importance of the distance chosen.

Culberson and Gent (2001) denned the 'frozen development' of colouring random graphs
and identified two nodes in a graph as frozen if they were the same colour in all legal
colounngs. This was analogous to studies of the development of a backbone or spine in
SAT (the Satis ability problem). The authors described in detail the algorithmic
techniques used to study frozen development and,presenied-strong empirical evidence
that freezing in 3-colounng is sudd&n. | A'gingleedge typically caused the size of the
graph to collapse in size by 28% and used theifrozen development to calculate unbiased
estimates of probability of colourability in random graphs, even where this probability
was low. The links between frozen developmentand the solution cost of graph colouring
was Investigated, In.SAT, a disgontinurty in the order parameter was correlated with the
hardness of SAT instances; data for colouring was suggestive of an asymptotic
discontinuity. The uncolourability threshold was known to give rise to hard test instances
for graph-colouring  Evidence that the cost of colouring threshold graphs grows
exponentially, when using either a speciahist colouring program, er encoding into SAT, or
even when using the best of both technigues were presented.  Theoretical and empirical
evidence showed that the size of the smallest uncglourable sub graphs of threshold graphs
became large as the number of nodes in graphs increases. The application of their work

to the statistical mechanics analysis of colouring was discussed extensively.

The graph-‘l}yumﬁc parameter that has probably received the most attention over the

years in the cﬂfnmaﬁr ‘ﬁ'ﬁ?n-ﬁgr.—_ﬁs is well-known, the colouring problem is an NP-

= 11




Complete problem. Lie et al., (2002) solved by means of molecular biology techniques
to this effect. The algorithm was highly parallel and had satisfactory fidelity. Their work
showed further evidence for the ability of DNA computing to solve NP-Complete

problems. (Graph colouning problem).

The ever growing number of wireless communications systems deployed around the
globe have made the optimal assignment of a limited radio frequency spectrum a problem
of primary importance. at issue are planning models fos peamanent spectrum allocation,
licensing, regulation, and network design.\ Fugther at.issue are on-line algorithms for
dynamically assigning frequencies to users within an established network. Applications
meclude aeronautical mobile, land mobile, mantime mobile, broadcast, land fixed

(pointto-point), and satellite systems,

Murphey et al., (1999) surveyed researches conducted by theoreticians, engineers, and
computer scientists regarding the frequency assignment problem (FAP) in all of its
guises. Their paper began by defining some to the more common types of FAPs, Tt
continued with a discussion en measures of optimality relafing to the use of spectrum,
models of interference, and mathematical representations of many FAPs, both in graph
theoretic terms, and as amathemancal programs. Graph theory and, in particular, graph
colouring play an important role in-the FAP since, in-many instances, the FAP in castin a
form which closely resembles a graph colouring. Theoretical results that bound optimal
solutions for special FAP structures were presented. Exact algorithms for general FAPs
were explained, and since many FAP instances are computationally hard, much space

was devoied tu appmfiﬁﬁtre-_ aTg_nrit'hms. Their paper concluded with a review of

e 12




evaluation methods for FAP algonthms, test problem generators, and a discussion of the
underlying engineenng issues that was considered when generating test problem

Hedetniemi (2002) proposed two new self-stabilizing distributed algorithms for proper |
(j is the maximum degree of node in the graph) colouring of arbitrary system graphs

Both algonithms were capable of working with multiple types of demons (schedulers)

The first algonthm converges in ¢ N moves while the second converges in at most O
moves (O is the number of nodes ahd'N §8,thg dimBedof eddes in the praph). The second
improvement was that neither of the proposed algonithms requires each node to have
knowledge of | Further, the colouring produced by their first algorithm provided an

interesting special case of colounng, e.g, Grundy Colounng

The problem of properly colouring the vertices (or edges) of a graph using for each
vertex (or edge) a colour from a prescribed list of permussible colours, received a
considerable amount of attention. —Alon (1993) desm"bedm techniques applied in his
study of this subject, which combined combnaional, algebraic and probabilistic methods,
and discussed several intnguing conjectures and open problems.  This was mainly a
survey of recent and lm recent results m the area, but 1t -:nnuiﬁu‘_._ff?;e»reml new results as

well.

Simulated annealing is also a very successful heunstic for vanous problems in
combinatorial optimization. An application of simulated annealing to the 3-colounng
problem was considered by Nolte and Schrader (1999). In contrast to many good
anphicd[;;ﬁﬁ they showed-for a certain class of graphs that the expected first hitting

time of a proper colouring, given an arbitrary cooling scheme, was of an exponential size
e 13




and proved the convergence of simulated annealing to an optimal solution in an

exponential time.

Fre et al., (2006) were interested in the graph colouring problem. They proposed an exact
method based on a linear-decomposition of the graph. The complexity of this method
was exponential according to the linear width of the entry graph, but linear according to
its number of vertices. Presentations of some experiments were performed on literature
instances, and their method was useful o solve more guickly.than other exact algorithms

instances with small linear width.

D’Hondt (2008) mvestigated quantum algomthms for graph colouring problems, in
particular for 2- and 3-colouring of graphs. The main goal was to establish a set of
quantum representations and operations suiiable for the problem at hand and proposed a
unitary-as well as measurement-based guantum computations, also taking inspiration
from answer set programmming, a form of declarative programmiing close to traditional
logic programming. The approach used was one in which he first generate arbitrary
solutions to the problem, then consiraining those accosding to the problem’s input,
Though he did not achieve fundamental speed-ups, his alzorithms showed show quantum
concepts could be used for programming and moreever exhibit structural differences.
For example, the computation of all possiblé‘colousings at the same time. Comparing,
his algonthms with classical ones, highlighting how the same type of difficulties gave

rise to NP-complete behaviour, and proposed possible improvements.

Graph-coleuring register allocation is an elegant and extremely popular optimization for
i L

modem machines. But as cumrently formulated, it does not handle two charactenstics

— 14




commonly found m commercial architectures  First, a single name may appear in
muluple register classes, where a class is set of register names that are interchangeable in
a particular role. Mnﬂﬁe@ﬂmmhﬂmh:ﬂﬂhﬂm
register. Holloway et al, (1993) presented a generalization of graph-colounng register
allocation that handle these problematic charactenstics while preserving the elegance and
practicality of traditional graph colouring Their generalization adapts easily 10 a new
target machines, requinng miyﬁeﬂafnmcsin the register classes and a map of the

register aliases. It also drops eHTf_v g;. m §~e1§kh3m Egraph-mlaumg allocator, 15

efficient at compile time, and pl‘ﬂdlll.’.‘ﬂ‘i h:gh-qunjlty code

Duffy et al., (2006) analysed the complexity of degentralised colounng algorithm that had
recently been proposed for channel salection in wireless computer networks. Colouring a
graph with its ghromatic number of colowss i5 kmown o be NP-hard Identify an
algonithm in which decisions aré made locally with no mformation about the graph’s
global structure is particularly challenging

Koyuneu and Secir (2004) used graph colouring algorithm te generate the student weekly
time table in a typical uiversity department  Their problem was 8 Hode-point problem
and it could not be solved i the polynomial domain- Vs'hns constraints in weekly
scheduling such as lecturer desaands,” course hours -and laboratory allocations were
confronted and weekly time tables were generated for first, second, third and fourth year
students n a typical semester.

