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ABSTRACT 

This research investigated agricultural land use change in the lowlands of Southern Mali 

under climate variability. Four supervised classification techniques, Classification and 

Regression Tree (CART), Support Vector Machine (SVM), Random Forest (RF) and 

Gradient Tree Boosting (GTB) in Google Earth Engine (GEE), were used for the image 

classification. An integrated Cellular Automata-Artificial Neural-Network (CA-ANN) 

within the MOLUSCE plugin of QGIS was used for future Land Use and Land Cover 

prediction. The Mann-Kendall test, Sen’s slope, Pettit-test and change-point detection 

analyse were applied for climate variability assessment. Monthly rainfall and mean 

temperature extending over a period of 61 years (1960–2020) recorded at Sikasso District 

were analysed. Annual rainfall varied between 800 mm to 1600 mm and annual mean 

temperature ranged between 25 oC to 28 oC. Seasonal rainfall ranged between 37-387 

mm, March-April-May (MAM), 400-1030 mm, June-July-August (JJA), 77-577 mm 

September-October-November (SON) and 0-45 mm for December-January-February 

(DJF). Mean seasonal temperature ranged from 29 oC to 32 oC (MAM), 26.5 oC to 28.5 

(JJA) oC and 26 oC to 28 oC (SON). Annual and seasonal rainfall trends increased 

slightly. Temperature showed a significant increase in both annual and seasonal trends. 

Out of 395 respondents, 79 % were of the view that annual rainfall decreased while 83 % 

reported mean temperature increased. Again, respondents perceived late onset rainfall (97 

%), early cessation of rainfall (96 %), increased in drought (83 %) and flooding (96 %). 

Also, 43 % of respondents adopted new varieties to cope with climate variability. The 

findings showed that physical and socioeconomic driving forces had impact on terrain 

patterns. Over the past three decades, the study revealed that apart from cropland area 

which increased from 43.81 % to 52.75 %, the size of the other land uses decreased, 

forest cover (19.93 % - 13.93 %) shrubs (16 % - 14 %), and streams (6 % - 4 %). 

However, the forecast for the 2020 to 2030 predicted an increasing trend in forest cover 

and decreasing trend in agricultural land in the study area due to the ongoing afforestation 

projects. The study demonstrates the need to reinforce regional land management policies 

and programmes.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Background 

Climate change is the term used to describe notable alterations in global temperature, 

precipitation, wind patterns, and various other climate indicators that transpire over 

extended periods, typically spanning decades or more (IPCC, 2011).  From the pre-

industrial era to 2008, there was a notable rise in the atmospheric concentration of 

carbon dioxide, which increased from 278 to 387 parts per million. Throughout this 

period, there were annual variations in carbon dioxide concentration, with a general 

upward trend (Manning & Keeling, 2006). Over the past two decades, there has been 

a resurgence in greenhouse gas emissions. Specifically, between the 1990s and 2000-

2006, the rate of greenhouse gas emissions escalated from 1.3% annually to 3.3% 

annually (Canadell et al., 2007). These greenhouse gas emissions have led to global 

warming as well as the temperature of the earth's surface through radiation in the 

atmosphere, which has multiple consequences on human activities in general and 

agriculture in particular (Ciesla, 1995; FAO, 2013; US Environnemental Protection 

Agency, 2015). 

Projections indicate that climate change will have an impact on food security across 

the globe, as well as at regional and local scales (Unite State Environmental 

Protection Agency, 2015). The impacts of climate change can lead to disruptions in 

food availability, limitations in accessing food, and alterations in food quality (Brown 

et al., 2015). As an illustration, the anticipated rise in temperature, alterations in 

precipitation patterns, shifts in extreme weather occurrences, and decreased water 

resources can collectively result in a decline in agricultural productivity. The 

heightened frequency and intensity of extreme weather events can further disrupt the 

distribution of food, leading to more frequent instances of price spikes in the 

aftermath of such events. Additionally, elevated temperatures can contribute to the 

spoilage and contamination of food products. (Unite State Environmental Protection 

Agency, 2015). 

Mali, situated in the heart of West Africa, spans an extensive land area of 1,241,238 

square kilometers. Approximately half of the nation is encompassed by the Sahara 

Desert, with an annual precipitation average of not more than 200 mm. Mali has 

experienced a population growth rate of approximately 3% annually since 2009. (UN, 
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2014) with a total population of 14 million inhabitants in 2009 (RGPH, 2009). In 

2025, it was estimated that 25 million inhabitants, nearly half of whom are under 15 

years old, will face doubling need of food in the medium term (United Nations, 2013). 

The country's economy is mainly based on agriculture, accounting for 36% of Gross 

Domestic Product (GDP), which provides a livelihood for nearly 80% of the 

population (World Bank, 2021). However, this agriculture is vulnerable to climatic 

hazards, such as droughts which occurred in the 1970s and 1980s. Despite the 

increase in cereal production, Mali is still facing food and nutritional crises (CSA, 

1990). Thus, the Government of Mali, with the support of its partners, has 

implemented vast programmes and projects to develop irrigable land to improve 

yields, such as Malibya with 25,000 hectares in 2014 and impact of Rice Policies and 

Technologies on Food Security and Poverty Reduction (Commod Africa, 2018; 

Kindjinou, 2013). Despite these efforts, irrigable land is underutilised. For instance, 

only 25% of the 2.2 million hectares of irrigable land under total or partial control 

(FAO, 2020). 

Faced with these various constraints, recourse to irrigated farming in the South of the 

country seems to be an alternative with a potential of 2,200,000 irrigable hectares, 

where only 371,000 hectares benefit from water control (Samake et al., 2007). The 

government as well as private initiatives have sought to develop all the surfaces 

favourable for irrigation (Sudre, 2015). Among these high-potential areas are the 

lowlands, which are being increasingly developed, and the extreme south of the 

country (Sikasso region) has a concentration of the larger share of lowlands (Sudre, 

2015). It is in this context that several studies have been carried out to characterize the 

lowlands and highlight the potential of these areas (CBF, 1997; Albergel et al., 1993; 

Chabi et al., 2010; Oloukoi, 2016). However, the aspects of land-use change in these 

lowlands and the role of climate change in these changes have not been projected in 

order to assess the impact of climate change on land-use changes and possible 

scenarios in the short, medium and long term in the lowlands of the south of the 

country.  

 

1.2 Problem Statement 

Lowlands are areas of flat or concave bottomed lowlands (Ahouandjinou, 2004). They 

are considered to be small floodable valleys that collect runoff from the slopes 
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constituting the basic drainage axes (Ahouandjinou, 2004). These are axes of 

preferential convergence of surface waters, hypodermic flows and aquifers (Albergel 

et al., 1993). In sub-Saharan Africa, it is estimated that more than 200 million 

hectares of lowlands remain unexploited (Sonia and Joel, 2010). The lowlands present 

privileged geomorphological and agronomic conditions for increased agricultural 

production. They are places where there are better land and water conditions, making 

it possible to secure and increase the agricultural and animal production 

(Ahouandjinou, 2004). They are also in favour of the introduction of new 

speculations (arboriculture, market gardening, fodder crops, etc.), the diversification 

and development of fish farming, bee keeping, rural entrepreneurship (agricultural 

mechanization, processing, etc.), harvesting, handicrafts (Chabi et al., 2010; 

Kindjinou, 2013). Thus, the lowlands make it possible to ensure security and 

increased agrosylvopastoral production, while contributing to the diversification of 

the incomes of West African rural populations, due to the fertility of their soils and 

their hydromorphic characteristics (Kindjinou, 2013; Oloukoi, 2016). Under the 

combined effect of climate change with drastic consequences on projected agricultural 

productivity (Unite State Environmental Protection Agency, 2015), the strong 

demographic pressure leading to a doubling of food needs in general and for West 

Africa in particular, a shift in agricultural activities more and more towards the 

lowlands is witnessed (Oloukoi, 2016). It is in this context that we are witnessing a 

new change in the system of land use and occupation in the lowlands of West Africa 

in general and in Mali in particular.  

In Mali, this new change began with the projects and programmes for the 

development and reclamation of flood-prone and lowland lands between 1970 and 

1980 (Ahmadi et al., 1994). This dynamic was followed by other public actors (rural 

engineering, communities, the Malian company for textile development, and national 

and international organizations) and private actors (NGOs and other private 

initiatives) with more or less large areas; and since then it has continued to increase 

because of the relative cost of development and knowledge compared to other hydro-

agricultural developments (Neville et al., 1998). For example, the cost of 

development for the beneficiary farmers represents an investment in labour. For one 

hectare, 140 to 280 men are needed per hectare for a period of between twenty and 

forty days, that is, five months of work for a team of five farmers (accompanied by a 
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planner) for two working days per week (Neville et al., 1998). It is in this sense that 

research and development studies of the lowlands have been developed and carried 

out (Africa-Rice, CORAF-R3S, RAP, etc.). However, rare studies on this new change 

in land use and cover in these lowlands have been conducted as a result of climate 

change. 

 

1.3 Research Aim and Objectives 

The aim of the study is to model the change in agricultural land use in the lowlands of 

southern Mali under the effect of climate change.  

The specific objectives are to: 

1. Map the distribution of the lowland areas of southern Mali; 

2. Assess variability and trends of temperature, relative humidity and rainfall 

between 1960 to 2020 in the study area; 

3. Assess the dynamics of agricultural land use change for the period of 2000 to 

2020; and 

4. Model the changes of Land Use Land Cover (LULC) in these lowlands. 

 

1.4 Research Questions 

To address the above specific objectives, four research questions were raised as 

follows: 

1. What are the spatial distribution of lowlands of southern Mali? 

2. What is the variability and trends of temperature, relative humidity, and rainfall 

from 1960 to 2020? 

3. What are the dynamics of agriculture land use from 2015 to 2020? 

4. How will the change of land use in the lowlands be like over the next few years? 

 

To find solutions to the above mention research questions, the following techniques 

were deployed:  

a) Empirical Method for Field Measurements, GIS and Remote Sensing 

Analysis  

This involved GPS observations on the selected point of the various land cover 

and GIS and remote sensing analysis of images. This was deployed to answer 

research questions one, two and three. 
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b) Statistical Approach  

This was deployed to assess meteorological time series data and identify 

variability and trend of temperature and rainfall.  

This approach which involves Mann-Kendall test, Pettit test, slope Sen’s 

estimation and survey were utilised to:  

o Assess variability and trend of rainfall and temperature in LRB  

o Analyse the trend of change 

o Identifying change points 

o Assess farmer’s perception and adaptation strategies 

The above approach was used to answer research question two. 

c) Land Use Land Cover Modelling  

Cellar Automate-Artificial Natural Network (CA-ANN) were adopted to predict 

land use land cover change in Lotio River Basin (LRB). This includes  

o Support Vector Machine classification was used to analyse LULCC dynamics 

o Setting up, calibrating and validating the model 

o Using Artificial Neural Network (ANN) method to predict land use land cover 

change.  

The above was adopted to answer research questions three and four.  

 

1.5 Justification of study  

The LRB support livelihood of 725,494 of people. It offers food (crop and fish), water 

for domestic agricultural and industrial use, wastewater disposal, recreation natural 

resources, employment etc. Several activities such as urbanisation, agricultural 

expansion have immensely affected the land use and land cover dynamic of the LRB. 

Various hypotheses related to the problem encountered in this basin have been put 

forward as follows: 

o LRB has the high lowland potential; 

o Climate variability is increasing and farmers are understood the, adopt lot 

of techniques to face uses; 

o LULCC has a rapid dynamic and generate most consequences on water 

availability and degradations. 
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However, extensive research has not been carried out in LRB to holistically to 

understand the interaction within the basin in the analysis of the climate variability. 

This study is significant since it seeks to enhance the knowledge of the climate 

variability and trend which subsequently, show a capacity for measuring changes in 

the driving forces that control climate changes. The study additionally gives statistics 

significant on climate variability, trend of rainfall and temperature, especially in link 

to farmers perception and adaptation strategies. The study can valuable in addressing 

challenges affecting environmental development and sustainability of the naturel 

resources within the basin. In perspective of the above, this study assessed the 

historical LULCC and forecast the future LULCC.  

 

1.6 Structure of the thesis 

This thesis is organised five chapters, which are briefly outlined below. 

Chapter 1: Introduction  

This chapter deliberates the background information, objectives and justification of 

the study. It portrays the issues persisting in this study area as a result of land use and 

land cover change due to anthropogenic disturbances and climate change. Its looks at 

the probable results and their significance in the area. 

Chapter 2: Literature review  

A description of the LRB in totality is captured in this chapter. This includes literature 

concerning land use and land cover change modelling for future dynamics. The issue 

of climate change and climate variability as well as their trend and how the farmers 

perceive it also what are the adaptation strategies to face in the basin. It deliberates on 

the development achieved in the modelling and classification of LULC. 

Chapter 3.1: Determine the spatial distribution of lowlands in southern Mali 

This part first looks at the potential and spatial distribution of lowland in southern 

Mali. Then, the methodological approaches adapted for the selection of indices and 

parameters for the identification of lowlands is presented in this chapter. Furthermore, 

validation method employed, which is based on a comparison of field data and results 

obtained from various treatments. 
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Chapter 3.2 Assessment of Temperature and Rainfall Variability, Trends, 

Farmers’ Perceptions and Adaptation Strategies in Southern Mali between 1960-

2020 

This chapter discusses temperature and rainfall variability, trends, farmer’s 

perceptions and adaptation strategies. The approach used for temperature, rainfall 

variability assessment, trends, farmer’s perception is captured as well adaptation 

strategies are discussed. 

Chapter 3.3 Assessment of Seasonal and Annual Rainfall Anomaly Index (RAI) 

Trends and Variability in Southern Mali  

The seasonal and annual rainfall anomaly index trends and variability are described in 

this chapter. It discusses the approach to compute and the criteria to class RAI. The 

results of RAI classification are presented. The maximum intensity droughts with 

durations for the rainfall are presented. 

Chapter 3.4 Modelling past and future land use and land cover dynamics in the 

Lotio River Basin, West Africa  

This chapter discusses statistics on historical and future LULC change. The approach 

adopted for LULC classification, change detection, future prediction of LULC and 

accuracy assessment is captured as well trend, rate caver changes discussed. 

Chapter 4: General Discussion 

The general discussion of all the results of the thesis has been presented in this 

chapter. The aim is to confirm or compare the key results of each specific objective in 

light of previous research and studies in the world in general and Africa in particular. 

Chapter 5: Conclusions and Recommendations 

This chapter consolidates the conclusions from the whole thesis. It contains the 

significant findings and summarizes the limitations of the study. Recommendations 

aiming at achieving forest and water transformations to preservation, availability, 

sustainable and efficient management in Lotio River Basin are presented in this 

chapter. In additional future recommendations for researches and policy are also 

stated in this last part of the work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Lowlands  

The lowlands are areas of low landscape with flat or concave bottoms. They are 

considered to be small floodable valleys that collect runoff from the slopes and 

constitute the basic drainage axes (Ahouandjinou, 2004). These are areas where 

surface water, underground flows, and groundwater converge preferentially (Albergel 

and Claude, 1994). 

Lowlands are small flat- or concave-bottomed valleys located in the upstream parts of 

drainage systems (Raunet, 1985). According to him, the lowlands of the Sudano-

Sahelian zone are composed of three (3) parts from the geomorphological point of 

view: 

o The head of the lowland: devoid of a hydrographic network and widened in 

the shape of a "spatula" or "amphitheatre". The watershed has a surface area 

ranging from a few hectares to 1 or 2 km². It is often made up of small gullies 

which are only fed by rainwater flowing down the slopes and draining towards 

the upstream part of the lowland. The soils are sandy. 

o The upstream part: The flanks become clearly concave and the surface of the 

catchment area widens further (from 5 to 20 km²). The high concentration of 

surface runoff in the centre of the lowland creates water erosion and leads to 

the creation of gullies. This part of the lowland is characterized by the 

presence of a poorly developed hydrographic network. The soils become 

clayey-sandy. 

o The swallowing part: The hydrographic network becomes more developed. 

