
OPTIMAL RESOURCE ALLOCATION

USING KNAPSACK PROBLEMS

A CASE STUDY OF TELEVISION ADVERTISEMENTS

AT GHANA TELEVISION (GTV)

by

Emmanuel Ofori Oppong

A Thesis submitted to the Department of Mathematics,
Kwame Nkrumah University of Science and Technology

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
(INDUSTRIAL MATHEMATICS)

Faculty of Physical Science, College of Science

February, 2009

DECLARATION

I hereby declare that this submission is my own work towards the Master of Science degree and

that, to the best of my knowledge it contains no material previously published by another person

nor material which has been accepted for award of any other degree of the university Except

where due acknowledgement has been made in the text.

Emmanuel Ofori Oppong, PG1837007 …………………. ……………………

Student’s Name & ID Signature Date

Certified By

Dr. S. K. Amponsah …………………. ……………………

Supervisor’s Name Signature Date

Certified by

Dr. S. K. Amponsah …………………. ……………………

Head of Department’s Name Signature Date

ACKNOWLEDGEMENT

I will like to give thanks to the Almighty God for granting me the strength and the knowledge for

undertaking this course and the completion of this write-up.

I am very grateful to my supervisor, Dr. S. K. Amponsah of the Department of mathematics, who

painstakingly read through every line of the text and offered through his rich experience the

necessary encouragement, direction, guidance and corrections for the timely for the completion

of this thesis.

I will like also to thank Dr. F.T Oduro of the Department of Mathematics for encouraging me to

embark on this course and when I went to him for advice on a postgraduate course to embark on

in the Department.

Indeed I am indebted to entire senior members at the Department of Mathematics and the

Computer Science for their support during the period.

I am equally indebted to my wife Mrs. Juliana Ofori Oppong my three children for their

understanding and support for me during the entire course.

Finally my thanks go to all who in diverse ways helped in bringing this project to a successful

end.

God Richly Bless you all.

ABSTRACT

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems

in this class are typically concerned with selecting from a set of given items, each with a

specified weight and value, a subset of items whose weight sum does not exceed a prescribed

capacity and whose value is maximum. The specific problem that arises depends on the number

of knapsacks (single or multiple) to be filled and on the number of available items of each type

(bounded or unbounded). Because of their wide range of applicability, knapsack problems have

known a large number of variations such as: single and multiple-constrained knapsacks,

knapsacks with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks,

single and multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and

stochastic knapsacks, knapsacks with convex / concave objective functions, etc.

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each

type. Knapsack Problems have been intensively studied over the past forty (40) years because of

their direct application to problems arising in industry (for example, cargo loading, cutting stock,

and budgeting) and also for their contribution to the solution methods for integer programming

problems. Several exact algorithms based on branch and bound, dynamic programming and

heuristics have been proposed to solve the Knapsack Problems. This thesis considers the

application of classical 0-1 knapsack problem with a single constraint to selection of television

advertisements at critical periods such as Prime time News, new adjacencies and peak times. The

Television (TV) stations have to schedule programmes interspersed with adverts or commercials

which are the main sources of income of broadcasting stations. The goal in scheduling

commercials is to achieve wider audience satisfaction and making maximum income from the

commercials or adverts. Our approach is flexible and can incorporate the use of the knapsack for

Profit maximization in the TV adverts selection problem.

Our work focuses on using a simple heuristic scheme (Simple flip) for the solution of knapsack

problems. We show that the results from the heuristic method compares favourably with the well

known meta-heuristic methods such as Genetic Algorithm and Simulated Annealing. The thesis

shows how television advertisement at critical segments such as prime time news (19:00 GMT)

and news adjacencies (five minutes before and after news time) can be prioritized to rake in the

maximum returns to support operations of a national Television station (GTV). The computer

solution developed could be used for any problem that can be modeled as single 0-1 knapsack

problem.

i

DECLARATION

I hereby declare that this submission is my own work towards the Master of Science degree

and that, to the best of my knowledge it contains no material previously published by another

person nor material which has been accepted for award of any other degree of the university

Except where due acknowledgement has been made in the text.

Emmanuel Ofori Oppong, PG1837007 …………………. ……………………

Student’s Name & ID Signature Date

Certified By

Dr. S. K. Amponsah …………………. ……………………

Supervisor’s Name Signature Date

Certified by

Dr. S. K. Amponsah …………………. ……………………

Head of Department’s Name Signature Date

ii

ABSTRACT

The Knapsack Problems are among the simplest integer programs which are NP-hard.

Problems in this class are typically concerned with selecting from a set of given items, each

with a specified weight and value, a subset of items whose weight sum does not exceed a

prescribed capacity and whose value is maximum. The specific problem that arises depends

on the number of knapsacks (single or multiple) to be filled and on the number of available

items of each type (bounded or unbounded). Because of their wide range of applicability,

knapsack problems have known a large number of variations such as: single and multiple-

constrained knapsacks, knapsacks with disjunctive constraints, multidimensional knapsacks,

multiple choice knapsacks, single and multiple objective knapsacks, integer, linear, non-

linear knapsacks, deterministic and stochastic knapsacks, knapsacks with convex / concave

objective functions, etc.

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each

type. Knapsack Problems have been intensively studied over the past forty (40) years

because of their direct application to problems arising in industry (for example, cargo

loading, cutting stock, and budgeting) and also for their contribution to the solution methods

for integer programming problems. Several exact algorithms based on branch and bound,

dynamic programming and heuristics have been proposed to solve the Knapsack Problems.

This thesis considers the application of classical 0-1 knapsack problem with a single

constraint to selection of television advertisements at critical periods such as Prime time

News, news adjacencies, Break in News and peak times. The Television (TV) stations have

to schedule programmes interspersed with adverts or commercials which are the main sources

of income of broadcasting stations. The goal in scheduling commercials is to achieve wider

audience satisfaction and making maximum income from the commercials or adverts. Our

approach is flexible and can incorporate the use of the knapsack for Profit maximization in

the TV adverts selection problem.

Our work focuses on using a simple heuristic scheme (Simple flip) for the solution of

knapsack problems. We show that the results from the heuristic method compares favourably

with the well known meta-heuristic methods such as Genetic Algorithm and Simulated

Annealing. The thesis shows how television advertisement at critical segments such as prime

time news (19:00 GMT) and news adjacencies (five minutes before and after news time) can

be prioritized to rake in the maximum returns to support operations of a national Television

iii

station (GTV). The computer solution developed could be used for any problem that can be

modeled as single 0-1 knapsack problem.

iv

ACKNOWLEDGEMENT
I will like to give thanks to the Almighty God for granting me the strength and the knowledge

for undertaking this course and the completion of this write-up.

I am very grateful to my supervisor, Dr. S. K. Amponsah of the Department of mathematics,

who painstakingly read through every line of the text and offered through his rich experience

the necessary encouragement, direction, guidance and corrections for the timely for the

completion of this thesis.

I will like also to thank Dr. F.T Oduro of the Department of Mathematics for encouraging me

to embark on this course and when I went to him for advice on a postgraduate course to

embark on in the Department.

Indeed I am indebted to entire senior members at the Department of Mathematics and the

Computer Science for their support during the period.

I am equally indebted to my wife Mrs. Juliana Ofori Oppong, my three children Isaac,

Stephen and Rebecca for their understanding and support during the entire course. Finally my

thanks go to all who in diverse ways helped in bringing this project to a successful end.

God Richly Bless you all.

v

TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

ACKNOWLEDGEMENT ... iv

TABLE OF CONTENTS .. v

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1.1 History of Broadcasting in Ghana .. 2

1.1.2 TV Broadcasting Programming or Scheduling .. 3

1.1.3 Television Commercial Scheduling ... 4

1.1.4 History Of Ghana Broadcasting Corporation ... 4

1.1.5 Television Stations in Ghana .. 5

1.2 Broadcast Television Systems .. 6

1.2.1 Analogue Television System ... 6

1.2.2 The Digital Television Transition .. 8

1.2.3 The Digital Television System ... 8

1.3 Problem Statement .. 9

1.4 Objective ... 10

1.5 Justification ... 10

1.6 Methodology ... 11

1.7 Scope and limitation ... 11

1.8 Organization of Thesis ... 11

CHAPTER TWO .. 13

LITERATURE REVIEW ... 13

CHAPTER THREE .. 36

TYPES OF KNAPSACK PROBLEMS AND SOLUTION METHODS 36

3.1.1 The Single 0-1 Knapsack Problem ... 36

3.1.2 The Subset Sum Knapsack problem .. 36

3.1.3 The Change-Making Problem .. 37

3.1.4 Multiple Knapsack Problems ... 38

3.1.5 Multi-dimensional Knapsack problem ... 39

3.2 Data Modeling ... 39

3.2.1 Methods for solving Knapsack problems. .. 39

vi

3.2.1 The Branch and Bound Method ... 40

3.2.2 Dynamic Programming Method .. 42

3.2.3 Heuristic Scheme ... 43

3.2.4 Simulated Annealing .. 44

3.2.4 Genetic Algorithm ... 46

CHAPTER 4 ... 52

DATA COLLECTION AND ANALYSIS ... 52

4.1. Data Collection .. 52

CHAPTER FIVE .. 61

CONCLUSION AND FUTURE WORK ... 61

REFERENCES ... 63

APPENDIX A - GTV Programme Schedule July – September 2009 .. 68

APPENDIX B - VISUAL BASIC.NET CODES FOR THE HEURISTIC SCHEME 71

1

CHAPTER ONE

INTRODUCTION

 Nearly every organization faces the problem of allocating limited resources (capital and other

scarce resources including time, people) across projects or other type of investments. There is

therefore the need to allocate these resources to maximize the returns from a given investment.

The goal is to select the particular subsets of projects which can be funded within the budget

constraint. One of the greatest resources of broadcasting stations (both Television and Radio) is

Time. The Television (TV) stations have to schedule programmes interspersed with adverts or

commercials which are the main sources of income of broadcasting stations. The goal in

scheduling commercials is to achieve wider audience satisfaction and making maximum income

from the commercials or adverts.

A great variety of practical problems can be represented by a set of entities, each having an

associated value, from which one or more subsets has to be selected in such a way that the sum

of the values of the selected entities is maximized, and some predefined conditions are respected.

The most common condition is obtained by also associating a weight to each entity and

establishing that the sum of the entity sizes in each subset does not exceed some prefixed bound.

These problems are generally called knapsack problems, since they recall the situation of a

traveler having to fill up his knapsack by selecting from among various possible objects those

which will give him the maximum comfort.

In the present survey we will adopt the following terminology. The entities will be called items

and their number will be indicated by n. The value and size associated with the jth item will be

called profit and weight, respectively, and denoted by pj and wj, (j = 1, … … , n)

2

 1.1.1 History of Broadcasting in Ghana

Broadcasting in Ghana began as a department of the Ministry of Information when it started in

1935. The ministry was responsible for the formulation of national mass communication policies

and for ensuring the full and effective use of the mass media for the dissemination of

information, and for economic and social development of the nation.

Radio Broadcasting was first established in Ghana in 1935 with approximately three hundred

(300) subscribers in Accra. The number was low because radio sets were then rare and

expensive, and was the privilege of only a rich few, mainly the expatriate community who had

come from countries that already had these mass communication facilities. The brain behind the

introduction of broadcasting into the country was the then Governor of the Gold Coast, Sir

Arnold Hodson. Broadcasting began in Ghana essentially as a relay service, re-broadcasting

programmes from the BBC World Service. A year later, the service began to expand and a re-

diffusion station was opened in Cape Coast, the Central Regional capital to cater for that part of

the country. Three more stations were opened the following year and a new broadcasting house

built in Accra during the Second World War in 1940. It had a small 1.3KW transmitter, with

which transmissions could be broadcast to neighbouring institutions. During the 1940s,

broadcasting began in four of the major Ghanaian languages - Twi, Fanti, Ga and Ewe.

In 1952, the then colonial government appointed a commission to advise it on ways of improving

and developing broadcasting. It was to investigate among other things the establishment and

maintenance of a statutory corporation to assume direction and control of broadcasting services

as was the case in parent country Britain. As a result of the Commission's report, a new

broadcasting system, the national service of the Gold Coast Broadcasting System was set up in

1954.

Broadcasting became a new department distinct from the Information Services to which it had

previously been attached. Broadcast content at this time was mainly governmental

announcements and rebroadcasts from the BBC.

From 1956, locally produced programmes increased, educational broadcasts to schools and

teacher training colleges were started and outside events were broadcast live into homes. When

the Gold Coast became Ghana in 1957, the Gold Coast Broadcast System became the Ghana

Broadcasting System, or as it was popularly known as Radio Ghana. Mass Communication was

3

embraced as a way of changing society. Broadcasting in Ghana was thus to be a public service

dedicated to the enlightenment and instruction of the people. Taking into consideration that its

main model was the BBC, the pioneer of public service broadcasting, it was no surprise that the

public service model was adopted from the onset.

Ghana’ entry into the international broadcasting scene began when in 1958 the government set

up another commission to advise it on launching an external service of Radio Ghana; the

External Service was inaugurated in June 1961 as a result. At the same time, television was being

considered and GBC Television Service was launched on 31st July 1965. In 1997, GBC entered

into an agreement with WorldSpace to provide GBC with a channel on its Afristar satellite. This

capability enabled GBC to provide a 24-hour, Direct Digital Broadcasting (DDB) service over a

coverage area of fourteen metre (14m) sq km, encompassing millions of radio listeners. Today,

due to deregulation, availability of technology and a shift in market economy, there are five

television stations in Ghana and at least seventy radio stations. Broadcasting has been privatised

and commercialised bringing with it the attendant competition, issues of regulation of content

and of operation.

1.1.2 TV Broadcasting Programming or Scheduling

Broadcast programming, or scheduling, is the practice of organizing television or radio programs

in a daily, weekly, or season-long schedule. Modern broadcasters regularly change the

scheduling of their programs to build an audience for a new show, retain that audience, or

compete with other broadcasters' programs.

Television scheduling strategies are employed to give programs the best possible chance of

attracting and retaining an audience. They are used to deliver programs to audiences when they

are most likely to want to watch them and deliver audiences to advertisers in the composition

that makes their advertising most likely to be effective (Ellis, 2000). Digitally based broadcast

programming mechanisms are known as Electronic program guides.

At a micro level, scheduling is the minute planning of the transmission; what to broadcast and

when, ensuring that every second of airtime is covered.

4

1.1.3 Television Commercial Scheduling

The main source of income for private TV stations is advertising. The broadcasting is

interspersed with advertising “breaks” typically 3 minutes long. In business adverts are called

“spots”. Typical spots lengths are 7 seconds, 15, 22, 30, 45, 60, 90, 120. It is a rule of television

advertising that competing products should not be advertised within the same break. Hence

products are scheduled into clash groups and products within the same clash group should not be

advertised in the same break (Brown, 1969)

1.1.4 History Of Ghana Broadcasting Corporation

• July 31 1935. Radio ZOY established. It was a small relay station installed in a bungalow

near the State house in Accra.

• 1939. British Government provided funds for the building of a more fitting broadcasting

House and purchased a new transmitter to carry programmes to the Country and the

neighbouring West African territories.

The Broadcasting House (BH2) was opened in 1940.

• 1946. Information Services Dept. handled administration of GBC.

• 1953. Gold Coast Broadcasting System established as a Department.

• 1956. Audience Research Department set up.

• 1956. GBC News Unit set up.

• 1958. Broadcasting House (BH-3) built.

• 1960. Dr. D. F. Coleman appointed first Ghanaian Director of Broadcasting.

• 1960. GBC joined Commonwealth Broadcasting Association.

• 1961, June 1. External Service inaugurated.

• 1962. GBC Reference Library established..

• 1965, 31 July. Ghana Television inaugurated.

• 1965. Rural Broadcasting inaugurated.

• 1967, February 1. Commercial Broadcasting introduced on additional shortwave Radio.

• 1971. Public Relations Department set up.

5

• 1985. Colour Television introduced.