Burke et al; (1995) developed ._mlﬂ system able to cope with the ever changing

S s
requirements of large educational institutions. They presented the methods and
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techniques behind such a system. Graph Colouring and room allocation algorithms were
also presented and it was shown in their basis of a flexible and widely applicable

timetabling system.

The intended to overcome the problem of intractability by producing spreadsheet type
system that the user could be guided in an informed and useful way. That gives the user
control of the search and the possibility of backiracking where no reasonable solution is
found, while still letting the heuristic algonthms to the hard work. Their approach cannot

guarantee an optimal solution but it éan guagantee @ solution the user is happy with.



CHAPTER THREE

AN OVERVIEW OF GRAPH THEORY AND GRAPH COLOURING

3.1 AN INTRODUCTION

In this chapter, we elaborate in depth the theory of graphs in general and twist our
concentration to graph colouring, definitions of terminologies and its applications-graph
theory 15 an old subject with many madem applications.Jis.basic ideas were introduced
in the eighteenth century by the great $wisg mathematieian Leonhard Euler. [14] He
used graphs to solve the famous Kongsberg bridge problem. It is notably known that
problems in almost every concervable discipline can be solved using graph models.
Graph colouring 1s a special case of graph labellinp. It is an assignment of labels
traditionally called-“colours™ to glements of a graph subject to certain constraints. In
general, considering ‘a.graph G, a vertex colounng or simply a célounng of G is an
assignment of colours to the vestices of G such that adjacent vertices have different
colours. We say that G is n- colourable if there exist a colouring of G which uses n

colours.
3.2 GRAPH TERMINOLOGY

3.2.1 Types of graphs

A graph is a mathematical object composed of points known as vertices or nodes and

lines connecting them known as edges.

—— = e
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Symbolically, we write a graph as G =(V, E) where V is the set of vertices and E is the

set of pairs representing the edges.

A simple graph G = {V,E) consists of V called edges. For example considering a simple

graph
In figure 2.1 where the graph G =(V,E) has;
V consisting of vertices A, B/C, 1 and V= {A{B, T, D}
E consisting of edges e,= {A, B}, ¢i= {B, C}, ¢:={C, D},
es= {A, C}, es= {B, D}
Therefore E={(A,B),(B,C).(C.D),(AJC).(B.D)}
A

<]}

gl
Figure3.1  Asimple graph

A multigraph G = (V' E) consists of a set of vertices, & set E of edges and a function
ffrom E to {{u,v}lu,vEV,u # v}.The edges e; and e; are called multiple or parallel

edges if f(¢)=f(e,)

Occasionally, a computer network may contain a telephone line from a computer to itself
for diagnostic_purposes. The network resulted from this is called pseudograph.

= #d_.--'"'_'-_



A pseudograph G =(V, E) consists of a set V of vertices, a set E of edges and a function
_fﬁ'ﬂmEtﬂ{{H,V”H,YEV}. An edge is aloop if f(e) = {u, u} = {u} forsome wecV

s

] B C

A Pseudograph A Multigraph
Figure 3.3 Figure 3.2

Pseudo graphs are the-mgst general type of undirected graphs since théy may contain
loops and multiple edges, Multigraphs are undirected graphs that may contain multiple
edges but may not have loops. Simple graphs are undirected graphs with no multiple

edges or loops.
A directed graph G =(¥,.£) consistsiof a sétof vertices V and‘a et of edges E that are
ordered pairs of elements of V.

A directed praph is often called digraph where (u, v) represents a directed edge from U to

V. An undirected graph results when the edge (u, v)1s the sam= as (u, v).

e 15



Figure 3 4 An Undirected Graph Figure 3.5 A Directed Graph

Symbolically, the undirected graph will be represented as

G:(V,E)

V ={1,23,4,56}

E={(1,2),(3.1),(3:2).(4.5).(6:4).(5.6)}
While the Directed graph 1s
G=(V,E)

v ={1,2,3,4,5,6}

L R el

E={(1,2),(1,3).(2.3).(4,5).(2:6).(5.6)]

An influence Graph is a directed graph tsed to modet the behaviour of a group of people
in which certain persons can influence the thinking of other. Each person of the group is
represented by a vertex. There is a directed edge from vertex a to vertex p when the

person represented by the vertex a influences the person represented by vertex p.

=
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Kwame Kofi

N

> < 5
Yaa Akosua Ama

Figure 3.6 An influence Graph

From the influence graph we get to"kndw that Yaa camor will influence Kwame, Kofi

and Akosua but no one can influence her. Also Ama and Kofi can influence each other.

3.2.2 Basic Definitions

Definition |. Two Vertices U and V in an undirected graph G are called adjacent (or
neighbours) in G if {u, v}1s an edge of GIf & >{u, v} ; the edze e'is called incident with
the vertices u and v. The edge e is also said to eonnect uand v The vertices u and v are
called endpoints of the edge {u, v} .Investigating how many edges are incident to a vertex,

we consider the second definition.

Definition 2. The degree of a vértex in an undirected graph i€ the number of edges

incident with it, except that a loop at-a vertex contrbutes twice to the degree of that

vertex. The degree of the vertex V is denoted by deg(v).

We present the following illustrations to elaborate more on the two definitions. We hope

that it will explain the definitions much clearly even to the layman. Considering the
i el s S
undirected graphs A and B, the degrees of the vertices in the graphs are as follows;
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Undirected graphs A and B

Figure 3.7

In graph A, there are seven vertices and each vertex has a degree:
deg(a)=2 , since only two edges ({a, b} and {a f})areincident with vertex a.

Similarly deg (b) = deg (c) =deg (f) = 4 because four edges ineident with each vertex.
deg (d) = 1, deg (e) and deg (g) = 0 since it has no edge(s) incident with it. With graph B,
there are five vertices. deg (a) =4, deg (¢c)=1.deg (d) =5 and deg (¢) = deg (b) =6. It
is noted that the loop at vertex b constitute degree of twa for vertex b. A vertex of degree
zero (0) is called isolated, It follow from our illustration that an 1solated vertex is not

adjacent to any vertex as it is the ¢ase for vertex g in graph A-

A vertex is pendant if and only if it has degree of one (1). Consequently, a pendant
vertex is adjacent to exactly one other vertex. Vertex d in graph A is pendant. The
vertex ¢ in graph B is also pendant. Sometimes only part of a graph is needed to solve a
panicular_pjrﬁi;lem. In @igggph_mdel for large network, the vertices corresponding to

computer centers can be removed other than some of interest. And we can remove all
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edges incident with a vertex that was removed. When edges and vertices are removed
from a graph without removing endpoints of any remaining edges, a smaller graph is

obtained. Such a graph is called a subgraph of the original graph.

Definition 3. Consider a graphG =G(V,E). A graph H=H(V'.E')is called a

subgraph of G if the vertices and edges of H are contained in the vertices and edges of G,

thatis, if V' ¥ and E' = F_

The graph G is a subgraph of K

a a
€ b € b
d C G C
Ks A Subgraph of K5,
Figure 3.8

Two or more graphs can be combined in many ways.. The new graph that contans all the

vertices and edges of these graphs is called the union of graphs.

