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ABSTRACT 

The Knapsack Problems are among the simplest integer programs which are NP-hard. Problems 

in this class are typically concerned with selecting from a set of given items, each with a 

specified weight and value, a subset of items whose weight sum does not exceed a prescribed 

capacity and whose value is maximum. The specific problem that arises depends on the number 

of knapsacks (single or multiple) to be filled and on the number of available items of each type 

(bounded or unbounded). Because of their wide range of applicability, knapsack problems have 

known a large number of variations such as: single and multiple-constrained knapsacks, 

knapsacks with disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, 

single and multiple objective knapsacks, integer, linear, non-linear knapsacks,  deterministic and 

stochastic knapsacks, knapsacks with convex / concave objective functions, etc. 

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each 

type.  Knapsack Problems have been intensively studied over the past forty (40) years because of 

their direct application to problems arising in industry (for example, cargo loading, cutting stock, 

and budgeting) and also for their contribution to the solution methods for integer programming 

problems. Several exact algorithms based on branch and bound, dynamic programming and 

heuristics have been proposed to solve the Knapsack Problems. This thesis considers the 

application of classical 0-1 knapsack problem with a single constraint to selection of television 

advertisements at critical periods such as Prime time News, new adjacencies and peak times. The 

Television (TV) stations have to schedule programmes interspersed with adverts or commercials 

which are the main sources of income of broadcasting stations. The goal in scheduling 

commercials is to achieve wider audience satisfaction and making maximum income from the 

commercials or adverts. Our approach is flexible and can incorporate the use of the knapsack for 

Profit maximization in the TV adverts selection problem. 

Our work focuses on using a simple heuristic scheme (Simple flip) for the solution of knapsack 

problems. We show that the results from the heuristic method compares favourably with the well 

known meta-heuristic methods such as Genetic Algorithm and Simulated Annealing.  The thesis 

shows how television advertisement at critical segments such as prime time news (19:00 GMT) 

and news adjacencies (five minutes before and after news time) can be prioritized to rake in the 

maximum returns to support operations of a national Television station (GTV). The computer 



solution developed could be used for any problem that can be modeled as single 0-1 knapsack 

problem.  

 

 



i 
 

DECLARATION 
 

I hereby declare that this submission is my own work towards the Master of Science degree 

and that, to the best of my knowledge it contains no material previously published by another 

person nor material which has been accepted for award of any other degree of the university 

Except where due acknowledgement has been made in  the text. 

 

Emmanuel Ofori Oppong,  PG1837007 ………………….         …………………… 

Student’s Name & ID        Signature    Date 

 

 

Certified By 

 

Dr. S. K. Amponsah    ………………….           …………………… 

Supervisor’s Name          Signature    Date 

 

 

Certified by 

 

Dr. S. K. Amponsah    ………………….         …………………… 

Head of Department’s Name       Signature    Date 

 

 



ii 
 

ABSTRACT 
 

The Knapsack Problems are among the simplest integer programs which are NP-hard. 

Problems in this class are typically concerned with selecting from a set of given items, each 

with a specified weight and value, a subset of items whose weight sum does not exceed a 

prescribed capacity and whose value is maximum. The specific problem that arises depends 

on the number of knapsacks (single or multiple) to be filled and on the number of available 

items of each type (bounded or unbounded). Because of their wide range of applicability, 

knapsack problems have known a large number of variations such as: single and multiple-

constrained knapsacks, knapsacks with disjunctive constraints, multidimensional knapsacks, 

multiple choice knapsacks, single and multiple objective knapsacks, integer, linear, non-

linear knapsacks,  deterministic and stochastic knapsacks, knapsacks with convex / concave 

objective functions, etc. 

The classical 0-1 Knapsack Problem arises when there is one knapsack and one item of each 

type.  Knapsack Problems have been intensively studied over the past forty (40) years 

because of their direct application to problems arising in industry (for example, cargo 

loading, cutting stock, and budgeting) and also for their contribution to the solution methods 

for integer programming problems. Several exact algorithms based on branch and bound, 

dynamic programming and heuristics have been proposed to solve the Knapsack Problems. 

This thesis considers the application of classical 0-1 knapsack problem with a single 

constraint to selection of television advertisements at critical periods such as Prime time 

News, news adjacencies, Break in News and peak times. The Television (TV) stations have 

to schedule programmes interspersed with adverts or commercials which are the main sources 

of income of broadcasting stations. The goal in scheduling commercials is to achieve wider 

audience satisfaction and making maximum income from the commercials or adverts. Our 

approach is flexible and can incorporate the use of the knapsack for Profit maximization in 

the TV adverts selection problem. 

Our work focuses on using a simple heuristic scheme (Simple flip) for the solution of 

knapsack problems. We show that the results from the heuristic method compares favourably 

with the well known meta-heuristic methods such as Genetic Algorithm and Simulated 

Annealing.  The thesis shows how television advertisement at critical segments such as prime 

time news (19:00 GMT) and news adjacencies (five minutes before and after news time) can 

be prioritized to rake in the maximum returns to support operations of a national Television 
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station (GTV). The computer solution developed could be used for any problem that can be 

modeled as single 0-1 knapsack problem.  
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CHAPTER ONE 

INTRODUCTION 
 

 Nearly every organization faces the problem of allocating limited resources (capital and other 

scarce resources including time, people) across projects or other type of investments. There is 

therefore the need to allocate these resources to maximize the returns from a given investment.  

The goal is to select the particular subsets of projects which can be funded within the budget 

constraint. One of the greatest resources of broadcasting stations (both Television and Radio) is 

Time. The Television (TV) stations have to schedule programmes interspersed with adverts or 

commercials which are the main sources of income of broadcasting stations. The goal in 

scheduling commercials is to achieve wider audience satisfaction and making maximum income 

from the commercials or adverts. 

A great variety of practical problems can be represented by a set of entities, each having an 

associated value, from which one or more subsets has to be selected in such a way that the sum 

of the values of the selected entities is maximized, and some predefined conditions are respected. 

The most common condition is obtained by also associating a weight to each entity and 

establishing that the sum of the entity sizes in each subset does not exceed some prefixed bound. 

These problems are generally called knapsack problems, since they recall the situation of a 

traveler having to fill up his knapsack by selecting from among various possible objects those 

which will give him the maximum comfort.  

In the present survey we will adopt the following terminology. The entities will be called items 

and their number will be indicated by n. The value and size associated with the jth item will be 

called profit and weight, respectively, and denoted by pj and  wj, ( j = 1, … … , n) 
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 1.1.1 History of Broadcasting in Ghana 

Broadcasting in Ghana began as a department of the Ministry of Information when it started in 

1935. The ministry was responsible for the formulation of national mass communication policies 

and for ensuring the full and effective use of the mass media for the dissemination of 

information, and for economic and social development of the nation.  

Radio Broadcasting was first established in Ghana in 1935 with approximately three hundred 

(300) subscribers in Accra. The number was low because radio sets were then rare and 

expensive, and was the privilege of only a rich few, mainly the expatriate community who had 

come from countries that already had these mass communication facilities. The brain behind the 

introduction of broadcasting into the country was the then Governor of the Gold Coast, Sir 

Arnold Hodson.  Broadcasting began in Ghana essentially as a relay service, re-broadcasting 

programmes from the BBC World Service. A year later, the service began to expand and a re-

diffusion station was opened in Cape Coast, the Central Regional capital to cater for that part of 

the country.  Three more stations were opened the following year and a new broadcasting house 

built in Accra during the Second World War in 1940. It had a small 1.3KW transmitter, with 

which transmissions could be broadcast to neighbouring institutions. During the 1940s, 

broadcasting began in four of the major Ghanaian languages - Twi, Fanti, Ga and Ewe.  

In 1952, the then colonial government appointed a commission to advise it on ways of improving 

and developing broadcasting. It was to investigate among other things the establishment and 

maintenance of a statutory corporation to assume direction and control of broadcasting services 

as was the case in parent country Britain. As a result of the Commission's report, a new 

broadcasting system, the national service of the Gold Coast Broadcasting System was set up in 

1954.  

Broadcasting became a new department distinct from the Information Services to which it had 

previously been attached. Broadcast content at this time was mainly governmental 

announcements and rebroadcasts from the BBC.  

From 1956, locally produced programmes increased, educational broadcasts to schools and 

teacher training colleges were started and outside events were broadcast live into homes. When 

the Gold Coast became Ghana in 1957, the Gold Coast Broadcast System became the Ghana 

Broadcasting System, or as it was popularly known as Radio Ghana. Mass Communication was 



3 
 

embraced as a way of changing society. Broadcasting in Ghana was thus to be a public service 

dedicated to the enlightenment and instruction of the people. Taking into consideration that its 

main model was the BBC, the pioneer of public service broadcasting, it was no surprise that the 

public service model was adopted from the onset.  

Ghana’ entry into the international broadcasting scene began when in 1958 the government set 

up another commission to advise it on launching an external service of Radio Ghana; the 

External Service was inaugurated in June 1961 as a result. At the same time, television was being 

considered and GBC Television Service was launched on 31st  July 1965. In 1997, GBC entered 

into an agreement with WorldSpace  to provide GBC with a channel on its Afristar satellite. This 

capability enabled GBC to provide a 24-hour, Direct Digital Broadcasting (DDB) service over a 

coverage area of   fourteen metre (14m) sq km, encompassing millions of radio listeners. Today, 

due to deregulation, availability of technology and a shift in market economy, there are five 

television stations in Ghana and at least seventy radio stations. Broadcasting has been privatised 

and commercialised bringing with it the attendant competition, issues of regulation of content 

and of operation. 

 

1.1.2 TV Broadcasting Programming or Scheduling 

Broadcast programming, or scheduling, is the practice of organizing television or radio programs 

in a daily, weekly, or season-long schedule. Modern broadcasters regularly change the 

scheduling of their programs to build an audience for a new show, retain that audience, or 

compete with other broadcasters' programs. 

Television scheduling strategies are employed to give programs the best possible chance of 

attracting and retaining an audience. They are used to deliver programs to audiences when they 

are most likely to want to watch them and deliver audiences to advertisers in the composition 

that makes their advertising most likely to be effective (Ellis, 2000). Digitally based broadcast 

programming mechanisms are known as Electronic program guides. 

At a micro level, scheduling is the minute planning of the transmission; what to broadcast and 

when, ensuring that every second of airtime is covered. 
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1.1.3 Television Commercial Scheduling 

The main source of income for private TV stations is advertising. The broadcasting is 

interspersed with advertising “breaks” typically 3 minutes long. In business adverts are called 

“spots”. Typical spots lengths are 7 seconds, 15, 22, 30, 45, 60, 90, 120. It is a rule of television 

advertising that competing products should not be advertised within the same break. Hence 

products are scheduled into clash groups and products within the same clash group should not be 

advertised in the same break (Brown, 1969) 

 

1.1.4 History Of Ghana Broadcasting Corporation 

 

• July 31 1935. Radio ZOY established. It was a small relay station installed in a bungalow 

near the State house in Accra.  

• 1939. British Government provided funds for the building of a more fitting broadcasting 

House and purchased a new transmitter to carry programmes to the Country and the 

neighbouring West African territories. 

The Broadcasting House (BH2) was opened in 1940.  

• 1946. Information Services Dept. handled administration of GBC.  

• 1953. Gold Coast Broadcasting System established as a Department.  

• 1956. Audience Research Department set up.  

• 1956. GBC News Unit set up.  

• 1958. Broadcasting House (BH-3) built.  

• 1960. Dr. D. F. Coleman appointed first Ghanaian Director of Broadcasting.  

• 1960. GBC joined Commonwealth Broadcasting Association.  

• 1961, June 1. External Service inaugurated.  

• 1962. GBC Reference Library established..  

• 1965, 31 July. Ghana Television inaugurated.  

• 1965. Rural Broadcasting inaugurated.  

• 1967, February 1. Commercial Broadcasting introduced on additional shortwave Radio.  

• 1971. Public Relations Department set up.  
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• 1985. Colour Television introduced.  

• 1986. Accra FM inaugurated  

Regional Fm Stations 
 

• Obonu 96.5fm – Tema, Greater Accra 

• Garden City Radio 92.1fm – Kumasi, Ashanti  

• Radio Central 92.5fm – Cape Coast, Central  

• Twin City Radio 94.7fm – Sekondi-Takoradi 

• Sunrise FM 106.7fm – Koforidua, Easte 

• Radio B.A.R 93.5fm – Sunyani, Brong Ahafo  

• Volta Star Radio 91.1fm – Ho, Volta  

• Radio Savannah 91.3fm – Tamale, Northern   

• U.R.A. Radio 89.7fm – Bolgatanga, Upper East   

• Radio Upper West 90.1fm – Wa, Upper West 

1.1.5 Television Stations in Ghana 

Currently there is one state-owned TV station, two  free-to air TV channels and other five other 

channel using either cable /satellite broadcasting. Ghana TV (GTV) is a state-owned national TV 

operated by the Ghana Broadcasting Corporation. Metro TV  and TV3 are  free-to-air TV 

channel. Multichoice - provides its services through satellite, as well as Cable Gold whose 

service through cable serves parts of Tema, and also Fontomfom TV, which telecasts in 

Kumasi.V-Net TV and Fantazia TV - cable TV channel. TV AGORO (TVA) is pay-TV station 

which broadcast wavelengths over Accra. through bouquet of six premium channels comprising 

news channel CNN, music channel MCM, Cartoon Network for the kids, Turner Classic Movies 

(TCM) and French channel CFITV. They also broadcast two religious channels on a 24-hour 

basis, being Trinity Broadcasting Network (TBN) and the Catholic channel EWTN. Currently 

most of the channels used in Ghana are on VHF. But stations like CNN and others are broadcast 

on UHF channels. The trend in TV broadcast is towards use of more and more UHF channels 

because among other reasons, there are more available. 

 

http://www.metrotv.com.gh/
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1.2 Broadcast Television Systems 

There are several broadcast television systems in use in the world today. These are the Analogue, 

digital switch over and digital. In terms of ownership we have state owned television stations, 

private stations, pay stations. 

  

1.2.1 Analogue Television System 

An analogue television system includes several components: a set of technical parameters for the 

broadcast signal, a system for encoding color, and possibly a system for encoding multi-channel 

audio. In digital television, all of these elements are combined in a single digital transmission 

system. All but one analogue television system began life in monochrome. Each country, faced 

with local political, technical, and economic issues, adopted a color system which was 

effectively grafted onto an existing monochrome system, using gaps in the video spectrum 

(explained below) to allow the color information to fit in the channels allotted. In theory, any 

color system could be used with any monochrome video system, but in practice some of the 

original monochrome systems proved impractical to adapt to color and were abandoned when the 

switch to color broadcasting was made. All countries use one of three color systems: NTSC, 

PAL, or SECAM. 

Ignoring color, all television systems work in essentially the same manner. The monochrome 

image seen by a camera (now, the luminance component of a color image) is divided into 

horizontal scan lines, some number of which make up a single image or frame. A monochrome 

image is theoretically continuous, and thus unlimited in horizontal resolution, but to make 

television practical a limit had to be placed on the bandwidth of the television signal, which puts 

an ultimate limit on the horizontal resolution possible. When color was introduced, this limit of 

necessity became fixed. All current analogue television systems are interlaced; alternate rows of 

the frame are transmitted in sequence, followed by the remaining rows in their sequence. Each 

half of the frame is called a field, and the rate at which fields are transmitted is one of the 

fundamental parameters of a video system. It is related to the frequency at which the electric 

power grid operates, to avoid flicker resulting from the beat between the television screen 

http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Analog_television
http://en.wikipedia.org/wiki/Analog_television
http://en.wikipedia.org/wiki/Encoder
http://en.wikipedia.org/wiki/Digital_television
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/SECAM
http://en.wikipedia.org/wiki/Luminance_(video)
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Interlaced
http://en.wikipedia.org/wiki/Utility_frequency
http://en.wikipedia.org/wiki/Electricity_distribution
http://en.wikipedia.org/wiki/Electricity_distribution
http://en.wikipedia.org/wiki/Beat_(acoustics)
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deflection system and nearby mains generated magnetic fields. All digital, or "fixed pixel", 

displays have progressive scanning and must deinterlace an interlaced source. Use of 

inexpensive deinterlacing hardware is a typical difference between lower- vs. higher-priced flat 

panel displays (PDP, LCD, etc.). All movies and other filmed material shot at twenty-four (24) 

frames per second must be transferred to video frame rates in order to prevent severe motion 

jitter effects. Typically, for twenty-five (25) frame/s formats (countries with 50 Hz mains 

supply), the content is sped up, while a techniques known as "3:2 pulldown" is used for 30 

frame/s formats (countries with 60 Hz mains supply) to match the film frames to the video 

frames without speeding up the play back. Analog television signal standards are designed to be 

displayed on a cathode ray tube (CRT), and so the physics of these devices necessarily controls 

the format of the video signal. The image on a CRT is painted by a moving beam of electrons 

which hits a phosphor coating on the front of the tube. This electron beam is steered by a 

magnetic field generated by powerful electromagnets close to the source of the electron beam. 

