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ABSTRACT 

Chinese postman problems (CPP) heuristic algorithm is used for several real-world route 

inspection problems, such as street sweeping, mail delivery, solid waste collection, street 

watering among others. They can however, be modelled as CPP with some peculiar 

constraints.  As a part of the preventive maintenance programme for the electricity service 

providers, this study employs the CPP heuristic algorithm to the inspection of electricity 

meters along the streets in Koforidua municipality as an undirected network. A formal 

definition of the CPP is presented. The heuristic procedure consists of cluster first, route 

second method. The Dijsktra‘s algorithm is initially implemented with Matlab programme 

to find the optimal distance to be covered in each route and the optimal route is found with 

the Fluery‘s algorithm. The construction heuristic algorithm is proposed which gives near 

optimal feasible solutions and applied to find the optimal inspection route for four (4) main 

inspection blocks within the municipality. The adoption of the proposed heuristic in 

Koforidua resulted in an optimal distance for the four inspection blocks as follows 6.17km 

in block-1, 9.015km in block-2, 9.955km in block-3 and 12.172km in block-4. 

The results revealed a good performance of the proposed heuristic method for any route 

inspection problem for Koforidua township.  
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CHAPTER 1 

1.0 INTRODUCTION 

1.1 Background of the Study  

A prepaid meter is an integrating instrument used for electrical energy billing. It is 

installed by Electricity distribution companies to be used in measuring the amount of 

electrical energy consumed by a consumer over a period (wikiepiedia, 2011).  

By their nature, electrical values cannot be measured by direct observation. 

Therefore, some property of electricity must be used to produce a physical force that 

can be observed and measured. To ensure uniformity and accuracy, electric meters 

need regular inspection and calibration as part of the elements of preventive 

maintenance engineering, according to the accepted standards of measurement for 

the given electrical unit such as volt, ampere, ohm, and watt, (Microsoft Encarta 

2009) 

The sole electricity distribution firm in southern Ghana is the Electricity Company 

of Ghana (ECG) while in the northern part of Ghana; it is Northern Electrification 

Development (NED). These companies are the only ones mandated to install and 

maintain electricity meters.  

In Ghana, these meters are mostly used in the urban areas to monitor electricity 

consumption. According to ECG prepaid department of Koforidua approximately 

40,000 as at August 2011 prepaid meters are installed in Koforidua, households, 

offices, markets and small businesses; for both commercial and domestic energy 

consumption billing.   
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1.1.2 Background of study area: Koforidua Municipality 

Koforidua is the administrative capital of the eastern region of Ghana, it has a total 

population of 170,000 (Regional Statistical Services, 2011). The businesses in the 

municipality are mostly small and medium scale enterprises (SMEs). The 

municipality has 20 second cycle institutions, 35 basic schools, 1 college of 

education, 2 nursing training schools and 1 polytechnic and 1 university. All of these 

institutions make use of electricity and have either the prepaid or credit meters. 

According to ECG- Koforidua, it is estimated that nearly 40,000 prepaid meters 

have been installed as at December 2011 and all government establishments still use 

the credit meters. 

It is estimated that the municipality has 2% flats, 5% Semi-detached, 13% detached 

and about 70% compound houses in the smaller towns (Town and Country Planning 

– Koforidua - 2011) 

1.1.3 Types of Electricity Meters 

Formerly, these meters were predominantly electromagnetic. The electromagnetic 

meters were robust and could span about 20years. They needed little or no repairs 

but they were read monthly for billing purposes.  

Beginning from the year 2004, the ECG as well as NED resolved to change credit 

meters to electronic prepaid meters. This came as a result of the difficulty in getting 

customers to pay their electricity bills promptly and to also control consumption. 

The installation started in metropolitan/municipal/district capitals and the change 

could continue to other towns. However, due to the fact that the new meters are 

electronic-based (contains solid state devices that help to read and record 

consumption pattern for the customer and as well as disconnect the customer 
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automatically when the credit get exhausted) it needs regular inspection. Unlike the 

credit meters whose reading and billing was the sole responsibility of the service 

providers, the prepaid meter now need no reading for billing. But after the 

installation, the meters need to read, operate and record correctly.  

There is therefore the need to monitor the condition, maintain the good operation 

and inspect to check against illegal connection of unsuspecting customers.                                                 

1.2 Statement of the Problem 

Unlike the credit meters whose reading and billing were the sole responsibility of 

the service providers, the prepaid meters now need no reading for billing. But after 

the installation, the meters need to read, run and record correctly for customer 

satisfaction. 

There is an increasing level of report of faults and wrong operation of these meters 

to the ECG. But due to the increasing number of prepaid customers the companies 

are unable to carry out regular and effective inspection on the installed meters hence 

the need for a tour heuristic to aid the operation.  

The inspections of the prepaid meters have financial implication and time 

constraints.  The thesis therefore seeks to propose and construct a tour heuristic that 

will enable technical personnel of the ECG undertake the inspection of the all 

prepaid meters installed for customers in the Koforidua municipality; covering the 

optimum distance thereby taking the least possible time to carry out the exercise. 
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1.3 Objectives of the Study 

Intuitively, the primary thrust of this research is aimed at proposing a mathematical 

model to find the minimum distance to cover in order to complete the task of 

inspecting all domestic and commercial electricity meters and a route that 

accomplishes this goal; or simply to find the optimal tour route of technical 

inspection personnel for every street/location. 

Specifically, the study is set to be carried out with the following aims;     

(i) To demarcate the municipality into smaller geographic areas (clusters or 

inspection blocks) according to the suburbs in the municipality. 

(ii) To find the estimated distance of roads or streets leading to all junctions/nodes 

(geographic areas). 

(iii) To come out with a tour construction heuristic that will enable the ECG prepaid 

metering sectional personnel to inspect these meters while covering an optimum 

distance.                                         

1.4 Methodology 

In this research, realistic mathematical models for the inspection of prepaid meters 

are formulated and solved using the Chinese postman‘s algorithm. It goes beyond 

developing Meta-heuristic to solve simple strategies to optimize the inspection tour.  

The idea is to divide the Koforidua Township into inspection blocks which could 

cover one or more suburbs. With the estimated road distances, a multi graph is 

created and approximated into a line and node diagram which is used to solve the 

problem. 

The sources of data for the thesis are the internet and libraries for relevant literature, 

Electricity Company of Ghana (ECG) on current information on electricity meters 
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and New Juabeng Municipal Assembly is consulted for information on the 

demarcation as well as distances of the network routes between suburbs and towns 

within the municipality. 

 1.4.1 Synopsis of some relevant heuristic algorithms  

These are adhoc, trial-and-error methods which do not guarantee to find the optimal 

solution but are designed to find near-optimal solutions in a fraction of the time 

required by optimal methods. A heuristic is typically a simple intuitively designed 

procedure that exploits the problem structure and does not guarantee an optimal 

solution. Because most of practical problems and many interesting theoretical 

problems are NP-hard, heuristics and approximation algorithms play an important 

role in solving high level optimization problems.  

Such algorithms are used to find suboptimal solutions when the time or cost required 

to find an optimal solution to the problem would be very large. A meta-heuristic 

(―meta‖ means ―beyond‖) is a general high-level procedure that coordinates simple 

heuristics and rules to find good approximate (or even optimal) solutions to 

computationally difficult combinatorial optimization problems. A meta-heuristic 

does not automatically terminate once a locally optimal solution is found.  

    (wikipedia.org/wiki/heuristic algorithm) 

1.4.2 Greedy heuristics 

These are simple iterative heuristics specifically designed for a particular problem 

structure. A greedy heuristic starts with either a partial or infeasible solution and 

then constructs a feasible solution step by step based on some measure of local 

effectiveness of the solutions. In each iteration, one or more variables are assigned 

new values by making greedy choices. The procedure stops when a feasible solution 
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is generated. As an extension of greedy heuristics, a large number of local search 

proaches have been developed to improve given feasible solutions. 

(wikipedia.org/wiki/Greedy_algorithm) 

1.4.3 Local search 

This is a family of methods that iteratively search through the set of solutions. 

Starting from an initial feasible solution, a local search procedure moves from one 

solution optimal within a neighboring set of solutions; this is in contrast to a global 

optimum, which is the optimal solution in the whole solution space solution to a 

neighboring solution with a better objective function until a local optimum is found 

or some stopping criteria are met. The next two algorithms, simulated annealing and 

tabu search, enhance local search mechanisms with techniques for escaping local 

optima. (wikipedia.org/wiki/local search) 

1.4.4 Simulated annealing 

This is a probabilistic meta-heuristic derived from statistical mechanics. This 

iterative algorithm simulates the physical process of annealing, in which a substance 

is cooled gradually to reach a minimum-energy state. The algorithm generates a 

sequence of solutions and the best among them becomes the output. The method 

operates using the neighborhood principle, i.e., a new solution is generated by 

modifying a part of the current one and evaluated by the objective function  

(Corresponding to a lower energy level in physical annealing). The new solution is 

accepted if it has a better objective function value. The algorithm also allows 

occasional non-improving moves with some probability that decreases over time, 

and depends on an algorithm parameter and the amount of worsening. A non-

improving move means to go from one solution to another with a worse objective 
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function value. This type of move helps to avoid getting stuck in local optimum. It 

has been proved that with a sufficiently large number of iterations and a sufficiently 

small final temperature, the simulated algorithm converges to a global optimum with 

a probability close to one. However, with these requirements, the convergence rate 

of the algorithm is very low. Therefore, in practice it is more common to accelerate 

the algorithm performance to obtain fast solution approximations.  (Russell, 1997) 

1.4.5 Tabu search  

This is a meta-heuristic technique that operates using the following neighborhood 

principle. To produce a neighborhood of candidate solutions in each iteration, a 

solution is perturbed a number of times by rules describing a move. The best 

solution in the neighborhood replaces the current solution. To prevent cycling and to 

provide a mechanism for escaping locally optimal solutions, some moves at one 

iteration may be classified as tabu if the solutions or their parts, or attributes, are in 

the tabu list (the short-term memory of the algorithm), or the total number of 

iterations with certain attributes exceeds a given maximum (long-term memory). 

There are also aspiration criteria which override the tabu moves if particular 

circumstances apply.  (Wikipedia.org/wiki/Tabu_search) 

1.4.6 Genetic algorithm 

These are probabilistic meta-heuristics that mimic some of the processes of 

evolution and natural selection by maintaining a population of candidate solutions, 

called individuals, which are represented by strings of binary genes. A genetic 

algorithm starts with an initial population of possible solutions and then repeatedly 

applies operations such as crossover, mutation, and selection to the set of candidate 

solutions. A crossover operator generates one or more solutions by combining two 
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or more candidate solutions, and a mutation operator generates a solution by slightly 

perturbing a candidate solution. Thus, the population of solutions evolves via 

processes which emulate biological processes. The basic concept is that the strong 

species tend to adapt and survive while the weak ones tend to die out.  