Definition 4. The union of two simple graphs G, = (V). E;) and G = (V2, E3) 1s the
simple graph with vertex set V; U V; and edge set Ey U E;. The union of G; and G; is

denoted by "G‘j U —



G[ 'GZ G:IU GZ

(2) (B)

Figure 3.9
Figure 3.9(a ) The simple Graphs G, and G; Figure 3.9( #) Their union G,

lllustrations:

Finding the unions of the. graph Gy.and G; seen.in figure 3 9(a) The vertex set of the
union Gy U G is the union of the two vertex sets namely, {a, byc;d e, f}. The edge set

of the union is the union of the two edge sets. The union is seen in figure3 9(5).

Definition 5. A path.of length p ffomu to v, where » 1s a positive integer, in an

undirected graph is .a scquence of edged e ..,e _of the praph such that

fla)={xx}.f(e)= {.q_x:},.....f{e,,]:}x,_hx_ bwherex, =u and x, =v. when the
graph is simple, we denote this path by its vertex sequence X,;,...,x, (since hsting

these vertices uniquely determines the path). The path or circuit is a circuit if it begins

and ends at the same vertex, that is ifw = v.The path or circuit is said to pass through a

e

o _,_,..-d—""--_._
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traverse the verticesx,.x,,...,x_,. A path or circuit is simple if it does not contain the

same edge more than once.

Definition 6. An undirected graph is connected if there is a path between every pair of

distinct vertices of the graph.

Thus, any two computers in the network can communicate if and only if the graph of this

network 1s connected.

The graph G in figure 3.10 is connected; since\forievery. pair of distinct vertices there is a
path between them. However the graph H in figure 3.10 is not connected. For instance,

there is no path in H between a and d.

a b
c e
i
d £
H G
Figure 3.10
X s i

_'__.--"'_'-- 25



3.2.3 Theorems
Each edge of a graph contributes two (2) to the sum of the degrees of the vertices since

and edge is incident with exactly two (possibly equal) vertices. This means that the sum

of the degrees of the vertices is twice the number of edges.

Theorem I. The Handshaking Theorem:

Let G =(F", E) be an undirected graph with edges then
2e= Z deg(v)
vl

The Handshaking theorem applies even if multiple edges and loop are present in an
undirected graph.

Example, how many edges are there in a graph wath 12 vertices each of degree 57

Since the sum of the degees: of the. vertices=12*5=60, it follows

that2e = 60 Thereforee = 30.

It is seen that theorem L shows that the sum of the degrees of the vertices of an undirected
graph is even. This simplé fact has many consequencesyone of which is given in theorem

1.
Theorem II: An undirected graph has an even number of vertices of odd degrees.

Proof: Let ¥V, and V., be the set of vertices of even degree and the set of vertices of odd

degree respectively, in an undirected graph G =(V,E ) then

S .,a-"""'-.-_-_._



2e= ;deg{v] = § deg(v)+ g;dgg(v)

Since deg(v) is even forve V,, the first term in the right hand side of the last equality is

g¢ven, Furthermore, the sum of the two terms on the right hand side of the last equality is
even, since this sum is 2e. Hence the second term in the same is also even, Since all the
terms in this sum are odd, there must be an even number of such terms, Thus, there are

even numbers of vertices of odd degrees. Hence the proof.

Theorem III: EULER’S FORMULA® Tet G be a ¢onnétled planar simple graph with e

edges and v vertices. Let rbe the number of régiens in a planar representation of G.
Then r=e-v=2.

Proof. First, we specfy.a planargepresentation of G. We will prove-the theorem by
constructing a sequence of subgraphs G,.G,.G,.....G_= G suceessively adding an edge

at each stage. This is done using the following inductive définition.

Arbitrarily picking one edge of G to obtain Gy. Obtain G, from G, , by arbitrarily adding
an edge that is incident with a vertex already.in G, , adding the ﬂ‘i};er vertex incident
with a vertex already in G,y This-construction is passible since (i is connected. G is
obtained after e edges are added. Let r,, e and Vv, represent the number of regions edges
and vertices of the planar representation of G, induced by the planar representation of G

respectively.
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The proof proceeds by induction. The relationship r=e-v+2 is true for G

sincee; =1,v,=2andr, =1. This is shown in figure 3.11,

Now assume that 7, =¢,—v, +2 Let{a,,..b,,,} be the edge that is added to G, to obtain
Gy+1. There are two possibilities to consider. In the first case, both a_, and b, are
already in G;. These two vertices must be on the boundary of a common region R or else
it would be impossible to add the edgef{a, .5, .} to G, without two edges crossing (and
a,., is planar). The addition of this newhedge splits.R intatwo regions. Consequently, in
this case, r,,,=r,+1,¢e_,=¢ +1andv, = vy Thus, each side of the formula relating
the number of regions, edges and vertices increases by exactly one, so this formula is

true. In other words 7, =¢_, —v,, +2. This case is illustrated in fig 3.12(a)

In the second case one of the twe vertices of the new edge isnot already in G,. Suppose
that a, , is in G, but that 4, is not. Adding this new edge does not produce any new
regions, since b, must be im a region that has a,_ on its boundary. Consequently,
r.,=r,. Moreover, ¢, =¢, +1andv,, =v +1. . Fach side of thedbrmula relating the
number of regions. edges and vertices. remains the same, so the formula is still true. In

other words, ., =e¢,

~v,, +2. This case’is.illustrated in fig 3.12(f). Hence from the
induction argument, r, = e, —v,+2 for all n. Since the original graph is the graph G,

obtained after e edges have been added, the theorem is true. Hence the proof.



R;

1§} Vi

Figure 3.11. The basis case of the proof of Euler’s formula.

() Figure 3 12 (2)

Adding.an edge to.G, to produce Gai1.
Tlustration for Euler’s formula: Finding the number of regions does a representation of a
planar graph with 20 vertices, each of degree 3 split the plane We know that the graph
has 20 vertices, each of degree 3. so v=20. The sum of the dezree cf the vertices,
3v=3*20=60,s equal fo twice the —mumber of  edges 2, this
implies 2e = 60 = ¢ = 30 Consequently from Euler's formula, theé number of regions

Ir=e—v+2=30-20+2=12,

Corollary I: Let G be a connected planar graph with p vertices andg edges,

where p>3_Then g<3p—6

Proof: Let rbe the number of regions in a planar representation of G. By Euler’s
It Sz

formula p—g+r=2
= 29

e



Now the sum of the degree of the regions equal 29 by the handshaking theorem. But

each region has degree 3 or more, hence 2¢>3r = -z;lz 3—r Thusr < }’_q
3 3

Substituting this in Euler’s formula gives 2 = p—q+r5p—q+z—q or2< p—E
3 3

= 2*3<3p-q=6<3p—q. This gives us our result. Hence the proof
Showing that Ks is non planar using g6rdllary € The'BrapiKs (figure 3.13) has five
vertices and 10 edges. However the ingquality ¢'=3p=%1s not satisfied for this graph

since g =10 and 3p—6=3(5)-6=9 . Therefore Ks is not planar.