• 1986. Accra FM inaugurated

Regional Fm Stations

• Obonu 96.5fm – Tema, Greater Accra

• Garden City Radio 92.1fm – Kumasi, Ashanti

• Radio Central 92.5fm – Cape Coast, Central

• Twin City Radio 94.7fm – Sekondi-Takoradi

• Sunrise FM 106.7fm – Koforidua, Easte

• Radio B.A.R 93.5fm – Sunyani, Brong Ahafo

• Volta Star Radio 91.1fm – Ho, Volta

• Radio Savannah 91.3fm – Tamale, Northern

• U.R.A. Radio 89.7fm – Bolgatanga, Upper East

• Radio Upper West 90.1fm – Wa, Upper West

1.1.5 Television Stations in Ghana

Currently there is one state-owned TV station, two free-to air TV channels and other five other

channel using either cable /satellite broadcasting. Ghana TV (GTV) is a state-owned national TV

operated by the Ghana Broadcasting Corporation. Metro TV and TV3 are free-to-air TV

channel. Multichoice - provides its services through satellite, as well as Cable Gold whose

service through cable serves parts of Tema, and also Fontomfom TV, which telecasts in

Kumasi.V-Net TV and Fantazia TV - cable TV channel. TV AGORO (TVA) is pay-TV station

which broadcast wavelengths over Accra. through bouquet of six premium channels comprising

news channel CNN, music channel MCM, Cartoon Network for the kids, Turner Classic Movies

(TCM) and French channel CFITV. They also broadcast two religious channels on a 24-hour

basis, being Trinity Broadcasting Network (TBN) and the Catholic channel EWTN. Currently

most of the channels used in Ghana are on VHF. But stations like CNN and others are broadcast

on UHF channels. The trend in TV broadcast is towards use of more and more UHF channels

because among other reasons, there are more available.

http://www.metrotv.com.gh/

6

1.2 Broadcast Television Systems

There are several broadcast television systems in use in the world today. These are the Analogue,

digital switch over and digital. In terms of ownership we have state owned television stations,

private stations, pay stations.

1.2.1 Analogue Television System

An analogue television system includes several components: a set of technical parameters for the

broadcast signal, a system for encoding color, and possibly a system for encoding multi-channel

audio. In digital television, all of these elements are combined in a single digital transmission

system. All but one analogue television system began life in monochrome. Each country, faced

with local political, technical, and economic issues, adopted a color system which was

effectively grafted onto an existing monochrome system, using gaps in the video spectrum

(explained below) to allow the color information to fit in the channels allotted. In theory, any

color system could be used with any monochrome video system, but in practice some of the

original monochrome systems proved impractical to adapt to color and were abandoned when the

switch to color broadcasting was made. All countries use one of three color systems: NTSC,

PAL, or SECAM.

Ignoring color, all television systems work in essentially the same manner. The monochrome

image seen by a camera (now, the luminance component of a color image) is divided into

horizontal scan lines, some number of which make up a single image or frame. A monochrome

image is theoretically continuous, and thus unlimited in horizontal resolution, but to make

television practical a limit had to be placed on the bandwidth of the television signal, which puts

an ultimate limit on the horizontal resolution possible. When color was introduced, this limit of

necessity became fixed. All current analogue television systems are interlaced; alternate rows of

the frame are transmitted in sequence, followed by the remaining rows in their sequence. Each

half of the frame is called a field, and the rate at which fields are transmitted is one of the

fundamental parameters of a video system. It is related to the frequency at which the electric

power grid operates, to avoid flicker resulting from the beat between the television screen

http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Analog_television
http://en.wikipedia.org/wiki/Analog_television
http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Digital_television
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/SECAM
http://en.wikipedia.org/wiki/Luminance_(video)
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Interlaced
http://en.wikipedia.org/wiki/Utility_frequency
http://en.wikipedia.org/wiki/Electricity_distribution
http://en.wikipedia.org/wiki/Electricity_distribution
http://en.wikipedia.org/wiki/Beat_(acoustics)

7

deflection system and nearby mains generated magnetic fields. All digital, or "fixed pixel",

displays have progressive scanning and must deinterlace an interlaced source. Use of

inexpensive deinterlacing hardware is a typical difference between lower- vs. higher-priced flat

panel displays (PDP, LCD, etc.). All movies and other filmed material shot at twenty-four (24)

frames per second must be transferred to video frame rates in order to prevent severe motion

jitter effects. Typically, for twenty-five (25) frame/s formats (countries with 50 Hz mains

supply), the content is sped up, while a techniques known as "3:2 pulldown" is used for 30

frame/s formats (countries with 60 Hz mains supply) to match the film frames to the video

frames without speeding up the play back. Analog television signal standards are designed to be

displayed on a cathode ray tube (CRT), and so the physics of these devices necessarily controls

the format of the video signal. The image on a CRT is painted by a moving beam of electrons

which hits a phosphor coating on the front of the tube. This electron beam is steered by a

magnetic field generated by powerful electromagnets close to the source of the electron beam.

In order to reorient this magnetic steering mechanism, a certain amount of time is required due to

the inductance of the magnets; the greater the change, the greater the time it takes for the electron

beam to settle in the new spot.

For this reason, it is necessary to shut off the electron beam (corresponding to a video signal of

zero luminance) during the time it takes to reorient the beam from the end of one line to the

beginning of the next (horizontal retrace) and from the bottom of the screen to the top (vertical

retrace or vertical blanking interval). The horizontal retrace is accounted for in the time allotted

to each scan line, but the vertical retrace is accounted for as phantom lines which are never

displayed but which are included in the number of lines per frame defined for each video system.

Since the electron beam must be turned off in any case, the result is gaps in the television signal,

which can be used to transmit other information, such as test signals or color identification

signals.

The temporal gaps translate into a comb-like frequency spectrum for the signal, where the teeth

are spaced at line frequency and concentrate most of the energy; the space between the teeth can

be used to insert a color subcarrier. Broadcasters later developed mechanisms to transmit digital

information on the phantom lines, used mostly for teletext and closed captioning.

http://en.wikipedia.org/wiki/Progressive_scan
http://en.wikipedia.org/wiki/Deinterlace
http://en.wikipedia.org/wiki/Plasma_display
http://en.wikipedia.org/wiki/LCD
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/PAL_speedup
http://en.wikipedia.org/wiki/3:2_pulldown
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Phosphor
http://en.wikipedia.org/wiki/Electromagnet
http://en.wikipedia.org/wiki/Inductance
http://en.wikipedia.org/w/index.php?title=Zero_luminance&action=edit&redlink=1
http://en.wikipedia.org/wiki/Vertical_blanking_interval
http://en.wikipedia.org/wiki/Frequency_spectrum
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/Closed_captioning

8

PAL-Plus uses a hidden signaling scheme to indicate if it exists, and if so what operational mode

it is in. NTSC has been modified by the Advanced Television Standards Committee to support an

anti-ghosting signal that is inserted on a non-visible scan line. Teletext uses hidden signaling to

transmit information pages. NTSC Closed Captioning signaling uses signaling that is nearly

identical to teletext signaling. All six hundred and twenty (625) line systems incorporate pulses

on line twenty-three (23) that flag to the display that a 16:9 widescreen image is being broadcast,

though this option is not currently used on analogue transmissions

1.2.2 The Digital Television Transition

The digital television transition (also called the digital switchover (DSO) or analog switchoff

(ASO), sometimes analog sunset) is the process in which analog television broadcasting is

converted to and replaced by digital television. This primarily involves both TV stations and

over-the-air viewers; however it also involves content providers like TV networks, and cable TV

conversion to digital cable. At the other extreme, a whole country can be converted from

analogue to digital television.

In many countries, a simulcast service is operated where a broadcast is made available to viewers

in both analog and digital at the same time. As digital becomes more popular, it is likely that the

existing analogue services will be removed.

1.2.3 The Digital Television System

A Digital television transmission is more efficient, easily integrating other digital processes, for

features completely unavailable or unimaginable with analog formats.For the end-user, digital

television has potential for resolutions and sound fidelity comparable with blu-ray home video

and with digital multiplexing, it is also possible to offer subchannels, distinct simulcast

programming, from the same broadcaster. For government and industry, digital television

reallocates the radio spectrum so that can be auctioned off by the government. In the subsequent

auctions, telecommunications industries can introduce new services and products in mobile

telephony, wi-fi internet, and other nationwide telecommunications projects

http://en.wikipedia.org/wiki/PALPlus
http://en.wikipedia.org/wiki/Widescreen_signaling
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/ATSC
http://en.wikipedia.org/wiki/Ghost-canceling_reference
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/Closed_Captioning
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/Sunset_clause
http://en.wikipedia.org/wiki/Analog_TV
http://en.wikipedia.org/wiki/Broadcasting
http://en.wikipedia.org/wiki/Digital_television
http://en.wikipedia.org/wiki/TV_station
http://en.wikipedia.org/wiki/Over-the-air
http://en.wikipedia.org/wiki/TV_network
http://en.wikipedia.org/wiki/Cable_TV
http://en.wikipedia.org/wiki/Digital_cable
http://en.wikipedia.org/wiki/Simulcast
http://en.wikipedia.org/wiki/Blu-ray
http://en.wikipedia.org/wiki/Digital_subchannel
http://en.wikipedia.org/wiki/Radio_spectrum
http://en.wikipedia.org/wiki/Spectrum_auction
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Wi-fi

9

1.3 Problem Statement

Suppose you want to invest – all or in part- a capital of c dollars and you are considering n

possible investments. Let 𝑝𝑗R be the profit you expect from investment 𝑗, 𝑎𝑛𝑑 𝑤𝑗R the amount of

dollars it requires. It is self evident that the optimal solution of the knapsack problem above will

indicate the best possible choice of investment.

The objects to be considered will generally be called items and their number be indicated by n .

The value and size associated with the 𝑗𝑡ℎ item will be called profit and weight, respectively, and

denoted by 𝑝𝑗 𝑎𝑛𝑑 𝑤𝑗 , (j = 1, … … , n).

At this point you may be stimulated to solve the problem. A naïve approach would be to program

a computer to examine all possible binary vectors x, selecting the best of those which satisfy the

constraint. Unfortunately, the number of such vectors is 2n, so even a hypothetical computer,

capable of one billion vectors per second, would require more than 30 years for 60n = , more

than sixty (60) years for 60n = , ten centuries for n=65 and so on (Pisinger, 1995).

However, specialized algorithms can, in most cases, solve a problem with 100,000n = in a few

seconds on a mini/micro computer.

Again, suppose the producer of a TV programme want to select among numerous adverts for the

prime time (news at 19:00 hours GMT) which is interspersed with five or six spots of adverts of

not more than three minutes each.

The problem considered so far is representative of a variety of knapsack-type problems in which

a set of entities are given, each having an associated value and size, and it is desired to select one

or more disjoint subset so that the sum of the sizes in each subset does not exceed (or equals) a

given bound and the sum of the selected values is maximized.

Knapsack problems have been intensively studied, especially in the last decade, attracting both

theorists and practicians. The theoretical interest arises mainly from their simple structure which,

on the other hand allows exploitation of a number of combinatorial properties and, on the other,

more complex optimization problems to be solved through a series of knapsack-type sub

10

problems. From the practical point of view, these problems can model many industrial situations:

capital budgeting, cargo loading, cutting stock, to mention the most classical applications.

 1.4 Objective

The main objective of this survey is to determine an effective way of scheduling commercials or

adverts in the television station to achieve the maximum returns. The main source of income

from the private operators of broadcasting adverts hence the need to find scientific means of

selecting subsets for the numerous advert to achieve substantial income for their operations

within the limited space of time. The state-owned TV station (GTV) is also required to generate

additional revenue to supplement the subvention from government. The thesis is to provide

computer solutions to these problems.

1.5 Justification

TV station provides both visual and audio output in the form of information, education and

entertainment to the public using the scarce resources of funds available while grapping with the

numerous adverts from the corporate organizations and the teaming audience. In order to justify

their existence, the TV stations have to generate enough revenue from sponsored programmes

and adverts to support their operation, be it private or state-owned. Without any adequate

scientific method of selecting from the numerous adverts received daily the maximum returns

from these may no be achieved. Each advert is charged according to the number of times to be

telecast and the duration in minutes or seconds. A number of practical problem s can be

formulated as problems, for example the simple capital budgeting problem of choosing which

project constraint on total cost. Knapsack problems can model many other managerial and

industrial situations such as cargo loading and cutting stock problems, (Salkim and Derkluyer

Knapsack problems and survey).

11

Other applications of knapsack Problems are

• Routing of vehicles (planes, trucks etc.)

• Routing of postal workers

• Drilling holes on printed circuit board

• Routing robots through a warehouse

1.6 Methodology

The methodology employed included review of relevant literature of the types of knapsack

problems and the methods employed in the solution of the knapsack problems and to develop

computer solutions for faster computation of the knapsack problems of data from Ghana

Television (GTV).

1.7 Scope and limitation

The problems to be considered in this survey are single 0-1knapsack problems, where one

container must be filled with an optimal subset of items. The capacity of such a container will be

denoted by c. The more general case where m containers, of capacities ci (i = 1,. . . , m) , are

available is referred to as multiple knapsack problems.

The computer solution developed in VB.Net programming language for the single 0-1 knapsack

problems could be modified to solve multi-dimensional knapsack problems.

1.8 Organization of Thesis

Chapter 1 provides the background of the Knapsack Problems, the television industry and the

methodology and justification for the use of knapsack problems to solve the TV adverts selection

problem.

Chapter 2 gives a review of relevant literature on Knapsack problems applications and the

solution methods that have been proposed in literature.

12

Chapter 3 outlines some algorithms for the solution methods such as the branch and bound, the

dynamic programming, heuristic scheme, simulated annealing and Genetic algorithm.

Chapter 4 deals with the data collection and results of analysis of actual data from Ghana

Television (GTV).

 The final chapter draws the curtain on the conclusion and future work.

1.9 Summary

In this chapter, we discussed the formulation of the knapsack problem to the solution of the

Television Advert problem, the background of television systems, the background of the case

study area (Ghana Television), the methodology and the justification of the thesis.In the next

chapter, we shall put forward the literature pertinent in the area of 0-1 knapsack problems.

13

CHAPTER TWO

LITERATURE REVIEW

Knapsack problems have been studied intensively in the past decade attracting both theorist and

practitioners. The theoretical interest arises mainly from their simple structure which both allows

exploitation of a number of combinational properties and permits more complex optimization

problems to be solved through a series of knapsack type. From a practical point of view, these

problems can model many industrial applications, the most classical applications being capital

budgets, cargo loading and cutting stock. In this chapter we present a review of literature on

knapsack problems and applications.

Benisch et al. (2005) examined the problem of choosing discriminatory prices for customers with

probabilistic valuations and a seller with indistinguishable copies of a good. They showed that

under certain assumptions this problem can be reduced to the continuous knapsack problem

(CKP). They presented a new fast epsilon-optimal algorithm for solving CKP instances with

asymmetric concave reward functions. They also showed that their algorithm can be extended

beyond the CKP setting to handle pricing problems with overlapping goods (e.g. goods with

common components or common resource requirements), rather than indistinguishable goods.

They provided a framework for learning distributions over customer valuations from historical

data that are accurate and compatible with their CKP algorithm, and validated their techniques

with experiments on pricing instances derived from the Trading Agent Competition in Supply

Chain Management (TAC SCM). Their results confirmed that their algorithm converges to an

epsilon-optimal solution more quickly in practice than an adaptation of a previously proposed

greedy heuristic.

Pendharkar et al. (2005) described an information technology capital budgeting (ITCB) problem,

and showed that the ITCB problem can be modeled as a 0–1 knapsack optimization problem, and

proposed two different simulated annealing (SA) heuristic solution procedures to solve the ITCB

problem. Using several simulations, they empirically compared the performance of two SA

heuristic procedures with the performance of two well-known ranking methods for capital

14

budgeting. Their results indicated that the information technology (IT) investments selected

using the SA heuristics have higher after-tax profits than the IT investments selected using the

two ranking methods.

Yield management is an important issue for television advertising. Anyway, the major part of the

research in revenue management focus on the airline or hotel industry. The TV advertising case

has some specificities, where the most important is the decomposition of the offer into a lot of

small TV breaks (about 10 spots only). Martin (2004) proposed generic solutions based on

simulations and approximate dynamical programming.

Transportation programming, a process of selecting projects for funding given budget and other

constraints, is becoming more complex. Zhong and Young (2009) described the use of an integer

programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to

transportation programming problems in cases where alternative versions of projects are under

consideration. Optimization methods for use in the transportation programming process were

compared and then the process of building and solving the optimization problems discussed. The

concepts about the use of MCKP were presented and a real-world transportation programming

example at various budget levels were provided. They illustrated how the use of MCKP

addresses the modern complexities and provides timely solutions in transportation programming

practice.

The knapsack container loading problem is the problem of loading a subset of rectangular boxes

into a rectangular container of fixed dimensions such that the volume of the packed boxes is

maximized. A new heuristic based on the wall-building approach was proposed earlier. That

heuristic divides the problem into a number of layers and the packing of layers is done using a

randomized heuristic. Juraitis et al. (2006) focused on ways to find proportions of the mixture of

heuristics which would lead to better performance of the algorithm. New results were compared

with earlier research and some other constructive heuristics.

