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Abstract 

In this work, we introduce Divergence Regularization Method (DRM) for 

regularizing the Cauchy problem of the Helmholtz equation where the boundary 

deflection is not equal to zero in Hilbert space H. The DRM incorporates a positive 

integer scaler which homogenizes inhomogeneous boundary deflection in Cauchy 

problem of the Helmholtz equation to ensure the existence and uniqueness of 

solution for the equation. The DRM employs its regualarization term (1 + α2m)em to 

restore the stability of the regularized Helmholtz equation, and guarantees the 

uniqueness of solution of Helmholtz equation when it is imposed by Neumann 

boundary conditions in the upper half-plane. The DRM gives better stability 

approximation when compared with other methods of regularization for solving 

Cauchy problem of the Helmholtz equation where the boundary deflection is zero. 

In the process, we introduce Adaptive Wavelet Spectral Finite Difference (AWSFD) 

method to obtain the approximated solutions of the regularized Helmholtz equation 

with regularized Cauchy boundary conditions, regularized Neumann boundary 

conditions in the upper half-plane, and finally with regularized both Dirichlet and 

Cauchy boundary conditions where the boundary deflection is equal to zero. The 

AWSFD method captures the boundary points to obtain approximated solution of 

Helmholtz equation. This method reduces the Helmholtz equation in two dimensions 

to one dimension which is then solve spectrally using a suitable wavelet basis. The 

solutions by AWSFD method confirms the analytic solutions of regularized Helmholtz 

equation by DRM. The norm of relative error between the analytic solution by DRM 

and the approximated solution by AWSFD method is minimal. Moreover, we introduce 

interpolation scheme in the AWSFD method to obtain the approximated solutions of 

the regularized Helmholtz equation with above boundary conditions. 
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Chapter 1 

1.0 Introduction 

In this chapter, we discuss the ill-posed second-order linear partial differential 

equations. We restrict ourselves to homogeneous Helmholtz equation, an elliptic 

partial differential equation. Ill-posed Helmholtz equation comes about as a result of 

imprecise readings of the boundary data, given by physical instruments (Bertero et 

al., 1988). This noise causes distortion in signal transmission. Secondly, the number 

and type of auxiliary boundary conditions imposed on the equation can lead to ill-

posedness. If the number of auxiliary boundary conditions are too many, then the 

solution to the Helmholtz equation may not exist, but if there are too few, the 

Helmholtz equation may have more than one solution. 

In most practices, experiments with nearly similar boundary conditions do not 

yield the same results. The solution to Helmholtz equation with boundary conditions 

may be continuously differentiable, but may suffer numerical instability when solved 

with finite precision. Numerical simulations of ill-posed Helmholtz equation together 

with boundary conditions often lead to large errors, wrecks and catastrophes (Petrov 

and Sizikov, 2005). Undoubtedly, the number of imposed boundary conditions 

should not only bring about the existence and uniqueness of solution to the 

Helmholtz equation, but also restore the stability of the solution to the Helmholtz 

equation. 

Solution space of the equation is another important factor which cannot be 

overemphasized. Inappropriateness of solution space can lead to ill-posed elliptic 

Helmholtz equation. Spaces like Hilbert space admit classical solution to the 

Helmholtz equation. 
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1.1 Background 

In this section, we discuss the ill-posed Helmholtz equation with Cauchy boundary 

conditions where the boundary deflection is not equal to zero, with Neumann 

boundary conditions in the upper half-plane and finally with imposed both Dirichlet 

and Cauchy boundary conditions where the boundary deflection is homogeneous. In 

addition, we identify the cases where if the Helmholtz equation is imposed with one 

of the above boundary conditions then the Helmholtz equation has no solution, has 

more than one solution and also, the case where a unique solution exists, but the 

solution does not depend continuously on the small changes in the boundary 

conditions. Moreover, we provide proofs of some of the rigorous results related to 

the issues that have been discussed above. Definitions and theorems which are 

relevant, necessary and sufficient to establish the claims will be provided in this 

work. 

An ill-posed Helmholtz equation has no practical application or is physically 

meaningless (Hadamard as cited in Petrov and Sizikov, 2005). However, in vibrating 

membrane system and laser beam models, ill-posed Helmholtz equation has 

applications (Petrov and Sizikov, 2005). Thus, such an equation needs regularization 

for certain imposed boundary conditions. Regularizing ill-posed Helmholtz equation 

together with the boundary conditions requires additional information in the 

construction of stable solutions (Lavrent0ev et al., 1997). We prescribe appropriate 

constraints in the Helmholtz equation, as well as boundary conditions to make the 

equation wellposed. Regularized Helmholtz equation provides better understanding 

in the study of stationary processes. Undoubtedly, if the Helmholtz equation is well-

posed, then numerical stability is feasible when solved with finite precision, or with 

errors in the data. 

Our method is the Divergence Regularization Method (DRM) for the construction 

of stable solutions to ill-posed Helmholtz equations with Cauchy boundary 
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conditions where the boundary deflection is not equal to zero, with Neumann 

boundary conditions in the upper half-plane and then Helmholtz equation with both 

Dirichlet and Cauchy boundary conditions where the boundary deflection is 

homogeneous in Hilbert space. We achieve this result by applying divergence 

theorem in two dimensions, Green’s first identity and then introduction of 

homogenization of boundary deflection in the Cauchy boundary conditions. 

Also, we show that our solutions of the regularized Helmholtz equation with 

regularized boundary conditions meet all the three conditions of well-posedness 

given by Hadamard. Afterwards, we apply the DRM to solve the equations. In the case 

of Neumann problem for the Helmholtz equation, we apply a shift operator on the x− 

spatial variable instead of homogenization of the boundary deflection. 

In order to confirm our solutions of the regularized Helmholtz equation with 

above regularized boundary conditions, we introduce a numerical technique, called 

Adaptive Wavelet Spectral Finite Difference AWSFD method. This (wavelet) method 

approximates the solutions of the regularized Helmholtz equation in Hilbert space. 

In addition, we introduce interpolation scheme in the AWSFD method and compare 

the solutions of regularized Helmholtz equation with the same regularized boundary 

conditions by DRM and by AWSFD method. We compare the solution of regularized 

Helmholtz equation by DRM and solutions by existing methods of regularization for 

cases where if both methods are able to regularize the Helmholtz equation. 

We state some definitions and theorems that useful in understanding ill-posed 

Helmholtz equation with imposed boundary conditions as follows. 

Theorem 1.1 (Hadamard Theorem) If the Laplace operator in the Helmholtz equation 

A : Ω ⊂ R2 → R2 is C2(Ω) and kAw(x,y)−1k ≤ γ < +∞, ∀ w(x,y) ∈ Ω and γ ∈ R 

where 

, 
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then the A is a homeomorphism of Ω onto R2. 

Proof : See for example (Ortega and Rheinboldt, 1970). 

We state the Hadamard theorem in the context of operator equation as follows. 

Definition 1.1 (ill-posedness) Let the operator equation 

Aw(x,y) = f(x) (1.1) 

where w(x,y) is the sought solution, f is a known function, Y and F are Hilbert spaces and 

A is a Laplace operator occurring in the Helmholtz equation. Thus, A : Y → F is an 

operator from a Hilbert space Y into a Hilbert space F. The problem of solving equation 

(1.1) presents a well-posed according to Hadamard if 1. for any f ∈ F, there exists an 

element w(x,y) ∈ Y such that 

Aw(x,y) = f(x). That is, 

the the range of the operator 

R(A) = F 

is closed. Thus, the solution of equation (1.1) exists. 

2. if the 

N(A) = 0. 

This implies that the null space of A is trivial. Thus, the Helmholtz equation with 

boundary conditions has a unique solution. 

3. the solution w(x,y) depends continuously on the data function f(x) . That is, the 

inverse Laplace operator A−1 in the Helmholtz is continuous. Thus, the solution is 

stable with respect to small perturbations in the data function. Otherwise equation 

(1.1) is ill-posed (Petrov and Sizikov, 2005). 
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The third condition of well-posedness can be ensured by the bounded inverse 

theorem. 

We see that the Helmholtz equation has a solution if the smoothness requirement 

is satisfied together with other conditions, which we will give them later. 

Definition 1.2 (Smoothness Requirement) The conventional homogeneous form of 

equation (1.1) is as follows: 

Ω (1.2) 

where x ∈ Ω, c(x) ∈ R2, a(x) ∈ R2×2 are the coefficients. The coefficients ai and c satisfy 

the following conditions: 

 ai ∈ C1(Ω)¯ , i = 1,2 

c ∈ C(Ω)¯ , 

0 ∈ C(Ω)¯ 

and 

 

(Su¨li, 2012). 

The Cauchy problem or Neumann problem of the Helmholtz equation will have a 

solution if the additional condition; data compatibility condition is satisfied. 

Theorem 1.2 (Data Compatibility Condition: Duchateau and Zachmann, (1989)) Let Ω 

denote a bounded region in R2 having smooth boundary ∂Ω. The Neumann problem 

∆w(x,y) + k2w(x,y) = 0 in Ω, 

∂w(x,a) 

 
∂y 

= g(x) on ∂ΩA 



 

6 

∂w(b,y) 

 
∂x 

= f(y) on ∂ΩB 

has no solution unless the data functions 0, g(x) and f(y) satisfy the compatibility 

condition 

 0 = Z A g(x)dx = Z f(y)dy. 

 ∂Ω ∂ΩB 

When the compatibility condition is satisfied, then the solution exists for the 

Helmholtz equation. Thus, the range of the Laplace operator R(A) in the Helmholtz 

equation is closed. In the case of Dirichlet problem of the Helmholtz equation, no such 

condition is useful. We state the definitions of the domain, the range and the null space 

of A as follows: 

Definition 1.3 Let X and Y be normed linear spaces. The operator A : X → Y is said to be 

a linear operator from a Hilbert space X to another Hilbert space Y if, 

A(µw1(x,y) + ηw2(x,y)) = µA(w1(x,y)) + ηA(w2(x,y)), 

where w1(x,y),w2(x,y) ∈ X and µ, η ∈ R. The domain of the operator D(A) is defined as 

, 

the range of the operator R(A) is 

 

and the null space is 

(Atkinson and Han, 2009).  

The Riesz representation theorem gives the uniqueness of solution to Helmholtz 

equation with imposed boundary conditions, on the grounds that the Laplace 
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operator in the Helmholtz equation is bounded on the domain in the Hilbert space. 

We use other conditions of uniqueness to establish the claim where it is necessary 

and appropriate. 

Theorem 1.3 (Riesz representation theorem) Let A be a bounded linear operator 

defined on a subspace Ω of a Hilbert space H. Then there is a unique solution wu(x,y) ∈ 

Ω ⊂ H such that 

 A(w(x,y)) = hw(x,y),wu(x,y)i, ∀ w(x,y) ∈ Ω. 

In addition, 

|A|Ω∗⊂H∗ = kwu(x,y)k 

(Coleman, 2012). 

Proof : Set S = KerA(w(x,y)). If H = S, then 

w(x,y) = 0, 

we set 

wu(x,y) = 0. 

If we set S =6 H, there exists w(x,y) ∈ S such that 

 A(w(x,y)) = 06 . 

However, we observe that 

w(x,y) = w1(x,y) + w2(x,y), 

where w1(x,y) ∈ S and w2(x,y) ∈ S⊥ and so A(w2(x,y)) = 06 . For w(x,y) ∈ S, we obtain 
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so . This implies that 

. 



 

 

We then set 

, 

then we obtain 

hw(x,y),wu(x,y)i = A(w(x,y)). 

By contradiction, suppose there are two solutions wu1(x,y) and wu2(x,y) satisfy the first 

condition of the Riesz representation theorem, then 

Dw(x,y),wu1(x,y) − wu2(x,y)E = 0. 

This implies that 

wu1(x,y) = wu2(x,y). 

Thus, wu(x,y) is unique. 

Finally, we show that 

kAkΩ∗ = kwu(x,y)k. 

To see this, we set 

A = 0. 

This follows from the previous result. We set wu(x,y). If kw(x,y)k ≤ 1, then 

 

Thus, 

kAkΩ∗ ≤ kwu(x,y)k. 

In addition, we see that 

, 

and 
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Hence, 

|A|Ω∗ = kAk. 

The homeomorphism of the A from Ω into R2, which implies well-posedness of the 

Helmholtz equation with imposed boundary conditions. 

Definition 1.4 Let X and Y be two normed spaces. An operator A : X → Y is said to be 

homeomorphism if A is continuous from X to Y and the inverse operator A−1 : Y → X is 

continuous (Oden, 1979). 

1.2 Helmholtz Equation with Different Boundary 

Conditions 

In this section, we discuss three different kinds of ill-posedness of Helmholtz equation 

with Cauchy boundary conditions where the boundary deflection is inhomogeneous, 

with both Cauchy and Dirichlet boundary conditions where the boundary deflection 

is homogeneous and finally, when the equation is imposed with Neumann boundary 

conditions in the upper half-plane. In summary, the mixed boundary conditions, as 

well as Neumann boundary conditions are imposed on Helmholtz equation. 

Definition 1.5 (Boundary of the Domain) Let Ω be a domain in a Hilbert space H. A 

point (x1,y1) ∈ H is called a boundary point of Ω if every neighbourhood of (x1,y1) 

intersects both Ω and its complement 

Ωc = H \ Ω. 
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The set of all boundary points of Ω is called the boundary of Ω and is denoted by ∂Ω. 

(Akcoglu et al., 2009). 

1.2.1 Helmholtz Equation with Cauchy Boundary Conditions where 

the Boundary Deflection is Inhomogeneous 

In this subsection, we show that when Cauchy boundary conditions are imposed on 

homogeneous Helmholtz equation where boundary deflection is not equal to zero, 

then the equation has no solution. The Cauchy problem of the Helmholtz equation 

where the boundary deflection is not equal to zero is as follows. 

 

By the method of separation of variables, we obtain 

. 

For the above function w(x,y) to be called a solution to equation (1.3) together 

with Cauchy boundary conditions it must satisfy the smoothness requirement 

condition as well as data compatibility condition. In equation (1.3), we can see that 

the integral of the boundary deflection ∂w∂y(x,0) over [0, ] is 

 

Thus, 

 
Equation (1.3) does not satisfy the data compatibility condition. This implies that the 

function 
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is not a solution of equation (1.3). Hence, equation (1.3) is ill-posed in the sense of 

Hadamard. 

1.2.2 Helmholtz Equation with Neumann Boundary Conditions in 

the Upper Half-plane 

In this subsection, we show that the Neumann problem on the upper half-plane for 

the Helmholtz equation has solution but not unique. We provide the rigorous proof 

for our claim. We impose Neumann boundary conditions on homogeneous Helmholtz 

equation on the upper half-plane as follows: 

∂2w(x,y)

 + 

∂2w(x,y) + k2w(x,y) = 

0, 1 x

1, 0 y 1 

 =

  = 0, 0 y 1  = 0 1 x 1

 (1.4) 

 = cos(2πx) 1 x 1 

 ∂y − ≤ ≤ 

Using the method separation of variables, we obtain the following result from equation 

(1.4) as follows: 

w(x,y) = X(x)Y (y) (1.5) 

X00(x)Y (y) + X(x)Y 00(y) + k2X(x)Y (y) = 0 
 

Y 00(y) + k2Y (y) 

 
= 

 
(1.6) 

∂x2 ∂y2 
− ≤ ≤ ≤ ≤ 

∂w(−1,y) ∂w(1,y)  

∂x 

∂w(x,0) 
∂x 

 ≤ ≤ 

∂y 

∂w(x,1) 

 − ≤ ≤ 

− X 0

0 ( x ) 

X ( x ) 
= λ, 
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Y (y) 

where λ = constant > 0. From equation (1.6), we obtain 

X00(x) + λX(x) = 0  

X(x) = A1 cos(√λx) + A2 sin(√λx) (1.7) 

When X0(−1) = 0, we obtain 

 
X0(−1) = −√λA1 sin(√λ. − 1) + √λA2 cos(√λ. − 1) = 0 A1 sin(√λ) + A2 cos(√λ) = 0

 (1.8) ⇒ 

When X0(1) = 0, we obtain 

X0(1) = −√λA1 sin(√λ.1) + √λA2 cos(√λ.1) = 0 A1 sin(√λ) + A2 cos(√λ) = 0 (1.9) 

 ⇒ − 

Summing equation (1.8) and equation (1.9) gives 

√ 

 2A2 cos( λ) = 0 

For trivial solution, we let 

√ cos( λ) =

 0, A2 = 06 

 nπ 2, n = 1,3,5,...

 (1.10) 

 λ = () 

2 

are eigenvalues. Substituting equation (1.10) into equation (1.7) yields 

 nπx nπx 

X(x) = A1 cos( ) + A2 sin( ) 

X0(x) = 
√ √ √ √ 

− λA1 sin( λx) + λA2 cos( λx) 
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2 2 nπx nπx 

Xn(x) = cos( ) + sin( ) 

 2 2 

n = 1,3,5,... (1.11) 

are the eigenfunctions which correspond to eigenvalues . 

Also, subtracting equation (1.9) from equation (1.8) yields 

√ 2A1 sin(
 λ) =
 0 

√ 

⇒ sin( λ) = 0, A1 6= 0 

 

 λ = (nπ)2, n = 0,1,2,3,... (1.12) 

are eigenvalues. Substituting equation (1.12) into equation (1.7) yields 

X(x) = A1 cos(nπx) + A2 sin(nπx) 

Xn(x) = cos(nπx) + sin(nπx), n = 0,1,2,3,... (1.13) 

are the eigenfunctions which correspond to eigenvalues λ = (nπ)2. Again, 

in equation (1.6), we obtain 

 

When Y 0(0) = 0, we obtain 

 (1.14) 

Substituting equations (1.11) and (1.14) into equation (1.5) yields 

 ∞ nπ nπx

 nπx 

 ⇒
 ∞

r(( nπ)2 − k2).cn sinh(r(( nπ)2 − k2))(cos( nπx) + sin( nπx)) 

 2 2 2 2 

w1(x,y) = 

, 

∂w(x,y) 

 
∂y 

= 

 

∂w(x,1) 

 
∂y = 

= 

∞ r nπ)2 − k2).cn sinh(r((nπ2 )2 − 

k2).1)(cos(nπx2 ) + sin(nπx2 )) 

(( 
2 n=1,3,5 

cos(2πx) 

X 
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n=1,3,5 

 = cos(2πx). 

Since the eigenfunctions 

 
are orthogonal under the inner product, we obtain 

(( )2 − k2).cn sinh(r(( )2 − k2)) × nπ

 nπ 

2 2 1 

 nπx nπx nπx nπx 

[ cos( ) + sin( )] [ cos( ) + sin( )] dx 

−1 2

 2 2 2 1 

 nπx nπx 

=cos(2πx)[ cos( ) + sin( )] dx 

 −1 2 2 

⇒(( )2 − k2).cn sinh(r(( )2 − k2)) × nπ nπ 

2 2 1 1 

 nπx nπx nπx nπx 

 { [ cos2( ) + sin2( )] dx + 2Z cos( )sin( )dx} 

−1 2 2 −1 2 2 1 1 

 nπx nπx 

 = Z cos(2πx)cos( )dx + Z cos(2πx)sin( )dx. (1.15) 

 −1 2 −1 2 

We observe that 

 

and 

 (( nπ)2 − k2).cn sinh(r(( nπ)2 − k2))Z 1 1dx = 1 cos(2πx)cos( nπx)dx. 

 2 2 −1−1 2 
r 

X 

r 

Z 

Z 

r 

Z 

Z 
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2 2 √ nπ2 2 2nπ2 
√ 

nπ2 2 2 ∀n = 1,5,... 

 c1 
=  (n2−16)π2.√((nπ2 )2−k2)sinh(√((nπ2 )2−k2)) ∀ 

 −2nπ n = 3,7,... (1.16) 

  (n −16)π . (( ) −k )sinh( (( ) −k )) 

Substituting for c1, we obtain 

 (1.17) 

When 

 n = 0 ⇒ λ = 0. 

We obtain 

 Yo(y) = co cos(ky) + co1 sin(ky) 

 Yo0(y) = −kco sin(ky) + kco1 cos(ky) 

When Y 0(0) = 0, we obtain 

⇒ c01 = 0 

Substituting equations (1.12), (1.13) and (1.15) into equation (1.5) yields 

 

Since the eigenfunctions 

Xn(x) = (cos(nπx) + sin(nπx)) 

 

 



 

17 

are orthogonal under the inner product, equation (1.18) becomes 

p((1 nπ)2 − k2).cn sinh(p[ (nπ)2 − k2] )) × 

 Z [ cos(nπx) + sin(nπx)] [ cos(nπx) + sin(nπx)] dx 

−1 
1 

=cos(2πx)[ cos(nπx) + sin(nπx)] dx 
−1 

 1 1 

⇒((nπ)2 − k2).cn sinh(p((nπ)2 − k2)){Z−1 1dx + 2Z−1 cos(nπx)sin(nπx)dx} 

 1 1 

 =cos(2πx)cos(nπx)dx + Z cos(2πx)sin(nπx)dx 

 −1 −1 

But we observe that 

 
which implies that 

 (1.19) Substituting c2 into 

w2(x,y), we obtain 

  (1.20) 

By equations (1.16) and (1.20), we obtain 

  (1.21) 

Z 

p 

Z 
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We can see that all the coefficients of partial derivatives appearing in equation 

(1.4) are continuously differentiable and the expression on the right hand side of 

equation (1.4) is zero which continuous. Thus, equation (1.4) meets the smoothness 

requirement condition. In addition, we observe that all the boundary conditions are 

zero except ). We can see that 

 

This implies that the function that appears in equation (1.21) is a solution of equation 

(1.4). 