(lancet.mit.edu/~mbwall/presentations/IntroToGAs) 

1.4.7 The Travelling Salesman Problem algorithm 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied generally in some field of engineering, operations research and computer 

science. Given a number of nodes/location/ports/cities and their pair wise distances, 

the major task is to find the shortest possible tour that visits each 

node/location/port/city exactly once.  The Travelling Salesman Problem (TSP) has 

been studied during the last five dacades and many exact and heuristic algorithms 

have been proposed and used to solve problem which otherwise have no direct ways 

of having an optimal solutions. Notable among such algorithms used include 

construction algorithms, iterative improvement algorithms, branch-and-cut exact 

branch-and-bound and algorithms and many meta-heuristic algorithms, such as tabu 

search (TS), simulated annealing (SA), genetic algorithm (GA) and ant colony (AC) 

(Russell, 1997) 

1.4.9 The Chinese Postman Problem algorithm 

The Chinese Postman Problem (CPP) is a close heuristic to TSP.  In this routing 

problem the traveller must traverse every arc (i.e. road link) in the network.  The 

name comes from the fact that a Chinese mathematician, Mei-Ko Kwan in 1962, 

developed the first algorithm to solve this problem for a rural postman. It is an 
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extension to one of the earliest graph theory questions, the Königsberg Bridge 

Problem (KBP), which was studied by Euler in 1736. 

In general, graph theorists are interested in understanding whether or not a circuit 

exists that does not require traversing the same arc twice. Operations researchers are 

interested in finding the shortest route in any type of network. 

The Chinese Postman class of problems is relevant to a number of other services. 

Garbage collection, street sweeping, salting or gritting of icy roads, and snow 

plowing are some of the other services for which CPP algorithms have been applied. 

Meter readers also must travel up and down every street. Checking roads for 

potholes or serious deterioration or checking pipelines for weak spots also fall into 

this class of problems. 

   1.5 Significance of the Study  

This study introduces a more proactive approach in the dealing with the preventive 

maintenance of prepaid meters. An algorithm that proposes a good monitoring of 

prepaid meters will help increase the response to faults and also customer 

satisfaction.   

One major setback of the energy distribution sector is the issue of illegal connection 

in markets in the central business district. With this optimum tour route found with 

this construction heuristics, inspection could be more regular and this menace can 

easily be checked to save the company revenue. 
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1.6 The Scope of the Study  

The study partly parallels the travel salesman problem but more closely, it mimics a 

type of the Chinese Postman Problem (CPP), the heuristic procedure consists of 

cluster first, route second method. It is carried out without time constraints with a 

case study covering the Koforidua Municipality in the Eastern region of Ghana.  

1.7  Limitations of the study 

(i) Unplanned nature of the settlement in the town makes the determination of the 

distances very difficult. 

(ii)  Testing alternative algorithms to select efficient ones, etc. The limited time at the 

researcher‗s disposal lead to not many items being reviewed as literature. The 

quality of data depends not only on the amount of time one spends in gathering them 

but partially on how much money one is prepared to spend in gathering them.  

The researcher also encountered certain difficulties in connection with data 

collection. Other information, like the distance at a particular point with reference to 

a given geographical direction, as well as proper designation (naming) of streets or 

road links in the Koforidua municipality. 

   1.8 Organization of the Study                                                                                            

The study is organized in five chapters as follows. Chapter one provides general 

background issues of the study. It also provides the statement of problem and it sets 

out the objectives of the study, provides the significance of the study as well as the 

scope of the study. 

Chapter two reviews pertinent literature related to the study including travelling 

salesman‘s problem, optimization and adaptive techniques, meta-heuristics and 
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waste routing heuristics. Chapter two also describes systems the different meta-

heuristic algorithms for the study. It also describes mathematical algorithm for 

solving heuristics problems. Chapter three discusses the methodological issues of 

the study. Chapter four discusses the empirical results and interprets the results. The 

final chapter, which is chapter five, summarizes the main findings of the study and 

provides suggestions and recommendation. 

1.9 Summary of the chapter 

In this chapter, the following has been presented; the background of the study, the 

statement of the problem, the objectives of the study, the methodology, the 

significance of the study, the scope of the study and finally present the organization 

of the study.   

The next chapter takes a looks closely at some relevant heuristics that has been 

applied in the study of route optimisation problem. These have given rise to a 

number of algorithms used to solve harder optimization problems. Indeed, a good 

number of publications regarding route optimisation, the old time, the travelling 

salesman problem (TSP), transportation problem, bin packing and garbage 

collection in waste management. The chapter ultimately looks in a greater detail, the 

recently proposed Chinese postman‘s problem and its associated algorithm.  
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CHAPTER 2 

2.0 LITERATURE REVIEW 

The study of heuristics has given rise to a number of algorithms used to solve harder 

optimization problems. Indeed, a good number of publications regarding route 

optimisation, the old time, the travelling salesman problem (TSP), transportation 

problem, bin packing and garbage collection in waste management.  

Four widely known meta-heuristics are applied in finding near neighbourhood 

solutions optimal in all optimisation problem involving heuristics, notable among 

these are, Tabu search, the evolutionary algorithms, the simulated annealing method, 

Ant colony algorithms. Each one of these meta-heuristics is actually a family of 

methods. 

2.1 The Tabu Search method 

The method of search with tabus, or simply tabu search or tabu method, was 

formalized in 1986 by Glover (Glover, 1986). Its principal characteristic is based on 

the use of mechanisms inspired by the human memory. The tabu method takes, from 

this point of view, a path opposite to that of simulated annealing, which does not 

utilize memory at all, and thus is incompetent to learn the lessons from the past. On 

the other hand, the modelling of the memory introduces multiple degrees of 

freedom, which opposes — even in the opinion of the author (Glover and Laguna, 

1997) — any rigorous mathematical analysis of the tabu method. The guiding 

principle of the tabu method is simple: like simulated annealing, the tabu method at 

the same time functions with only one ―current configuration‖ (at the beginning, any 

solution), which is updated during successive ―iterations‖. In each iteration, the 

mechanism of passage of a configuration, called s, to the next one, called t, 



13 

 

comprises of two stages: one builds the set of the neighbours of s, i.e. the set of the 

accessible configurations in only one elementary movement of s (if this set is too 

vast, one applies a technique of reduction of its size: for example, one utilizes a list 

of candidates, or one extracts at random a subset of neighbours of fixed size); let V 

(s) be the set (or the subset) of these neighbours; one evaluates the objective 

function f of the problem for each configuration belonging to V (s). The 

configuration t, which succeeds s in the series of the solutions built by the tabu 

method, is the configuration of V (s). (Glover, 1986). 

 

2.2 Genetic Algorithms and Evolutionary Algorithms 
 

The evolutionary algorithms (EAs) are the search techniques inspired by the 

biological evolution of the species and appeared at the end of the 1950s (Fraser, 

1957). Among several approaches (Holland, 1962) (Fogel et al., 1966) the genetic 

algorithms (GAs) are certainly the most well known example, following the 

publication of a book by Goldberg in 1989: Genetic Algorithms in Search, 

Optimization and Machine Learning. The evolutionary methods initially aroused a 

limited interest, because of their significant cost of execution. But they have 

experienced, for the last ten years, a considerable development, that can be 

attributed to the significant increase in the computing power of the computers, and 

in particular following the development of massively parallel architectures, which 

exploit their ―intrinsic parallelism‖ (Fraser, 1957) 

The principle of an evolutionary algorithm can be simply described. A set of N 

points in a search space, chosen a priori at random, constitutes the initial population; 

each individual x of the population has a certain fitness value, which measures its 

degree of adaptation to the objective aimed. In the case of the minimization of an 
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objective function z, the fitness of x will be higher, if z(x) is smaller. An EA consists 

in evolving gradually, in successive generations, the composition of the population, 

by maintaining its size constant. During generations, the objective is to overall 

improve the fitness of the individuals; such a result is obtained by simulating the two 

principal mechanisms which govern the evolution of the living beings, according to 

the theory of Darwin.  the selection, which supports the reproduction and the 

survival of the fittest individuals, and the reproduction, which allows mixing, the 

recombination and the variations of the hereditary features of the parents, to form 

offspring with new potentialities. 

In practice, a representation must be chosen for the individuals of a population. 

Classically, an individual could be a list of integers for combinatorial problems, a 

vector of real numbers for numerical problems in continuous spaces, a string of 

binary digits for Boolean problems, or will be able to even combine these 

representations in complex structures, if it is required. The passage from one 

generation to the next one proceeds in four phases: a phase of selection, a phase of 

reproduction (or variation), a phase of fitness evaluation and a phase of replacement. 

The selection phase designates the individuals who take part in the reproduction. 

They are chosen, possibly several times, a priori all the more often as they have high 

fitness. The selected individuals are then available for the reproduction phase. 

Operators to copies of the individuals previously selected to generate new 

individuals; the operators most often used are crossover (or recombination). 
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2.3 Ant Colony Optimisation 

The entomologists analyzed the collaboration which is established between the ants 

in seeking food outside the anthill. It is remarkable that the ants always follow the 

same path, and this path is the shortest possible one. This control is the result of a 

mode of indirect communication, via the environment: the ―stigmergy‖.  

Each ant deposits, along its path, a chemical substance, called ―pheromone‖. All the 

members of the colony perceive this substance and preferentially direct their walk 

towards the more ―odorous‖ or high pheromone-concentrated areas. It results 

particularly in a collective faculty to find the shortest path quickly, if this one is 

blocked fortuitously by an obstacle. This behaviour was taken as a starting point to 

model the algorithm.  

The evaporation of pheromone also makes less desirable routes more difficult to 

detect and further decreases their use. However, the continued random selection of 

paths by individual ants helps the colony discover alternate routes and insures 

successful navigation around obstacles that interrupt a route. Trail selection by ants 

is a pseudo-random proportional process and is a key element of the simulation 

algorithm of ant colony optimization (Dorigo and Di Caro, 1999). 

Dorigo and Di Caro also proposed a new algorithm for the solution of the travelling 

salesman, problem. Since this research work, the method was extended to many 

other optimization problems, some combinatorial and some continuous.  

The ant colony algorithms have several interesting characteristics which could be 

adopted; to mention in particular high intrinsic parallelism, flexibility (a colony of 

ants is able to adapt to modifications of the environment), robustness (a colony is 

ready to maintain its activity even if some individuals are failing),  
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the decentralization (a colony does not obey a centralized authority) and the self-

organization (a colony finds itself a solution, which is not known in advance). This 

method seems particularly useful for the problems which are distributed in nature, 

problems of dynamic evolution, which require a strong fault-tolerance. At this stage 

of development of these recent algorithms, the transposition with each optimization 

problem is not however trivial: it must be the subject of a specific treatment, which 

can be difficult. 

i.) The real ants follow a path between the nest and a source of food. 

ii.) An obstacle appears on the path, the ants choose to turn on the left or right, 

with equal probabilities; the pheromone is deposited more quickly on the 

shortest path. 

iii.) All the ants chose the shortest path. 