The performance of the corresponding algorithms was experimentally compared for

homogeneous and heterogeneous instances. Proposed improvements allow achieving better

filling ratio without increasing the computational complexity of the algorithm

15

Glickman and Allison, (1973) considered the problem of choosing among the technologies

available for irrigation by tubewells to obtain an investment plan which maximizes the net

agricultural benefits from a proposed project in a developing country. Cost and benefit

relationships were derived and incorporated into a mathematical model which is solved using a

modification of the dynamic programming procedure for solving the knapsack problem. The

optimal schedule was seen to favor small capacity wells, drilled by indigenous methods, with

supplementary water distribution systems.

Ferreira, (1995) presented parallel algorithms for solving a knapsack problem of size n on

PRAM and distributed memory machines. The algorithms were work-efficient in the sense that

they achieved optimal speedup with regard to the best known solution to this problem. Moreover,

they match the best current time/memory/processors tradeoffs, while requiring less memory

and/or processors. Since the PRAM is considered mainly as a theoretical model, and we want to

produce practical algorithms for the knapsack problem, its solution in distributed memory

machines is also studied. For the first time in literature, work-efficient parallel algorithms on

local memory — message passing architectures — are given. Time bounds for solving the

problem on linear arrays, meshes, and hypercubes are proved.

Bazgan et al. (2007) presented an approach, based on dynamic programming, for solving the 0/1

multi-objective knapsack problem. The main idea of the approach relies on the use of

several complementary dominance relations to discard partial solutions that cannot lead to new

non-dominated criterion vectors. This way, they obtained an efficient method that outperforms

the existing methods both in terms of CPU time and size of solved instances.

Extensive numerical experiments on various types of instances were reported. A comparison

with other exact methods was also performed.

The data association problem consists of associating pieces of information emanating from

different sources in order to obtain a better description of the situation under study. This problem

arises, in particular, when, considering several sensors, we aim at associating the measures

corresponding to a same target. This problem, widely studied in the literature, is often stated as a

mailto:ferreira@lip.ens-lyon.fr

16

multidimensional assignment problem where a state criterion is optimized. While this approach

seems satisfactory in simple situations where the risk of confusing targets is relatively low, it is

much more difficult to get a correct description in denser situations. Hugot et al. (2006)

proposed, to address this problem in a multiple criteria framework using a second

complementary criterion, based on the identification of the targets. Due to the specificities of the

problem, simple and efficient approaches can be used to generate non-dominated solutions.

Moreover, they showed that the accuracy of the proposed solutions is greatly increased when

considering a second criterion. A bi-criteria interactive procedure is also introduced to assist an

operator in solving conflicting situations.

The Bounded Knapsack Problem (BKP) is a generalization of the 0-1 Knapsack Problem where a

bounded amount of each item type is available. Currently, the most efficient algorithm for BKP

transforms the data instance to an equivalent 0-1 Knapsack Problem, which is solved efficiently

through a specialized algorithm. Pisinger (1996) proposed a specialized algorithm that solves an

expanding core problem through dynamic programming such that the number of enumerated

item types is minimal. Sorting and reduction is done by need, resulting in very little effort for the

preprocessing. Compared to other algorithms for BKP, the presented algorithm uses tighter

reductions and enumerates considerably less item types. Computational experiments are

presented, showing that the presented algorithm outperforms all previously published algorithms

for BKP.

Several types of large-sized 0-1 Knapsack Problems (KP) may be easily solved, but in such cases

most of the computational effort is used for sorting and reduction. In order to avoid this problem

it has been proposed to solve the so-called core of the problem: a Knapsack Problem defined on a

small subset of the variables. The exact core cannot, however, be identified before KP is solved

to optimality, thus, previous algorithms had to rely on approximate core sizes. Pisinger (1997)

presented an algorithm for KP where the enumerated core size is minimal, and the computational

effort for sorting and reduction also is limited according to a hierarchy. The algorithm is based on

a dynamic programming approach, where the core size is extended by need, and the sorting and

reduction is performed in a similar "lazy" way. Computational experiments were presented for

several commonly occurring types of data instances. Experience from these tests indicated that

17

the presented approach outperforms any known algorithm for KP, having very stable solution

times.

Ant colony optimization algorithm is a novel simulated evolutionary algorithm, which provides a

new method for complicated combinatorial optimization problems. Shuang et al. (2006) used the

algorithm for solving the knapsack problem. It was improved in selection strategy and

information modification, so that it can not easily run into the local optimum and can converge at

the global optimum. The experiments showed the robustness and the potential power of this kind

of meta-heuristic algorithm

Martello and Toth (1998) presented a new algorithm for the optimal solution of the 0-1 Knapsack

problem, which is particularly effective for large-size problems. The algorithm is based on

determination of an appropriate small subset of items and the solution of the corresponding "core

problem": from this they derived a heuristic solution for the original problem which, with high

probability, can be proved to be optimal. The algorithm incorporated a new method of

computation of upper bounds and efficient implementations of reduction procedures.

The multidimensional 0–1 knapsack problem is one of the most well-known integer

programming problems and has received wide attention from the operational research

community during the last four decades. Although recent advances have made possible the

solution of medium size instances, solving this NP-hard problem remains a very interesting

challenge, especially when the number of constraints increases. Fréville surveyed the main

results published in the literature and focused on the theoretical properties as well as approximate

or exact solutions of this special 0–1 program.

The multidimensional 0–1 knapsack problem, defined as a knapsack with multiple resource

constraints, is well known to be much more difficult than the single constraint version. Freville

and Plateau (2004) designed an efficient preprocessing procedure for large-scale instances. The

algorithm provides sharp lower and upper bounds on the optimal value, and also a tighter

equivalent representation by reducing the continuous feasible set and by eliminating constraints

18

and variables. This scheme was shown to be very effective through a lot of computational

experiments with test problems of the literature and large-scale randomly generated instances.

The binary quadratic knapsack problem maximizes a quadratic objective function subject to a

linear capacity constraint. Due to its simple structure and challenging difficulty it has been

studied intensively during the last two decades. Pisinger (2007) gave a survey of upper bounds

presented in the literature, and showed the relative tightness of several of the bounds. Techniques

for deriving the bounds include relaxation from upper planes, linearization, reformulation,

Lagrangian relaxation, Lagrangian decomposition, and semi definite programming. A short

overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation

results is given, followed by an overview of valid inequalities for the quadratic knapsack

polytope. They concluded by an experimental study where the upper bounds presented are

compared with respect to strength and computational effort.

Burkard and Pferschy (1995) dealt with parametric knapsack problems where the costs resp.

weights are replaced by linear functions depending on a parameter t. The aim is to find the

smallest parameter t* such that the optimal solution value of the knapsack problem is equal to a

prespecified solution value. For this inverse-parametric problem pseudo-polynomial algorithms

were developed and search methods making use of the special properties of the parametric value

function were constructed. Using computational experiments the behaviour of these algorithms

are investigated and the favourable practical performance of different search methods exhibited.

The knapsack sharing problem (KSP) is formulated as an extension to the ordinary knapsack

problem. The KSP is NP-hard. Yamada et al. (1998) presented a branch-and-bound algorithm

and a binary search algorithm to solve this problem to optimality. These algorithms are

implemented and computational experiments are carried out to analyse the behavior of the

developed algorithms. As a result, they found that the binary search algorithm solves KSPs with

up to 20 000 variables in less than a minute in their computing environment.

The objective of the multi-dimensional knapsack problem (MKP) is to find a subset of items

with maximum value that satisfies a number of knapsack constraints. Solution methods for MKP,

19

both heuristic and exact, have been researched for several decades. Fleszar and Hindi (2009)

introduced several fast and effective heuristics for MKP that are based on solving the LP

relaxation of the problem. Improving procedures were proposed to strengthen the results of these

heuristics. Additionally, the heuristics were run with appropriate deterministic or randomly

generated constraints imposed on the linear relaxation that allow generating a number of good

solutions. All algorithms were tested experimentally on a widely used set of benchmark problem

instances to show that they compared favourably with the best-performing heuristics available in

the literature.

The constrained compartmentalised knapsack problem is an extension of the classical integer

constrained knapsack problem which can be stated as the following hypothetical situation: a

climber must load his/her knapsack with a number of items. For each item a weight, a utility

value and an upper bound are given. However, the items are of different classes (food, medicine,

utensils, etc.) and they have to be loaded in separate compartments inside the knapsack (each

compartment is itself a knapsack to be loaded by items from the same class). The compartments

have flexible capacities which are lower and upper bounded. Each compartment has a fixed cost

to be included inside the knapsack that depends on the class of items chosen to load it and, in

addition, each new compartment introduces a fixed loss of capacity of the original knapsack. The

constrained compartmentalised knapsack problem consists of determining suitable capacities of

each compartment and how these compartments should be loaded, such that the total items inside

all compartments does not exceed the upper bound given. The objective is to maximise the total

utility value minus the cost of the compartments. This kind of problem arises in practice, such as

in the cutting of steel or paper reels. Arenales and Marques (2007) modeled the problem as an

integer non-linear optimisation problem and for which some heuristic methods were designed.

Finally, computational experiments were given to analyse the methods.

Lin and Yao (2001) investigated knapsack problems, in which all of the weight coefficients are

fuzzy numbers. The work was based on the assumption that each weight coefficient is imprecise

due to the use of decimal truncation or rough estimation of the coefficients by the decision-

maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to model and

solve this problem. Their work was intended to extend the original knapsack problem into a more

20

generalized problem that would be useful in practical situations. As a result, their study showed

that the fuzzy knapsack problem is an extension of the crisp knapsack problem, and that the crisp

knapsack problem is a special case of the fuzzy knapsack problem.

Solving the knapsack problem with imprecise weight coefficients using genetic algorithms has

been investigated. The work is based on the assumption that each weight coefficient is imprecise

due to decimal truncation or coefficient rough estimation by the decision-maker. To deal with

this kind of imprecise data, fuzzy sets provide a powerful tool to model and solve this problem.

Lin (2008) investigated the possibility of using genetic algorithms in solving the fuzzy knapsack

problem without defining membership functions for each imprecise weight coefficient. The

proposed approach simulated a fuzzy number by distributing it into some partition points. A

genetic algorithm was used to evolve the values in each partition point so that the final values

represented the membership grade of a fuzzy number. The empirical results show that the

proposed approach can obtain very good solutions within the given bound of each imprecise

weight coefficient than the fuzzy knapsack approach. The fuzzy genetic algorithm concept

approach is different, but gave better results than the traditional fuzzy approach.

The knapsack problem is believed to be one of the “easier” NP-hard problems. Not only can it be

solved in pseudo-polynomial time, but also decades of algorithmic improvements have made it

possible to solve nearly all standard instances from the literature. Pisinger (2005) gave an

overview of all recent exact solution approaches, and showed that the knapsack problem still is

hard to solve for these algorithms for a variety of new test problems. These problems were

constructed either by using standard benchmark instances with larger coefficients, or by

introducing new classes of instances for which most upper bounds perform badly. The first group

of problems challenged the dynamic programming algorithms while the other groups of

problems were focused towards branch-and-bound algorithms. Numerous computational

experiments with all recent state-of-the-art codes were used to show that (KP) is still difficult to

solve for a wide number of problems. One could say that the previous benchmark tests were

limited to a few highly structured instances, which do not show the full characteristics of

knapsack problems.

21

The knapsack problem (KP) is generalized to the case where items are partially ordered through

a set of precedence relations. As in ordinary KPs, each item is associated with profit and weight,

the knapsack has a fixed capacity, and the problem is to determine the set of items to be packed

in the knapsack. However, each item can be accepted only when all the preceding items have

been included in the knapsack. The knapsack problem with these additional constraints is

referred to as the precedence-constrained knapsack problem (PCKP). To solve PCKP exactly,

Yamada and You (2007) presented a pegging approach, where the size of the original problem is

reduced by applying the Lagrangian relaxation followed by a pegging test. Through this

approach, they were able to solve PCKPs with thousands of items within a few minutes on an

ordinary workstation.

Zhang and ong (2004) proposed a simple and useful method, the core of which is an efficient LP-

based heuristic, for solving bi-objective 0–1 knapsack problems. Extensive computational

experiments showed that the proposed method is able to generate a good approximation to the

nondominated set very efficiently. They also suggested three qualitative criteria to evaluate such

an approximation. In addition, the method can be extended to other problems having properties

similar to the knapsack problem.

A promising solution approach called Meta-RaPS was presented by Moraga et al. (2005) for the

0-1 Multidimensional Knapsack Problem (0-1 MKP). Meta-RaPS construct feasible solutions at

each iteration through the utilization of a priority rule used in a randomized fashion. Four

different greedy priority rules are implemented within Meta-RaPS and compared. These rules

differ in the way the corresponding pseudo-utility ratios for ranking variables are computed. In

addition, two simple local search techniques within Meta-RaPS' improvement stage are

implemented. The Meta-RaPS approach is tested on several established test sets, and the solution

values are compared to both the optimal values and the results of other 0-1 MKP solution

techniques. The Meta-RaPS approach outperformed many other solution methodologies in terms

of differences from the optimal value and number of optimal solutions obtained. The advantage

of the Meta-RaPS approach is that it is easy to understand and easy to implement, and it achieved

good results.

22

Huttler and Mastrolilli (2006) addressed the classical knapsack problem and a variant in which

an upper bound is imposed on the number of items that can be selected. We show that

appropriate combinations of rounding techniques yield novel and more powerful ways of

rounding. Moreover, they presented a linear-storage polynomial time approximation scheme

(PTAS) and a fully polynomial time approximation scheme (FPTAS) that compute an

approximate solution, of any fixed accuracy, in linear time. These linear complexity bounds give

a substantial improvement of the best previously known polynomial bounds.

Gomes da Silva et al. (2007) dealt with the problem of inaccuracy of the solutions generated by

meta-heuristic approaches for combinatorial optimization bi-criteria {0, 1}-knapsack problems.

A hybrid approach which combines systematic and heuristic searches was proposed to reduce

that inaccuracy in the context of a scatter search method. The components of this method were

used to determine regions in the decision space to be systematically searched. Comparisons with

small and medium size instances solved by exact methods were presented. Large size instances

were also considered and the quality of the approximation was evaluated by taking into account

the proximity to the upper frontier, devised by the linear relaxation, and the diversity of the

solutions. Comparisons with other two well-known meta-heuristics were also performed. The

results showed the effectiveness of the proposed approach for both small/medium and large size

instances.

A critical event tabu search method which navigates both sides of the feasibility boundary has

been shown effective for solving the multidimensional knapsack problem. In this paper, we

apply the method to the multidimensional knapsack problem with generalized upper bound

constraints. Li and Curry (2005) demonstrated the merits of using surrogate constraint

information vs. a Lagrangian relaxation scheme as choice rules for the problem class. A

constraint normalization method was presented to strengthen the surrogate constraint information

and improve the computational results. The advantages of intensifying the search at critical

solutions were also demonstrated.

Hanafi and freville (1998) described a new approach to tabu search (TS) based on strategic

oscillation and surrogate constraint information that provides a balance between intensification

23

and diversification strategies. New rules needed to control the oscillation process are given for

the 0 /1 multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the

literature, our method obtains solutions whose quality is at least as good as the best solutions

obtained by previous methods, especially with large scale instances. These encouraging results

confirm the efficiency of the tunneling concept coupled with surrogate information when

resource constraints are present.

Pisinger (1995) presented a new branch-and-bound algorithm for the exact solution of the 0–1

Knapsack Problem is presented. The algorithm is based on solving an ‘expanding core’, which

intially only contains the break item, but which is expanded each time the branch-and-bound

algorithm reaches the border of the core. Computational experiments showed that most data

instances are optimally solved without sorting or preprocessing a great majority of the items. The

algorithm presented not only is shorter, but also faster and more stable than any other algorithm

hitherto proposed.

The mean field theory approach to knapsack problems is extended to multiple knapsacks and

generalized assignment problems with Potts mean field equations governing the dynamics.

Numerical tests against “state of the art” conventional algorithms shows good performance for

the mean field approach. The inherently parallelism of the mean field equations makes them

suitable for direct implementations in microchips. Ohlsson and Pi (1997) demonstrated

numerically that the performance is essentially not affected when only a limited number of bits is

used in the mean field equations. Also, a hybrid algorithm with linear programming and mean

field components is showed to further improve the performance for the difficult homogeneous N

× M knapsack problem.

Rinnooy et al. (1993) proposed a class of generalized greedy algorithms is for the solution of the

multi-knapsack problem. Items are selected according to decreasing ratios of their profit and a

weighted sum of their requirement coefficients. The solution obtained depended on the choice of

the weights. A geometrical representation of the method was given and the relation to the dual of

the linear programming relaxation of multi-knapsack is exploited. They investigated the

24

complexity of computing a set of weights that gives the maximum greedy solution value. Finally,

the heuristics were subjected to both a worst-case and a probabilistic performance analysis.