1.2.2.1 Uniqueness of Solution to Helmholtz Equation with Neumann Boundary 

Conditions in the Upper Half-plane 

In this subsection, we show that equation (1.4) has more than one solution in L2([−1,1]× 

[0,1]). Let 

Proof: By contradiction, Let u(x,y) and v(x,y) be two different solutions of equation (1.4) 

such that 

w(x,y) = u(x,y) − v(x,y). 

Multiplying both sides of equation (1.4) by w(x,y) and integrating over ([−1,1] × [0,1]), we 

obtain 

 

Applying the Green’s first identity to the first term on the left hand side of the above 

equation, we obtain 

 1 1 1 1 

Z 
11 w(x,y)∆w(x,y)dxdy = 0 − Z

10 
Z

1 1 |∇w(x,y)|2dxdy 

 01 − − 1 1 

Z 



 

19 

⇒ Z0 Z 1 w1(x,y)∆w(x,y)dxdy + k2 Z0 Z 1 |w(x,y)|2dxdy = k2 Z0 Z 1 |w(x,y)|2dxdy 

1− − − 

−0 Z 1 |∇w(x,y)|2dxdy = 0 

 1 −1 1 1 

⇒ k20 Z 1 |w(x,y)|2dxdy − Z0 Z 1 |∇w(x,y)|2dxdy = 0 

 − − 

The above equation holds if w(x,y) is zero in the domain ([−1,1] × [0,1]). But, we can see 

that 

 w(x,y) 6= 0 ∀ x,y ∈ ([−1,1] × [0,1]). 

Thus, the solution w(x,y) in equation (1.21) alternates sign from negative to positive 

in the domain ([−1,1] × [0,1]). This implies that the equation(1.4) has more than one 

solution. Hence, equation (1.4) is ill-posed in the sense of Hadamard. 

1.2.2.2 Stability of Solution to Helmholtz Equation with Neumann Boundary 

Conditions in the Upper Half-plane 

In this subsection, we show that solutions of the same Helmholtz equation with small 

changes in boundary conditions that are close to each other remain close for some 

values of x. In equation (1.4), we choose , where 0 , in the initial 

deflection as given below. 

Z 

Z 
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Equations (1.16) and (1.20) become 

 

respectively. The corresponding solution is 

 

Again, we perturb from , where 0 . We obtain the following 

results: 

∂2w(x,y)

 + 

∂2w(x,y) + 

k2w(x,y) = 0,

 1 x 1, 0 y 1 

  =  = 0, 0 ≤ y ≤ 1 

 ∂x ∂x 

∂x2 ∂y2 
− ≤ ≤ ≤ ≤ 

∂w(−1,y) ∂w(1,y)   
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∂w(x,0)  = 0 1 x 1 ∂y − ≤ ≤ 

 = cos(2πδ) 1 x 1 

and the corresponding solution is given below 

 
 ∞ 2cos(2πδ).cosh(

 (( ) −k )y)[ cos(

 )+sin( )] , 

  PPn=1,5,9,...nπ.√((√nπ
√

2 )nπ√22−nπ2 2k22nπ)2sinh2 22(√2[ (√nπ2nπx)nπ222−2knπx22] )2 nπx2 nπx2 

  ∞n=3,7,11,... −2cos(2πδnπ.). cosh((()[ (−k ))sinh−k (] y)[[ (cos() −k)+] )sin(

 )] , 

w2(x,y) = 

  0, n = 2,4,... 

 0, n = 1,2,... 

The change in the boundary deflection ∂w∂y(x,0) is as follows 

 

But 

 

∂y 

∂w(δ,1) 

 − ≤ ≤ 
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This is implies that there is a small change in boundary deflection. The corresponding 

change in the solution w(x,y) is 

 

 ∞ 8 

 
nlim→∞ ||w1(.,1) −− w2(.,1)| ≤| →nlim→∞ X,3→ ∞,... nπ.p((nπ2 )2 − k2) 

n=1 

lim w1(.,1) w2(.,1) 0 as n . n→∞ 
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This implies that a small change in the boundary deflection ∂w∂y(x,1) from 

to x2 = δ results in a small change in solution. Thus, the solution (1.21) to 

equation (1.4) is stable. The equation (1.4) violates the second condition of well-

posedness. 

Hence, equation (1.4) is ill-posed in the sense of Hadamard. 

1.2.3 Helmholtz Equation with both Dirichlet and Cauchy 

Boundary Conditions where the Boundary Deflection is 

Zero 

In this subsection, we show that when Helmholtz equation is imposed with both 

Dirichlet and Cauchy boundary condition where the boundary deflection is 

homogeneous then the equation has one solution, but this solution does not depend 

continuously on the changes in the boundary deflection of the Cauchy boundary 

conditions. The Dirichlet and Cauchy problem of the Helmholtz equation where the 

boundary deflection is homogeneous is given below: 

∂2w(x,y) 

 
∂x2 

+ 
, 

0 ≤ x ≤ 2π, 0 ≤ y ≤ 1 

(1.22) 

n 

∂w(x,0) 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

By the method of separation of variables, we obtain 

(1.23) 

We can see that equation (1.22) satisfies smoothness requirement. Also, we observe that 

the boundary deflection condition is 

w(0,y) 

w(x,0) 

= 

= 

w(2π,y) = 0, 

1  

sin(nx), 

0 ≤ y ≤ 1 

0 ≤ x ≤ 2π 

∂ 
2 w ( x,y ) 

∂y 2 
+ k 2 w ( x,y )=0 



 

24 

, 

This implies that the function that appears in equation (1.23) is a solution of equation 

(1.22). In order to show that the function in (1.23) is the only solution to equation 

(1.22), for example, see [42]. 

We then show that solutions of the same Helmholtz equation with small changes in 

boundary conditions that are close to each other remain close for some values of 

x. In equation (1.22), we choose  in boundary condition ), where 0 

 and the corresponding solution is as follows: 

 

Again, we perturb from  to x2 = δ in the boundary condition w(δ,0) = ), 

where 0  and the corresponding solution is given as follows: 

 

The change in the boundary deflection is as follows: 

 

This is implies that there is a small change in the boundary deflection. 

The corresponding change in the solution w(x,y) is 
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We observe that the numerator 8  grows faster than n2, which in turn, produces 

a large growth in 

 

8e√((n
2)2−k2) 

 
n2π 

Thus, 

lim |w1(.,1) − w2(.,1)| → ∞ as n → ∞. 
n→∞ 

This implies that a small change in the boundary deflection w(x,0) from x1 = 0 to 

x2 = δ results in a large change in solution. Thus, the solution (1.23) to equation (1.22) 

is unstable. The equation (1.22) violates the third condition of well-posedness. 

Hence, equation (1.22) is ill-posed in the sense of Hadamard. 

1.3 Statement of Problem 

We showed that Helmholtz equation with Cauchy boundary conditions where 

boundary deflection is inhomogeneous has no solution. Thus, all the three 

requirements of existence, uniqueness and continuous dependence of small changes 

e 
√ 

(( n 2 ) 2 − k 2 ) 
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in the Cauchy boundary conditions do not hold. Hence, the Helmholtz equation is ill-

posed in the sense of Hadamard. In addition, the Neumann problem in the upper half-

plane has no more than one solution. Thus, second condition of well-posedness is 

violated. Revealing the literature, we observed that the existing methods of 

regularization can be used to restore the well-posedness of the Helmholtz equation 

with Cauchy boundary conditions, as well as Neumann problem in the upper half-

plane. These existing methods of regularization are insufficient and inefficient for 

solving ill-posed Helmholtz equation with imposed Cauchy boundary condition 

where boundary deflection is inhomogeneous as well as Neumann boundary 

conditions in the upper half-plane. 

1.4 Objectives of Study 

In this thesis, we introduce Divergence Regularization Method (DRM) for regularizing 

Cauchy problem of Helmholtz equation, where the boundary deflection is 

inhomogeneous. The Helmhotz equation occurs in laser beam models, vibrating 

membrane problem. To ensure the existence of a solution, the DRM incorporates a 

positive integer scaler which homogenizes the inhomogeneous boundary deflection 

in the Cauchy problem of the Helmholtz equation. By this method , the uniqueness of 

the of solution for the regularized problem is guaranteed. Furthermore, the DRM 

employs its regularization term (1 + α2m)em to restore the stability of the solution of 

the regularized Helmholtz equation. Nevertheless, the DRM guarantees the 

uniqueness of solution of Helmholtz equation when it is imposed by Neumann 

boundary conditions in the 

upper half-plane. 

Also, in order to solve Helmholtz equation in irregular domain, we introduce an 

Adaptive Wavelet Spectral Finite Difference (AWSFD) method to obtain the 

approximated solutions of the regularized Helmholtz equation with Cauchy boundary 

conditions, then with regularized Neumann boundary conditions on the upper plane 
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and finally with regularized Dirichlet and regularized Cauchy conditions where the 

boundary deflection is equal to zero. 

1.5 Organization of Thesis 

In chapter 1, we discuss the ill-posed homogeneous Helmholtz equation with Cauchy 

boundary conditions where the boundary deflection is inhomogeneous, with both 

Dirichlet and Cauchy boundary conditions where the boundary deflection is 

homogeneous and then finally with Neumann boundary conditions in upper half-

plane. The type of ill-posedness associated with Helmholtz equation together with 

each of these boundary conditions is presented by following the conditions of ill-

posedness given by Hadamard. This chapter also deals with introduction, objectives, 

relevance and organization the the work. 

In chapter 2, we discuss available literature on regularization of ill-posed 

Helmholtz equation with Cauchy boundary conditions where the boundary deflection 

is inhomogeneous, and with both Dirichlet and Cauchy boundary conditions where 

the boundary deflection is homogeneous and then with Neumann boundary 

conditions in the upper half-plane. Thus, we present the problems for the Helmholtz 

equation which cannot be solved by the existing methods of regularization as well as 

the problem for the Helmholtz equation which can be solved by these methods. In 

addition, any existing method of regularization which does not give minimal error in 

regularizing the problem for Helmholtz equation will be given. 

The DRM is introduced for solving ill-posed Helmholtz equation with Cauchy 

boundary conditions where the boundary deflection is inhomogeneous, then with 

both Dirichlet and Cauchy boundary conditions where the boundary deflection is 

homogeneous, and finally with Neumann boundary condtions in the upper half-plane 

is discussed in chapter 3. Then we apply the DRM to solve equations (1.3) and (1.22). 

In this chapter, we make use of shift operator on the x− spatial variable instead of 
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homogenization of boundary deflection in the DRM to solve Neumann problem of the 

Helmholtz equation in the upper half-plane. For each regularized Helmholtz equation 

with regularized boundary conditions, we show that the solution exists, is unique and 

depends continuously on the small changes in the imposed boundary conditions in 

Hilbert space. 

Chapter four of this thesis contains is the Adaptive Wavelet Spectral Finite 

Difference (AWSFD) method for approximation of solution of regularized Helmholtz 

equation together with above boundary conditions. In addition, an interpolation 

scheme is introduced for the AWSFD method. Comparison of the solutions of the 

regularized Helmholtz equation by DRM and by AWSFD method are provided in this 

chapter. Comparison of results are done for regularized Helmholtz equation with the 

same regularized boundary conditions. Also, we compare the results by DRM with the 

results by the existing methods of regularization. Thus, the strength of the DRM is 

discussed. 

Chapter 5 contains a summary of main the findings, conclusions and suggestions for 

future research.  
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Chapter 2 

Existing Methods of Regularization 

of Helmholtz Equation and Their 

Demerits 

In this chapter, we discuss the methods for regularizing Helmholtz equation with 

both Dirichlet and Cauchy boundary conditions where the boundary deflection is 

equal to zero, Cauchy boundary conditions where the boundary deflection is not 

equal to zero and Neumann boundary conditions in the upper half-plane. The ill-

posedness of Helmholtz equation comes as a result of boundary conditions imposed 

on it. The existing methods of regularization such as Tikhonov regularization method 

(Tikhonov, 1963), spectral regularization method (Xiong and Fu, 2007), quasi-

reversibility method (Lattes and Lions, 1967), quasi-boundary value method (Clark 

and Oppenheimer, 1994) and an iterative regularization method (Cheng et al., 2014), 

are well-known for restoration of well-posedness of Helmholtz equation. These 

existing regularization methods regularize only Helmholtz equation or the boundary 

conditions or the solution. 

Existing methods of regularization cannot restore the well-posedness of Helmholtz 

equation when Cauchy boundary conditions where boundary deflection not at zero are 

imposed on it. We give rigorous proof of how each of these methods works and also show 

where each of the methods fails to regularize Neumann problem for the Helmholtz equation 

in the upper half-plane. 
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2.1 Tikhonov Regularization Method 

In this section, we consider the Tikhonov regularization method (TRM) and show 

how the TRM can be applied in regularizing the class of boundary conditions, which 

when imposed on the Helmholtz equation and also, the class of boundary conditions, 

which when imposed on the Helmholtz equation that cannot be solved by TRM 

(Tikhonov, 

1963). 

The following theorem and definitions are useful in applying the TRM to 

regularize Helmholtz equation with boundary conditions. The boundedness of 

Laplace operator in the Helmholtz equation A ensures the range of A is closed and the 

null space of A is trivial. 

Definition 2.1 (Boundedness) Let H be a Hilbert space. A (linear) Laplace operator A 

: Ω ⊂ H → H is said to be bounded provided there is a constant M > 0 for which 

 kA(w(x,y))kH ≤ Mkw(x,y)kΩ, ∀ w(x,y) ∈ Ω. 

The infimum of all such M is called the operator norm of A and is denoted by kAk. The 

collection of bounded linear Laplace operators from Ω to Y is denoted by L(Ω,H) (Royden 

and Fitzpatrick, 2010). 

We then state the bounded inverse theorem (BIT) that ensures that a bounded below 

Laplace operator in the Helmholtz equation with boundary conditions has a 

continuous inverse operator. The proof of the BIT requires the definition of bounded 

below Laplace operator. We state them below. 

Definition 2.2 (Bounded below operator) The Laplace operator A : Ω ⊂ H → 

H is bounded below if and only if there exists a constant C > 0 such that 

 kAw(x,y)kH ≥ Ckw(x,y)kΩ, ∀ w(x,y) ∈ Ω 
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(Oden, 1979). 

Definition 2.3 (Compact operator) Let X and Y be two normed spaces. An operator A 

: X → Y is said to be compact if it maps bounded sets in X into relatively compact sets in 

Y (Chidume, 1989). 

Theorem 2.1 (Bounded Inverse Theorem) Let A be a bounded linear below Laplacetype 

operator in the Helmholtz equation from a subspace Ω in a Hilbert space H into a Hilbert 

space H. Then A has a continuous inverse operator A−1 from its range R(A) into Ω. 

Conversely, if there is a continuous inverse operator 

A−1 : R(A) → Ω, 

then there is a positive constant C such that 

 kAw(x,y)kH ≥ Ckw(x,y)kΩ, ∀ w(x,y) ∈ Ω 

(Oden, 1979). 

Proof : Suppose that A is bounded below. If an inverse Laplace-type operator 

exists, then A is an injective operator of Ω onto its range. By definition (2.2), we see 

that it is certainly onto R(A). The Laplace-type operator is injective if its range, 

R(A) = 0. 

This follows from definition (2.2). To see this, let 

Aw1(x,y) = Aw2(x,y) = v, 

then 

 kAw1(x,y) − Aw2(x,y)kH = 0 

 ≥ Ckw1(x,y) − w2(x,y)kΩ. 
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This implies that 

w1(x,y) = w2(x,y). 

Thus, A−1 exists on R(A). To show that A−1 is continuous from the R(A) to Ω, we see that 

kA−1v(x,y)kΩ = kw(x,y)kΩ 

1 

 ≤ kAw(x,y)kH 

C 

1 

=v(x,y) 

 Ck kH. 

Hence A−1 is bounded. 

Assume that A−1 exists and is continuous on R(A). Then there is a constant C > 0 such 

that 

. 

Setting 

v(x,y) = Aw(x,y) 

shows that A is bounded below. The BIT encompasses both definitions (2.1) and (2.2). 

Thus, the BIT is useful is studying the three well-posedness conditions given by 

Hadamard. In this section, the BIT is used in studying the stability of unique solution 

of the Helmholtz equation. For the sake of brevity, we will use theorem 1.2 in the 

studying the existence of the solution to the Helmholtz equation. 

The Tikhonov regularization method is also called variational regularization method 

[65]. Using the TRM, we assume that there is a linear bounded operator 

, 

from a Hilbert space X into another Hilbert space Y . We regularize the Laplace 

operator, where x,y ∈ D(A), that appears in the Helmholtz equation. Thus, we put 

constraints on both the (exact) solution and on the variations of the data function in 
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the Helmholtz equation so as to control the blow-up of the data function from its 

emanated errors (Tikhonov and Arsenin, 1977). 

Let consider the inhomogeneous operator Helmholtz equation as: 

Aw(x,y) = f(x), 

where w(x,y) is the unknown solution in X. Based on the principles of TRM, we formulate the 

above equation as: 

 

where C is the constraint (linear) operator from X to Y , cr are weights (positive 

functions) and w(r)(x,y) denotes the rth partial order derivative of w(x,y). In order to 

solve the above equation, we combine two minimal conditions; the Gauss least-

squares method (LSM) and the Moore-Penrose pseudo-inverse matrix method 

(PIMM). Using the Lagrange method of undetermined multipliers, we obtain 

kAw(x,y) − f(x)k2Y + αkCw(x,y)k2Y = min, (2.1) 
x,y 

where α > 0 is a regularization parameter, is called Euler-Tikhonov equation (Tikhonov, 

1963). 

We minimize the equation (2.1), which means that the derivative of the discrepancy 

kAw(x,y) − f(x)k2Y + αkCw(x,y)k2Y 

with respect to the spatial variable y and equate it to zero, which yields regularized solution 

wα(x,y) = (A∗A + αI)−1A∗f(x), 

where 

C∗C = I, 

I is a unit operator from a Hilbert X to another Hilbert space Y and wα(x,y) is the 

regularized solution. As the regularization parameter increases, the discrepancy 

increases and the normed solution decreases. Thus, the normed solution becomes 
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more and more stable until a moderate α is obtained. The regularization parameter 

is chosen in a posteriori way (Engl et al., 1990). 

There are different ways of selecting α in equation (2.1). The regularization 

parameter can be selected in a manner that among the whole set of solutions wα(x,y), 

the 

kAw(x,y) − f(x)kY ≤ ε, 

where ε are errors in setting the boundary conditions on the Helmholtz equation. We find 

the solution w(x,y) that minimizes 

kCw(x,y)k. 

Thus, we search for a unique α that solves 

kAwα(x,y) − f(x)kY = ε. 

This is called the Morozov’s discrepancy principle (Morozov, 1966). But if, the regularization 

parameter is chosen in a way that the minimal solution satisfies 

kAwα(x,y) − f(x)kY ≤ ε. 

and 

kCw(x,y)k ≤ E, 

where E is the priori bounded solution. Thus, in this case, we choose 

 
(Miller, 1970). Moreover, we choose 

α = 0 

then equation (2.1) becomes 
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kAw(x,y) − f(x)k2Y = min. 
x,y 

The TRM coincides with Gauss LSM. In this case, the solution to the Helmholtz 

equation becomes unstable. Thus, the TRM fails to regularize the Helmholtz equation 

with boundary conditions (Petrov and Sizikov, 2005). Using the TRM, in [29], they 

showed that the conditions that guarantee the convergence rate for the regularized 

solution of the Helmholtz equation. Moreover, their result confirmed the 

compactness of the nonlinear Laplace operator in the Helmholtz equation in order to 

ensure the stability of its solution. 

A closely related approach of the TRM is one given by [32,35,57,84]. In this 

method, A is a linear, self-adjoint and compact Laplace-type operator from L2[a,b] → 

L2[a,b] for c ≤ y ≤ d. The operator equation is formulated from a known unstable 

unique solution w(x,y) of the Helmholtz equation with given boundary conditions as 

A(y)w(x,y) = φ(x), c ≤ y ≤ d, (2.2) 

where φ(x) ∈ Y is the (noisy) boundary condition at x−axis. Then we find the 

expression of the inner product of w(x,y) and the eigenfunctions Xn of the solution. 