2.4 Place of meta-heuristics in a classification of the optimization methods 

In order to recapitulate the preceding considerations, a general classification of the 

mono-objective optimization methods, already published in (Dr´eo et al, 1998 ). One 

finds, that the combinatorial and the continuous optimizations are differentiated; 

i.) for combinatorial optimization, one can approach different methods, 

when one is confronted with a difficult problem; in this case, the choice 

is sometimes possible between ―specialized‖ heuristics, entirely 

dedicated to the problem considered, and a meta heuristic; 

ii.) for continuous optimization, one summarily separates the linear case 

(which is concerned in particular with the linear programming) from the non-linear 

case, where the framework for difficult optimization can be found. In this case, a 

pragmatic solution can be to resort to the repeated application of a local method 
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which exploits, or not, the gradients of the objective function. If the number of local 

minima is very high, the recourse to a global method is essential: those meta-

heuristics are then found, which offer an alternative to the traditional methods of 

global optimization, those requiring the restrictive mathematical properties of the 

objective function; 

i.) among the meta-heuristics, one can differentiate the meta-heuristics ―of 

neighbourhood‖, which make progress by considering only one solution 

at a time    (simulated annealing, tabu search ) from the ―distributed‖ 

meta-heuristics, which handle in parallel a complete population of 

solutions (genetic algorithms) 

ii.) Finally, the hybrid methods often associate a meta-heuristic with a local 

method. This co-operation can take the simple form of a passage of relay 

between the meta-heuristic and the local technique, with the objective to 

refine the solution. But the two approaches can also be intermingled in 

more complex way. 

One of the first heuristics addressing the problem of mtours in TSP with some side 

conditions is due to Russell (1997), although the solution procedure is based on 

transforming the problem to a single TSP on an expanded graph. The algorithm is an 

extended version of the Lin and Kernighan heuristic originally developed for the 

TSP. Another heuristic based on an exchange procedure for the mTSP is given by 

Potvin et al.  

A parallel processing approach to solve the mTSP using evolutionary programming 

is proposed by Fogel (1990).  

The approach considers two salesmen and an objective function minimizing the 

difference between the lengths of the routes of each salesman. Problems with 25 and 
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50 cities were solved and it is noted that the evolutionary approach obtained 

exceedingly good near-optimal solutions. Several artificial neural network (NN) 

approaches have also been proposed to solve the mTSP, but they are generally 

extended versions of the ones proposed for the TSP. Wacholder et al.  have extended 

the Hopfield-Tank ANN model to the mTSP but their model has been evaluated to 

be too complex with its inability to guarantee feasible solutions. Hsu et al. presented 

a neural network approach to solve the mTSP, based on solving m standard TSPs. 

The authors state that their results are superior to that of Wacholder et al. A self-

organizing NN approach for the mTSP is due to (Punnen 2002), which is based on 

the elastic net approach developed for the TSP. 

Another self-organizing Neural Networks (NN) approach for the multiple Travel 

Salesman Problem Mtsp is proposed by Goldstein. Describe a self-organizing NN 

for the VRP based on an enhanced Mtsp NN model. 

Recently, Modares et al.  Developed self-organizing NN approach for the Mtsp with 

a min-max objective function, which minimizes the cost of the most expensive route 

among all salesmen. Their approach seems to outperform the elastic net approach. 

Utilizing genetic algorithms (GA) for the solution of Mtsp seems to be first. A 

recent application by Tang et al, uses genetic algorithms to solve the Mtsp model 

developed for hot rolling scheduling. The approach is based on 18odelled18 the 

problem as an Mtsp, converting it into a single TSP and applying a modified genetic 

algorithm to obtain a solution. Yu et al. Also use Gas to solve the Mtsp in path 

planning. 

Mission planning generally arises in the context of autonomous mobile robots, 

where a variety of applications include construction, military reconnaissance, 

warehouse automation, post-office automation and planetary exploration. The 
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mission plan consists of determining the optimal path for each robot to accomplish 

the goals of the mission in the smallest possible time.  

The mission planner uses a variation of the multiple Travel Salesman Problem 

(Mtsp, where there are n robots, m goals which must be visited by some robot, and a 

base city to which all robots must eventually return. The application of the Mtsp in 

mission planning is reported by Brummit and Stentz and in unstructured 

environments by the same authors.  

Planning of autonomous robots is modelled as a variant of the Mtsp by Yu et al, 

2002. In the field of cooperative robotics. Similarly, the routing problems arising in 

the planning of unmanned aerial vehicle applications, as investigated by Ryan et al, 

can be modelled as an Mtsp with time windows. 

J. Dr´eo, et al discusses that the best strategy to approximate the solution of a 

combinatorial optimisation  problem is to couple a constructive heuristics and local 

search. 

2.5 The Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied generally in some field of engineering, operations research and computer 

science. Given a number of nodes/location/ports/cities and their pair wise distances, 

the major task is to find the shortest possible tour that visits each 

node/location/port/city exactly once.  

The Travelling Salesman Problem (TSP) has been studied during the last five 

dacades and many exact and heuristic algorithms have been proposed and used to 

solve problem which otherwise have no direct ways of having an optimal solutions. 

Notable among such algorithms used include construction algorithms, iterative 
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improvement algorithms, branch-and-cut exact branch-and-bound and algorithms 

and many metaheuristic algorithms, such as tabu search (TS), simulated annealing 

(SA), genetic algorithm (GA) and ant colony (AC); which have been discussed 

above.  

Lin and Kernighan (1973) made a great improvement in quality of tours that can be 

obtained by heuristic methods. Some of the well known tour construction procedures 

are the nearest neighbour procedure by Ahuja et al, the Clark and Wright 

savings‗algorithm, the insertion procedures, the partitioning approach by Karp and 

the minimal spanning tree approach by Christotides.  

Meta-heuristic algorithms have been applied successfully to the TSP by a number of 

researchers. SA algorithms for the TSP were developed by, Goldstein,and Nahr et al. 

etc. The ACO is a relative new metaheuristic algorithm which is applied 

successfully to solve the TSP. Some work based on SA technology was reported by 

Dorigo et al (2008)  

solved a travelling salesman problem which models the production of printed circuit 

boards having 7,397 holes (cities), and in 1998, the same authors solved a problem 

over the 13,509 largest cities in the U.S. For problems with large number of nodes as 

cities the TSP becomes more difficult to solve.  

Feasible exact solutions for the TSP have been found, but there are restrictions on 

the input sizes. An exact solution was found for a 318-City problem by Crowder and 

Lawler et al in (1980). The basic idea in achieving this solution involves three 

phases. In the first phase, a true lower bound on the optimal tour is found. In the 

second phase, the result in the first phase is used to eliminate about ninety-seven 

percent of all the possible tours. Thus, only about three percent of the possible tours 

need to be considered. In the third phase, the reduced problem is solved by brute 
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force. This solution has been implemented and used in practice. Experimental results 

by Apple Gate et al (1998) showed that running this algorithm, implemented in the 

C programming language and executed on a 400MHz machine, would produce a 

result in 24.6 seconds of running time. 

 However, none of the algorithms that provide an exact solution for input instances 

of over a thousand cities are practical for everyday use. Even with todays super 

computers, the execution time of such exact solution algorithms for TSPs involving 

thousands of cities could take days.  

Computer hardware researchers have been making astonishing progress in 

manufacturing evermore powerful computing chips. Moores Law in 

(http://en.wikipedia.org/wiki/Moore‘s_law), which states that the number of 

transistors that can fit on a chip will double after every 18 months, has held ground 

since 1965. This basically means that computing power has doubled every 18 

months since then. Thus, we have been able to solve larger instances of NP-hard 

problems, but algorithm complexity has still remained exponential. Moreover, it is 

highly speculated that this trend will come to an end because there is a limit to the 

miniaturization of transistors. Presently, the sizes of transistors are approaching the 

size of atoms. With the speeds of computer processors rounding the 5GHz mark, and 

talks about an exponential increase in speeds of up to 100GHz 

(http://en.wikipedia.org/wiki/Moore‘s_law), one might consider the possibility of us 

exceeding any further need of computational performance. However, this is not the 

case. Although computing speeds may increase exponentially, they are, and will 

continue to be, surpassed by the exponential increase in algorithmic complexity as 

problem sizes continue to grow. Moore‗s law may continue to hold true for another 

decade or so, but different methods of computing are being researched. 
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2.6 Capacitated Arc Routing Problems – (CARP) 

Waste collection, as most logistic activities, can be studied at different levels: 

strategical, tactical, and operational. In this work we concentrate on tactical 

planning, where a vehicle fleet and the service demand are given and the objective is 

to design the vehicle trips in order to minimize operational costs subject to service 

constraints. 

The operational problem, the definition of collection routes given the vehicle fleet, 

can greatly benefit computerized support already for medium sized town. While the 

operational constraints can greatly vary, the core problem can be identified as a 

capacitated arc routing problem on large directed graphs (DCARP). 

Specifically, this work derives from an experience of decision support for the waste 

collection sectors of municipalities of towns with about 100,000 inhabitants, with 

the objective of designing vehicle collection routes subject to a number of 

operational constraints. The reported results are for an abstraction level which does 

not consider several very specific issues, such as union agreements, third-party or 

personal contracts, etc. 

The problem to solve is modelled as a Capacitated Arc Routing Problem (CARP) on 

a directed graph and solved accordingly. Two main issues arose: 

CARP optimization. The instances to be solved are far bigger than the state of the art 

ones. Original heuristic approaches had to be designed in order to meet the solution 

quality and the allowed computation time specifications. Operator interface it was 

needed to produce a system interface which could be effectively used by a service 
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operator allowing him to fully understand problem instance and solution details, 

together with any manual intervention desired. 

Dror (2000) did a publication on ―Arc Routing: Theory, Solutions and 

Applications‖, the reported results have a relevance beyond the specific application, 

as several activities of real world relevance can be modelled as CARP, foremost 

among them are mail collection or delivery, snow removal, street sweeping. The 

CARP is in fact a powerful problem model, which was originally proposed by 

Golden and Wong, and which, given its actual interest, have then been studied by 

many researches. Dror (2000) collected a significant number of applications of 

CARP variants and of corresponding solution methodologies. 

Residential refuse collection requires services at a large number of discrete points. 

These points are close together and distributed along the arcs. Algorithms for solid 

waste route are considered to belong to Capacitated Arc Routing Problems (CARP) 

(Amponsah, 2003). The Capacitated Arc Routing Problems (CARP) arises when arc 

has associated with it a positive demand and the vehicles to be routed have a finite 

capacity (Greistorter, 1994). One truck may not be able to service all the roads in a 

district due to its limited capacity. The CARP is to find a set of routes from a single 

depot that service all arcs in the network at minimal cost and subject to the 

constraints that the total demand on each route does not exceed the capacity of the 

vehicle. The cost of a trip comprises the cost of its serviced arcs and of its 

intermediate connecting paths. Demands are usually amount of waste to be collected 

along the streets (urban waste). The techniques combined computer and heuristics 

approaches. The study took into account the road network detail in finding solution 

to waste collection problem in undirected network. 
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2.7 The Chinese Postman Problem 

The Chinese Postman Problem (CPP) is a close ‗cousin‘ to TSP.  In this routing 

problem the traveller must traverse every arc (i.e. road link) in the network.  The 

name comes from the fact that a Chinese mathematician, Mei-Ko Kwan in 1962, 

developed the first algorithm to solve this problem for a rural postman. It is an 

extension to one of the earliest graph theory questions, the Königsberg Bridge 

Problem, which was studied by Euler in 1736. In general, graph theorists are 

interested in understanding whether or not a circuit exists that does not require 

traversing the same arc twice. Operations researchers are interested in finding the 

shortest route in any type of network. 