In order to reorient this magnetic steering mechanism, a certain amount of time is required due to 

the inductance of the magnets; the greater the change, the greater the time it takes for the electron 

beam to settle in the new spot. 

For this reason, it is necessary to shut off the electron beam (corresponding to a video signal of 

zero luminance) during the time it takes to reorient the beam from the end of one line to the 

beginning of the next (horizontal retrace) and from the bottom of the screen to the top (vertical 

retrace or vertical blanking interval). The horizontal retrace is accounted for in the time allotted 

to each scan line, but the vertical retrace is accounted for as phantom lines which are never 

displayed but which are included in the number of lines per frame defined for each video system. 

Since the electron beam must be turned off in any case, the result is gaps in the television signal, 

which can be used to transmit other information, such as test signals or color identification 

signals. 

The temporal gaps translate into a comb-like frequency spectrum for the signal, where the teeth 

are spaced at line frequency and concentrate most of the energy; the space between the teeth can 

be used to insert a color subcarrier. Broadcasters later developed mechanisms to transmit digital 

information on the phantom lines, used mostly for teletext and closed captioning. 

http://en.wikipedia.org/wiki/Progressive_scan
http://en.wikipedia.org/wiki/Deinterlace
http://en.wikipedia.org/wiki/Plasma_display
http://en.wikipedia.org/wiki/LCD
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Frame_rate
http://en.wikipedia.org/wiki/PAL_speedup
http://en.wikipedia.org/wiki/3:2_pulldown
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Phosphor
http://en.wikipedia.org/wiki/Electromagnet
http://en.wikipedia.org/wiki/Inductance
http://en.wikipedia.org/w/index.php?title=Zero_luminance&action=edit&redlink=1
http://en.wikipedia.org/wiki/Vertical_blanking_interval
http://en.wikipedia.org/wiki/Frequency_spectrum
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/Closed_captioning
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PAL-Plus uses a hidden signaling scheme to indicate if it exists, and if so what operational mode 

it is in. NTSC has been modified by the Advanced Television Standards Committee to support an 

anti-ghosting signal that is inserted on a non-visible scan line. Teletext uses hidden signaling to 

transmit information pages. NTSC Closed Captioning signaling uses signaling that is nearly 

identical to teletext signaling. All six hundred and twenty (625) line systems incorporate pulses 

on line twenty-three (23) that flag to the display that a 16:9 widescreen image is being broadcast, 

though this option is not currently used on analogue transmissions 

1.2.2 The Digital Television Transition 

The digital television transition (also called the digital switchover (DSO) or analog switchoff 

(ASO), sometimes analog sunset) is the process in which analog television broadcasting is 

converted to and replaced by digital television. This primarily involves both TV stations and 

over-the-air viewers; however it also involves content providers like TV networks, and cable TV 

conversion to digital cable. At the other extreme, a whole country can be converted from 

analogue to digital television. 

In many countries, a simulcast service is operated where a broadcast is made available to viewers 

in both analog and digital at the same time. As digital becomes more popular, it is likely that the 

existing analogue services will be removed. 

 

1.2.3 The Digital Television System 

A Digital television transmission is more efficient, easily integrating other digital processes, for 

features completely unavailable or unimaginable with analog formats.For the end-user, digital 

television has potential for resolutions and sound fidelity comparable with blu-ray home video 

and with digital multiplexing, it is also possible to offer subchannels, distinct simulcast 

programming, from the same broadcaster. For government and industry, digital television 

reallocates the radio spectrum so that can be auctioned off by the government. In the subsequent 

auctions, telecommunications industries can introduce new services and products in mobile 

telephony, wi-fi internet, and other nationwide telecommunications projects 

 

http://en.wikipedia.org/wiki/PALPlus
http://en.wikipedia.org/wiki/Widescreen_signaling
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/ATSC
http://en.wikipedia.org/wiki/Ghost-canceling_reference
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/Closed_Captioning
http://en.wikipedia.org/wiki/Teletext
http://en.wikipedia.org/wiki/Sunset_clause
http://en.wikipedia.org/wiki/Analog_TV
http://en.wikipedia.org/wiki/Broadcasting
http://en.wikipedia.org/wiki/Digital_television
http://en.wikipedia.org/wiki/TV_station
http://en.wikipedia.org/wiki/Over-the-air
http://en.wikipedia.org/wiki/TV_network
http://en.wikipedia.org/wiki/Cable_TV
http://en.wikipedia.org/wiki/Digital_cable
http://en.wikipedia.org/wiki/Simulcast
http://en.wikipedia.org/wiki/Blu-ray
http://en.wikipedia.org/wiki/Digital_subchannel
http://en.wikipedia.org/wiki/Radio_spectrum
http://en.wikipedia.org/wiki/Spectrum_auction
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Wi-fi
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1.3 Problem Statement 

Suppose you want to invest – all or in part- a capital of c dollars and you are considering n 

possible investments. Let 𝑝𝑗R be the profit you expect from investment 𝑗, 𝑎𝑛𝑑 𝑤𝑗R the amount of 

dollars it requires. It is self evident that the optimal solution of the knapsack problem above will 

indicate the best possible choice of investment. 

The objects to be considered will generally be called items and their number be indicated by n . 

The value and size associated with the 𝑗𝑡ℎ item will be called profit and weight, respectively, and 

denoted by 𝑝𝑗  𝑎𝑛𝑑  𝑤𝑗 , ( j = 1, … … , n). 

At this point you may be stimulated to solve the problem. A naïve approach would be to program 

a computer to examine all possible binary vectors x, selecting the best of those which satisfy the 

constraint. Unfortunately, the number of such vectors is 2n, so even a hypothetical computer, 

capable of one billion vectors per second, would require more than 30 years for 60n = , more 

than sixty (60) years for 60n = , ten centuries for n=65 and so on (Pisinger, 1995 ). 

However, specialized algorithms can, in most cases, solve a problem with 100,000n = in a few 

seconds on a mini/micro computer. 

Again, suppose the producer of a TV programme want to select among numerous adverts for the 

prime time (news at 19:00 hours GMT) which  is interspersed with five or six spots of adverts of 

not more than three minutes each.  

 

The problem considered so far is representative of a variety of knapsack-type problems in which 

a set of entities are given, each having an associated value and size, and it is desired to select one 

or more disjoint subset so that the sum of the sizes in each subset does not exceed (or equals) a 

given bound and the sum of the selected values is maximized. 

Knapsack problems have been intensively studied, especially in the last decade, attracting both 

theorists and practicians. The theoretical interest arises mainly from their simple structure which, 

on the other hand allows exploitation of a number of combinatorial properties and, on the other, 

more complex optimization problems to be solved through a series of knapsack-type sub 
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problems. From the practical point of view, these problems can model many industrial situations: 

capital budgeting, cargo loading, cutting stock, to mention the most classical applications.  

 

 

 1.4 Objective 

The main objective of this survey is to determine an effective way of scheduling commercials or 

adverts in the television station to achieve the maximum returns. The main source of income 

from the private operators of broadcasting adverts hence the need to find scientific means of 

selecting subsets for the numerous advert to achieve substantial income for their operations 

within the limited space of time. The state-owned TV station ( GTV) is  also required to generate 

additional revenue to supplement the subvention from government. The thesis is to provide 

computer solutions to these problems. 

 

1.5 Justification  

TV station provides both visual and audio output in the form of information, education and 

entertainment to the public using the scarce resources of funds available while grapping with the 

numerous adverts from the corporate organizations and the teaming audience. In order to justify 

their existence, the TV stations have to generate enough revenue from sponsored programmes 

and adverts to support their operation, be it private or state-owned. Without any adequate 

scientific method of selecting from the numerous adverts received daily the maximum returns 

from these may no be achieved. Each advert is charged according to the number of times to be 

telecast and the duration in minutes or seconds. A number of practical problem s can be 

formulated as problems, for example the simple capital budgeting problem of choosing which 

project constraint on total cost. Knapsack problems can model many other managerial and 

industrial situations such as cargo loading and cutting stock problems, (Salkim and Derkluyer 

Knapsack problems and survey). 
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Other applications of  knapsack Problems are 

• Routing of vehicles (planes, trucks etc.) 

• Routing of postal workers 

• Drilling holes on printed circuit board 

• Routing robots through a warehouse 

 

1.6 Methodology 

The methodology employed included review of relevant literature of the types of knapsack 

problems and the methods employed in the solution of the knapsack problems and to develop 

computer solutions for faster computation of the knapsack problems of data from Ghana 

Television (GTV). 

1.7 Scope and limitation 

The problems to be considered in this survey are single 0-1knapsack problems, where one 

container must be filled with an optimal subset of items. The capacity of such a container will be 

denoted by c. The more general case where m containers, of capacities ci (i = 1,. . . , m ) , are 

available is referred to as  multiple knapsack problems. 

The computer solution developed in VB.Net programming language for the  single 0-1 knapsack 

problems could be modified to solve multi-dimensional knapsack problems. 

 

1.8 Organization of Thesis 

Chapter 1 provides the background of the Knapsack Problems, the television industry and the 

methodology and justification for the use of knapsack problems to solve the TV adverts selection 

problem. 

Chapter 2 gives a review of relevant literature on Knapsack problems applications and the 

solution methods that have been proposed in literature.   
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Chapter 3 outlines some algorithms for the solution methods such as the branch and bound, the 

dynamic programming, heuristic scheme, simulated annealing and Genetic algorithm. 

Chapter 4 deals with the data collection and results of analysis of actual data from Ghana 

Television (GTV). 

 The final chapter draws the curtain on the conclusion and future work.  

1.9 Summary 

In this chapter, we discussed the formulation of the knapsack problem to the solution of the 

Television Advert problem, the background of television systems, the background of the case 

study area (Ghana Television), the methodology and the justification of the thesis.In the next 

chapter, we shall put forward the literature pertinent in the area of 0-1 knapsack problems. 
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CHAPTER TWO 

LITERATURE REVIEW 
 

Knapsack problems have been studied intensively in the past decade attracting both theorist and 

practitioners. The theoretical interest arises mainly from their simple structure which both allows 

exploitation of a number of combinational properties and permits more complex optimization 

problems to be solved through a series of knapsack type. From a practical point of view, these 

problems can model many industrial applications, the most classical applications being capital 

budgets, cargo loading and cutting stock. In this chapter we present a review of literature on 

knapsack problems and applications. 

Benisch et al. (2005) examined the problem of choosing discriminatory prices for customers with 

probabilistic valuations and a seller with indistinguishable copies of a good. They showed that 

under certain assumptions this problem can be reduced to the continuous knapsack problem 

(CKP). They presented a new fast epsilon-optimal algorithm for solving CKP instances with 

asymmetric concave reward functions. They also showed that their algorithm can be extended 

beyond the CKP setting to handle pricing problems with overlapping goods (e.g. goods with 

common components or common resource requirements), rather than indistinguishable goods. 

They provided a framework for learning distributions over customer valuations from historical 

data that are accurate and compatible with their CKP algorithm, and validated their techniques 

with experiments on pricing instances derived from the Trading Agent Competition in Supply 

Chain Management (TAC SCM). Their results confirmed that their algorithm converges to an 

epsilon-optimal solution more quickly in practice than an adaptation of a previously proposed 

greedy heuristic. 

 

Pendharkar et al. (2005) described an information technology capital budgeting (ITCB) problem, 

and showed that the ITCB problem can be modeled as a 0–1 knapsack optimization problem, and 

proposed two different simulated annealing (SA) heuristic solution procedures to solve the ITCB 

problem. Using several simulations, they empirically compared the performance of two SA 

heuristic procedures with the performance of two well-known ranking methods for capital 
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budgeting. Their results indicated that the information technology (IT) investments selected 

using the SA heuristics have higher after-tax profits than the IT investments selected using the 

two ranking methods. 

 

Yield management is an important issue for television advertising. Anyway, the major part of the 

research in revenue management focus on the airline or hotel industry. The TV advertising case 

has some specificities, where the most important is the decomposition of the offer into a lot of 

small TV breaks (about 10 spots only). Martin (2004) proposed generic solutions based on 

simulations and approximate dynamical programming. 

 

Transportation programming, a process of selecting projects for funding given budget and other 

constraints, is becoming more complex. Zhong and Young (2009) described the use of an integer 

programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to 

transportation programming problems in cases where alternative versions of projects are under 

consideration. Optimization methods for use in the transportation programming process were 

compared and then the process of building and solving the optimization problems discussed. The 

concepts about the use of MCKP were presented and a real-world transportation programming 

example at various budget levels were provided. They illustrated how the use of MCKP 

addresses the modern complexities and provides timely solutions in transportation programming 

practice.      

         

The knapsack container loading problem is the problem of loading a subset of rectangular boxes 

into a rectangular container of fixed dimensions such that the volume of the packed boxes is 

maximized. A new heuristic based on the wall-building approach was proposed earlier. That 

heuristic divides the problem into a number of layers and the packing of layers is done using a 

randomized heuristic. Juraitis et al. (2006) focused on ways to find proportions of the mixture of 

heuristics which would lead to better performance of the algorithm. New results were compared 

with earlier research and some other constructive heuristics.  

The performance of the corresponding algorithms was experimentally compared for 

homogeneous and heterogeneous instances. Proposed improvements allow achieving better 

filling ratio without increasing the computational complexity of the algorithm 
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Glickman and Allison, (1973) considered the problem of choosing among the technologies 

available for irrigation by tubewells to obtain an investment plan which maximizes the net 

agricultural benefits from a proposed project in a developing country. Cost and benefit 

relationships were derived and incorporated into a mathematical model which is solved using a 

modification of the dynamic programming procedure for solving the knapsack problem. The 

optimal schedule was seen to favor small capacity wells, drilled by indigenous methods, with 

supplementary water distribution systems. 

 

Ferreira, (1995) presented parallel algorithms for solving a knapsack problem of size n on 

PRAM and distributed memory machines. The algorithms were work-efficient in the sense that 

they achieved optimal speedup with regard to the best known solution to this problem. Moreover, 

they match the best current time/memory/processors tradeoffs, while requiring less memory 

and/or processors. Since the PRAM is considered mainly as a theoretical model, and we want to 

produce practical algorithms for the knapsack problem, its solution in distributed memory 

machines is also studied. For the first time in literature, work-efficient parallel algorithms on 

local memory — message passing architectures — are given. Time bounds for solving the 

problem on linear arrays, meshes, and hypercubes are proved. 

 

Bazgan et al. (2007) presented an approach, based on dynamic programming, for solving the 0/1 

multi-objective knapsack problem. The main idea of the approach relies on the use of 

several complementary dominance relations to discard partial solutions that cannot lead to new 

non-dominated criterion vectors. This way, they obtained an efficient method that outperforms 

the existing methods both in terms of CPU time and size of solved instances. 

Extensive numerical experiments on various types of instances were reported. A comparison 

with other exact methods was  also performed.  