Optimization methods are being applied to engineering problem solving with increasing

frequency as computer hardware and software improves. The configuration of an optimization

algorithm can make a significant difference to the efficiency of the solution process. Realff et al.,

(1999) examined the use of one such optimization strategy, branch and bound, for the solution of

the classic knapsack problem. It is shown that the best configuration of the algorithm can be data

dependent and hence that an ‘intelligent’ optimization system will need to automatically

configure itself with the control knowledge appropriate to the problems the user is solving. A

two-step approach is taken to configuring the algorithm. First, an analytical learning method,

explanation based learning is used to derive a provably correct dominance condition for the

knapsack problem. Second, the algorithm is configured with and without the condition, and

subjected to a rigorous statistical test of performance, on the user's data, to decide which

configuration is the best.

Figuera et al. (2009) presented a generic labeling algorithm for finding all non-dominated

outcomes of the multiple objective integer knapsack problem (MOIKP). The algorithm is based

on solving the multiple objective shortest path problem on an underlying network. Algorithms

for constructing four network models, all representing the MOIKP, were also presented. Each

network is composed of layers and each network algorithm, working forward layer by layer,

identifies the set of all permanent non-dominated labels for each layer. The effectiveness of the

algorithms is supported with numerical results obtained for randomly generated problems for up

to seven objectives while exact algorithms reported in the literature solve the multiple objective

binary knapsack problem with up to three objectives. Extensions of the approach to other classes

of problems including binary variables, bounded variables, multiple constraints, and time-

dependent objective functions are possible.

The most efficient algorithms for solving the single-criterion {0,1}-knapsack problem are based

on the core concept (i.e., based on a small number of relevant variables). But this concept is not

used in problems with more than one criterion. Gomes da Silva et al. (2008) validated the

25

existence of such a set of variables in bi-criteria {0,1}-knapsack instances. Numerical

experiments were performed on five types of {0,1}-knapsack instances. The results were

presented for the supported and non-supported solutions as well as for the entire set of efficient

solutions. A description of an approximate and an exact method was also presented.

There is a variation of the standard 0–1 knapsack problem, where the values of items differ under

possible S scenarios. Taniguchi et al. (2008) introduced a kind of surrogate relaxation to derive

upper and lower bounds quickly, and showed that, with this preprocessing, the similar pegging

test can be applied to our problem. The reduced problem can be solved to optimality by the

branch-and-bound algorithm. They made use of the surrogate variables to evaluate the upper

bound at each branch-and-bound node very quickly by solving a continuous knapsack problem.

Through numerical experiments they showed that the developed method finds upper and lower

bounds of very high accuracy in a few seconds, and solves larger instances to optimality faster

than the previously published algorithms.

Balev et al. (2008) presented a preprocessing procedure for the 0–1 multidimensional knapsack

problem. First, a non-increasing sequence of upper bounds was generated by solving LP-

relaxations. Then, a non-decreasing sequence of lower bounds is built using dynamic

programming. The comparison of the two sequences allowed either to prove that the best feasible

solution obtained is optimal, or to fix a subset of variables to their optimal values. In addition, a

heuristic solution was obtained. Computational experiments with a set of large-scale instances

show the efficiency of their reduction scheme. Particularly, it was shown that their approach

allowed the reduction of the CPU time of a leading commercial software.

Balachandar and Kannan presented a heuristic to solve the 0/1 multi-constrained knapsack

problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints

is exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic

was tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of

sizes up to 500, taken from the literature and the results were compared with optimum solutions.

Space and computational complexity of solving 0/1 MKP using this approach were also

presented. The encouraging results especially for relatively large size test problems indicate that

26

this heuristic can successfully be used for finding good solutions for highly constrained NP-hard

problems.

Florios et al. (2009) solved instances of the multi-objective multi-constraint (or multi-

dimensional) knapsack problem (MOMCKP) from the literature, with three objective functions

and three constraints. They used exact as well as approximate algorithms. The exact algorithm is

a properly modified version of the multi-criteria branch and bound (MCBB) algorithm, which is

further customized by suitable heuristics. Three branching heuristics and a more general purpose

composite branching and construction heuristic were devised. Furthermore, the same problems

are solved using standard multi-objective evolutionary algorithms (MOEA), namely, the SPEA2

and the NSGAII. The results from the exact case show that the branching heuristics greatly

improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -

constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2

outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the

coverage metric (especially for the largest instance).

While the 1980s focused on the solution of large sized “easy” knapsack problems (KPs), the

1990s brought several new algorithms, which were able to solve “hard” large sized instances.

Martello et al. (2000) gave an overview of the recent techniques for solving hard KPs, with

special emphasis on the addition of cardinality constraints, dynamic programming, and

rudimentary divisibility. Computational results, comparing all recent algorithms, were presented.

Elhedhli (2005) considered a class of nonlinear knapsack problems with applications in service

systems design and facility location problems with congestion. They provided two linearizations

and their respective solution approaches. The first is solved directly using a commercial solver.

The second is a piecewise linearization that is solved by a cutting plane method.

Caprara and Monaci (2004) addressed the two-dimensional Knapsack Problem (2KP), aimed at

packing a maximum-profit subset of rectangles selected from a given set into another rectangle.

They considered the natural relaxation of 2KP given by the one-dimensional KP with item

weights equal to the rectangle areas, proving the worst-case performance of the associated upper

27

bound, and presented and compared computationally four exact algorithms based on the above

relaxation, showing their effectiveness.

Abboud et al. (1997) presented an interactive procedure for the multi-objective multidimensional

0–1 knapsack problem that takes into consideration the incorporation of fuzzy goals of the

decision maker, that is easy to use since it requires from the decision maker to handle only one

parameter, namely, the aspiration level of each objective, and that is fast and can treat our

problem as a usual 0–1 knapsack problem using already available software, namely, the primal

effective gradient method, used primarily to solve the large-scale cases. To get some statistics on

the behavior of the algorithm, a number of randomly generated simulation of problems was

solved. From our numerical experience, it is possible to conclude that our proposed method is a

worthwhile alternative to existing methods from a practical point of view.

Akinc (2006) addressed the formulation and solution of a variation of the classical binary

knapsack problem. The variation that was addressed is termed the “fixed-charge knapsack

problem”, in which sub-sets of variables (activities) are associated with fixed costs. These costs

may represent certain set-ups and/or preparations required for the associated sub-set of activities

to be scheduled. Several potential real-world applications as well as problem

extensions/generalizations were discussed. The efficient solution of the problem is facilitated by

a standard branch-and-bound algorithm based on (1) a non-iterative, polynomial algorithm to

solve the LP relaxation, (2) various heuristic procedures to obtain good candidate solutions by

adjusting the LP solution, and (3) powerful rules to peg the variables. Computational experience

shows that the suggested branch-and-bound algorithm shows excellent potential in the solution

of a wide variety of large fixed-charge knapsack problems.

Index selection for relational databases is an important issue which has been researched quite

extensively. In the literature, in index selection algorithms for relational databases, at most one

index is considered as a candidate for each attribute of a relation. However, it is possible that

more than one different type of indexes with different storage space requirements may be present

as candidates for an attribute. Also, it may not be possible to eliminate locally all but one of the

candidate indexes for an attribute due to different benefits and storage space requirements

28

associated with the candidates. Thus, the algorithms available in the literature for optimal index

selection may not be used when there are multiple candidates for each attribute and there is a

need for a global optimization algorithm in which at most one index can be selected from a set of

candidate indexes for an attribute. The problem of index selection in the presence of multiple

candidate indexes for each attribute (which we call the multiple choice index selection problem)

has not been addressed in the literature. Gündem presented the multiple choice index selection

problem, showed that it is NP-hard, and present an algorithm which gives an approximately

optimal solution within a user specified error bound in a logarithmic time order.

In attempt to solve multi-objective problems, various mathematical and stochastic methods have

been developed. The methods operate based on mathematical models while in most cases these

models are drastically simplified imagine of real world problems. Gholamian et al. (2007) in

their study, used a hybrid intelligent system i instead of mathematical models. The main core of

the system is fuzzy rule base which maps decision space (Z) to solution space (X). The system is

designed on non-inferior region and gives a big picture of this region in the pattern of fuzzy

rules. Since some solutions may be infeasible; then specified feed forward neural network is used

to obtain non-inferior solutions in an exterior movement. In addition, numerical examples of

well-known NP-hard problems (i.e. multi-objective traveling salesman problem and multi-

objective knapsack problem) were provided to clarify the accuracy of developed system.

Lokketangen and Glover (1998) described a tabu search (TS) approach for solving general zero-

one mixed integer programming (MIP) problems that exploits the extreme point property of

zero-one solutions. Specialized choice rules and aspiration criteria were identified for the

problems, expressed as functions of integer infeasibility measures and objective function values.

The first-level TS mechanisms were then extended with advanced level strategies and learning.

They also look at probabilistic measures in this framework, and examine how the learning tool

Target Analysis (TA) can be applied to identify better control structures and decision rules.

Computational results are reported on a portfolio of multi-constraint knapsack problems. Their

approach was designed to solve thoroughly general 0/1 MIP problems and thus contains no

problem domain specific knowledge, yet it obtained solutions for the multi-constraint knapsack

29

problem whose quality rivaled, and in some cases surpassed, the best solutions obtained by

special purpose methods that had been created to exploit the special structure of these problems.

Aissi et al. (2007) investigated, for the first time in the literature, the approximation of min–max

(regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack.

For a constant number of scenarios, they established fully polynomial-time approximation

schemes for the min–max versions of these problems, using relationships between multi-

objective and min–max optimization. Using dynamic programming and classical trimming

techniques, they construct a fully polynomial-time approximation scheme for min–max regret

shortest path. They also established a fully polynomial-time approximation scheme for min–max

regret spanning tree and prove that min–max regret knapsack is not at all approximable. For a

non-constant number of scenarios, in which case min–max and min–max regret versions of

polynomial-time solvable problems usually become strongly NP-hard, non-approximability

results were provided for min–max (regret) versions of shortest path and spanning tree.

Jan et al. (2006) considered Web content adaptation with a bandwidth constraint for server-based

adaptive Web systems. The problem can be stated as follows: Given a Web page P consisting of

n component items d1, d2, … , dn and each of the component items di having Ji versions

di1,di2,…,diJi, for each component item di select one of its versions to compose the Web page

such that the fidelity function is maximized subject to the bandwidth constraint. They formulated

this problem as a linear multi-choice knapsack problem (LMCKP) and transformed the LMCKP

into a knapsack problem (KP) and then presented a dynamic programming method to solve the

KP. A numerical example illustrated the method and showed its effectiveness.

Bortfeldt and Gehring (2001) presented a hybrid genetic algorithm (GA) for the container

loading problem with boxes of different sizes and a single container for loading. Generated

stowage plans include several vertical layers each containing several boxes. Within the

procedure, stowage plans were represented by complex data structures closely related to the

problem. To generate offspring, specific genetic operators were used that are based on an

integrated greedy heuristic. The process takes several practical constraints into account.

Extensive test calculations including procedures from other authors vouch for the good

performance of the GA, above all for problems with strongly heterogeneous boxes.

30

Harper et al. (2001) presented a genetic algorithm as an aid for project assignment. The

assignment problem illustrated concerns the allocation of projects to students. Students have to

choose from a list of possible projects, indicating their preferred choices in advance. Inevitably,

some of the more popular projects become ‘over-subscribed’ and assignment becomes a complex

problem. The developed algorithm has compared well to an optimal integer programming

approach. One clear advantage of the genetic algorithm is that, by its very nature, we are able to

produce a number of feasible project assignments, thus facilitating discussion on the merits of

various allocations and supporting multi-objective decision making.

Devyaterikova et al. (2009) presented discrete production planning problem which may be

formulated as the multidimensional knapsack problem is considered, while resource quantities of

the problem are supposed to be given as intervals. An approach for solving this problem based

on using its relaxation set is suggested. Some L-class enumeration algorithms for the problem are

described. Results of computational experiments were presented.

Dynamic programming is one of the most powerful Chen et al. (1990) presented pipeline

architectures for the dynamic programming algorithms for the knapsack problems. They enabled

them to achieve an optimal speedup using processor arrays, queues, and memory modules. The

processor arrays can be regarded as pipelines where the dynamic programming algorithms are

implemented through pipelining.

Making the provision of services QoS-aware is to the advantage of both clients and providers in

the e-business domain. Tsesmetzis et al. (2008) studied the problem of providers that receive

multiple concurrent requests for services demonstrating different QoS properties. It introduced

the “Selective Multiple Choice Knapsack Problem” that aims to identify the services, which

should be delivered in order to maximise the provider’s profit, subject to maximum bandwidth

constraints. This problem was solved by a proposed algorithm that has been empirically

evaluated via numerous experiments.

31

Ahmed et al. (1987) considered the problem of selecting a set of projects from a large number of

available projects such that at least some specified levels of benefits of various types are realized

at a minimum cost. This problem was formulated in terms of the well-known 0–1 multi-

dimensional knapsack problem, a special case of the general integer programming problems. In

view of the NP-completeness of these problems, they proposed a polynomially bounded and

efficient heuristic algorithm for its solution. The proposed algorithm proceeds as follows: an

initial selection is found by prioritizing the projects according to a computed discard index. This

initial selection set is then altered to reduce total costs by using project exchange operations.

Computational results indicated that the proposed algorithm is quite effective in finding optimal

or near optimal solutions.

Golenko-Ginzburg and Gonik (1997) presented a newly developed resource constrained

scheduling model for a PERT type project. Several non-consumable activity related resources,

such as machines or manpower, are imbedded in the model. Each activity in a project requires

resources of various types with fixed capacities. Each type of resource is in limited supply with a

resource limit that is fixed at the same level throughout the project duration. For each activity, its

duration is a random variable with given density function. The problem is to determine starting

time values Sij for each activity (i,j) entering the project, i.e., the timing of feeding-in resources

for that activity. Values Sij are not calculated beforehand and are random values conditional on

our decisions. The model's objective was to minimize the expected project duration.

Determination of values Sij was carried out at decision points when at least one activity is ready

to be operated and there are free available resources. If, at a certain point of time, more than one

activity is ready to be operated but the available amount of resources is limited, a competition

among the activities is carried out in order to choose those activities which can be supplied by

the resources and which have to be operated first. They suggested carrying out the competition

by solving a zero-one integer programming problem to maximize the total contribution of the

accepted activities to the expected project duration. For each activity, its contribution is the

product of the average duration of the activity and its probability of being on the critical path in

the course of the project's realization. Those probability values were calculated via simulation.

Solving a zero-one integer programming problem at each decision point resulted in the following

policy: the project management takes all measures to first operate those activities that, being

32

realized, have the greatest effect of decreasing the expected project duration. Only afterwards,

does the management take care of other activities. A heuristic algorithm for resource constrained

project scheduling was developed.

Project selection problem is an incessant problem, which every organization face. It, in fact,

plays a key role in prosperity of the company. Meta-heuristic methods are the well-reputed

methods which have been employed to solve a variety of multi-objective problems forming the

real world problems. Ghorbani and Rabbani (2009) studied a new multi-objective algorithm for

project selection problem. Two objective functions were considered to maximize total expected

benefit of selected projects and minimize the summation of the absolute variation of allotted

resource between each successive time periods. A meta-heuristic multi-objective was proposed

to obtain diverse locally non-dominated solutions. The proposed algorithm was compared, based

on some prominent metrics, with a well-known genetic algorithm, i.e. NSGA-II. The

computational results showed the superiority of the proposed algorithm in comparison with

NSGA-II.

A single machine scheduling problem in which the machine experiences the effects of learning

of fatigue as it continues to work and the jobs have due dates and are subject to penalties if they

are not completed on time. Because of the effects of learning or fatigue, the performance rate of

the machine varies over time. As a result, the processing time of a job depends on its work

content as well as the total work content of the jobs completed prior to its loading. Dondeti and

Mohanty (1998) proved that even when the machine works at a variable rate, the pair-wise

interchange of jobs minimizes the maximum tardiness and a simple modification to the well-

known Moore-Hodgson's algorithm yields the minimum number of tardy jobs. Further, they

formulated the problem of minimizing the total penalty for tardy jobs as a 0–1 knapsack problem

with nested constraints, and solve it by using dynamic programming recursion as well as the

maximum-weighted network path algorithm. Then they combined these two techniques and

solve the 0–1 knapsack problem, by inducing a nested constraint structure and constructing a

network with fewer nodes.

33

Carlo Vercellis (1994) described a Lagragean decomposition technique for solving multi-project

planning problems with resource constraints and alternative modes of performing each activity in

the projects. The decomposition can be useful in several ways: from one side, it provided bounds

on the optimum, so that the quality of approximate solutions can be evaluated. Furthermore, in

the context of branch-and-bound algorithms, it can be used for more effective fathoming of the

tree nodes. Finally, in the modelling perspective, the La grangean optimal multipliers can

provide insights to project managers as prices for assigning the resources to different projects.