The shallows widen and its transverse profile flattens. The surface of the 

watershed ranges from a few dozen km² to 200 km². It is in this part of the 

lowland that crops are most frequently found (Albergel and Claude, 1994). 

These induce particular surface organizations and variations in the 

hydrodynamic parameters of the soils. It has a soil with a clayey-1imonous 

texture. The part that follows the downstream part of the lowland constitutes 

the alluvial valley or alluvial plain. After a certain number of lowland 

confluences, when the watershed becomes large enough and river flows 

become sufficiently competent (sorting of materials, construction of levees, 
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formation of basins, etc.), the lowland gives way to the alluvial plain (Raunet, 

1985). 

 

2.2 Modelling 

Modelling is the simplified representation of a complex reality. On this basis, any 

modelling is a simplification. It goes through the design of a model, therefore an 

abstraction allowing to better understand a complex object or system. Kouassi (2014) 

defines the model as an ideal or a given prototype, which can either serve as a 

reference or be reproduced. 

Indeed, modelling differs in particular from simulation. Modelling consists in 

identifying and formulating problems, then building models that contribute to 

problem solving through simulations. As for simulation, it comes after modelling. 

Simulation consists in predicting the state of a phenomenon using a model. A model 

used to make predictions (simulations) is called predictive. There are modelling tools 

to simulate the state of land use such as the CA Markov and Land Change Modeler 

(LCM), and so on. 

 

2.3 Digital Elevation Model 

The Digital Elevation Model (DEM) is the representation of the topographic surface 

while considering the altitude of the objects on it. In its wider acceptation, it is an 

image containing the values of the altitude (Z) of a given terrain and its overground. 

The term DEM is most often used to refer to the DTM or DEM. However, it is 

important to remember that there is a nuance between a DEM and a DTM even if the 

two terms are used several times in place of each other. 

Kindjinou (2013) provides a succinct definition of the term DTM. According to him, 

the Digital Terrain Model refers to the representation of the topographic surface 

without taking into account buildings or vegetation. The sample of points X, Y, Z 

constituting the initial data can be a raster image of the relief, with Z the altitude of 

the point of planimetric coordinates (X, Y) in a defined projection. Doungmo (2017) 

proposes different definitions for the terms DEM, DTM and DEM. According to him, 

DEM represents a set of points where the value of the elevation data (Z) takes 

precedence over the two other horizontal components (X and Y). By default, aerial or 
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satellite imagery results in the production of a DEM by photo-interpretation. Further 

processing is required to extract a DEM. It defines the DTM as the set of points 

corresponding solely to the elevation of the terrain itself. The DEM (Digital Elevation 

Model) is defined in turn as the set of points representing the relief (elements of the 

natural terrain), but also what is called the "canopy" (tops of trees) or the overground 

(elevation of buildings). The most commonly used types of DEM and DTM are 

SRTM and ASTER GDEM images. 

 

2.4 State of the art 

Numerous studies have previously focused on the identification of areas with 

agricultural potential, particularly the lowlands in West Africa. These studies have 

shown that there is a huge area of untapped potential lowland areas in sub-Saharan 

Africa and the need to develop these areas for agriculture in the current context of 

population growth and adverse climatic conditions. The authors only proposed 

methods to identify and map the lowlands. Some of them focused on agricultural 

intensification and the need to increase cultivated land, especially in the lowlands, to 

meet the growing demand for food. However, a few fundamental issues deserve deep 

reflection. Are the potentials in the lowlands inexhaustible? With the annual increase 

in cultivated areas, what will be the situation of the reserves in the lowlands in the 

future? 

 

2.5 Lowlands identification and mapping 

The theme of identification of the lowlands is problematic. The authors who have 

addressed it have all validated their results with field data. In addition, the methods 

adopted differed greatly from one author to another, each with weaknesses and points 

of clarification. As part of this study, a field visit will be carried out to validate the 

lowlands detected. Fieldwork is indeed essential for all studies using remote sensing 

techniques because the results can have a large margin of error if not verified and 

confirmed. Ouattara (2009) classifies the slope of the Bani watershed using 

Topographic Position Index (TPI) extension in ArcView, to determine toposequence 

classes. His method did not require more advanced image processing. The goal was to 

identify the shallows based on the toposequence. He then distinguished 5 classes of 

toposequence: high plateau, high slope, mid-slope, lowland, thalwegs and shallows. 

Kindjinou (2013) used ASTER images to identify the lowlands in Togo. The author 
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did not limit himself to the simple use of the DTM. His second detection approach 

was a field inventory of the lowlands using the GPS receiver. Validation methods 

consisted in visualizing the inventoried shallows and the shallows derived from the 

DTM in Google Earth software, and then calculating the compliance rate between the 

two groups of shallows. 

Sudre (2015) initiated a deeply distinct topographic method to identify the lowlands 

of the communes of Kokofata and Gadougou in Mali using an SRTM image. His 

method consisted of extracting a hydrographic network from the DEM. The 

hydrographic network is then multiplied by the DEM to obtain the altitude of each 

pixel. The author then generated the sub-watersheds from the drainage network with 

the elevations. He then highlighted the difference between the sub-watersheds and the 

DEM to obtain the height of the surfaces in relation to the hydrographic network. This 

height in meters is then multiplied by the slope to create a potential lowland area 

index. The closer the index is to 0, the more likely the area is to have lowlands. To 

validate his result, the author has developed a land use analysis method that has made 

it possible to identify, from GPS points taken in the field and unsupervised Iso data 

classifications, the different geographical entities within the potential lowland areas 

and to reduce the over-evaluation obtained by the topographical method. Souberou et 

al. (2016) introduced a new approach to detect lowlands in the commune of Matéri in 

Benin. Their method consisted in generating NDVI from a Landsat OLI image, slope 

and water accumulation from an ASTER DEM. The high NDVI values, the low 

values of the slope and the areas of high-water accumulation were then extracted 

according to criteria, superimposed and intersected to obtain the potential lowland 

areas. The authors validated their results through field inventory of lowland areas. The 

same techniques were used by Souberou et al. (2017) to identify the lowlands in the 

Oti watershed (Benin). This time the authors included NDWI and TWI among the 

parameters for identifying lowlands. 

 

2.6 Land Use Land Cover, and Climate Change and Variability 

Land cover is characterized as the physical and biological cover of the Earth’s 

surface, while land use refers to human activities on land cover (Ellis et al., 2010). 

According to (IPCC, 2000), climate change is any change in the climate system over 
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time (at least three decades). Whereas climate variability refers to the seasonal 

changes of the climate. 

 

2.7 Prior works on LULCC dynamics  

2.7.1 Image classification Methods 

Image classification is the process through which pixels are sorted into different 

classes focused on their spectral value (Song et al., 2000). It is divided into supervised 

and unsupervised classification. Unsupervised use the spectral signature of each 

feature and group into similar pixels called cluster. Cluster identification is performed 

through the comparison of variance within and between the clusters or spectral classes 

(Zhu et al., 2012). In this method, the user must determine the number of classes. In 

supervised classification, the operator is required to create training data by selecting 

pixel based on his/her own pattern recognition skills and specify the type and the 

number of land use and land cover class (Forkuor et al., 2017). In supervised method, 

one sample training is used for the classification and another for accuracy assessment 

(Galiano-Rodriguez et al., 2012). There are two types of supervised classification 

methods: parametric and non-parametric. The parametric method is based on 

statistical parameters, that are extracted from training datasets such as Maximum 

Likelihood, parallelepiped, and Minimum Distance Classifier. These methods are 

focused on the normal distribution of spectral signature or pixels value within classes 

(Al-doski et al., 2013).  

The non-parametric classifiers such as Neutral Network, Decision Tree, Generic 

Algorithms, Support Vector Machine are currently widely used because they have 

good predicted power (Sikonja, 2004). One of the most widely used is Random Forest 

(Kulkarni et al., 2016). Because it can use categorical datasets, robust to noise, not 

sensitive to over-fitting and easy to parametrise (Sikonja, 2004). The assumption 

behind this method is its capacity to provide the best classification compared to an 

individual classifier (Galiano-Rodriguez et al., 2012). 

 

2.7.1.1 Random Forest classification  

Random Forest (RF) is a machine learning classifier, which builds many individual 

decision trees by using a bootstrap aggregated sampling technique (Breiman, 2001). 

The advantage of Random Forest compared to the other algorithm of classification is 
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its capacity to handle variables and missing data, not sensitive to noise and over-

fitting and easy to parametrise (Sikonja, 2004). It has been applied in numerous 

studies and in different countries (Senf et al., 2012; Puissant et al., 2014), Random 

Forest is currently considered as one of best algorithms of classification. Jhonnerie et 

al. (2015) utilized Random Forest and Likelihood classification methods to generate a 

mangrove land cover map for the Kembung river and Bengkalis Island regions in 

Indonesia. However, the comparison of Random Forest and Maximum Likelihood 

was one of the major objectives of their work. In order to accomplish their goal, 

Jhonnerie et al. (2015) employed Landsat TM, ALOS PALSAR FBD, and vegetation 

indices such as NDVI, NDWI, and NDBI. Their findings revealed that the Random 

Forest (RF) algorithm outperformed the Maximum Likelihood (ML) method in 

generating an accurate mangrove land use and land cover (LULC) map. Specifically, 

the RF algorithm yielded the best results when all input layers were combined, while 

the ML approach achieved satisfactory outcomes when Landsat TM and ALOS 

PALSAR data were combined. In addition, the overall accuracy and Kappa resulting 

from RF were better compared to Maximum Likelihood. They concluded that RF 

classification can be improved by adding layers input, contrary to Maximum 

Likelihood. 

In France, (Puissant et al., 2014) combined RF with Object-Oriented to inventory and 

map the urban trees species from mono-temporal very high resolution (VHR) optical 

image. The outcome showed that Random Forest algorithm is useful for vegetation 

identification in the urban area. In Turkey (Ok et al., 2017) assessed the performance 

of RF with Maximum Likelihood for cropland classification. They underlined that RF 

is better than Maximum Likelihood. Random Forest is an effective method and 

flexible technic to assess land cover map. In the South East of Asia, (Senf et al., 2012) 

noted that RF-enables the optimisation of the cloud cover of MODIS images. In 

Burkina Faso (Forkuor et al., 2017) mapped the distribution of soil properties by 

comparing Multiple Linear Regression, Random Forest Regression, Support Vector 

Machine, and Stochastic Gradient Boosting. They concluded that RF Regression is 

the best model for soil properties prediction. 
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2.7.1.2 CART (Classification and Regression Tree) in Machine Learning 

CART is a variation of the decision tree algorithm. It can handle both classification 

and regression tasks. Scikit-Learn uses the Classification and Regression Tree 

(CART) algorithm to train Decision Trees (also called “growing” trees). CART was 

first produced by Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone 

in 1984 (Tirumalachandraveni, 2022). 

CART Algorithm 

CART is a predictive algorithm used in Machine learning and it explains how the 

target variable’s values can be predicted based on other matters. It is a decision tree 

where each fork is split into a predictor variable and each node has a prediction for the 

target variable at the end.  

In the decision tree, nodes are split into sub-nodes on the basis of a threshold value of 

an attribute. The root node is taken as the training set and is split into two by 

considering the best attribute and threshold value. Further, the subsets are also split 

using the same logic. This continues till the last pure sub-set is found in the tree or the 

maximum number of leaves possible in that growing tree. The CART algorithm 

works via the following process (Figure 2.1); 

o The best split point of each input is obtained.  

o Based on the best split points of each input in Step 1, the new “best” split 

point is identified.  

o Split the chosen input according to the “best” split point.  

o Continue splitting until a stopping rule is satisfied or no further desirable 

splitting is available 

The CART algorithm uses Gini Impurity to split the dataset into a decision tree. It 

does that by searching for the best homogeneity for the sub nodes, with the help of the 

Gini index criterion. 
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Figure 2.1: The CART algorithm work flow Source: (Tirumalachandraveni, 2022). 

 

Gini index/Gini impurity 

The Gini index is a metric for the classification tasks in CART. It stores the sum of 

squared probabilities of each class. It computes the degree of probability of a specific 

variable that is wrongly being classified when chosen randomly and a variation of the 

Gini coefficient. It works on categorical variables, provides outcomes either 

“successful” or “failure” and hence conducts binary splitting only. 

The degree of the Gini index varies from 0 to 1, 

 Where 0 depicts that all the elements are allied to a certain class, or only one 

class exists there. 

 The Gini index of value 1 signifies that all the elements are randomly 

distributed across various classes, and 

 A value of 0.5 denotes the elements are uniformly distributed into some 

classes. 

Mathematically, we can write Gini Impurity as follows:  

 

where pi is the probability of an object being classified to a particular class. 

Classification tree 

A classification tree is an algorithm where the target variable is categorical. The 

algorithm is then used to identify the “Class” within which the target variable is most 
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likely to fall. Classification trees are used when the dataset needs to be split into 

classes that belong to the response variable (like yes or no). 

Regression tree 

A Regression tree is an algorithm where the target variable is continuous and the tree 

is used to predict its value. Regression trees are used when the response variable is 

continuous. For example, if the response variable is the temperature of the day. 

CART model representation 

CART models are formed by picking input variables and evaluating split points on 

those variables until an appropriate tree is produced. 

Steps to create a Decision Tree using the CART algorithm: 

 Greedy algorithm: In this the input space is divided using the Greedy method 

which is known as a recursive binary spitting.  This is a numerical method 

within which all of the values are aligned and several other split points are 

tried and assessed using a cost function. 

 Stopping Criterion: As it works its way down the tree with the training data, 

the recursive binary splitting method described above must know when to stop 

splitting. The most frequent halting method is to utilize a minimum amount of 

training data allocated to every leaf node. If the count is smaller than the 

specified threshold, the split is rejected and also the node is considered the last 

leaf node. 

 Tree pruning: Decision tree’s complexity is defined as the number of splits in 

the tree. Trees with fewer branches are recommended as they are simple to 

grasp and less prone to cluster the data. Working through each leaf node in the 

tree and evaluating the effect of deleting it using a hold-out test set is the 

quickest and simplest pruning approach. 

 Data preparation for the CART:  No special data preparation is required for 

the CART algorithm. 

Classification and regression trees are nonparametric and nonlinear, and results are 

basic, among other benefits of CART. Feature selection is automatically performed 

via classification and regression trees, CART is unaffected by outliers in a significant 

way, needs little oversight, and generates models that are simple to comprehend. 
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Overfitting, High Variance, Low Bias, and an Unstable Tree Structure are some of 

CART's drawbacks. 

 

2.7.1.3 Gradient Tree Boosting (GTB) classification 

The approach achieves its classification accuracy via stepwise lowering of the loss 

function based on gradient descent optimization and iteratively combining weak 

learner ensembles into stronger ensembles of trees (Friedman, 2002). Like RF, GTB 

combines a group of decision trees (Figure 2.2). However, GTB limits the complexity 

of the decision trees by limiting each tree to a weaker prediction model. Figure 5 

illustrates how adding a new tree (Fm+1) can strengthen the model created by the 

weaker prediction Fm. A new model, Fm+1, is built using m+1 trees in the following 

iteration, and it corrects the previous model, Fm. In the following cycle, Fm+1 is then 

upgraded to model Fm+2, and the subsequent error correction ultimately results in a 

model that provides the most accurate categorisation (Ouma et al., 2022). 

 

Figure 2.2: Visualization of gradient tree decision boosting  Source: (Ouma et al., 

2022). 
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According to (Ouma et al., 2022) the key distinction between GTB and other 

ensemble learning algorithms is that GTB fits the residual of the regression tree at 

each iteration using negative gradient values of loss. GTB complements the weak 

learning DTs, improving the ability of representation, optimization, and 

generalization. GTB can capture higher-order information, is invariant to scaling of 

sample data, and can effectively avoid overfitting by weighting combination scheme. 