The express for the Laplace-type operator is then obtained from above two equations 

and use it to form Euler-Tikhonov equation. We solve Euler-Tikhonov equation by 

assuming that 

A∗ = A, 

see [67], which yields regularized operator equation 

αIwα(x,y)+A∗Awα(x,y) = A∗φ(x). (2.3) We then solve the above equation to obtain the 

regularized solution below: 
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 wα(x,y) = (αI + A1)−1Aφ(x) (2.4) 

Unlike the approach by Tikhonov (1963), this method works for both homogeneous 

and inhomogeneous Helmholtz equation. In [84], they applied the TRM to regularize 

the Cauchy problem of the homogeneous linear elliptic partial differential equation 

with variable coefficients where the boundary deflection is homogeneous. 

Recently, [17] modified TRM by considering the variables in three different spaces. 

In their method, we define 

S : D(S) → U 

denotes the operator from the parameter space to state space, and 

B : U → Z, 

is a linear bounded operator from the state to the corresponding data function. We 

assume that the operator from the parameter to state is well-posed whiles the from 

the state to the data function is ill-posed. In this case, we minimize the quadratic 

functional 

kAw(x,y) − f(x)k2z + αkS(y) − U¯k2U = min(x,y), 

all the variables and parameter have usual meanings except U being the parameter space. 

We show the class of boundary conditions, which when imposed on the Helmholtz 

equation is regularized by TRM. Using the approach by [57], we write equation (1.22) 

as 

, 

where, 

 1 nx 

                                                        
1 nx 

Xn =sin( ), ∀ 0 ≤ x ≤ 2π. π

 2 

r 
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φ(x) = sin( ) 

n 2 

 
We obtain both the operator Helmholtz equation and the regularized Helmholtz equation 

as 

. 

and 

, (2.5) 

respectively. We see from equation (1.22), that the inner product of w(x,y) and Xn 

is 

 

From the operator and above equation, we obtain 

 

and 

. 

Using assumption by [67], and substituting A(y) and φ(x) into equation (2.4), we obtain 

the regularized solution as: 

  (2.6) 

We observe that equation (2.5) satisfies both the smoothness requirement in 

definition (1.2) and data compatibility condition in theorem (1.2), respectively. 

Therefore, the function (2.6) is a solution to equation (2.5). 

We show that the function (2.6) is the only solution to equation (2.5). 

Proof: By contradiction, Let u(x,y) and v(x,y) be two different solutions of equation (2.5) 

such that 
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w(x,y) = u(x,y) − v(x,y), 

Multiplying both sides of equation (2.5) by the solution (2.6) and integrating over 

([0,2π] × [0,1]), we obtain 

 1 2π 1 2π 

0 Z0 αI|wα(x,y)|2dxdy + Z0 Z0 wα(x,y)∆2wα(x,y)dxdy 1 2π 

 1 nx 

 − n Z0 Z0 wα(x,y)∆sin( 2 )dxdy = 0 

Applying the Green’s first identity to the second and third terms on the left hand side of 

the above equation, we obtain 

 1 2π 1 2π 

 Z αI|wα(x,y)|2dxdy + Z Z wα(x,y)∇3wα(x,y)dxdy 

0 0 0 0 
1 2π 1 2π 

 Z wα(x,y).∇cos(nx2  Z Z 2dxdy + 22 Z )dxdy 

 − 0 0 |∆wα(x,y)| n 0 0 

 2 1 2π nx 

 − n2 Z0 Z0 ∇wα(x,y).∇cos( 2 )dxdy = 0 

Since the ) vanishes on both the boundary and in the domain ([0,2π]×[0,1]). 

The fourth and fifth terms of the above equation are zero, we have 

 1 2π 1 2π 

 ⇒ 0 Z0 αI|wα(x,y)|2dxdy + Z0 Z0 wα(x,y)∇3wα(x,y)dxdy 

 1 2π 

 − Z0 Z0 |∆wα(x,y)|2dxdy = 0 

Z 

Z 

Z 
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We observe that the solution (2.6) wα(x,y) = 0 ∀ x,y on ∂([0,2π] × [0,1]) and x,y 

in ([0,2π] × [0,1]). 

This implies that solution (2.6) is unique to equation (2.5). 

We show that the regularized solution (2.6) is stable with respect to changes in the 

boundary condition. We observe that if ), where 

 and the corresponding solution is 

 
But, when x is perturbed from  to x2 = δ, where 0 , the 

corresponding solution is obtained as 

 

The change in boundary condition is as follows: 

 

This implies that there is a small change in the boundary condition. The corresponding 

change in the solution is as: 

 

Hence, the operator equation (2.3) is well-posed in the sense of Hadamard. 
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We now consider the Helmholtz equation with both Neumann and Cauchy boundary 

conditions as follows: 

∂2w(x,y) + ∂2w(x,y) 2w(x,y) = 0, 0 x 2π, 0 y 1 + k 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

Using a similar approach to the both Cauchy and Dirichlet problems of the Helmholtz except 

that we replace 

 
 2 nx 

Xn =sin( ), ∀ 0 ≤ x ≤ 2π π 2 

with  

, 

Using the approach by [57], we obtain 

∀ 0 ≤ x ≤ 2π. 

 

All the three requirements for well-posedness of equation (2.7) are the same as the one 

shown above. Hence, equation (2.7) is well-posed in the sense of Hadamard. 

Thirdly, we consider the Cauchy problem of the Helmholtz equation where the boundary 

deflection is homogeneous as follows: 

 ∂x2 ∂y2 
  ≤ ≤ ≤ ≤ 

 
= 0, 0 ≤ y ≤ 1 (2.7) 

w(x,0) 

∂w(x,0) 

= 
 

r 

∂w (0 ,y ) 

∂x 
= 

∂w (2 π,y ) 

∂x 
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∂2w(x,y) +

∂2w(x,y) + 

k2w(x,y) = 0, 0

 x π, 0 y 1 

 = 0,

 0 x

  (2.8) 

 n 2 

Using the approach by [57], we obtain 

. (2.9) 

We observe that regularized equation (2.2) satisfies smoothness requirement in definition 

(1.2). On the data compatibility condition, we observe that 

π2 ∂w(x,0) π2 

 dx = 0dx 

 0 ∂y Z0 

 = 0 

a constant, which satisfies it. This implies that the solution (2.9) is a solution to equation 

(2.8). 

The proof that equation (2.8) with the boundary conditions has only one solution, follows 

the proof of uniqueness of equation (2.5). 

The stability of equation (2.8) to small changes in boundary deflection is similar 

to the stability of equation (2.4). Hence, equation (2.5) is well-posed in the sense of 

Hadamard. 

On the contrary, we show a class of boundary conditions which when imposed on 

Helmholtz equation cannot be solved (regularized) by TRM. Firstly, we apply the TRM 

to equation (1.3) as follows: 

∂x2 ∂y2 ≤ ≤ 2 
≤ ≤ 

∂w(x,0) π   

∂y 
 

 ≤ ≤ 2 

w(x,0) =  

Z 
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 A(y)w(x,y) = φ(x), 0 ≤ y ≤ 2π. 

⇒ αIwα(x,y) + A∗Awα(x,y) = A∗φ(x). (2.10) 

and 

, 

where, 

n2 − k2 

and A(y) and I have usual meanings. From the operator and above equation, we obtain 

 

and 

. 

Using assumption by [67], and substituting A(y) and φ(x) into equation (2.4), we 

φ(x) = 
 

Xn = 
1 

√  sin(nx), 



 

 

obtain the regularized solution as: 

, 

α has the usual meaning. 

Moreover, we can see from boundary deflection condition of equation (2.10) that 

 

Thus, 

1 nπ  nn1222, ∀ n = 1,3,... n2 [ 1 − cos( 

2 )] = , ∀ n = 2,6,... 

  0, ∀ n = 4,8,... 

Thus, 

Equation (2.10) does not satisfy the data compatibility condition, theorem (1.2). 

Thus, the TRM does not homogenize the boundary deflection in the Cauchy boundary 

conditions imposed on the Helmholtz equation. This implies that the function 

, 

is not a solution of equation (2.8). Equation (2.10) has no solution. Hence, equation (2.8) 

is ill-posed in the sense of Hadamard. 

Also, we apply the TRM to regularize equation (1.4). The regularized operator equation 

(2.3) becomes 

⇒ αIwα(x,y) + A∗Awα(x,y) = A∗ cos(2πx), (2.11) 
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the varibles and parameter have usual meanings. The inner products of the exact solution 

and Xn are 

, 

where, 

, 

and c1 are provided in equation (1.16), and 

, 

where, 

Xn = cos(nπx) + sin(nπx), 

and c2 are provided in equation (1.19). The operators are then obtained as 

 

and 

. 

respectively, and substitute each equation into equation (2.4) which yields the regularized 

solution of the Helmholtz equation as: 

  (2.12) 

We observe that the boundary conditions of equation (2.11) satisfy both the 

smoothness requirement in definition (1.3) and data compatibility condition in 

theorem (1.1), respectively. Therefore, the function (2.12) is a solution to equation 

(2.11). 

We now show that the equation (2.11) has more than one solution. 
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Proof: By contradiction, Let u(x,y) and v(x,y) be two different solutions of equation (2.11) 

such that 

w(x,y) = u(x,y) − v(x,y). 

Multiplying both sides of equation (2.11) by the solution (2.12), using condition by 

[67] and integrating over ([−1,1] × [0,1]), we obtain 

 11 1 1 

 αI|wα(x,y)|2dxdy + Z Z wα(x,y)∆2wα(x,y)dxdy 

 0−1 0 −1 
 1 1 

−Z0 Z−1 wα(x,y)∆cos(2πx)dxdy = 0 

Applying the Green’s first identity to the second and third terms on the left hand side of 

the above equation, we obtain 

 11 1 1 1 1 

 αI|wα(x,y)|2dxdy + Z Z wα(x,y)∇3wα(x,y)dxdy − Z Z |∆wα(x,y)|2dxdy 

0−1 0 −1 0 −1 1 1 1 1 

11 

− 2π Z0 Z−1 wα(x,y).∇sin(2πx)dxdy + 2π Z0 Z−1 ∇wα(x,y).∇sin(2πx)dxdy = 0 

 1 1 1 1 

⇒ 0 Z−1 αI|wα(x,y)|2dxdy − Z0 Z−1 |∆wα(x,y)|2dxdy = 0 

The above equation holds if wα(x,y) is zero in the domain ([−1,1] × [0,1]). But, we observe 

that 

 wα(x,y) 6= 0 ∀ x,y ∈ ([−1,1] × [0,1]). 

Z 

Z Z 

Z Z 
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Thus, the regularized solution wα(x,y) alternates sign from negative to positive in the 

domain ([−1,1] × [0,1]). In the first expression solution (2.12), the sin( changes 

sign from positive to negative and also, cos(2nπ) in the second expression in the same 

solution (2.12), which give non-value in the domain ([−1,1] × [0,1]). This implies that 

the equation (2.11) has more than one solution. The second condition of well-

posednes is violated. Hence, the Helmholtz equation with Neumann boundary 

conditions in an upper half-plane is ill-posed in the sense of Hadamard. 

2.2 Spectral Regularization Method 

A closely related approach of the TRM is the spectral regularization method (SRM) [81]. 

In this method, we assume that there is a bounded self-adjoint Laplace-type 



 

 

operator 

A : X → Y, 

with A−1 a self-adjoint inverse operator, which solves equation (2.2). In this case, the norm 

of A−1 and the noise level δ is observed as: 

, 

where M ∈ X is a bounded set, φ(x) and φδ(x) are noise-free and noisy boundary conditions 

which satisfies 

kφδ(x) − φ(x)k ≤ δ. 

To use SRM to regularize Helmholtz equation with boundary conditions, we give 

a definition of compact inverse operator, which will be useful in studying the stability 

of the unique solution to the Helmholtz equation with boundary conditions. 

Definition 2.4 (Compactness) Let a linear self-adjoint Laplace-type operator in the 

Helmholtz equation 

A : X → Y, 

where X and Y are Hilbert spaces. Let M be any bounded set in Y, A−1 is bounded if, 

 kA−1w1(x,y)k ≤ kA−1k|w1(x,y)|, ∀ w1(x,y) ∈ Y. 

The set A−1(M) is bounded in Y . Hence, A−1 is compact in Y (Attouch et al., 2005). 

Unlike the TRM, we restore the stability of unique solution to Helmholtz equation by A−1 

is compact on M ∈ Y . 

In order to regularize equation (2.2) using the SRM, we restore the boundedness 

of A−1. Thus, the exact (unstable) solution has to satisfy the source condition as 

follows. Let 
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be a source set, where the operator function 

, 

the spectral decomposition of 

, 

the constant 

a ≥ kA∗Ak, 

{Eλ} denotes a set of the spectral of the A∗A and E is a priori bounded solution which 

satisfies 

kw(.,0)kX ≤ E. 

Moreover, the following assumptions are made in using SRM in regularizing equation 

(2.2). The function 

ϕ : (0,a] → (0,∞) 

is continuous and satisfies 

lim ϕ(λ) = 0, λ→0 

ϕ(λ) is monotonically increasing on (0,a], and 

ϕ(λ) = λϕ−1(λ) : (0,ϕ(a)] → (0,aϕ(a)] 

is convex. We obtain the regularized form of equation (2.2) as: 

A−1 = φα(A∗A)A∗, (2.13) 

where φα(λ) satisfies 



 

 

, 

α is the regularization parameter. We solve equation (2.12) to obtain the regularized 

solution 

wα(x,y) = A−1φδ(x) (2.14) (Xiong and Fu, 2007). 

The SRM can be classified into four types. They are spectral method 1, which is defined 

as: 

 , λ < α 

and the second spectral method is given by 

 , λ < α 

In the SRM, the spectral method 3 is also called Tikhonov regularization and singular 

value decomposition (TSVD) method, which is given by 

 

and the fourth method is called Tikhonov regularization method 

. 

In [73], they extended the SRM to the Neumann problem of the Laplace equation. 

In [31], they used pseudo-differential operator instead of Laplace operator in 

regularizing the solution of the Helmholtz equation. In [19,54,55,59], the authors 

applied the SRM to regularize the Cauchy problem of the elliptic equations where the 

boundary deflection is homogeneous. 

Next, we apply the spectral method 1 to regularize Helmholtz equation. The 

spectral methods 2 and 3 are similar to the spectral method 1. The spectral method 4 

(TRM) has been discussed above. We regularize equation (1.22) by applying SRM, 

which gives regularized solution 
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 (2.15) We 

observe that function (2.15) satisfies smoothness requirement in definition (1.2) as well 

as data compatibility condition in theorem (1.2). This implies that the function (2.15) is 

a solution to equation (2.13). The proof of uniqueness of regularized solution (2.15) is 

similar to that of equation (2.5). 

We prove the stability of solution (2.15) to equation (2.13) as follows. In equation 

(1.22), we choose , where 0  in the boundary condition w(x,0) = 

) and the corresponding solution is 

 

We perturb w(x,y) from , where 0  and  < δ. The 

corresponding solution is: 

 

The change in boundary condition is observed as: 

 

is small. 

Also, the corresponding change in the solution  
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is as follows: 

 

This implies that a small change in the boundary deflection w(x,0) from  to x2 = 

δ results in a small change in solution. Hence, using the SRM, equation (1.22) is well-

posed in the sense of Hadamard. 

We apply the SRM to regularize equation (2.7) as: 

 

All the three requirements for well-posedness of equation (2.7) are the same as the 

one shown above. Hence, by SRM, equation (2.7) is well-posed in the sense of 

Hadamard. Thirdly, we apply SRM to regularize equation (2.8) to obtain equation 

(2.13). This gives the regularized solution as: 

 

We observe that equation (2.16) satisfies both the smoothness requirement in definition 

(1.3). On the data compatibility condition, we observe that 
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π2 ∂w(x,0) π2 dx

 = Z 0dx 

 0 ∂y 0 

 = 0 

which implies that equation (2.16) is the solution to equation (2.8). 

The proof that regularized equation (2.13) has only one solution, follows the proof 

of uniqueness of equation (2.5). In addition, the stability of equation (2.13) is similar 

to the stability of solution (2.16). Hence, equation (2.13) is well-posed by SRM. 

We show the kinds of boundary conditions, which when imposed on Helmholtz 

equation cannot be regularized by the SRM. By the applying SRM to equation (1.3), 

we obtain regularized equation (2.13), where 

, 

which yields the regularized solution 

 

We observe that 

 

which implies that 

1 nπ  nn2122, ∀ n = 1,3,5,... n2 [ 1 − cos( 

2 )] = , ∀ n = 2,6,10,... 

  0, ∀ n = 4,8,12,... 

Z 
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Thus, 

 
Since equation (2.13) with above boundary condition does not satisfy data 

compatibility condition. This implies that equation (2.13) with above boundary 

condition has no solution. Hence, by SRM, equation (2.13) with above boundary 

condition is ill-posed in the sense of Hadamard. 

Next, we apply the SRM to equation (1.4), we obtain the regularized equation (2.13) 

with 

φα(x) = cos(nx) 

and the corresponding regularized solution as: 

√  

 PP∞n=1,5,... 2(nπ.n2−cosh(16)π2.√√((((nπ2nπnπ22)2)−22k−2k)2y2))(sinhcos((nπx√2nπx((2)+nπ2sin)2(−nπxk2nπx22))))
,

 
|τ11|2 

≥ α 

 ∞n=3,7,... −(2nnπ.2−cosh(16)π2.√((((nπ2))2−−kk)2y))(sinhcos((√(()+nπ2 sin)2−(k2)))), |τ11|2 ≥ α 

w(x,y) =  PP∞n=1,5,... α(n22−16)π22.√√((nπnπ22 

)222−nπ.k22)(cossinh((nπx√√nπx22(()+nπnπ22sin)22(−nπxnπx2k222))))cosh(√√((nπnπ22 )22−k22)y), |τ111|22 < α 

  ∞ −2nπ.(cos( )+sin( )) , 1 < α 

  Pn=3,7,...√ α√(n −2 16)22π .2 ((√ ) −k2 )sinh2 ( (( √) −k ))2 cosh2 ( (( ) −k )y)1 2 |τ | 
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 ∞n=1 cosh(2√((((nπnπ)2)−−kk2).)sinh(y))(cos√(((nπxnπ)+)2−sink2(nπx))) )), |τ11|2 ≥ α 

  P∞n=1 2((nπ) −k ).sinh((cos(((nπxnπ)+) 

−sink()))nπxcosh)) ( ((nπ) −k )y)), |τ1| < α (2.17) 

where,  

. 

We observe that equation (2.13) together with above boundary condition satisfies 

both the smoothness requirement in definition (1.2) and data compatibility condition 

in theorem (1.2),respectively. Therefore, the function (2.17) is a solution to equation 

(2.13) with above boundary condition. 

The proof that equation (2.13) with above boundary conditions has more than one 

solution is similar to that of equation (2.11). Hence, by SRM, equation (2.13) with 

above boundary condition is ill-posed in the sense Hadamard. 

2.3 Quasi-Reversibility Regularization Method 

In this section, we discuss the strength and shortcomings of quasi-reversibility 

regularization method (Q-RRM). The Q-RRM assumes that a linear operator 

A : X → Y 

where 

 

is bijective but the inverse operator A−1 is not continuous from one Hilbert space H to 

another Hilbert space H (Lattes and Lions, 1967). 
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The Q-RRM regularizes only the Helmholtz equation by the subtraction of a 

product of a square of a regularization parameter α and a mixed fourth-order partial 

derivative from the Laplace-type operator appearing in the Helmholtz equation. 

Thus, 

 

For example, see [62,63,79]. In [13,14,16,41,58] applied Q-RRM to regularize the 

solution of Helmholtz equation. In [56], the authors showed that the operator A∗ is a 

unitary from L2(R) to L2(R) to regularize the Helmholtz equation with Cauchy 

boundary conditions. 

We demonstrate a class of boundary conditions which when imposed on 

Helmholtz equation is regularized by the Q-RRM. Applying Q-RRM to equation (1.22), 

we obtain the regularized Helmholtz equation as follows: 

∂2w(x,y) + ∂2w(x,y) + k2w(x,y)α2 ∂4w(x,y) = 0,

 0 x 2π, 0 y 1 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

By the method of separation of variables, we obtain 

w(x,y) = X(x)Y (y) Y 

00(y) + k2Y (y) −X00(x) 

  = = λ, constant. 

∂x2 ∂y2   − ∂x2∂y2 ≤ ≤ ≤ ≤ 

w(0,y) = w(2π,y) 

w(x,0) 

∂w(x,0) 

= 

= 

0, 0 ≤ y ≤ 1 

1 

n ≤ x ≤ 2π sin(nx), 0 

 

(2.18) 
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 (Y (y) − α2Y 00(y)) X(x) 

By separation of variables equation, we obtain 

X00(x) + λX(x) = 0. 