 

The data association problem consists of associating pieces of information emanating from 

different sources in order to obtain a better description of the situation under study. This problem 

arises, in particular, when, considering several sensors, we aim at associating the measures 

corresponding to a same target. This problem, widely studied in the literature, is often stated as a 

mailto:ferreira@lip.ens-lyon.fr
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multidimensional assignment problem where a state criterion is optimized. While this approach 

seems satisfactory in simple situations where the risk of confusing targets is relatively low, it is 

much more difficult to get a correct description in denser situations. Hugot et al. (2006) 

proposed, to address this problem in a multiple criteria framework using a second 

complementary criterion, based on the identification of the targets. Due to the specificities of the 

problem, simple and efficient approaches can be used to generate non-dominated solutions. 

Moreover, they showed that the accuracy of the proposed solutions is greatly increased when 

considering a second criterion. A bi-criteria interactive procedure is also introduced to assist an 

operator in solving conflicting situations. 

 

The Bounded Knapsack Problem (BKP) is a generalization of the 0-1 Knapsack Problem where a 

bounded amount of each item type is available. Currently, the most efficient algorithm for BKP 

transforms the data instance to an equivalent 0-1 Knapsack Problem, which is solved efficiently 

through a specialized algorithm.  Pisinger (1996) proposed a specialized algorithm that solves an 

expanding core problem through dynamic programming such that the number of enumerated 

item types is minimal. Sorting and reduction is done by need, resulting in very little effort for the 

preprocessing. Compared to other algorithms for BKP, the presented algorithm uses tighter 

reductions and enumerates considerably less item types. Computational experiments are 

presented, showing that the presented algorithm outperforms all previously published algorithms 

for BKP.  

 

Several types of large-sized 0-1 Knapsack Problems (KP) may be easily solved, but in such cases 

most of the computational effort is used for sorting and reduction. In order to avoid this problem 

it has been proposed to solve the so-called core of the problem: a Knapsack Problem defined on a 

small subset of the variables. The exact core cannot, however, be identified before KP is solved 

to optimality, thus, previous algorithms had to rely on approximate core sizes. Pisinger (1997) 

presented an algorithm for KP where the enumerated core size is minimal, and the computational 

effort for sorting and reduction also is limited according to a hierarchy. The algorithm is based on 

a dynamic programming approach, where the core size is extended by need, and the sorting and 

reduction is performed in a similar "lazy" way. Computational experiments were presented for 

several commonly occurring types of data instances. Experience from these tests indicated that 
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the presented approach outperforms any known algorithm for KP, having very stable solution 

times.  

 

Ant colony optimization algorithm is a novel simulated evolutionary algorithm, which provides a 

new method for complicated combinatorial optimization problems. Shuang et al. (2006) used the 

algorithm for solving the knapsack problem. It was improved in selection strategy and 

information modification, so that it can not easily run into the local optimum and can converge at 

the global optimum. The experiments showed the robustness and the potential power of this kind 

of meta-heuristic algorithm 

 

Martello and Toth (1998) presented a new algorithm for the optimal solution of the 0-1 Knapsack 

problem, which is particularly effective for large-size problems. The algorithm is based on 

determination of an appropriate small subset of items and the solution of the corresponding "core 

problem": from this they derived a heuristic solution for the original problem which, with high 

probability, can be proved to be optimal. The algorithm incorporated a new method of 

computation of upper bounds and efficient implementations of reduction procedures.  

 

The multidimensional 0–1 knapsack problem is one of the most well-known integer 

programming problems and has received wide attention from the operational research 

community during the last four decades. Although recent advances have made possible the 

solution of medium size instances, solving this NP-hard problem remains a very interesting 

challenge, especially when the number of constraints increases. Fréville surveyed the main 

results published in the literature and focused on the theoretical properties as well as approximate 

or exact solutions of this special 0–1 program. 

 

The multidimensional 0–1 knapsack problem, defined as a knapsack with multiple resource 

constraints, is well known to be much more difficult than the single constraint version. Freville 

and Plateau (2004) designed an efficient preprocessing procedure for large-scale instances. The 

algorithm provides sharp lower and upper bounds on the optimal value, and also a tighter 

equivalent representation by reducing the continuous feasible set and by eliminating constraints 
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and variables. This scheme was shown to be very effective through a lot of computational 

experiments with test problems of the literature and large-scale randomly generated instances. 

 

The binary quadratic knapsack problem maximizes a quadratic objective function subject to a 

linear capacity constraint. Due to its simple structure and challenging difficulty it has been 

studied intensively during the last two decades. Pisinger (2007) gave a survey of upper bounds 

presented in the literature, and showed the relative tightness of several of the bounds. Techniques 

for deriving the bounds include relaxation from upper planes, linearization, reformulation, 

Lagrangian relaxation, Lagrangian decomposition, and semi definite programming. A short 

overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation 

results is given, followed by an overview of valid inequalities for the quadratic knapsack 

polytope. They concluded by an experimental study where the upper bounds presented are 

compared with respect to strength and computational effort. 

 

Burkard and Pferschy (1995) dealt with parametric knapsack problems where the costs resp. 

weights are replaced by linear functions depending on a parameter t. The aim is to find the 

smallest parameter t* such that the optimal solution value of the knapsack problem is equal to a 

prespecified solution value. For this inverse-parametric problem pseudo-polynomial algorithms 

were developed and search methods making use of the special properties of the parametric value 

function were constructed. Using computational experiments the behaviour of these algorithms 

are investigated and the favourable practical performance of different search methods exhibited. 

 

The knapsack sharing problem (KSP) is formulated as an extension to the ordinary knapsack 

problem. The KSP is NP-hard. Yamada et al. (1998) presented a branch-and-bound algorithm 

and a binary search algorithm to solve this problem to optimality. These algorithms are 

implemented and computational experiments are carried out to analyse the behavior of the 

developed algorithms. As a result, they found that the binary search algorithm solves KSPs with 

up to 20 000 variables in less than a minute in their computing environment. 

 

The objective of the multi-dimensional knapsack problem (MKP) is to find a subset of items 

with maximum value that satisfies a number of knapsack constraints. Solution methods for MKP, 
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both heuristic and exact, have been researched for several decades. Fleszar and Hindi (2009) 

introduced several fast and effective heuristics for MKP that are based on solving the LP 

relaxation of the problem. Improving procedures were proposed to strengthen the results of these 

heuristics. Additionally, the heuristics were run with appropriate deterministic or randomly 

generated constraints imposed on the linear relaxation that allow generating a number of good 

solutions. All algorithms were tested experimentally on a widely used set of benchmark problem 

instances to show that they compared favourably with the best-performing heuristics available in 

the literature. 

 

The constrained compartmentalised knapsack problem is an extension of the classical integer 

constrained knapsack problem which can be stated as the following hypothetical situation: a 

climber must load his/her knapsack with a number of items. For each item a weight, a utility 

value and an upper bound are given. However, the items are of different classes (food, medicine, 

utensils, etc.) and they have to be loaded in separate compartments inside the knapsack (each 

compartment is itself a knapsack to be loaded by items from the same class). The compartments 

have flexible capacities which are lower and upper bounded. Each compartment has a fixed cost 

to be included inside the knapsack that depends on the class of items chosen to load it and, in 

addition, each new compartment introduces a fixed loss of capacity of the original knapsack. The 

constrained compartmentalised knapsack problem consists of determining suitable capacities of 

each compartment and how these compartments should be loaded, such that the total items inside 

all compartments does not exceed the upper bound given. The objective is to maximise the total 

utility value minus the cost of the compartments. This kind of problem arises in practice, such as 

in the cutting of steel or paper reels.  Arenales and Marques (2007) modeled the problem as an 

integer non-linear optimisation problem and for which some heuristic methods were designed. 

Finally, computational experiments were given to analyse the methods. 

 

Lin and Yao (2001) investigated knapsack problems, in which all of the weight coefficients are 

fuzzy numbers. The work was based on the assumption that each weight coefficient is imprecise 

due to the use of decimal truncation or rough estimation of the coefficients by the decision-

maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to model and 

solve this problem. Their work was intended to extend the original knapsack problem into a more 
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generalized problem that would be useful in practical situations. As a result, their study showed 

that the fuzzy knapsack problem is an extension of the crisp knapsack problem, and that the crisp 

knapsack problem is a special case of the fuzzy knapsack problem. 

 

Solving the knapsack problem with imprecise weight coefficients using genetic algorithms has 

been investigated. The work is based on the assumption that each weight coefficient is imprecise 

due to decimal truncation or coefficient rough estimation by the decision-maker. To deal with 

this kind of imprecise data, fuzzy sets provide a powerful tool to model and solve this problem. 

Lin (2008 ) investigated the possibility of using genetic algorithms in solving the fuzzy knapsack 

problem without defining membership functions for each imprecise weight coefficient. The 

proposed approach simulated a fuzzy number by distributing it into some partition points. A 

genetic algorithm was used to evolve the values in each partition point so that the final values 

represented the membership grade of a fuzzy number. The empirical results show that the 

proposed approach can obtain very good solutions within the given bound of each imprecise 

weight coefficient than the fuzzy knapsack approach. The fuzzy genetic algorithm concept 

approach is different, but gave better results than the traditional fuzzy approach. 

 

The knapsack problem is believed to be one of the “easier” NP-hard problems. Not only can it be 

solved in pseudo-polynomial time, but also decades of algorithmic improvements have made it 

possible to solve nearly all standard instances from the literature. Pisinger (2005) gave an 

overview of all recent exact solution approaches, and showed that the knapsack problem still is 

hard to solve for these algorithms for a variety of new test problems. These problems were 

constructed either by using standard benchmark instances with larger coefficients, or by 

introducing new classes of instances for which most upper bounds perform badly. The first group 

of problems challenged the dynamic programming algorithms while the other groups of 

problems were focused towards branch-and-bound algorithms. Numerous computational 

experiments with all recent state-of-the-art codes were used to show that (KP) is still difficult to 

solve for a wide number of problems. One could say that the previous benchmark tests were 

limited to a few highly structured instances, which do not show the full characteristics of 

knapsack problems. 
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The knapsack problem (KP) is generalized to the case where items are partially ordered through 

a set of precedence relations. As in ordinary KPs, each item is associated with profit and weight, 

the knapsack has a fixed capacity, and the problem is to determine the set of items to be packed 

in the knapsack. However, each item can be accepted only when all the preceding items have 

been included in the knapsack. The knapsack problem with these additional constraints is 

referred to as the precedence-constrained knapsack problem (PCKP). To solve PCKP exactly, 

Yamada and You (2007) presented a pegging approach, where the size of the original problem is 

reduced by applying the Lagrangian relaxation followed by a pegging test. Through this 

approach, they were able to solve PCKPs with thousands of items within a few minutes on an 

ordinary workstation. 

 

Zhang and ong (2004) proposed a simple and useful method, the core of which is an efficient LP-

based heuristic, for solving bi-objective 0–1 knapsack problems. Extensive computational 

experiments showed that the proposed method is able to generate a good approximation to the 

nondominated set very efficiently. They also suggested three qualitative criteria to evaluate such 

an approximation. In addition, the method can be extended to other problems having properties 

similar to the knapsack problem. 

 

A promising solution approach called Meta-RaPS was presented by Moraga et al. (2005) for the 

0-1 Multidimensional Knapsack Problem (0-1 MKP). Meta-RaPS construct feasible solutions at 

each iteration through the utilization of a priority rule used in a randomized fashion. Four 

different greedy priority rules are implemented within Meta-RaPS and compared. These rules 

differ in the way the corresponding pseudo-utility ratios for ranking variables are computed. In 

addition, two simple local search techniques within Meta-RaPS' improvement stage are 

implemented. The Meta-RaPS approach is tested on several established test sets, and the solution 

values are compared to both the optimal values and the results of other 0-1 MKP solution 

techniques. The Meta-RaPS approach outperformed many other solution methodologies in terms 

of differences from the optimal value and number of optimal solutions obtained. The advantage 

of the Meta-RaPS approach is that it is easy to understand and easy to implement, and it achieved 

good results. 
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Huttler and Mastrolilli (2006) addressed the classical knapsack problem and a variant in which 

an upper bound is imposed on the number of items that can be selected. We show that 

appropriate combinations of rounding techniques yield novel and more powerful ways of 

rounding. Moreover, they presented a linear-storage polynomial time approximation scheme 

(PTAS) and a fully polynomial time approximation scheme (FPTAS) that compute an 

approximate solution, of any fixed accuracy, in linear time. These linear complexity bounds give 

a substantial improvement of the best previously known polynomial bounds. 

 

Gomes da Silva et al. (2007) dealt with the problem of inaccuracy of the solutions generated by 

meta-heuristic approaches for combinatorial optimization bi-criteria {0, 1}-knapsack problems. 

A hybrid approach which combines systematic and heuristic searches was proposed to reduce 

that inaccuracy in the context of a scatter search method. The components of this method were 

used to determine regions in the decision space to be systematically searched. Comparisons with 

small and medium size instances solved by exact methods were presented. Large size instances 

were also considered and the quality of the approximation was evaluated by taking into account 

the proximity to the upper frontier, devised by the linear relaxation, and the diversity of the 

solutions. Comparisons with other two well-known meta-heuristics were also performed. The 

results showed the effectiveness of the proposed approach for both small/medium and large size 

instances. 

 

A critical event tabu search method which navigates both sides of the feasibility boundary has 

been shown effective for solving the multidimensional knapsack problem. In this paper, we 

apply the method to the multidimensional knapsack problem with generalized upper bound 

constraints. Li and Curry (2005) demonstrated the merits of using surrogate constraint 

information vs. a Lagrangian relaxation scheme as choice rules for the problem class. A 

constraint normalization method was presented to strengthen the surrogate constraint information 

and improve the computational results. The advantages of intensifying the search at critical 

solutions were also demonstrated. 

 

Hanafi and freville (1998) described a new approach to tabu search (TS) based on strategic 

oscillation and surrogate constraint information that provides a balance between intensification 
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and diversification strategies. New rules needed to control the oscillation process are given for 

the 0 /1 multidimensional knapsack (0/1 MKP). Based on a portfolio of test problems from the 

literature, our method obtains solutions whose quality is at least as good as the best solutions 

obtained by previous methods, especially with large scale instances. These encouraging results 

confirm the efficiency of the tunneling concept coupled with surrogate information when 

resource constraints are present. 

 

Pisinger (1995) presented a new branch-and-bound algorithm for the exact solution of the 0–1 

Knapsack Problem is presented. The algorithm is based on solving an ‘expanding core’, which 

intially only contains the break item, but which is expanded each time the branch-and-bound 

algorithm reaches the border of the core. Computational experiments showed that most data 

instances are optimally solved without sorting or preprocessing a great majority of the items. The 

algorithm presented not only is shorter, but also faster and more stable than any other algorithm 

hitherto proposed. 

 

The mean field theory approach to knapsack problems is extended to multiple knapsacks and 

generalized assignment problems with Potts mean field equations governing the dynamics. 

Numerical tests against “state of the art” conventional algorithms shows good performance for 

the mean field approach. The inherently parallelism of the mean field equations makes them 

suitable for direct implementations in microchips. Ohlsson and Pi (1997) demonstrated 

numerically that the performance is essentially not affected when only a limited number of bits is 

used in the mean field equations. Also, a hybrid algorithm with linear programming and mean 

field components is showed to further improve the performance for the difficult homogeneous N 

× M knapsack problem. 

 

Rinnooy et al. (1993) proposed a class of generalized greedy algorithms is for the solution of the 

multi-knapsack problem. Items are selected according to decreasing ratios of their profit and a 

weighted sum of their requirement coefficients. The solution obtained depended on the choice of 

the weights. A geometrical representation of the method was given and the relation to the dual of 

the linear programming relaxation of multi-knapsack is exploited. They investigated the 
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complexity of computing a set of weights that gives the maximum greedy solution value. Finally, 

the heuristics were subjected to both a worst-case and a probabilistic performance analysis. 