2.7.1.4 Support vector machine (SVM) classification 

The SVM algorithm initially maps the n-feature data items into an n-dimensional 

feature space before categorizing linear and non-linear data (Figure 2.3). The 

marginal distance between classes is maximized and classification mistakes are 

minimized by establishing an ideal decision hyperplane that divides the data points 

into two classes. The classification is carried out when the decision hyperplane 

differentiates any two classes by the maximum margin (Ouma et al., 2022). The class 

marginal distance is the distance between the decision hyperplane and its nearest 

instance that is a member of that class. If x is the input feature vector, w is the weight 

vector and b is the bias, the aim of training in SVM model is to determine the w and b 

so that the hyperplane separates the data and maximizes the margin 2 1/ w. Vectors i x 

for which i y ( ) 1 T wx b i + = will be termed support vector. The main advantage of 

the SVM is in the ability to overcome the high dimensionality problem, with a high 

discriminative power for classification (Ouma et al., 2022). 
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Figure 2.3: The SMV classification algorithm   Source:(Ouma et al., 2022) 

 

2.8 Overview of change detection techniques 

Change detection (CD) involves identifying the state of an object or phenomenon by 

observing it at multiple time points (Nori et al., 2006; Singh et al., 2013). The change 

of Earth’s surface is a matter of great concern for researchers to develop methods for 

identifying changes on Earth’s surface at different scales (Ross and Bhadauria, 2015). 

Change detection enables us to understand the correlation and interactions between 

human and the environment. The primary goal of change detection is to address the 

following inquiries: (i) What has changed? (ii) When was the change? (iii) How much 

has changed? (vi) What has changed to what (v) and how will be the change in the 

future? (Lu et al., 2004). Change detection (CD) finds applications in diverse domains 

including environmental monitoring, forestry management, urban development, 

geospatial data updates, and military operations (Singh, 2017). The objective of 

change detection (CD) is to generate information regarding alterations in area, rate of 

change, spatial distribution of different types of changes, and the trajectories of land 

cover transformations (Lu et al., 2004), and accuracy assessment of the results 

(Timothy et al., 2016).  According to certain authors (Lu et al., 2004; Singh, 2017); 

CD methods encompass a range of techniques, including image differencing, image 
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regression, image rationing, vegetation index differencing, change vector analysis 

(CVA), principal component analysis (PCA), and tasselled cap (KT) analysis. 

 

2.9 Techniques in Image Processing 

Some of the techniques the research adopted in processing and analysing the Remote 

Sensing data are as follows: 

 Image differencing is a CD method that involves subtracting the pixel values 

of the first date image from those of the second date image. This approach is 

simple, direct, and provides easily interpretable results. However, it does not 

offer a comprehensive change matrix that captures detailed changes (Singh, 

2017). 

 Image regression method establishes relationships between bitemporal images 

and estimates the pixel values of the second image using a regression function. 

This approach helps mitigate the effects of atmospheric, sensor, and 

environmental differences between the two dates. However, it necessitates the 

development of precise regression functions for the selected bands prior to 

implementing change detection (Lu et al., 2004). 

 Image rationing technique calculates the ratio of two images captured on 

different dates, considering each band separately. This method helps minimize 

the effects of factors like sun angle, shadows, and topography. However, it's 

important to note that the resulting data from this approach often exhibit non-

normal distribution (Lu et al., 2004). 

 Vegetation index differencing technique generates vegetation indices for each 

date separately and subtracts the second date's vegetation index from the first 

date's. This method highlights variations in the spectral response of different 

features and helps mitigate the influence of topographic effects and 

illumination. However, it may amplify random noise or coherence noise in the 

results (Lu et al.,2004). 

 Change vector analysis generates two outputs: (i) the spectral change vector 

describes the direction and magnitude of change from the first to the second 

date and (ii) the total change magnitude per pixel is computed by determining 

the Euclidian distance between endpoints through n-dimensional change space. 

It can process any number of spectral bands and produce detailed change 
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detection information but difficult to identify land cover change trajectories 

(Singh, 2017). 

 Principal component analysis (PCA) There are two approaches to utilizing 

PCA for change detection. The first approach involves combining the images 

into a single file and applying PCA to analyse the minor component images for 

detecting changes. The second approach applies PCA separately. Principal 

component analysis helps reduce data redundancy among bands. However, 

since PCA is scene-specific, interpreting change information across different 

dates can be challenging, and it may not provide a complete change matrix 

(Alqurashi and Kumar, 2013). 

 The Tasselled cap method, similar to PCA, differs in that it is not dependent 

on the visual scene. Change detection using the Tasselled Cap approach 

focuses on brightness, greenness, and wetness. While the Tasselled Cap 

method reduces data redundancy between bands and highlights different 

information in the derived components, it can be challenging to interpret and 

may lead to labelling changes (Lu et al., 2004).  

However, the most common approach is post-classification (Areendran et al., 2013; 

Timothy et al., 2016). The post-classification approach involves classifying multi-

temporal images into thematic maps separately and then comparing the classified 

images pixel by pixel. This method minimizes the impact of radiometric, atmospheric, 

and geometric differences between the multi-date images (Alqurashi and Kumar, 

2013).  By employing post-classification, a comprehensive matrix of change 

information can be obtained.  

 

2.10 Modelling of land Use and land Cover  

Land use modelling is very important for monitoring environmental phenomena, land 

management and territorial development. Knowing the phenomena, their past and 

present, the related factors, it is interesting to simulate their situation in the future. 

Several studies have addressed this issue. 

The FAO (1996) has monitored the evolution of tropical forests using Landsat 

satellite images. It emerged from this study that the reduction of forests is explained 

by timber exploitation and destructive practices such as bush fires. According to the 
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results, this worrying trend will have to continue in the future as long as bad practices 

are not stopped. 

Maestripieri (2012), following a diachronic analysis of the spatial-temporal dynamics 

of land use in southern Chile (Chile), adopted a comparative method of the CA-

Markov and LCM models to make a prospective simulation of plantation dynamics. 

The result of CA-Markov gave less errors and more accuracy in prediction than that 

of LCM. Both also reported an increase in plantations. 

Behera et al (2012) used criteria in the CA-Markov model to simulate land use 

dynamics in the Choudwar catchment (India). After a calibration made for 2004, the 

authors made a simulation for the year 2014. Their result indicated a spectacular 

growth of cultivated areas in the basin. 

Kouassi (2014) used Landsat images to monitor the spatial-temporal dynamics of land 

use in the Yamoussoukro Regional Directorate (Cote d'Ivoire) from 1987 to 2012. 

The author used the CA-Markov model to simulate land use in 2020. His results 

showed a decrease in forest cover. 
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CHAPTER 3.1: DETERMINATION OF THE POTENTIAL AND SPATIAL 

DISTRIBUTION OF LOWLANDS IN SOUTHERN MALI 

3.1.1 Introduction  

In the past few decades, there has been a significant increase in the utilisation of 

lowland areas, both in terms of quantity and extent. This can be attributed to the 

fertile nature of the soils and their hydromorphic characteristics. These lowlands are 

therefore of great interest in an environment marked by climatic variability and 

changes in agricultural use patterns (Souberou et al., 2017). In developing countries, a 

shift in the front of agricultural activities is noted more and more towards 

hydromorphic environments (floodplains, lowlands, valleys), according to Mahaman 

and Windmeijer (1995). Thus, lowlands ecosystems have emerged as a set of 

resources whose development is becoming an imperative for the development, 

intensification and diversification of agricultural production (Oloukoi, 2016). They 

are therefore a challenge for the sustainable development of agriculture, especially for 

a country like Mali. The development of lowlands is of capital interest and has 

become a major issue in agricultural development in order to reduce water constraints 

(Souberou et al., 2017). In this context, in Mali, important research and development 

studies, both government and private initiatives, have been undertaken and carried 

out, such as the projects to develop irrigable land to improve yields, such as Malibya 

with 25,000 hectares in 2014 and impact of Rice Policies and Technologies on Food 

Security and Poverty Reduction (Commod Africa, 2018; Kindjinou, 2013). These 

studies focused on the characterization, management and development of the 

lowlands in general (CBF, 1997; Albertgel et al., 1993; Chabi et al., 2010; Oloukoi, 

2016). However, in order to coordinate efforts in these areas (lowlands), which have 

particular geomorphological conditions for rainfed and dry season agricultural 

activities on the one hand, and in a context of high climatic variability in the Sahel on 

the other hand, mastery of the total potential and spatial distribution over the entire 

territory is a crucial requirement. 

 

3.1.2 Approach and Methods  

3.1.2.1 Study Area 

The study was conducted at the Lotio River catchment area, situated within the 

Sikasso district, is a tributary of the Bafing River. It is positioned between 5°20' and 

5°50' W longitudes and 11°50' and 11°10' N latitudes. It is the only river that waters 
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several communes in the circle with an area of 4,414.83 km² and a length of 121.9 

km. Its outlet is located in the commune of Kouoro, and it flows from south to north 

(Figure 3.1.1). The Lotio River basin experiences a tropical Sudanian climate, 

characterized by distinct dry and rainy seasons that occur in alternating patterns. 

 

Figure 3.1: Study Area 

 

Climate 

The Lotio basin experiences a tropical Sudanian climate with abundant rainfall 

ranging from 754 to 1687 mm per year between 1980 and 2020. The region has a 

distinct rainy season that lasts for about 5 to 6 months and is accompanied by over 90 

days of rainfall per year. During this season, the prevailing wind is the moisture-laden 

monsoon blowing from the southwest to the northeast. Conversely, the dry season is 

characterized by the hot and dry harmattan wind blowing from the North-East. In 

December, which is the coldest month, the average temperature is around 24°C. In the 

rainy season, the average maximum temperature reaches approximately 29°C. The 

months of July, August, and September receive the highest rainfall, with August 

recording the highest amount exceeding 307 mm. This heavy rainfall leads to 

significant runoff and groundwater recharge. From December to April, the study area 

experiences little rainfall, corresponding to the dry season. The average extreme 
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temperatures range from 17°C (minimum) to 38°C (maximum). The hottest months in 

the Lotio basin are March, April, and May, with April being the peak period. 

Conversely, December and January have the lowest temperatures, representing the 

cooler period between 1980 and 2020. 

Relief  

The geological matrix of Sikasso is made up of a metamorphic basement, folds and 

Eburnian orogenic granitization, sedimentary layers, Taoudéni syclenite, including 

Sikasso sandstone, basaltic intrusions outcropping in the form of rubble mountains 

and rare plateaus. The soil in this area consists of red laterite, lateritic clay and yellow 

or red clay on the surface. These formations are located on micro-sandstone or 

weathered shale. In addition to this, we also found stratified or diabase sandstone, but 

with fractures (Konaté, 2018). 

Forest 

The District of Sikasso has a total area of 33,149 hectares, of which 18,017 hectares 

are managed by the Water and Forestry Service; 18,132 hectares are managed by the 

Rural Wood Management Structures (SRGB). According to Konaté, 2018, the 

vegetation of the Sikasso District is made up of open forest and wooded savannah. 

This vegetation is dense especially in the southern part and is degrading in the north. 

According to him in the valleys, they are forest galleries. 

Population 

The Sikasso region is composed of seven circles with an unevenly distributed 

population and a fairly high density in the circle (29.3 inhabitants/km²). The surface 

area of the Sikasso circle is 15375km² with an estimated population of 725494 

inhabitants (RGPH-2009). Since before independence to the present day, Sikasso has 

been a place of welcome and passage for populations from many corners. More 

recently, however, populations from the north of Mali have arrived. The Sénoufos, 

who are recognized as the native inhabitants, form the predominant ethnic group in 

the region. Between 1997 and 2020, the rural population exhibited an average annual 

growth rate of 1.9 percent, while the urban population experienced a higher average 

annual growth rate of 4.2 percent (Coulibaly et al, 1998). The different ethnic groups 

are: the Senoufos, the Gana, the Samogos, the Bambaras, the Malinkés, the 
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Minyankas, the Bobos, the Peuls, and even the Sonrhaïs, Touaregs. Dogons or 

Kassonkés (Djiguiba et al, 2009). 

Economy 

The main economic activity in this district is agriculture, forestry and livestock. In 

terms of agriculture, the main cash crop is cotton (Gossypium hirsutum), to which 

should be added potatoes (Solanum tuberosum), yams (Dioscorea sp.), sweet peas 

(Lathyrus odoratus), fruits and vegetables. Livestock plays an important role in rural 

development, particularly through animal traction and the income generated by this 

activity. The forested domain encompasses over 80% of the entire land area within the 

circular region and boasts abundant resources. In the area of trade, due to its status as 

a crossroads, the Sikasso District is an important centre for interaction with the 

country and beyond. Industrial activity dominated by cotton gins, supported by 

CMDT and other development support organizations (Djiguiba et al, 2009). 

 

3.1.2.2 Data Collection 

Several data from various sources were used in this study. However, they can be 

grouped into two (2) very distinct typologies according to their characteristics. 

Satellite Images  

The satellite data mobilised were of two types: Sentinel image and the Shuttle Radar 

Topography Mission (SRTM) images.  

Sentinel-2, part of the Copernicus Programme, is a mission dedicated to Earth 

observation, capturing optical imagery with a high spatial resolution of 10 meters. It 

provides systematic coverage over both land and coastal waters. It has been 

downloaded on the website of EAS. Also, the most recent 12-meter resolution SRTM 

image covering the area were uploaded via the USA National Aeronautics and Space 

Administration (NASA) portal.  

Digital Data 

Digital data are necessary for thematic maps. They were collected in vector format for 

better manipulation in GIS and remote sensing software. These are mainly the digital 

layers of Mali with the smallest entities (the boundaries of the communes, districts, 

and regions) that were extracted from the database of the Mission of Decentralization 

and Institutional Reforms of the Republic of Mali. 
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Socio-economic database 

The socio-economic data are data from the socio-economic survey conducted between 

June and July 2022 in the study area. They are composed of qualitative and 

quantitative variables on the socio-demographic and economic characteristics of 

households; perceptions of climate dynamics and land use, and strategies for 

adaptation to climate variability. 

Field data 

A field campaign was conducted in 2021 (September and October) for the 

formation/ground truth data for classification and validation using Global Positioning 

System (GPS) with Universal Transverse Mercator (UTM WGS84 zone 30 North) as 

the projection system. Reference points were overlaid on Landsat images (1990, 2000, 

2010, 2020) and unchanged areas were selected. The unchanged areas were identified 

by focusing on field data, local community knowledge, and input from elders and 

community leaders. Google Earth was used to validate the unchanged areas. 

 

3.1.2.3 Methods 

Pre-processing  

In this study, a DEM from SRTM with a spatial resolution of 30 m is used. Knowing 

the limitation of DEMs (images with empty cells and noise, i.e. cells with values 

much higher or lower than those of neighbour cells), a low-pass filter with a 3×3 

neighbour window was applied to the SRTM image in order to correct the noise and 

assign a value to the empty cells. This filter greatly improved the image by scanning 

over each noise, each empty cell and their eight (8) immediate neighbours. 

Lowlands Detection  

This study adopts a multi-criteria approach to identify the lowlands. The method used 

was based on the combination, superposition and intersection of criteria established 

from the calculation of certain parameters, namely: the normalized difference 

vegetation index (NDVI), the adjusted ground vegetation index (SAVI), the slope, the 

water accumulation area and the height of the surfaces with the drainage network 

(Dembele, 2019; Oloukoi, 2016). 
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Selection and justification of indices and parameters 

These indices were chosen due to their importance in the detection of lowlands 

because of their ability to clearly distinguish between uplands and lowlands (slope, 

surface height), vegetated and non-vegetated areas such as rock outcrops and water 

surfaces (SAVI, NDVI), wetlands likely to have lowlands (water accumulation zone, 

etc.), and wetlands likely to have lowlands (water accumulation zone, etc.)( Dembele, 

2019). SAVI and NDVI were generated from the Landsat OLI image. Slope, flow 

accumulation, and surface height relative to the river network were obtained from the 

SRTM 30 image. 