When 

w(0,y) = w(2π,y) = 0, 

⇒ X(0) = X(2π) = 0, 

we obtain 

 

Also, from separation of variable, we observe that: 

 

When 

, 

we obtain 

 

Substituting the expressions for X(x) and Y (y) into the product solution, we obtain 

 

At 

, 

then 

. 

Substituting the expression for cn back into the above expression, we obtain 
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 (2.19) 

We observe that equation (2.18) satisfies both the smoothness requirement in 

definition (1.2) and data compatibility condition in theorem (1.2), respectively. 

Therefore, the function (2.19) is the solution to equation (2.18). 

The proof that equation (2.18) has only one solution, is similar to the proof of uniqueness 

of equation (2.5). 

We show that the regularized equation (2.18) is stable with respect changes in the 

boundary condition. We observe that if x1 = 0, then w(x,0) = 0 and the corresponding 

solution is: 

w1(x,y) = 0. 

Also, when x2 = δ, where 0  and the corresponding solution is 

. 

The change in boundary condition observed as: 

 
is small and the corresponding change in the solution is: 

 

We observe that 4 + (nµ)2 > n2 − 4k2 for α > 1. This implies that 
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 ( ) 

 e
r 4+n2−µ24nk22 

< ∞ n2−4k2 

 

r(4+α2n2 ) 

 ∞ 4e 

 ⇒ nlim→∞ |w1(.,1) − w2(.,1)| = nlim→∞ nX=odd n2π < ∞. 

The w(x,y) is stable for α > 1. Hence, by Q-RRM, equation (2.18) is well-posed in the sense 

of Hadamard. 

We regularize Helmholtz equation with both Neumann and Cauchy boundary conditions 

by Q-RRM as follows: 

∂2w(x,y) + ∂2w(x,y) + k2w(x,y)α2 ∂4w(x,y) = 0,

 0 x 2π, 0 y 1 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

and the corresponding solution is 

 

 ∂x2 ∂y2 
  − ∂x2∂y2 ≤ ≤ ≤ ≤ 

 
= 

0, 0 ≤ y ≤ 1   

w(x,0) 

∂w(x,0) 

= 
 

 (2.20) 

∂w (0 ,y ) 

∂x 
= 

∂w (2 π,y ) 

∂x 
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All the three requirements for well-posedness of equation (2.20) are the same as the one 

shown above. Hence, equation (2.19) is well-posed in the sense of Hadamard. 

Thirdly, we apply Q-RRM to regularize the Helmholtz equation with Cauchy 

boundary conditions where the boundary deflection is equal to zero. The regularized 

Helmholtz equation is obtain as: 

 n

 2 

with the corresponding solution as: 

 ) (2.22) 

We observe that equation (2.21) satisfies both the smoothness requirement in definition 

(1.2). On the data compatibility condition, we observe that 

π2 ∂w(x,0) π2 dx

 = Z 0dx 

 0 ∂y 0 

 = 0 

which satisfies theorem (1.2). Hence, the function (2.22) is a solution to equation 

(2.21). 

On the uniqueness of equation (2.21) is similar to the proof of uniqueness of 

equation (2.5). The stability of equation (2.21) is similar to that of equation (2.18). 

Hence, by Q-RRM, the equation (2.21) is well-posed. 

∂2w(x,y) 

 
∂x2 

+ 
, 

π 

0 ≤ x ≤ 2, 0 ≤ y ≤ 1 

∂w(x,0) 

 
∂y 

=  (2.21) 

 

w(x,0) =  
 

∂ 2 w ( x,y ) 

∂y 2 
+ k 2 w ( x,y ) − α 2 

∂ 4 w ( x,y ) 

∂x 2 
∂y 

2 =0 

Z 
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We provide a class of boundary conditions, which when imposed on Helmholtz 

equation, cannot be regularized by the use of Q-RRM. First, we regularize equation 

(1.3) by using the Q-RRM, which gives the regularized Helmholtz equation as: 

 
By the method of separation of variables, we obtain the function 

) (2.24) 

Moreover, we see from the boundary deflection condition of equation (2.23) that: 

 . 

Thus, 

 

We observe that 

 

The function (2.23) does not satisfy the data compatibility condition. Thus, theorem 

1.2 is not satisfied by function (2.23). This implies that equation (2.23) has no 

solution. Hence, by Q-RRM, equation (2.23) is ill-posed in the sense of Hadamard. 

Also, we take into account of a Neumann problem for the Helmholtz equation in 

an upper half-plane. By applying Q-RRM to equation (1.4), we obtain the regularized 

equation as: 

∂x2 
 ∂y2 − ∂x2∂y2 
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 ∂2w(x,y) +

 ∂2w(x,y) + 

k2w(x,y) α2 

∂4w(x,y) 

= 0 

  =  = 0, 0 y 1 

  = 0 1 x 1 (2.25) 

 = cos(2πx) 1 x 1 

 ∂y − ≤ ≤ 

and the corresponding regularized solution as: 

, 

(2.26) 

We observe that equation (2.25) satisfies both the smoothness requirement in 

definition (1.2) and the data compatibility condition in theorem (1.2), respectively. 

Hence, the function (2.26) is a solution to equation (2.25). 

The proof that equation (2.25) has more than one solution is similar to that of 

equation (2.11). Hence, by the Q-RRM, the Helmholtz equation with Neumann 

boundary conditions in an upper half-plane is ill-posed in the sense of Hadamard. 

∂w(−1,y) ∂w(1,y) 

∂x 

∂w(x,0) 
∂x 

 ≤ ≤ 

∂y 

∂w(x,1) 

− ≤ ≤ 
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2.4 Quasi-Boundary Value Method 

In this section, we discuss the strength and weaknesses of the quasi-boundary value 

method (Q-BVM) in regularizing Helmholtz equation with above boundary conditions 

(Clark and Oppenheimer, 1994). We state the definition which is useful in the study 

of the Q-BVM as below. 

Definition 2.5 Let H be a Hilbert space. Let A : D(A) ⊂ H → H be a bounded linear Laplace-

type operator. The 

A∗ : H → H 

by 

 hAx,yi = hx,A∗yi, ∀ x ∈ D(A), y ∈ D(A∗). 

The operator A∗ is called the adjoint of A. 

The operator A : H → H is called self-adjoint if, 

A = A∗, 

is normal if, 

A∗A = AA∗ 

and is a unitary if, 

AA∗ = A∗A = I, 

where I is an identity operator (Chidume, 1989). 

The Laplace-type operator in the Helmholtz equation 

A : X → Y, 

where 
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is a linear self-adjoint and unbounded from a Hilbert space X into another Hilbert 

space Y . Thus, in the Q-BVM, the ill-posedness means a unique solution to the 

Helmholtz exists, but the solution does not depend continuously on the imposed 

boundary conditions of Helmholtz equation (Clark and Oppenheimer, 1994). 

Unlike TRM, SRM and Q-RRM, the Q-BVM regularizes the boundary conditions 

imposed on the Helmholtz equation by adding a product of a regularization 

parameter α, where α ∈ R+, and boundary condition at one of the axes of the spatial 

variable 

[4]. 

In [14], the authors regularized the same problem by subtracting αw0(0) instead 

of adding αw(0), to the initial condition w(T). Using the Q-BVM, [72] and [71] 

regularized homogeneous linear and nonlinear heat equation, respectively. In [82], 

the authors applied Q-BVM to regularize unbounded Dirichlet boundary of the 

Poisson equation in L2(R) space. In [9,30] applied Q-BVM to regularize the solution of 

the Helmholtz equation. 



 

 

We show the class of boundary conditions, which when imposed on Helmholtz 

equation can be regularized by the use of Q-BVM and the boundary conditions, which 

when imposed on Helmholtz equation cannot be solved by the Q-BVM. We regularize 

the boundary conditions imposed on the Helmholtz equation using the QBVM given 

by (Clark and Oppenheimer, 1994). Firstly, we apply the Q-BVM to regularize equation 

(1.22) by adding αw(x,1) to the w(x,0), that occurs in equation (1.22). The regularized 

Helmholtz equation is obtained as: 

∂2w(x,y) + ∂2w(x,y) +k2w(x,y) = 0, 0 x 2π, 0 y 1 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

By the method of separation of variables, we obtain 

w(x,y) = X(x)Y (y) 

Y 00(y) + k2Y (y) −X00(x) 

 = = λ, constant. Y (y)

 X(x) 

At w(0,y) = w(2π,y) = 0, it implies that: 

 

Also, from the separation of variables equation, we observe that 

 

At 

∂w(x,0) 

∂x2 ∂y2   ≤ ≤ ≤ ≤  

w(0,y) = w(2π,y) 

w(x,0) + αw(x,1) 

∂w(x,0) 

= 

= 

0, 0 ≤ y ≤ 1 

1 

n ≤ x ≤ 2π sin(nx), 0 

 

(2.27) 
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  = 0 

∂y 

 ⇒ Y 0(0) = 0 

and obtain 

 
Substituting the expressions for X(x) and Y (y) into the product solution yields 

 

At 

, 

we obtain 

 

Substituting cn back into w(x,y) yields 

  (2.28) 

We observe that the function (2.28) satisfies both the smoothness requirement and 

data compatibility condition in theorem (1.2), respectively. Therefore, the function 

(2.28) is a solution to equation (2.27). 

We show that the function (2.28) is the only solution to equation (2.27). 

Proof: By contradiction, Let u(x,y) and v(x,y) be two different solutions of equation 

(2.27) such that 

w(x,y) = u(x,y) − v(x,y), 

Multiplying both sides of equation (2.27) by the solution (2.28) and integrating over 

([0,2π] × [0,1]), we obtain 

 1 2π 1 2π 
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 Z wα(x,y)∆wα(x,y)dxdy + k2 Z Z |wα(x,y)|2dxdy = 0 

0 0 0 0 

Applying the Green’s first identity to the first term on the left hand side of above 

equation, we obtain 

 
which implies that 

1 2π 1 2π 

 −Z0 Z0 |∇w(x,y)|2dxdy + k2 Z0 Z0 |w(x,y)|2dxdy = 0. 

For the above to hold, we restrict both 

 1 2π 

 0 Z0 |w(x,y)|2dxdy = 0 

and 
 1 2π 

 Z |∇wα(x,y)|2dxdy = 0. 

 0 0 

We see that the above equations hold, if 

wα(x,y) = 0  

⇒ wα(x,y) 

and 

= 0 in ([0,2π] × [0,1]) 

∇wα(x,y) = 0 
 

⇒ wα(x,y) = 0 in ([0,2π] × [0,1]) 

This implies that wα(x,y) is a function (2.28) in the domain and on the boundary of the 

domain. Thus, 

u(x,y) = v(x,y) 

Z 

Z 

Z 
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This implies that solution (2.28) is the only solution to equation (2.27). 

We show that the regularized solution (2.27) depends continuously on the 

boundary conditions. We observe that when , where 0  in the boundary 

condition ) and the corresponding solution is: 

. 

Again, we perturb x from , where 0  and  < δ. The 

corresponding solution is 

. 

The change in boundary condition is observed as: 

 

This implies that the change in the boundary condition is small and the corresponding 

change in the solution is as follows: 

 

But, we observe that 

 

This implies that 
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8 

n→∞ |w1(.,1) − w2(.,1)| ≤

 nπ lim 

 |w1(.,1) − w2(.,1)| → 0 as n → ∞. 

Hence, using the Q-BVM, equation (2.27) is well-posed in the sense of Hadamard. 

Secondly, we apply Q-BVM to regularize both the Neumann and the Dirichlet 

problems of the Helmholtz equation by adding αw(x,1) to the inhomogeneous 

boundary condition. We obtain the regularized equation as below: 

 ∂2w(x,y) ∂2w(x,y) 2 

 + + k w(x,y) = 0, 0 x 2π, 0 y 1 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

with the corresponding solution as: 

 

All the three requirements for well-posedness of equation (2.29) are the same as the 

one shown above. Hence, equation (2.29) is well-posed. 

Thirdly, we regularize, by using the Q-BVM, the Cauchy problem of the Helmholtz 

equation where boundary deflection is homogeneous. We obtain the regularized 

equation by adding αw(x,1) to w(x,0) in the boundary conditions as follows: 

 ∂2w(x,y) ∂2w(x,y) 2 π 

 ∂x2 ∂y2 
  ≤ ≤ ≤ ≤  

 
= 

0, 0 ≤ y ≤ 1  
(2.29) 

w(x,0) + αw(x,1) 

∂w(x,0) 

= 
 

  

∂x2 
 

 ∂y2 ≤ ≤ 2 
≤ ≤ 

∂w (0 ,y ) 

∂x 
= 

∂w (2 π,y ) 

∂x 
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 +

 + k 

w(x,y) = 0, 0

 x , 0 y

 1 

 n 2 

The corresponding solution to equation (2.30) is: 

  (2.31) 

We observe that equation (2.30) satisfies the smoothness requirement in definition 

(1.2). On the data compatibility condition, we observe that 

 ,  

which satisfies theorem (1.2). The proof of uniqueness of equation (2.30) is similar to 

the one above. The function in (2.31) is a unique solution to equation (2.30). 

On the stability of the regularized solution (2.31), we observe that if x1 = 0 then 

w(0,0) + αw(0,1) = 0, and the corresponding solution is 

w1(x,y) = 0 

Also, when x2 = δ, where 0 , the corresponding solution is 

 

The change in the boundary deflection is 

∴ |w1(0,0) − w2(0,1)| → 0 as n → ∞. 

∂w(x,0) 

 
∂y 

=  (2.30) 

 

w(x,0) + αw(x,1) = . 
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This implies that there is a small change in the boundary deflection. The 

corresponding change in solution is, therefore as follows: 

 

Hence, using the Q-BVM, equation (2.31) is well-posed. 

We present a class of boundary conditions, which when imposed on Helmholtz 

equation, cannot be regularized by the use of Q-BVM. Using the Q-BVM, we regularize 

equation (1.3) by adding αw(x,1) to the inhomogeneous boundary deflection wy(x,1). 

The regularized equation is obtain as: 

∂2w(x,y) +

∂2w(x,y) + 

k2w(x,y) = 0, 0 x π, 0 y 1 

  + αw(x,1) =  sin(nx), 0 ≤ x ≤  (2.32) 

 ∂y n 2 

π 

 w(x,0) = 0, 0 ≤ x ≤ . 

2 

By the method of separation of variables, we obtain 

 (2.33) 

Moreover, we can see from boundary deflection condition of equation (2.32) that 

 

Thus, 

∂x2 ∂y2 ≤ ≤ 2 
≤ ≤ 

∂w(x,0) 1 π   
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We observe that 

 

Equation (2.32) does not satisfy the data compatibility condition. This implies that the 

function 

 

is not a solution of equation (2.32). Hence, using the Q-BVM, the equation (2.32) is ill-

posed in the sense of Hadamard. 

Next, we consider a Neumann problem for the Helmholtz equation in an upper 

half-plane. Using the Q-BVM, we add αw(x,1) to wy(x,1) in the boundary conditions of 

equation (1.4). The regularized Helmholtz equation is obtained as: 

∂2w(x,y) 

 
∂x2 

+  

 

 
= 

 

 

∂w(x,0) 

 
∂y 

= 0 − 1 ≤ x ≤ 1 (2.34) 

 
= cos(2πx) − 1 ≤ x ≤ 1 

 

with the corresponding solution as: 

√  

 ∞ 2nπ.cosh( (( ) −k )y)(cos( )+sin( )), 

 PPn=1,5,... α(n22−16)π2√2.
√

√nπ((2nπ2nπ2nπ222)22−2 k222)sinh(nπx√2√nπx2((nπ2nπ2)22−nπx2knπx222)) 

∂ 2 w ( x,y ) 

∂y 2 
+ k 2 w ( x,y )=0 , in Ω 

∂w ( − 1 ,y ) 

∂x 

∂w (1 ,y ) 

∂x 
=0 , on 0 ≤ y 

≤ 1 

∂w ( x, 1) 

∂y 
+ αw ( x, 1) 
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 w(x,y) = 
n∞=3,7,... −α√2(nπ.n −cosh(16)2 π .2(((( ) )−k−k)y))(sinhcos(((()+sin) (−k )))) 

  P∞n=1 cosh(2α√((((nπnπ))2−−kk2)).ysinh())(cos√(nπx((nπ)+)2sin−k(2nπx))) )) (2.35) 

We see that equation (2.34) satisfies both the smoothness requirement in definition 

(1.2) and the data compatibility condition. The function (2.35) is a solution to equation 

(2.34). 

To see the proof that equation (2.34) has more than one solution. 

Proof: By contradiction, Let u(x,y) and v(x,y) be two different solutions of equation 

(2.34) such that 

w(x,y) = u(x,y) − v(x,y), 

Multiplying both sides of equation (2.34) by the solution (2.35) and integrating over 

([−1,1] × [0,1]), we obtain 

 

Applying the Green’s first identity to the first term on the left hand side of above 

equation, we obtain 

 
which implies that 

. 

For the above to hold, we restrict both 

 1 1 

0 Z−1 |wα(x,y)|2dxdy = 0 

and 
 1 1 

Z 
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0 Z−1 |∇wα(x,y)|2dxdy = 0. 

We see that the above equation that 

wα(x,y) 

has two different values; a zero and a non-zero in ([−1,1]×[0,1]). The equation (2.34) 

has more than one solution. Thus, the second condition of well-posedness according 

to Hadamard is violated. Hence, using the Q-BVM, the Helmholtz equation with 

Neumann boundary conditions in an upper half-plane is ill-posed in the sense of 

Hadamard. 

2.5 An Iterative Regularization Method 

In this section, we use the iterative regularization method (IRM) to solve Helmholtz 

equation with above boundary conditions. The IRM assume a unique solution to the 

Helmholtz equation exists, but the solution does not depend continuously on the 

imposed boundary conditions. Thus, we regularize neither the Helmholtz equation 

nor its boundary conditions. We regularize only the solution of the Helmholtz 

equation. Using the IRM, we restore the stability of the solution by introducing the 

iterative scheme into the exact solution. We obtain the stabilized solution as the 

number of iterations increases (Cheng et al., 2014; Zhang and Wei (2014)). Thus, using 

the IRM, we assume that the Laplace-type operator in the Helmholtz equation 

 A : H → H, 

∂2 ∂2 where A

 = ∂x2 + ∂y2 

is bounded L2(R) space to another L2(R), but the inverse Laplace-type operator A−1 is 

unbounded. 

Using the IRM, we introduce the iterative scheme as: 

Z 
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where, m is the number of iterations, into equation (1.22) and simplify to obtain the 

regularize solution as below: 

 

where 

, 

where λ is the regularization parameter and U0 is a priori-bounded solution. The proof 

of the existence and uniqueness of the regularized solution (2.36), follows from the 

existence and uniqueness of equation (1.22). 

On the stability of the regularized solution, we observe that if x1 = 0 then w(0,0)+ 

αw(0,1) = 0, and the corresponding solution is 

w1(x,y) = 0 

Also, we perturb w(x,y) from x1 = 0 and x2 = δ, where 0  that the 

corresponding solution is 

 
The change in the boundary deflection is 

∴ |w1(0,0) − w2(0,1)| → 0 as n → ∞. 

This is implies that there is a small change in the initial deflection. The corresponding 

change in solution is as follows: 

n→∞ |w1(x,y) − w2(x,y)| = lim 

 

n→∞ muˆδo(x,y) + (1 − (1 − λ)m)cosh(p|y|2 − k2)sin(nδ2 )| 

lim |0 − (1 − λ) 
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|w1(.,1) − w2(.,1)| → 0 as n → ∞. 

The above regularized solution meets all the three conditions of well-posedness. 

Hence, using the iterative regularization method, the Helmholtz equation with Cauchy 

boundary conditions where boundary deflection is equal to zero is well-posed in the 

sense of Hadamard. 

We show for a number of boundary conditions, which when imposed on 

Helmholtz equation cannot be solved by the iterative regularization method. Firstly, 

we impose Cauchy boundary conditions with boundary deflection not equal to zero 

on Helmhotz equation. The regularized solution is obtained as 

 

where α is the regularization parameter and m is the number of iterations. Equation 

(1.4) has no solution since it faces the same problem as the previous methods 

discussed above. Hence, by an iterative regularization method, equation (1.4) is ill-

posed in the sense of Hadamard. The Helmholtz equation with imposed Neumann 

boundary conditions in the upper half-plane yields a similar result the one above. 

In summary, the Tikhonov regularization method, spectral regularization method, 

quasi-reversibility regularization method, quasi-boundary value method and iterative 

regularization method regularize Helmholtz equation which imposed both Dirichlet 

and Cauchy boundary conditions where the boundary deflection is homogeneous. 