 

Optimization methods are being applied to engineering problem solving with increasing 

frequency as computer hardware and software improves. The configuration of an optimization 

algorithm can make a significant difference to the efficiency of the solution process. Realff et al., 

(1999) examined the use of one such optimization strategy, branch and bound, for the solution of 

the classic knapsack problem. It is shown that the best configuration of the algorithm can be data 

dependent and hence that an ‘intelligent’ optimization system will need to automatically 

configure itself with the control knowledge appropriate to the problems the user is solving. A 

two-step approach is taken to configuring the algorithm. First, an analytical learning method, 

explanation based learning is used to derive a provably correct dominance condition for the 

knapsack problem. Second, the algorithm is configured with and without the condition, and 

subjected to a rigorous statistical test of performance, on the user's data, to decide which 

configuration is the best. 

 

Figuera et al. (2009) presented a generic labeling algorithm for finding all non-dominated 

outcomes of the multiple objective integer knapsack problem (MOIKP). The algorithm is based 

on solving the multiple objective shortest path problem on an underlying network. Algorithms 

for constructing four network models, all representing the MOIKP, were also presented. Each 

network is composed of layers and each network algorithm, working forward layer by layer, 

identifies the set of all permanent non-dominated labels for each layer. The effectiveness of the 

algorithms is supported with numerical results obtained for randomly generated problems for up 

to seven objectives while exact algorithms reported in the literature solve the multiple objective 

binary knapsack problem with up to three objectives. Extensions of the approach to other classes 

of problems including binary variables, bounded variables, multiple constraints, and time-

dependent objective functions are possible. 

 

The most efficient algorithms for solving the single-criterion {0,1}-knapsack problem are based 

on the core concept (i.e., based on a small number of relevant variables). But this concept is not 

used in problems with more than one criterion. Gomes da Silva et al. (2008) validated the 
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existence of such a set of variables in bi-criteria {0,1}-knapsack instances. Numerical 

experiments were performed on five types of {0,1}-knapsack instances. The results were 

presented for the supported and non-supported solutions as well as for the entire set of efficient 

solutions. A description of an approximate and an exact method was also presented. 

 

There is a variation of the standard 0–1 knapsack problem, where the values of items differ under 

possible S scenarios.  Taniguchi et al. (2008) introduced a kind of surrogate relaxation to derive 

upper and lower bounds quickly, and showed that, with this preprocessing, the similar pegging 

test can be applied to our problem. The reduced problem can be solved to optimality by the 

branch-and-bound algorithm. They made use of the surrogate variables to evaluate the upper 

bound at each branch-and-bound node very quickly by solving a continuous knapsack problem. 

Through numerical experiments they showed that the developed method finds upper and lower 

bounds of very high accuracy in a few seconds, and solves larger instances to optimality faster 

than the previously published algorithms. 

 

Balev et al. (2008) presented a preprocessing procedure for the 0–1 multidimensional knapsack 

problem. First, a non-increasing sequence of upper bounds was generated by solving LP-

relaxations. Then, a non-decreasing sequence of lower bounds is built using dynamic 

programming. The comparison of the two sequences allowed either to prove that the best feasible 

solution obtained is optimal, or to fix a subset of variables to their optimal values. In addition, a 

heuristic solution was obtained. Computational experiments with a set of large-scale instances 

show the efficiency of their reduction scheme. Particularly, it was shown that their approach 

allowed the reduction of the CPU time of a leading commercial software. 

 

Balachandar and Kannan presented a heuristic to solve the 0/1 multi-constrained knapsack 

problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property of the constraints 

is exploited to reduce the search space to find near optimal solutions of 0/1 MKP. This heuristic 

was tested for 10 benchmark problems of sizes up to 105 and for seven classical problems of 

sizes up to 500, taken from the literature and the results were compared with optimum solutions. 

Space and computational complexity of solving 0/1 MKP using this approach were also 

presented. The encouraging results especially for relatively large size test problems indicate that 
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this heuristic can successfully be used for finding good solutions for highly constrained NP-hard 

problems. 

 

Florios et al. (2009) solved instances of the multi-objective multi-constraint (or multi-

dimensional) knapsack problem (MOMCKP) from the literature, with three objective functions 

and three constraints. They used exact as well as approximate algorithms. The exact algorithm is 

a properly modified version of the multi-criteria branch and bound (MCBB) algorithm, which is 

further customized by suitable heuristics. Three branching heuristics and a more general purpose 

composite branching and construction heuristic were devised. Furthermore, the same problems 

are solved using standard multi-objective evolutionary algorithms (MOEA), namely, the SPEA2 

and the NSGAII. The results from the exact case show that the branching heuristics greatly 

improve the performance of the MCBB algorithm, which becomes faster than the adaptive ε -

constraint. Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 

outperforms NSGAII in the degree of approximation of the Pareto front, as measured by the 

coverage metric (especially for the largest instance). 

 

While the 1980s focused on the solution of large sized “easy” knapsack problems (KPs), the 

1990s brought several new algorithms, which were able to solve “hard” large sized instances. 

Martello et al. (2000) gave an overview of the recent techniques for solving hard KPs, with 

special emphasis on the addition of cardinality constraints, dynamic programming, and 

rudimentary divisibility. Computational results, comparing all recent algorithms, were presented. 

 

Elhedhli (2005) considered a class of nonlinear knapsack problems with applications in service 

systems design and facility location problems with congestion. They provided two linearizations 

and their respective solution approaches. The first is solved directly using a commercial solver. 

The second is a piecewise linearization that is solved by a cutting plane method. 

 

Caprara and Monaci (2004) addressed the two-dimensional Knapsack Problem (2KP), aimed at 

packing a maximum-profit subset of rectangles selected from a given set into another rectangle. 

They considered the natural relaxation of 2KP given by the one-dimensional KP with item 

weights equal to the rectangle areas, proving the worst-case performance of the associated upper 
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bound, and presented and compared computationally four exact algorithms based on the above 

relaxation, showing their effectiveness. 

 

Abboud et al. (1997) presented an interactive procedure for the multi-objective multidimensional 

0–1 knapsack problem that takes into consideration the incorporation of fuzzy goals of the 

decision maker, that is easy to use since it requires from the decision maker to handle only one 

parameter, namely, the aspiration level of each objective, and that is fast and can treat our 

problem as a usual 0–1 knapsack problem using already available software, namely, the primal 

effective gradient method, used primarily to solve the large-scale cases. To get some statistics on 

the behavior of the algorithm, a number of randomly generated simulation of problems was 

solved. From our numerical experience, it is possible to conclude that our proposed method is a 

worthwhile alternative to existing methods from a practical point of view. 

 

Akinc (2006) addressed the formulation and solution of a variation of the classical binary 

knapsack problem. The variation that was addressed is termed the “fixed-charge knapsack 

problem”, in which sub-sets of variables (activities) are associated with fixed costs. These costs 

may represent certain set-ups and/or preparations required for the associated sub-set of activities 

to be scheduled. Several potential real-world applications as well as problem 

extensions/generalizations were discussed. The efficient solution of the problem is facilitated by 

a standard branch-and-bound algorithm based on (1) a non-iterative, polynomial algorithm to 

solve the LP relaxation, (2) various heuristic procedures to obtain good candidate solutions by 

adjusting the LP solution, and (3) powerful rules to peg the variables. Computational experience 

shows that the suggested branch-and-bound algorithm shows excellent potential in the solution 

of a wide variety of large fixed-charge knapsack problems. 

 

Index selection for relational databases is an important issue which has been researched quite 

extensively. In the literature, in index selection algorithms for relational databases, at most one 

index is considered as a candidate for each attribute of a relation. However, it is possible that 

more than one different type of indexes with different storage space requirements may be present 

as candidates for an attribute. Also, it may not be possible to eliminate locally all but one of the 

candidate indexes for an attribute due to different benefits and storage space requirements 
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associated with the candidates. Thus, the algorithms available in the literature for optimal index 

selection may not be used when there are multiple candidates for each attribute and there is a 

need for a global optimization algorithm in which at most one index can be selected from a set of 

candidate indexes for an attribute. The problem of index selection in the presence of multiple 

candidate indexes for each attribute (which we call the multiple choice index selection problem) 

has not been addressed in the literature. Gündem presented the multiple choice index selection 

problem, showed that it is NP-hard, and present an algorithm which gives an approximately 

optimal solution within a user specified error bound in a logarithmic time order. 

 

In attempt to solve multi-objective problems, various mathematical and stochastic methods have 

been developed. The methods operate based on mathematical models while in most cases these 

models are drastically simplified imagine of real world problems. Gholamian et al. (2007) in 

their study, used a hybrid intelligent system i instead of mathematical models. The main core of 

the system is fuzzy rule base which maps decision space (Z) to solution space (X). The system is 

designed on non-inferior region and gives a big picture of this region in the pattern of fuzzy 

rules. Since some solutions may be infeasible; then specified feed forward neural network is used 

to obtain non-inferior solutions in an exterior movement. In addition, numerical examples of 

well-known NP-hard problems (i.e. multi-objective traveling salesman problem and multi-

objective knapsack problem) were provided to clarify the accuracy of developed system. 

 

Lokketangen and Glover (1998) described a tabu search (TS) approach for solving general zero-

one mixed integer programming (MIP) problems that exploits the extreme point property of 

zero-one solutions. Specialized choice rules and aspiration criteria were identified for the 

problems, expressed as functions of integer infeasibility measures and objective function values. 

The first-level TS mechanisms were then extended with advanced level strategies and learning. 

They also look at probabilistic measures in this framework, and examine how the learning tool 

Target Analysis (TA) can be applied to identify better control structures and decision rules. 

Computational results are reported on a portfolio of multi-constraint knapsack problems. Their 

approach was designed to solve thoroughly general 0/1 MIP problems and thus contains no 

problem domain specific knowledge, yet it obtained solutions for the multi-constraint knapsack 
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problem whose quality rivaled, and in some cases surpassed, the best solutions obtained by 

special purpose methods that had been created to exploit the special structure of these problems. 

 

Aissi et al. (2007) investigated, for the first time in the literature, the approximation of min–max 

(regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. 

For a constant number of scenarios, they established fully polynomial-time approximation 

schemes for the min–max versions of these problems, using relationships between multi-

objective and min–max optimization. Using dynamic programming and classical trimming 

techniques, they construct a fully polynomial-time approximation scheme for min–max regret 

shortest path. They also established a fully polynomial-time approximation scheme for min–max 

regret spanning tree and prove that min–max regret knapsack is not at all approximable. For a 

non-constant number of scenarios, in which case min–max and min–max regret versions of 

polynomial-time solvable problems usually become strongly NP-hard, non-approximability 

results were provided for min–max (regret) versions of shortest path and spanning tree. 

 

Jan et al. (2006) considered Web content adaptation with a bandwidth constraint for server-based 

adaptive Web systems. The problem can be stated as follows: Given a Web page P consisting of 

n component items d1, d2, … , dn and each of the component items di having Ji versions 

di1,di2,…,diJi, for each component item di select one of its versions to compose the Web page 

such that the fidelity function is maximized subject to the bandwidth constraint. They formulated 

this problem as a linear multi-choice knapsack problem (LMCKP) and transformed the LMCKP 

into a knapsack problem (KP) and then presented a dynamic programming method to solve the 

KP. A numerical example illustrated the method and showed its effectiveness. 

Bortfeldt and Gehring (2001) presented a hybrid genetic algorithm (GA) for the container 

loading problem with boxes of different sizes and a single container for loading. Generated 

stowage plans include several vertical layers each containing several boxes. Within the 

procedure, stowage plans were represented by complex data structures closely related to the 

problem. To generate offspring, specific genetic operators were used that are based on an 

integrated greedy heuristic. The process takes several practical constraints into account. 

Extensive test calculations including procedures from other authors vouch for the good 

performance of the GA, above all for problems with strongly heterogeneous boxes. 
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Harper et al. (2001) presented a genetic algorithm as an aid for project assignment. The 

assignment problem illustrated concerns the allocation of projects to students. Students have to 

choose from a list of possible projects, indicating their preferred choices in advance. Inevitably, 

some of the more popular projects become ‘over-subscribed’ and assignment becomes a complex 

problem. The developed algorithm has compared well to an optimal integer programming 

approach. One clear advantage of the genetic algorithm is that, by its very nature, we are able to 

produce a number of feasible project assignments, thus facilitating discussion on the merits of 

various allocations and supporting multi-objective decision making. 

 

Devyaterikova et al. (2009) presented discrete production planning problem which may be 

formulated as the multidimensional knapsack problem is considered, while resource quantities of 

the problem are supposed to be given as intervals. An approach for solving this problem based 

on using its relaxation set is suggested. Some L-class enumeration algorithms for the problem are 

described. Results of computational experiments were presented. 

 

Dynamic programming is one of the most powerful Chen et al. (1990) presented pipeline 

architectures for the dynamic programming algorithms for the knapsack problems. They enabled 

them to achieve an optimal speedup using processor arrays, queues, and memory modules. The 

processor arrays can be regarded as pipelines where the dynamic programming algorithms are 

implemented through pipelining. 

 

Making the provision of services QoS-aware is to the advantage of both clients and providers in 

the e-business domain. Tsesmetzis et al. (2008) studied the problem of providers that receive 

multiple concurrent requests for services demonstrating different QoS properties. It introduced 

the “Selective Multiple Choice Knapsack Problem” that aims to identify the services, which 

should be delivered in order to maximise the provider’s profit, subject to maximum bandwidth 

constraints. This problem was solved by a proposed algorithm that has been empirically 

evaluated via numerous experiments. 
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Ahmed et al. (1987) considered the problem of selecting a set of projects from a large number of 

available projects such that at least some specified levels of benefits of various types are realized 

at a minimum cost. This problem was formulated in terms of the well-known 0–1 multi-

dimensional knapsack problem, a special case of the general integer programming problems. In 

view of the NP-completeness of these problems, they proposed a polynomially bounded and 

efficient heuristic algorithm for its solution. The proposed algorithm proceeds as follows: an 

initial selection is found by prioritizing the projects according to a computed discard index. This 

initial selection set is then altered to reduce total costs by using project exchange operations. 

Computational results indicated that the proposed algorithm is quite effective in finding optimal 

or near optimal solutions. 

 

Golenko-Ginzburg and Gonik (1997) presented a newly developed resource constrained 

scheduling model for a PERT type project. Several non-consumable activity related resources, 

such as machines or manpower, are imbedded in the model. Each activity in a project requires 

resources of various types with fixed capacities. Each type of resource is in limited supply with a 

resource limit that is fixed at the same level throughout the project duration. For each activity, its 

duration is a random variable with given density function. The problem is to determine starting 

time values Sij for each activity (i,j) entering the project, i.e., the timing of feeding-in resources 

for that activity. Values Sij are not calculated beforehand and are random values conditional on 

our decisions. The model's objective was to minimize the expected project duration. 

Determination of values Sij was carried out at decision points when at least one activity is ready 

to be operated and there are free available resources. If, at a certain point of time, more than one 

activity is ready to be operated but the available amount of resources is limited, a competition 

among the activities is carried out in order to choose those activities which can be supplied by 

the resources and which have to be operated first. They suggested carrying out the competition 

by solving a zero-one integer programming problem to maximize the total contribution of the 

accepted activities to the expected project duration. For each activity, its contribution is the 

product of the average duration of the activity and its probability of being on the critical path in 

the course of the project's realization. Those probability values were calculated via simulation. 

Solving a zero-one integer programming problem at each decision point resulted in the following 

policy: the project management takes all measures to first operate those activities that, being 
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realized, have the greatest effect of decreasing the expected project duration. Only afterwards, 

does the management take care of other activities. A heuristic algorithm for resource constrained 

project scheduling was developed. 

 

Project selection problem is an incessant problem, which every organization face. It, in fact, 

plays a key role in prosperity of the company. Meta-heuristic methods are the well-reputed 

methods which have been employed to solve a variety of multi-objective problems forming the 

real world problems. Ghorbani and Rabbani (2009) studied a new multi-objective algorithm for 

project selection problem. Two objective functions were considered to maximize total expected 

benefit of selected projects and minimize the summation of the absolute variation of allotted 

resource between each successive time periods. A meta-heuristic multi-objective was proposed 

to obtain diverse locally non-dominated solutions. The proposed algorithm was compared, based 

on some prominent metrics, with a well-known genetic algorithm, i.e. NSGA-II. The 

computational results showed the superiority of the proposed algorithm in comparison with 

NSGA-II. 