3.2.4 Special graphs

Finite Graph: A multigraph-is said to finite 1f it has a fimite number of vertices and a
finite number of edges. Observe that a graph with a finite number of vertices must

automatically have a finite number of edges and so must be finite.

Tnvial Graph: The finite graph wath one vertex and no edges (that i1s a single point) 1s

called the trivial graph.

Complete Graph: A graph G is said to be compléte if every vertex in G is connected to
every other vertex in G. The complete graph on n vertices denoted by K., is the simple
graph that contains exactly one edge between each pair of dist'nct vertices. Figure 3.13

shows the graph K, through Ks

=3 ——
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Ks K
Figure 3.13  The Graphs of Kj ,1 20 <6

Cycles: The CycleC,,n>3, consists of. #. verticesV, V. V,,..../. and edges

. Rk and {EL1LY

Examples of cycles Cs, C,, Cs, and Ce are displayed below,

Cﬂ (I.L C.._‘in '[.6
The Cycles C,3=n= 6
Figure 3.14

In short a cycle is a path where the first and last vertices are the same. A graph

containing no cycles is said to be acyclic. In the graph below figure 3.15b, the path 1. 2,

3, lisacycle. =5 e
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An Acyclic Graph Path in a Graph / Cycle Graph

Figure 3.15a Figure 3.15b

An acyclic undirected graph is called a Forest. Anacyclic connected undirected graph is
a Tree. The graph above (Figure 3.15a) can be considered as an acyclic, a forest and also

atree.

Wheels: We obtain the wheel W, when we add an additional vertex torthe cycle C,, forn
=3, and connect this new verex fo each of the nvertices 10 C, by new edges. The wheels

W;. W., w;, and W; are seen m Figun: 3.6

w.‘ W4 wS WE,
Figure 3.16 The Wheels W,.3 <n =6

Regular Graphs: A graph G is regular of degree K or K-regular if every vertex has

degree K. “In other mrds,’“ﬁ'g_faﬁ—l; regular if every vertex has the same degree. The
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connected regular graph of degrees 0, lor 2 are easily described. The connected O —
regular graph is a trivial graph with one vertex and no edges. The connected T regular
graph is the graph with two vertices and one edge connecting them. The connected 2 —

regular graph with n vertices is a praph which consists of a sin gle n- cycles.

(a) O -regular (b) 1 -fregulan

[ L O

(¢) 2 —regular

Figure 3.17 Regulargraphs

The 3 ~ regular graph must have an even number of vertices since the sum of the degrees
of the vertices 1s an even number (Theorem 1. Handshaking theorem) Figure 3.18 shows
two connected 3 - regular graphs wath six vertices. In general, tegular graphs can be
quite complicated. For example therg are nineteen 3-— regular graphs with ten vertices.

We note that the complete graph with n vertices K is regular of degreen — 1.

Figure 3.18 3 - regular
33



Planar graph: A graph is called planar if it can be drawn in the plane without any

crossing (where a crossing of edges is the intersection of the lines or

arcs representing

them at a pomt other than their common end point). Such a drawing is called a planar

representation of the graph. A graph may be planar even if it 1s usually drawn with

crossings, since it may be possible to draw it in a different way without crossing. The

graph K4 is a planar even though it has two edges crossing. K can be drawn without

crossing as seen in figure 3.19. Also the graph Q is a planar since it can be drawn

without any edges crossing as shown in, figura 3 19

\\

P

-
Ny

Graph K, Ky Draw with no crossing

7

Graph Q A Planir Representation of Graph Q
Figure 3.19
—— _‘_,_,..--'-""--_.__
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3.3 GRAPH REPRESENTATION

There are many useful ways to represent graphs. Graph representation can be state with
the commonest are; the pictorial view point which we all are comfortable with and also
used to. Then moves to the set description. The Adjacency matrices, incidence matrices

through the Adjacency list computer.

3.3.1 Pictorial view of graphs
That is when graphs are represented in diagram form. In fact all the various graphs

mention in this work is of the pictonal representation.

Examples

Im
m n n L]
P (8] C

q

Pictonalrepresentation of graphs

Figure3.20



33.2 Set description

This is a mathematical representation of a graph. An example is a graph G=(V, E)in
figure 3.4 where?V ={V, .V, ¥, ... V,} is the set of nvertices and E={ee,,

£ e}

the setofm edges where each edge ¢, —[ = _;}

So the graph’s set description is

=(V.E)
¥ ={1,2,3,4,5,6)

E={(12).(3.1).(3.2).(4.5).(6.4).(5:6)}

3.3.3 Adjacency matrices

Suppose that G = (V. F) 1s:a simple geaph were || =n Suppose that the vertices of G
are listed arbitranly asV, V', ... ¥ The adjacency matrix A of G, with respect to this
listing of the vertices, is the n % n zero — one matrix with 1 as its {_,_1',_,:'];& entry when
V, and ¥, are adjacent and'© as. its {7, j)oh entry when they are not adjacent. In other

words, ifit’s adjacency matrix is

Az["u‘],ﬂleﬂ a![:{“f{vr"’j} is the edge of G

0 Otherwise
An adjacency matrix of a graph is based on the ordering chosen for the vertices. Hence

there are a;_sd__ﬁlﬁy as n! different-adjacency matrices for a graph with n vertices since
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there are n! different orderings of n vertices. The adjacency matrix of a simple graph is
symmetric, that is a, = a;, since both of these entries are 1 when ¥ and ¥ are adjacent
i - |

and both are O otherwise  Since a simply graph has no loops each entry

a,,i=1273,....n i1s O. When there are relatively few edges in a graph, the adjacency

mattix 1S 8 SPARSE MATRIX, which is a matrix with few non-zero entries.

Transforming the graph F into an adjacency matrix with the order vertices as a, b, ¢, d,

we have

Vertices (A db € [d |
ot A [+ Ja 151
1 0 1 0

o B IR

1.1 @ 0 C l
1 0 0 0 e by

d 1100 |0

For the Pseudograph W the transform adjacency matrix with vertices ordering uy, ua, ua,
and ug 15

Vertices | uj—{-u.
63 0 2 i o T E S | )
0 4 u [ SRR R I .
DIIZDT I

™ F |0 1T
2 d 20

U3 [}112

ua 00 T T (i A 7 -

o . 37



Figure 3.2

3.3.4 Incidence matrices

LetG=(V,E) be an undirected graph. Suppose thatV,.V,.....V,. are the vertices
ande, e,,....e, are the edges of G. Then the incidence matrix with respect to this

ordening of V and E is the n = m mauixB:[hH},‘wha‘g

- L when edge e, 15 incident withv,
! 2o Otherwise

Transforming an undirected graph M with an incident matrix, we have

By Capf; €, € &
v W OTee
gl @, 0 (L S
rew gy g0 0 1
T (A | IR A ¢ [N A
% 91 @ 1 10
— _,_.--—""---_'__



3.3.5 Adjacency list (computer)

This is one —dimensional array of size [V] each element of which points to an array or a

linked list of adjacent vertices: So_the undirected graph in Figure 34 will have an

adjacency list as
Vertex 1 —
Vertex2 —
Vertex 3 —
Vertex4 —
Vertex 5 —
Vertex 6  —

An undirected graph M

Figure 3.22

<, 3}

{1534

i1, 2]

{5, 6}

{4,6}

14,5}

39



3.4 GRAPH COLOURING

In simple graph theory, graph colouring is a special case of graph labelling It is an

assignment of labels traditionally called “colours™ to elements of a graph subject to

certain constraints. In its simplest form, it is a way of colouring the vertices of a graph
such that no two adjacent vertices share the same colour. This type of colouring is called
Vertex Colouring. Similarly, an edge colouring assigns a colour to each edge so that no
two adjacent edges share the same colour and a face eolowrmgof a planar graph assigns
colour to each face or region so thatindutwo faces-ttat'share a boundary have the same

colour.