These methods of regularization cannot solve Helmholtz equation with Cauchy 

boundary conditions where the boundary deflection is inhomogeneous. In addition, 

Neumann problem in the upper half-plane for the Helmholtz equation cannot be 

regularized by any of the above discussed method of regularization.  
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Chapter 3 

Regularized Neumann, Cauchy 

problems of Helmholtz Equation 

In the previous chapter, we showed that Helmholtz equation with Cauchy boundary 

conditions where boundary deflection is not equal to zero none of the existing 

methods of regularization can be used to restore the well-posedness of the equation. 

In addition, these existing methods of regularization cannot be used to solve ill-posed 

Helmholtz equation with Neumann boundary conditions in the upper halfplane. 

Therefore, the three requirements of existence, uniqueness and continuous 

dependence of small changes in the these boundary conditions do not hold. Hence, 

these existing methods of regularization are insufficient and inefficient for solving 

illposed Helmholtz equation with imposed Cauchy boundary condition where 

boundary deflection is inhomogeneous as well as Neumann boundary conditions in 

the upper half-plane. 

In this chapter, we introduce a Divergence Regularization Method (DRM) to solve 

ill-posed Helmholtz equation with Cauchy boundary conditions where the boundary 

deflection is not equal to zero. This method enables the solution of Helmholtz equation 

with Neumann boundary conditions in the upper half-plane. Thirdly, the DRM solves 

Helmholtz equation with both Dirichlet and Cauchy boundary conditions where the 

boundary deflection is homogeneous. Lastly, we show that our regularized Helmholtz 

equation meets all the three conditions of well-posedness in the sense of Hadamard. 
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3.1 Divergence Regularization Method for Regularizing 

Cauchy Problem for Helmholtz Equation 

In this section, we present some background information regarding the 

propoundment of the DRM in Hilbert space, and the basic ideas of divergence theorem. 

When the Helmholtz equation is imposed with Cauchy boundary conditions where the 

boundary deflection is inhomogeneous then the analytic function in a neighbourhood 

of the hyper-surface is not well-posed. To see this, consider Cauchy problem, in which 

initial data; w(x,0) and wy(x,0), are specified on the characteristic curve C in the (x,y)-

plane for the Helmholtz equation. Both the Cauchy’s boundary data and the 

coefficients that appears in the Helmholtz equation can be expanded as power series 

in the neighbourhood of C. We see that the coefficients of second partial derivative and 

higher order derivatives of w(x,0) (with respect to y) do not vanish on C, on the 

grounds that higher derivatives can be deduced from the Helmholtz equation and 

construct their power series solutions (King et al., 2003). 

As a consequence, the Cauchy problem of the Helmholtz equation is inconsistent 

as the boundary data propagate into the (x,y)-plane on the characteristic curve. In 

addition, any function obtained from the Cauchy problem depends on only the 

boundary conditions that lie between the two characteristics through (x,y)-plane. 

Moreover, the discontinuities in the higher order derivatives of w(x,0) can propagate 

on characteristic curves (King et al., 2003). 

Thus, all the three conditions of well-posedness according to Hadamard are 

violated. Even the Helmholtz equation with C∞(Ω) boundary data and Cauchy’s 

analytic result does not guarantee the existence of the solution as well as uniqueness. 

These Cauchy data are provided on the arc of the boundary ∂Ω instead of the entire 

boundary of the domain Ω. 

In order to restore well-posedness of Helmholtz equation with Cauchy boundary 

conditions where the boundary deflection is inhomogeneous, we introduce the DRM. 

First, we extend the arc of the boundary (hyper-surface) ∂Ω to the whole entire 
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boundary of the domain Ω. Thus, we quadraturize the boundary of the domain of 

Cauchy data to piecewise smooth boundary of two disjoint complementary parts. The 

following theorems and definitions are useful in proposing the DRM. 

Definition 3.1 (Quadrature domain) A bounded domain in Euclidean space R2 is called 

a quadrature domain if there is a signed (Borel) measure µ, with compact support in Ω, 

such that 

h(x)dx = Z hdµ 

Ω 

for every integrable (harmonic) function h on Ω (Gardiner and Sjo¨din, 2000). 

Thus, a bounded domain Ω ∈ R2 is a quadrature domain if there exists finitely many 

points x1,...,xm and the coefficients ckj ∈ R2 such that 

m nk−1 

 w(x,y)dA = ckjw(x,y)j(ak), w(x,y) Ω, 

 Ω Xk=1 Xj=0 ∀ ∈ 

where dA denotes area measure. The above expression is called a quadrature identity 

and 

 

is the order of the quadrature identity. The ak are the (partial) derivatives of w(x,y) at 

ak (Gardiner and Sj¨odin, 2000). 

Theorem 3.1 Every positive function on a quadrature domain Ω is integrable on Ω 

(Gardiner and Sj¨odin, 2000). 

Corollary 3.1 If Ω is a quadrature domain with respect to a signed measure µ with 

compact support in Ω, then it is also a quadrature domain with respect to some positive 

measure with compact support in Ω (Gardiner and Sjo¨din, 2000). 

Z 

Z 
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Theorem 3.2 (Divergence theorem) Let Ω denote a bounded region in R2 with a 

smooth boundary ∂Ω with 

N = N(x,y) 

denoting the unit outward-normal vector to ∂Ω. Then for a smooth-valued function 

, 

we have 

 div w(x,y)dxdy = Z w(x,y) · NdS 

 Ω ∂Ω 

Duchateau and Zachmann (1989). 

Proof : See Duchateau and Zachmann (1989). 

Theorem 3.3 A necessary condition for the existence of a solution of the Neumann 

problem 

∂2w(x,y) 

 
∂x2 

+  

∂w(x) 

 
∂n 

= g(x) on ∂Ω 

is 

g(x)dx = 0 

∂Ω (King 

et al., 2003). 

Proof : We integrate the above homogeneous Helmholtz equation over the 

boundary of the domain ∂Ω and apply the divergence theorem to the Laplace operator 

that occurs in the Helmholtz equation to obtain the result. Thus, 

 ∇2w(x,y)d2x = Zn.∇w(x,y)dx = Z g(x)dx = 0. 

 Ω ∂Ω ∂Ω 

∂ 2 w ( x,y ) 

∂y 2 k 2 w ( x,y )=0 in Ω 

Z 

Z 

Z 



 

80 

Definition 3.2 (Scalar) Let w(x,y) ∈ L1loc(R2) and a fixed η ∈ R+, η is called a scalar with 

respect to x if 

wη,0(x,y) = w(ηx,y) 

Muthukumar (2013). 

DRM entails the introduction of the term 

(1 + α2m)em 

as a regularization term, where α ∈ (−∞,−1)∪(1,∞) is the regularization parameter 

and m ∈ Z+ is a positive integer, and then, combine with w(x,y) as another variable 

(unknown function) in the divergence theorem. We show that this term regularizes 

the Helmholtz equation as well as Cauchy boundary conditions by restoring the 

stability of the equation. We then apply the Green’s first identity to the Laplace 

operator of (1 + α2m)em and w(x,y) appearing in the Helmholtz equation. This produces 

piecewise smooth boundary of two disjoint complementary parts ∂Ω1 and ∂Ω2 with 

w(x,0) and ∂w∂y(x,l) are prespecified on ∂Ω1 and w(l,y) and ∂w∂x(0,y) on the rest 

of the boundary of the domain. 

The DRM ensures that Helmholtz equation with Cauchy boundary conditions 

where the boundary deflection is inhomogeneous has a solution. Thus, when the 

inhomogeneous boundary deflection becomes zero, we scale the x− co-ordinate by an 

even positive integer η. This scalar η ensures that the periodic function at x 

inhomogeneous boundary deflection becomes zero. Also, homogenization of 

inhomogeneous boundary deflection in Cauchy boundary conditions by a positive 

integer scale together with applications of divergence theorem and Green’s first 

identity ensures the uniqueness of solution of the regularized Helmholtz equation. 

The result is then written as an equation with regularized Cauchy boundary 
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conditions. Hence, the name divergence regularization method. We state the DRM 

theorem for Helmholtz equation with imposed Cauchy boundary conditions in Ω ∈ H: 

Theorem 3.4 (Divergence Regularization Method) Let Cauchy boundary conditions 

be imposed on Helmholtz equation where the boundary deflection is inhomogeneous as: 

 ∂2w(x,y) + ∂2w(x,y) + k2w(x,y) = 0 in Ω 

∂x2 ∂y2     

  ∂w(x,0) 

 
∂y 

= h(x) on ∂Ω 

  w(x,0) = 0 on ∂Ω 

where, 

 h(x)dx = 06, 

∂Ω 

then the regularized Helmholtz equation with regularized Cauchy boundary conditions 

is given below: 

∂2wη,0(x,y) + ∂2wη,0(x,y) + (1 + α2m)−1e−mk2w (x,y) = 0,

 in Ω 

∂x2   ∂y2 η,0  

∂wη,0(x,l) 

 
∂y 

= (1 + α2m)−1e−mh(ηx), on ∂Ω1 

 

wη(x,0) = 0, on ∂Ω1 (3.1) 

∂wη,0(0,y) 

 
∂x 

= 0, on ∂Ω2 

 

wη,0(l,y) 

where 

= (1 + α2m)−1e−mh(y), on ∂Ω2,  

Z 
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h(ηx)dx = 0, 
∂Ω1 

∪ (1,∞) is the regularization parameter, m ∈ Z+ is h(x) = 06 , h(y) = 06 , α ∈ (−∞,−1) 

a positive integer, k as the wave number, [0,l] is the square domain with l is a radian 

number and η is any even positive integer. 

Proof : We write the linear homogeneous Helmholtz equation as 

∇ · (v∇w(x,y)) + k2w(x,y) = 0 

By the dot product and product rule, we obtain 

∇ · (v∇w(x,y)) + k2w(x,y) = ∇w(x,y) · ∇v + v∆w(x,y) + k2w(x,y) = 0 

Integrating both sides over Ω, we obtain 

ZZ ∇ · (v∇w(x,y))dxdy + ZZ k2w(x,y)dxdy 

 Ω Ω 

= ZZ ∇w(x,y) · ∇vdxdy + ZZΩ v∆w(x,y)dxdy + ZZΩ k2w(x,y)dxdy = 0 

Ω 

In order to restore the stability of the equation, we substitute v = (1 + α2m)em into the 

above equation which yields 

 0 + ZZ (1 + α2m)em∆w(x,y)dxdy + ZZ k2w(x,y)dxdy = 0 (3.2) 

 Ω Ω 

Applying Green’s first identity to the first term of equation (3.2), we obtain 

Z 
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We then scale the x− co-ordinate of the unknown function w(x,y) of the above 

equation by a factor η. This scalar makes the trigonometric function at 

inhomogeneous boundary deflection of Helmholtz equation becomes zero, which 

when integrated over the boundary of the domain. 

 
We see that the above regularized Helmholtz equation together with the regularized 

Cauchy boundary conditions is written as: 

∂2wη,0(x,y) +

 ∂2wη,0(x,y)

 2m)−1e−mk2w (x,y) = 0, in Ω + (1 + α 

  = (1 + α ) e h(ηx), on ∂Ω 

∂x2  ∂y2 η,0 

∂wη,0(x,l) 2m −1 −m 

∂y   1 

wη,0(x,0) = 0, on ∂Ω1 

∂wη,0(0,y) 

 
∂x 

= 0, on ∂Ω2 

wη,0(l,y) = (1 + α2m)−1e−mh(y), on ∂Ω2, 



 

84 

3.1.1 Existence and Uniqueness of Regularized Helmholtz Equation 

with regularized Cauchy Boundary Conditions 

In this section, we show that the regularized Helmholtz equation with regularized 

Cauchy boundary conditions, equation (3.1), has a solution and also demonstrate that 

the solution of regularized Helmholtz equation together with regularized boundary 

conditions is unique. 

To prove that there exists a solution to equation (3.1), we show that the 

inhomogeneous boundary deflection satisfies theorem (3.1). In equation (3.1), we can 

see that 

(1 + α2m)−1e−mh(ηx)dx, 
∂Ω 

since η is any positive integer which makes periodic function h(ηx) to take ±1 for 

sin(nx) values and zero for cos(nx), depending on the non-zero endpoint of the 

boundary, which in effect h(ηx) becomes zero, we obtain 

 (1 + α2m)−1e−m × 0 dx = Z 0dx 

 ∂Ω ∂Ω 

 = constant = 0 

By theorem (3.3), equation (3.1) has a solution. 

We prove that the DRM provides a unique solution of regularized Helmholtz 

equation together with regularized Cauchy boundary conditions as follows. 

Theorem 3.5 (Uniqueness) Suppose that Ω denotes a rectangular domain whose 

boundary consists of two disjoint, complementary parts ∂Ω1 and ∂Ω2. Let h(ηx) and h(y) 

denote given data functions, then equation (3.1) has at most one smooth solution. 

Proof : Suppose that equation (3.1) has two different smooth solutions denoted by 

uη,0(x,y) and vη,0(x,y). Also, we let 

Z 

Z 
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wη,0(x,y) = uη,0(x,y) − vη,0(x,y) 

and be the solution of equation (3.1). 

  = (1 + α ) e

 (h (ηx) h (ηx)) 

Multiplying both sides of 

equation (3.1) by wη,0(x,y) and 

integrating over a domain Ω, we obtain 

 ∂2wη,0(x,y) ∂2wη,0(x,y) 

 wη,0(x,y)  2 dxdy +

 wη,0(x,y)dxdy 

 ZZΩ ∂x ZZΩ ∂y2 

 + ZZ (1 + α2m)−1e−mk2|wη,0(x,y)|2dxdy = 0. (3.3) 

Ω 
Applying the Green’s first identity to the first two terms on the left hand side of 

equation (3.3), we obtain 

ZZ wη,0(x,y)∆wη,0(x,y)dxdy 

Ω 

= 

 
 

− ZΩ |∇wη,0(x,y)|2dxdy 

wη,0(x,0) = uη,0(x,0) − vη,0(x,0) 

wη,0(x,0) = 0 

∂wη,0(x,l) 

 
∂y 

=  

∂wη,0(x,l)  2m −1 −m 

∂y 
  1 − 2 

wη,0(l,y) = uη,0(l,y) − vη,0(l,y) 

wη,0(l,y) 

∂wη,0(0,y) 

 
∂x 

= 

= 
 

∂wη,0(0,y) 

 
∂x 

= 0. 

∂u 
η, 0 ( x,l ) 

∂y 
− 

∂v 
η, 0 ( x,l ) 

∂y 

(1+ α 2 m ) − 1 e − m ( h 
1 ( y ) − h 

2 ( y )) 

∂u 
η, 0 (0 ,y ) 

∂x 
− 

∂v 
η, 0 (0 ,y ) 

∂x 

Z 

∂ Ω 1 
w η, 0 ( x, 0) 

∂w η, 0 ( x,l ) 

∂y 
dx + 

Z 

∂ Ω 2 
w η, 0 ( l,y ) 

∂w η, 0 (0 ,y ) 

∂x 
dy 
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 = 0 × (1 + α2m)−1e−mh(ηx)dx 

∂Ω1 

 + (1 + α2m)−1e−mh(y) × 0dy − ZZΩ |∇wη,0(x,y)|2dxdy 

∂Ω2 

 = 
0 − ZZΩ |∇wη,0(x,y)|2dxdy 

ZZ wη,0(x,y)∆wη,0(x,y)dxdy 

Ω 

= −ZZΩ |∇wη,0(x,y)|2dxdy (3.4) 

Substituting equation (3.4) into equation (3.3) yields 

 ∂2wη,0(x,y) ∂2wη,0(x,y) 

 wη,0(x,y)  2 dxdy +

 wη,0(x,y)dxdy 

 ZZΩ ∂x ZZΩ ∂y2 

+ ZZ (1 + α2m)−1e−mk2|wη,0(x,y)|2dxdy = −ZZ |∇wη,0(x,y)|2dxdy 

 Ω Ω 

+ ZZ (1 + α2m)−1e−mk2|wη,0(x,y)|2dxdy 

Ω 

 0 = −ZZ |∇wη,0(x,y)|2dxdy + ZZ (1 + α2m)−1e−mk2|wη,0(x,y)|2dxdy 
 Ω Ω 

In the above equation, it follows that 

  

(1 + α2m)−1e−mk2 ZZ |wη,0(x,y)|2dxdy 

Ω 
= 0 

⇒ wη,0(x,y) 

and 

ZZΩ |∇wη,0(x,y)|2dxdy =

 0 ⇒ ∇wη,0(x,y) = 0 

= 0 in Ω 

 ⇒ wη,0(x,y) = constant = 0 in Ω 

Also, we observe that 

Z 

Z 
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|∇wη,0(x,y)| = 0 on ∂Ω2 

⇒ wη,0(x,y) 

and 

= constant = 0 on ∂Ω2 

h(ηx) = 0 on ∂Ω1 

|∇wη,0(x,y)| = 0 

⇒ wη,0(x,y) = constant = 0 on ∂Ω1 

Thus, wη,0(x,y) is smooth and zero in the domain Ω and its boundary ∂Ω. This implies 

that 

uη,0(x,y) = vη,0(x,y). 

Hence, equation (3.1) has only one smooth solution. 

By applying the Divergence Regularization Method to equation (1.3) by choosing 

η = 4 to restore well-posedness of that equation. The regularized form of equation 

(1.3) together with regularized Cauchy boundary conditions is given as follows: 

∂2w4,0(x,y) + ∂2w4,0(x,y) + (1 + α2m)−1e−mk2w(x,y) = 0, 0

 x 2π, 0 y π 

∂x2   ∂y2 4,0 ≤ ≤ ≤ ≤ 2 

w4,0(x,0) 

∂w4,0(x, π2 ) 

∂y 

= 

= 

0, 0 ≤ x ≤ 2π 

1 

(1 + α2m)−1e−m  sin(4nx), 0 ≤ x ≤ 2π n 
(3.5) 

∂w4,0(0,y) 

 
∂x 

= 0,  

 

w4,0(2π,y) = 
,  

 



 

 

We split equation (3.5) into two independent equations as follows: 

∂2w4,0(x,y) 

 
∂x2 

+ 
, 

 

w4,0(x,0) 

∂w4,0(x, π2 ) 

∂y 

= 

= 

0, 0 ≤ x ≤ 2π 

0, 0 ≤ x ≤ 2π 

(3.6) 

∂w4,0(0,y)  π  

 = 0, 0 ≤ y ≤  

 ∂x 2 

2m)−1e−m 1 sin(ny), 0 ≤ y ≤ π w4,0(2π,y) = (1 

+ α 

 n 2 

and 

∂2w 

4,0(x,y) + ∂2wη,0(x,y) + (1 + α2m)−1e−mk2w(x,y) = 

0, 0 x 2π, 0 y π 

∂x2   ∂y2 η,0 ≤ ≤ ≤ ≤ 2 

w4,0(x,0) 

∂w4,0(x, π2 ) 

∂y 

= 

= 

0, 0 ≤ x ≤ 2π 

1 

(1 + α2m)−1e−m  sin(4nx), 0 ≤ x ≤ 2π n 
(3.7) 

∂w4,0(0,y) 

 
∂x 

w4,0(2π,y) 

= 

= 

π 

0, 0 ≤ y ≤ 2 

π 

0, 0 ≤ y ≤ 2 

 

∂ 2 w 4 , 0 ( x,y ) 

∂y 2 +(1+ α 2 m ) − 1 e − m k 2 w η, 0 ( x,y )=0 



 

 

We obtain the classical solution to equation (3.6) by the method of separation of variables 

as: 

 Y (y) = sin(ny), n = 1,3,... 

and 

 

When X0(0) = 0, we obtain 

 . 

Thus, 

 

When ), we obtain 

 

Using the orthogonality of eigenfunctions, we obtain 

 

Substituting the expression for cn into the above equation yields: 

 

In a similar manner, we obtain solution to equation (3.7) with 

w4,0(x,y) = 0 



 

 

as equation (3.6) since 

 

is orthogonal over [0,2π]. By the principle of superposition, we obtain solution to equation 

(3.5) as: 

 
We show that equation (3.5) satisfies the three requirements of well-posedness. 

First, we show that our regularized boundary deflection of equation (3.5) satisfies 

lemma (3.1). We can see from boundary deflection condition of equation (3.5) that 

2π 

 [ cos(4nx)] 0 

 1 2m)em .sin(4nx)dx = 4n2(1 

+1α2m)em − 2π 

 0 n(1 + α 

1 

 = 4n2(1 + α2m)em[ −1 + 1] 

 = 0 

Thus, lemma (3.1) is satisfied. We conclude that equation (3.5) has at least a solution. 

The proof of uniqueness of regularized equation (3.5), is similar to the proof of 

theorem (3.3) above. 

Finally, we demonstrate that regularized equation (3.5) is stable to small changes 

in the boundary condition. In equation (3.5), we choose  in the boundary 

condition ), where 0  . We obtain the 

regularized Helmholtz equation (3.5) together with new boundary condition as given 

below: 

 ,  

and the corresponding solution is as below: 

Z 



 

 

. 