 

A  single machine scheduling problem in which the machine experiences the effects of learning 

of fatigue as it continues to work and the jobs have due dates and are subject to penalties if they 

are not completed on time. Because of the effects of learning or fatigue, the performance rate of 

the machine varies over time. As a result, the processing time of a job depends on its work 

content as well as the total work content of the jobs completed prior to its loading. Dondeti and 

Mohanty (1998) proved that even when the machine works at a variable rate, the pair-wise 

interchange of jobs minimizes the maximum tardiness and a simple modification to the well-

known Moore-Hodgson's algorithm yields the minimum number of tardy jobs. Further, they 

formulated the problem of minimizing the total penalty for tardy jobs as a 0–1 knapsack problem 

with nested constraints, and solve it by using dynamic programming recursion as well as the 

maximum-weighted network path algorithm. Then they combined these two techniques and 

solve the 0–1 knapsack problem, by inducing a nested constraint structure and constructing a 

network with fewer nodes. 
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Carlo Vercellis (1994) described a Lagragean decomposition technique for solving multi-project 

planning problems with resource constraints and alternative modes of performing each activity in 

the projects. The decomposition can be useful in several ways: from one side, it provided bounds 

on the optimum, so that the quality of approximate solutions can be evaluated. Furthermore, in 

the context of branch-and-bound algorithms, it can be used for more effective fathoming of the 

tree nodes. Finally, in the modelling perspective, the La grangean optimal multipliers can 

provide insights to project managers as prices for assigning the resources to different projects. 

 

An important class of combinational optimization problems are the Multidimensional 0/1 

Knapsacks and various heuristic and exact methods have been devised to solve them. Among 

these, Genetic Algorithms have emerged as a powerful new search paradigms. Hoff et al showed 

how a proper selection of parameters and search mechanisms lead to an implementation of 

Genetic Algorithms that yields high quality solutions. The methods were tested on a portfolio of 

0/1 multidimensional knapsack problems from literature and a minimum of domain-specific 

knowledge is used to guide the search process. The quality of the produced results rivals and in 

some cases surpasses the best solutions obtained by special-purpose methods that have been 

created to exploit the special structure of these problems 

Fubin and Ru (2002) presented a simulated annealing (SA) algorithm for the o/1 

multidimensional knapsack problem. Problem-specific knowledge is incorporated in the 

algorithm description and evaluation of parameters. In order to look into the performance of 

finite-time implementation of SA Computational results showed that SA performs much better 

than a genetic algorithm in term of solution time, whilst requiring only a modest loss of solution 

quality 

Standard heuristics in operations research (such as greedy, tabu search and simulated annealing) 

work on improving a single current solution. Population heuristics use a number of current 

solutions and combine them together to generate new solutions. Heuristic algorithms 

encountered in the literature that can be generically be classified as population heuristics include 

genetic algorithms, hybrid genetic algorithms, memetic algorithms, scatter-search algorithms and 

bionomic algorithms. Beasley (2002) discussed the basic features of population heuristics and 
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provide practical advice about their effective use for solving operations research problems 

including the knapsack problems.. 

Lin and Wei (2001) proposed an efficient linear search algorithm for resolving the 0/1-knapsack 

problem. A net profit criterion is included in the linear search algorithm to generate a 

rescheduled candidate set. Four hard cases presented by Yang (1992) were tested and compared 

with the revised approach. Our results demonstrate that the approach proposed herein 

outperforms previous works in terms of producing a small candidate set while retaining most of 

the information on optimal 

The transposition mechanism, widely studied in previous publications, showed that when used 

instead of standard crossover operators allows the genetic algorithm to achieve better solutions. 

Nevertheless, all the studies made concerning this mechanism always focused the domain of 

function optimization. Simoes and Costa (2001) presented an empirical study that compares the 

performances of the transposition-based Genetic Algorithm (GA) and the classical GA for 

solving the 0/1 knapsack problem. The obtained results showed that, just like in the domain of 

the function optimization, transposition is always superior to crossover. 

A method of determining allocations in a business operation to maximize profit includes: 

collecting profit data for a plurality of classes in the business operation, where each class 

includes an allocation having a cost function and each allocation belongs to the group consisting 

of physical allocations and economic allocations; determining profit functions for the allocations 

from the profit data; formulating a Multiple Choice Knapsack Problem to maximize profit from 

the profit functions, the cost functions, and a cost constraint; and solving the Multiple choice 

Knapsack Problem to determine values for the allocations.( European Patent Application 

EP1350203)  

 
The Knapsack Sharing Problem (KSP) is an NP-Hard combinatorial optimization problem, 

admitted in numerous real world applications. In the KSP, we have a knapsack of capacity c and 

a set of n objects, namely {\cal N}, where each object 𝑗, 𝑗 =  1, … ,𝑛, is associated with a profit 

𝑝𝑗and a weight 𝑤𝑗. The set of objects {\cal N} is composed of m different classes of objects. The 

aim is to determine a subset of objects to be included in the knapsack that realizes a max-min 

value over all classes. Hifi et al. (2002) solved the Knapsack Sharing Problem (KSP) using an 



35 
 

approximate solution method based upon tabu search. First, they described a simple local search 

in which a depth parameter and a tabu list were used. Next, they enhanced the algorithm by 

introducing some intensifying and diversifying strategies. The two versions of the algorithm 

yielded satisfactory results within reasonable computational time. Extensive computational 

testing on problem instances taken from the literature showed the effectiveness of the proposed 

approach. 
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CHAPTER THREE 

TYPES OF KNAPSACK PROBLEMS AND SOLUTION METHODS 
 
Because of their wide range of applicability, knapsack problems have known a large 

number of variations such as: single and multiple-constrained knapsacks, knapsacks with 

disjunctive constraints, multidimensional knapsacks, multiple choice knapsacks, single and 

multiple objective knapsacks, integer, linear, non-linear knapsacks,  deterministic and stochastic 

knapsacks, knapsacks with convex / concave objective functions, etc. 

 

3.1.1 The Single 0-1 Knapsack Problem 

This is a 0-1 knapsack problem, pure integer programming with single constraint which forms a 

very important class of integer programming. 

The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following 

integer linear programming. 

 

Maximize�Pjxj 
n

j=1

 

 

Subject  to = ��wjxj�
n

j=1

 ≤  c 

  xj = 0 or 1, j = 1, … , n 

 

3.1.2 The Subset Sum Knapsack problem 

The particular case of the 0-1 knapsack problem arising when ( )j j  p  = w j = 1,…,n  �
as 

frequently occurs in practical applications. The problem is to find a subset of weights whose sum 

is closest to, without exceeding, the capacity, i.e. 
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Maximize   z = ��wjxj�
n

j=1
 

 

Subject  to ��wjxj�
n

j=1

 ≤  cR 

xj = 0 or 1 , j = 1, … , n 

 

 

This generally referred to as the Subset-Sum Problem. 

 

3.1.3 The Change-Making Problem 

A very particular bounded knapsack problem is considered arising when 𝑝 = 1, j = 1, … … , n 

 and in the capacity constraint, we impose equality instead of inequality. This gives 

 

Maximize   𝑧 = ��𝑥𝑗�
𝑛

𝑗=1
 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 ��𝑤𝑗𝑥𝑗�
𝑛

𝑗=1

=  bR 

 

 𝑥𝑗 = 0 or 1, j = 1, … … , n 

 

This is usually called the Change-Making Problem, since it recalls the situation of a cashier 

having to assemble a given change c using the maximum (or minimum) number of coins. 
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3.1.4 Multiple Knapsack Problems 

An important generalization of the 0-1 knapsack problem is the 0-1 Multiple knapsack problem 

arising when m containers, of given capacities 𝑐𝑖 , R  (𝑖 =  1, … ,𝑚) are available. By introducing 

binary variables𝑥𝑖𝑗, taking value 1 if item 𝑗 is selected for the container  𝑖, and value 0 otherwise, 

we obtain the formulation 

 

Maximize   z = �  
n

i=1

��pjxij�
n

j=1
 

 

Subject  to = ��wijxj�
n

j=1

≤ ci 

 

� xij  ≤ 1 
n

j=1

 

 

 𝑥𝑗  =  0 or 1,     i =  1, … , n    j =  1, … , n  

 

The generalization arising when the item set is partitioned into subsets and the additional 

constraint is imposed that at most one item per subset is selected is called the Multiple-Choice 

Knapsack Problem. The multi choice knapsack problem is defined as in knapsack problem with 

additional disjoint multiple choice constraint. The general description of the problem as given as 

follows: There is one knapsack with limited capacity. Objects to be packed in the knapsack are 

classified into multiple mutually exclusive classes. Within each class, there are several different 

items. The problem is to select some items from each class so as to minimize the total cost while 

the total size of the items does not exceed the limited capacity of the knapsack. This problem is 

of a   generalized carryout problem and is NP-hard. 
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3.1.5 Multi-dimensional Knapsack problem 

The multi-constraint is defined as a KP with a set of constraints such as weight, size, reliability 

etc. also called multi-dimensional knapsack problem.  

The problem can be generalized by assuming that for each 𝑗 (𝑗 =  1, … ,𝑛), 𝑏𝑗R items of profit 

𝑝𝑗 𝑎nd weight 𝑤𝑗R are available (𝑏𝑗 ≤  𝑐/𝑤𝑗); thus we obtain the Bounded Knapsack problem, 

3.2 Data Modeling  

 
The 0-1 Knapsack Problem (KP) can be mathematically formulated through the following 

integer linear programming. 

 

Maximize�Pjxj 
n

j=1

 

 

Subject  to = ��wjxj�
n

j=1

 ≤  c           

xj = 0 or 1, j = 1, … , n 

 

 

3.2.1 Methods for solving Knapsack problems. 

There are two basic methods for solving the 0-1 knapsack problems (KP): Theses are Branch-

and-Bound and dynamic programming methods. However the use of meta-heuristics including 

Genetic algorithm, Tabu search and Simulated annealing have been used to solve large scale 

problems. 
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3.2.1 The Branch and Bound Method 

Branch and Bound is a class of exact algorithms for various optimization problems, especially 

integer programming problems and combinatorial optimization problems (COP). It partitions the 

solution space into smaller subproblems that can be solved independently (branching).Bounding 

discards subproblems  that cannot contain the optimal solution, thus decreasing thesize of the 

solution space. Branch and Bound was first proposed by Land and Doig in 1960 for solving 

integer programs. 

Given a maximization problem 

• a Branch and Bound algorithm iteratively partitions the solution space S, for example by 

branching on binary variables - fixing one of them to 0 in one branch and to 1 in the other 

branch.  

• For each subproblem an upper bound on the objective value is calculated. The upper 

bound is guaranteed to be equal to or greater than the optimal solution for this 

subproblem.  

• When a feasible solution (i.e., no fractional variables remaining) is found, all 

subproblems whose upper bounds are lower than this solution’s objective value can be 

discarded. 

• The best known feasible solution represents a lower bound for all subproblems, and only 

subproblems with an upper bound greater than the global lower bound have to be 

considered.  

Discarding a subproblem is called fathoming or pruning. Upper bounds for a subproblem can 

be obtained by relaxing the subproblem, thus they are often obtained by optimizing the 

subproblem’s LP relaxation. 

The branch and bound method 

 

Assume that the variables have been ordered such that 

 

  p1 /a1  ≥ p2/a2  ≥ pn /an  

 

Let s be the maximum index k such that 
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��aj�
n

j=1

 ≤  b 

 

The following theorem  due to Dantzig  is shown below 

 

 The optimal solution to the continuous relaxation of KP is 

 

wj = 1, j = 1, … … , s 

 
wj = 0 , j = s, … … , n 

ws+1 = b −��
aj

as+1
�

n

j=1

 

              

                           

If  pj, j = 1, … … , n are positive integers, then an upper bound of the optimal 

value of KP is given by 

UB =  � Pj

s

j=i
 +  [(b −  � aj

s

j=i
) ps + I /as + i] 

 

      

UB =   ��Pj �
n

j=1

+  [ (b −   � aj

 n

j=1

)ps+1  / as+1 ] 

 

where [x] is the largest integer less than or equal to  x 

 

 

The following branch-and-bound method uses the depth-first search and finds an 

upper bound by using the above theorem. 
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Algorithm  Branch-And-Bound Method For Knapsack problem 

 

Step 1 (Initialization).  

Set pN+1  =  0, aN+1  =  ∞, fopt  =  f =  0, Wopt  =  W =  (0, . . . ,0)T, W =  b, i =  1   

Step 2 (Test heuristic). If ai  ≤  W, find the largest s such that � aj

s

j=i

 ≤  W, 

set z =  �pj

s

j=i

 +
�W −  ∑ ajs

j=i �ps+1
as+1

.  If ai >  W, set s =  i –  1 

and z =  Wps/as    . If fopt  ≥  [z]  +  f, go to step 5. 

Step 3 (New feasible solution). If ai  ≤  W and i ≤  N, set W ∶=  W −  ai, 

f ∶=  f +  pi, wi  =  1, i ∶=  i +  1, repeat Step 3;  otherwise, if i ≤  N, set 

wi =  0, i ∶=  i +  1, if i <  N, go to Step 2;  if i =  N, repeat Step 3; 

 if i >  N, go to Step 4. 

Step 4 (updating incumbent). If fopt  <  f, set fopt  =  f, Wopt =  W. Set i =  N, 

if WN  =  1, set W ∶=  W + aN, f ∶=  f – pN, WN  =  0 

Step 5 (Backtracking).  Find the largest k <  i such that Wk =  1.  If there is no 

such a k, stop and the current  Wopt is the optimal solution.  Otherwise, set 

W ∶=  W + ak, f ∶=  f – pk, Wk  =  0, i =  k + 1 and go to step 2 

 

 

3.2.2  Dynamic Programming Method 

Dynamic Programming approach is applicable to (KP) if certain integrality conditions of the 

coefficients hold. We first assume that the coefficients 𝑎𝑗 , j = 1, … … , n are positive 

integers. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 =  1, … ,𝑛 𝑎𝑛𝑑 𝑧 =  1, … . , 𝑏,𝑑𝑒𝑓𝑖𝑛𝑒 

 

Pm(z)  =  max{� pjwj

m

j=1

 / � ajwj

m

j=1

 ≤  z, (w1, … , wm) Є {0,1}m} 
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The recursive equation at the m − th stage is 

pm(z)  =   pm−1(z),                                              0 ≤  z <  am 

  max{ pm−1(z), pm−1(z −  am)  + pm},    am  ≤  z ≤  b 

 

with the initial condition: 

 

p1(z)  =  0,         0 ≤  z <  a1  

 p1                          a1  ≤  z ≤  b 

 

Under the condition that aj , (j =  1, … , N) are positive integers, a dynamic programming 

algorithm construct a table of dimension N ∗  (b +  1) and calculates the entries pm(z), (m =

 1, … . , N, z =  0, … . , b) in a bottom-up fashion. An optimal solution can be found by 

backtracking through the table once the optimal value PN(b) is obtained. The complexity of this 

dynamic programming is O (Nb). 
 

3.2.3 Heuristic Scheme  

A heuristic scheme that may be used to solve knapsack problems instead of branch and bound 

could be outlined as follows 

 

Step 1: Input the vector of weight  and item values 

Step 2: Input random initial solutions S0 and  

               check for feasibility of S0 by the constraint equation 

              If S0 is not feasible discard and choose another S0 

Step 3: Find a feasible solution and compute the objective function value f(S0)  

Step 4: Obtain a new solution S1 by flip operation and check for feasibility, continue flip  

operation  until the solution S1 so obtained is feasible. Compute the objective function 

value  f(S1). 
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             If    f(S1) >  𝑓(S0)    then put S0 =  S1  

            else retain S0 and discard S1  

Step 5: Repeat step 3 for all feasible solutions  

Step 6: Stop for not improving solution over a number of iterations 

 

3.2.4 Simulated Annealing 

Simulated annealing is a local search algorithm capable of escaping from local optima. Its case 

of implementation, convergence properties and its capability of escaping from local optima has 

made it a popular algorithm over the past decades. Simulated annealing is so named because of 

its analogy to the process of physical annealing with solids in which a crystalline solid is heated 

and then allowed to cool very slowly until it achieves stable state. i.e. its minimum lattice energy 

state and thus is free of crystal effects. Simulated annealing mimics this type of thermodynamic 

behavior in searching for global optima for discrete optimization problems (DOP). 