The Chinese Postman class of problems is relevant to a number of other services. 

Garbage collection, street sweeping, salting or gritting of icy roads, and snow 

plowing are some of the other services for which vehicle routing algorithms have 

been applied. Meter readers also must travel up and down every street. Checking 

roads for potholes or serious deterioration or checking pipelines for weak spots also 

fall into this class of problems. 

In the ever complex real-world additional constraints can arise that complicate the 

search for efficient routes. Labour contracts may require that the routes of different 

drivers must be approximately of equal length. There may be significant time 

restrictions or time windows on when a vehicle must visit a specific location to 

make a delivery or pick-up. The vehicle making pick-ups may also have capacity 

limitations such as a garbage truck which would restrict the maximum length of a 

route. Uncertainty can also complicate route planning. Trucks that deliver gasoline 
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or oil, can't be sure when they set out as to how much they will have to pump into 

each of the tanks on their route. 

Harold (2000) discusses in a directed Chinese Postman Problem, a postman 

delivering letters in a village may wish to know a circuit that traverses each street (in 

the appropriate direction if one-way streets), starting and returning to their office. 

This is a graph theoretic problem: roads are directed edges (arcs), and road junctions 

are vertices. The postman requires a Chinese Postman Tour, which we abbreviate 

CPT. The postman probably wants a shortest tour, with few repeated street visits. 

The cost of a CPT is defined as the total arc weight, summed along the circuit (e.g., 

the total distance walked). An optimal CPT is a CPT of minimal cost. If some 

weights are negative, an optimal CPT may not be defined: if there is any circuit with 

an overall negative weight, the postman could arbitrarily repeat it and get a total cost 

lower and lower without bound. Conventional applications of the CPP are concerned 

with routing more generally than postmen, as in routing snow ploughs or planning 

street maintenance. 

Many practical routing problems involve finding paths or cycles that traverse a set 

of arcs in a graph. In general, we call such problems arc routing problems (ARPs). 

The aim of solving such problems is to determine a least-cost traversal of a specified 

arc subset of a graph, with or without constraints. Routing is a decision-making 

process that plays an important role in most manufacturing and service industries. 

Billions of dollars are spent each year by governments and private enterprise on 

these operations. Enormous money is also wasted because of poor planning. Such 

problems have long been attended by mathematicians and operations researchers.  
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Another well-known and closely related problem is the so-called Chinese Postman 

Problem (CPP). The problem was first proposed by the Chinese mathematician, 

Meigu Guan in 1962. It says that a postman picks up mails at the post office, 

delivers it along a set of streets, and returns to the post office. Since he must cover 

over every street at least once, the CPP is referring to investigate how to cover every 

street and return to the post office under the least cost. In practice, apart from the 

requirement of travelling all streets, we consider the street direction, number of 

postmen, etc. 

Typical classification of CPP is by street direction, which divides a CPP into three 

cases Hsiao-Fan and Yu-Pin (2001): 

i.) undirected CPP, (UCPP) 

ii.) directed CPP, (DCPP) and 

iii.) mixed CPP, (MCPP) 

Although the first two conditions can be found exact solution efficiently, the mixed 

CPP has been shown to be NP-hard. In the past, most of researches devoted to 

whether the problem is directed and the service is capacitated. Researches on the 

practical condition of time-constraints are in a minority. But in present environment 

of ―‗time is money‖, the consideration is necessary. Therefore, in this study, we 

shall employ the concept of fuzzy set theory such that we can cope with a directed 

DCPP when time constraints are not certain.  

Just like postman delivering letters in a town may wish to know a circuit that 

traverses each street (in the appropriate direction if one-way streets), starting and 

returning to the office, the meter inspectors are expected to move along every street; 

while inspecting the electricity meters of both small scale businesses and household.  

The inspectors may have to visit some streets more than once. This is obviously a 
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graph theoretic problem: roads are edges, and road junctions are vertices. The meter 

inspectors require a Chinese Postman Tour to optimise their route. 

This thesis looks closely at one vital and motivating applications of the Chinese 

Postman Problem; that is the construction of an optimal route tour for the inspection 

of electricity meters in the Koforidua municipality. The CPP could be seen as a 

close ‗cousin‘ to the TSP. But the difference lie in the fact that CPP is edge oriented 

heuristic while TSP is node oriented heuristic.   

The next chapter zeroes in to provide a derivation of the mathematical formulation 

of the Chinese Postman Problem for mixed multi-graphs. The technical personnel 

require an optimal tour route to be traversed while undergoing the inspection 

without any priorities to any customer along each street.  

2.7.1 Min-max k-Chinese postman problem  

(Dino and Gerhard, 2005) proposed a tabu search algorithm for the min–max k-

Chinese postman problem (MM k-CPP). Given an undirected edge-weighted graph 

and a distinguished depot node, the MM k-CPP consists of finding k>1 tours 

(starting and ending at the depot node) such that each edge is traversed by at least 

one tour and the length of the longest tour is minimized. A special emphasis was put 

on investigating the trade-off between running time effort and solution quality when 

applying different improvement procedures in the course of the neighbourhood 

construction.  

Furthermore, different neighbourhoods were analyzed. Their results showed that the 

tabu search algorithm outperforms all known heuristics and improvement 

procedures. 
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In road maintenance, garbage collection, mail delivery, etc. Since usually large road 

networks have to be serviced, the work load must be distributed among k>2 

vehicles. In contrast to the usual objective to minimize the total distance travelled by 

the k vehicles (k-CPP), for the min–max k-Chinese postman problem (MM k-CPP) 

the aim is to minimize the length of the longest of the k tours. This kind of objective 

is preferable when customers have to be served as early as possible. Furthermore, 

tours were enforced to be more balanced resulting in a fair scheduling of tours.  

Although the CPP and the k-CPP are polynomially solvable (Hertz et al, 1999), the 

MM k-CPP is NP-hard. Hence, the employment of heuristics produces approximate 

solutions.  

(Dino and Gerhard, 2005) presented a tabu search algorithm for the MM k-CPP 

which outperforms all known heuristics. In many cases, solutions obtained proved to 

be near-optimal. 

Carlsson and Ye (2009), discussed in a paper titled ―Practical distributed vehicle 

routing for street-level map scanning‖. In their publications, a four-stage meta-

heuristic for routing vehicles in an urban environment, with the goal of traversing 

every street. While the theoretical aspects of street traversal are well-studied, their 

algorithm was designed to accommodate several obstacles to practical street 

traversal that are known to be NP-hard, such as turning penalties, the usage of 

multiple vehicles, and the presence of one-way and two-way streets. Some 

encouraging results were presented from a case study. 

In their applications, the goal was to traverse every street in a city with a survey 

vehicle, which typically has a camera attached. However, merely solving CPP gives 

only a route for a single vehicle, but the novel idea was pivoted on how to distribute 

the workload between a fleet of vehicles so that instead of treating the problem as an 
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instance of CPP, which obviously is a poor solution technique in most cases, the 

problem is rather modelled as a min-max k-CPP (MM k-CPP) which subdivide the 

entire geographic area into sub-areas and assigned to separate vehicles. So that the 

algorithm help minimise the maximum tour length undertaken by each vehicle 

which in the case of this project will be the meter reader. 

Although approximation algorithms for the ―k-postman problem‖ exist, they are 

strictly combinatorial and do not take advantage of the fact that our road map is a 

planar graph, and consequently vehicle tours may not be geographically separate. In 

a practical setting, it is desirable to clearly separate one vehicle‘s route from another 

in an obvious geographic way. 

The routes generated using conventional CPP solution methods also fail to take into 

account the amount of time spent turning at street intersections. In large-scale 

routing problems, turning costs are an important factor to consider. Carlsson and Ye 

(2009) described a multi-stage metaheuristic for traversing every street in a city with 

a fleet of vehicles that addresses these issues. 

Carlsson and Ye (2009) proposed a model which was particularly distinguished by 

four (4)   features: 

i.) The presence of multiple vehicles located initially at various depots (an NP-

hard addition), 

ii.) The incorporation of turning costs in the objective function (an NP-hard 

addition), 

iii.) The mixed nature of the graph edges (an NP-hard addition), and 

iv.) The desire to keep vehicle tours as geographically separate as possible, 

without imposing significant additional costs. 
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While each of these complications has been addressed individually in earlier 

literature, it was suggested that this was a novel attempt to combine these 

hurdles in a single problem. 

However the model proposed in this thesis, is based on three (3) out of four (4) 

of the features proposed by Carlsson and Ye (2009); thus it does not incorporate 

the turning cost of the each vehicle being used for the inspection, since the 

municipality is not a vehicular traffic prone area. This takes out some 

complexities associated to getting an optimal solution.   

 

 The next chapter focuses on the mathematical formulations as it relates to the 

Chinese Postman‘s Problem in general and zeros in to its specific formulations 

regarding the route inspection algorithm as an edge-oriented heuristic for the 

inspection of electricity meters. 
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CHAPTER 3 

 

3.0 METHODOLOGY 

 

This chapter involves the chosen heuristic algorithm for the Chinese postman problem and 

the travelling salesman problem models and the specific meter inspection problem 

formulation. 

There are many real-world situations that can be reduced as the Chinese postman problem. 

For example, a driver of a watering car, a garbage truck or meter inspection personnel, he 

wishes to choose his route in such a way that traverses as little as possible. In this section, 

we introduce an efficient algorithm for solving the Chinese postman problem, due to 

Carlsson and Ye (2009) model. 

3.1 Chinese Postman Problem Formulation and Notation 

In his job, a postman picks up mail at the post office, delivers it, and then returns to the post 

office. He must, of course, cover each street in his area at least once.  Subject to this 

condition, he wishes to choose his route in such a way that he walks as little as possible. 

This problem is known as the Chinese postman problem, since it was first considered by a 

Chinese mathematician, Guan in 1960. 

3.2 The graphic model 

We refer to the street system as a weighted graph (G,W) whose vertices represent the 

intersections of the streets, whose edges represent the streets (one-way or two way), and the 

weight represents the distance between two intersections, of course, a positive real number. 

A closed walk that covers each edge at least once in G is called a postman tour. Clearly, the 
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Chinese postman problem is just that of finding a minimum-weight postman tour. We will 

refer to such a postman tour as an optimal tour. 

If it is assumed first that the graph G is eulerian, then any Euler circuit is an optimal tour 

since it traverses each edge exactly once. The Chinese postman problem is easily solved in 

this case, since there exists an efficient algorithm determining an Euler circuit in an eulerian 

graph, no matter that it is directed or undirected. 

Groves  and  Vuuren (2005) published local search framework for the (undirected) Rural 

Postman Problem (RPP). The framework allows local search approaches that have been 

applied successfully to the well–known Travelling Salesman Problem also to be applied to 

the RPP. Some efficient heuristics for the RPP, based on this framework, are introduced and 

these are capable of solving significantly larger instances of the RPP than have been 

reported in the literature. Test results that were presented for a number of benchmark RPP 

instances in a bid to compare efficiency and solution quality against known methods. 