A colour of a graph is always assumed to be a vertex colouring, namely an assignment of

colours to the vertices of the graph.

Given a graph G, a vertex colouning of G 15 a function F, from the vertex of G to a set C
whose elements are called colours such that no twe vertices have the same colour. Tt is

often both conventional and convenient to use number 1, 2, 3... for the colours.

A colounng using at most K colours 15 called a proper K-colouring, Hence a proper K —
colouring of G is a colovang functon which uses exaetly K colours and satisfies the
property that f (y) whenever x and v are adjacent in G~ We say such a graph Gis K

colourable. If G has a loop, then G has no proper colouring since f (u) = f(y).

The chromatic number X (G) of G is the minimum K such that there exist a proper K

colouring G. A clique Kr of G is an r-vertex sub graph of G in which each pair of

vertices in Krshare an edgs™



For example K is a single edge and K; is a triangle. Tt is easy 1o see that the size of the
maximum clique Kr of G gives a lower bound on the chromatic number of G since X
(Kr) = r and therefore X (G) > r. 1t is also easy to see that X (G) = A(G) + | where A (G)
denotes he maximum degree of G. A minimum colouring of G is a proper colouring that
uses a few colours as possible. That is X (G) colours are both necessary and sufficient
for a proper colouning of G Many a times one is presented with a graph and must
determine its chromatic number as well as produce a minimum colouring of the graph.

This problem is known 1s graph colouring as the minimuni'golabiring problem.

35 GRAPH COLOURING, AN INTERGER LINEAR PROGRAM
An integer program is a discrete optimization preblem of the form.
Minimise (or Maximise) F{xy, %3, ., %)

Subject to a set of m equality constraints

gy (g, B A Xa) = b,
g!{xl,x],...‘xn) — h:
_E m {xlf x: 2oa g xn} = bm



And K inequality constramts

hy(xy, %z, .., %) < n
ha(xi, xs,....%) < I3
hy(x, x2, ..., %) <

I

In addition, the values of the decision vanable x;, x5, « . .. x, must be integers. No
fractional values of x;, x», . . . x, are permitted. In an integer program, the objective
function F and the constraint functions g1, g2, . ., g and hy,h;, . _ ., hy may linear or non
linear. If we restrict the objective functien F and he constrant function g;, g5, . . ., gm and

hy, hg, . . ., hy to be linear, then we have an integer linear program,

Integer linear programming formalities are much more easily handled in computation
than integer (non linear) pregramming formalities. We seek to-an mteger programming
(IP) formalities of graph colounng, which contains nbn lin€ar constraint. In this
formulation, G is the graph we wish to properly colour. The number of vertices in G is
denoted by n and the number of edges in G is denoted by e, We use k to represent the
number of colour we wish to use to properly colour G. The values of n and k are known

constraints which serve as parameters in the model. The formulation addresses the

. Eemmrt = . _'_,..--"'.--_'_
following two questions;



Given a graph G and a number of colours K, is there a proper K ~colouri ng of G? If such

aK - colouning of G exist, what is an example of such coloring,

Integer programming formulation of Graph colouring:

Minimise objective function

Subject to:
1. I X <kii=12....n
2. ]£[.’I’,—;‘.’i|furea-:h edge ij € £(G)
3 X,,X,....,X, are integer “wvalued.

The above formulation contains n integer vanables x, x,...., x, , each representing one of

the n vertices of G. A feasible solution| %y, x7, .. ., Xa) givesa proper'K-colouring of G,
if indeed one does exist. Three constramts define precisely what it means for a graph to
exhibit a proper k-colouning. Constraint 1 maintains that each variable xi must receive a
value between I and k. That 15 to say, each venex of G must be coloured using a colour
from 1 to K. Constraint 2 further Wllustrates the definition of a preper eolouning of G. For

each edge of G, the vertices corresponding o that edge must be coloured using different

colours. Finally, constraint 3 requires that the values of the vanable bex,x,,...,x,
integers.

ﬂbﬁnmly this ggnditign must hold since our k colours are numbered as integers 1, 2, . ..,

k. If we obtain a sulutinnm,’:;;_,—._.—.,_x.,] that satisfies all of the above constraints for a



particular graph G given k, then Ghﬂ-’ilp@ﬂk-ﬁulmﬂngtﬁd {xi, % .., x.} issuch a
colouring.

3.6 SEQUENTIAL GRAPH COLOURING ALOGRITHMS

Many algorithms and heuristics exist for colouring approach. Given a graph G = (V, E),
the randomly ordered sequential (RND) algonthm randomly orders the vertices so that V

= {V1, V2, ... Va} and then assigns calburs to'the vertiges uthe following manner.

The first vertex, VI is assigned colour number'l . Once the first vertices has been
coloured (1<1i<n-1), Vi+ 1 is assigned the lowest possible colour number such that no
previously coloured vertex adjacent to Vi + 1 has been assigned the same colour number.
For any graph G, .thar.e exasi.an ordenng of the vertices for which RND wll produce an
optimal (minimum) colovring of G, while there may exist another particular vertex
ordenng that lead RND to compute an extremely poer colouring of G Therefore, the
problem of finding an optimal imual ordering of the vertices of a graph is equivalent to

the problem of optimally colouring the graph.

This resulted to the development of several new sequéntial ‘colotiring algorithms which
differ from RND only in the method of initialty ordenng the vertices of the graph. Two
such algorithms are the Largest-First (LF) and the Smallest-Last (SL). The LF algonthm
orders the vertices such thatd (Vi) d (Vi+ 1) for 1 <i<n where V= {V,, V2, ., V)

An SL nrderingjgnursive!y orders the vertices of smallest degree last. An SL ordering in

S o _‘_,_...-—'-"-'--_._



one in which d (Vs) = miny,;, d (w), and forn >, i> 1, da (Vi) = minuo, d, (w), where U

=V —{Va.. ,Vi+tl}

Each of these three sequential colouring algorithms requires O (n°) time an O (n®) space

to colour a graph with n vertices.

Sequential graph colouning algorithms are commonly referred to as greedy algorithms. A
greedy graph colouring approach takes each vertex in tum in some particular order and
tries to colour the vertex with one of thé colqurs used'sd.far. That is. it tries to add the
vertex to one of the existing colours classes. If it is not possible to colour the vertex with
any existing colour, then a new colour class/is ereated and the vertex is assigned the

colour of that new class.