An important class of combinational optimization problems are the Multidimensional 0/1

Knapsacks and various heuristic and exact methods have been devised to solve them. Among

these, Genetic Algorithms have emerged as a powerful new search paradigms. Hoff et al showed

how a proper selection of parameters and search mechanisms lead to an implementation of

Genetic Algorithms that yields high quality solutions. The methods were tested on a portfolio of

0/1 multidimensional knapsack problems from literature and a minimum of domain-specific

knowledge is used to guide the search process. The quality of the produced results rivals and in

some cases surpasses the best solutions obtained by special-purpose methods that have been

created to exploit the special structure of these problems

Fubin and Ru (2002) presented a simulated annealing (SA) algorithm for the o/1

multidimensional knapsack problem. Problem-specific knowledge is incorporated in the

algorithm description and evaluation of parameters. In order to look into the performance of

finite-time implementation of SA Computational results showed that SA performs much better

than a genetic algorithm in term of solution time, whilst requiring only a modest loss of solution

quality

Standard heuristics in operations research (such as greedy, tabu search and simulated annealing)

work on improving a single current solution. Population heuristics use a number of current

solutions and combine them together to generate new solutions. Heuristic algorithms

encountered in the literature that can be generically be classified as population heuristics include

genetic algorithms, hybrid genetic algorithms, memetic algorithms, scatter-search algorithms and

bionomic algorithms. Beasley (2002) discussed the basic features of population heuristics and

34

provide practical advice about their effective use for solving operations research problems

including the knapsack problems..

Lin and Wei (2001) proposed an efficient linear search algorithm for resolving the 0/1-knapsack

problem. A net profit criterion is included in the linear search algorithm to generate a

rescheduled candidate set. Four hard cases presented by Yang (1992) were tested and compared

with the revised approach. Our results demonstrate that the approach proposed herein

outperforms previous works in terms of producing a small candidate set while retaining most of

the information on optimal

The transposition mechanism, widely studied in previous publications, showed that when used

instead of standard crossover operators allows the genetic algorithm to achieve better solutions.

Nevertheless, all the studies made concerning this mechanism always focused the domain of

function optimization. Simoes and Costa (2001) presented an empirical study that compares the

performances of the transposition-based Genetic Algorithm (GA) and the classical GA for

solving the 0/1 knapsack problem. The obtained results showed that, just like in the domain of

the function optimization, transposition is always superior to crossover.

A method of determining allocations in a business operation to maximize profit includes:

collecting profit data for a plurality of classes in the business operation, where each class

includes an allocation having a cost function and each allocation belongs to the group consisting

of physical allocations and economic allocations; determining profit functions for the allocations

from the profit data; formulating a Multiple Choice Knapsack Problem to maximize profit from

the profit functions, the cost functions, and a cost constraint; and solving the Multiple choice

Knapsack Problem to determine values for the allocations.(European Patent Application

EP1350203)

The Knapsack Sharing Problem (KSP) is an NP-Hard combinatorial optimization problem,

admitted in numerous real world applications. In the KSP, we have a knapsack of capacity c and

a set of n objects, namely {\cal N}, where each object 𝑗, 𝑗 = 1, … ,𝑛, is associated with a profit

𝑝𝑗and a weight 𝑤𝑗. The set of objects {\cal N} is composed of m different classes of objects. The

aim is to determine a subset of objects to be included in the knapsack that realizes a max-min

value over all classes. Hifi et al. (2002) solved the Knapsack Sharing Problem (KSP) using an

35

approximate solution method based upon tabu search. First, they described a simple local search

in which a depth parameter and a tabu list were used. Next, they enhanced the algorithm by

introducing some intensifying and diversifying strategies. The two versions of the algorithm

yielded satisfactory results within reasonable computational time. Extensive computational

testing on problem instances taken from the literature showed the effectiveness of the proposed

approach.

36

CHAPTER THREE

TYPES OF KNAPSACK PROBLEMS AND SOLUTION METHODS

Because of their wide range of applicability, knapsack problems have known a large

number of variations such as: single and multiple-constrained knapsacks, knapsacks with

disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, single and

multiple objective knapsacks, integer, linear, non-linear knapsacks, deterministic and stochastic

knapsacks, knapsacks with convex / concave objective functions, etc.

3.1.1 The Single 0-1 Knapsack Problem

This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a

very important class of integer programming.

The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following

integer linear programming.

Maximize�Pjxj
n

j=1

Subject to = ��wjxj�
n

j=1

 ≤ c

 xj = 0 or 1, j = 1, … , n

3.1.2 The Subset Sum Knapsack problem

The particular case of the 0-1 knapsack problem arising when ()j j p = w j = 1,…,n �
as

frequently occurs in practical applications. The problem is to find a subset of weights whose sum

is closest to, without exceeding, the capacity, i.e.

37

Maximize z = ��wjxj�
n

j=1

Subject to ��wjxj�
n

j=1

 ≤ cR

xj = 0 or 1 , j = 1, … , n

This generally referred to as the Subset-Sum Problem.

3.1.3 The Change-Making Problem

A very particular bounded knapsack problem is considered arising when 𝑝 = 1, j = 1, … … , n

 and in the capacity constraint, we impose equality instead of inequality. This gives

Maximize 𝑧 = ��𝑥𝑗�
𝑛

𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ��𝑤𝑗𝑥𝑗�
𝑛

𝑗=1

= bR

 𝑥𝑗 = 0 or 1, j = 1, … … , n

This is usually called the Change-Making Problem, since it recalls the situation of a cashier

having to assemble a given change c using the maximum (or minimum) number of coins.

38

3.1.4 Multiple Knapsack Problems

An important generalization of the 0-1 knapsack problem is the 0-1 Multiple knapsack problem

arising when m containers, of given capacities 𝑐𝑖 , R (𝑖 = 1, … ,𝑚) are available. By introducing

binary variables𝑥𝑖𝑗, taking value 1 if item 𝑗 is selected for the container 𝑖, and value 0 otherwise,

we obtain the formulation

Maximize z = �
n

i=1

��pjxij�
n

j=1

Subject to = ��wijxj�
n

j=1

≤ ci

� xij ≤ 1
n

j=1

 𝑥𝑗 = 0 or 1, i = 1, … , n j = 1, … , n

The generalization arising when the item set is partitioned into subsets and the additional

constraint is imposed that at most one item per subset is selected is called the Multiple-Choice

Knapsack Problem. The multi choice knapsack problem is defined as in knapsack problem with

additional disjoint multiple choice constraint. The general description of the problem as given as

follows: There is one knapsack with limited capacity. Objects to be packed in the knapsack are

classified into multiple mutually exclusive classes. Within each class, there are several different

items. The problem is to select some items from each class so as to minimize the total cost while

the total size of the items does not exceed the limited capacity of the knapsack. This problem is

of a generalized carryout problem and is NP-hard.

39

3.1.5 Multi-dimensional Knapsack problem

The multi-constraint is defined as a KP with a set of constraints such as weight, size, reliability

etc. also called multi-dimensional knapsack problem.

The problem can be generalized by assuming that for each 𝑗 (𝑗 = 1, … ,𝑛), 𝑏𝑗R items of profit

𝑝𝑗 𝑎nd weight 𝑤𝑗R are available (𝑏𝑗 ≤ 𝑐/𝑤𝑗); thus we obtain the Bounded Knapsack problem,

3.2 Data Modeling

The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following

integer linear programming.

Maximize�Pjxj
n

j=1

Subject to = ��wjxj�
n

j=1

 ≤ c

xj = 0 or 1, j = 1, … , n

3.2.1 Methods for solving Knapsack problems.

There are two basic methods for solving the 0-1 knapsack problems (KP): Theses are Branch-

and-Bound and dynamic programming methods. However the use of meta-heuristics including

Genetic algorithm, Tabu search and Simulated annealing have been used to solve large scale

problems.

40

3.2.1 The Branch and Bound Method

Branch and Bound is a class of exact algorithms for various optimization problems, especially

integer programming problems and combinatorial optimization problems (COP). It partitions the

solution space into smaller subproblems that can be solved independently (branching).Bounding

discards subproblems that cannot contain the optimal solution, thus decreasing thesize of the

solution space. Branch and Bound was first proposed by Land and Doig in 1960 for solving

integer programs.

Given a maximization problem

• a Branch and Bound algorithm iteratively partitions the solution space S, for example by

branching on binary variables - fixing one of them to 0 in one branch and to 1 in the other

branch.

• For each subproblem an upper bound on the objective value is calculated. The upper

bound is guaranteed to be equal to or greater than the optimal solution for this

subproblem.

• When a feasible solution (i.e., no fractional variables remaining) is found, all

subproblems whose upper bounds are lower than this solution’s objective value can be

discarded.

• The best known feasible solution represents a lower bound for all subproblems, and only

subproblems with an upper bound greater than the global lower bound have to be

considered.

Discarding a subproblem is called fathoming or pruning. Upper bounds for a subproblem can

be obtained by relaxing the subproblem, thus they are often obtained by optimizing the

subproblem’s LP relaxation.

The branch and bound method

Assume that the variables have been ordered such that

 p1 /a1 ≥ p2/a2 ≥ pn /an

Let s be the maximum index k such that

41

��aj�
n

j=1

 ≤ b

The following theorem due to Dantzig is shown below

 The optimal solution to the continuous relaxation of KP is

wj = 1, j = 1, … … , s

wj = 0 , j = s, … … , n

ws+1 = b −��
aj

as+1
�

n

j=1

If pj, j = 1, … … , n are positive integers, then an upper bound of the optimal

value of KP is given by

UB = � Pj

s

j=i
 + [(b − � aj

s

j=i
) ps + I /as + i]

UB = ��Pj �
n

j=1

+ [(b − � aj

 n

j=1

)ps+1 / as+1]

where [x] is the largest integer less than or equal to x

The following branch-and-bound method uses the depth-first search and finds an

upper bound by using the above theorem.

42

Algorithm Branch-And-Bound Method For Knapsack problem

Step 1 (Initialization).

Set pN+1 = 0, aN+1 = ∞, fopt = f = 0, Wopt = W = (0, . . . ,0)T, W = b, i = 1

Step 2 (Test heuristic). If ai ≤ W, find the largest s such that � aj

s

j=i

 ≤ W,

set z = �pj

s

j=i

 +
�W − ∑ ajs

j=i �ps+1
as+1

. If ai > W, set s = i – 1

and z = Wps/as . If fopt ≥ [z] + f, go to step 5.

Step 3 (New feasible solution). If ai ≤ W and i ≤ N, set W ∶= W − ai,

f ∶= f + pi, wi = 1, i ∶= i + 1, repeat Step 3; otherwise, if i ≤ N, set

wi = 0, i ∶= i + 1, if i < N, go to Step 2; if i = N, repeat Step 3;

 if i > N, go to Step 4.

Step 4 (updating incumbent). If fopt < f, set fopt = f, Wopt = W. Set i = N,

if WN = 1, set W ∶= W + aN, f ∶= f – pN, WN = 0

Step 5 (Backtracking). Find the largest k < i such that Wk = 1. If there is no

such a k, stop and the current Wopt is the optimal solution. Otherwise, set

W ∶= W + ak, f ∶= f – pk, Wk = 0, i = k + 1 and go to step 2

3.2.2 Dynamic Programming Method

Dynamic Programming approach is applicable to (KP) if certain integrality conditions of the

coefficients hold. We first assume that the coefficients 𝑎𝑗 , j = 1, … … , n are positive

integers. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 = 1, … ,𝑛 𝑎𝑛𝑑 𝑧 = 1, … . , 𝑏,𝑑𝑒𝑓𝑖𝑛𝑒

Pm(z) = max{� pjwj

m

j=1

 / � ajwj

m

j=1

 ≤ z, (w1, … , wm) Є {0,1}m}

43

The recursive equation at the m − th stage is

pm(z) = pm−1(z), 0 ≤ z < am

 max{ pm−1(z), pm−1(z − am) + pm}, am ≤ z ≤ b

with the initial condition:

p1(z) = 0, 0 ≤ z < a1

 p1 a1 ≤ z ≤ b

Under the condition that aj , (j = 1, … , N) are positive integers, a dynamic programming

algorithm construct a table of dimension N ∗ (b + 1) and calculates the entries pm(z), (m =

 1, … . , N, z = 0, … . , b) in a bottom-up fashion. An optimal solution can be found by

backtracking through the table once the optimal value PN(b) is obtained. The complexity of this

dynamic programming is O (Nb).

3.2.3 Heuristic Scheme

A heuristic scheme that may be used to solve knapsack problems instead of branch and bound

could be outlined as follows

Step 1: Input the vector of weight and item values

Step 2: Input random initial solutions S0 and

 check for feasibility of S0 by the constraint equation

 If S0 is not feasible discard and choose another S0

Step 3: Find a feasible solution and compute the objective function value f(S0)

Step 4: Obtain a new solution S1 by flip operation and check for feasibility, continue flip

operation until the solution S1 so obtained is feasible. Compute the objective function

value f(S1).

44

 If f(S1) > 𝑓(S0) then put S0 = S1

 else retain S0 and discard S1

Step 5: Repeat step 3 for all feasible solutions

Step 6: Stop for not improving solution over a number of iterations

3.2.4 Simulated Annealing

Simulated annealing is a local search algorithm capable of escaping from local optima. Its case

of implementation, convergence properties and its capability of escaping from local optima has

made it a popular algorithm over the past decades. Simulated annealing is so named because of

its analogy to the process of physical annealing with solids in which a crystalline solid is heated

and then allowed to cool very slowly until it achieves stable state. i.e. its minimum lattice energy

state and thus is free of crystal effects. Simulated annealing mimics this type of thermodynamic

behavior in searching for global optima for discrete optimization problems (DOP).

At each iteration of simulated annealing, algorithm applied to a DOP, the objective function

values for two solutions (the current solution and a newly generated neighboring solution) are

compared. Better solutions are always accepted, while a fraction of inferior solutions are

accepted in the hope of escaping local optima in search of global optima. The probability of

accepting non-improving solutions depends on a temperature parameter, which is non increasing

with each iteration of the algorithm.

The key algorithm feature of simulated annealing is that provides a means to escape local optima

by allowing worse moves (i.e. moves to a solution that corresponds to a worse objective value

function). As the temperature is decreased to zero, worse moves occur less frequently and the

solution distribution associated with the inhomogeneous Markov chain that models the behavior

of the algorithm converges to a distribution in which all the probability is concentrated on the set

of globally optimal solutions which means that the algorithm is asymptotically convergent.

To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω

be the solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated

annealing starts with an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then

generated randomly in most cases. Simulated annealing is based on the Metropolis acceptance

45

criterion, which models how a thermodynamic system moves from its current solution ω ∈ Ω to a

candidate solution 𝜔𝑖 ∈ 𝜂(𝜔) in which the energy content is being minimized. The candidate

solution ω 1 is accepted as the current solution based on the acceptance probability.

In this survey, finite-time implementations of simulated annealing algorithm are considered,

which can no longer guarantee to find an optimal solution, but may result in faster executions

without losing too much on the solution quality. Simulated annealing algorithm with static

cooling schedule (Kirkpatrick et al. 1983) for KP is outlined in pseudo-code.

1. Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0;

2. control parameter value α; final temperature e; a repetition schedule, M that defines the

number of iterations executed at each temperature;

3. Incumbent solution ← f(ω);

4. Repeat;

5. Set repetition counter m = 0;

6. Repeat;

7. Select an integer i from the set {1,2, … . , n} randomly:

8. If xi = 0, pick up item i, i. e. set xi = 1, obtain new solution ω1 then

9. while solution ω1 is infeasible, do

10. drop another item from ω randomly; denote the new solution as ω1

11. let Δ = f(ω1) − f(ω)

12. while Δ ≥ 0 or Random (0,1) < eΔ t⁄ do ω ← ω1

13. Else

14. drop item i and pick another item randomly, get new solution ω1

15. let Δ = f(ω1) − f(ω)

16. while Δ ≥ 0 or Random (0,1) < eΔ t⁄ do ω ← ω1

17. End If

18. If incumbent solution < 𝑓(ω), Incumbent solution ← f(ω)

19. m = m + 1;

20. Until m = M

21. set t = a ∗ t;

22. Until t < 𝑒

46

A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial

temperature 𝑡𝑜R, temperature control parameter 𝛼, final temperature ℯ, and Markov chain length

M, in order to study the finite-time performance of simulated annealing algorithm. Here to should

be the maximal difference in cost between any two neighboring solutions

3.2.4 Genetic Algorithm

A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and

is based on the evolutionary process of biological organisms in nature. During the course of

evolution, natural populations evolve according to the principles of nature selection and

“survival of the fittest.” Individuals who are most successful in adapting to their environment

will have a better chance of surviving and reproducing, while individuals who are less fit will be

eliminated. This means that the genes from highly fit individuals will spread to an increasing

number of individuals in each successive generation. The combination of good characteristics

from highly adapted parents may produce even more fit offspring. In this way, species evolve to

become increasingly better adapted to the environment.