Index and parameter generation 

o Normalized Difference Vegetation Index  

The normalized difference vegetation index, developed by Rouse and Haas in 1973 

(Rouse et al., 1974 and Tucker 1979), is an index that distinguishes vegetated areas 

from unvegetated or moderately vegetated areas. It is determined using the formula 

below: 

     
     

     
       (3.1.1) 

Where, PIR = Near-Infrared and R = Red 

High NDVI values will be used to identify lowlands. The extraction of the high values 

is based on the results of recent studies in Benin (Oloukoi, 2016; Souberou et al., 

2017). 

o Soil Adjusted Vegetation Index (SAVI) 

The SAVI is a vegetation index initiated by Huete (1988). It is of interest for detecting 

lowlands (Sudre, 2015). It introduces an adjustment parameter, denoted L, which 

characterizes the soil and its rate of cover by the plant cover. It makes it possible to 

clearly distinguish vegetation zones from armoured soils. It will be calculated by the 

following formula: 

     
 (   )(     ) 

(       )
              (3.1.2) 

 

where, PIR = Near Infrared; R = Red; 1 = Constant and L = Recovery rate to reduce 

ground effect with 0.25 (low recovery); 0.50 (medium recovery) and 0.75 (high 

recovery). 

o Slope 
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Slope values less than or equal to 2 or 3% have been retained in this study (Dembele, 

2019; Kindjinou, 2013; Oloukoi, 2016). This threshold was proposed by (Albereel & 

Claude, 1988) and then in other more recent studies such as (Dembele, 2019; 

Kindjinou, 2013; Oloukoi, 2016) to distinguish the lowlands from the alluvial plains.  

o Water storage area 

The accumulation of flow streams highlights areas of high and low water 

accumulation, important for the identification of lowlands (Oloukoi, 2016; Souberou 

et al., 2017).The interest is to extract drainage networks and surfaces with a high 

concentration of water. Areas of high-water accumulation are areas where surface 

water is concentrated and stagnates for a long time. They include rivers and their 

tributaries, all drainage surfaces (lowlands, valleys, plains). On the other hand, areas 

of low water accumulation are upland areas that most often constitute ridges. These 

areas with low values have been excluded in the identification of the lowlands. 

o Height of surfaces to drainage systems 

This parameter is very important for identifying lowlands (Kindjinou, 2013; Sudre, 

2015). The aim is to determine the low areas in the vicinity of the hydrographic 

network. To do this, the difference between the elevations of the hydrographic 

network and those of the surrounding surfaces (sub-watersheds) were calculated. The 

lower the height, the more the area is a flooded environment likely to have low areas. 

Determination of potential lowland areas  

Suitable values of the parameters selected according to criteria allowed the detection 

of inland valleys in this study (Table 3.1.1Error! Reference source not found.). The 

ap of potential lowland areas was obtained from the intersection of these resulting 

data. 
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Table 3.1: Values of indices and parameters retained for lowlands identification 

S/N Indices 

 

Range of values 

 

Sources 

 

1 NDVI 0.10 to 0.56 Oloukoi,  (2016) 

2 SAVI  0.10 to 0.83  Sudre, (2015)  

3 Slope  0 to 3% Oloukoi,( 2016); Souberou et al., 

(2017) 

4 Water storage area 5083 to 20326 Oloukoi, (2016); Souberou et al., 

(2017) 

5 Height of surfaces  0 to 2 meters Kindjinou, (2013);  Sudre, (2015) 

Like other image processing, the detection of lowlands from image processing 

requires validation in the field. Therefore, we geo-referenced a few areas of lowlands 

during the field trip. These points were then superimposed on the detected shallows to 

assess the conformity between the two areas. 

Validation of the results of lowland inventory and mapping work 

A total of 100 points were geo-referenced in lowlands in the field. These were GPS 

geolocation points of the lowlands in the study area. For each inventoried lowland, the 

geographic coordinates are taken. The inventoried lowlands and the lowlands derived 

from the DEM are then overlaid to observe compliance. The calculation of the 

conformity rate and the omission error (Kindjinou, 2013), carried out following the 

superposition of the two (2) groups of lowlands allowed the validation of the lowland 

identification approach in this study. It is calculated using the following formula: 

  
     

 
                     (3.1) 

where T= Compliance rate between detected shallows and inventoried shallows. It is 

a positive real number varying between 0 and 100. The closer its value is to 100, the 

more the rate is compliant and vice versa; n= Number of lowland points inventoried 

in the field superimposed on the lowlands detected from image processing; and N= 

Total number of lowland points inventoried. 

The omission error was determined from the non-overlapping points on the detected 

lowlands. In addition to this validation method, the lowlands were visualized in 

Google Earth software for comparison with the shape of the terrain. 
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3.1.3 Results and interpretation 

3.1.3.1 Lowland  

The observation of the map of the lowlands indicates that the study area is an area 

with a high density of lowlands (Figure 3.1). The surface of the detected lowlands 

amounts to 71479 ha, which represents a proportion of 17% of the study area. 

Based on the intersection between the two (2) groups of lowlands, the compliance rate 

is 58.48% with an error of omission of 41.52%. The compliance rate from the 

validation shows us that the result is statistically acceptable 

 

Figure 3.1: Lowland detected 
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3.1.4 Discussion  

The study estimated the area of the lowlands at 71479 ha with a compliance rate of 

58.48%. This means that the area has a significant potential in lowlands. The same 

result was found on a national scale by (Dembele, 2019) in his master's thesis on the 

detection of areas with agricultural potential in the rural commune of Bougaribaya. At 

the international level, in Benin, within the framework of the implementation of the 

Atlas of the lowlands of the North-West of the country in 2015-2016, the total area of 

the lowlands surveyed is estimated at 46.264 ha for the department of Atacora-Donga 

(Souberou et al., 2017).  

The multi-criteria approach adopted showed the importance of GIS and remote 

sensing and the degree of reliability of the results in the identification, estimation and 

mapping of the lowlands as it had been highlighted by several previous studies (Chabi 

et al., 2010; Dembele, 2019; Kindjinou, 2013; Oloukoi, 2016; Souberou et al., 2017). 

 

3.1.5 Conclusion 

The southern zone of Mali has 71 479 ha of lowland, which constitute a rich potential 

in lowlands with a good spatial distribution. The multi-criteria approach is a 

recognized and recommendable method for the identification, area estimation, 

geophysical and geomorphological characterization of lowlands. 
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CHAPTER 3.2: ASSESSMENT OF TEMPERATURE AND RAINFALL 

VARIABILITY, TRENDS, FARMERS’ PERCEPTIONS AND ADAPTATION 

STRATEGIES IN SOUTHERN MALI BETWEEN 1960-2020 

3.2.1 Introduction 

The variability in the hydrological cycle and weather extremes has been amplified due 

to the ongoing global climate change. Consequently, there is a necessity to examine 

the subsequent modifications in hydroclimatic variables to comprehend the localized 

impacts of climate change (Easterling et al., 2012; Lelieveld et al., 2016).  As stated 

in the 6th assessment report of the Intergovernmental Panel on Climate Change 

(IPCC), West Africa has already suffered considerable loss and damage due to 

climate change (IPCC, 2013). The same report states that the climate is changing 

significantly and unprecedentedly for at least 2,000 years due to human activity and 

most African countries are among those that contribute the least to global greenhouse 

gas emissions. Yet, African countries are experiencing considerable loss and damage 

from the resulting climate change.  West Africa is also affected and is already 

experiencing loss of life, human health impacts, reduced economic growth, water 

shortages, reduced food production, loss of biodiversity, and impacts on human 

habitation and infrastructure. Several authors, for example (Bichet & Diedhiou 

(2018a, , 2018b), Dosio (2017), ; Gutiérrez et al. (, 2021),; Ranasinghe et al. (, 2021),; 

Sanogo et al. (, 2015), Sylla et al. (2016) and ; Thomas & Nigam (, 2018), assert that 

the situation in the southern African region, particularly changes in annual and 

seasonal temperatures and precipitation, is likely to reach unprecedented levels under 

projected regional climate change scenarios.  

While climate change is widely acknowledged as a reality, the level of uncertainty 

surrounding the specific projections for the region remains high. Currently, there is 

limited understanding of the magnitude and variability of hydroclimatic trends in 

most West African countries. Various studies have attempted to evaluate the 

reliability of climate models by comparing simulated climate data with observed data, 

aiming to assess the uncertainties associated with these models (Malmgren et al., 

2003; Meehl et al., 2007). The findings of these studies indicated that current climate 

models face challenges in accurately reproducing extreme climate events, which 

introduces additional uncertainties when predicting future changes. As a result, it is 
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crucial to consistently evaluate the long-term and short-term fluctuations of climate 

variables, particularly those pertaining to the availability of freshwater, by relying on 

in situ climate data. This underscores the significance of ongoing assessments to 

better understand the variability of climate factors and ensure reliable information 

(Benestad, 2013; Malmgren et al., 2003; Sillmann & Roeckner, 2008). Globally, 

numerous research studies are actively involved in analyzing patterns and fluctuations 

in hydrometeorological data, primarily focusing on precipitation and temperature, on 

an international scale (Donat et al., 2014; Manton et al., 2007) to mention only a few 

contributions. On the other hand, for many African countries, mainly the Sahelian and 

Saharan regions such as Mali, research coverage is still insufficient despite recent 

work (Doukoro et al., 2022). Studies on desertification (Olivry et al., 1994) have 

shown a clear positive trend over the last 3 decades. In the southern region of Mali, 

although extensive research has been conducted, there is currently no documented 

quantitative evidence regarding long-term rainfall records that can attribute trends and 

temporal variability to climate change.  

The objective of this study was to examine the long-term patterns and fluctuations in 

rainfall in the city of Sikasso, located in southern Mali. Climate variability is typically 

defined as the deviation of seasonal and annual climate parameters, such as rainfall 

and temperature, from the long-term average. However, this study specifically aimed 

to identify and analyse continuous temporal changes and trends in annual, seasonal, 

and monthly rainfall, as these indicators can provide insights into potential impacts of 

climate change (Jones et al., 2015). According to previous research, changes in 

precipitation and temperature over a long-term period of 30 years or more are 

regarded as valuable indicators for evaluating the potential effects of climate change 

in a specific region (Cooper et al., 2002; Donat et al., 2014; Easterling et al., 2012; 

Liebmann et al., 2010). The processed dataset includes annual and seasonal 

precipitation and temperature data spanning a period of 61 years (1960-2020) in the 

Sikasso district. Following an assessment of data quality, various analyses such as the 

Mann Kendall test, Sen's slope, Pettit-test, and change point detection were employed 

to investigate and quantify the long-term and short-term trends and variability of 

annual and seasonal rainfall and temperature. Additionally, the study examined the 

variability of extreme events and changes in frequency (such as return period) to 

evaluate potential alterations in the wet and dry seasons. 
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3.2.2 Approach and Methods 

3.2.2.1 Data collection 

Climate Data 

Monthly precipitation and temperature data spanning from 1960 to 2020 (61 years) 

were gathered from the Agence Nationale de la Météorologie du Mali. 

 

3.2.2.2 Methods 

Mann-Kendall Statistical Test 

The Mann-Kendall statistical test, which is a non-parametric test for trend, is 

employed to evaluate the statistical significance of whether a set of data values 

exhibits an increasing or decreasing trend over time. (Praveen, et al., 2020; Merabtene 

et al., 2016). The MK test was calculated using :  

                       (     )            (3.2.1) 

where Xi and Xj are the values of sequence i, j; n is the length of the time series and 

   ( )  {

         

              

          

             (3.2.2) 

The statistic S is approximately normally distributed when n ≥ 8, with the mean and 

the variance of statistics S as follows: 

 ( )                      (3.2.3) 
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where Ti is the number of data in the tied group and m is the number of groups of tied 

ranks. The standardized test statistic Z is computed by: 
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Where S > 0, S = 0 and S < 0. The standardized MK statistic Z follows the standard 

normal distribution with E(Z) = 0 and V(Z) = 1, and the null hypothesis is rejected if 

the absolute value of Z is larger than the theoretical value Z1−α/2 (for two-tailed test) 

or Z1−α (for one-tailed test), where α is the statistical significance level concerned. 
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Sen’s Slope Estimator 

Several hydrologic variables exhibit a notable right skewness, primarily due to natural 

phenomena, and they do not conform to a normal distribution. Climate data 

demonstrates fluctuations and deviations from a normal distribution (Nasher, 2021). 

Therefore, the study utilized Sen's slope estimator, a nonparametric approach, to 

construct the linear models. Sen's slope estimator is a commonly employed 

nonparametric method for estimating the actual slope of an existing linear trend. 

When a time series exhibits a linear trend, the true slope (rate of change per unit of 

time) can be estimated using Sen's straightforward nonparametric procedure, 

originally introduced by Sen in 1986. This allows the linear model (t) to be expressed 

as follows: 

 ( )                        (3.2.6) 

where Q is the slope, B is a constant and t is time.  

To derive an estimate of the slope Q, the slopes of all data pairs are calculated using 

the equation: 

   
     

   
                    (3.2.7) 

where i = 1,2, 3,…. N,  j  >  k   

If there are n values    in the time series there will be as many as n(n-1)/2 slope 

estimates    . To obtain estimates of B in the equation the n value of differences  

       are calculated. The median of these values gives an estimate of B. The 

estimates for the constant B of lines of the 99% and 95% confidence intervals are 

calculated by a similar procedure.  Data were processed using Slope Sen’s in R. 

Method for Change Point Detection (CPD) 

The study applied the Pettit test, introduced by Pettit (1979), to identify abrupt change 

points in the time series of annual and seasonal rainfall and temperature in the study 

area. The Pettit test is a nonparametric rank-based test that is utilized to detect 

significant changes in the mean of a time series. This test is particularly useful in 

cases where there is no need for hypothesis testing related to changes in location 

(Praveen et al., 2020). 
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Farmers' Perception and Adoption Strategies Assessment 

A sample of 395 farmers was selected from 25 villages across five municipalities in 

the study area. The focus of the study was on lowland farmers in the southern region 

of Mali. The proportional allocation of the sample size (n) for each municipality was 

determined using the equation proposed by Krejcie and Morgan (1970) as shown in 

(Table 3.1). 

  
    (   )

  (   )    (   )
                 (3.2.1.8) 

where n represents the sample size, N represents the population size, e is the 

acceptable sampling error, X2 represents the chi-square of the degree of freedom 1 at 

a confidence of 95% (which is 3.841) and p is the proportion of the population (which 

0.5 if unknown). 

Both quantitative and qualitative data were utilized in the study. Data collection 

involved the use of a structured questionnaire consisting of closed-ended questions, 

which was administered to respondents via the "Kobo Collect" application on mobile 

phones. From June to July 2022, a field survey was conducted, and face-to-face 

interviews were conducted with farmers in the research area. The interviews aimed to 

gather information on various aspects, including people's perceptions of recent 

changes in rainfall patterns such as amount, duration, and the onset and cessation of 

the rainy season. Additionally, socio-demographic characteristics of households, 

climate change awareness, and farmers' adaptation strategies were also explored 

during the interviews.  

The majority of the questions in the survey were structured with closed-ended items 

or phrases, requiring respondents to select from multiple-choice answers. However, a 

few open-ended questions were also included. The closed-ended questionnaire was 

designed to incorporate various formats, such as dichotomous (requiring a "Yes" or 

"No" response), multiple-choice, and a five-point Likert scale. The Likert scale 

provided respondents with five options to indicate their level of agreement with a 

statement: Strongly Disagree, Disagree, Neither Agree nor Disagree, Agree, and 

Strongly Agree. These question formats were chosen to streamline the response 

process and generate data that could be easily analyzed statistically. Moreover, the use 

of a Likert scale questionnaire enabled the evaluation of the reliability and validity of 
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the main constructs examined in the study. (Koné et al., 2022). Individual farmers' 

judgments of comparable socioeconomic situations, belonging to the same social 

network, or owning farms within a certain landscape unit were measured throughout 

the survey. This form of perception assessment considers previous experiences or 

future predictions and is associated with the following elements: the farmer's 

objectives, interests, and demands.  

Before conducting the actual survey, the questionnaires underwent a pre-testing phase 

involving 60 individuals who shared similar socio-economic backgrounds with the 

study respondents. The aim was to assess the validity and reliability of the data 

collection instrument. Based on the feedback received during the pre-testing, minor 

adjustments were made to the questionnaire to enhance clarity and ensure that 

perceptions not initially included in the original questionnaire were captured. 