3.2.1 Description of the algorithm 

Consider a weighted graph G = (V, E), with vertex set  1 2, ,.... pV v v v  edge set E, and 

edge weights denoted by    , ,   i jc i j v v E  .  The well–known Chinese Postman Problem 

(CPP) is the problem of determining a minimum–weight closed route traversing each edge 

i jv v  E  at least once (Guan, 1962).  

The Rural Postman Problem (RPP) is a generalisation of the CPP in which a subset of the 

edges Er E  (called required edges) have to be traversed. It is the problem of determining 

a minimum–weight closed route traversing each edge in Er at least once. The RPP is NP–

Hard (Lenstra and Rinnooy Kan, 1976), except when Er = E, in which case the problem 

reduces to the CPP. The above CPP and RPP definitions for undirected graphs have been 



33 

 

generalised in many ways, and algorithms catering for directed and mixed graphs, for 

example, have been introduce by, Dror (2000)  

3.2.2 Local Search Framework 

Denote a solution to the RPP by the sequence      1 1 2 2, , , ,..., ,s t s t sn tnS v v v v v v  of 

required edges in the order in which they are traversed. Traversals taking place between the 

required traversals are omitted from the sequence and are assumed to take place along 

routes corresponding to shortest distances between the required edges of the sequence. The 

total weight of the route is therefore given by 

       
1

1 1 1 1

1 1

, , ,
n n

j j n

j j

c s c s t d t s d t s




 

    ---------------------------(3.1) 

where d(k, ℓ) denotes the shortest distance between two vertices  ,k lv v V G  and c(i, j) is 

the cost weight associated with the edge ,i jv v  , as before. 

3.2.3 Applying Local Search Moves 

In a local search framework moves are performed on candidate solutions to the RPP that 

directly specify the order in which required edges are traversed in the transformed solution. 

An example of such a move is one that simply exchanges the order in which two required 

edges are traversed.  

Prototype example: 

The route,            1 3,4 , 4,1 , 5,6 , 5,4 , 6,8S   

the edges  3,4 and  5,6  might be exchanged, to yield the transformed route 

         1* 5,6 , 4,1 , 3,4 , 5,4 , 6,8S   
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Typically, one would consider all pairs of these exchanges during a single iteration of the 

search and then perform one that yields a route of minimum overall cost. In the above 

example, the traversal order of required edges was altered, but not their traversal directions. 

However, it may be better to traverse the edge (3, 4) in S
1*

, for example, in the direction (4, 

3) instead of in the direction (3, 4). Consequently, it is necessary to determine the optimal 

directions of traversals of required edges in S
1*

 after performing an exchange. Applying a 

move therefore involves altering the order of the required edges in the route, and then 

determining their directions of traversal. This requirement for determining traversal 

directions results in an increased time complexity, when compared to applying the same 

type of move to a VRP. However, by using a complexity reduction method presented later, 

it is, in fact, possible to determine the cost of a route without predetermining the traversal 

directions of all of its required edges. This allows for the development of comparatively 

efficient procedures for many ARPs. 

3.3 Mathematical formulations for the route inspection problem. 

3.3.1 Definitions:  

Edges are distance between two distinct vertices.  

A self-loop is an edge that joins a vertex to itself. 

A multigraph is a graph where multiple edges and self-loops are allowed.   

A simple graph is one which does not allow multiple edges or self-loops. 

The degree or order of a vertex is the number of arcs incident to that vertex. A 

vertex is even (odd) if it has even (odd) order. 

If all the vertices are even, then the graph is Eulerian. 

If exactly two vertices in are odd, then the graph is semi-Eulerian. 
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A graph is traversable if it is possible to travel along (traverse) every arc exactly 

once without taking your pen of the paper. 

A graph is traversable if all vertices have an even order (i.e. the graph is Eulerian). 

A graph is semi-traversable if it has precisely two vertices that are odd (i.e. it is 

semi-Eulerian). In this case the start and finish points of the route must be the 

vertices with the odd order. 

A graph is not traversable if it has more than two odd vertices. 

A traversable graph is one that can be drawn without taking a pen from the paper 

and without retracing the same edge. In such a case the graph is said to have an 

Eulerian trail. 

Consider a multi graph G: 

A walk in G that traverses every edge in G exactly once is called an Eulerian trail.  

On the other hand, if the trail begins and ends at the same vertex, it is called an 

Eulerian circuit or Eulerian tour.  If G has an Eulerian tour, we say G is an Eulerian 

graph. The CPP (route inspection algorithm) can be modelled as a problem of 

finding an Eulerian tour in a graph that has minimum cost. 

Let v be a vertex in G.  The degree of v, degree (v) is the number of edges that are 

attached to v.  If degree (v) is odd, we say v is an odd vertex; if degree (v) is even, 

we say v is an even vertex. 
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Figure 3.1: A typical representation of a multigragh  

Let G be a graph.  A nontrivial component of G is a subgraph containing at least two 

distinct vertices and at least one path between any pair of vertices in the subgraph. 

3.3.2 Observations: 

i. The graph A and B in figure 3.2 are Eulerian graphs but graph C and D are not.   

ii. Graph C is not Eulerian because it contains odd vertices.  D is not Eulerian because 

it is composed of two nontrivial components. 

iii. The Eulerian trail would necessarily begin and end at the odd nodes. 

iv. If G is a graph with only even vertices and one nontrivial component then, the 

solution to the CPP uses every edge in G, Exactly once and the total cost of the tour 

is the sum of all of the edge weights. 
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3.3.3 Theorems: 

 Let G be a graph:  

i. There is always an even number m, of odd vertices in a graph. 

ii. G is an Eulerian graph if all the vertices are even and all the edges belong to a single 

component. 

iii. G has an Eulerian trail if all the edges belong to a single component and there are at 

most two odd vertices. 

3.3.4 Route inspection heuristic ‘algorithm’ for optimal tour distance 

An algorithm for finding an optimal Chinese postman route is proposed by Groves and 

Vuuren (2005) as follows: 

Step 1:    List all odd vertices. 

Step 2:    List all possible pairings of odd vertices. 

Step 3:   For each pairing, find the edges that connect the vertices with the minimum  

            Weight (this could also be done by making use of Dijsktra‘s algorithm) 

Step 4:    Find the pairings such that the sum of the weights is minimised. 

Step 5:    On the original graph, add the edges that have been found in Step 4. 

Step 6:  The length of an optimal Chinese postman route is the sum of all the edges added  

   to the total found in Step 4. 

Step 7:     A route corresponding to this minimum weight can then be found using the 

Fleury‘s algorithm. 

This algorithm finds the shortest route that traverses every arc at least once and returns to 

the starting point. The algorithm consists of three possibilities: 

i.) If all the vertices have an even order then the graph is traversable. The length of the 

shortest route is therefore equal to the total weight of the network. 
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ii.) If there are two odd vertices, then the whole network is traversed once and then the 

shortest path between the two odd vertices is repeated. 

iii.) If there are more than two odd vertices, then, the algorithm considers the length of 

the routes between all possible complete pairings of odd vertices and then repeat 

the pairings which add the smallest distance. 

Prototype Example 3.1:  

 

Figure 3.2 : Multi graph with only two odd vertices (Semi Eulerian) 

 

The problem is to find a trail that uses all the edges of the graph in figure 3.2 with 

minimum length. 

The problem could be solved by using the following algorithm: 

Step 1:     The odd vertices are A and H. 

Step 2:      There is only one way of pairing these odd vertices, namely AH. 

Step 3:     The shortest way of joining A to H is using the path AB, BF, FH, a total length of  

                  160. 

Step 4:      Draw these edges onto the original network. 
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Figure 3.3: Finding the path to be repeated in a multi-graph of two odd vertices 

Step 5:  The length of the optimal Chinese postman route is the sum of all the edges in the  

  original network, which is 840 m, plus the answer found in Step 4, which is 160m.        

   Hence the length of the optimal Chinese postman route is 1000 m. 

Step 6:  One possible route corresponding to this length is:  

         A D C G H C A B D F B E F H F B A, But it must be noted that many other possible 

routes of the same minimum length can be found. 

 

Prototype Example 3.2: (Three Odd vertices) 

A postman has to go around the following route starting and finishing at A, his postal depot. 

He has to go along each road, shown as lines, once and only once, the task is find the 

shortest possible route to do this and its associated length. 
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Figure 3.4: Prototype example for multi-graph with odd vertices 

Following the steps of the route inspection algorithm: 

STEP 1: 

Odd Vertices Degree 

A 3 

D 5 

E 3 

F 5 

 

STEP 2 & 3:  finding the shortest path to be repeated in the tour using Dijsktra‘s algorithm 

Table 3.1 Using Dijsktra‘s algorithm to find the repeated edges  

Possible pairings of odd vertices Shortest Route Shortest Distance 

AD and EF AD and EF 12 + 6 = 18 

AE and DF AFE and DF 3 + 6 + 8 = 17 

AF and DE AF and DE 3 + 4 = 7 
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STEP 4 

From the above calculations it is clear that to create a Eulerian graph that is the shortest 

possible edges AF and DE must be repeated. 

A possible route starting and finishing at vertex A is:  A F E D C B A D E C F D B F A 

The total length of this route is:  

4 + 7 + 5 + 6 + 7 + 12 + 10 + 8 + 9 + 6 + 4 + 3 + Repeated edges (4 + 3)    =    78units 

3.4 Proposed mathematical heuristic model for electricity meter inspection. 

Electric utility companies employ a crew of workers who periodically visit and read the 

electric meters of each customer in their service area. Each reader is transported by a 

vehicle from a central office to the first customer on his work list known as a round. At the 

end of his work shift time limit the reader is free to leave the area possibly returning home 

or to the central office by public bus. Taking a graph that corresponds to the city network of 

streets, meter readers must traverse each street while moving from house to house. It is 

possible that dead heading may be required—back tracking over a street that has already 

been covered. A working tour is an open path whose reading time plus deadheading time 

does not exceed the work limit. The problem is to find the minimum number of working 

tours. Stating the problem in this manner gives us an optimization problem closely related 

to the k-Chinese postman problem—an edge oriented routing problem. 

Carlsson and Ye (2009) proposed a model which was particularly distinguished by four (4)   

features; and these are: 

i.) The presence of multiple vehicles located initially at various start points (an NP-hard 

addition) 

ii.) The incorporation of turning costs in the objective function (an NP-hard addition), 

iii.) The mixed nature of the graph edges (an NP-hard addition), and 
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iv.) The desire to keep vehicle tours as geographically separate as possible, without 

imposing significant additional costs. 

While each of these complications has been addressed individually in earlier literature, 

the researcher considers it as a novel attempt to combine these hurdles in a single 

problem. 

However the model proposed in these thesis, mimics on three (3) out of the major 

features proposed by Carlsson and Ye (2009); thus it does not incorporate the turning 

cost of the each vehicle being used for the inspection, since the municipality is not a 

vehicular traffic prone area as compared to certain areas in Ashanti and Greater Accra 

regions. 