CHAPTER FOUR

THE SCHEDULE MODEL

4.1 INTRODUCTION

Infant mortality refers to the death of infants and children under the age of five. About
twenty-five thousand (25.000) young children die every day mainly from preventable
causes. In 2007, 9.2 million childsen under gfiye ched Aot half of infant deaths

occurred in Africa and Ghana is not left eut (UNICEF press relaase September 12, 2008).

Mother mortality is also another worrying preblemfacing Hospitals in Ghana. We seek

to really schedule maternity ward nurses to shifts in a way that will make every nurse
happy and willing to work efficiently to combat.or reduce infant and mother mortality
rate at Ejura Distnict Hospital, in the Ashanti Region of Ghana.

42 OVERVIEW OF THE MODEL

The important task of schedulmg aurses at a Distriet Hospital.in Ghana is an example of
timetabling (shift tabling). " Timetabling is-the Seheduling ufa set of related events in a
minimal block of time such thatno rescurce 1s requred simiulig@m@eowtly by more than one
event. In Hospital scheduling the resources mvelved, which we assume may be required
by no more than one nurse at any particular day, are the Moming Shift Afternoon Shuft
and the Niwh: Shift. As mentioned earlier. scheduling (in particular, Hospital scheduling
i1$ a practical application of graph colouring.

e
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However, solutions to large-scale practical problems including scheduling problems are

often desired and needed much more quickly than exhaustive search algorithm could help

to provide. As a result, numerous heuristics have been developed for such problems

which produce near-optimal satisfactory solutions in much Jess fime.

In this work, we shall develop and present a mathematical and computational model with
variations for solving Hospital scheduling problems for matemnity nurses using techniques

and heunstics of graph colounng and a sequentially devised techwigue in coming out with

a near-perfect shift ime.

The model involves creating a conflict graph from the assembled data from the maternity
ward (Department) of the Ejura District Hospital. Properly colouring the conflict graph
and transforming this colounng into a conflict frae table of nurses. From these conflicts
free nurse table, one can then assign the nurses to different shifis based on the hard

constraints of the ward and/or the hospital in seneral

At the matemity ward of Ejura District Hospital, it is the norm that nurses are scheduled
to different shifts on a pamcolar day every forthmight (two weeks) for the year. When
attempting to model and selve purse scheduling problems (1n-the ward), it is therefore
logical to assume that a particular sel of nurses has been designated to be staffed at a
particular period and that these nurses are to be assigned appropnate (i.e, non-

conflicting) shift slots.
Hospital nurse scheduling problems involves pair wise restrictions on the nurses being
schedu!led;_ ﬂiﬁ is. there | icion on which nurses can be scheduled

simultaneously and not.
— a7



The restrictions involved in creating a shift table of nurses may be divided into two
categories as already discussed extensively in chapter one of this thesis. These categories

are called essential (hard constraints) and preferential (soft constraints) scheduling

conditions.

We recall that preferential scheduling conditions are additional conditions or constraints
that need not necessanly be satisfied to produce a legal or legitimate shift table, but if

saisfied, may very well produce a moge “accepiable) shit-table for nurses and/or the
ward.

These conditions are requests that should be fulfilled, if possible. However, our study
takes into cntical consideration of the preferential conditions. That is the preferences of
gach nurse irrewtive of your rank and experience is considered in our study unlike

other studies that do not cater forall soft constraints.

The consideration of the preference of nurses resulis inio 4 conflict graph. The conflict
graph when properly coloured (that 1s apphcation graph colounng). gives a conflict-free |,
which makes it possible .to schedule nurses mio conflict-free shifi 4able. Once the
conflict-free shift table 15 obianed, we proceed by applying the hard constraints of the

ward and as such a suitable schédule 15 obtained.
43 ASSEMBLING HOSPITAL NURSE DATA

Before the scheduling of a hospital nurse for a particular ward, can take place, we must

first assemble a collection of nurses” data for the ward, to serve as input to our problem.

-
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As mention in section 4.2, we assume in our scheduling model that we have a set of
nurses that are available to be schedule at a particular point in time and that these nurses

are to be assigned appropnate (i.e., non-conflicting) shift slots, subject to a number of

essential and preferential scheduling conditions.

Each nurse to be scheduled constitutes a data entry, containing the required or optional
information below. Such information is expected to be supplied by either the nurse, the

matron of the ward or the hospital admmisgation er same-atheprappropriate sources such

as the Ministry of Health (MOH) Ghana'
The required relation is as follows:

. NURSE: The NURSE table contains data of nurses available at the
ward for the schedule. It has a field NURSE-ID, which serves as a primary key
for the nurse table, YEAR-EXPERIENCE field. contains dataof the number of
years a nurse has been in serviees and/orthe ward, NURSE-NAME field has the
name of a nurse, NURSE-RANK field has the rank of each nurse to be scheduled
and NO-OF-NURSES for the total number of nurses available wn the ward for the

schedule.

. SHIFT: The SHIFT table contains data on different shifts that are
available and has fields, MORNING SHIFT which contains nurses scheduled to

moming shift, AFTERNOON-SHIFT for the aftemoon and NIGHT-SHIFT field

for nurses to be assigned to the night shift.

S e

45



. DUTYOFF:  The DUTYOFF has data on the off duty each nurse is

entitled to. That is a nurse will not go to work. It has fields, DAY-OFF which
contains nurses on a day off duty, HOLIDAY-OFF has nurses who do not go to
work on public holidays and NIGHT-OFF has nurses who received a number of

rest days afler a four continuous night shifs.

Below 1s a diagrammatic representation of all that has been said about the tables.

DUTYOFF SHIFT
DAY-OFF | MORNING-SHIFT
HOLIDAY-OFF AFTERNOON-SHIFT
NIGHT-OFF NIGHT-SHIFT

NURSE

NURSE-ID

YBAR-EXPERIENCE

NURSE-NAME

NURSE-RANK

Figure 4.1

This information will be helpful in assigning nurses to available shifts.
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44 CREATING A NURSE CONFLICT GRAPH

Coming out with a desirable conflict graph is first step is trying to come out with
schedule. Once we have gathered all of the necessary nurse data for a given period

(fortnight) as described above, we can construct a nurse scheduling conflict graph

reflecting the given data.

Recall that in a conflict graph, the vertices represent the items of mterest, and in our case
vertices represent nurses and an edge conneeting each pait reprasenting conflicting nurses

based on their soft conditions.

Suppose we have a set of m nurses {m, m......m,} tobe scheduled Each nurse m, will
be represented by exactly one vertex¥ wmGoo Therefore G contains m Vertices
de{G}={H,V;,..-.;F’J}.. Each ofithe m, vemtices belongs to a partieufar group. We
begin by grouping the gathered data by nurse ranks. We c¢an add @dges to the conflict
graph G in the following manner.