A GA simulates these processes by taking an initial population of individuals and applying

genetic operators in each reproduction. In optimization terms, each individual in the population

is encoded into a string or chromosome that represents a possible solution to a given problem.

The fitness of an individual is evaluated with respect to a given objective function. Highly fit

individuals or solutions are given opportunities to reproduce by exchanging pieces of their

genetic information in a crossover procedure with other highly fit individuals. This produces new

“offspring” solutions (i.e. children) who share some characteristics taken from both parents.

Mutation is often applied after crossover by altering some genes in the strings. The offspring can

either replace the whole population (generational approach) or replace less fit individuals

(steady-state approach). This evaluation-selection-reproduction cycle is repeated until a

satisfactory solution is found.

The basic steps of a simple GA are shown below

Step 1: Generate an initial population

47

Step 2: Evaluate fitness of individuals in the population

Step 3: repeat

a. Select individuals from the population to be parents

b. Recombine (mate) parents to produce children

c. Mutate the children Evaluate fitness of the children

d. Replace some or all of the population by the children

until

Step 4: you decide to stop whereupon report the best solution encountered

What Does An Individual In Our GA World Look Like?

In the real world we know what individuals look like. In the GA world, what individuals look

like (their representation or chromosome) is our choice.

In our GA world for the KP we shall choose individuals to be n bit strings

individual 0 1 0 0 0 1 0

step 1 An initial population containing six individuals

individual

1 1 1 0 0 0 0 0

2 1 0 0 1 0 0 0

3 0 0 0 0 0 0 1

4 0 0 1 0 1 0 0

5 0 1 1 0 0 0 0

6 0 1 0 0 0 1 0

has an interpretation in terms of the KP of 𝑥2 = 𝑥6 = 1 𝑎𝑛𝑑 𝓍1 = 𝑥3 = 𝑥4 = 𝑥5 =

 𝑥7 = 0

step 2 Evaluation of fitness

The objective function value (∑ 𝑝𝑗𝑋𝑗𝑛
𝑗=1) equates to how good a solution is, that is, its fitness.

In general, an initial population is randomly generated in some way.

Step 3a: Selection of individuals for as parents

48

In the real world, individuals are independent beings who for their own reasons decide to become

parents. But in the GA world we have to make a choice as to who will become a parent.

In ther GA world for the KP we shall choose to select parents by binary tournament selection. In

binary tournament selection we first randomly select two individuals from the population We

then select from these two the individual with the best fitness to be the first parent (individual 5

in this case).

 Step 3b: Recombine (Mate) Parents To Produce Children

 In the real world we know parents combine to have children.

In the GA world for the KP we shall have a single child from two parents by uniform crossover.

In uniform crossover each bit in the child solution is created by:

repeat for each bit in turn

choose one of the two parents at random

set the child bit equal to the bit in the chosen parent

 Other ways are (briefly) outlined below.

One-Point Crossover

In one-point crossover we randomly select a pint between two adjacent bits, “cut” the parents

into two segments and create two children by rejoining the segments. For example, cutting

parents we had before between bits 3 and 4

parent 1 0 1 1 0 0 0 0 produces segments 0 1 1 and 0 0 0 0

parent 2 0 1 0 0 0 1 0 produces segments 0 1 0 and 0 0 1 0

to give child 1 0 1 1 0 0 1 0

 child 2 0 1 0 0 0 0 0

where child 1 (0110010) is composed of the first segment of parent 1 and the second segment of

parent 2; child 2 (0100000) is composed of the first segment of parent 2 and the second segment

of parent 1.

Restricted One-Point Crossover

Observe that in the on-point crossover example presented above we would have produced

children who were identical to the parents (duplicates, clones) if we had chosen to cut the parents

bits 1 and 2, bits 2 and 3: or bits 6 and 7. Restricted one-point crossover restricts the cut point to

ensure that the children are different from the parents. That is easily done, simply restrict the cut

49

point to be between the first bit where the two parents differ (bit 3 above) and the last bit where

the two parents differ (bit 6 above)

• fusion, as uniform crossover except that bits are taken from the parents with probabilities

proportional to their fitness;

• two-point crossover, as one-point crossover (where each parent was cut into two

segments) except that each parent is cut into three segments and two children produced

by taking alternate segments from each parent

Indeed, any way of combining two bit strings together could be used to produce children from

two parents. Note here however, one property that crossover schemes typically have in common

is that bits which are the same in the parents are the same in the children. (i.e. characteristics

common to parents are passed to the children).

Step 3c: Mutation

Mutation corresponds to small changes that are stochastically applied to the children. Taking our

child 0110010 produced by uniform crossover we could decide to make a small change, typically

to randomly select one bit and to change its value (“flip it”). For example we might randomly

select it 2 and flip it to give 0010010. Alternatively, we might decide (according to some

probabilistic criterion) to make no mutation changes to the child.

Mutation can be applied with a constant probability or with an adaptive probability that changes

over the course of the algorithm (perhaps in response to the number of iterations that have passed

or in response to population characteristics).

Step 3d: Infeasibility

One problem that must be addressed is that (most likely) not every individual (binary bit string)

represent a feasible solution in terms of the underlying problem that is being solved, for example,

for our example an individual may violate the constraints of the KP.

There are number of strategies for dealing with constraints and infeasible solutions in Gas and

these are detailed below. The first strategy is to use a representation that automatically ensures

that all solutions are feasible. For some problems such representations exist, for example, the set

covering problem (Beasley and Chu, 1996), but for the majority of the constraint problems this

strategy is not possible.

50

The second strategy is to design a heuristic operator (often called in the literature a repair

operator) that guarantees to quickly transform any infeasible solution into a feasible solution.

Such a strategy is possible for the KP and we illustrate this below

 Strategies for Dealing with Constraints and Infeasible Solutions in Genetic Algorithm

Strategy Description

1 To use a representation that automatically ensures that all solutions are

 feasible

2 To design a heuristic operator (often called in the literature a repair operator)

 that guarantees to quickly transform any infeasible solution into a feasible

 solution

3 To separate the evaluation of fitness and infeasibility

4 To apply a penalty function to penalize the fitness of any infeasible solutions

Heuristic Operator

For the KP, designing a heuristic operator that guarantees to quickly transform any infeasible

solution into a feasible solution is trivial, for example,

repeat until solution feasible:

𝑠𝑒𝑡 𝑥𝑗 = 0

Population Replacement

We will use a steady-state population replacement strategy. With this strategy each new child is

placed in the population as soon as it is ready (after mutation and application of the heuristic

operator in this case). It is common in GA to keep the population size constant hence placing the

child in the population means selecting a member of the population to delete (“kill”).

A logical approach is to kill the member of the population with the worst fitness.

Modified GA

Generate an initial population

• Evaluate fitness of individuals in the population

repeat

• Select individuals from thee population to be parents

51

• Recombine (mate) parents to produce children

• Mutate the children

• Make the children feasible using the heuristic operator

• Evaluate fitness of the children

• Replace some or all of the population by the children

Until

you decide to stop whereupon report the best solution encountered

The difference between this description and the algorithm description given previously is the

insertion of a step making the (mutated) children feasible.

Computational Considerations

The GA presented above (with a few modifications) produces results that are superior in quality

to other leading heuristic (which are mostly based on tabu search) for the KP (Chu and Beasley,

1998). However, as already mentioned, that GA is much slower than other heuristics. Hence, we

have the trade-off we often see in OR between quality of solution and computer time consumed.

GAs often require the production and evaluation of many different children. However, GAs are

capable of generating high-quality solutions to many problems within reasonable computation

times. (Beasley and Chu, 1996; Chu and Beasley, 1997, 1998; Chang et al., 2000; Beasley et al.,

1999)

52

CHAPTER 4

DATA COLLECTION AND ANALYSIS

4.1. Data Collection

The study area is the selection of adverts at GTV. GTV is a state owned Television station which

depends to the greater extent on government subvention. GBC is however mandated to generate

revenue to supplement the government subvention. To this end GTV has various ways of

generating additional income. These include sponsorship of programmes , social and funeral

announcements, advertisements among others. However this research focused on advertisements

which are slotted in the programmes schedules (appendix A) prepared quarterly to generate

additional income to sustain the operations of the TV station.

Spots for adverts are categorized into the following

• Prime time news (19.00 hrs GMT)

• News adjacencies (five minutes before and after news at 12.00, 14.00, 19.00 and 22.30

hours GMT)

• Other News time (12.00, 14.00, 19.00, 22.30 hours GMT)

• Break in programmes (peak and off peak)

Each of the above categories has different rates attached as shown below .

The table 1 shows the various rates for the different categories of adverts at GTV. For example a

Primetime News adverts for 15 seconds costs GH¢215 while for 60 seconds, the rate is GH¢525.

the rates are high for Prime time News and news adjacencies. These are periods where most

customers wants their adverts televised to reach a larger TV audience. The off peak rates are low

compared with the peak periods.

53

Table 1: GTV Adverts Rate

Rates in GHC

Category/Time 15 sec 30 sec 45 sec 60 sec

Prime Time News(19hrs GMT) 215.00 375.00 562.00 750.00

News Adjacencies 130.00 250.00 375.00 500.00

Break in News 135.75 244.35 362.00 525.00

Break in Programmes

a. Peak Time - Week Days

b. Peak Time – Week Ends/Holidays

c. Off Peak

91.00 160.00 220.00 360.00

70.00 120.00 164.00 271.00

45.00 61.00 120.00 177.00

Customers usually request for a number of spots for their adverts. The table 2 shows represents

request received by GTV at Primetime News (19 hours GMT). Customer 1 requested for two(2)

spots of adverts for fifteen (15) seconds each at prime time news. The cost of the two adverts is

GH¢260 (i.e 130 + 130) as indicated in the value column. The weights of this advert is 30sec.

Additionally customer number 5 requested 3 spots of 30 seconds each. ie. 90 sec(weight) with

a cost of GH¢1125(value). The total time available for adverts at the prime time news is twenty

(20) minutes (i.e 1200 seconds) but the total time requested is 1710 seconds.

54

Table 2: Prime Time News Adverts – 19:00 Hours GMT

Adverts
No.

Time in sec (t) No of spots
requested(s)

Time
requested(weight)

Cost(Value)

1 15 2 30 429
2 30 3 90 1125
3 45 1 45 562
4 15 1 15 214
5 30 3 90 1125
6 45 2 90 1124
7 60 1 60 750
8 30 2 60 750
9 45 2 90 1124
10 15 1 15 215
11 15 1 15 215
12 30 1 30 375
13 45 2 90 1124
14 15 2 30 429
15 30 3 90 1125
16 45 2 90 1124
17 30 3 90 1125
18 30 3 90 1125
19 45 2 90 1124
20 60 1 60 750
21 45 1 45 562
22 15 1 15 215
23 15 1 15 215
24 15 1 15 215
25 30 2 60 750
26 30 3 90 1125
27 15 2 30 429
28 60 1 60 750
29 30 3 90 1125
30 15 2 30 429

Total

1710

55

Other customers opt for the News Adjacencies. this is five (5) minutes before and after the

prime time news at 19.00 hours GMT. As shown in table 3, the total time available is 10 minutes

(600 seconds) but the customers requested a total of 810 seconds

Table 3. Adverts for News Adjacencies -18:55 -19:00 and 20:00-20:05

Adverts No. Time requested
(weight)

Cost GHC(Value)

1 30 260
2 45 375
3 15 130
4 90 750
5 60 500
6 60 250
7 90 750
8 15 130
9 15 130

10 30 250
11 30 260
12 60 500
13 45 375
14 15 130
15 15 130
16 15 130
17 60 250
18 30 260
19 60 500
20 30 260

Total 810

56

Table 4 shows the weights and the values for the adverts requested for the 22:30 news time. The

total time available is 600 seconds but the customers requested 810 seconds.

Table 4. Selected adverts for Break in News at 22:30 Hours GMT

Adverts No. Time requested
(weight)

Cost GHC(Value)

1 30 150
2 45 200
3 15 75
4 90 400
5 60 290
6 60 270
8 15 75
9 15 75

10 30 135
11 30 150
12 60 290
13 45 200
14 15 75
15 15 75
16 15 75
17 60 270
18 30 150
19 60 290
20 30 150

Total 720

57

Table 5. Break in programme adverts for Peak Time on Week Days

Adverts No. Time requested
(weight)

Cost GHC(Value)

1 15 91
2 15 91
3 30 160
4 90 440
5 30 182
6 90 480
7 90 440
8 90 480
9 60 320

10 15 91
11 15 91
12 15 91
13 60 320
14 90 480
15 30 182
16 60 360
17 90 480
18 30 182

58

4.2 Data Analysis

The Data collected for GTV was analyzed with the computer software developed in Visual

Basic.Net 2008 using the heuristic scheme algorithm .

4.2.1 Features of the Software

The software allows the user to input data into the program in three ways as shown in the User

interface below by the radio buttons.(codes attached: appendix B)

fig 1. User Interface for the Knapsack Optimizer

• The user can load an existing data already stored in the computer

• The user may type in the data directly into the textboxes

• For testing purposes the user can generate data automatically.

59

The programme generate an initial solution and shows all feasible solutions for the problem

and selects the optimal solution. The optimal solution gives the solution string, the weight

and the value. The selected adverts are the listed in a list box to the right as shown below.

4.2 .2 Results of the Analysis

Results for the analysis of data from a prime time news, news adjacencies, break in News and

break in programme are shown below. The optimal selection these adverts yielded GHC 26,305.

From the table below nineteen (19) adverts were selected from the 30 requested to give an

optimal value of GHC 15,157. The selection for the break in news , break in programme and a

peak period yielded GHC 2,820, GHC 3,288, GHC 5,040 respectively. These are higher than as

compared with the results of the arbitrary method used by GTV. Additionally, more adverts for

each category of advertisement was selected as compared with the existing method of selection.

60

 No. of Adverts
Requested

No. of Adverts
Selected

Time Available
in Second

Optimal
Value
(Amount)

Prime Time 30 19 1200 15,157

News Adjacencies 20 14 600 5,040

Break in News 20 14 600 2,820

Break in Programme 20 13 600 3,288

The adverts selected are as follows

• Prime Time News - {3,6,8,9,12,13,15,16,17,18,19,21,23,24,25,27,28,29,30}

• News adjacencies - {1,2,4,57,8,910,12,13,15,16,19,20}

• Break in News - {1,4,5,6,9,10,11,12,13,14,15,16,17,18}

• Break in Programme – {1,2,3,5,6,7,9,11,12,13,14,16,18}

Total 26,305

61

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

We have described the TV adverts selection problem as a 0–1 knapsack optimization problem.

Given that a 0–1 knapsack optimization problem is NP-hard, we used the simple heuristic

scheme to solve the TV adverts problem.

The areas of our research was the use of the Knapsack problem for selecting adverts in critical

situations such as the prime time news (19.00 hours GMT) and news adjacencies and other news

time (12,14,22:30 hours GMT). However it can be applied to any situations where advertisers

opt for the same limited spots such as sponsoring international football and other events which

will attract many viewers.

For a typical day an amount of GHC26,305 was obtained from adverts selected for the four

categories of adverts, which is far in excess of the arbitrary selection method used by GTV. This

translates to GHC 2,367450 for a 3 month period.

The use of the software is systematic and transparent as compared with the arbitrary method.

Higher returns can be achieved by GTV by the use of this software in their selection of adverts in

the critical situations analysed.

Marketing Managers / Programme Producers may benefit from the proposed approach for

selecting adverts to guarantee maximized profits for their TV stations.

In an event where management may have to include certain adverts for national interest these

could be isolated before selecting the others to compete for the limited time slots.

The software can be used for any problem that can be modeled as a 0/1 knapsack problem.

62

Finally, we only considered single criteria for the selection of the TV adverts. Further research is

needed for applying multi-criteria and multiple knapsack problems to the TV adverts selecting

problem.