3.5 Model assumptions  

i.) It is assumed that the traffic situation does not affect the weight (distance) on 

each edge of the graph (street).  

ii.) The model considers the weight of each edge of the graph in terms of distance 

instead of time. 

iii.) No weights (distance) are assigned for left, right or U-turns at each junction. 

iv.) Each street would have two (2) or more inspection personnel; one (1) on the left 

and the other on the right for those inspecting densely populated areas such as 

the central business district (CBD). 

v.) It is assumed that the number of prepaid meter users; be it commercial or 

domestic, are approximately equal on both sides of the street such that the 

personnel will finish two separate inspection officers on both side of the street 

are due to finish at the same time when inspection begins. 
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vi.) They are no priorities in the application of the algorithm, in developing the 

formation of the optimal inspection route. 

vii.)  The constraint of dividing the entire graph into clusters and developing the 

optimal route does not affect the optimal distance covered. 

viii.) All vehicles used in the inspection process have the same starting point taken to 

be the ECG regional office located around the vertices designated ‗19‘ in the 

multi graph  of the Central Business District.  

ix.) ‗Y‘ and ‗T‘- junctions or traffic lights are considered as odd vertices. 

‗X‘- junctions, where there are no traffic control measures, or having traffic light 

or roundabouts are taken to be even vertices. 

x.) Straight routes with dead end or without any major street intersections are taken 

to be self-loops. 

3.6 Distinguishing feature of the proposed model: 

This proposed model is based on the Carlsson and Ye (2009) model. It has been 

proposed with two (2) particularly distinguishing features: 

i.) The presence of multiple meter inspectors located initially at various chosen 

locations in the municipality (an NP-hard addition), 

ii.) The desire to keep the meter inspectors tours as geographically separate as 

possible, without imposing significant additional costs. 

The Electricity Company of Ghana uses an adhoc ‗cluster first - route second‘ to 

perform periodic inspection on its electricity meter users. The municipal multi-

graph developed include the Koforidua township and it immediate environs. The 

municipality is divided into blocks and the blocks are subdivided into rounds and 
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the individual residents or commercial buildings or shops are identified by their plot 

numbers. 

We are given a map of all of the streets in a municipality representing each round. 

This is represented with a mixed graph G = (V, E U A), where  

E denotes a set of undirected edges (road links)  

A a set of directed arcs.  

We refer to E U A as the set of links in G. 

Each vertex i represents a street intersection with given coordinates xi Є R
2
. 

The service region, C, is the convex hull of all nodes Xi.  

Each street segment, either an edge (i, j) or an arc hi, j, i, has length dij.  

When a link‘s class is unspecified (i.e. when it may be either an edge or an arc), we 

use the notation [i, j].  

For purposes of exposition, we assume that each inspection team has exactly one 

associated vehicle and at least two inspection officer.  

At each vertex (intersection) i, we have sets Ini and Outi of incoming and outgoing 

edges and arcs. 

 Each of these sets includes all edges incident to Vi, since they are undirected and 

are both incoming and outgoing. If a particular turn from link [i, j] to link [j, k] at 

vertex j is forbidden then we set tijk = ∞. since the turning cost in not included the 

model, this implies tijk = 0 

The Electricity Company of Ghana uses an adhoc ‗cluster first - route second‘ to 

perform periodic inspection on its electricity meter users. The town includes the 

Koforidua Township and it immediate environs. The district is divided into blocks 

and the blocks are subdivided into rounds and the individual residents or commercial 

buildings or shops are identified by their plot numbers. 
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3.6 General CPP Algorithm. 

Step 1: List all the odd vertices in the graph.  If there are no odd vertices, go to 

STEP 5 else go to step 2. 

Step 2: Find all possible SETS pairings of the odd vertices. 

Step 3: For each SET of pairings, find the shortest path between the two vertices in 

each pair.  Compute the total cost of the SET of pairings by adding up the costs of 

the shortest paths. 

Step 4: Select the SET of pairings with minimum weight and repeat these edges in 

the graph. 

Step 5: Use Fleury‘s algorithm to find an Euler tour in the resulting graph, starting 

from any vertex. What has been accomplished in STEPS 2 through 4 is to convert a 

non-Eulerian graph into an Eulerian graph by adding edges to the graph.  This is 

equivalent to having our postman/inspection officer walk up and down the same 

street. 

3.7 CPP Algorithm for Undirected Graph 

STEP 1:  Identify all nodes of odd degree in G (N, A) Say there are m of them, where m is   

                an even number.  

STEP 2: Find a minimum-length pair wise matching of the m odd-degree nodes and      

     identify the m/2 shortest paths between the two nodes composing each of the m/2 pairs.  

STEP 3: For each of the pairs of odd-degree nodes in the minimum-length pair wise      

               matching  found in Step 2, add to the graph G(N, A) the edges of the shortest path            

               

 between the two nodes in the pair. The graph G
1
(N, A

1
) thus obtained contains no  

               nodes of odd degree. 
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STEP 4:  Find an Euler tour on G
1
(N, A

1
). This Euler tour is an optimal solution to the    

Chinese postman‘s problem on the original graph G(N, A). The length of the       

optimal tour is equal to the total length of the edges in G(N, A) plus the total length     

of the  edges in the minimum-length matching. 

3.7. 1 Obtaining the optimal tour route using Fleury’s Algorithm for a graph 

with only even vertices and one nontrivial component 

If G is a graph with only even vertices and one nontrivial component then we may identify 

an Eulerian tour as follows: 

(i) Start with any vertex. 

(ii) From the current vertex traverse any unselected edge whose deletion would not 

result in a graph with two nontrivial components that is a disconnection between the 

remaining graph. 

(iii) Delete the selected edge from the graph.  If there are no edges remaining STOP; 

otherwise, go back to STEP 2. 

3.7.2 Obtaining the optimal tour route using Fleury’s Algorithm for Graph 

with at most two odd vertices and one nontrivial component. 

If G is a graph with at most two odd vertices and one nontrivial component then we may 

identify an Eulerian trail as follows: 

(i) Start with any odd vertex.  (If all vertices are even, start anywhere) 

(ii) From the current vertex traverse any unselected edge whose deletion would not 

result in a graph with two nontrivial components. 

(iii) Delete the selected edge from the graph.  If there are no edges remaining STOP; 

otherwise, go back to STEP 2. 
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Prototype Example 3.3 

 

   Figure. 3.5a Prototype example for finding the optimal route 

In the graph above, degree (a) = 3 and degree (h) = 3.  All other vertices are even.  Hence, 

the graph does not have an Eulerian tour but it does have an Eulerian trail beginning at a 

and ending at h. 

Starting at a, we have a→b→c→a→j→h→c→d.  At this point we have the graph shown in 

figure 3.6b and 3.6c below (with the edges that have been already traversed deleted). 

 

 

 Figure 3.5b 

We cannot visit g next because deleting dg would leave a graph with two nontrivial 

components: 

 

Figure 3.5c 
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So we visit e next and complete the trail with e→f→d→g→h. 

3.8 Multi route Chinese Postman Problem 

Just as in the case of node covering, multi route edge-covering problems are very 

meaningful and applicable in the urban environment. This is the idea of the cluster 

first and route second in the attempt to the route inspection problem. This is due to 

the fact that in the municipal areas are obviously subdivided on a routine basis into 

smaller constituencies and constituencies are also divided into smaller towns and 

smaller towns into suburbs that can be covered by a single mailman or meter 

inspector. This ‗districting‘ aspect is an integral part of the multi-route Chinese 

postman problem. This problem is usually referred to as the constrained Chinese 

postman problem (CCPP), since the need to subdivide an area into many routes 

arises due to some constraint(s), such as the maximum distance that a mailman/ 

inspection personnel can cover walking during a normal day or, very often, other 

limits on some measures of workload that have been agreed on in a labour contract.  

The CCPP has not been investigated extensively to date, but practical approaches to 

it--in the context of the delivery of urban services-have been suggested for both 

undirected and directed  networks. Because of the relative ease with which the 

single-tour Chinese postman problem can be solved, the "route first, cluster second" 

strategy seems to be the favoured one in this case: a giant tour is first found and then 

divided into m subtours, where m is the number of available vehicles/ team of 

inspectors.  

However, there exist no "best way" available for breaking up the giant tour into 

shorter subtours, this approach depends to a large extent on the ability and 

experience of the researcher. 
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 Indeed, the approach described below for an undirected network   is most effective 

when carried out manually with the assistance of a good road network map.  

3.8.1 Solving the Constrained Chinese Postman - CCPP problem  

The proven approach is to subdivide the graph G', on which the large, single tour is 

drawn, in such a way as not to create odd-degree nodes on the boundaries between 

subtours. Since G' has been derived by applying a CP algorithm to the original graph 

G. G' has no odd-degree nodes.  Therefore, all the nodes in the interior of subtours 

will be even-degree nodes and the partitioning process can create odd-degree nodes  

only on the boundaries between subtours. To avoid this, it is important to draw 

continuous boundaries for each subtour, so that an even number of edges is incident 

on each node. The following describes informally a possible heuristic approach:  

3.8.2 The Constrained Chinese Postman Problem– (CCPP) Algorithm 

STEP 1: Using a CPP algorithm, create an Eulerian graph from the given network 

whose edges are to be covered. Sketch out roughly the boundaries of the m subtours 

in  accordance with the given constraints on tour lengths. 

STEP 2: Carefully draw a continuous boundary for each subtour so that an even 

number of edges is incident to every node. 

STEP 3: Sketch out roughly the boundaries of the m subtours in accordance with the 

given constraints on tour lengths. 

Prototype Example 3.4   (CCPP) 

Consider again the route inspection problem of the modified graph G' tour this is 

clearly a network with no nodes of odd degree and with total edge length equal to 

383 distance units after applying our CPP algorithm for the solution of the single 

tour.  
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Figure 3.6: Tentative partitioning of the single – CP tour into three approximate equal 

sub tour. 

Suppose now that an upper limit of 150 distance units is placed on the length of a mailman's 

tour. We then attempt to subdivide the single 383-unit tour into three approximately equal 

tours, each of which satisfies the 150-unit limit. (Alternatively, it might have been specified 

that the area/town  in question must be covered by three mailmen.)  

On Figure 3.6 the rough outlines of three approximately equal-length tours are sketched in 

accordance with Step 2 of the CCPP algorithm. These outlines may overlap since they serve 

only as an aid in defining the approximate physical boundaries of the subtours. In Step 3 the 

three subtours are designed in detail with continuous boundaries to ensure both the 

existence of an Eulerian tour and an increase in the total distance covered, which is as small 

as possible. The three subtours shown in Figure 3.7 are 121, 130, and 132 units long. Their 
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total length in this particular case turns out to be exactly equal to the length of the single 

tour from which they were derived.  

 

Figure 3.7 :  Final partitioning of the single CP tour into three approximate subtour 

Two disadvantages of the approach that we just illustrated are readily apparent. First, some 

trial-and-error work may be required before a set of feasible tours is obtained. This is due to 

the fact that the subdivision of the tour is initially made by inspection alone. Second, the 

algorithm above does not take into consideration the distances involved in getting to each 

district from the central station (post office, depot, etc.) and back. These distances-or, better, 

the time required in practice to cover them--are considered to be second-order-effect 

quantities. 