At each iteration of simulated annealing, algorithm applied to a DOP, the objective function 

values for two solutions (the current solution and a newly generated neighboring solution) are 

compared. Better solutions are always accepted, while a fraction of inferior solutions are 

accepted in the hope of escaping local optima in search of global optima. The probability of 

accepting non-improving solutions depends on a temperature parameter, which is non increasing 

with each iteration of the algorithm. 

The key algorithm feature of simulated annealing is that provides a means to escape local optima 

by allowing worse moves (i.e. moves to a solution that corresponds to a worse objective value 

function). As the temperature is decreased to zero, worse moves occur less frequently and the 

solution distribution associated with the inhomogeneous Markov chain that models the behavior 

of the algorithm converges to a distribution in which all the probability is concentrated on the set 

of globally optimal solutions which means that the algorithm is asymptotically convergent. 

To formally describe simulated annealing algorithm for KP, some definitions are needed. Let Ω 

be the solution space: define η(ω) to be the neighborhood function for w ∈ Ω. Simulated 

annealing starts with an initial solution ω ∈ Ω. A neighborhood solution ω 1 ∈ η(ω) is then 

generated randomly in most cases. Simulated annealing is based on the Metropolis acceptance 
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criterion, which models how a thermodynamic system moves from its current solution ω ∈ Ω to a 

candidate solution 𝜔𝑖 ∈  𝜂(𝜔) in which the energy content is being minimized. The candidate 

solution ω 1 is accepted as the current solution based on the acceptance probability. 

In this survey, finite-time implementations of simulated annealing algorithm are considered, 

which can no longer guarantee to find an optimal solution, but may result in faster executions 

without losing too much on the solution quality. Simulated annealing algorithm with static 

cooling schedule (Kirkpatrick et al. 1983) for KP is outlined in pseudo-code. 

 

1. Select an initial solution ω =(ϰ1,….., ϰn)∈ Ω; an initial temperature t = t0;  

2. control parameter value α; final temperature e; a repetition schedule, M that defines the 

number of iterations executed at each temperature; 

3. Incumbent solution ←  f(ω); 

4. Repeat; 

5. Set repetition counter m =  0; 

6. Repeat; 

7. Select an integer i from the set  {1,2, … . , n} randomly: 

8. If xi =  0, pick up item i,   i. e.  set  xi  =  1, obtain new solution  ω1 then 

9. while solution ω1 is infeasible, do 

10. drop another item from ω randomly; denote the new solution  as ω1 

11. let Δ = f(ω1) − f(ω) 

12. while Δ ≥  0 or Random (0,1) < eΔ t⁄  do  ω ← ω1 

13. Else 

14. drop item i and pick another item randomly, get new solution ω1 

15. let Δ = f(ω1) −  f(ω) 

16. while Δ ≥ 0 or Random (0,1)  < eΔ t⁄   do ω ←  ω1 

17. End If 

18. If incumbent solution <  𝑓(ω),   Incumbent solution ←  f(ω) 

19. m =  m +  1; 

20. Until m =  M 

21. set t =  a ∗  t; 

22. Until t <  𝑒 
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A set of parameters needs to be specified that govern the convergence of the algorithm, i.e. initial 

temperature 𝑡𝑜R, temperature control parameter 𝛼, final temperature ℯ, and Markov chain length 

M, in order to study the finite-time performance of simulated annealing algorithm. Here to should 

be the maximal difference in cost between any two neighboring solutions  

3.2.4 Genetic Algorithm 

A genetic algorithm (GA) can be described as an “intelligent” probabilistic search algorithm and 

is based on the evolutionary process of biological organisms in nature. During the course of 

evolution, natural populations evolve according to the principles of nature selection and 

“survival of the fittest.” Individuals who are most successful in adapting to their environment 

will have a better chance of surviving and reproducing, while individuals who are less fit will be 

eliminated. This means that the genes from highly fit individuals will spread to an increasing 

number of individuals in each successive generation. The combination of good characteristics 

from highly adapted parents may produce even more fit offspring. In this way, species evolve to 

become increasingly better adapted to the environment. 

A GA simulates these processes by taking an initial population of individuals and applying 

genetic operators in each reproduction. In optimization terms, each individual in the population 

is encoded into a string or chromosome that represents a possible solution to a given problem. 

The fitness of an individual is evaluated with respect to a given objective function. Highly fit 

individuals or solutions are given opportunities to reproduce by exchanging pieces of their 

genetic information in a crossover procedure with other highly fit individuals. This produces new 

“offspring” solutions (i.e. children) who share some characteristics taken from both parents. 

Mutation is often applied after crossover by altering some genes in the strings. The offspring can 

either replace the whole population (generational approach) or replace less fit individuals 

(steady-state approach). This evaluation-selection-reproduction cycle is repeated until a 

satisfactory solution is found.  

 

The basic steps of a simple GA are shown below 

Step 1: Generate an initial population 
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Step 2: Evaluate fitness of individuals in the population 

Step 3: repeat 

a. Select individuals from the population to be parents 

b. Recombine (mate) parents to produce children 

c. Mutate the children Evaluate fitness of the children 

d. Replace some or all of the population by the children 

until 

Step 4:  you decide to stop whereupon report the best solution encountered 

 

What Does An Individual In Our GA World Look Like? 

In the real world we know what individuals look like. In the GA world, what individuals look 

like (their representation or chromosome) is our choice. 

In our GA world for the KP we shall choose individuals to be n bit strings  

individual        0 1 0 0 0 1 0 

step 1 An initial population containing six individuals  

individual                         

1           1 1 0 0 0 0 0             

2           1 0 0 1 0 0 0             

3           0 0 0 0 0 0 1             

4           0 0 1 0 1 0 0             

5           0 1 1 0 0 0 0             

6           0 1 0 0 0 1 0             

 

has an interpretation in terms of the KP of 𝑥2 =  𝑥6 =  1 𝑎𝑛𝑑 𝓍1 = 𝑥3  =  𝑥4 =  𝑥5 =

 𝑥7 =  0 

 

step 2 Evaluation of fitness 

The objective function value (∑ 𝑝𝑗𝑋𝑗𝑛
𝑗=1 ) equates to how good a solution is, that is, its fitness.  

In general, an initial population is randomly generated in some way.  

Step 3a: Selection of individuals for as parents 
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In the real world, individuals are independent beings who for their own reasons decide to become 

parents. But in the GA world we have to make a choice as to who will become a parent. 

In ther GA world for the KP we shall choose to select parents by binary tournament selection. In 

binary tournament selection we first randomly select two individuals from the population  We 

then select from these two the individual with the best fitness to be the first parent (individual 5 

in this case). 

 Step 3b:  Recombine (Mate) Parents To Produce Children 

 In the real world we know parents combine to have children. 

In the GA world for the KP we shall have a single child from two parents by uniform crossover. 

In uniform crossover each bit in the child solution is created by: 

repeat for each bit in turn 

choose one of the two parents at random 

set the child bit equal to the bit in the chosen parent 

 Other ways are (briefly) outlined below. 

One-Point Crossover 

In one-point crossover we randomly select a pint between two adjacent bits, “cut” the parents 

into two segments and create two children by rejoining the segments. For example, cutting 

parents we had before between bits 3 and 4 

parent   1 0 1 1 0 0 0 0  produces segments  0 1 1 and 0 0 0 0 

parent   2 0 1 0 0 0 1 0  produces segments  0 1 0 and 0 0 1 0 

to give                           child 1                     0 1 1         0 0 1 0 

                                      child 2                    0 1 0         0 0 0 0 

where child 1 (0110010) is composed of the first segment of parent 1 and the second segment of 

parent 2; child 2  (0100000) is composed of the first segment of parent 2 and the second segment 

of parent 1. 

 

Restricted One-Point Crossover 

Observe that in the on-point crossover example presented above we would have produced 

children who were identical to the parents (duplicates, clones) if we had chosen to cut the parents 

bits 1 and 2, bits 2 and 3: or bits 6 and 7. Restricted one-point crossover restricts the cut point to 

ensure that the children are different from the parents. That is easily done,  simply restrict the cut 
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point to be between the first bit where the two parents differ (bit 3 above) and the last bit where 

the two parents differ (bit 6 above) 

 

• fusion, as uniform crossover except that bits are taken from the parents with probabilities 

proportional to their fitness; 

• two-point crossover, as one-point crossover (where each parent was cut into two 

segments) except that each parent is cut into three segments and two children produced 

by taking alternate segments from each parent 

Indeed, any way of combining two bit strings together could be used to produce children from 

two parents. Note here however, one property that crossover schemes typically have in common 

is that bits which are the same in the parents are the same in the children. (i.e. characteristics 

common to parents are passed to the children). 

Step 3c: Mutation 

Mutation corresponds to small changes that are stochastically applied to the children. Taking our 

child 0110010 produced by uniform crossover we could decide to make a small change, typically 

to randomly select one bit and to change its value (“flip it”). For example we might randomly 

select it 2 and flip it to give 0010010. Alternatively, we might decide (according to some 

probabilistic criterion) to make no mutation changes to the child. 

Mutation can be applied with a constant probability or with an adaptive probability that changes 

over the course of the algorithm (perhaps in response to the number of iterations that have passed 

or in response to population characteristics). 

 

Step 3d: Infeasibility 

One problem that must be addressed is that (most likely) not every individual (binary bit string) 

represent a feasible solution in terms of the underlying problem that is being solved, for example, 

for our example an individual may violate the constraints of the KP. 

There are number of strategies for dealing with constraints and infeasible solutions in Gas and 

these are detailed below. The first strategy is to use a representation that automatically ensures 

that all solutions are feasible. For some problems such representations exist, for example, the set 

covering problem (Beasley and Chu, 1996), but for the majority of the constraint problems this 

strategy is not possible.  
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The second strategy is to design a heuristic operator (often called in the literature a repair 

operator) that guarantees to quickly transform any infeasible solution into a feasible solution. 

Such a strategy is possible for the KP and we illustrate this below 

 

 Strategies for Dealing with Constraints and Infeasible Solutions in Genetic Algorithm 

Strategy         Description 

1                       To use a representation that automatically ensures that all solutions are      

                          feasible 

2                       To design a heuristic operator (often called in the literature a repair operator)   

                          that guarantees to quickly transform any infeasible solution into a feasible  

                          solution 

3                       To separate the evaluation of fitness and infeasibility 

4                       To apply a penalty function to penalize the fitness of any infeasible solutions 

 

Heuristic Operator 

For the KP, designing a heuristic operator that guarantees to quickly transform any infeasible 

solution into a feasible solution is trivial, for example, 

repeat until solution feasible: 

𝑠𝑒𝑡 𝑥𝑗 =  0 

Population Replacement 

We will use a steady-state population replacement strategy. With this strategy each new child is 

placed in the population as soon as it is ready (after mutation and application of the heuristic 

operator in this case). It is common in GA to keep the population size constant hence placing the 

child in the population means selecting a member of the population to delete (“kill”). 

A logical approach is to kill the member of the population with the worst fitness.  

 

Modified GA  

Generate an initial population 

• Evaluate fitness of individuals in the population 

repeat 

• Select individuals from thee population to be parents 
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• Recombine (mate) parents to produce children 

• Mutate the children 

• Make the children feasible using the heuristic operator 

• Evaluate fitness of the children 

• Replace some or all of the population by the children 

Until 

you decide to stop whereupon report the best solution encountered 

The difference between this description and the algorithm description given previously is the 

insertion of a step making the (mutated) children feasible.  

 

Computational Considerations 

The GA presented above (with a few modifications) produces results that are superior in quality 

to other leading heuristic (which are mostly based on tabu search) for the KP (Chu and Beasley, 

1998). However, as already mentioned, that GA is much slower than other heuristics. Hence, we 

have the trade-off we often see in OR between quality of solution and computer time consumed. 

GAs often require the production and evaluation of many different children. However, GAs are 

capable of generating high-quality solutions to many problems within reasonable computation 

times. (Beasley and Chu, 1996; Chu and Beasley, 1997, 1998; Chang et al., 2000; Beasley et al., 

1999)   
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 
 

4.1. Data Collection 

The study area is the selection of adverts at GTV. GTV is a state owned Television station which 

depends to the greater extent on government subvention. GBC is however mandated to generate 

revenue to supplement the government subvention. To this end GTV has various ways of 

generating additional income. These include sponsorship of programmes , social and funeral 

announcements, advertisements among others. However this research focused on advertisements 

which are slotted in the programmes schedules (appendix A) prepared quarterly to generate 

additional income to sustain the operations of the TV station.  

Spots for adverts are categorized into the following 

• Prime time news (19.00 hrs GMT) 

• News adjacencies  (five minutes before and after news at 12.00, 14.00, 19.00 and 22.30 

hours GMT) 

• Other News time (12.00, 14.00, 19.00, 22.30 hours GMT) 

• Break in programmes (peak and off peak) 

Each of the above categories has different rates attached as shown below . 

The table 1 shows the various rates for the different categories of adverts at GTV. For example a  

Primetime News adverts for 15 seconds costs GH¢215 while for 60 seconds, the rate is GH¢525. 

the rates are high for Prime time News and news adjacencies. These are periods where most 

customers wants their adverts televised to reach a larger TV audience. The off peak rates are low 

compared with the peak periods. 
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Table 1: GTV Adverts Rate 

    

 

Rates in GHC 

Category/Time 15 sec 30 sec 45 sec 60 sec 

Prime Time News(19hrs GMT) 215.00 375.00 562.00 750.00 

News Adjacencies 130.00 250.00 375.00 500.00 

Break in News 135.75 244.35 362.00 525.00 

Break in Programmes 

a. Peak Time - Week Days 

b. Peak Time – Week Ends/Holidays 

c. Off Peak 

    
91.00 160.00 220.00 360.00 

70.00 120.00 164.00 271.00 

45.00 61.00 120.00 177.00 

 

Customers usually request for a number of spots for their adverts. The  table 2 shows represents 

request received by GTV at Primetime News (19 hours GMT). Customer 1 requested  for two(2) 

spots of  adverts  for fifteen (15) seconds each at prime time news. The cost of the two adverts is 

GH¢260 (i.e 130 + 130) as indicated in the value column. The weights of this advert is 30sec. 

Additionally  customer  number 5 requested  3 spots of 30 seconds each. ie. 90 sec(weight) with 

a cost of GH¢1125(value). The total time available for adverts at the prime time news  is twenty 

(20) minutes (i.e 1200 seconds) but the total time requested is 1710 seconds. 
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Table 2: Prime Time News Adverts – 19:00 Hours GMT 

Adverts 
No. 

Time in sec (t) No of spots 
requested(s) 

Time 
requested(weight) 

Cost(Value) 

1 15 2 30 429 
2 30 3 90 1125 
3 45 1 45 562 
4 15 1 15 214 
5 30 3 90 1125 
6 45 2 90 1124 
7 60 1 60 750 
8 30 2 60 750 
9 45 2 90 1124 
10 15 1 15 215 
11 15 1 15 215 
12 30 1 30 375 
13 45 2 90 1124 
14 15 2 30 429 
15 30 3 90 1125 
16 45 2 90 1124 
17 30 3 90 1125 
18 30 3 90 1125 
19 45 2 90 1124 
20 60 1 60 750 
21 45 1 45 562 
22 15 1 15 215 
23 15 1 15 215 
24 15 1 15 215 
25 30 2 60 750 
26 30 3 90 1125 
27 15 2 30 429 
28 60 1 60 750 
29 30 3 90 1125 
30 15 2 30 429 
 

Total 
  

 
1710 
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Other customers opt for the  News Adjacencies. this is five (5) minutes before and after the 

prime time news at 19.00 hours GMT. As shown in table 3, the total time available is 10 minutes 

(600 seconds) but the customers requested a total of 810 seconds 

Table 3. Adverts for News Adjacencies -18:55 -19:00 and 20:00-20:05 

Adverts No. Time requested 
(weight) 

Cost GHC(Value) 

1 30 260 
2 45 375 
3 15 130 
4 90 750 
5 60 500 
6 60 250 
7 90 750 
8 15 130 
9 15 130 

10 30 250 
11 30 260 
12 60 500 
13 45 375 
14 15 130 
15 15 130 
16 15 130 
17 60 250 
18 30 260 
19 60 500 
20 30 260 

Total 810 
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Table 4 shows the weights and the values for the adverts requested for the 22:30 news time. The 

total time available is 600 seconds but the customers requested 810 seconds. 