 

Table 3.1: Distribution of respondents in the different department of the study 

area 

Municipality 
Number of Villages total Number of villages 

surveyed 

Number of 

producers 

Danderesso 

Bakoronidougou 8 14 

Bambougou 14 

Bandieresso 14 

Lerasso 14 

Nazanadougou 14 

N'golodougou-Deni 12 

Touleasso 12 

Zanton-Zanso 12 

Kaboila 

Coulibalibougou 6 16 

Dadoumabougou 16 

Diassadie 16 

Doniena 16 

Kogodoni 16 

Niankorobougou 16 

Klela 

Djirigolola 5 16 

Dougoumousso 16 

Kong-Kala 16 

Yaban 16 

Zerelani 16 

Pimperna 
Togotan-Diassa 2 16 

Zerilaba 16 

Sikasso 

Fama 4 20 

Mankourani 20 

Sanoubougou 20 

Wayerema 21 

Total 25 395 
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Analysis of survey data 

The valid responses obtained at the conclusion of data collection were extracted and 

subjected to quantitative analysis based on the research objectives. Statistical software 

(SPSS) was utilized for descriptive analysis of the data. The socioeconomic 

characteristics, farmers' perceptions of climate change, and their adaptation strategies 

were examined using descriptive statistics. This approach facilitated an evaluation of 

local perspectives on climate change and adaptation measures by generating cross-

tabulations and calculating means and standard deviations. 

 

3.2.3 Results and interpretation 

3.2.3.1 Variation of Annual and seasonal of Rainfall  

By analyzing the yearly precipitation records of the Sikasso district spanning from 

1960 to 2020, significant differences in precipitation variability between the annual 

and seasonal patterns in southern Mali are observed. Specifically, the average 

seasonal precipitation exhibits notable variations across different periods. For the 

March-April-May (MAM) period, the average ranges from 50 to 350 mm, for the 

June-July-August (JJA) period it varies from 400 to 1000 mm, and for the September-

October-November (SON) period, it ranges from 100 to 500 mm. In terms of the 

average annual precipitation over the entire period from 1960 to 2020, it fluctuates 

between 800 and 1600 mm, with an average value of 1200 mm per year (Figure 3.3).  

 

Figure 3.3: Variation of Annual Rainfall for Lotio Basin River 
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Figure 3.4: Variation of seasonal (MAM) Rainfall for Lotio Basin River 

 

 
Figure 3.5: Variation of seasonal (JJA) Rainfall for Lotio Basin River 

 

 

Figure 3.6: Variation of seasonal (SON) Rainfall for Lotio Basin River 
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3.2.3.2 Variation of Annual and Seasonal and Temperature  

The annual and seasonal average temperatures from 1960 to 2020 show that the 

annual average temperature fluctuates between 26.5 and 28.5 degrees Celsius. 

Seasonal average temperatures range from 29 to 32 degrees Celsius in MAM, and 26 

to 28 degrees Celsius in JJA and SON.  

 

Figure 3.7: Annual Mean Temperature variation for Lotio Basin River 

 

 

Figure 3.8: Seasonal (MAM) Mean Temperature variation for Lotio Basin River  
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Figure 3.9: Seasonal (JJA) Mean Temperature variation for Lotio Basin River 

 

 
Figure 3.10: Seasonal (SON) Mean Temperature variation for Lotio Basin River 

 

3.2.3.3 Trend of Annual and seasonal Rainfall and Mean Temperature  

The trend analysis of rainfall shows that there is a slight increase for all the annual 

and seasonal with the exception of the period of JJA where we observe a slight 

decreasing. Any of the increase and the deceasing of annual and seasonal trend of 

rainfall are statistically significant (p-value < 0,05). The magnitude of trend analysis 
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(Slope Sen’s) indicates the positive trend for annual and all the seasonals periods 

except June-July-August period.  As for the temperature, we observe a general 

increase in trend for all the periods annual and seasonal over the study period 1960 

to 2020 and all the increase trend are statistically significant (Table 3.2).  

 

Table 3.2: Trend of Annual and seasonal Rainfall and Mean Temperature 

Time Scale Rainfall Temperature 

 Z-value P-value Slope Z-value P-value Slope 

Annual 0,989 0,322 1,255 7,033 0,000 0,025 

MAM 0,877 0,380 0,418 5,593 0,000 0,027 

JJA -0,305 0,760 -0,251 3,595 0,000 0,010 

SON 1,761 0,078 1,168 5,792 0,000 0,022 

 

3.2.3.4 First change point detection or break of annual and seasonnal rainfall 

and temperature  

The result of the following (Table 3.3) indicates that the year 2003 was the first year 

of break or first point of change observed in the annual precipitation between the 

period 1960 and 2020.  For the seasonal precipitation of the periods MAM, JJA, and 

SON, the following years were observed as the first break point, successively: 1967, 

1971, and 2003. In addition, for the annual mean temperature, the period MAM, JJA, 

and SON, the years 1996, 1998, 2004, and 1997, are considered respectively as the 

first breakpoint year. 

The statistical significance of the observed breaks is examined, and it is discovered 

that none of the annual and seasonal precipitation breaks are significant, while all of 

the annual and seasonal mean temperature breaks are significant.  

 

Table 3.3: First change point of rainfall and temperature 

Time Scale Rainfall Temperature 

 First time change point P-value First time change point P-value 

Annual 2003 0.3176 1996 0,000 

MAM 1967 0.6214 1998 0,000 

JJA 1971 0.4471 2004 0,001 

SON 2003 0.1261 1997 0,000 
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3.2.3.5 Change Point Detection (CPD) of annual and seasonal rainfall 

The observation of Change Point Detection (CPD) between 1960 and 2020, revealed 

that in Sikasso annual and seasonal rainfall they are lot of breaks. For the annual 

rainfall the break observed matches to years 1971, 1974, 1980, 1991 and 2016. 1976, 

1978, 1979, 2014 and 2016 are the change point for the MAM period. For the 

seasonal periods of JJA and SON, we are noted successively the following years 

1971, 1974, 1982, 1985, 2012 and 1975, 1980, 2009, 2011, 2014 as change point. 

 
Figure 3.11: Annual Rainfall change point 

 

 

Figure 3.12: Seasonal (MAM) Rainfall change point 
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Figure 3.13: Seasonal (JJA) Rainfall change point 

 

 

Figure 3.14: Seasonal (SON) Rainfall change point 

 

3.2.3.6 Change Point Detection (CPD) of annual and seasonal Temperature  

The results of the change point detection analysis showed any break point in the 

seasonal periods (MAM, JJA, SON) and the annual mean temperature between 1960 

and 2020. 
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Figure 3.15: Annual Temperature change point 

 

 

Figure 3.16: Seasonal (MAM) Temperature change point 

 

 
Figure 3.17: Seasonal (JJA) Temperature change point 
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Figure 3.18: Seasonal (SON) Temperature change point 

 

3.2.3.7 Socio-Economic and Demographic Characteristics of Lowland farmers  

Table 3.4 displays the findings of an investigation of the socioeconomic and 

demographic features of lowland farmers. We used the following criteria: gender, sex, 

marital status, education level, and experience in lowland farming. The findings 

revealed that lowland farming is primarily performed by men (71.65% vs. 28.35% of 

women in the examined locations). These manufacturers ranged in age from 20 to 50 

years. In this survey, the majority of respondents (48,61%) were between the ages of 

20 and 30, and nearly all (88.35%) were married.  
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Table 3.4: Socio-economic and demographic characteristics of Lowland farmers 

Variables Percentages 

Gender 

Male 71.65 

Female 28.35 

Age 

20-30 48.61 

31-50 44.56 

> 50 6.84 

Marital Status 

Married 88.35 

Single 8.61 

Widower 3.04 

Education 

No Formal Education 45.32 

Quranic school 16.46 

Primary school 25.57 

High school 12.66 

Experience 

Less than 10 years 17.72 

10 to 20 years 20.76 

20 to 30 years 27.09 

30 to 40 years 14.68 

40 to 50 years 15.19 

> 50 years 4.56 

 

3.2.3.8 Farmer’s Perception of climate variability changes  

Climate variability is a reality in Mali's southern area. Locals recall frequent heavy 

rains and protracted wet seasons in the past. Rain might fall for several hours during 

the day. The rainy season is currently being disrupted for lowland farmers. According 

to lowland farmers, this is evident in a drop in rainfall (79.6%) (Figure 3.19), an 

increase in temperature (83%) (Figure 3.20), a late start (97%) (Figure 3.21), and a 

quick conclusion to the season. Respondents noticed a shorter rainy season (97.71%) 

(Figure 3.22) and a reduction in the number of wet days (97.42%) (Figure 3.23). 

Lowland producers also perceived that climatic extremes are occurring with 

increasing frequency, resulting in an increase in periods of drought (83%) and 

flooding (96%). 



62 

 

 

Figure 3.19: Farmers' Perception on Rainfall Variation 

 

 

Figure 3.20: Farmers' Perception on Temperature Variation 
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Figure 3.21: Farmers' Perception on Onset-End season Variation 

 

 

Figure 3.22: Farmers' Perception on Rainy season duration Variation 
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Figure 3.23: Farmers' Perception on Rainy days Variation 

 

 

Figure 3.24: Farmers' Perception on Drought and Flood Variation 

 

3.2.3.9 Farmer’s Adaptation strategies of climate variability changes  
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adaptation techniques of people questioned in response to the effects of climate 

change on their means of sustenance. Lowlands producers have resorted to the use of 

newer, more adaptable varieties of culture à cycle court. In total, the majority of 

farmers (43%) have adopted these varieties. Respondents reported other coping 

strategies such as combining crops and rotating land and crops (17%), changing 

planting dates (10%), market gardening (5%), and migration (2%). The prevailing 

climatic conditions have prompted approximately 2% of lowland farmers to adopt 

various strategies to diversify their agricultural activities. These strategies include 

engaging in trade/woodcutting, livestock breeding, expanding agricultural land, and 

implementing soil conservation techniques. By diversifying their activities, these 

farmers aim to secure alternative sources of income in case of unfavourable harvest 

seasons. Crop diversification, which involves growing multiple crops together, is one 

such approaches employed to enhance financial returns and reduce reliance on a 

single crop for income generation. Moreover, diversifying income sources is 

considered crucial for local communities as it contributes to the long-term 

sustainability of their livelihoods and enhances their resilience in the face of climate 

change impacts. 

 

Figure 3.25: Farmer’s Adaptation Strategies of climate variability and changes 
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3.2.4 Discussion 

Variation and trend of Annual and seasonal of Rainfall and temperature  

The result of the existence of significant variation and positive trend in annual and 

seasonal rainfall on the one hand and the significant increase with a positive trend in 

the south of Mali in mean annual and seasonal temperatures on the other hand, 

confirms previous work (Barry et al., 2018; Bichet & Diedhiou, 2018a, 2018b; Cook 

& Vizy, 2015; Dosio, 2017; Gutiérrez et al., 2021; Kennedy et al., 2016; Lelieveld et 

al., 2016; Moron et al., 2016; Nicholson et al., 2018; Nikiema et al., 2017; 

Ranasinghe et al., 2021; Sanogo et al., 2015; Sylla et al., 2016; Thomas & Nigam, 

2018). These studies indicate a favourable pattern characterized by a rise in both 

precipitation and temperature variability within the Saharan and Sahelian nations of 

Africa. This trend is attributed to a combination of anthropogenic aerosols and 

greenhouse gases (GHGs). 

Farmer ’s Perception and Adaptation strategies of climate variability changes  

The survey found that the majority of lowland growers in the research region were 

above the age of 20. Furthermore, the bulk of them had farming experience ranging 

from 10 to 50 years. As a result, they must be capable of providing trustworthy 

information on climate change and its consequences in the study region. Their 

educational level, however, was quite poor throughout the research region. Farmers' 

capacity to recognize climatic trends and responses is impacted by their educational 

level. Lowland farmers with elementary and secondary education are more optimistic 

about climate change, which is likely owing to their frequent interaction with the 

outside world through migration and greater access to information sources such as the 

media. (Kabore et al., 2019; Koné et al., 2022; Sanogo et al., 2016; Toukal 

Assoumana et al., 2016). Thus, the amount of education of educated farmers enhances 

the possibility of adaptability to temperature and precipitation seasons. Farmers that 

are better educated understand how to obtain, interpret, accept, and adapt to climate 

change knowledge and improved technology, resulting in increased output. Farmers' 

education levels were shown to have a substantial association with extensive 

understanding of climate change. (Jha & Gupta, 2021; Sanogo et al., 2016; Asoumana 

et al., 2016). 
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3.2.5 Conclusion 

In the Sikasso District, the levels of annual and seasonal precipitation and temperature 

exhibit notable fluctuations. There is a slight upward trend observed in both annual 

and seasonal rainfall (specifically during the March-April-May and September-

October-November periods). However, for the June-July-August season, a decreasing 

trend in rainfall is observed, although it is not statistically significant. 

The average annual temperature in the study area ranges between 26.6 and 28.5 

degrees Celsius. The average annual and seasonal temperatures are rising. The 

increase in mean annual and seasonal temperatures is statistically significant. 

There are several breaks in the average for annual and seasonal precipitation in the 

area but there are no breaks in the temporal variation of annual and seasonal average 

temperatures. 

Producers have a good understanding of climate variations and have devised 

numerous adaptation strategies; namely: New Crop varieties, Intercropping, 

Land/Crop Rotation. 
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CHAPTER 3.3: EVALUATION OF TRENDS AND VARIABILITY IN 

SEASONAL AND ANNUAL RAINFALL ANOMALY INDEX (RAI) IN 

SOUTHERN MALI 

3.3.1 Introduction 

Drought refers to a period characterized by below-average precipitation levels. 

Insufficient rainfall can lead to reduced runoff, which contributes to hydrological 

drought. This, in turn, results in declining river levels, decreased water storage, and 

drying of the soil. A lack of water may jeopardize people's chances of survival. 

Drought reduces agricultural output, impacts venues, and puts a strain on 

communities. The impacts of socioeconomic drought are being felt across the 

community, affecting various aspects of our environment. The vulnerability of the 

entire ecosystem becomes evident during a drought. In certain situations, it can take 

several months of increased precipitation for the landscape, waterways, and 

communities to fully recover.  

Mali is situated within the Sahel region of Africa, where the dry seasons are longer 

(six to eight months of the year, from October-November to May-June). The rainy 

seasons are shorter (July-August-September) and provide little water. Droughts have a 

higher probability of occurring throughout any season. Over the past decade, Mali has 

experienced numerous floods and droughts. Mali is a landlocked country; the 

droughts of 192-1973, 1982-1983 and the floods of 2013, 2015, 2017, 2and 022 have 

had significant social, economic, cultural and human consequences. More than 80% 

of the population in Mali relies on agriculture as their primary source of income and 

accounts for 42% of the GDP (Bank Word, 2021). Despite significant progress, 

agricultural activity is rain-fed and remains dependent on climatic conditions.  

Therefore, drought periods pose a significant threat to both agricultural production 

and the overall economy of Mali. 

The Rainfall Anomaly Index (RAI) has been used in numerous research studies to 

assess meteorological drought. (Chahal et al., 2021) used RAI to study the 

spatiotemporal drought over the Sahibi River basin in Rajasthan, India, at two-time 

scales: annual and monsoon seasons. The drought characteristics were examined 

using race theory analysis (magnitude, duration and intensity). (Ndlovu & Demlie, 

2020) assessed meteorological drought in KwaZulu-Natal province, South Africa, 
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using the percentage normal rainfall index (PNPI) and the RAI. The authors conclude 

that the RAI is more robust for drought assessment than the PNPI. (Goswami, 2018) 

used RAI to investigate the intensity and frequency of wet and dry years in selected 

districts in West Bengal's sub-Himalayan region. Between 1901 and 2010, the study 

area experienced a higher frequency of dry years compared to wet years across all 

districts. However, a different approach using the standardized precipitation 

evapotranspiration index (SPEI) was adopted in a separate study to monitor and assess 

drought variability and climate parameters in the Koutiala and San districts from 1989 

to 2019 (Doukoro et al., 2022).  