If the shift or day off of a nurse m, and the shift or days off of another nurse m, are the
same, then we must add an edge between vertex ¥ and vertex P; since nurse m, and m,

cannot be scheduled for the same shift slot

The diagram below is the conflict graph of nurses in the matemity ward of Ejura District

Hospital.
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4.5 COLOURING THE CONFLICT GRAPH

We proceed to colour the vertices of our graph once the conflict graph has been carefully

and properly constructed to satisfy the soft constraints. We recall that in a proper vertex
colouring of a graph 7, a pair of vertices ¥, and ¥, are coloured with different colours if

they are adjacent to each other. That is if there is an edge between them. Vertices that do

not share an edge may be coloured with different colours, or they may be coloured the

same colour.

We present a way in which our nurse conflict graph can be properly coloured as part of
our shift tabling by graph colouring model. . Qur general approach to graph colounng will

follow that of the sequential graph-colounng algonthm, as described in chapter three of

this thesis.

Sequential graph colouning algorithms operate according to'a greedy approach, and are
commonly referred to as greedy algorithms. - Recall that 4 greedy graph-colouring
algonthm examines each vertex of the graph one at a time according to some particular
order and tries to colour the vertex wath one of the colours wsed sofar- That 1s, it tnes to
add the vertex to one of the existing colour nurses. If it is not possible to colour the
vertex with any existing colour thena figw eolour is created and the vertex is assigned
the colour. Greedy sequential graph colouring algorithms attempt to properly colour a

graph using the maximum number of colours possible.
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The Largest-First Search Greedy (LFSG) was implemented.  Here, vertices

mnespondhgtonm*seswhomuthemimedtuﬂmmashiﬁslot due to potential
conflicts will be coloured with different colours in our model.

Below is a diagrammatic representation of the coloured conflict graph for nurses at the

maternity ward of Ejura District Hospital. Here, alphabets are used to represent colours

for the various vertices colouring

RINCPALMIDWIFERY OFFICER  SENIOR MIDWWIFERY OFFIEERS

PMO SMO1 SMO2

»

MIDWIFERY OFFICERS

MIDWIFE AIDS

1

SENIOR STAFF MIDWIVES

SSM1

STAFF MIDWIVES

SSM2 MTB i



4.6 TRANSFORMING THE COLOURING TO A SHIFT TABLE

A technique has been devised to carefully transform the coloured conflict graph into a

near-perfect shift table. The table below shows nurses under colours which simply

explain that, if the nurses that fall under the same colour are scheduled for the same shift

slot, no conflict wall anse.

LOURS RED GREEN YELLOW BLUE
NURSE
SMO SMOi SMO2 SMO3 -
MO MOI MO2 = ;
SSM - SSMI SSM2 -
SM - | smi SN2 :
MA MA1 MA3 MA2 -
PMO I Gg— J - 3 PMO

Table 4.1

For example with colour Red, nurses SMO1. MO1 and MA| gan be scheduled for the

same shift slot without conflicting,

It is noticed that the principal midwifery officer does not conflict with other nurses,
simply because she is the overall boss (matron) of the ward and 1s entitled to only

moming shifts. She is the only nurse who can have a holiday off duty.

S ——— - _H_._,_o—-'"--_-_'_
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We now construct the shift table. A technique for the allocation of nurses to shift table

was devised. The allocation follows a format, which is going to be adhered to

throughout. Thus “allocation™ in this section refers to such a technique.

We denote Momning shift by M, Afternoon shift by A and Night shift by N. Also Day off

duty by D/O, Night off duty by N/O and Public holiday off duty by H/O. Before the

allocations, we recall the hard constraints like;
(i) Only the Principal Midwifey Officer (PMQ) is entifled to Holiday off duty.

(1) Principal midwifery officer is scheduled for only moming shifts and has day

off duties on both Saturdays and Sundays.
(111) Every nurse is entitled fo atleastone day offa week.
(iv) Every nurse is enfitled-to three (3) days off after anight shift.
(v) Every night shift is taken continuous for four conservative days.

(vi) The minimum numbes of nurses for moming shift should not be less than

threee. ThatisM=2.

(vii)  The number of nurses forboth Afternoon and. Night <hould be at least two.

Thatis Az2and N=2



We hall also denote the days of the week 1 ¢ Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday by Mo, Tu, We, Th, Fr, Sa, Su respectively.

1 ;_Iiﬁmﬂtmﬁngnwiﬁﬁublnbymum-ﬂMdh
week and rows with the nurses. We assign all nurses under the Red colour on
- Aftemoon shift, Green colour on Moming shift and Yellow colour on Night shift for the

COLOURS | WEEK T[S [Sa
AYS
NURS
BLUE  |PMO |WO|M [M [M |M |D/O|DIO
svoT JARIWIlR A [A A A
RED MOT y A AR
_ > |-
- . - - A
< M |M
[ ""-1 M M
™M™
M o
V™
N[N0 | NO [NO
N[N0 N0 [NO-
N | N/O | N/O | N/O
N | N/O | NO | NO




From Table 4.2, from Friday onwards there must be nurses on night shift since nurses
under colour Yellow have finished their night shift and are on Ni ght off Hence
nurses under colour Red takes the task and they receive a day off on Thursday to help

them rest and prepare for the night shift.

Nurses under colour Green therefore share the moming and afternoon shifts as seen in

Table 4.3

| COLOURS | WEEK | Mo” [u [We [ | F7 | Sa | Su
| DAYS {
NURSE 1

BLUE PMO HO MM |M |[M |[D/O[D/O
SMOI |[A-[ATTASIDIO|N [N [N

RED MOl |AL JA [AIDON N |N
MATL— 4 [A |A |DIOIN N N |
SMOZ -+« |MIM [M |[A A M |M
MO2 M (MM (M (M [M (M

GREEN |sSM1 - [M MM M M [M M
Lsgs_fﬂ IM M ND A [A_TA A
NATD T (M (M [ A A
SM0s [N NN N | N/O | N/O | NO
SSM2 |N |N [N [N [N/O|NO|NO

YELLOW |SM2 N |N [N |N |[NO|NO|NO
MA3 N |N [N |N |NO|NO|NO

e o ——— Tabls43
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We then come to the fact that, a nurse must have at least a day off for a week and M >
3, AZ=2and N2> 2 1o assign some day off for the nurses. Nurses under Yellow
colour have three night days off which are accepted. We assign day(s) off to nurses

under colours Red and Green based on the above facts. This is seen in table 4 4

COLOURS [WEEK | Mo |Tu |We |Th |Fr |Sa [Su
[ DAYS
NURS
BLUE PMO T el Tl i (oo
SMOT  TA~ A D0 N |N [N
RED MOl |D/O|Af JA |DIO|N [N [N
MAI ANIDO|A T|DIO[N [N [N
SMO2 |DO[M-|M A (A [M |[M
MOZ_ M Ba_ﬁnm M (M _|[MJ M
GREEN  |-S8M1 D{OI M. [DOM MM |M
M7 T T AT A [A |A
MA2 "M M |DIOTA A |[A |A
SMO3 [N NN I /OO [N/O
/M2 N (N [N N NiO [ N/O [ NIO
YELLOW [SMZ = NG N 1N | N | NO[NO[NO
A3 TN [N [N [N | NO|NO|NO
Table 4.4
a0 A
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Table 44 we can see and deduce the number of numes for cach shift which
10 the hospital hard constrmnt  Table 4 § gives a clear pacture for the first week