63

REFERENCES

1. Abboud, N. J., M. Sakawa, M. Inuiguchi (1997). A fuzzy programming approach to

multiobjective multidimensional 0–1 knapsack problems. www.sciencedirect.com

2. Arnaud Freville, Gérard Plateau (2004). An efficient preprocessing procedure for the

multidimensional 0–1 knapsack problem. www.sciencedirect.com

3. Arne Lokketangen, Fred Glover (1998). Solving zero-one mixed integer programming

problems using Tabu search. www.sciencedirect.com

4. Beasley J. E., P. C. Chu (1996). A genetic Algorithm for the set covering problem.

European Journal of Operations Research 94:392-404

5. Byungjun You, Takeo Yamada (2007). A pegging approach to the precedence-

constrained knapsack problem. www.sciencedirect.com

6. Carlos Gomes da Silva, João Clímaco, José Rui Figueira (2008). Core problems in bi-

criteria {0,1}-knapsack problems. www.sciencedirect.com

7. Chang, J.T., N. Meade, J. E. Beasley, Y.M. Sharaiha. (2000). Heuristics for cardinality

constrained portfolio optimization. Comp. Operasions. Research. 27: 1271-1302

8. Chu, P. C., J. E. Beasley (1997). A genetic algorithm for generalized assignment

problem. Computer Operations Research 24: 17-23

9. Chu, P. C., J. E. Beasley (1998a). A genetic algorithm for multidimentional knapsack

problem. Journal Heuristics 4: 63-68

10. Chu, P. C., J. E. Beasley (1998b). Constraint handling in genetic algorithm: the set

partitioning problem. Journal Heuristics 4: 323-357

11. David Pisinger (1995). An expanding-core algorithm for the exact 0–1 knapsack

problem

64

12. David Pisinger (2005). Where are the hard knapsack problems? www.sciencedirect.com

13. David Pisinger (2007). The quadratic knapsack problem—a survey.

www.sciencedirect.com

14. Devyaterikova, M.V., A.A. Kolokolov, A.P. Kolosov (2009). L-class enumeration

algorithms for a discrete production planning problem with interval resource quantities

15. Dimitri Golenko-Ginzburg, Aharon Gonik (1997). Stochastic network project scheduling

with non-consumable limited resources. www.sciencedirect.com

16. Eugénia Captivo, M., João Clímaco, José Figueira, Ernesto Martins, José Luis Santos,

(2003). Solving bicriteria 0–1 knapsack problems using a labeling algorithm

17. Fabiano do Prado Marques, Marcos Nereu Arenales (2007). The constrained

compartmentalised knapsack problem. www.sciencedirect.com

18. Feng-Tse Lin (2008).Solving the knapsack problem with imprecise weight coefficients

using genetic algorithms. www.sciencedirect.com

19. Feng-Tse Lin, Jing-Shing Yao (2001). Using fuzzy numbers in knapsack problems

20. Fleszar, Khalil S. Hindi (2009). Fast, effective heuristics for the 0–1 multi-dimensional

knapsack problem. www.sciencedirect.com

21. Freville, A., G. Plateau (1986). Heuristics and reduction methods for multiple

constraints 0–1 linear programming problems. www.sciencedirect.com

22. Fumiaki Taniguchi, Takeo Yamada, Seiji Kataoka (2008). Heuristic and exact

algorithms for the max–min optimization of the multi-scenario knapsack problem

23. Gen-Huey Chen, Maw-Sheng Chern, Jin-Hwang Jang (1990). Pipeline architectures for

dynamic programming algorithms. www.sciencedirect.com

65

24. Gholamian, M.R., S.M.T. Fatemi Ghomi, M. Ghazanfari (2007). A hybrid system for

multiobjective problems – A case study in NP-hard problems. www.sciencedirect.com

25. Ghorbani, S., M. Rabbani (2009). A new multi-objective algorithm for a project

selection problem. www.sciencedirect.com

26. Gündem,T. I. (1999). Near optimal multiple choice index selection for relational

databases. www.sciencedirect.com

27. José Rui Figueira, Gabriel Tavares, Margaret M. Wiecek (2009). Labeling algorithms for

multiple objective integer knapsack problems

28. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by simulated annealing.

29. Kostas Florios, George Mavrotas, Danae Diakoulaki (2009). Solving multiobjective,

multiconstraint knapsack problems using mathematical programming and evolutionary

algorithms

30. Li, V. C., G. L. Curry (2005). Solving multidimensional knapsack problems with

generalized upper bound constraints using critical event tabu search.

www.sciencedirect.com

31. Mattias Ohlsson Hong Pi (1997). A Study of the Mean Field Approach to Knapsack

Problems. www.sciencedirect.com

32. Monaldo Mastrolilli, Marcus Hutter (2006). Hybrid rounding techniques for knapsack

problems. www.sciencedirect.com

33. Raja Balachandar, S., K. Kannan (2008). A new polynomial time algorithm for 0–1

multiple knapsack problem based on dominant principles. www.sciencedirect.com

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYJ-3VXSKP9-9&_user=8418261&_coverDate=01%2F31%2F1999&_alid=1010686961&_rdoc=100&_fmt=high&_orig=search&_cdi=5620&_docanchor=&view=f&_ct=886&_acct=C000069421&_version=1&_urlVersion=0&_userid=8418261&md5=20645eb1195cd5c21d0aea5d38f1e3fa
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TYJ-3VXSKP9-9&_user=8418261&_coverDate=01%2F31%2F1999&_alid=1010686961&_rdoc=100&_fmt=high&_orig=search&_cdi=5620&_docanchor=&view=f&_ct=886&_acct=C000069421&_version=1&_urlVersion=0&_userid=8418261&md5=20645eb1195cd5c21d0aea5d38f1e3fa

66

34. Realff, M. J., P. H. Kvam, W. E. Taylor (1999) Combined analytical and empirical

learning framework for branch and bound algorithms: the knapsack problem.

www.sciencedirect.com

35. Reddy Dondeti, V., Bidhu B. Mohanty (1998). Impact of learning and fatigue factors on

single machine scheduling with penalties for tardy jobs. www.sciencedirect.com

36. Reinaldo J. Moraga, Gail W. DePuy, Gary E. Whitehouse (2005). Meta-RaPS approach

for the 0-1 Multidimensional Knapsack Problem. www.sciencedirect.com

37. Rinnooy Kan, A.H. G. L., Stougie, C. Vercellis (1993). A class of generalized greedy

algorithms for the multi-knapsack problem. www.sciencedirect.com

38. Robert M. Nauss (1978). The 0–1 knapsack problem with multiple choice constraints.

39. Saïd Hanafi, Arnaud Freville (1998). An efficient tabu search approach for the 0–1

multidimensional knapsack problem. www.sciencedirect.com

40. Samir Elhedhli (2005). Exact solution of a class of nonlinear knapsack problems.

41. Samuel Eilon (1987). Application of the knapsack model for budgeting

42. Silvano Martello, David Pisinger, Paolo Toth (2000). New trends in exact algorithms for

the 0–1 knapsack problem

43. Simoes, A., Costa, E. Transposition versus Crossover. An Emperical study. Proceedings

of the genetic and evolutional computation conference (1999): pp 612-619

44. Simoes, A., Costa, E.: Using Genetic Algorithm with Asexual Transposition. Proceedings

of the genetic and evolutional computation conference (2000): pp 323-330

45. Stefan Balev, Nicola Yanev, Arnaud Fréville, Rumen Andonov (2008). A dynamic

programming based reduction procedure for the multidimensional 0–1 knapsack problem

67

46. Takeo Yamada, Mayumi Futakawa, Seiji Kataoka (1998). Some exact algorithms for the

knapsack sharing problem. www.sciencedirect.com

47. Tao Zhong, Rhonda Young (2009). Multiple Choice Knapsack Problem: Example of

planning choice in transportation. www.sciencedirect.com

48. Theodore S. Glickman, Stephen V. Allison (1973). Investment planning for irrigation

development projects

49. Ulrich Pferschy, David Pisinger, Gerhard J. Woeginger (1997). Simple but efficient

approaches for the collapsing knapsack problem. www.sciencedirect.com

50. Umit Akinc (2006). Approximate and exact algorithms for the fixed-charge knapsack

problem.www.sciencedirect.com

68

APPENDIX A - GTV Programme Schedule July – September 2009

Time Sunday

Monday Tuesday Wednesday Thursday Friday Saturday

5:00am World Net
5:30am Voice Of Healing Deeper

Life
Ebenezer
Miracle
Worship
Center

World Net Pentecost
Hour

Pranic
Healing

World Net

6:00am Apostolic
Heritage

Breakfast Show

Catholic Digest

6:30am Encounter With
Truth

Restoration Hour

7:00am Voice Of
Inspiration

Life Matters Winners
Church Gh

7:30am Apostolic Voice Winning Ways
7:55am Programme Line-

Up
Programme Line-Up

8:00am Channel Of Hope

Breakfast Show 8:30am Keepers Of Faith Dwtv

9:00am
In The House

Psi-
Distance
Learning

M’brasem Psi-Distance
Learning

Sports Lite Asem Sebe
9:30am Barneys

10:00am News Highlight
10:05am All Of Us Psi-

Distance
Learning

Meet The
Press

Psi-Distance
Learning

Meet The
Press/Straight
Talk Africa

Asem Sebe Children’s Channel
10:30am Gospel Trail

69

11:00am News Highlight
11:05am Documentary Court

Precision

Total
Football

Wiase Ye Sum Meet The
Press(Repeat)

Health Talk National Scince& Maths
Quiz 11:30am Paid Music Regional

Diaries(Repeat)
Kasa Mame

12:00pm News Yese Yese Primwell African Movie

Family
Movie

News
12:30pm

Cantata
In The
House(Repe
at

African Movie Aware Pa

1:00pm Sport Beat
1:30pm

What Do You
Know

“What I
Sell”

 Soccer Icon

2:00pm News Our Children Our Future
2:30pm Enye Easy Business

Africa
Standpoint
(Repeat)

Words Of
Peace

Ads Forum Bundesliga
Kickoff

This Week

3:00pm Stars Of The
Future

Royal
Whispers

Garage W’adidiemu Te
Sen

This Week In
French

Next Level

3:30pm Insurance
&You

Kings&Qu
eens

Afro Tv Tech Express Asenta Oba

4:00pm News Highlight
4:05pm O Baby! My Lovely

Sam -Soon
Psi-
Distance
Learning

Paid
Documentaries
&Musicals

Psi-Distance
Learning

Islam&Life Traffic Warden/Epl

4:30pm Borges Health
Check

Crime Fighters Movie Web Chldren Of Today

5:00pm News Highlight
5:05pm Complete Woman Regional

Diaries
Psi-
Distance
Learning

Environmatazz
(Min.Of
Information)

Psi-Distance
Learning

Local Drama Miss Ghana & Dance
Championship

5:30pm Maggie Food
Moments

Jamin
Reggae

Game
Time(Charter

70

House)
6:00pm News Highlight
6:05pm Frees The Slaves Adult

Educatio
n In
Akan

Adult
Education In
Ausa/Dagba
ni

Adult Education
In Ga

Adult
Education In
Ewe

Adult Education
In Nzema

On The Ball

6:30pm M’asem Soc/Funeral Ann./Line-Up
Inside Out 6:45pm News In News In

Akan
News In
Dagbani

News In Ga News In Ewe

7:00pm News/Businees/Weather
7:30pm Talking Point News/Business/Weather
8:00pm Sports

Highlight
s

Mmaa
Nkomo

Investment
Digest

Possibility
Forum

Standpoint Rythms

8:30pm Zain African
Challenge

Sports
Highlight
s

Mmaa
Nkomo

Zain African
Challenge

Business
Advocate

9:00pm Hot Bench Time
With
Nafti

It Takes
Two

Secrets
Ghana’s Pride

Wicked Games

9:300pm Obra/Nsem Bi
Sisi

Fortune
Island

Stars Of
The Future

Back Home
Again

Faith Talk Dr. Payne

10:00pm Pasion Eve
10:30pm Late News
11:00pm Power In His

Presence
Healing
Jesus
Crusade

Guiness
Football
Africa

Way Of Life “In Him Is
Life”

Counselling
Session

Primwells/African
Movie

11:30pm H.M. Films Dilema Documentary African Movie
12:00pm African Movie Paid Musicals
12:30am DWTV
1:00am Close Down

71

APPENDIX B - VISUAL BASIC.NET CODES FOR THE HEURISTIC SCHEME

Imports System

Imports System.IO

Imports System.Collections

Public Class main

 'global variable declarations

 Dim nInputs As Integer, upperLimit As Integer = 0

 Dim value(1000) As Integer, cost(1000) As Integer, names(1000) As String

 Dim newSolution As Solution, currentSolution As Solution

 'end global variable declarations

 ' all my user-defined classes, functions and subroutines

 Public Class Solution

 Public itsArray(1000) As Integer, solString As String

 Public profitFunction As Integer, costFunction As Integer

Public feasible As Boolean = False

72

Public Sub valueFunctions()

costFunction = 0 : profitFunction = 0 : solString = "{"

 For i = 1 To main.nInputs

 costFunction = costFunction + (main.cost(i) * itsArray(i))

profitFunction = profitFunction + (main.value(i) * itsArray(i))

 If i = main.nInputs Then

 solString = solString + itsArray(i).ToString + "}"

 Else

 solString = solString + itsArray(i).ToString + ","

 End If

 Next i

 End Sub

 Public Sub New(ByVal init As Solution)

 For i = 1 To main.nInputs

 itsArray(i) = init.itsArray(i)

 Next

73

 valueFunctions()

 feasible = init.feasible

 End Sub

 Public Sub New()

 End Sub

 End Class

 Public Sub flipOperation(ByVal aSolution As Solution)

 Dim randomIndex As Integer

 statusLabel.Text = "Flip any randomly chosen index in the solution ..."

 Randomize()

 randomIndex = CInt(((nInputs - 1) * Rnd()) + 1)

 aSolution.itsArray(randomIndex) = 1 - aSolution.itsArray(randomIndex)

 aSolution.valueFunctions()

 If aSolution.costFunction <= upperLimit Then

 aSolution.feasible = True

 Else

 aSolution.feasible = False

74

 End If

 End Sub

 Public Sub flipOperation(ByVal whatToFlip As Integer, ByVal aSolution As Solution)

 Dim randomIndex As Integer

 statusLabel.Text = "Searching for an index equal to " + whatToFlip.ToString + " to flip ..."

 Do

 Randomize()

 randomIndex = CInt(((nInputs - 1) * Rnd()) + 1)

 Loop Until aSolution.itsArray(randomIndex) = whatToFlip

 aSolution.itsArray(randomIndex) = 1 - aSolution.itsArray(randomIndex)

 aSolution.valueFunctions()

 If aSolution.costFunction <= upperLimit Then

 aSolution.feasible = True

 Else

 aSolution.feasible = False

 End If

75

 End Sub

 Private Sub printOut(ByVal aSolution As main.Solution, ByVal lastString As String, ByRef thelistbox As ListBox)

 thelistbox.Items.Add("Weight = " + aSolution.costFunction.ToString)

 thelistbox.Items.Add("Value = " + aSolution.profitFunction.ToString)

 thelistbox.Items.Add("Solution String =: " + aSolution.solString)

 thelistbox.Items.Add(lastString)

 ListBox1.Items.Add("")

 End Sub

 Private Sub getInitialSolution(ByRef thelistbox As ListBox, ByVal annealing As Boolean)

 currentSolution = New Solution()

 currentSolution.feasible = False

 Do

 For i = 1 To nInputs

 Randomize()

 currentSolution.itsArray(i) = CInt(Int((2 * Rnd())))

 Next i

76

 currentSolution.valueFunctions()

 If currentSolution.costFunction <= upperLimit Then

 currentSolution.feasible = True

 printOut(currentSolution, "Initial feasible solution", thelistbox)

 End If

 Loop Until (currentSolution.feasible = True)

 ' generated an initial solution, currently the best.

 newSolution = New Solution(currentSolution)

 End Sub

 Private Sub solveByFlop(ByVal coeffN As Integer, ByRef thelistbox As ListBox, ByRef theLB As ListBox)

 Dim looptimes As Integer, count As Integer

 ' Now, atempt to optimize

 statusLabel.Text = "Attempting to optimize current solution ..."