Drought indices are employed by researchers to evaluate the impacts of drought in a 

specific area, enabling the efficient allocation of water resources among different 

sectors of water usage. (Khalil, 2022). The main objective of this study was to 

examine the patterns and fluctuations of the seasonal and annual rainfall anomaly 

index (RAI) in southern Mali from 1960 to 2020, while also identifying the most 

severe and prolonged droughts. 

 

3.3.2 Approach and Methods 

3.3.2.1 Data Collection 

For this research, monthly rainfall data from 1960 to 2020 were utilized. The National 

Meteorological Agency of Mali supplied the rainfall data from the Sikasso station, 

which was employed in the computation of the RAI.  The temporal distribution and 

trend are presented in (Figure 3.26). 
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Figure 3.26: Annual Rainfall variation and trend 

 

3.2.2.2  Methods 

Rainfall Anomaly Index 

The precipitation data was utilized to compute the Annual Rainfall Anomaly Index 

(RAI) in order to assess the occurrence and severity of dry and rainy years in the 

study area. The RAI, initially developed by van Rooy (1965), incorporates a ranking 

method to assign magnitudes to positive and negative anomalies in precipitation. The 

RAI takes into account two types of anomalies: positive anomalies and negative 

anomalies. The precipitation data is first arranged in descending order, and the 

average of the top ten values is used as a threshold for positive anomalies, while the 

average of the bottom ten values is used as a threshold for negative anomalies. The 

thresholds are calculated by the following Equations:  

The mean of the ten most extreme positive anomalies is assigned a threshold value of 

+3, while the mean of the ten most extreme negative anomalies is assigned a threshold 

value of -3. These arbitrary thresholds represent the extreme ends of the scale. The 

relative rainfall anomaly index is then categorized into nine abnormality classes, 

which cover a range of conditions from extremely wet to extremely dry. Each class is 

associated with a specific numerical value on the scale. 

     [
   ̅

 ̅  ̅
] For positive anomalies 
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      [
   ̅

 ̅  ̅
] For negative anomalies 

Where: N = current seasonal/yearly rainfall, in order words, of the seasonal/year when 

RAI will be generated (mm);  ̅= seasonal/yearly average rainfall of the historical 

series (mm);  ̅= average of the ten highest seasonal/yearly precipitations of the 

historical series (mm);  ̅= average of the ten lowest monthly/ yearly precipitations of 

the historical series (mm); and positive anomalies have their values above average and 

negative anomalies have their values below average. In addition, the seasonal RAI 

was calculated to analyze the distribution of rainfall in the different seasons. 

Mann–Kendall (MK) trend test 

The Mann-Kendall test statistic, developed by Mann, (1945) and (endall, (1975), is a 

non-parametric test used to determine if a dataset exhibits a significant increasing or 

decreasing trend over time. It assesses the statistical significance of the trend in either 

direction without making assumptions about the data's underlying distribution. 

(Praveen, et al., 2020; Merabtene et al., 2016). It is calculated as; 

 

where 

 

xj and xk are sequential values of the time series data, and n is the length of the 

dataset. A positive value of S indicates an increasing trend, and a negative value 

indicates a decreasing trend. If the dataset length is more than 10, then the test is done 

using the normal distribution with expectation (E) and variance (var); 

 

where q is the number of tied groups, and tp denotes the number of ties of extent p. A 

tied group is a set of sample data having the same value. The standard test statistic 

(ZMK) is given by; 



72 

 

 

The value of ZMK is the Mann-Kendall test statistic that follows a normal distribution 

with mean 0 and variance 1. Testing trend is done at the specific α significance level. 

When , the null hypothesis is rejected and a significant trend exists 

in the time series.  is obtained from the standard normal distribution table. In 

this analysis, the MK test is applied to detect if a trend in the time series data is 

statistically significant at significance level, α=0.05 (or 95% confidence intervals). 

Sen’s Slope Estimator 

Several hydrologic variables exhibit a notable right skewness, which can be attributed 

in part to natural phenomena, and as a result, they do not conform to a normal 

distribution. Climate data demonstrates fluctuations and deviations from the 

characteristics of a normal distribution (Nasher, 2021). Consequently, the study 

employed Sen's slope estimator, which is a nonparametric method utilized to 

construct the linear models. Sen's slope estimator is a nonparametric technique 

frequently employed to determine the actual slope of an existing linear trend. When a 

time series exhibits a linear trend, the true slope, representing the rate of change per 

unit of time, can be estimated using the straightforward nonparametric procedure 

developed by Sen in 1986. This implies that the linear model (t) can be expressed as 

follows: 

 ( )                          (3) 

where Q is the slope, B is a constant and t is time.  

To derive an estimate of the slope Q, the slopes of all data pairs are calculated using 

the equation: 

   
     

   
                        (4) 

where i = 1,2, 3,…. N,  j  >  k 

If there are n values    in the time series there will be as many as n(n-1)/2 slope 

estimates    . To obtain estimates of B in the equation the n value of differences  

       are calculated. The median of these values gives an estimate of B. The 



73 

 

calculations for the constant B of the 99% and 95% confidence intervals for the lines 

were performed using a similar approach. The data was processed in R using the 

Slope Sen's method. 

Rainfall Anomaly index intensity classification 

All the RAI positives values indicate the wet periods while the negatives values stand 

for dry periods. The RAI intensity table was utilized to assess the level of wetness or 

dryness across the study area in southern Mali. 

 

Table 3.5: Classification of Rainfall Anomaly Index Intensity 

 RAI Rang Classification 

 

 

Rainfall Anomaly Index 

Above 4 Extremely Wet 

2 to 4 Very Wet 

0 to 2 Wet 

-2 to 0 Dry 

-4 to -2 Very Dry 

Below -4 Extremely Dry 

Source: Freitas (2005) adapted by Araújo et al. (2009) 

 

3.2.2.3 Results and interpretation  

3.2.2.3.1 Annual variability of Rainfall Anomaly index  

The global analysis of annual rainfall anomaly index between 1960 and 2020 shows 

that the period was dry with an average RAI of -0.037. Over the period of 61 years 

there are 29 years with a negative RAI and 32 years with a positive RAI. The years 

1973 and 1983 were the extremely dry years with an RAI of -4.54 and -4.08 

respectively (Figure 3.27). 
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Figure 3.27: Annual Rainfall Anomaly index 

 

The Table 3.6 below represents the annual analysis of RAI by 30-year climatic 

period.  Interpretation of the table result reveals that during the first climatic period 

(1960-1990), there were 17 years with a negative RAI value and 14 years with a 

positive RAI value. The year 1983 was the driest among the years with a negative 

RAI, classified in the extremely dry category; while 1976 was an extremely wet year 

with RAI of 3.87, it represents the highest value of the years with a positive RAI.  The 

average of the period is -0.46, which is a dry climatic period according to the 

classification scale of Freitas (2005) adapted by Araújo et al. (2009). For the second 

climatic period (1991-2020), it is noted that there were 13 years with a negative value 

of which 2002 is the year with the highest value (-3.52) and is considered very dry 

according to the classification table of RAI. The year 2018, classified as extremely 

wet with an RAI of 5.48 has the largest value of 18 years with a positive RAI of the 

climatic period 1991-2020. This climatic period is a wet period with an average of 

0.32 as RAI value. 
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Table 3.6: Annual Rainfall index analysis by climatic period (30 years) 

30 

years 

Annual RAI 

 Negative Positive  Mean 

period 

Class 

period Nber. Max Year Class Nber. Max Year Class 

1960- 

1990 

17 -4.54 1983 Extremely  

Dry 

14 3.87 1976 Very 

Humid 

-0.46 Dry 

1991- 

2020 

13 -3.52 2002 Very 

Dry 

18 5.48 2018 Extremely 

Humid 

0.32 Humid 

 

The following Table 3.7 presents the detailed result of the RAI analysis by decade 

between 1960 and 2020. The result shows us 3 wet decades (1960-1970, 1991-2000 

and 2011-2020) against 3 dry decades (1971-1980, 1981-1990 and 2001-20100). The 

average RAI of the decades varies between -0.3 and 1.35. The number of positive and 

negative years varies from decade to decade. 

 

Table 3.7: Analysis of Annual Rainfall Anomaly index by decade 

Decade Annual RAI 

Number of negative years Number of Positive years Mean Class 

1960-1970 3 7 0.63 Humid 

1971-1980 5 5 -0.3 Dry 

1981-1990 9 1 -1.83 Dry 

1991-2000 6 4 0.11 Humid 

2001-2010 5 5 -0.26 Dry 

2011-2020 1 9 1.35 Humid 

 

3.2.2.3.2 Seasonal variation of Rainfall Anomaly Index 

The Figure 3.28 represents the seasonal variation of the March-April-May 

precipitation anomaly index from 1960 to 2020. The analysis of the result shows 33 

years with a negative RAI and 28 with a positive RAI. The year 2015 represents the 

year with the largest value of negative RAI, i.e. -1.55. The largest value of positive 

RAI is 5.72 in 1968 and the average for the period (1960-2020) is 0.32. 
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Figure 3.28: Seasonal March-April-May Rainfall Anomaly index 

 

Interpretation of the result of the March-April-May seasonal analysis over the two 30 
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the period 1991-2020. The year 1964 with an RAI of -1.27 has the highest value of 
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other hand, the table shows that both climate periods (1960-1990 and 1991-2020) 

have all 14 years with a positive RAI value. 1968 was an extremely humid year with 

5.72 RAI while 1997 was a very humid year with 3.66 for the 1960-1990 and 1991-

2020 climatic periods respectively.  
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Table 3.8: Seasonal March-April-May Rainfall Anomaly index by period 

climatic (30 years) 

30 

years 

Seasonal March-April-May Rainfall Anomaly Index 

 Negative Positive  Mean 

period 

Class 

period 

Nber Max Year Class Nber Max Year Class   

1960-1990 17 -1.27 1964 Dry 14 5.72 1968 Extremely Humid 0.26 Humid 

1991-2020 16 -1.55 2015 Dry 14 3.66 1997 Very  

Humid 

0.38 Humid 

 

The analysis of RAI by decade between 1960 and 2020 in the table below tells us that 

all decades (1960-1970, 1981-1990, 1991-2000, 2001-2010 and 2011-2020) were wet, 

with average RAI values ranging from 0.1 to 0.81. The number of positive and 

negative years varies from decade to decade.  

 

Table 3.9: Analysis of Seasonal March-April-May Rainfall Anomaly index by 

decade 

Decade 

Seasonal March-April-May RAI 

Number of negative 

years 

Number of positive years Mean Class 

1960-1970 7 3 0.25 Humid 

1971-1980 5 5 0.44 Humid 

1981-1990 5 5 0.1 Humid 

1991-2000 3 7 0.81 Humid 

2001-2010 7 3 1.1 Humid 

2011-2020 6 4 0.23 Humid 

 

The following Figure 3.29 represents the seasonal variation of the June-July-August 

precipitation anomaly index from 1960 to 2020. There are 29 years with a negative 

precipitation anomaly index and 32 years with a positive precipitation anomaly index. 

The average for the period is -0.007 RAI, with -4.48 RAI, 1983 was the driest year 

and 4.97 RAI, 2016 was the wettest year of the period. 
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Figure 3.29: Seasonal June-July-August Rainfall Anomaly index 

 

The Table 3.10 illustrates the situation of the June-July-August seasonal precipitation 

anomaly index between 1960 and 2020 by 30-year climate period. The period 1960-

1990 was a dry period with -0.15 of average precipitation anomaly index; while, the 

period 1991-2020 was wet with 0.15 of average precipitation anomaly index. During 

the period 1991-2020, there were 14 years with negative RAI value and 16 years with 

positive RAI, while there were 15 years with negative RAI and 16 years with positive 

RAI for the period 1960-1990. It is also noted that 1983 (-4.48 RAI) was the driest 

year of the 1960-1990 period and 2002 (-3.51 RAI), considered very dry, was the 

driest year of the second climatic period. For the wet years of each climatic period, we 

observe 1970 with 2.45 RAI (Very humid) and 2016 with 4.97 RAI (Extremely 

Humid) for the period 1960-1990 and 1991-2020 respectively.  
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Table 3.10: Seasonal June-July-August Rainfall Anomaly index by period 

climatic (30 years) 

30years Seasonal June-July-August RAI 

 Negative Positive  Mean 

period 

Class 

period Nber. Max Year Class Nber. Max Year Class 

1960-1990 15 -4,48 1983 Extremely Dry 16 2,45 1970 Very Humid -0,15 Dry 

1991-2020 14 -3,51 2002 Very Dry 16 4,97 2016 Extremely Humid 0,15 Humid 

 

Table 3.11 shows the status of the June-July-August seasonal precipitation anomaly 

index (RAI) by decade from 1960 to 2020 in southern Mali. The situation of seasonal 

RAI shows, in general, a strong variability in the number of years with a negative and 

positive RAI depending on the decade. The averages range from -0.64 to 1.32. 

Finally, the table shows that the 1960-1970 and 2011-2020 decades were wet and the 

others were dry.  

 

Table 3.11: Analysis of Seasonal June-July-August Rainfall Anomaly index by 

decade 

Decade Seasonal June-July-August RAI 

Number of negative years Number of positive years Mean Class 

1960-1970 1 9 1,06 Humid 

1971-1980 6 4 -0,5 Dry 

1981-1990 8 2 -1,13 Dry 

1991-2000 6 4 -0,24 Dry 

2001-2010 6 4 -0,64 Dry 

2011-2020 2 8 1,32 Humid 

 

The Figure 3.30 illustrates the result of the analysis of the September-October-

November seasonal precipitation anomaly index between 1960 and 2020 for the 

Sikasso district of southern Mali. During the period there is a significant number of 

years with a negative RAI (33 years) compared to 28 years with a positive RAI. 1973 

was the driest year of the period with a precipitation anomaly index of -5.90 

(extremely dry) while 1976 was the extremely humid year of the period with a 

precipitation anomaly index of 4.69.  
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Figure 3.30: Seasonal September-October-November Rainfall Anomaly Index 

 

The Table 3.12 illustrates the result of the analysis of the index of seasonal 

precipitation anomaly September-October-November of the study area between 1960 

and 2020 by two climatic periods of 30 years. The interpretation of the result of the 

first climatic period (1960-1990), allows us to highlight that it was dry with an index 

of the average precipitation anomaly of -0.80, unlike the second period (1991-2020), 

with an index of the average precipitation anomaly of 0.38 is wet. The period 1991-

2020 has more years with a positive RAI (16) than the period 1960-1990 (12). Both 

had 1976 with an RAI of 4.69 and 2018 with an RAI of 4.45 as the wettest year for 

the period 1960-1990 and 1991-2020. 1973 considered as an extremely dry year with 

a precipitation anomaly index of -5.90, was the driest year of the 1960-1990 climatic 

period; while 2000 classed as very dry with a precipitation anomaly index of -2.22 

was the driest of the 1991-2000 period. The climatic period 1991-2020 recorded 

fewer years with a negative precipitation anomaly index (14) than the period 1960-

1990 with 19 years. 

  

1973, -5.91 

1976, 4.69 

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

1
9

6
0

1
9

6
2

1
9

6
4

1
9

6
6

1
9

6
8

1
9

7
0

1
9

7
2

1
9

7
4

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0



81 

 

Table 3.12: Seasonal September-October-November Rainfall Anomaly index by 

period climatic (30 years) 

30years Seasonal September-October-November RAI 

 Negative Positive  Mean 

period 

Class 

period Nber. Max Year Class Nber. Max Year Class 

1960-1990 19 -5,90 1973 Extremely Dry 12 4,69 1976 Extremely Humid -0,80 Dry 

1991-2020 14 -2,22 2000 Very Dry 16 4,45 2018 Extremely Humid 0,38 Humid 

 

The Table 3.13 below shows the situation of seasonal precipitation anomaly index 

September-October-November by decade from 1960 to 2020 of the study area. The 

analysis of the result presented in the table, shows us that the decades 1960-1970, 

1971-18980 and 1991-2000 were dry with successively an average of the precipitation 

anomaly index of -0.21, -0.22 and -0.14. Decades 2001-2010 and 2011-2020 were wet 

with respectively 0.45 and 0.85 of the average precipitation anomaly indices, contrary 

to the decade 1981-1990 which was very dry with an average RAI of -2.02. There is a 

total domination of negative precipitation anomaly index during the 1981-1990 

decade, while for the other decades there is a fluctuation between negative and 

positive precipitation anomaly index from one decade to another.  