We perturb from 

 ,  

to 

 ,  

where 0  with the corresponding solution as: 
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We observe the following inequalities: 

 

The change in the boundary condition is: 

 

This implies that there is a small change in the boundary condition. Moreover, we 

observe the corresponding change in the solution w(x,y) as: 

 

We observe that 

 
which yields 
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We can see that 

 (1 + α2m)−1e−m → 0 as m → ∞ 

⇒ lim |w1(x,y) − w2(x,y)| → 0 as m,n → ∞. m,n→∞ 

This implies that a small change in the boundary condition w4,0(2π,y) from to 

x2 = δ results in a small change in solution 

. 

Thus, the regularized equation (3.5) is stable. Hence, the regularized Cauchy problem 

for the regularized Helmholtz equation is well-posed. 

3.2 Regularized Helmholtz Equation with Neumann 

Boundary Conditions 

In this section, we regularize equation (1.4) together with its boundary conditions. 

We shift the x spatial variable to the right hand side by one. 

Let w(x,y) ∈ L1loc(R2) and for fixed numbers 1,0 ∈ R2, we introduce the shift 

operator: 

τ1,0w(x,y) = w((x + 1),y), 

substitute v = (1+α2m)em into equation (3.2) and applying Green’s first identity, we 

obtain 

 (1 + α2m)em ∂τ1,0w(0,y)dy + Z (1 + α2m)em ∂τ1,0w(2,y)dy 

 ∂Ω ∂x ∂Ω ∂x 

 + Z(1 + α2m)em ∂τ1,0w(x,0)dx + Z(1 + α2m)em ∂τ1,0w(x,1)dx 

Z 
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 ∂Ω ∂y ∂Ω ∂y 

 = 0 + ZZ (1 + α2m)em∆τ1,0w(x,y)dxdy + k2 ZZ τ1,0w(x,y)dxdy 

 Ω Ω 
We write the above equation in a form: 

∂2τ1,0w(x,y) 

 
∂x2 

+ 
, 

in Ω 

∂w(0,y) 

 
∂x 

= 
, 

on ∂Ω1 

∂w(x,0) 

 
∂y 

= (1 + α2m)−1e−m, on ∂Ω2 

∂w(x,1) 

 
∂y 

= (1 + α2m)−1e−mh(x), on ∂Ω2 

By divergence regularization method with shifting of x− spatial variable, the 

regularized form of equation (1.5) is as follows: 

∂2τ1,0w(x,y) 

 
∂x2 

+  

∂τ1,0w(0,y) 

 
∂x 

= , 0 ≤ y ≤ 1 

∂τ1,0w(x,0) 

 
∂y 

= (1 + α2m)−1e−m 0 ≤ x ≤ 2 (3.8) 

∂τ1,0w(x,1) 

 
∂y 

where 

= (1 + α2m)−1e−m cos(2πx) 0 ≤ x ≤ 2 

cos(2π(x + 1)) = cos(2πx). 

We split equation (3.7) into two independent equations as follows: 

∂ 2 τ 1 , 0 w ( x,y ) 

∂y 2 
+(1+ α 2 m ) − 1 e − m k 2 τ 1 , 0 w ( x,y )=0 

∂w (2 ,y ) 

∂x 
=0 

∂ 2 τ 1 , 0 w ( x,y ) 

∂y 2 +(1+ α 2 m ) − 1 e − m k 2 τ 1 , 0 w ( x,y )=0 , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 1 

∂τ 1 , 0 w (2 ,y ) 

∂x 
=0 
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∂2τ1,0w(x,y) +

 ∂2τ1,0w(x,y)

 2m)−1e−mk2τ w(x,y) = 

0, 0 x 2, 0 y

 1 + (1 + α 

 = 0 0 x 2 (3.9) 

 = (1 + α ) e cos(2πx) 0 ≤ x ≤ 2 

∂y 

and 

∂2τ1,0w(x,y) +

∂2τ1,0w(x,y) 

+ (1 + α2m)−1e−mk2τ w(x,y) = 0, 0 x 2, 0 y 1 

 =  = 0, 0 y 1 

 = (1 + α ) e 0 ≤ x ≤ 2 (3.10) 

∂y 

∂τ 

1,0w(x,1) = 0. 0 x 2 

 ∂y ≤ ≤ 

We obtain classical solution to equation (3.9) by the method of separation of 

variables as: 

∂x2 
  ∂y2 1,0 ≤ ≤ ≤ ≤ 

∂τ1,0w(0,y) 

 
∂x 

∂τ1,0w(x,0) 

= 

, 0 ≤ y ≤ 1 

∂y 
  ≤ ≤ 

∂τ1,0w(x,1) 2m −1 −m  

∂x2 
 ∂y2 1,0 ≤ ≤ ≤ ≤ 

∂τ1,0w(0,y) ∂τ1,0w(2,y) 

∂x ∂x  ≤ ≤ 

∂τ1,0w(x,0) 2m −1 −m  

∂τ 
1 , 0 w (2 ,y ) 

∂x 
=0 
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and 

 

When Y 0(0) = 0, we obtain 

 

When 

 n = 0 ⇒ λ = 0 

and 

 

Thus, 

For consistent system, we observe that 

co = 0 

and 

 

We obtain cn in the above equation in a similar manner. Thus, 
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 (3.11) 

where 

 

In a similar manner, we obtain solution to equation (3.9) as follows: 

 

By the principle of superposition, 

w(x,y)= Xn∞ (1 +cosh(α τ1y)cos(nπx2 )+ X∞ 

2sin(nπ)cosh(2τm1)(1em−sinh(y))cosτ1)(nπx2 ) 

2m)emτ 

 =1 1 sinh(τ1) n=1 nπ(1 + α 

w(x,y)= Xn∞=1 (1 +cosh(α2mτ1)ye)mcosτ1 sinh((nπx2 )τ1) (3.12) 

We show that equation (3.12) satisfies the three requirements of well-posedness. 

We first discuss the existence of solution to equation (3.8). We see from equation (3.8) 

that its coefficients are continuously differentiable. On the data compatibility 

condition, we observe that all the boundary conditions are zero except  

(1 + α2m)−1e−m and ). We can see that 

 
But we observe that 

. 
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Also, 

2 

2m)−1 cos(2πx)dx = (1 + α2m)−1 1 [ sin(2πx)] 20 

(1 + α 

 0 2π 

 = 0. 

Since the boundary conditions of equation (3.8) satisfy lemma (3.1), we conclude that 

the regularized equation (3.8) has at least a solution. 

We now show that the regularized equation (3.8) has only one solution. To see 

this, we suppose that equation (3.8) has two different smooth solutions denoted by 

τ1,0u(x,y) and τ1,0v(x,y). Also, we let 

wη,0(x,y) = τ1,0u(x,y) − τ1,0v(x,y) 

and be the solution of equation (3.8). 

  =

 0, 0 y

 1 

 = 0, 0 y 1 

  = 0, 0 x 2 

  = (1 + α ) e

 (cos(2πx1) − cos(2πx2)),0 ≤ x ≤ 2. 

∂y 

∂w(0,y) 

 
∂x 

∂w(0,y) 

= ∂u(0,y) 

 
∂x 

 

∂x 
   ≤ ≤ 

∂w(2,y) 

 
∂x 

∂w(2,y) 

= ∂u(2,y) 

 
∂x 

 

∂x 
  ≤ ≤ 

∂w(x,0) 

 
∂y 

∂w(x,0) 

= 

 

∂y 
  ≤ ≤ 

∂w(x,1) 

 
∂y 

=  

∂w(x,1)  2m −1 −m 

− 
∂v (0 ,y ) 

∂x 

− 
∂v (2 ,y ) 

∂x 

∂u ( x, 0) 

∂y 
− 

∂v ( x, 0) 

∂y 

∂u ( x, 1) 

∂y 
− 

∂v ( x, 1) 

∂y 

Z 
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Shifting the x− co-ordinate of equation (3.8) by 1, multiplying by τ1,0w(x,y) and 

integrating it over a domain [0,1] × [0,2], we obtain 1 2

 2τ1,0w(x,y) 1 2 ∂2τ1,0w(x,y) 

∂ 

 τ1,0w(x,y) 2 dxdy + τ1,0w(x,y)dxdy 

0 Z0 ∂x Z0 Z0 ∂y2 
1 2 

 + Z Z (1 + α2m)−1e−mk2|τ1,0w(x,y)|2dxdy = 0 

0 0 

Applying the Green’s first identity to the first two terms on the left hand side of 

above equation, we have 121 

∂w(0,y) 

τ1,0w(x,y)∆τ1,0w(x,y)dxdy = (1 + 

α2m)em dy 

000 ∂x 1 

∂w(2,y) + (1 + α2m)em dy 

0 ∂x 2 

∂w(x,0) 

 + (1 + α2m)em dx 

0 ∂y 2 

∂w(x,1) 

 + (1 + α2m)em dx 

0 ∂y 
1 2 

 −Z |∇τ1,0w(x,y)|2dxdy 

0 0 
1 2 

 = 0 − Z Z |∇τ1,0w(x,y)|2dxdy 

 0 0 
1 2 1 2 

Z 

Z Z Z 

Z 

Z 

Z 

Z 
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 Z τ1,0w(x,y)∆τ1,0w(x,y)dxdy = −Z Z |∇τ1,0w(x,y)|2dxdy 

0 0 0 0 

Thus, 

1 2 ∂2τ1,0w(x,y)1 2  ∂2τ1,0w(x,y) 

∂x2 dxdy + 0 Z0 τ1,0w(x,y) Z τ1,0w(x,y) 

∂y2 dxdy 

0 0 
1 21 2 

 +Z (1 + α2m)−1e−mk2|τ1,0w(x,y)|2dxdy = −Z Z

 |∇τ1,0w(x,y)|2dxdy 

0 0 0 0 
1 2 

 +Z (1 + α2m)−1e−mk2|τ1,0w(x,y)|2dxdy 

0 0 
1 2 1 2 

0 = −Z |∇τ1,0w(x,y)|2dxdy + Z Z (1 + α2m)−1e−mk2|τ1,0w(x,y)|2dxdy 

0 0 0 0 

In the above equation, it follows that 
1 2 

 (1 + α2m)−1e−mk2Z  |τ1,0w(x,y)|2dxdy = 0 

 0 0 

 ⇒ τ1,0w(x,y) = 0 in [0,2] × [0,1] 

and 

1 2 

 ⇒ ∇τ1,0w(x,y) = 0 

Z 

Z Z 

Z 

Z 

Z 

Z 
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 Z

 |∇τ1,0w(x,y)|2dxdy = 0 

 0 0 

Thus, τ1,0w(x,y) is smooth and zero in the domain Ω and its boundary ∂Ω. This implies 

that 

τ1,0u(x,y) = τ1,0v(x,y) 

Hence, equation (3.8) has only one smooth solution. We conclude that equation (3.12) 

is the only solution to the regularized equation (3.8) 

Lastly, we show that equation (3.8) is stable to small changes in the boundary 

deflection ∂τ1,0∂yw(x,1). In equation (3.8), we choose , where 0

 

is any value in the interval [0,2]. We obtain regularized equation (3.8) together 

with new initial deflection 

 ) 0 ≤ x ≤ 2 

and the corresponding solution is 

 

We perturb the boundary deflection from 

 

to 

, 

 and the corresponding solution is 

 ⇒ τ1,0w(x,y) = 

Also, we observe that 

constant = 0 in [0,2] × [0,1] 

|∇τ1,0w(x,y)| = 0 on ∂Ω2 

⇒ τ1,0w(x,y) = 0 on ∂[0,2] 

Z 
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The change in the boundary deflection is: 

 

But 

, 

which in turn, implies that 

. 

Hence, there is a small change in boundary deflection. 

We discuss corresponding change in the solution w(x,y) as 

 

Thus, the regularized equation (3.8) is stable to the small changes in the initial 

deflection. Hence, the regularized Neumann problem for the Helmholtz equation is 

well-posed in the sense of Hadamard. 

3.3 Regularized Helmholtz Equation with Cauchy and 

Dirichlet Boundary Conditions where the 

Boundary Deflection is equal to zero 

In this section, we regularize equation (1.22), as well as its boundary conditions. We 

obtain boundary conditions in a different form. Applying Green’s first identity to 

equation (3.2), we obtain the following boundary conditions: 
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 w(0,y) = w(2π,y) = 0, 0 ≤ y ≤ 1 

1 

 w(x,0) = n(1 + α2m)em sin(nx),0 ≤ x ≤ 2π 

∂w(x,0) 

 = 0, 0 x 2π, 

 ∂y ≤ ≤ 

We obtain classical solution to equation (3.5) together with the above boundary 

conditions by the method of separation of variables as: 

 (3.13) 

We show the existence of solution to regularize equation (3.5) with the above 

boundary conditions. We see that equation (3.5) satisfies definition (1.3) On the data 

compatibility condition, we observe that 

, 

Thus, lemma (3.1) is satisfied. Therefore there exists a solution to regularize equation 

(3.5) together with the above boundary conditions. 

The proof that equation (3.5) together with above boundary conditions has only 

one solution, follows the proof of theorem (3.3). We conclude equation (3.13) is the 

only solution to the regularized equation (3.5) with the above boundary conditions. 

Lastly, we show that the regularized equation (3.5) is stable to small changes in 

boundary condition w(x,0). In equation (3.5), we choose , in w(x,0), where 

. We obtain a new boundary condition 

 

with the corresponding solution 

. 



 

104 

We perturb from 

 

to 

 

where 0 and the corresponding solution is 

. 

We observe the change in the boundary condition as 

 

Thus, there is a small change in boundary condition. 

The corresponding change in the solution w(x,y) is given below. 

 
We observe that 

(1 + α2m)−1e−m → 0 as m → ∞, 

so that the numerator 

. 

Also, we observe that 
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, 

the expression 

1 

 
n2(1 + α2m)emπ 

decays faster than the growth of , 

. 

This implies that a small change in the boundary condition w1(x,0) to w2(x,0) brings a 

small change in the solution. Thus, equation (3.5), together with the above boundary 

conditions is stable. The equation (3.5) together with the above boundary conditions 

satisfies all the three conditions of well-posedness. Hence, equation (3.5) together 

with above the boundary conditions is well-posed in the sense of Hadamard. 

In summary, the divergence regularization method DRM regularizes Cauchy 

problem of Helmholtz equation by introducing a regularization term (1 + α2m)em, 

which restores the stability of the equation, and then, applies Green’s first identity to 

Laplace operator of (1 + α2m)em and w(x,y) appearing in the Helmholtz equation. This 

produces piecewise smooth boundary of two disjoint complementary parts ∂Ω1 and 

∂Ω2 where, w(x,0) and ∂w∂y(x,l) are prespecified on ∂Ω1 and w(l,y) and 

. 

Finally, this method incorporates an even positive integer scale η in x-coordinate 

of the unknown function w(x,y) which makes the inhomogeneous boundary 

deflection in Cauchy boundary conditions zero. This η depends on the kind of periodic 

function imposed on inhomogeneous boundary deflection in Cauchy boundary 

conditions, as well as, non-zero endpoint of the boundary of the domain. 

We observe that when ) is imposed at boundary deflection in the Cauchy 

problem of Helmholtz equation, we obtain 
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then the regularized Helmholtz equation is obtained by a similar procedure, except 

that, we choose scaling factor η = 2. We see from the above that, non-zero endpoint of 

boundary of the domain is π/2, so we choose η = 2. That is, the denominator of the 

non-zero endpoint of the boundary of the domain. The regularized equation is given 

below: 

∂2w2,0(x,y) 

 
∂x2 

+ ∂2w2,0(2x,y) 2m)−1e−mk2w2,0(x,y) = 
0, + (1 + α 

∂y 

π 

0 ≤ x ≤ π, 0 ≤ y ≤  

2 

w2,0(x,0) 

∂w2,0(x, π2 ) 

∂y 

= 

= 

0, 0 ≤ x ≤ π 

1 

(1 + α2m)−1e−m  cos(2nx), 0 ≤ x ≤ π n 

∂w2,0(0,y) 

 
∂x 

= 0,  

w2,0(π,y) = 
,  

But if, ), is imposed at boundary deflection in the Cauchy problem of Helmholtz 

equation, then we choose η = 4 instead of 2. 

In conclusion, we observe that when ) is imposed at boundary deflection 

in Cauchy problem of Helmholtz equation, then we choose η = 2m, whereas when 

) is imposed then we choose η = m, where m is denominator of the non-zero 

endpoint of the boundary of the domain in the Cauchy boundary conditions. The DRM 

regularizes ill-posed Helmholtz equation with periodic function such as sin(nx) and 

cos(nx) imposed at boundary deflection in the Cauchy problem. 
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In regularizing Neumann problem of Helmholtz equation we make use of a shifting 

operator τ1,0 of x coordinate of unknown function w(x,y), regularization term (1 + 

α2m)em and then apply Green’s first identity. That is, the DRM solves 

Aw(x,y) = f 

where the null space 

N(A) = {w : Aw(x,y) = 0} 

is not trivial. 

Unlike other methods of regularization discussed in the previous chapter, the new 

DRM regularizes Cauchy problem of the Helmholtz equation where the boundary 

deflection is inhomogeneous, as well as Neumann problem for Helmholtz equation in 

the upper half-plane. Moreover, the DRM regularizes both Dirichlet and Cauchy 

problems of the Helmholtz equation where boundary deflection is homogeneous.  
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Chapter 4 

Adaptive Wavelet Spectral Finite 

Difference Method for Regularized 

Helmholtz Equation 

In the previous chapter, we introduced a DRM for solving ill-posed Helmholtz 

equation with Cauchy boundary where the boundary deflection is not equal to zero, 

Neumann boundary conditions in the upper half-plane and both Dirichlet and Cauchy 

boundary conditions, where boundary deflection is equal to zero. The analytic 

solutions provided for problems in the previous chapter are not easy to compute and 

require a lot of computational time owing to the complexity of the functions. Also, the 

Fourier transform or series method analyzes the global regularity of the solutions to 

the regularized Helmholtz equation with regularized boundary conditions only in the 

frequency domain. The solution functions are made of infinite number of terms. 

We seek solutions to the regularized Helmholtz equation that are fast and require 

less computational effort to execute as compared to other methods. The well-known 

quantitative methods such as finite-difference method, finite element method, finite 

volume method, Euler method, do not give time-domain information on the 

regularized equation but rather fail to include boundary information when the 

domain is irregularized by partition. Irregular partitioning of the domain enables us 

to assess the regularity of the solutions of the equation being sought. 

In this chapter, we introduce Adaptive Wavelet Spectral Finite Difference (AWSFD) 

method to obtain the approximate solutions to equations (3.5), (3.8) and (3.5) with 

both Dirichlet and Cauchy boundary conditions where the boundary deflection is equal 
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to zero. In addition, we give the interpolation scheme in the AWSFD method which 

approximates the solution of the regularized Helmholtz equation. 

This chapter is divided into three main sections; section 4.1 gives the brief account 

on the wavelets and their properties, section 4.2 contains the Adaptive Wavelet Finite 

Difference Method for solving the regularized Neumann, Cauchy and both Cauchy and 

Dirichlet problems of Helmholtz equation. In section 4.3, we provide the analysis of 

solutions of regularized Helmholtz equation by DRM and by AWSFD method. We also 

compare the results by DRM with other regularization methods. 

4.1 Overview of wavelets 

The wavelet method for solving the type of equation considered earlier is efficient, 

fast and above all provides time-frequency information on the regularized Helmholtz 

equation. This method analyzes the pointwise regularity of the solutions being sought 

for the regularized Helmholtz equation with Cauchy or Neumann boundary 

conditions. Moreover, in the wavelet method, the partial sums of the series converge, 

irrespective of the order of terms that are taken for approximation. These series are 

unconditional bases for Ω ⊂ H subspace. Moreover, wavelet methods of 

approximation includes the boundary of the domain in approximating the solution of 

the regularized Helmholtz equation. 

Definition 4.1 (Wavelet) A family of functions constructed from the translation and 

dilation of a single function ψ(x), is called the mother wavelet 

, 

where j is the dilation/scaling parameter which measures the degree of compression or 

scale, and k is the translation parameter which determines the time location of the 

wavelet 

(Debnath and Shah, 2015). 
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The compressed versions and high frequencies of the mother wavelet are 

observed when the modulus of the scaling parameter is less than one. As the scale 

decreases, the resolution in the time domain decreases (finer), whereas that in the 

frequency domain increases (coarser). On the other hand, if the modulus of the scaling 

parameter is equal or greater than one, then the mother wavelet is stretched and low 

frequecies are observed. The function or the signal becomes coarser in the time 

domain and finer in the frequency domain as the scaling parameter increases. These 

variations in the two domains are determined by the Heisenberg uncertainty 

principle. These wavelet functions are called first generation wavelets. The 

construction of any of these wavelet functions satisfies the so-called multiresolution 

analysis MRA. 