 Do

 ' with simple flip, pick any index at random and flip it

 newSolution.feasible = False

 While (Not newSolution.feasible)

77

 'Randomize()

 flipOperation(newSolution)

End While

 ' check profitability of solution just found

 If newSolution.profitFunction > currentSolution.profitFunction Then

 currentSolution = New main.Solution(newSolution)

 printOut(currentSolution, "Feasible improving solution found", thelistbox)

 count = 0

 Else

 printOut(newSolution, "Feasible Non-improving solution ", thelistbox)

 'newSolution = New Solution(currentSolution)

 count = count + 1

 End If

 looptimes = looptimes + 1

 Label1.Text = "Looped " + looptimes.ToString + "time(s)"

 If count = 100 Then statusLabel.Text = "FINISHED ! " + Label1.Text

78

 ListBox1.Items.Add("*********OPTIMAL SOLUTION***********")

 printOut(currentSolution, "This is the best solution obtained", thelistbox)

 For i = 1 To nInputs

 If currentSolution.itsArray(i) = 1 Then

 theLB.Items.Add(names(i))

 End If

 Next

 End If

 Loop Until count = 100

 End Sub

Public Sub generateRandom()

 Dim totalCost = 0

 For i = 1 To nInputs

 'get the name of i

 names(i) = "Item " + i.ToString

 'get the cost of i

79

 Randomize()

 cost(i) = CInt(Int(10 + (40 * Rnd())))

 totalCost = totalCost + cost(i)

 'get the profit value of i

 Randomize()

 value(i) = CInt(Int(20 + (50 * Rnd())))

 Next

 numberUpDown.Maximum = nInputs

 upperLimit = CInt(Int((0.4 + (0.3 * Rnd())) * totalCost))

 End Sub

Private Sub nextButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

 End Sub

 'end of overviewTabPage subs

 'inputTabPage subs

80

 Private Sub acceptTotalButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

acceptTotalButton.Click

 If IsNumeric(totalItemsTextBox.Text) And IsNumeric(totalItemsTextBox.Text) < 1000 Then

 nInputs = Integer.Parse(totalItemsTextBox.Text)

 acceptTotalButton.Enabled = False : totalItemsTextBox.Enabled = False

 inputGroupBox.Enabled = True : clearButton.Enabled = True

 editTotalButton.Enabled = True : submitButton.Enabled = True

 numberTextBox.Text = "1" : AcceptButton = OKButton

 nameTextBox.Focus()

 Else

 MessageBox.Show("Please enter an integer, not more than 1000", "Numeric Input Required", _

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 totalItemsTextBox.Focus()

 End If

 End Sub

 Private Sub editTotalButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles editTotalButton.Click

 submitButton.Enabled = False : editTotalButton.Enabled = False

81

 inputGroupBox.Enabled = False : clearButton.Enabled = False

 totalItemsTextBox.Enabled = True : acceptTotalButton.Enabled = True

 AcceptButton = acceptTotalButton : acceptTotalButton.Focus()

 End Sub

 Private Sub excludeNamesCheckBox_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

excludeNamesCheckBox.CheckedChanged

 If excludeNamesCheckBox.Checked = True Then

 nameTextBox.Enabled = False

 costTextBox.Focus()

 Else

 nameTextBox.Enabled = True

 nameTextBox.Focus()

 End If

 End Sub

 Private Sub OKButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles OKButton.Click

82

 Try

 If Integer.Parse(costTextBox.Text) < 1 Or Integer.Parse(valueTextBox.Text) < 1 Then

 MessageBox.Show("Please enter valid numbers for the cost and value of this item", _

 "Invalid input specified", MessageBoxButtons.OK, MessageBoxIcon.Error)

 Else

 If nextItem > nInputs Then

 MessageBox.Show("Please complete and submit your entries", "Inputs", _

 MessageBoxButtons.OK, MessageBoxIcon.Information)

 upperLimitTextBox.Focus()

 AcceptButton = submitButton

 Else

 cost(nextItem) = Integer.Parse(costTextBox.Text)

 value(nextItem) = Integer.Parse(valueTextBox.Text)

 If excludeNamesCheckBox.Checked = True Then

 names(nextItem) = "Item " + nextItem.ToString

 costTextBox.Focus()

 Else

83

 names(nextItem) = nameTextBox.Text

 nameTextBox.Focus()

 End If

 nextItem = nextItem + 1

 numberTextBox.Text = nextItem

 End If

 End If

 Catch ex As Exception

 MessageBox.Show("Please enter valid numbers for the cost and value of this item", _

 "Invalid input specified", MessageBoxButtons.OK, MessageBoxIcon.Error)

 Finally

 nameTextBox.Clear()

 costTextBox.Clear()

 valueTextBox.Clear()

 End Try

 End Sub

84

 Private Sub clearButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles clearButton.Click

 If MessageBox.Show("This will delete all entries inclding the number of entries involved. " _

 & "Do you still want to clear ALL entries?", "Confirm Delete", _

 MessageBoxButtons.OKCancel, MessageBoxIcon.Warning) = Windows.Forms.DialogResult.OK Then

 totalItemsTextBox.Clear() : excludeNamesCheckBox.Checked = False

 numberTextBox.Clear() : nameTextBox.Clear() : costTextBox.Clear()

 valueTextBox.Clear() : upperLimitTextBox.Clear()

 acceptTotalButton.Enabled = True

 End If

 End Sub

 Private Sub submitButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles submitButton.Click

 If manualRB.Checked = True Then

 If IsNumeric(upperLimitTextBox.Text) = False Then

 MessageBox.Show("This value must be a number", "Invalid Input", _

 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

85

 upperLimitTextBox.Focus()

 Else

 upperLimit = Integer.Parse(upperLimitTextBox.Text)

 End If

 End If

 If upperLimit > 0 Then

 nameListBox.Items.Clear() : costListBox.Items.Clear()

 valueListBox.Items.Clear()

 For i = 1 To nInputs

 nameListBox.Items.Add(names(i).ToString)

 costListBox.Items.Add(cost(i).ToString)

 valueListBox.Items.Add(value(i).ToString)

 Next

 numberUpDown.Maximum = nInputs

 NumericUpDown1.Maximum = nInputs

 Label22.Text = upperLimit.ToString

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

86

 End If

 End Sub

 Private Sub numberTextBox_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

numberTextBox.TextChanged

 If numberTextBox.Text > nInputs Then

 costTextBox.Enabled = False

 valueTextBox.Enabled = False

 upperLimitTextBox.Focus()

 OKButton.Enabled = False

 AcceptButton = submitButton

 End If

 End Sub

 Private Sub manualRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

manualRB.CheckedChanged

 If manualRB.Checked = True Then

87

 AcceptButton = acceptTotalButton

 manualRB.Enabled = True

 End If

 End Sub

 Private Sub fileRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

fileRB.CheckedChanged

 If fileRB.Checked = True Then

 Dim openInput As New OpenFileDialog

 openInput.Filter = "All supported file formats(*.rod;*.xls)|*.rod;*.xls|Resource Optimizer Data File(*.rod)|*.rod|Excel

Worksheet(*.xls)|*.xls"

 openInput.InitialDirectory = "c:\"

 openInput.FilterIndex = 1

 If openInput.ShowDialog = Windows.Forms.DialogResult.OK Then

 Try

 Dim objReader As New StreamReader(openInput.FileName)

 Dim sLine As String = ""

88

 Dim cnt As Integer = 0, cnt1 As Integer = 1

 Do

 sLine = objReader.ReadLine()

 If sLine IsNot Nothing Then

 cnt = cnt + 1

 If cnt < 2 Then

 nInputs = Integer.Parse(sLine.ToString)

 ElseIf cnt < 3 Then

 upperLimit = Integer.Parse(sLine.ToString)

 Else

 If cnt Mod 3 = 0 Then

 names(cnt1) = sLine

 ElseIf cnt Mod 3 = 1 Then

 cost(cnt1) = Integer.Parse(sLine)

 Else

 value(cnt1) = Integer.Parse(sLine)

 cnt1 = cnt1 + 1

89

 End If

 End If

 End If

 Loop Until sLine Is Nothing

 objReader.Close()

 MessageBox.Show("The file was loaded successfully. Please submit the data now", "Load Input File successful", _

 MessageBoxButtons.OK, MessageBoxIcon.Information)

 If upperLimit > 0 Then

 nameListBox.Items.Clear() : costListBox.Items.Clear()

 valueListBox.Items.Clear()

 For i = 1 To nInputs

 nameListBox.Items.Add(names(i).ToString)

 costListBox.Items.Add(cost(i).ToString)

 valueListBox.Items.Add(value(i).ToString)

 Next

 numberUpDown.Maximum = nInputs

 NumericUpDown1.Maximum = nInputs

90

 Label22.Text = upperLimit.ToString

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

 End If

 Catch ex As Exception

 MessageBox.Show("An error occured. Please wait a short while and try again", "Error reading file", _

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End If

 manualRB.Checked = True

 End If

 End Sub

 Private Sub randomRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

randomRB.CheckedChanged

 If randomRB.Checked = True Then

 Dim nstring As String, result As DialogResult

 nstring = InputBox("How many items / options are to be used?", _

91

 "Enter the value of n to be used", , ,)

 If nstring = "" Then

 result = Windows.Forms.DialogResult.Cancel

 ElseIf Not IsNumeric(nstring) Then

 result = MessageBox.Show("Please enter a valid integer value for n", "Invalid Input", _

 MessageBoxButtons.RetryCancel, MessageBoxIcon.Error)

 Else

 nInputs = Integer.Parse(nstring)

 generateRandom()

 If upperLimit > 0 Then

 nameListBox.Items.Clear() : costListBox.Items.Clear()

 valueListBox.Items.Clear()

 For i = 1 To nInputs

 nameListBox.Items.Add(names(i).ToString)

 costListBox.Items.Add(cost(i).ToString)

 valueListBox.Items.Add(value(i).ToString)

 Next

92

 numberUpDown.Maximum = nInputs

 NumericUpDown1.Maximum = nInputs

 Label22.Text = upperLimit.ToString

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

 End If

 End If

 manualRB.Checked = True

 End If

 End Sub

 Private Sub editButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles editButton.Click

 editGroupBox.Enabled = True

 editButton.Enabled = False

 FOcomputeButton.Enabled = False

 End Sub

93

 Private Sub NumericUpDown1_ValueChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

NumericUpDown1.ValueChanged

 nameEditBox.Text = names(Integer.Parse(NumericUpDown1.Value.ToString))

 costEditBox.Text = cost(Integer.Parse(NumericUpDown1.Value.ToString))

 valueEditBox.Text = value(Integer.Parse(NumericUpDown1.Value.ToString))

 End Sub

 Private Sub cButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cButton.Click

 editGroupBox.Enabled = False

 editButton.Enabled = True

 FOcomputeButton.Enabled = True

 'SAcomputeButton.Enabled = True

 End Sub

 Private Sub changeButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles changeButton.Click

 Dim theIndex As Integer = NumericUpDown1.Value - 1

 Try

 For i = 0 To nameListBox.Items.Count - 1

94

 If nameTextBox.Text = nameListBox.Items.Item(i) And i <> theIndex Then

 Dim ex As System.Exception

 End If

 Next

 If Integer.Parse(costTextBox.Text) < 1 Or Integer.Parse(valueTextBox.Text) < 1 Then

 MessageBox.Show("Cannot replace the entry. The cost or value is not a valid number", "Invalid input specified", _

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 Else

 If MessageBox.Show("Relace " + nameListBox.Items.Item(theIndex) + ", Cost : " + costListBox.Items.Item(theIndex) + ",

Profit : " + _

 valueListBox.Items.Item(theIndex) + " with" + ControlChars.NewLine + nameTextBox.Text + ", Cost : " + _

 costTextBox.Text + "Profit : " + valueTextBox.Text, "Edit entry", MessageBoxButtons.YesNo,

MessageBoxIcon.Exclamation) _

 = Windows.Forms.DialogResult.Yes Then

 nameListBox.Items.RemoveAt(theIndex)

 costListBox.Items.RemoveAt(theIndex)

95

 valueListBox.Items.RemoveAt(theIndex)

 nameListBox.Items.Insert(theIndex, nameEditBox.Text)

 costListBox.Items.Insert(theIndex, costEditBox.Text)

 valueListBox.Items.Insert(theIndex, valueEditBox.Text)

 names(NumericUpDown1.Value) = nameEditBox.Text

 cost(NumericUpDown1.Value) = Integer.Parse(costEditBox.Text)

 value(NumericUpDown1.Value) = Integer.Parse(valueEditBox.Text)

 End If

 editGroupBox.Enabled = False

 editButton.Enabled = True

 FOcomputeButton.Enabled = True

 'SAcomputeButton.Enabled = True

 End If

 Catch ex As Exception

 MessageBox.Show("Cannot replace the entry. Invalid number or clashing entries", "Invalid input specified", _

 MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

96

 End Sub

 Private Sub numberUpDown_ValueChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

numberUpDown.ValueChanged

 Dim indexd As Integer = Integer.Parse(numberUpDown.Value.ToString)

 nameListBox.SelectedItem = names(indexd)

 costListBox.SelectedIndex = nameListBox.SelectedIndex

 valueListBox.SelectedIndex = nameListBox.SelectedIndex

 End Sub

 Private Sub saveInputButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

saveInputButton.Click

 cButton.PerformClick()

 Dim saveThis As New SaveFileDialog

 saveThis.Filter = "Resource Optimizer Data File|*.rod|Excel|*.xls"

 saveThis.Title = "Save Resource Optimizer Input Data"

 saveThis.InitialDirectory = "c:\"

 If saveThis.ShowDialog() = Windows.Forms.DialogResult.OK Then

97

 ' If the file name is not an empty string open it for saving.

 If saveThis.FileName <> "" Then

 Select Case saveThis.FilterIndex

 Case 1

 Dim objStreamWriter = New StreamWriter(saveThis.FileName)

 objStreamWriter.WriteLine(nInputs.ToString)

 objStreamWriter.WriteLine(upperLimit.ToString)

 For i = 1 To nInputs

 objStreamWriter.WriteLine(names(i))

 objStreamWriter.WriteLine(cost(i).ToString)

 objStreamWriter.WriteLine(value(i).ToString)

 Next

 objStreamWriter.Close()

 MessageBox.Show("The file was saved successfully", "Save Complete", _

 MessageBoxButtons.OK, MessageBoxIcon.Information)

 Case 2

 MessageBox.Show("This file cannot be saved in Excel format yet", "Format unavailable", _

98

 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

 End Select

 End If

 End If

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

 End Sub

 Private Sub FOcomputeButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

FOcomputeButton.Click

 mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1)

 End Sub

 Private Sub CBox_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

CBox.CheckedChanged

 If CBox.Checked = True Then

 yTextBox.ReadOnly = False

 Else

99

 yTextBox.ReadOnly = True

 End If

 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click

 ListBox1.Items.Clear()

 lb2.Items.Clear()

 getInitialSolution(ListBox1, False)

 solveByFlop(2, ListBox1, lb2)

 End Sub

 Private Sub saveResults_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim k As Integer

 Dim s As String = ""

 For k = 0 To ListBox1.Items.Count - 1

 s = s + ListBox1.Items(k).ToString + vbCrLf

 Next

 s = s + "**********Selected Items*********" + vbCrLf

 For k = 0 To Me.lb2.Items.Count - 1

100

 s = s + lb2.Items(k).ToString + vbCrLf

 Next

 Dim SaveFileDialog As New SaveFileDialog

 SaveFileDialog.InitialDirectory = My.Computer.FileSystem.SpecialDirectories.MyDocuments

 SaveFileDialog.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*"

 If (SaveFileDialog.ShowDialog(Me) = System.Windows.Forms.DialogResult.OK) Then

 Dim FileName As String = SaveFileDialog.FileName

 My.Computer.FileSystem.WriteAllText(FileName, s, True)

 MessageBox.Show("Results saved succesfully", "Save Complete", MessageBoxButtons.OK, MessageBoxIcon.Information)

 End If

 End Sub

End Class

102

	OPTIMAL RESOURCE ALLOCATION header
	Thesis- Optimal Resource Allocation Using Knapsack Problems-Feb 2010
	DECLARATION
	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	CHAPTER ONE
	INTRODUCTION
	1.1.1 History of Broadcasting in Ghana
	1.1.2 TV Broadcasting Programming or Scheduling
	1.1.3 Television Commercial Scheduling
	1.1.5 Television Stations in Ghana
	1.2 Broadcast Television Systems
	1.2.1 Analogue Television System
	1.2.2 The Digital Television Transition
	1.2.3 The Digital Television System
	1.3 Problem Statement
	1.4 Objective
	1.5 Justification
	1.6 Methodology
	1.7 Scope and limitation
	1.8 Organization of Thesis

	1.1.4 History Of Ghana Broadcasting Corporation
	CHAPTER TWO
	LITERATURE REVIEW
	CHAPTER THREE
	TYPES OF KNAPSACK PROBLEMS AND SOLUTION METHODS
	3.1.1 The Single 0-1 Knapsack Problem
	3.1.2 The Subset Sum Knapsack problem
	3.1.3 The Change-Making Problem
	3.1.4 Multiple Knapsack Problems
	3.1.5 Multi-dimensional Knapsack problem
	3.2 Data Modeling
	3.2.1 Methods for solving Knapsack problems.
	3.2.1 The Branch and Bound Method
	3.2.2 Dynamic Programming Method
	3.2.3 Heuristic Scheme
	3.2.4 Simulated Annealing
	3.2.4 Genetic Algorithm

	CHAPTER 4
	DATA COLLECTION AND ANALYSIS
	4.1. Data Collection

	CHAPTER FIVE
	CONCLUSION AND FUTURE WORK

	REFERENCES
	APPENDIX A - GTV Programme Schedule July – September 2009
	APPENDIX B - VISUAL BASIC.NET CODES FOR THE HEURISTIC SCHEME