 

Table 3.13: Analysis of Seasonal September-October-November Rainfall 

Anomaly index by decade 

Decade 
Seasonal September-October-November RAI 

Number of negative years Number of positive years Mean Class 

1960-1970 5 6 -0,21 Dry 

1971-1980 4 6 -0,22 Dry 

1981-1990 10 0 -2,02 Very Dry 

1991-2000 6 4 -0,14 Dry 

2001-2010 4 6 0,45 Humid 

2011-2020 4 6 0,85 Humid 

 

The Figure 3.31 illustrates the result of the analysis of the December-January-

February seasonal precipitation anomaly index between 1960 and 2020 for the 

Sikasso district of southern Mali. During the period there is a significant number of 

years with a negative RAI (39 years) compared to 22 years with a positive RAI. 2014 

was the extremely wet year of the period with a precipitation anomaly index of 5.38.  
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Figure 3.31: Seasonal December-January-February Rainfall Anomaly Index 

 

The Table 3.14 represents the results of the analysis of the December-January-

February seasonal precipitation anomaly index over a period of 61 years (1960 and 

2020) of the Sikasso district in southern Mali by climatic period of 30 years. The 

observation of the results indicates that both 1960-1990 and 1991-2020 were dry with 

successively a period average of -1.29 and -1.24 RAI. The 1960-1990 period had 21 

years with a negative precipitation anomaly index and 10 years with a positive RAI 

while the 1991-2020 period had 20 years with a negative RAI and 10 with a positive 

RAI. Both periods had -3 highest negative RAI value. 

Table 3.14: Seasonal December-January-February Rainfall Anomaly index by 

period climatic (30 years) 

30 

years 

Seasonal December-January-February RAI 

 Negative Positive  Mean 

  period 

Class 

  period  Number    Max Year Class  Number  Max  Year Class 

1960- 

1990 

21 -3 1960,1961, 

1962, 1966, 

1969, 1970, 

1972, 1974, 

1975, 1978, 

1979,1984, 

1985, 1988, 

1989,1990 

 Very Dry 10  4,83 1964  Extremely Humid -1,29 Dry 

 1991- 

2020 

20 -3 1995,1996, 

2001, 2005, 

2006, 2007, 

2008, 2011, 

 2012, 2013,  

2017,2018, 

2019, 2020 

 Very Dry 10 5,37  2014 Extremely Humid -1,24 Dry 
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The Table 3.15 shows the December-January-February seasonal precipitation 

anomaly index between 1960 and 2020 by decade. It is noted that all decades are dry 

with average values ranging from -1.69 to -1.47 and that the number of years with 

negative and positive precipitation anomaly index is variable from one decade to 

another. 

 

Table 3.15: Analysis of Seasonal December-January-February Rainfall Anomaly 

index by decade 

Decade Seasonal December-January-February RAI 

Number of negative years Number of positive 

years 

Mean Class 

1960-1970 6 5 -0.74 Dry 

1971-1980 7 3 -1.65 Dry 

1981-1990 8 2 -1.52 Dry 

1991-2000 5 5 -0.57 Dry 

2001-2010 8 2 -1.47 Dry 

2011-2020 8 2 -1.69 Dry 

 

3.2.2.3.3 Annual and seasonal Trends of Rainfall Anomaly Index  

An analysis was conducted to assess the trends in the Rainfall Anomaly Index (RAI) 

for both annual and seasonal data from 1960 to 2020. The trend direction (whether 

increasing or decreasing) was determined using the well-known Mann-Kendall test, 

while the magnitudes of the trends were estimated using Sen's slope method. These 

statistical tests were carried out at a significance level of 5%. The results obtained 

from these tests were then compared with those obtained using the linear trend 

method. The findings of the trend analysis for RAI based on observed data are 

presented in Table 3.16. It was observed that the annual RAI and the seasonal RAI for 

March-April-May and September-October-November exhibited increasing trends. On 

the other hand, the seasonal RAI for June-July-August and December-January-

February showed decreasing trends. Specifically, the linear trend approach revealed a 

decreasing slope of -0.0097 mm/year for the December-January-February RAI, while 

the annual RAI and the seasonal RAI for March-April-May, June-July-August, and 

September-October-November indicated increasing trends. 
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Table 3.16: Trend of Rainfall Anomaly Index 

 

Time Scale 

Rainfall Anomaly Index  

Mann Kendall Test Sen's Slope  Linear regression 

Trend P-value Trend R-square 

Annual Increasing 0,322 0,013 Increasing 0,0228 

MAM Increasing 0,380 0,008 Increasing 0,0003 

JJA Decreasing 0,760 -0,004 Increasing 0,0005 

SON Increasing 0,078 0,026 Increasing 0,0618 

DJF Decreasing 0,533 0,000 Decreasing 0,0052 

 

3.2.2.3.4 Rainfall Anomalies Index Classification 

The analysis of the classification of precipitation anomaly indices was done for the 

years 1960-2020. The classification of whether a year was categorized as dry or wet 

was done using the classification table developed by Freitas (2005) and adapted by 

Araújo et al. (2009). To determine the classification for each year, the results were 

analysed in Microsoft Excel, which provided information on the years classified as 

dry, very dry, extremely dry, wet, very wet, and extremely wet. The outcomes of the 

RAI classification analysis based on the observed data can be found in the presented 

table. For the annual RAI, the years 1973 and 1983 were extremely dry with -4.09 and 

-4.54 respectively while 2016 and 2018 were extremely wet with successively 0.06 

and 5.48 RAI. 

 

Table 3.17: Annual Rainfall Anomaly Index 

Years 
Annual Rainfall Anomaly Index 

Dry Very Dry Extremely Dry Humid Very Humid Extremely Humid 

1960    0.31   

1961 -0.28           

1962 -0.25      

1963       0.85     

1964    0.77   

1965   -2.06         

1966    0.66   

1967       1.19     

1968     3.26  

1969       0.69     

1970    1.9   

1971   -3.07         

1972 -1.65      

1973     -4.09       

1974 -1.04      

1975       0.67     

1976     3.87  

1977       0.45     
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1978    1.19   

1979       0.86     

1980 -0.27      

1981       0.57     

1982 -1.33      

1983     -4.54       

1984  -2.75     

1985 -1.37           

1986 -0.45      

1987   -2.3         

1988 -2      

1989   -2.11         

1990  -2.06     

1991         2.16   

1992     2.26  

1993 -0.2           

1994    1.08   

1995 -1.68           

1996  -3.13     

1997 -0.7           

1998     2.7  

1999 -0.48           

2000 -0.82      

2001 -0.67           

2002  -3.52     

2003       0.79     

2004    1.4   

2005 -0.97           

2006 -0.26      

2007       1.88     

2008  -2.42     

2009       0.12     

2010    0.98   

2011       0.14     

2012    1.13   

2013       1.01     

2014     2.41  

2015 -1.59           

2016      4.06 

2017       0.19     

2018      5.48 

2019       0.5     

2020       0.25     
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The Table 3.18 below shows the seasonal analysis of March-April-May precipitation 

anomaly index between 1960 and 2020. 2015 and 1964 were dry with while 1978 and 

1968 are considered extremely dry, we record successively 4.76 and 5.72, the value of 

RAI during the study period. 

 

Table 3.18: Seasonal March-April-May Rainfall Anomaly Index 

Years 
Seasonal March-April-May RAI 

Dry Humid Very Humid Extremely Humid 

1960 -1.07    

1961 -0.78       

1962 -0.89    

1963   0.1     

1964 -1.28    

1965 -0.51       

1966 -0.08    

1967 -0.02       

1968    5.72 

1969   0.03     

1970  1.55   

1971 -1.07       

1972  1.97   

1973   0.01     

1974 -0.87    

1975   0.19     

1976 -0.06    

1977 -0.32       

1978    4.77 

1979 -0.31       

1980  0.18   

1981   0.38     

1982  1.07   

1983 -0.88       

1984 -0.03    

1985 -1.07       

1986   3.19  

1987 -1.04       

1988  0.14   

1989 -1.26       

1990  0.5   

1991   0.57     

1992  1.52   

1993   0.01     

1994 -0.46    

1995     2.28   

1996 -0.5    

1997     3.66   

1998  0.4   

1999 -0.52       
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2000  1.16   

2001 -0.67       

2002 -0.69    

2003 -0.51       

2004  1.3   

2005   0.41     

2006   2.3  

2007 -0.26       

2008 -0.48    

2009 -0.27       

2010 -0.03    

2011   0.58     

2012 -0.09    

2013     3.03   

2014 -0.93    

2015 -1.56       

2016 -0.15    

2017 -0.33       

2018  1.22   

2019   0.81     

2020 -0.25       

 

The result of the June-July-August seasonal analysis from 1960-2020 is presented in 

the table below (Table 3.19). According to the classification table of the precipitation 

anomaly index, the year 1983 is identified as an extremely dry year with a value of -

4.48, while the year 2002 is classified as a very dry year with a value of -3.51. 

According to the same classification 2016 is considered as Extremely wet with 4.97 

RAI while the year 2018 with 3.90 has been reported as very dry. 

 

Table 3.19: Seasonal June-July-August Rainfall Anomaly Index 

Years 
Seasonal June-July-August Rainfall Anomaly Index 

Dry Very Dry Extremely Dry Humid Very Humid Extremely Humid 

1960    1.88   

1961         2.24   

1962    0.27   

1963       0.69     

1964    1.63   

1965 -1.83           

1966    0.42   

1967       1.1     

1968    1.94   

1969       0.94     

1970     2.45  

1971 -0.82           

1972  -3.33     

1973   -2.21         

1974    0.84   
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1975 -1.34           

1976     2.13  

1977 -0.02           

1978 -1.06      

1979       0.4     

1980    0.34   

1981       1.93     

1982 -1.56      

1983     -4.48       

1984  -2.49     

1985       1.12     

1986 -1.05      

1987 -1.23           

1988 -0.98      

1989 -0.05           

1990  -2.53     

1991       1.68     

1992     3.72  

1993 -0.78           

1994 -1.25      

1995   -3.19         

1996  -2.83     

1997   -2.6         

1998     2.96  

1999       0.43     

2000 -0.59      

2001       0.12     

2002  -3.51     

2003       1.63     

2004    0.4   

2005 -0.58           

2006  -2.83     

2007         2.78   

2008 -1.45      

2009 -1.24           

2010 -1.87      

2011       0.27     

2012    1.84   

2013       1.06     

2014     2.9  

2015 -1.8           

2016      4.98 

2017       1.15     

2018     3.91  

2019 -1.48           

2020       0.38     
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The following Table 3.20 contains the result of the seasonal analysis September-

October-November of the precipitation anomaly index between 1960 and 2020 of 

southern Mali. The interpretation indicates that 1973 (-5.90) was an extremely dry 

year, 1971 (-3.81) very dry on one side and the years 2010 (4.19), 2018 (4.45) and 

1976 (4.69) are extremely wet. 

 

Table 3.20: Seasonal September-October-November Rainfall Anomaly Index 

Years 
Seasonal September-October-November Rainfall Anomaly Index 

Dry Very Dry Extremely Dry Humid Very Humid Extremely Humid 

1960 -0.2      

1961   -2.83         

1962    0.67   

1963       0.6     

1964    0.55   

1965 -0.87           

1966    0.95   

1967       0.49     

1968 -1.09      

1969       0.17     

1970 -0.84      

1971   -3.82         

1972    0.04   

1973     -5.91       

1974  -2.03     

1975         3   

1976      4.69 

1977       1.11     

1978    0.25   

1979       1.69     

1980 -1.31      

1981   -2.27         

1982 -1.35      

1983 -1.33           

1984  -2.02     

1985   -2.89         

1986  -2.65     

1987 -1.63           

1988  -3.02     

1989   -2.25         

1990 -0.86      

1991       1.36     

1992  -2.13     

1993       0.78     

1994     3.74  
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1995 -0.55           

1996 -1.43      

1997 -1.17           

1998    0.88   

1999 -0.71           

2000  -2.22     

2001 -0.29           

2002 -0.86      

2003       0.23     

2004    0.57   

2005 -1.53           

2006    1.65   

2007       0.42     

2008  -2.13     

2009         2.28   

2010      4.2 

2011 -0.52           

2012 -0.03      

2013   -2.08         

2014    1.39   

2015       1.89     

2016    1.24   

2017 -0.7           

2018      4.45 

2019         2.4   

2020       0.48     

 

The table 3.21 below is the result of the analysis of the precipitation anomaly based 

on the observation data of the southern district of Mali between 1960 and 2020. It is 

noted that 1983 is considered dry with -0.54 and 1984 is classified as very dry with -3. 

It is also noted that the year 1964 was classified as extremely wet with 4.84 while 

1977 is classified as very wet with 2.24. 

 

Table 3.21: Seasonal December-January-February Rainfall Anomaly Index 

Years 
Seasonal December-January-February Rainfall Anomaly Index 

Dry Very Dry Humid Very Humid Extremely Humid 

1960 
 

-3 
   

1961   -3       

1962 
 

-3 
   

1963     0.32     

1964 
    

4.84 

1965     0.67     

1966 
 

-3 
   

1967       2.43   
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1968 
  

1.51 
  

1969   -3       

1970 
 

-3 
   

1971     0.33     

1972 
 

-3 
   

1973     0.02     

1974 
 

-3 
   

1975   -3       

1976 
 

-2.04 
   

1977     1.8     

1978 
 

-3 
   

1979   -3       

1980 -1.63 
    

1981 -0.17         

1982 
 

-2.91 
   

1983 -0.54         

1984 
 

-3 
   

1985   -3       

1986 
  

1.58 
  

1987     1.76     

1988 
 

-3 
   

1989   -3       

1990 
 

-3 
   

1991     0.6     

1992 
 

-2.45 
   

1993   -2.82       

1994 
    

4.31 

1995   -3       

1996 
 

-3 
   

1997       2.24   

1998 
  

0.23 
  

1999   -2.73       

2000 
  

0.9 
  

2001   -3       

2002 -1.72 
    

2003   -2.54       

2004 
    

4.14 

2005   -3       

2006 
 

-3 
   

2007   -3       

2008 
 

-3 
   

2009 -0.63         

2010 
  

0.95 
  

2011   -3       

2012 
 

-3 
   

2013   -3       

2014 
    

5.38 

2015   -2.18       

2016 
  

0.88 
  

2017   -3       

2018 
 

-3 
   

2019   -3       

2020   -3       
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3.2.2.3.5 Maximum intensity droughts with durations for the rainfall 

The (Table 3.22) presents the maximum intensity drought events for the annual 

Rainfall Anomaly Index (RAI) in southern Mali from 1960 to 2020. Based on the 

analysis of the annual RAI, a total of 29 drought events were identified. Among these 

events, the most severe drought had a maximum intensity of -4.54 and lasted for 9 

years, spanning from 1982 to 1990. 

 

Table 3.22: Intensity and duration of droughts 

RAI Start End Duration Intensity 

Annual 

71 74 4 -4.08 

82 90 9 -4.54 

95 97 3 -3.13 

2000 2002 3 -3.51 

 

3.3.3 Discussion 

In this study, we examined the potential effects of climate change on the long-term 

trends of the rainfall anomaly index in the Sikasso district of southern Mali using 61 

years of monthly records. We assessed both long-term and short-term trends in 

rainfall using various statistical measures, including monotonic linear regression trend 

analysis, the Mann-Kendall trend test, and the Mann-Kendall seasonal trend. We also 

considered the serial correlation fed by Sen's slope to capture the trends and 

variability of the annual and seasonal precipitation anomaly index. To analyze the 

data comprehensively, we divided it into six aggregated periods. 

It is important to note that when a clear trend was identified, the linear regression 

analysis and the Sen slope derived from the Mann-Kendall test were in agreement. 

This suggests that simple linear regression can be as effective as other tests in trend 

analysis, despite the prevailing preference for non-parametric tests in assessing 

climate data trends. 