The next chapter is focused on the analysis of the road network of the Koforidua 

municipality obtained from the ECG-regional office with permission. The distances of the 

vertices are extracted and the results are analysed. 
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CHAPTER 4 

4.0 DATA COLLECTION AND ANALYSIS  

4.1 Representation of the road layout in Koforidua township: 

For the purpose of this work, numbers have been allocated to all major junctions, 

roundabouts and traffic lights in the Koforidua. The layout representing the multi-graph of 

the streets for Koforidua municipality is shown in figure 4.1: 

 

 

Figure 4.1: Lay out of the Koforidua Municipality. (Source: ECG, Koforidua) 
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Figure 4.2 Lay out of the road network divided into four subtours 

 (four inspection BLOCKS) 
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For the purpose of the study and also to mimic the practicality of the inspection as a 

constraint Chinese postman‘s problem (CCPP) or the k-CPP, the municipality is divided 

into 4 blocks namely; block 1, block 2, block 3 and block 4, as show in figure 4.2. The 

interpretation of the blocks are as follows: 

Block 1: Covers the Central Business District and Sorodae - suburbs. 

Block 2: Covers the Old estate and the Old SSNIT flats and Nyamekrom- suburbs. 

Block 3: Covers the Atekyem and Galloway - suburbs. 

Blook 4: Adweso, Poly and Adweso SSNIT flats - suburbs. 

4.2 Formulation of the Constraints Chinese Postman’s Problem (CCCP) 

        Assumptions revisited: 

i.)  The analysis considers the weight of each edge of the graph in terms of distance 

instead of time. 

ii.) No weights (distance) are assigned for left, right or U-turns at each junction. 

iii.) It is assumed that the number of prepaid meter users; be it commercial or 

domestic, are approximately equal on both sides of the street such that the 

personnel will finish two separate inspection officers on both side of the street 

are due to finish at the same time when inspection begins. 

iv.) They are no priorities in the application of the algorithm, when carrying out the 

inspection along the optimal inspection route. 

v.) All vehicles used in the inspection process have the same starting point taken to 

be the ECG regional office located on the hospital road 0.25km from vertices 29 

( in Block 2) near the of the Regional Hospital   
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vi.) Since the inspection teams start at the same point, the distance covered for the 

movement of each vehicle to the specific starting point of the inspection exercise 

are not considered. 

vii.) ‗Y‘ and ‗T‘-junctions or traffic lights are considered as odd vertices. ‗X‘- 

junctions, where there are no traffic control measures, or having traffic light or 

roundabouts are taken to be even vertices. 

viii.) Straight routes with dead end or without any major street intersections are taken 

to be self-loops. All dead ends created as a result of the segregation of the multi 

graph are treated as self-loops and the weight of the graph is doubled when 

finding the optimal distance covered. 

 

This required routes to be services are represented with a mixed graph G =(V,E U 

A), where E denotes a set of undirected edges (road links), and   A is  set of 

undirected arcs. We refer to E U A as the set of links in G. 

Each vertex i represents a street intersection which could be assigned coordinates xi 

Є R
2
.  Each street segment, either an edge (i, j) or an arc hi, j, i, has length Eij.  

The problem can be defined as follows: Let G = (V,E) be a complete undirected 

graph with vertices ,V V n   

For ‗n‘ number of vertices and with all edges represented as 
i jE (length of the edge 

between vertex i and vertex j ), all repeated edges as rkE  and all roads with dead 

ends; lkE
,       where         rk ijE E  

Each edge is undirected and symmetric, for all vertices (i,j). 
i j jiE E  

The Optimal route for the Chinese Postman‘s problem for an undirected multi graph 

could be generally formulated as a minimization problem given as:   
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The problem is a minimization problem with additional restrictions that guarantee the 

exclusion of subtours in the optimal solution. A subtour in V is a cycle that does not include 

all vertices (road links/intersections). Equation (4.1) is the general objective function, which 

minimizes the total distance to be travelled by the inspection teams/personnel. 

Special case 1:  where the graph is strictly Eulerian; with neither ‗Y‘ nor ‗T‘- junctions, 

there are no repeated edges (deadheading) nor road links with dead ends; the problem 

reduces to; 

  1

, 1

: ........................... 4.3
n

i j

i j
i j

P Min E




 
 
 
 
 


   

where 

  

0,    and    0rk lkE E 

 
 

 

However, it is rarely the case that every vertex in a road network is even. (Examining a 

road map of any town or section of a city will confirm this.) According to Euler‘s Theorem, 

when there are odd vertices, it is impossible to plan a circuit that traces every edge exactly 

once. Since every road needs to be traced, some roads must be retraced.  

This poses real – world cases (as in case 2 and 3) to plan a route so that the total amount of 

retracing is as small as possible.
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Special case 2: where the graph has two or more odd vertices (semi-Eulerian) with no road 

intersections which have dead ends, the objective function reduces to: 

       

 1

, 1 , 1

: ............................ 4.4
n n

i j rk

i j r k
i j i k

P Min E E
 

 

 
 
 
 
 

       ,       

where  0lkE   

Special case 3: where there are more than two odd vertices (Y and T- junctions or traffic 

lights) in addition to dead end road intersections, the problem assumes the general 

minimisation problem: 

 1

, 1 , 1 , 1

: 2 ......................... 4.1
n n n

i j rk lk

i j r k l k
i j i k l k

P Min E E E
  

  

 
  
 
 
 

    

Subject to: 

 
, 1 , 1

> 0...................................... 4.2
n n

ij rk

i j r k

E E
 

 
 

   ,    0ijE E   

Since All dead end roads are traversed and returned through the same road inspected and 

they are considered as self-loops.  
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4.3 Analysis of the Multi Graph and Results 

4.3.1 Analysis of the Multi graph and Results for BLOCK 1 (CBD) 

 

 

Figure 4.3 line and node diagram for the central business district (CBD) – Koforidua 

(BLOCK 1)   
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Table 4.31 Representation of Road links and their designation-Block 1 (CBD) 

NAME OF ROAD JUNCTION 
VERTEX 

DESIGNATION 

 

ORDER 

Ayah  1 2 

Debrahkrom 2 2 

ICGC 3 3 

Trotro station 4 3 

Sorodoae 5 5 

Advance Ghana 6 2 

Laundry traffic 7 4 

Nana Topen 8 3 

Eastern Empire 9 4 

Central Market 10 3 

Freedom Stores 11 3 

Old regional Library 12 3 

All Nations 13 3 

Ofose line 14 4 

GCB 15 4 

SIC traffic -1 16 3 

SIC traffic -2 17 2 

Central Apostolic  18 3 

Railways traffic 19 2 

Apex Bank 20 4 

SSNIT 21 3 

Sports council 22 4 

IRS – Rent control 23 3 

Betom  24 3 

Jackson Park_1 25 4 

PWD 26 3 

Oguaa secretariat 27 2 

Workers College 28 3 

Gratis foundation 29 3 

Betom-Riis 30 2 

Jackson Park _2 31 3 

Polyclinic 32 4 

Coca Cola Main Depot 33 1 

Agartha 34 1 

UT-Bank 35 1 

Regional Hospital  36 2 

Antartic traffic 37 3 

Anglican 38 2 
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Odd Vertices are in Block 1: 3, 4, 5, 8,10,11,12,13, 16, 18,21,23,24,26,28,29,31, 37 

Table 4.32:  Optimal repeated paths for BLOCK 1 

Optimal Pairing of Odd 

Vertices                     

Shortest Route to be 

repeated 

Shortest Distance 

[3-8] [3-7-8] 0.15+0.10 

[4-5] [4-5] 0.10 

[10-11] [10-11] 0.20 

[12-37] [12-37] 0.10 

[13-16] [13-16] 0.21 

[18-21] [18-19-20-21] 0.21+0.134+0.10 

[26-28] [26-27-28] 0.14+0.20 

[23-24] [23-24] 0.13 

[29-31] [29-38-31] 0.05+0.10 

Total optimal repeated path  1.924km 

 

Optimal inspection route (Eulerian circuit) for inspection for BLOCK 1 (the central 

business district) is as follows: 

18 36 17 16 32 14 13 16 13 6 9 5 1 3 7 3 4 5

4 8 7 8 9 11 10 11 14 15 37 12 10 7 30 31 38

31 12 37 23 24 29 38 29 28 27 28 25 24 23 22

25 26 27 26 21 22 15 20 21 20 19 20 32 18 19 18

→ → → → → → → → → → → → → → → → → →

→ → → → → → → → → → → → → → → → → →

→ → → → → → → → → → → → → → → →

→ → → → → → → → → → → → → → → →

 

Total Optimal distance covered:  12.931km 
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4.3.2 Analysis of the Multi graph and Results for BLOCK 2 

  

 

Figure 4.4:  line and node diagram for Old Estate – and Kenkey Factory (BLOCK 2) 
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Table 4.33: Representation of Road links and their designation (Old Estate Suburb) 

 

Name of road vertex 

 

Vertices designation 

on line and node 

diagram 

Order 

Kenkey Factory 1 2 

Old estate last stop 2 2 

Pentecost Basic School 

junction 

3 3 

St. Batikha  4 3 

Ministries Junction 5 3 

Regional Hospital traffic light   6 2 

Spread Eagle junction 7 3 

SDA Hospital Junction 8 3 

Old Estate Junction 9 2 

 

Odd Vertices are 3, 4, 8 and 7 all with the order of 3 

Table 4.34: Optimal repeated paths for BLOCK 2 

Optimal Pairing of Odd 

Vertices                     

Shortest Route to be 

repeated 

Shortest Distance 

[3-4] and [8-7] [3-4] and [8-7] 0.280+0.350 = 0.730km 

 

Edges to be repeated are [3-4] and [8-7] (St. Batikha –Pentecost Basic School junction, and 

Spread Eagle-SDA junction) 

Repeated Distance to be covered for Block 2:      3-4  and 8-7  0.73km  

Total length covered as self loops =   

                                                     2 0.390 0.350 0.180 0.150  2.14km      

Total length of all edges =  

, 1

0.258 0.312 0.90 0.20 0.35 0.28 0.30 0.40 0.10 0.20 3.30
n

i j

i j
i j

E km




            

Optimal distance covered in Block 2 inspection = 3.30 0.730 2.140 = 6.17km   
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Applying the Fleury‘s algorithm, an optimal Eulerian walk through Block 2 is found as 

follows:  6 -7 - 9 - 8 -7 - 8 - 3 - 4 - 3 - 2 - 1- 4 - 5 - 6  

 

 

  Figure 4.5:   line and node diagram for Atekyem - Galloway Road Layout  

(BLOCK 3) 
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Table 4.35   Representation of Road links and their designation in BLOCK 3  

                             (Galloway- Atekyem Suburbs) 

 

 

Name of road vertex 

 