Table 4. Selected  adverts for Break in News at 22:30 Hours GMT 
 

Adverts No. Time requested 
(weight) 

Cost GHC(Value) 

1 30 150 
2 45 200 
3 15 75 
4 90 400 
5 60 290 
6 60 270 
8 15 75 
9 15 75 

10 30 135 
11 30 150 
12 60 290 
13 45 200 
14 15 75 
15 15 75 
16 15 75 
17 60 270 
18 30 150 
19 60 290 
20 30 150 

Total 720 
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Table 5. Break in programme adverts for Peak Time on Week Days 

Adverts No. Time requested 
(weight) 

Cost GHC(Value) 

1 15  91 
2 15   91 
3 30 160 
4 90 440 
5 30 182 
6 90 480 
7 90 440 
8 90 480 
9 60 320 

10 15    91 
11 15    91 
12 15    91 
13 60 320 
14 90 480 
15 30 182 
16 60 360 
17 90 480 
18 30 182 
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4.2 Data Analysis 
 

The Data collected for GTV was analyzed with the computer software developed in Visual 

Basic.Net 2008 using  the heuristic scheme algorithm . 

4.2.1 Features of the Software 

The software allows the user to input  data into the program in three ways as shown in the User 

interface below by the radio buttons.(codes attached: appendix B) 

 

fig 1. User Interface for the Knapsack Optimizer 

• The user can load  an existing data already stored in the computer 

• The user may type in the data directly into the textboxes 

• For testing purposes the user can  generate data  automatically. 
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The programme generate an initial solution and shows all feasible solutions for the problem 

and selects the optimal solution. The optimal solution gives the solution string, the weight 

and the value. The selected adverts are the listed in a list box to the right  as shown below. 

 

 

4.2 .2 Results of the Analysis 

Results for the analysis of data from a prime time news, news adjacencies, break in News and 

break in programme are shown below. The optimal selection these adverts yielded GHC 26,305. 

From the table below nineteen (19) adverts  were selected from the 30 requested to give an 

optimal value of GHC 15,157. The selection for the break in news , break in programme and a 

peak period yielded GHC 2,820, GHC 3,288, GHC 5,040 respectively. These are higher than as 

compared with the results of  the arbitrary method used by GTV. Additionally, more adverts for 

each category of advertisement was selected as compared with the existing method of selection. 
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 No. of Adverts 
Requested 

No. of Adverts 
Selected 

Time Available 
in Second 

Optimal 
Value 
(Amount) 

Prime Time 30 19 1200 15,157 

News Adjacencies 20 14 600 5,040 

Break in News 20 14 600 2,820 

Break in Programme 20 13 600 3,288 

 

The adverts selected are as follows 

• Prime Time News  - {3,6,8,9,12,13,15,16,17,18,19,21,23,24,25,27,28,29,30} 

• News adjacencies  - {1,2,4,57,8,910,12,13,15,16,19,20} 

• Break in News      - {1,4,5,6,9,10,11,12,13,14,15,16,17,18} 

• Break in Programme – {1,2,3,5,6,7,9,11,12,13,14,16,18} 

 

 

 

 

 

 

 

 

Total    26,305 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 
 

We have described the TV adverts selection problem as a 0–1 knapsack optimization problem. 

Given that a 0–1 knapsack optimization problem is NP-hard, we used the simple heuristic 

scheme to solve the TV adverts problem.  

The areas of our research was the use of the Knapsack problem  for selecting adverts in critical 

situations such as the prime time news (19.00 hours GMT) and news adjacencies  and other news 

time (12,14,22:30 hours GMT). However it can be applied to any situations where advertisers 

opt for the same limited spots such as sponsoring international football and other events which 

will attract many viewers.   

For a typical day an amount of GHC26,305 was obtained from adverts selected for the  four 

categories of adverts, which is far in excess of the arbitrary selection method used  by GTV. This 

translates to GHC 2,367450 for a 3 month period.  

The use of the software is systematic and transparent as compared with the arbitrary method. 

Higher returns can be achieved by GTV by the use of this software in their selection of adverts in 

the critical situations analysed. 

Marketing Managers / Programme Producers may benefit from the proposed approach for 

selecting adverts to guarantee maximized profits for their TV stations.  

In an event where management may have to include certain adverts for national interest these 

could be isolated before selecting the others to compete for the limited time slots. 

The software can be used for any problem that can be modeled as a 0/1 knapsack problem. 
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Finally, we only considered single criteria for the selection of the TV adverts. Further research is 

needed for applying multi-criteria and multiple knapsack problems to the TV adverts selecting 

problem.  
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APPENDIX A - GTV Programme Schedule July – September 2009 
 

Time Sunday 
 

Monday Tuesday Wednesday Thursday Friday Saturday 

5:00am World Net 
5:30am Voice Of Healing Deeper 

Life 
Ebenezer 
Miracle 
Worship 
Center 
 

World Net Pentecost 
Hour 

Pranic 
Healing 

World Net 

6:00am Apostolic 
Heritage 

 
 
 
 
 
Breakfast Show 

Catholic Digest 

6:30am Encounter With 
Truth 

Restoration Hour 

7:00am Voice Of 
Inspiration 

Life Matters Winners 
Church Gh 

7:30am Apostolic Voice Winning Ways 
7:55am Programme Line-

Up 
Programme Line-Up 

8:00am Channel Of Hope  
 
Breakfast Show 8:30am Keepers Of Faith Dwtv 

9:00am  
In The House 

Psi-
Distance 
Learning 

M’brasem Psi-Distance 
Learning 

Sports Lite Asem Sebe 
9:30am Barneys 

10:00am News Highlight 
10:05am All Of Us Psi-

Distance 
Learning 

Meet The 
Press 

Psi-Distance 
Learning 

Meet The 
Press/Straight 
Talk Africa 

Asem Sebe Children’s Channel 
10:30am Gospel Trail 
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11:00am News Highlight 
11:05am Documentary Court 

Precision 
 
 
Total 
Football 

Wiase Ye Sum Meet The 
Press(Repeat) 

Health Talk National Scince& Maths 
Quiz 11:30am Paid Music Regional 

Diaries(Repeat) 
Kasa Mame 

12:00pm News Yese Yese Primwell African Movie 
 

Family 
Movie 

News 
12:30pm  

Cantata 
In The 
House(Repe
at 

African Movie Aware Pa 

1:00pm  Sport Beat 
1:30pm  

What Do You 
Know 

“What I 
Sell” 

  Soccer Icon 

2:00pm News Our Children Our Future 
2:30pm Enye Easy Business 

Africa 
Standpoint 
(Repeat) 

Words Of 
Peace 

Ads Forum Bundesliga 
Kickoff 

This Week 

3:00pm Stars Of The 
Future 

Royal 
Whispers 

Garage W’adidiemu Te 
Sen 

This Week In 
French 

Next Level 

3:30pm Insurance 
&You 

Kings&Qu
eens 

Afro Tv Tech Express Asenta Oba 

4:00pm News Highlight 
4:05pm O Baby! My Lovely 

Sam -Soon 
Psi-
Distance 
Learning 

Paid 
Documentaries 
&Musicals 

Psi-Distance 
Learning 

Islam&Life Traffic Warden/Epl 

4:30pm Borges Health 
Check 

Crime Fighters Movie Web Chldren Of Today 

5:00pm News Highlight 
5:05pm Complete Woman Regional 

Diaries 
Psi-
Distance 
Learning 

Environmatazz 
(Min.Of 
Information) 

Psi-Distance 
Learning 

Local Drama Miss Ghana & Dance 
Championship 

5:30pm Maggie Food 
Moments 

Jamin 
Reggae 

Game 
Time(Charter 
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House) 
6:00pm  News Highlight 
6:05pm Frees The Slaves Adult 

Educatio
n In 
Akan 

Adult 
Education In 
Ausa/Dagba
ni 

Adult Education 
In Ga 

Adult 
Education In 
Ewe 

Adult Education 
In Nzema 

On The Ball 

6:30pm M’asem  Soc/Funeral Ann./Line-Up  
Inside Out 6:45pm News In News In 

Akan 
News In 
Dagbani 

News In Ga News In Ewe 

7:00pm News/Businees/Weather 
7:30pm Talking Point  News/Business/Weather 
8:00pm Sports 

Highlight
s 

Mmaa 
Nkomo 

Investment 
Digest 

Possibility 
Forum 

Standpoint Rythms 

8:30pm Zain African 
Challenge 

Sports 
Highlight
s 

Mmaa 
Nkomo 

Zain African 
Challenge 

Business 
Advocate 

9:00pm Hot Bench Time 
With 
Nafti 

It Takes 
Two 

Secrets  
Ghana’s Pride 

Wicked Games 

9:300pm Obra/Nsem Bi 
Sisi 

Fortune 
Island 

Stars Of 
The Future 

Back Home 
Again 

Faith Talk  Dr. Payne 

10:00pm Pasion Eve 
10:30pm Late News 
11:00pm Power In His 

Presence 
Healing 
Jesus 
Crusade 

Guiness 
Football 
Africa 

Way Of Life “In Him Is 
Life” 

Counselling 
Session 

Primwells/African 
Movie 

11:30pm H.M. Films Dilema Documentary African Movie 
12:00pm African Movie Paid Musicals 
12:30am DWTV  
1:00am Close Down 
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APPENDIX B - VISUAL BASIC.NET CODES FOR THE HEURISTIC SCHEME 
 
Imports System 

Imports System.IO 

Imports System.Collections 

Public Class main 

    'global variable declarations 

    Dim nInputs As Integer, upperLimit As Integer = 0 

    Dim value(1000) As Integer, cost(1000) As Integer, names(1000) As String 

    Dim newSolution As Solution, currentSolution As Solution 

        'end global variable declarations 

    ' all my user-defined classes, functions and subroutines 

 Public Class Solution 

  Public itsArray(1000) As Integer, solString As String 

        Public profitFunction As Integer, costFunction As Integer 

Public feasible As Boolean = False 
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Public Sub valueFunctions() 

costFunction = 0 : profitFunction = 0 : solString = "{" 

 For i = 1 To main.nInputs 

 costFunction = costFunction + (main.cost(i) * itsArray(i)) 

profitFunction = profitFunction + (main.value(i) * itsArray(i)) 

                If i = main.nInputs Then 

                    solString = solString + itsArray(i).ToString + "}" 

                Else 

                    solString = solString + itsArray(i).ToString + "," 

                End If 

            Next i 

        End Sub 

        

 Public Sub New(ByVal init As Solution) 

            For i = 1 To main.nInputs 

                itsArray(i) = init.itsArray(i) 

            Next 
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            valueFunctions() 

            feasible = init.feasible 

        End Sub 

        Public Sub New() 

        End Sub 

    End Class 

    Public Sub flipOperation(ByVal aSolution As Solution) 

        Dim randomIndex As Integer 

        statusLabel.Text = "Flip any randomly chosen index in the solution ..." 

        Randomize() 

        randomIndex = CInt(((nInputs - 1) * Rnd()) + 1) 

        aSolution.itsArray(randomIndex) = 1 - aSolution.itsArray(randomIndex) 

        aSolution.valueFunctions() 

        If aSolution.costFunction <= upperLimit Then 

            aSolution.feasible = True 

        Else 

            aSolution.feasible = False 
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        End If 

    End Sub 

 

    Public Sub flipOperation(ByVal whatToFlip As Integer, ByVal aSolution As Solution) 

        Dim randomIndex As Integer 

        statusLabel.Text = "Searching for an index equal to " + whatToFlip.ToString + "  to flip ..." 

        Do 

            Randomize() 

            randomIndex = CInt(((nInputs - 1) * Rnd()) + 1) 

        Loop Until aSolution.itsArray(randomIndex) = whatToFlip 

        aSolution.itsArray(randomIndex) = 1 - aSolution.itsArray(randomIndex) 

        aSolution.valueFunctions() 

        If aSolution.costFunction <= upperLimit Then 

            aSolution.feasible = True 

        Else 

            aSolution.feasible = False 

        End If 
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    End Sub 

 

    Private Sub printOut(ByVal aSolution As main.Solution, ByVal lastString As String, ByRef thelistbox As ListBox) 

        thelistbox.Items.Add("Weight = " + aSolution.costFunction.ToString) 

        thelistbox.Items.Add("Value = " + aSolution.profitFunction.ToString) 

        thelistbox.Items.Add("Solution String =: " + aSolution.solString) 

        thelistbox.Items.Add(lastString) 

        ListBox1.Items.Add("") 

    End Sub 

    Private Sub getInitialSolution(ByRef thelistbox As ListBox, ByVal annealing As Boolean) 

        currentSolution = New Solution() 

        currentSolution.feasible = False 

        Do 

            For i = 1 To nInputs 

                Randomize() 

                currentSolution.itsArray(i) = CInt(Int((2 * Rnd()))) 

            Next i 
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            currentSolution.valueFunctions() 

            If currentSolution.costFunction <= upperLimit Then 

                currentSolution.feasible = True 

                printOut(currentSolution, "Initial feasible solution", thelistbox) 

            End If 

        Loop Until (currentSolution.feasible = True) 

        ' generated an initial solution, currently the best. 

        newSolution = New Solution(currentSolution) 

    End Sub 

    Private Sub solveByFlop(ByVal coeffN As Integer, ByRef thelistbox As ListBox, ByRef theLB As ListBox) 

        Dim looptimes As Integer, count As Integer 

        ' Now, atempt to optimize 

        statusLabel.Text = "Attempting to optimize current solution ..." 