Definition 4.2 (Multiresolution Analysis) Let {φok} be an orthonormal system in 

L2(R). The sequence of spaces {Vj, j ∈ Z}, generated by φ(x) is called a multiresolution 

analysis MRA of Ω ⊂ H if it satisfies the following properties: 

1. Vj ⊂ Vj+1, j ∈ Z 

2. [ Vj = L2(R) 

j∈Z 

3. ∩j∈ZVj = {0} 

4. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 

5. f(x) ∈ Vj ⇔ f(x − k) ∈ Vj,∀ k ∈ Z 

6. there exists a function φ(x) (called scaling function or 

father wavelet) such that 

φj,k(x) = 2j/2φ(2jx − k), k ∈ Z 
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constitute an orthonormal basis for corresponding subspace Vj 

(Urban, 2009). 

The following theorem is key to our results which will follow. 

. 

First generation wavelet methods have been applied successfully over the last two 

decades to obtain closed form solutions to partial differential equations. See for 

example, [1,2,50,61,83]. Irregular sampled data points on the regularized Helmholtz 

equation cannot be approximated by any of the first generation wavelet methods. 

Recently, the second generation wavelets have been introduced by (Sweldens, 1996). 

These wavelets are a generalization of biorthogonal wavelets, which are desirable for 

applications to regularized Helmholtz equation whose solutions are sought on a 

general domain than Rn. Thus, they are suitable for irregular grids or intervals. All the 

properties of the first generation wavelets are maintained in the second generation 

wavelets with the exception of the translation and dilation properties. These wavelets 

can generally be constructed by the use of lifting scheme which facilitates the 

calculation of wavelet filters; high pass and low pass, in turn, gives wavelet algebraic 

equation. Unlike the first generation wavelets, second generation wavelets are 

endowed with dual multiresolution analysis 

M˜ = {V˜j ⊂ L|j ∈ J}. 

The spaces V˜j, are spanned by dual scaling functions φ˜jk, which are biorthogonal to 

the primal scaling functions. The scaling functions φjk are expressed as 

φjk = X hjk,jφjl+1, 

l∈Kj+1 

where, hjk,j are the filter coefficients [59]. Studies such as [75,76,77,80] have made use 

of second generation wavelets to obtain approximate solutions of variants of partial 
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differential equations. Apart from the MRA, the wavelet functions must meet the 

following conditions. 

A wavelet is be said to admissible if, 

, 

where ˆω is the Fourier transform of ω(x). If ψ(x) ∈ L2(R), then ψj,k(x) ∈ L2(R) for all j,k 

∈ Z. The corresponding norm of the wavelet is 

2 = |j|−1∞ |ψ(x −j 
k)|2dx kψj,k(x)k 

−∞ 

=∞ |ψ(x)|2dx 

−∞ 

 = kψk 

and its Fourier transform is given by 

 ψj,kˆ(ω) = |j|−1/2 Z ∞ |e−iωxψ(x −j k)|2dx 

−∞ 

 = |j|1/2e−ikωψˆ(jω) 

(Stark, 2005). 

Secondly, the wavelet must satisfy the vanishing moment. 

Definition 4.3 The kth vanishing moment of a wavelet is defined as 

, 

where k ≥ 0. For example, see (Beylkin, 1992). 

Z Z 
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The vanishing moments indicate the flatness at both ends of the wavelet function 

on the defined domain. The greater the number of vanishing moments, the fewer the 

wavelet coefficients needed for the approximation of the regularized Helmholtz 

equation, and faster the convergence of the approximated solution (wavelet series) 

in Ω ⊂ H. The regularity of the wavelet function, as well as, localization property 

cannot be overemphasized. The admissibility condition of the wavelet function 

together with smoothness and localization properties gives rise to another desirable 

property called bandpass filters. These bandpass filters also determine the rapid 

decay of the frequency response as ω approaches infinity. 

4.2 Adaptive Wavelet Spectral Finite Difference Method 

for solving the Regularized Neumann, Cauchy and 

both Cauchy and Dirichlet Problems of Helmholtz 

Equation 

A number of wavelet functions have been introduced for obtaining approximate 

solutions of equations. Traditional wavelet functions such as morlet, mallat, maxican 

hat, etc are not supported compactly. Another undesirable property of these wavelet 

functions is the complexity of the calculation of wavelet coefficients needed for the 

construction of approximate solution to a regularized Helmholtz equation. The 

wavelet functions with compact support are simple and easier in usage for the 

construction of orthonormal solutions in Ω ⊂ H. 

The compactly supported wavelet functions like B-splines 

 

where 

); 

for n ∈ Z+ 
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are Cn−1(Ω) functions. This implies that B-spline wavelets have n − 1 degrees of 

regularity which are proportional to the number of their vanishing moments. The 

Franklin wavelet and the Battle-Lemari´e wavelet are second and nth order of Bspline 

wavelets, respectively. Haar wavelet function is not continuously differentiable on 

[0,1) [7,11,18,36,40,49]. Constructions of approximated solution with compact 

support involve construction of connection coefficients. 

In order to obtain approximated solutions for the regularized Helmholtz equation, 

together with the above regularized boundary conditions, we make use of wavelet 

function with high degree of regularity defined on compact support and many 

vanishing moments. The desirable property of vanishing moments depend on the 

smoothness and support of the wavelet function. The smoother the wavelet function, 

the greater the number of vanishing moments, the lesser the number of wavelet 

coefficients needed for the construction of orthonormal solutions, and the faster the 

convergence of approximated solutions in Ω ⊂ H. 

A Daubechies wavelet function of order N has the largest number of vanishing 

moments which are compactly supported on [0,2N − 1]. Moreover, the high number 

of vanishing moments lead to high compressibility of orthonormal solution in Ω ⊂ H. 

With the use of Daubechies wavelet function, we can include the boundary 

information of the domain in obtaining the approximate solution of the regularized 

Helmholtz equation. 

Owing to the properties of the Daubechies wavelet function, we use it in the 

Adaptive Wavelet Spectral Finite Difference (AWSFD) method to obtain approximate 

solutions of regularized Helmholtz equation. In addition, we give the interpolation 

scheme for the AWSFD method, which approximates Daubechies scaling function. 
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The unknown function w(x,y) of regularized Helmholtz equation is approximated 

as a linear combination of integer shifts of the Daubechies scaling functions. Thus, 

w(x,y) is approximated as piecewise polynomials of degree (N − 1) in Ω ⊂ H. The 

function w(x,y) is represented as a limit of successive approximations, each of which 

is a finer version of the previous approximations. Each successive approximation 

corresponds to a different level of resolution (scale). 

Definition 4.4 (Daubechies wavelets) For N ∈ N, a Daubechies wavelet of class 

D2N is a function ψ = ψN ∈ L2(R) defined by 

, 

where ho,...,h2N−1 are constant filter coefficients satisfying the condition 

 

as well as, for l = 0,1,...,N − 1, 

 

and where φ =N φ : R → R is the (Daubechies) scaling functions, given by 

 

and satisfying 

 φ(x) = 0, forx ∈ R\[0,2N − 1] 

as well as 

ZR φ(2x − k)φ(2x − l)dx = δk,l, 

where 

  1, k = l 
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δk,l = 

  0, k 6= l 

(Andreas de Vries, 2006). 

Thus, Daubechies wavelets are defined in terms of their scaling functions. These 

(scaling) functions determine the nature of the wavelet function. The area under the 

scaling functions is normalized to be one. That is, 

. 

The scaling function φ(x) and its translates are orthonormal and the wavelet function 

ψ(x) has N vanishing moments. 

From the definition of Daubechies wavelet, we need additional formulae for the 

calculation of constant filter coefficients for the implementation of the AWSFD 

method to obtain the approximated solution of regularized equation with above 

regularized boundary conditions. We state the following definitions, theorems and 

lemmas which would be incorporated in the AWSFD method to obtain closed form 

solutions to regularized Helmholtz equation with above regularized boundary 

conditions. 

Theorem 4.1 For any scaling function φ(x) ∈ L2(R) the following conditions are 

equivalent: 

(i) The system 

{φ0,n = φ(x − n), n ∈ Z} 

is orthonormal. 

(ii) 

 , (4.1) 
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almost everywhere a. e.(Debnath and Shah, 2015). Proof: By 

Fourier transform, we have 

 φ0,n(x) = φ(x − n) 

 = e−inωφ(ω) 

Applying Parseval relation for the Fourier of the inner product of two different scaling 

functions, we have 

 hφ0,n,φ0,mi = hφ0,0,φ0,m−ni 

1 

 = 2πhφˆ0,0,φˆ0,m−ni 

 1 ∞ 

 =  Z e−i(m−n)ω · |φˆ(ω)|2dω 

2π −∞ 

 1 ∞ 2π(k+1) 

 =  X Z e−i(m−n)ω · |φˆ(ω)|2dω 

2π 2πk k=−∞ 

 1 2π ∞ 

 =  e−i(m−n)ω φˆ(ω + 2πk) 2dω 

 2π Z0 
· 

kX=−∞ | | 

Thus, it follows from the completeness of 

{e−inω, n ∈ Z} 

in L2(0,2π) that 

hφ0,n,φ0,mi = δn,m, 

if and only if 
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Theorem 4.2 (Biorthogonality) For any two functions φ(x), ψ(x) ∈ L2(R), the set of 

functions 

{φ0,n = φ(x − n), n ∈ Z} 

and 

{ψ0,n = ψ(x − n), n ∈ Z} 

are biorthogonal, that is, 

 hφ0,n,φ0,mi = 0, ∀n,m ∈ Z 

if and only if 

 ,a.e 

Proof: See Daubechies (1992). 

Lemma 1 Suppose that equation (4.1) holds then the Fourier transform of the scaling 

function φ(x) satisfies the following condition: 

, 

where 

  (4.2) 

is a 2π−periodic function and satisfies the orthogonality condition 

|mˆ(ω)|2 + |mˆ(ω + π)|2 = 1, a.e (4.3) 
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(Burrus et al., 1998). 

Proof: Let φ(x) ∈ v1 and define 

 

is an orthonormal basis for v1. The scaling function φ(x) can be written as 

, 

where 

ck = hφ(x),φ1,ki 

and 

. 

Applying the Fourier transform of the above equation yields 

 φˆ(ω) = √1 ∞ cke−ikω2 φˆ( ω) 

 2 kX=−∞ 2 

 φˆ(ω) = mˆ(ω)φˆ(ω). 

 2 2 

We have obtained result for the first part of our claim. To prove for result in equation 

(4.3), we substitute the above equation into equation (4.3) which yields 

 
Since the functions ˆm(ω) and φˆ(ω) are 2π-periodic functions, the results also hold 

for multiples of ω. Substituting ω by 2ω into the above equation, we obtain 

. 



 

120 

Separating the above infinity sum into even and odd integers and applying 

2π−periodic property of the function ˆm(ω), we obtain 

(4.4) 

Theorem 4.3 If φ(x) ∈ Cm, support φ(x) ⊂ [0,N − 1], and 

, 

then (N − 1) ≥ m + 1. 

Proof: See Daubechies (1992). We 

can see from equation (4.2) that 

mˆ(π) = 0, 

implies that ˆm(ω) has a factor at ω = π and 

mˆ(0) = 1. 

Also, we can see that the infimum of the inequality in theorem (4.3) implies that ψ(x) 

∈ CN(Ω). It follows from definition (4.3) that Daubechies wavelet of order N has N 

vanishing moments. We can write equation (4.2) as a generating function 
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, (4.5) where, Lˆ(ω) is 2π−periodic function in CN(Ω). We then 

derive a polynomial equation of order N − 1 to generate Daubechies scaling functions. 

Using equation (4.3), we obtain 

 

where, |Lˆ(ω)|2 is a polynomial of the form 

|Lˆ(ω)|2 = R(cosω) 

and 

|Lˆ(ω + π)|2 = R(−cosω). 

We can see from above equation that 

) (4.6) 

where 

. 

and 

. 

Hence, 

P(y) ≥ 0. 
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The polynomial PN−1(y) of order N − 1 is insufficient on the grounds that there is 

no formula to generate its values. In order to evaluate the values of polynomial 

PN−1(y), we derive a algebraic polynomial of degree N − 1. Thus, 

 

Substituting n = 2N − 1 − k as an index in the second term of the right hand side, we 

obtain 

 N−1 2N 1 N−1 2N 1 

where 

1 

1 

1 

= 

= 

= 

Xk=0N 1 −k (1 − y)ky2N−1−k + Xn=0  −N k1 (1 − y)2N−1−nyn 

 − 2N 

yNN XkN=0 1  −
k1 (1 −Ny)NkyN1−1−k + (1 − y)N Xn=0−  2N −k1 (1 − y)N−1−nyn 

y P − (1 − y) + (1 − y) P − (y), 
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  (4.7) 

PN−1(y) is a polynomial of degree N − 1 (Walnut, 2002). 

The equations (4.6) and (4.7) generate Daubechies scaling coefficient in manner 

that 

(−1)kh2N−1−k = 2δk,l 

We provide the main procedure of AWSFD method for obtaining the 

approximated solutions to equations (3.5), (3.8) and (3.5) with both Dirichlet and 

Cauchy boundary conditions where the boundary deflection is zero. The AWSFD 

method, is a composite method comprising finite difference, Daubechies wavelet 

function and spectral analysis. We begin with equation (3.5) as follows: 

The AWSFD method involves two different ways of discretization; the 

discretization of one of the independent variables in the Helmholtz equation followed 

by the discretization of the other independent spatial variable using suitable wavelet 

basis. Algebraic equations (4.12) and (4.14), are obtained after the Helmholtz 

equation has been discretized twice. Both equations are used to obtain the 

approximated solution of the Helmholtz equation. The coarser equation (4.12) is 

obtained when i =6 k, which acts as an initial approximation for the equation (4.14) 

at a finer scale j + 1. The equation (4.14) is performed recursively to obtain the 

approximated solution of the Helmholtz equation. 

Thus, the current approximated solution wj,k(x,y) is a scaled version of the 

previous approximations. By MRA, 

m 

Vm+1 = V0 M(MWm) 

m=0 
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At each level of scale j, we calculate the Daubechies scaling filter coefficients to a 

desirable order N using equations (4.6) − (4.7) and then substitute these values into 

equation (4.10) to obtain approximated solution at that scale. 

Moreover, unlike other adaptive wavelet approximations, we introduce 

interpolation scheme in the AWSFD method to mimic the approximation errors. We 

introduce AWSFD method to obtain the numerical solution of equation (3.5). By this 

method, we obtain 

 w(x,y) = w4,0(x,y) 

 and β = (1 + α)−2me−mk2 

in equation (3.5) which yields: 

 

We discretized w(x,y) at n points of y− spatial window [0, ] into M + 1 equally 

spaced samples with 

π 

 0 = yo < y1 < ... < yM =  

2 

π 

 ∆y = yj+1 − yj = . 

2M 

using difference quotient, we obtain 

 wj+1(x) − 2w∆jy(2x) + wj−1(x) + d2dxw(2x) j(x) = 0 

+ βw 

 wj+1(x) + (η 2)wj(x) + wj−1(x) +  = 0, (4.8) 
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η d2wj(x) 

where ∆x is the spatial interval between two sampling points. We then project wj(x) 

in a V0 space as 

 , (4.9) 

where wkj(ξ) are approximation coefficients. Substituting wj(ξ) and x = ∆xξ into 

equation (4.8), we obtain 

 

where, 

. 

Multiplying the above equation by φ(ξ − i), where i = 0,1,...,n − 1 and taking the 

inner product with φ(ξ − k), we obtain 

 ∞ j+1 2π/∆x 

= wk (ξ)Z0 φ(ξ − k)φ(ξ − i)dξ k −∞ 

 ∞ j 2π/∆x 

 ⇒ − β 

where, 

ϑ = β∆y2. 

Let 

ξ = 0,1,...,n − 1 

be the sampling points, then 

x = ∆xξ, 

dx2 

X 
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 + (ϑ − 2) kX= wk(ξ)Z0 φ(ξ − k)φ(ξ − i)dξ 

−∞ 

 ∞ j 1 2π/∆x 

 + k= wk− (ξ)Z0 φ(ξ − k)φ(ξ − i)dξ 

−∞ 

 ∞ j 2π/∆x 

 + γ kX= wk(ξ)Z0 φ00(ξ − k)φ(ξ − i)dξ = 0. 

−∞ 

By definition (4.4), we can see from the above equation that 

 

or 

 

where, Ω  are second-order connection coefficients defined as 

 

and its n × n second-order derivative circulant connection coefficients matrix is: 

  Ω−2 1Ω−2 2 ··· 0 ··· Ω2N−3 ··· Ω02  

Ω20 

2i k  Ω21 

Ω = ... 
− 

Ω2 1 − 

Ω20 

... 

··· 

··· 

... 

Ω2 N+2 − 

Ω2 N+3 − 

... 

··· 

···... 

Ω2N−2 

0 

... 

··· 

··· 

... 

Ω21  

Ω22  

... (4.10) 

 

X 
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from the above equation. For the evaluation of second-order connection coefficients 

see appendix 3. 

For the sake of consistency, we change the subscript of  to match Ωi−k. 

Thus, 

  (4.11) 

or 

 
We see from equation (4.11) that 

γ = 06 

 ⇒ 
i+XN−2 2 wij−k = 0 

Ωi−k 
k=i−N+2 

Thus, we have 

−N+2 

det( X γΩ2r − λI) = 0 (4.12) 

r=N−2 

 and wrj =6 0, 

where r = i−k which is an initial approximation for equation (4.14). where λ are the 

eigenvalues of a matrix containing elements Ω2r and wrj are associated eigenvectors. I 

is an n × n identity matrix. 

Several methods like circular convolution method, penalty function method have 

been proposed for treating the boundary conditions. For example, see [25,34,38]. 
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In this work, the ghost point wrj−1 is approximated from the y−spatial boundary 

condition as   

 = 
 

⇒ wrj−1 = 
 

⇒ wrj+1 = wrj−1, ∀ sin(4nx) = 0. 

Substituting wrj−1 into the above equation yields 

. 

For j ≥ 1, we obtain 

 (4.13) 

For second and subsequent approximations, we use the expression on the right 

hand side of equation (4.13) without the negative sign which gives 

 

where, 

r=XN−2 

We use equation (4.14) to approximate the solution of the regularized Helmholtz 

equation with Cauchy boundary conditions where the boundary deflection is 

inhomogeneous. The approximated solution of the regularized Helmholtz equation is 

obtained by increasing the level of resolution j. 

0 < γ < 1 

−N+2 wrj 
> 0 

w j +1 
r − w j − 1 

r 
2∆ y 

w j +1 
r 

− 
β ∆ y 

k 2 
n 

sin(4 nx ) 
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Also, we implement an interpolation scheme into AWSFD method as follows. We 

write equation (3.5) as a polynomial of degree p − 1 for wj(ξ) in the neighbourhood of 

ξ = 0. Thus, we rewrite equation for wj(ξ) as 

p−1 

wj(ξ) = Xcjξj (4.15) 

j=0 
Applying inner product of the expressions on both left and right hand sides of 

equation 

(4.15) with φ(ξ − i), we obtain 

 2π/∆x p−1 2π/∆x 

0 wj(ξ)φj(ξ − i)dξ = Xj=0 cj Z0 ξjφj(ξ − i)dξ 

p−1 

 wij(ξ) = Xj=0 cjµij(ξ), i = −1,−2,...,−N + 2 (4.16) 

where, 

 

are the moments of the scaling function. Since there is no explicit formula for 

calculating Daubechies scaling functions, we use an interpolation scheme obtained 

from equation (4.16). The values of the interpolant at location φj(ξ − i) would be 

constructed as a polynomial P2N−1(τ) of order (2N − 1) on the values of the function at 

location  and evaluate them as w(ξkj+1). Thus, 

, (4.17) 

Z 
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where Bk,lj is the Daubechies scaling coefficients and N is the order of Daubechies 

scaling function. 

In order to obtain adaptive wavelet solution of equation (3.5), we solve equation 

(4.16) recursively. First, we approximate the left hand side equation (4.16) by the 

boundary conditions of equation (3.5) with respect to ξ, and the right hand side by 

the substitution the values of µji(ξ), given by the equation (4.17), into equation (4.16), 

which gives the constant coefficients c0js. Thus, 

 w−jj 1   µ00 1 µ11 1 ···

 µpp−−111  c0  − − 

 − = −... −... ... . 

 w 2  0 Nµ+22 1 Nµ+22 ··· pµN−1−+22.. 

 pc1...  

... 

  wj N+2 µ µ ··· µ−− c −1 

 − − − 

We can solve the above matrix as 

c = A−1wij(ξ), 

where A−1 is an n × n inverse matrix of 
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. 