Vertices designation 

on line and node 

Diagram 

Order 

New Juabeng - Poly 1 2 

New Juabeng  2 3 

New Capital view traffic 3 2 

Post lodge 4 3 

Eredec roundabout 5 4 

S. C. Appenteng 6 3 

Attekyem  7 3 

Sectech 8 3 

Galloway - Betom 9 3 

Galloway 10 2 

Freeman 11 2 

Riis Presby 12 3 

Ascension Presby 13 3 

Laundry traffic 14 2 

Municipal traffic 15 2 

Partners may hotel 16 3 

Residency  17 3 

Latter day saint  18 1 

Kenkey Factory 19 1 
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Odd vertices in Block 3: 2, 4, 8, 9, 12, 13, 16 and 17 

Table 3.36 Repeated route in the Block 3 (Atekyem - Galloway) 

Optimal Pairing of Odd 

Vertices 

Shortest Route to be 

repeated 

Shortest Distance 

[2-4] [2-4] 0.300 

[8-9] [8-9] 0.125 

[16-17] [16-17] 0.110 

[12-13] [12-13] 0.350 

Total optimal path repeated 0.885km 

 

Table 4.37    Self loops in Block 3 

Assumed Self Loops Road Designation Length Of Edge 

[3-19] New Capital View - Kenkey Factory 2x(0.80) 

[17-18] Residency – latter day saint  2x(0.30) 

Total estimated distance covered as self loops 2.20km 

 

Optimal Eulerian tour for the inspection of electricity customer meters in BLOCK 3: 

 4 3 1 2 4 7 5 16 13 14 15 17 16 17

5 8 9 12 13 11 10 9 8  6 7 6 2 4 

             

             
 

Optimal distance (without considering self loops):  5.68km+ 0.885km = 6.655km 

Optimal distance (considering self loops):  5.68km+ 0.885km +1.1km = 9.955km 
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Table 4.38:   Representation of Road links and their designation in BLOCK 4 

 (Adweso Poly-SSNIT flats) 
 

 

Name of road vertex 

 

Vertices designation on 

line and node diagram 
Order 

Koforidua Polytechnic traffic 1 2 

    Acapulco_1 2 3 

SSNIT Flat – Poly_2 3 2 

Acapulco _2 4 4 

Allan –Joy _1 5 4 

Adweso 205_1 6 3 

Achika - Estate junction 7 3 

Starland Hotel 8 4 

Allan-Joy _2 9 4 

Juabeng Serwaa 10 3 

Last Stop 11 3 

Assemblies of God 12 4 

Wesley International _2 13 3 

Adweso 205_2 14 3 

Wesley international _1 15 3 

New Juabeng 16 3 

Mahogany _1 17 2 
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Figure 4.6 line and node diagram for Adweso, Koforidua Polytechnic and SSNIT Flat 

                                                            (BLOCK 4) 
 

Odd vertices in BLOCK 4:  2, 6, 7, 13, 10, 11, 15 and 16 

Table 4.39 Repeated routes in BLOCK 4 

Optimal Pairing of Odd 

Vertices 

Shortest Route 

to be repeated 

Shortest Distance 

[2-6] [2-4-6] 0.33+0.20 

[7-13] [7-8-13] 0.210+0.125 

[10-11] [10-11] 0.155 

[15-16] [15-16] 0.150 

       Total optimal path repeated  1.17km 
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Table 4.40    Self loops in Block 3 

Assumed Self Loops Length Of Edge 

[17-27] 0.285 

[16-26] 0.154 

[15-25] 0.185 

[21-22] 0.600 

[23-24] 0.720 

[23-31] 0.400 

[18-21] 0.650 

[3-28] 0.400 

[28-30] 0.210 

[28-29]  0.200 

Total estimated distance covered as self 

loops 

3.154km 

 

 

Applying the Fleury‘s algorithm, an optimal Eulerian walk is found as follows: 

14 7 8 4 6 1 2 4 6 7 8 13 8 9 5 3 2 4 5

10 9 12 11 10 11 17 16 12 16 12 13 15 16 15 14

→ → → → → → → → → → → → → → → → → →

→ → → → → → → → → → → → → → → →

 

 

Optimal distance (without considering self loops):   1.17km +4.691km = 5.861km 

Optimal distance (considering self loops): 1.17km +4.691km + 3.154km = 9.015km 
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CHAPTER 5 

DISCUSSIONS, CONCLUSION AND RECOMMENDATIONS  

5.0 INTRODUCTION  

This chapter comprises discussion of the results through analysis, drawing conclusions and 

recommendations based on the outcome of the application of the CPP heuristic. 

5.1 DISCUSSION  

The focus of this work is centred on constructing optimal routes for the inspection of 

prepaid meters using the constrained Chinese postman problem heuristic.  In the work, the 

routes are constructed by using the Dijsktra‘s algorithm with Matlab programme to find 

optimal tour length between all pairs of odd vertices (mostly ‗T‘ and ‗Y‘ junctions). The 

Fleury‘s algorithm is subsequently employed to find the optimal route for the inspection of 

the meters in both residential and commercial areas located on designated plot numbers 

along the roads. 

In order to show the practicality and mimic what occurs in actual practice, the graph (the 

road network is divided into four (4) clusters into showing the different suburbs without 

creating a nontrivial component).  The inspection algorithm is applied to find the optimal 

route taking into consideration all roads with dead-ends.  

For optimality, the inspection team are put into four (4) different groups in accordance to 

the bocks used into which the ECG has put it and the tour of each should also be kept 

geographically apart as much as possible. However, it is important to note that the 

researcher performed several experiments on more than those presented, but for the sake of 

the objectives of this work only few different cases for each inspection team is presented. 
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5.2 CONCLUSION 

The Chinese Postman‘s algorithm is a powerful heuristic algorithm that is edge centred 

unlike the TSP which is node centred. 

Based on the results and the discussions above, the following conclusions can be made.  

(i) Number of repeated routes in the optimal route length increases directly with 

increase in the number of nodes 

(ii)  Optimal route covered for Block 1 is 6.17km, Block 2 is 9.955km, Block 3    

9.015km is and Block 4 is 12.931km.  

(iii)  For Block 1 covering Central business District the inspection order is as follows: 

ECG RegionalRegional HospitalSIC Traffic_2SIC Traffic_1  

PolyclinicOfose line  All Nations  SIC Traffic_1  All Nations  

Advance Ghana  Eastern Empire  Sorodaedebrah krom Ayah  

ICGC  laundry traffic   ICGC  trotro station Sorodae Trotro station 

Nana Topen Laundry traffic Nana Topen Eastern 

EmpireFreedom StoresCentral Market Freedom stores Ofose line 

GCB  Antartic trafficOld Regional Library  laundry trafficBetom 

RiisJackson Park_2AnglicanJackson parkOld regional 

libraryAntartic traffic    

IRS – Rent Control  Betom Gratis foundation workers  

collegeAnglican gratis foundation workers  collegeOguaa Secretariat 

workers college  Jackson park 1 betom  IRS Rent-Control Sports 

council  Jackson park_1PWD  SSNIT   Sports Council  Apex 

Bank  SSNIT   Apex Bank   Railways Traffic  Apex Bank Polyclinic 

Central Apostolic   Railways traffic  ECG Regional 
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(iv) For Block 2 covering the Old estate, Nsukwao and Kenkey Factory and  the 

inspection order is as follows: 

 Regional Hospital trafficspread eagleOld EstateSDA Hospital   

Spread EagleSDA HospitalPentecost Basic SchoolOld Estate Last 

stopSt Batikha MinistriesRegional Hospital traffic   

(v) For Block 3 covering the Atekyem and Galloway suburbs, the inspection order is as 

follows: 

Post lodge   New Capital view traffic  New Juabeng – Koforidua Poly  New 

Juabeng  Post lodge  Attekyem  Eredec roundabout  Partners May 

Hotel  Ascension Presby  Laundry traffic  Municipal traffic  Residency  

Partners May Hotel  Residency  Eredec roundabout  Sectech  Galloway - 

Betom  Riis Presby  Ascension Presby  Freeman  Galloway  Galloway - 

Betom  Sectech  S. C. Appenteng  AttekyemS. C. Appenteng  New 

Juabeng  Post lodge 

(vi) For Block 4 covering Adweso, Koforidua Poly and SSNIT flats the inspection order 

is as follows:      

   Adweso 205-Main   Achika-Estate junctionStarland Hotel  Adweso 205-1  

  Koforidua Polytechnic traffic  Acapulco_1  Acapulco _2  Adweso 205_1  

  Starland Hotel  Wesley International _2  Starland Hotel  Allan-Joy _2  

  Allan –Joy _1  SSNIT Flat – Poly_2  Acapulco_1  Acapulco_2  

  Allan –Joy _1  Juabeng Serwaa  Allan-Joy _2  Assemblies of God   

Last Stop Mahogany _1  New Juabeng  Assemblies of God   

Wesley International _2  Wesley international _1  New Juabeng  

Wesley international _1  Adweso 205_2 
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As we compare the results of using CPP the existing system in ECG, we may argue that the 

inspection systems has become more scientific and follow a more organised path that could 

easily be used.  

Hence, to run an efficient inspection of meters, Electricity Company of Ghana (ECG), 

Northern Electrification Development (NED) as well as all organization whose work 

require that they service every street in the municipality could adopt system that is ‗cluster-

first, route-second‘ algorithm in CPP or the constrained CPP heuristic for inspection of the 

meters for optimal tour as part of their preventive maintenance programme. 

 

 

5.3 RECOMMENDATIONS 

 

i.) The Electricity Company of Ghana – ECG could consider the demarcation and the 

routes below in other to minimize the time/increase the frequency when undergoing 

periodic meter inspections exercise in the Koforidua Municipality. 

ii.) Students can use this work for further research covering all subtours within the 

densely populated suburbs within the municipality such as the Central business 

District .(CBD) 
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APPENDICES 

APPENDIX A 

Matlab code for Dijsktra’s Algorithm 

%An implementation of the Dijkstra's algorithm for MatLab 

 

function ans = Dijkstra(src,ConMat) 

 

N = size(ConMat,1); 

Visited = -1*ones(N,1);  % Here -1 means Not defined 

PrevNode = -1*ones(N,1); 

Distance = Inf*ones(N,1); 

 

Distance(src) = 0; 

CurrentNode = src; 

nVisited = 0; 

while (nVisited <N) 

   Visited(CurrentNode) = 1; 

   for i=1:N 

       if (ConMat(CurrentNode,i)>0) 

           temp = ConMat(CurrentNode,i) + Distance(CurrentNode); 

           if (temp< Distance(i)) 

               Distance(i) = temp; 

               PrevNode(i) = CurrentNode; 

           end 

       end 

   end 

   minimum = 0; 

   for i= 1:N         

       if (Visited(i)<0)&&(Distance(i)>0) 

           if (minimum ==0) 

               minimum = i; 

           elseif (Distance(i)<Distance(minimum)) 

               minimum = i; 

           end            

       end 

   end 

   CurrentNode = minimum; 

 

   nVisited = nVisited +1; 

end 

 

ans = PrevNode; 
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APPENDIX B 

 

Figure 5.1 Map of Koforidua (Source: google.com.gh/maps, 01,2012) 

 