        Do 

            ' with simple flip, pick any index at random and flip it 

            newSolution.feasible = False 

            While (Not newSolution.feasible) 
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                'Randomize() 

                flipOperation(newSolution) 

End While 

 

                    ' check profitability of solution just found 

            If newSolution.profitFunction > currentSolution.profitFunction Then 

                currentSolution = New main.Solution(newSolution) 

                printOut(currentSolution, "Feasible improving solution found", thelistbox) 

                count = 0 

            Else 

                printOut(newSolution, "Feasible  Non-improving solution ", thelistbox) 

                'newSolution = New Solution(currentSolution) 

                count = count + 1 

            End If 

            looptimes = looptimes + 1 

            Label1.Text = "Looped " + looptimes.ToString + "time(s)" 

            If count = 100 Then                 statusLabel.Text = "FINISHED !  " + Label1.Text 
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                ListBox1.Items.Add("*********OPTIMAL SOLUTION***********") 

                printOut(currentSolution, "This is the best solution obtained", thelistbox) 

            For i = 1 To nInputs 

                If currentSolution.itsArray(i) = 1 Then 

                        theLB.Items.Add(names(i)) 

                    End If 

                Next 

            End If 

        Loop Until count = 100  

    End Sub 

Public Sub generateRandom() 

        Dim totalCost = 0 

        For i = 1 To nInputs 

            'get the name of i 

            names(i) = "Item " + i.ToString 

            'get the cost of i 
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            Randomize() 

            cost(i) = CInt(Int(10 + (40 * Rnd()))) 

            totalCost = totalCost + cost(i) 

            'get the profit value of i 

            Randomize() 

            value(i) = CInt(Int(20 + (50 * Rnd()))) 

        Next 

        numberUpDown.Maximum = nInputs 

        upperLimit = CInt(Int((0.4 + (0.3 * Rnd())) * totalCost)) 

    End Sub 

Private Sub nextButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 

        mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 

    End Sub 

    'end of overviewTabPage subs 

 

    'inputTabPage subs 
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    Private Sub acceptTotalButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

acceptTotalButton.Click 

        If IsNumeric(totalItemsTextBox.Text) And IsNumeric(totalItemsTextBox.Text) < 1000 Then 

            nInputs = Integer.Parse(totalItemsTextBox.Text) 

            acceptTotalButton.Enabled = False : totalItemsTextBox.Enabled = False 

            inputGroupBox.Enabled = True : clearButton.Enabled = True 

            editTotalButton.Enabled = True : submitButton.Enabled = True 

            numberTextBox.Text = "1" : AcceptButton = OKButton 

            nameTextBox.Focus() 

        Else 

            MessageBox.Show("Please enter an integer, not more than 1000", "Numeric Input Required", _ 

                            MessageBoxButtons.OK, MessageBoxIcon.Error) 

            totalItemsTextBox.Focus() 

        End If 

    End Sub 

    Private Sub editTotalButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles editTotalButton.Click 

        submitButton.Enabled = False : editTotalButton.Enabled = False 
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        inputGroupBox.Enabled = False : clearButton.Enabled = False 

        totalItemsTextBox.Enabled = True : acceptTotalButton.Enabled = True 

        AcceptButton = acceptTotalButton : acceptTotalButton.Focus() 

    End Sub 

 

    Private Sub excludeNamesCheckBox_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

excludeNamesCheckBox.CheckedChanged 

        If excludeNamesCheckBox.Checked = True Then 

            nameTextBox.Enabled = False 

            costTextBox.Focus() 

        Else 

            nameTextBox.Enabled = True 

            nameTextBox.Focus() 

        End If 

    End Sub 

 

    Private Sub OKButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles OKButton.Click 
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        Try 

            If Integer.Parse(costTextBox.Text) < 1 Or Integer.Parse(valueTextBox.Text) < 1 Then 

                MessageBox.Show("Please enter valid numbers for the cost and value of this item", _ 

                                "Invalid input specified", MessageBoxButtons.OK, MessageBoxIcon.Error) 

            Else 

                If nextItem > nInputs Then 

                    MessageBox.Show("Please complete and submit your entries", "Inputs", _ 

                            MessageBoxButtons.OK, MessageBoxIcon.Information) 

                    upperLimitTextBox.Focus() 

                    AcceptButton = submitButton 

                Else 

                    cost(nextItem) = Integer.Parse(costTextBox.Text) 

                    value(nextItem) = Integer.Parse(valueTextBox.Text) 

                    If excludeNamesCheckBox.Checked = True Then 

                        names(nextItem) = "Item " + nextItem.ToString 

                        costTextBox.Focus() 

                    Else 
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                        names(nextItem) = nameTextBox.Text 

                        nameTextBox.Focus() 

                    End If 

                    nextItem = nextItem + 1 

                    numberTextBox.Text = nextItem 

                End If 

            End If 

        Catch ex As Exception 

            MessageBox.Show("Please enter valid numbers for the cost and value of this item", _ 

                                "Invalid input specified", MessageBoxButtons.OK, MessageBoxIcon.Error) 

        Finally 

            nameTextBox.Clear() 

            costTextBox.Clear() 

            valueTextBox.Clear() 

        End Try 

    End Sub 
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    Private Sub clearButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles clearButton.Click 

        If MessageBox.Show("This will delete all entries inclding the number of entries involved. " _ 

                           & "Do you still want to clear ALL entries?", "Confirm Delete", _ 

                           MessageBoxButtons.OKCancel, MessageBoxIcon.Warning) = Windows.Forms.DialogResult.OK Then 

 

            totalItemsTextBox.Clear() : excludeNamesCheckBox.Checked = False 

            numberTextBox.Clear() : nameTextBox.Clear() : costTextBox.Clear() 

            valueTextBox.Clear() : upperLimitTextBox.Clear() 

            acceptTotalButton.Enabled = True 

        End If 

    End Sub 

 

    Private Sub submitButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles submitButton.Click 

        If manualRB.Checked = True Then 

            If IsNumeric(upperLimitTextBox.Text) = False Then 

                MessageBox.Show("This value must be a number", "Invalid Input", _ 

                                MessageBoxButtons.OK, MessageBoxIcon.Exclamation) 
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                upperLimitTextBox.Focus() 

            Else 

                upperLimit = Integer.Parse(upperLimitTextBox.Text) 

            End If 

        End If 

        If upperLimit > 0 Then 

            nameListBox.Items.Clear() : costListBox.Items.Clear() 

            valueListBox.Items.Clear() 

            For i = 1 To nInputs 

                nameListBox.Items.Add(names(i).ToString) 

                costListBox.Items.Add(cost(i).ToString) 

                valueListBox.Items.Add(value(i).ToString) 

            Next 

            numberUpDown.Maximum = nInputs 

            NumericUpDown1.Maximum = nInputs 

            Label22.Text = upperLimit.ToString 

            mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 
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        End If 

    End Sub 

 

    Private Sub numberTextBox_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

numberTextBox.TextChanged 

        If numberTextBox.Text > nInputs Then 

            costTextBox.Enabled = False 

            valueTextBox.Enabled = False 

            upperLimitTextBox.Focus() 

            OKButton.Enabled = False 

            AcceptButton = submitButton 

        End If 

    End Sub 

 

    Private Sub manualRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

manualRB.CheckedChanged 

        If manualRB.Checked = True Then 
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            AcceptButton = acceptTotalButton 

            manualRB.Enabled = True 

        End If 

    End Sub 

 

    Private Sub fileRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

fileRB.CheckedChanged 

        If fileRB.Checked = True Then 

            Dim openInput As New OpenFileDialog 

            openInput.Filter = "All supported file formats(*.rod;*.xls)|*.rod;*.xls|Resource Optimizer Data File(*.rod)|*.rod|Excel 

Worksheet(*.xls)|*.xls" 

            openInput.InitialDirectory = "c:\" 

            openInput.FilterIndex = 1 

            If openInput.ShowDialog = Windows.Forms.DialogResult.OK Then 

                Try 

                    Dim objReader As New StreamReader(openInput.FileName) 

                    Dim sLine As String = "" 
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                    Dim cnt As Integer = 0, cnt1 As Integer = 1 

                    Do 

                        sLine = objReader.ReadLine() 

                        If sLine IsNot Nothing Then 

                            cnt = cnt + 1 

                            If cnt < 2 Then 

                                nInputs = Integer.Parse(sLine.ToString) 

                            ElseIf cnt < 3 Then 

                                upperLimit = Integer.Parse(sLine.ToString) 

                            Else 

                                If cnt Mod 3 = 0 Then 

                                    names(cnt1) = sLine 

                                ElseIf cnt Mod 3 = 1 Then 

                                    cost(cnt1) = Integer.Parse(sLine) 

                                Else 

                                    value(cnt1) = Integer.Parse(sLine) 

                                    cnt1 = cnt1 + 1 



89 
 

                                End If 

                            End If 

                        End If 

                    Loop Until sLine Is Nothing 

                    objReader.Close() 

                    MessageBox.Show("The file was loaded successfully. Please submit the data now", "Load Input File successful", _ 

                                    MessageBoxButtons.OK, MessageBoxIcon.Information) 

                    If upperLimit > 0 Then 

                        nameListBox.Items.Clear() : costListBox.Items.Clear() 

                        valueListBox.Items.Clear() 

                        For i = 1 To nInputs 

                            nameListBox.Items.Add(names(i).ToString) 

                            costListBox.Items.Add(cost(i).ToString) 

                            valueListBox.Items.Add(value(i).ToString) 

                        Next 

                        numberUpDown.Maximum = nInputs 

                        NumericUpDown1.Maximum = nInputs 
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                        Label22.Text = upperLimit.ToString 

                        mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 

                    End If 

                Catch ex As Exception 

                    MessageBox.Show("An error occured. Please wait a short while and try again", "Error reading file", _ 

                                    MessageBoxButtons.OK, MessageBoxIcon.Error) 

                End Try 

            End If 

            manualRB.Checked = True 

        End If 

    End Sub 

 

    Private Sub randomRB_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

randomRB.CheckedChanged 

        If randomRB.Checked = True Then 

            Dim nstring As String, result As DialogResult 

            nstring = InputBox("How many items / options are to be used?", _ 
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                                                 "Enter the value of n to be used", , , ) 

            If nstring = "" Then 

                result = Windows.Forms.DialogResult.Cancel 

            ElseIf Not IsNumeric(nstring) Then 

                result = MessageBox.Show("Please enter a valid integer value for n", "Invalid Input", _ 

                                MessageBoxButtons.RetryCancel, MessageBoxIcon.Error) 

            Else 

                nInputs = Integer.Parse(nstring) 

                generateRandom() 

                If upperLimit > 0 Then 

                    nameListBox.Items.Clear() : costListBox.Items.Clear() 

                    valueListBox.Items.Clear() 

                    For i = 1 To nInputs 

                        nameListBox.Items.Add(names(i).ToString) 

                        costListBox.Items.Add(cost(i).ToString) 

                        valueListBox.Items.Add(value(i).ToString) 

                    Next 
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                    numberUpDown.Maximum = nInputs 

                    NumericUpDown1.Maximum = nInputs 

                    Label22.Text = upperLimit.ToString 

                    mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 

                End If 

            End If 

            manualRB.Checked = True 

        End If 

    End Sub 

 

    Private Sub editButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles editButton.Click 

        editGroupBox.Enabled = True 

        editButton.Enabled = False 

        FOcomputeButton.Enabled = False 

    End Sub 
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    Private Sub NumericUpDown1_ValueChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

NumericUpDown1.ValueChanged 

        nameEditBox.Text = names(Integer.Parse(NumericUpDown1.Value.ToString)) 

        costEditBox.Text = cost(Integer.Parse(NumericUpDown1.Value.ToString)) 

        valueEditBox.Text = value(Integer.Parse(NumericUpDown1.Value.ToString)) 

    End Sub 

    Private Sub cButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles cButton.Click 

        editGroupBox.Enabled = False 

        editButton.Enabled = True 

        FOcomputeButton.Enabled = True 

        'SAcomputeButton.Enabled = True 

    End Sub 

 

    Private Sub changeButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles changeButton.Click 

        Dim theIndex As Integer = NumericUpDown1.Value - 1 

        Try 

            For i = 0 To nameListBox.Items.Count - 1 
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                If nameTextBox.Text = nameListBox.Items.Item(i) And i <> theIndex Then 

                    Dim ex As System.Exception 

 

                End If 

            Next 

            If Integer.Parse(costTextBox.Text) < 1 Or Integer.Parse(valueTextBox.Text) < 1 Then 

                MessageBox.Show("Cannot replace the entry. The cost or value is not a valid number", "Invalid input specified", _ 

                                MessageBoxButtons.OK, MessageBoxIcon.Error) 

            Else 

                If MessageBox.Show("Relace " + nameListBox.Items.Item(theIndex) + ", Cost : " + costListBox.Items.Item(theIndex) + ", 

Profit : " + _ 

                                   valueListBox.Items.Item(theIndex) + " with" + ControlChars.NewLine + nameTextBox.Text + ", Cost : " + _ 

                                   costTextBox.Text + "Profit : " + valueTextBox.Text, "Edit entry", MessageBoxButtons.YesNo, 

MessageBoxIcon.Exclamation) _ 

                                   = Windows.Forms.DialogResult.Yes Then 

                    nameListBox.Items.RemoveAt(theIndex) 

                    costListBox.Items.RemoveAt(theIndex) 
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                    valueListBox.Items.RemoveAt(theIndex) 

                    nameListBox.Items.Insert(theIndex, nameEditBox.Text) 

                    costListBox.Items.Insert(theIndex, costEditBox.Text) 

                    valueListBox.Items.Insert(theIndex, valueEditBox.Text) 

                    names(NumericUpDown1.Value) = nameEditBox.Text 

                    cost(NumericUpDown1.Value) = Integer.Parse(costEditBox.Text) 

                    value(NumericUpDown1.Value) = Integer.Parse(valueEditBox.Text) 

                End If 

                editGroupBox.Enabled = False 

                editButton.Enabled = True 

                FOcomputeButton.Enabled = True 

                'SAcomputeButton.Enabled = True 

            End If 

        Catch ex As Exception 

            MessageBox.Show("Cannot replace the entry. Invalid number or clashing entries", "Invalid input specified", _ 

                                MessageBoxButtons.OK, MessageBoxIcon.Error) 

        End Try 



96 
 

    End Sub 

 

    Private Sub numberUpDown_ValueChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

numberUpDown.ValueChanged 

        Dim indexd As Integer = Integer.Parse(numberUpDown.Value.ToString) 

        nameListBox.SelectedItem = names(indexd) 

        costListBox.SelectedIndex = nameListBox.SelectedIndex 

        valueListBox.SelectedIndex = nameListBox.SelectedIndex 

    End Sub 

    Private Sub saveInputButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

saveInputButton.Click 

        cButton.PerformClick() 

        Dim saveThis As New SaveFileDialog 

        saveThis.Filter = "Resource Optimizer Data File|*.rod|Excel|*.xls" 

        saveThis.Title = "Save Resource Optimizer Input Data" 

        saveThis.InitialDirectory = "c:\" 

        If saveThis.ShowDialog() = Windows.Forms.DialogResult.OK Then 
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            ' If the file name is not an empty string open it for saving. 

            If saveThis.FileName <> "" Then 

                Select Case saveThis.FilterIndex 

                    Case 1 

                        Dim objStreamWriter = New StreamWriter(saveThis.FileName) 

                        objStreamWriter.WriteLine(nInputs.ToString) 

                        objStreamWriter.WriteLine(upperLimit.ToString) 

                        For i = 1 To nInputs 

                            objStreamWriter.WriteLine(names(i)) 

                            objStreamWriter.WriteLine(cost(i).ToString) 

                            objStreamWriter.WriteLine(value(i).ToString) 

                        Next 

                        objStreamWriter.Close() 

                        MessageBox.Show("The file was saved successfully", "Save Complete", _ 

                                        MessageBoxButtons.OK, MessageBoxIcon.Information) 

                    Case 2 

                        MessageBox.Show("This file cannot be saved in Excel format yet", "Format unavailable", _ 
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                                        MessageBoxButtons.OK, MessageBoxIcon.Exclamation) 

                End Select 

            End If 

        End If 

    End Sub 

    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button2.Click 

        mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 

    End Sub 

    Private Sub FOcomputeButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

FOcomputeButton.Click 

        mainTabControl.SelectTab(mainTabControl.SelectedIndex + 1) 

    End Sub 

    Private Sub CBox_CheckedChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles 

CBox.CheckedChanged 

        If CBox.Checked = True Then 

            yTextBox.ReadOnly = False 

        Else 
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            yTextBox.ReadOnly = True 

        End If 

    End Sub 

    Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button3.Click 

        ListBox1.Items.Clear() 

        lb2.Items.Clear() 

        getInitialSolution(ListBox1, False) 

        solveByFlop(2, ListBox1, lb2) 

    End Sub 

    Private Sub saveResults_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click 

        Dim k As Integer 

        Dim s As String = "" 

        For k = 0 To ListBox1.Items.Count - 1 

            s = s + ListBox1.Items(k).ToString + vbCrLf 

        Next 

        s = s + "**********Selected Items*********" + vbCrLf 

        For k = 0 To Me.lb2.Items.Count - 1 
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            s = s + lb2.Items(k).ToString + vbCrLf 

        Next 

        Dim SaveFileDialog As New SaveFileDialog 

        SaveFileDialog.InitialDirectory = My.Computer.FileSystem.SpecialDirectories.MyDocuments 

        SaveFileDialog.Filter = "Text Files (*.txt)|*.txt|All Files (*.*)|*.*" 

        If (SaveFileDialog.ShowDialog(Me) = System.Windows.Forms.DialogResult.OK) Then 

            Dim FileName As String = SaveFileDialog.FileName 

            My.Computer.FileSystem.WriteAllText(FileName, s, True) 

            MessageBox.Show("Results saved succesfully", "Save Complete", MessageBoxButtons.OK, MessageBoxIcon.Information) 

        End If 

    End Sub 

 

End Class
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