DAY MORNING | AFTERNOON | NIGHT SHIFT
SHIFTM>3 |SHIFTA>2 | N22




RS DAY

-

SMOI1

RED MO1

MAI

SMO2

MO2

GREEN | SSMiI

SMI

MA2

SMO3

SSM2

YELLO |SM2

zgzzﬁz:-:-zgggg
x| = = = 2 2 > > 2 g 2 g =

Next, Nurses under colour Green who went for night duty receive their night off duty
for three days. Nurse’s MO2 and SSM1 begin their night shift from Fnday to Sunday
furmewndmh while Afternoon shifis are assigned to nurses under colour
Yellow. The shift tabTe at this stage becomes,

Bl

gzgzzzphzggg;




.0 | WEEK Ta | We Sa Tu S5a | Su
RS | DAYS
NURSES
JUE | PMO HO|M | M M | D/O | DO M M Do | Do
SMO1 A A D/O N N N N/O M |[M |M
D [MOI1 DDA |A N [N [N N/O M
MAI A |[DO|A N [N [N N/O M M M
ot R Bl R i G | 2 N N N [NO [NO
MO2 M |DO DO | M M_W?—ﬁ . 9 | DO TH
REE | SSMI DOIM [DO M M M |M A DO N
SMI M [DO[M [A [A [A (A N N [N |NO|NO
MA2 M [M [DO [A [A |& [A N N [N |NoO|NO
sMO3 |N |N |N |N NO [N M ™ [A [A [A
SSME [N N [N VO | NIO! M MJ[A [A |A
ELL [SM2 N |[N |N N N0 NO i ™M [A [A A
i MA3 N |N |N N O N/O! M M |A A [A

We then make sure that the haid constraint which state thai; every nurse is entitled to

at least a day off is satisfied and this ié téllacted i Table 4 8.




Mo | Tu

Su

NQ | N/O

N/O | N/O

DO

DIO

Sa

D/O | D/O

M

NiO | N/O | N/O

N/O

MO

A

DO | A

A

Fr

N

N

N

Do

A

M

DO | A

We

M M M

N

N

MM

B

Do

&

Tu

NAO | NO|NO|M

NO [NO[NOM |[M | M

F*mnr IMNO [ NO M M | M

By

s

N

N

| N i

)

| PO | N

DO [N

Su

A

A

NI DO (M

DOIDIO [ M |M

N

N

1 W M

i

Fr

M

A

M

N8 NI0

MO fN/O [NIO. | M | DO

NIO | NO FNOT ™M T

NO [ND [NO |M | M

Th

DO

DO N

M

M

A

N

{3

N

We

DO DO |N

A

M

DO

DO

DO

Tu

A

DO | A

Mo

HOIM |M

A

DO | A

A

DO (M

M | DO

Do M

M (DO|M

M M

N

PMO

SMO1

MO1

MOz

SMl1

MA2

3

LU

-

T | sMo2

HE | SSMI

e r——

fEL | SM2

low

Table 4.8




CHAPTER FIVE

RESULTS, CONCLUSIONS AND RECOMMENDATIONS
5.1 SHIFT TABLE CONSTRUTED FROM THE PROPOSED METHOD

The first and second wecks shift table for the matemity ward of Ejura District Hospital
resulted from the describe method devised in Section 4.6 is in Table 5.1 From Table 4.8,
it is clearly seen that the various nurses.have been seheduled: for the two weeks. We

therefore arrange the shift table in terms of rank of the nurees.

WEEK [Mo [Tu |[We |[Th [Fr [Sa [S&@ WMo [Tu |We |Th [Fr [Sa [su
DAYS
-_.______-‘-__
NURSES
PMO HO[M |[M [ M M |[DOTDO M | M M |[M |M |D/O|Di©
SMO] A A [ROIDO-{NLUTN N N, [NO [NOIN@ M [M (M
SMO2 DIO|M [M T A ™M M [ DTN NN [N | NO|NO
SMO3 N N N |N N/O | NfO [ NO | DIO M M (M |[DIOJA [A
MO1 DDA |A |DO.IN [N N [NoO [NO|NO M M
MO2 M | DO | DioJM M [M ATA A}hs |DIO[N |N
SSM1 DIO|M | DROIM M o M AT A A~=1A | DO N
SSM2 N |N B E: NIGPNO [NO [Mi DO M (M |A |[DOJA
SM1 M | D/O A A TR FN Dier | N N |N |N |NO|NO
SM2 N |N N NO|NO|NO |M | M DO|M |A |A |DD
MA1 A | DO DO |N [N |N N |[NO |[NO|NO[M [M |[M
MaA2 M |[M [DO]A A A | A DO [N N [N [NO][NO
MA3 N N |N NO|[NO|NOo |[M |M M |DO|A |A |[DO
L - = r—a——]

Tahle 5.1
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52 CONCLUSIONS AND RECOMMENDATIONS

The aim of our thesis was to satisfy the various application of graph colouring and
coming out with a model in solving the schedule problem for nurses using graph
colouring techniques. Tt clearly has fulfilled most of our essential and preferential
conditions present for our shift tabling condition. Essentjal shifts tabling conditions (also
commonly referred to as hard constraints) are conditions or constraints that must be

satisfied in order to produce a legal or feasible shift table

Preferential shift tabling conditions Yal& comimofly refrred to as sofl constraints) are
additional conditions or constraints that need not necessarily be satisfied to produce a

legal or legitimate shift table, but if satisfied, may very well produce a more acceptable

schedules for nurses and/or ward members,

In this thesis, we discussed the relevance of Hospital scheduling problems as a natural
and practical application of graph colobring The most wmpoitant contribution of this
thesis to the Hospital scheduling problem is the formulation of anew model that helps us
eliminate most of the problems encountersd in constructing the shift table and then
coming out a near-perfect one.  The model comprises assembling the course data,
creating a course conflict graph based on the assembled data and soft constraints using
methods described in section 4.4 of chapter four, performing a proper colouring of the
graph in section 4.5 of chapter four transforming the colouring to a conflict-free table and

finally assigning nurses to shifts based on the hard constraints.

Once a conflict<free nurse shift table has been constructed. we can use it to create a
e .,--"""-_--_-___
similarly conflict-free shift for nurses as well.

65
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The schedule officer may very well wish to use our schedule model multiple times
incorporating different sets of preferential conditions each time, until finally amiving at a

shift table that is ultimately most suitable to his or her likin g

We can finally conclude that the scheduling-by-graph-colouring model incorporating
such specific graph colouring methods and the devised technique will ultimately produce
more satisfactory nurse’s shifis table for the matemity ward and Ejura District Hospital

entirely.
RECOMMENDATIONS

Graph colouring in general is a new study area that researchers and academics can further
investigate its applications to real-life pressing problems. The scheduling problem has a
large scope that further research has to be carmed out to unravel its potential in this area.
It would be of great importance to extent this to all wards/deparimental levels of Ejura
Distnict Hospital and other disincts, municipal, regional and teaching hospitals in the

country.

The next step would beto fully design program software for the model in this project to

help with the easy creation of the shift tables.
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