We then compute wij(ξ) as 

. (4.18) 

as a second iteration. The associated matrix is of the formula 

 

The left hand side of the above matrix is obtained using the finite difference 

scheme of wij+1(τ). The are then substituted into equation (4.15) for 

i = n,n + 1,...,n + N − 2 

to derive the matrix for 

 

as 

 

The approximation coefficients are substituted into equation (4.12) to obtain the 

connection coefficients. 
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In equations (3.8) and (3.5) with Cauchy boundary conditions, where the 

boundary deflection is equal to zero, we discretize x spatial variable by difference 

quotient instead of y spatial variable, project the result orthogonally in V0 space and 

then find the inner product with φ(ξ−k) to obtain two algebraic equations for k =6 i 

and k = i. The equations are solved spectrally. 

In a nutshell, the AWSFD method approximates regularized Helmholtz equation 

together with either Cauchy boundary conditions or Neumann boundary conditions 

in the upper half-plane or both Cauchy and Dirichlet boundary conditions (where 

boundary deflection is zero) with minimum error. Unlike other wavelet methods, this 

method approximates the regularized equation by first discretizing the one of the 

spatial variables which obtains of ODEs and then project the discretized equation 

orthogonally in appropriate space Vj using Daubechies scaling function. This provides 

two sets of system of algebraic equations. We solve the first equation spectrally and 

the result is substituted into the second equation. 

4.3 Numerical Results 

In this section, we provide the numerical solution of equation (3.5), (3.8) and (3.5) 

together with both regularized Cauchy and Dirichlet boundary conditions where the 

boundary deflection is homogeneous. We compare the analytic solutions of the 

regularized Helmholtz equation by DRM with wavelet solutions by the AWSFD 

method. 

All plots of the solutions by DRM, as well as solutions by AWSFD method are obtained 

using matlab. 

In figure 4.1, we display the solution of the regularized Helmholtz equation with 

regularized Cauchy boundary conditions where the boundary deflection is 

inhomogeneous in two dimensions co-ordinates. The regularized solution w(x,y) of 

the regularized Helmholtz equation increases slowly as n increases with other 
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parameters held constant. In figure 4.2, we display a similar graph of solution of the 

regularized Helmholtz equation by increasing n = 5, and finally perturbing α from 2 

to 50 in figure 4.3. 

 

Figure 4.1: Regularized Helmholtz equation with regularized Cauchy boundary 

conditions for n = 3, α = m = k = 2 in two dimensions co-ordinates 
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Figure 4.2: regularized Helmholtz equation with regularized Cauchy boundary 

conditions for n = 5, α = m = k = 2 in two dimensions co-ordinates  
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Figure 4.3: regularized Helmholtz equation with regularized Cauchy boundary 

conditions for n = 3, α = 50, m = k = 2 in two dimensions co-ordinates 

We perform similar analysis of equation (3.5) in one dimension co-ordinate, we 

plot w(.,y) against y with spatial variable x at equilibrium as shown in figure 4.4. We 

observe that the solution of regularized Helmholtz equation w(.,y) grows slowly as 

the spatial variable y increases with other parameters held constant. These solutions 

become asymptotically to x as m becomes large. 
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Figure 4.4: The solution of regularized Helmholtz equation with regularized Cauchy 

boundary conditions for n = 3 α = m = k = 2 in one dimension co-ordinate 

We perform the quantitative analysis of equation (3.8). In figures (4.5) and (4.6), 

we analysis the regularized Helmholtz equation in two dimensions co-ordinates and 

one dimension co-ordinate, respectively. We see from figure 4.5 that changes in both 

spatial variables x and y result in small changes in solution w(x,y). Similar trends are 

shown in figure 4.6, which confirms the stability of the regularized solution. Also, we 

observed that varying the values of m, of the regularization parameter α, leads to the 

stability of the regularized solution of the regularized Helmholtz equation, see figure 

4.7. 
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Figure 4.5: Solution of regularized Helmholtz equation with regularized Neumann 

boundary conditions for n = 3 in two dimensions co-ordinates 

The solutions of equation (3.5) with both Dirichlet and Cauchy boundary 

conditions where the boundary deflection is homogeneous in two dimensions co-

ordinates are shown in figure 4.8. We display similar solution in one dimension co-

ordinate by plotting w(.,y) against y with x held at equilibrium, see figure 4.9. The 

regularized solution w(.,y) starts at approximately zero increases slowly to 

approximately 0.03. 

The growth of the regularized solution becomes very slow as n increases. 
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Figure 4.6: Solution of regularized Helmholtz equation with regularized Neumann 

boundary conditions in one dimension co-ordinate for n = 3 

In order to confirm the analytic solutions by DRM, we give the quantitative 

solutions of equations (3.5), (3.8) and equation (3.5) together with both Dirichlet and 

Cauchy boundary where boundary deflection is homogeneous by ADSFD method. 

Firstly, we display solutions by AWSFD method of equation (3.5). In figure 4.10, we 

display the initial approximated solutions by equation (4.12) and equation (4.14), 

respectively. We observe that solution given by equation (4.12) starts at 

approximately 2.5 and ends 4.4, whereas solution given by equation (4.14) starts 

increases steady from 0.2 and grows steadily to about 1.2. In figure 4.11, we compare 

the solutions by AWSFD method at different resolution levels (j = 10,11,12) with 

regularized solution by DRM for k = m = α = 2 and n = 3. 

By AWSFD method, the approximated solution gets better as the resolution level 
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Figure 4.7: Comparison of solutions of regularized Helmholtz equation with 

regularized Neumann boundary conditions for different values of m 

increases. Thus, solution at j = 11 is better than solution at j = 10 and so on. At each j 

+ 1 resolution level, equation (4.14) is updated by the current resolution j. 

Comparatively, we observe that end points of solutions by AWSFD method do not 

grow sharply as that of the solution given by DRM. This is due to additive of the 

regularization term (1 + α)−2me−m in the equation (4.14) of the AWSFD method. 

Notwithstanding, the γ reduces the growth in the determination of eigenvalues in 

equation (4.12). 

Also, we perform similar analysis on equation (3.8) as follows. In figure 4.12, we 

display solution given by equation (4.12), which is the initial approximated solution 

for equation (4.14) in the space V0. We can see that the solution by equation (4.12) is 

slightly deviated from the solution given by equation (4.14) on the grounds that 

equation (4.12) does not involve the regularization term (1 + α)−2me−m. Secondly, 
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Figure 4.8: Solution of equation (3.5) together with both regularized Dirichlet and 

Cauchy boundary conditions for n = 4 in two dimensions co-ordinates 

equation (4.12) provides only approximated solution of the regularized Helmholtz at 

resolution level j = 0. For the sake of comparison, the solution by DRM and the 

solutions by AWSFD method, we display solutions by AWSFD method for resolution j 

= 10,11,12 and by DRM for m = n = k = α = 2, see figure 4.13. We observe that 

approximated solution by AWSFD method is better for a low level of resolution. 

Last but not least, we display the solutions of equation (3.5) together with both 

Dirichlet and Cauchy boundary conditions where the boundary deflection is 

homogeneous by AWSFD method. In figure 4.14, we display quantitative solutions of 

equation (4.12) and of equation (4.14) by AWSFD method and then compared with 

solution by DRM. We can see that an initial approximated solution given by equation 

(4.12) is farther away from the other two solutions. The first approximated solution 

by equation (4.14) of AWSFD method at resolution j = 1 (magenta) is close to so- 
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Figure 4.9: Solution of equation (3.5) together with both regularized Dirichlet and 

Cauchy boundary conditions for n = 4 in one dimension co-ordinate 

lution by DRM (red). The approximation by AWSFD is sharp. We then increase the 

resolution level of the AWSFD method from j = 1 to 2 and so, see figure 4.15. 

Comparatively, the solutions by AWSFD method draw close to solution by DRM as the 

resolution level increases from zero to one, two, three and four. 
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Figure 4.10: The regularized solution by DRM, initial approximated solution of 

equation (4.12) and solution of equation (4.14) with AWSFD method at j = 1 
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Figure 4.11: Comparison of the regularized solution by DRM and solutions using 

AWSFD method for j = 10,11,12 

 

Figure 4.12: Comparison of regularized solution by DRM, initial approximated 

solution by equation (4.12) and solution by equation (4.14) of AWSFD method at j = 

1 
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Figure 4.13: Comparison of solution by DRM and solutions by AWSFD method for 

6,7,8 

 

Figure 4.14: Comparison of the regularized solution by DRM, initial approximated 

solution given by equation (4.12) and solution given by equation (4.14) of AWSFD 

method at j = 1 
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Figure 4.15: Comparison of the regularized solution by DRM, initial approximated 

solution given by equation (4.12) and solution given by equation (4.14) 

Chapter 5 

Summary, Concluding Remarks and 

Suggestions for future work 

In this chapter, we summary the main findings of the thesis. We discuss the strengths 

of the DRM for solving ill-posed Helmholtz equations with Cauchy boundary 

conditions where the boundary deflection is inhomogeneous, then with Neumann 

boundary conditions in the upper half-plane and finally with both Dirichlet and 

Cauchy boundary conditions where the boundary deflection is homogeneous, and the 

AWSFD method for the above equations. We give a brief summary of the previous 

chapter whilst the most siginificant conclusions of each chapter are highlighted. 
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5.1 Outline of the Previous Chapters 

In this section, we summarize each of the four previous chapters. In chapter one, we 

showed the three kinds of boundary conditions, which when imposed on Helmholtz 

equation lead to ill-posedness. Thus, we proved that the Helmholtz equation with 

Cauchy boundary conditions has no solution. None of the three conditions of 

wellposedness according to Hadamard is satisfied. Secondly, we showed that 

Neumann problem of the Helmholtz equation has no unique solution. We then proved 

that when Helmholtz equation is imposed with both Cauchy and Dirichlet boundary 

conditions, a unique solution exists, but the solution does not depend continuously 

on the small changes in the boundary conditions. 

In the chapter two, we showed that the TRM, SRM, Q-RRM, Q-BVM and IRM cannot 

regularize the Cauchy problem of the Helmholtz equation where the boundary 

deflection is inhomogeneous, as well as Helmholtz equation with Neumann boundary 

conditions in the upper half-plane. We observed that neither the regularized 

Helmholtz equation nor the regularized solution by the use of these existing methods 

of regularization satisfy the Riesz representation theorem. In the case of both Cauchy 

and Dirichlet problems of the Helmholtz equation all the existing methods of 

regularization ensured that the inverse operator is continuous. Thus, these methods 

of regularization do not satisfy bounded inverse theorem. 

To circumvent the regularization of Cauchy problem of the Helmholtz equation 

where the boundary deflection is inhomogeneous, as well as Neumann problem, we 

showed in chapter three of the thesis that the (introduced) DRM regularizes both the 

Helmholtz equation and the imposed boundary conditions. We gave the DRM in 

theorem 3.3. The alternative characterization of the DRM theorem, theorem 3.3, in 

terms of the Laplace operator in the Hilbert space is as follows: 

Theorem 5.1 Let A : Ω ⊂ H → H be a (linear) Laplace operator in the Helmholtz 

equation from the subspace of a Hilbert space Ω into a Hilbert space H, where 

Aw(x,y) = 0, in Ω 
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∂w(x,0) 

with  

∂y 

= h(x) on ∂Ω 

w(x,0) = 0 on ∂Ω, 

and 

 h(x)dx = 06, 

∂Ω 

then the regularized Helmholtz equation with regularized Cauchy boundary conditions 

is: 

  =

 (1 + α ) e

 h(ηx), on ∂Ω 

h(ηx)dx = 0, 
∂Ω1 

h(x) = 06 , h(y) = 06 , α ∈ (−∞,−1) ∪ (1,∞) is the regularization parameter, m ∈ Z+ is a 

positive integer, k as the wave number, [0,l] is the square domain with l is a radian 

number and η is any even positive integer. 

Thus, using the DRM, we showed that the range of the operator R(A) is closed, the null 

space of the operator N(A) is trivial and the inverse operator 

A−1 : R2 → Ω 

is continuous. In other words, the operator A is a homeomorphism of Ω ⊂ R2 onto R2 

in the case of Cauchy problem of the Helmholtz equation. In the case of the Neumann 

problem of the Helmholtz equation, we established that 

Awη,0(x,y) = 0, in Ω 

∂wη,0(x,l)  2m −1 −m 

∂y   1 

wη(x,0) = 0, on ∂Ω1 

∂wη,0(0,y) 

 
∂x 

= 0, on ∂Ω2 

wη,0(l,y) 

where 

= (1 + α2m)−1e−mh(y), on ∂Ω2, 

Z 

Z 
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N(A) = 0 

and A−1 : R2 → Ω is continuous. Finally, we showed that when Helmholtz equation is 

imposed with both Cauchy and Dirichlet boundary conditions, A−1 : R2 → Ω is 

continuous with use of DRM. This satisfies closed graph theorem. 

The AWSFD method is shown chapter four to confirm the analytic solutions given 

by DRM. The solutions obtained using the AWSFD method were compared with the 

regularized solutions by DRM. At lower wavelet resolution, the solution by AWSFD 

method not close to the regularized solution, but as the wavelet resolution increases 

the solution becomes close to the regularized solution by DRM. 

5.2 Concluding Remarks 

We observed that the DRM solves the Cauchy problem of the Helmholtz equation 

where the boundary deflection is not equal to zero. The DRM employs a positive 

integer scaler η in x spatial variable of the unknown function w(x,y), which 

homogenizes the inhomogeneous boundary deflection in the Cauchy boundary 

conditions. The integer scaler η ensures the existence of solution to Helmholtz 

equation. The value of η depends on the periodic function such as sin(nx), cos(nx), as 

well as scalar multiplier of spatial variable (angle) imposed at inhomogeneous 

boundary deflection in Cauchy problem of the Helmholtz equation. The regularization 

term (1+α)−2me−m restores the stability of the Cauchy problem of Helmholtz equation. 

Homogenization of inhomogeneous boundary deflection in Cauchy boundary 

conditions by a positive integer scale together with applications of divergence 

theorem and Green’s first identity ensures the uniqueness of the solution of the 

regularized Helmholtz equation. 

In order to establish uniqueness of solution to the Neumann problem for the 

Helmholtz equation in the upper half-plane, the DRM employs shifting operator 

instead of a positive integer scale to shift the x spatial variable to a suitable fixed 
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number. On the other hand, the methods of regularization: TRM, SRM, Q-RRM, Q-BVM 

and IRM cannot solve Cauchy problem (where the boundary deflection is 

inhomogeneous) of Helmholtz equation, as well as Neumann problem in the upper 

half-plane of the Helmholtz equation. 

In the case of both Dirichlet and Cauchy boundary conditions (where the 

boundary deflection is equal to zero) of Helmholtz equation, all the above methods of 

regularization solve the problem. We observed that DRM provides the best 

approximated solution as compared with these existing methods of regularization. 

This is observed when a positive integer m of the regularization term (1 + α)−2me−m 

increases. The solution becomes consistent and stable. 

We observed that the coarser scale equation (4.12) of the AWSFD method does 

not give good approximated solution of equation (3.5). This coarser scale equation 

does not contain the regularization term (1+α)−2me−m. It leads to approximated 

solution only in resolution level j = 0. Equation (4.12) acts as an initial approximation 

for finer scaler equation (4.14), which results in the approximated solution of 

equation (3.5) by performing a series of iterations. Thus, equation (4.14) gives 

approximation at a finer scale j + 1. 

Using the AWSFD method, we solved the equations (3.5), (3.8) and equation (3.5) 

together with regularized Cauchy boundary conditions where the boundary 

deflection is equal to zero for Daubechies wavelet of order six (6) numerically. We 

observed that the solution by AWSFD method approximates the solution by DRM 

when the resolution level is increased, as well as, the regularization term (1 + 

α)−2me−m. At resolution j = 0, the solution by AWSFD method has a greater estimated 

error compared to the DRM. 

Our results show that the AWSFD method provides best approximation at a low 

wavelet resolution level for solving the Helmholtz equation with both Dirichlet and 

Cauchy boundary conditions where the boundary deflection is homogeneous and the 

Neumann boundary conditions in the upper half-plane and then by Cauchy boundary 
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conditions where the boundary deflection is inhomogeneous. This is due to the fact 

that in the case of both Dirichlet and Cauchy problems, where the boundary deflection 

is zero for the Helmholtz equation, we restored only the stability of the solution as 

compared with other discussed problems for the Helmholtz equation. 

Similarly, AWSFD method provides best approximation at a lower wavelet 

resolution level of Neumann problem for the Helmholtz equation in the upper 

halfplane than Cauchy problem where the boundary deflection is inhomogeneous for 

the Helmholtz equation on the grounds that we restored uniqueness and stability in 

the Neumann problem for the Helmholtz equation as compared with the non-

regularized Cauchy problem for the Helmholtz equation. 

5.3 Suggestions for future work 

Most of the stationary problems in acoustic are nonlinear in nature. These nonlinear 

problems have linear part which plays the central role in optimizing their solutions. 

We are of the view that the extension this work will help in the full understanding of 

the Helmholtz equation as a stationary process. 

Firstly, We intend to investigate the Cauchy problem of the Helmholtz equation 

where the boundary deflection is imposed with either transcendental function ln(x) 

or inverse trigonometric functions like sec(nx),cosec(nx), 0 ≤ x ≤ π. 

The well-posedness of the Cauchy problem of Poisson-Boltzmann equation in 

unbounded domain could be investigated by modifying the DRM. 

We intend to investigate the regularization of p(x)-Laplace equation with Cauchy 

boundary conditions where the boundary deflection is inhomogeneous.  
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Appendix 1 

matlab code solving Helmholtz equation. 

script file α =input(’α’); k=input(’k’); 

n=input(’n’); r=linspace(a,b,20) t = 

linspace(c,d,20) [x,y] = meshgrid(r,t) p = 

(1/(1+ α(2∗m) ))*exp(-m); p1= sqrt(n-

p*k); f=(1+ α(2∗m))*exp(m); d = 

(1/d).*cosh(p1*x)*sin(n*y); surf(x,y,z)  
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Appendix 2 

matlab code for calculating connection coefficients The 

function of [cc2] = concoeff(L,o,γ,e) 

M=L/2; a=zeros(1,L-1); 

D = (factorial(2 ∗ M − 1)/(factorial(M − 1) ∗ (4(M − 1))))2; for 

i=1:2:L-1 m=(i+1)/2; 

a(i) = ((−1)(m − 1)) ∗ D/(factorial(M − m) ∗ factorial(M + m − 1) ∗ i); end 

b2=zeros(L-1,L-1); for l=0:L-2 if 

2*l¡=L-2 

i = 2 ∗ l;b2(l + 1,i + 1) = 2n; end 

for k=1:L/2 i l=2*l-2*k+1; 

if i l < = L-2 and i 1 > = 0 i=i l; 

b2(l + 1,i + 1) = b2(l + 1,i + 1) + (2(n − 1)) ∗ a(2 ∗ k − 1); elseif 

i 1 > = - L+2 and i 1 < 0 i=-i l; 

b2(l + 1,i + 1) = b2(l + 1,i + 1) + ((−1)n) ∗ (2(n − 1)) ∗ a(2 ∗ k − 1) b2(l 

+ 1,i + 1) = b2(l + 1,i + 1) + (2(n − 1)) ∗ a(2 ∗ k − 1); elseif il > = -L+2 

and il < 0 

i=-i l; 

b2(l + 1,i + 1) = b2(l + 1,i + 1) + ((−1)n) ∗ (2(n − 1)) ∗ a(2 ∗ k − 1); end 

i 2 =(2*l+2*k-1); 

if i 2 < = L-2 and i 2 > = 0 

i = i 2; 

b2(l + 1,i + 1) = b2(l + 1,i + 1) + (2(n − 1)) ∗ a(2 ∗ k − 1); else 

if i 2 > = -L+2 and i 2 < 0 i=-i 2; 
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b2(l + 1,i + 1) = b2(l + 1,i + 1) + ((−1)n) ∗ (2(n − 1)) ∗ a(2 ∗ k − 1); end 

end end for g=1:L-1 b2(g,g)=b2(g,g)-1; end r=null(b2); 

NM = sqrt2; for i=2:L-1 [a,b] = eig(γb2); 

m=length(b) ; for j=1:m g(j)=g(j) d 

=abs(sum(a(:,e))) ; y= a1*exp(g(j)*x) k = k 

+ ((i − 1)n) ∗ r(i); cc2 = ((−1)n) ∗ r ∗ 

factorial(n)/(2 ∗ NM); end end 

Appendix 3 

Connection coefficients of order two 

Let the 2nd order connection coefficients be 

 

By the definition of 2nd order derivative of the scaling function 

. 

Substituting the second-order derivative of the scaling function into equation for 

second order connection coefficients, we obtain 

 

Integrating by substituting u = 2y, we obtain 

 N−1 N−1 2x−i 

Xi=0 Xj=0 

∆2k 

∆2k 

= 

= 

2 aiaj Z φ2(u − 2k − j + i)φ(u)du Xi=0 Xj=0 0 

N−1 N−1 

2 aiaj∆22k+j−i(2x − 1) 