Overall, our findings indicate that the trend of the annual rainfall anomaly index in the 

South Mali district has been showing a return of wet periods for approximately two 

decades, starting in 2003. Similarly, the seasonal rainfall anomaly index for March-

April-May and September-October-November also exhibited a dominance of wet 

periods. This finding is particularly significant as the September-October-November 
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period is crucial for crop maturity and quality. However, the analysis of the June-July-

August seasonal precipitation anomaly index revealed a slight decrease in peak 

precipitation over the past two decades. This persistent change in the occurrence of 

precipitation peaks necessitates further analysis of potential climate change issues and 

risks in the region. 

Analysing the average climate periods revealed that rainfall patterns in the Sikasso 

District are characterized by extended periods of drought interspersed with episodes 

of intense rainfall occurring at short intervals. Decadal analysis indicated alternating 

wet and dry decades, with variations in the number of years displaying negative and 

positive RAI. 

 

3.3.4 Conclusion 

In summary, the long-term analysis of rainfall in the Sikasso District demonstrates a 

trend towards the recovery of rainfall. Based on the current evidence, we recommend 

implementing strategies for preparing, developing, and managing water resources to 

adapt to a changing climate and promote sustainability. It is also essential to 

incorporate flood risk management into Mali's strategic plans for climate change 

adaptation and mitigation. Furthermore, we strongly recommend conducting more 

comprehensive research and analysis to investigate the impact of climate change in 

Mali using a broader range of temporal and spatial climate data. 
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CHAPTER 3.4: MODELING THE HISTORICAL AND PROSPECTIVE 

DYNAMICS OF LAND USE AND LAND COVER (LULC) IN THE LOTIO 

RIVER BASIN, IN WEST AFRICA 

3.4.1 Introduction 

The process of land use and land cover (LULC) dynamics refers to the changes in the 

Earth's land cover that occur over different temporal and spatial scales (Hassen et al. 

2021). These changes have become a growing global concern due to their impacts on 

both terrestrial and aquatic ecosystems (Sibanda and Ahmed 2021). It is projected that 

more than 75% of the Earth's already degraded land could reach 90% by 2050 

(Cherlet et al. 2018). Over the period from 1960 to 2019, approximately one-third of 

the Earth's land underwent significant changes (Winkler et al. 2021). The authors also 

highlighted a worldwide net loss of forest area totalling 0.8 million km2, while global 

agriculture expanded by 1.0 million km2. However, it is important to note that these 

trends vary across different regions. 

In Africa, there has been a conversion of natural vegetation in many areas to human-

made land uses (Barnieh et al. 2020; Bull-ock et al. 2021; Findell et al. 2017). From 

2012 to 2017, there was a substantial reduction in the extent of natural vegetation 

areas across the continent, with a corresponding increase in impervious areas (Nowak 

and Greenfield 2020). This phenomenon can be attributed to the increase in 

population and the gradual desiccation of soils caused by climate change (PNUE 

2004).  

In West Africa, the conversion of extensive savannah, open forest, and woodland into 

agricultural fields and urban settlements has been observed from 1975 to 2013 

(Barnieh et al., 2020; CILSS, 2016). The data indicate a significant reduction in forest 

cover, with approximately one-third of the forests disappearing, while there has been 

a 47% increase in bare land areas over a span of 40 years (CILSS, 2016). 

In Mali, the 40-year trends indicate according to (Ruelland et al., 2010) in the 

Sahelian region, there has been a continuous expansion of croplands and areas with 

sparse vegetation prone to erosion, leading to a significant decline in the presence of 

woody covers. In the Sudano-Sahelian area, there has been a notable increase in 

croplands, accompanied by a moderate decrease in woody covers. In the Sudanian 

region, agricultural expansion, deforestation, as well as reforestation and land 
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rehabilitation, have been observed due to alternating periods of exploitation and 

natural vegetation recolonization.  

The swift changes in land use and land cover (LULCC) pose a significant challenge to 

sustainable development as they have adverse effects on various aspects such as 

agriculture, the occurrence of floods and droughts, urban planning, and the 

availability of forests and water resources (Akinyemi 2021; Akpoti et al. 2016; 

Bessah et al. 2020; Dimobe et al. 2017; Nut et al. 2021).  Conducting an evaluation of 

LULCC can offer enhanced insight into the relationships between natural vegetation 

and human activities. (Floreano and de Moraes 2021; Gupta and Sharma 2020).  

the Lotio River Basin (LRB) is part of the Sudanian region where agricultural 

extension, deforestation is a major issue (Ruelland et al., 2010). It occupies about 

35% of the area of Mali, and covers 135 villages with 725 494 inhabitants.  

Several studies in the Lotio River Basin (LRB) have highlighted an increase cropland 

areas and decrease in water and vegetation these last decades (Bengaly et al., 2021; 

Traoré, 2020). However, only limited studies have been conducted to evaluate the 

changes in past and future LULC across the entire Lotio River Basin. Additionally, 

most of these studies have relied on the maximum likelihood classification method, 

which assumes a normal distribution of data and uses pixel resemblance as a basis. 

While this method can yield satisfactory results, it has certain parametric limitations 

(Shetty 2019). However, alternative non-parametric machine learning algorithms, 

such as Random Forest (RF), Support Vector Machines (SVM), Classification and 

Regression Trees (CART), K-Nearest Neighbour (KNN), Learning Vector 

Quantization (LVQ), and Stochastic Gradient Boosting (SGB), have been developed 

and employed in LULC assessments (Dimobe et al. 2017; Forkuor et al. 2017; 

Gislason et al. 2006; Hackman et al. 2017; Nery et al. 2016; Shetty 2019; Zoungrana 

et al. 2015). Among these non-parametric classifiers, SVM has gained consensus as 

an effective method (Orieschnig et al., 2021). Furthermore, various techniques have 

been developed to project future LULC, including the Cellular Automata-Markov 

Chain (CA-MC), Markov Chain Model (MCM), Stochastic Markov Chain (STMC), 

Multi-Layer Perceptron (MLP) Neural Network and Markov Chain Model, and 

Combined Markov-FLUS Model (Bozkaya et al. 2015; Dey et al. 2021; Girma et al. 

2022; Sinha et al. 2020; Yang et al. 2022). However, the most reliable technique for 
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such projections is the Multi-Layer Perceptron Neural Network and Markov Chain 

Model, known for its robustness in machine learning (Eastman 2020; Hussien et al. 

2022). In this particular study, the historical dynamics of LULC were assessed using 

the SVM algorithm, while the Land Change Modeler incorporated the Multi-Layer 

Perceptron Neural Network and Markov Chain Model to forcast future LULCC in the 

Lotio River Basin. 

 

3.4.2 Approach and Methods  

3.4.2.1 Data Collection 

The utilized dataset comprises Landsat 5 TM (1990), Landsat 7 ETM+ (2000 & 

2010), and Landsat 8 OLI (2020) images obtained from the Google Earth Engine 

(GEE) data catalogue. These images, covering the period from January 1 to December 

31, were acquired and utilized as inputs for the LULC analysis. 

Physical factors such as geography and climate are thought to be the most influential 

in motivating human behaviour (Muhammad et al., 2022). The proximity of roadways 

helps determine the driving forces behind landscape design. The digital elevation 

model (DEM) utilized in this study had a spatial resolution of 30 m and was derived 

from SRTM elevation data available in the Google Earth Engine (GEE) data 

catalogue. The estimation of slope was performed using the DEM, while proximity 

factors like distance to roads were determined using the Euclidean distance method in 

ArcGIS 10.4 (Table 3.23). 

 

Table 3.23: Data sources 

Satellite Spatial resolution Temporal range 

Landsat 5 TM 30m 01/01/1990 to 31/12/1990 

Landsat 7 ETM+ 30m 01/01/2000 to 31/12/2000 

Landsat 8 OLI 
30m 

 

01/01/2010 to 31/12/2010 

01/01/2020 to 31/12/2020 

Data Source 

DEM 
https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-

radiometric-terrain-correction/  

Slope Calculated from DEM 

Roads https://www.diva-gis.org/gdata 

Distance from 

roads 
Calculated from road network 

TM: Thematic mapper, ETM+: Enhanced Thematic Mapper Plus, OLI: Operational land imager 

https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://www.diva-gis.org/gdata
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Five main LULC classes were identified: water, forest, shrubland, cropland and bare 

land (Table 3.24). Each class's samples were gathered from three different sources. 

Samples from 1990, 2000, and 2010 were obtained using high-resolution historical 

Google Earth images, while samples from 2020 were collected by a field survey. To 

classify the 1990, 2000, 2010, and 2020 photos, 325, 265, 205, and 144 

disproportional stratified random samples of the five LULC classes were employed, 

accordingly Table 3.25. 

 

Table 3.24: Land use and land cover classes description 

LULC Class Description 

Bare land Area with no vegetation cover, built-up areas, roads, infrastructures 

Cropland Agriculture lands, area under cultivation, farmland 

Forest An area dominated by trees, community and public forest reserves 

Shrubs Fallow vegetation, trees, grassland 

Water Lakes, streams, reservoirs, rivers 

Source: FAO, 2009 

 

Table 3.25: Sample sizes of LULC units for 1990, 2000, 2010 and 2020 

LULC Units 
Sample seizes 

1990 2000 2010 2020 Total 

Bare land 40 34 30 23 127 

Cropland 98 78 67 44 287 

Forest 50 40 32 26 148 

Shrubs 67 50 41 31 189 

Water 70 63 35 20 188 

Total 325 265 205 144 939 

 

3.4.2.2 Methods 

Pre-processing  

The pre-processing processes included scaling, cloud masking, and additional band 

computation. To achieve the true surface reflectance values, the images were scaled 

using the necessary scale factors and offsets. Cloud masking involved the 

identification and exclusion of pixels containing clouds and shadows to ensure they 

did not affect subsequent analysis. A median filter was then applied to the captured 

images of each year to create a composite that was free from cloud interference. 

Alongside the five original surface reflectance bands, two additional indices, namely 

the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference 
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Built-up Index (NDBI), were calculated and utilized as supplementary attributes. The 

NDVI helped differentiate between vegetated and non-vegetated areas, while the 

NDBI assisted in distinguishing built-up and bare land regions from other land uses 

(Barnieh et al., 2020; Feng et al., 2016; Hackman et al., 2017; Yangouliba et al., 

2022).  

LULC Classification 

The training samples listed in (Table 3.3. 1) were utilized to classify the pre-processed 

images. 70% of the samples from each year were allocated for training the 

classification algorithm, while the remaining 30% were reserved for testing purposes. 

(Yangouliba et al., 2022). The classification method was based on 4 supervised 

classifications techniques: Classification and Regression Tree (CART), Support 

Vector Machine (SVM), Random Forest (RF) and Gradient Tree Boosting (GTB) in 

Google Earth Engine (GEE). The SVM algorithm, initially developed by Vapnik and 

his team in the late 1970s, has gained significant popularity as a kernel-based learning 

algorithm in a wide range of machine learning applications. Due to its exceptional 

performance and output quality, it was selected for the image classification task 

(Mountrakis et al., 2011). In other, according to (Nery et al., 2016) when detecting 

land use and land cover changes in time series imagery, it is advisable to give priority 

to SVM as the preferred classification method. 

Change Detection Analysis 

To estimate spatiotemporal changes and calculate land use and land cover (LULC) 

changes between specific time intervals (1990–2000, 2000–2010, 2010–2020, and 

1990–2020), we employed the Semi-Automatic Classification Plugin (SPC) modules 

within the QGIS software. Four LULC change maps were generated using this 

approach. Percentage change was computed using the following equation (Hussien et 

al. 2022): 

  
(     )

  
     

where p is the percent change,    is the area of a class in the later LULC map (ha), 

and    is the area of a class in the earlier LULC map (ha).  
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The CA-ANN multilayer perceptron technique was utilized to forecast forthcoming 

changes in land use and land cover (LULC). Various factors, including the digital 

elevation model (DEM), slope, and proximity to highways, were used as explanatory 

variables in the prediction model (Table 3.3.1). These variables are commonly 

employed in LULC change analysis due to their ability to provide consistent data on 

the physical and human-induced factors influencing LULC dynamics. (Muhammad et 

al., 2022). 

Prediction and Model Validation 

Many research suggests that the CA-ANN approach is more efficient than linear 

regression (El-Tantawi et al., 2019), so we used it in the MOLUSCE plugin to model 

transition potentials and simulate future land use and land cover dynamics in the Lotio 

Basin. The MOLUSCE plugin computes land use change analyses efficiently 

(Gismondi, 2013) and is well suited for assessing spatiotemporal forest and land use 

changes, forecasting transition prospects, and simulating future scenarios. 

Based on previous studies indicating the superior efficiency of the CA-ANN approach 

over linear regression (El-Tantawi et al., 2019), we applied this method within the 

MOLUSCE plugin to model transition potentials and simulate future land use and 

land cover dynamics in the Lotio Basin. The MOLUSCE plugin is known for its 

efficient computation of land use change analyses (Gismondi, 2013) and is 

particularly suitable for assessing spatiotemporal forest and land use changes, 

forecasting transition prospects, and simulating future scenarios.. To predict the land 

use and land cover (LULC) for the year 2020, we utilized LULC data from 2000, 

2010, explanatory variables, and transition matrices. The accuracy of our model and 

predictions were assessed using the kappa validation technique and by comparing the 

actual and projected LULC images. The forecasting process for the CA-ANN model 

involved 1000 iterations, with a neighborhood size of 3x3 pixels. We set the learning 

rate at 0.001 and utilized 12 hidden layers, along with a momentum of 0.05. With 

promising validation results, we proceeded to project the LULC for the year 2030 

using the LULC data from 2010 and 2020 (Muhammad et al., 2022).  
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Figure 3.32: Methodology flow chart  
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3.4.3 Results and interpretation  

3.4.3.1 Past Land Use and Land Cover Dynamic  

For the purpose of determining changes in land use and land cover in the Southern 

Mali, notably Lotio River Basin, four images classified were clipped at the study area 

level, making fours maps. Confusion matrix, user, producer accuracy were used to 

assess the map accuracy (See Appendix) of land use and land cover maps from 1990 

to 2020 are shown in Figure 3.33. 

 

Figure 3.33: Land Use and land cover map from 1990 to 2020 

 

In 1990, farmland (44%) and forest (20%) dominated the Lotio River Basin (LRB) 

(Table 3.26). These were followed by shrublands, bare soils, and aquatic bodies, 

which received 16%, 14%, and 6% coverage, respectively. However, the order was 

confirmed in the year 2000. Cropland and forest covered 48% and 18% of the land 

area, respectively. As in 1990, the least represented LULC were barren soils and 

aquatic bodies. In 2010, farmland dominated the basin's land cover, followed by 

shrubland and forest (51% 16% 15% and 53% 15% 14%, respectively). Natural 

vegetation has lost way to artificial land uses (cropland) between 1990 and 2020. 
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Table 3.26: Land Use and Land Cover statistics from 1990 to 2020 

LULC Units 
1990 2000 2010 2020 

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) 

Bare soil 61994 14 62049 14 60891 14 59576 14 

Water 24177 6 18870 4 17705 4 16611 4 

Forest 85615 20 78286 18 62923 15 59841 14 

Shrub 69621 16 65696 15 69209 16 66964 16 

Crop 188240 44 204746 48 218920 51 226654 53 

Total 429647 100 429647 100 429647 100 429647 100 

 

3.4.3.2 Land Use and Land Cover Changes between 1990-2000, 2000-2010, 2010-

2020, and 1990 and 2020 

The results of the analysis of changes in land use and occupancy between 1990-2000, 

2000-2010, 2010-2020 and between 19990-2020 indicate a wide variation in 

conversion between the different land use units in general (Figure 3.34). However, the 

result between 1990-2000 and between 2000-2010 highlights areas that have not 

changed use, whereas between 2010-2020 and between 1990-2020, the entire study 

area has undergone changes in use. 

 

Figure 3.34: Change map 
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Table 3.27 shows LULC statistics between 1990-2000, 2000-2010, 2010-2020 and 

between the study period 1990-2020. This table shows the temporal variation between 

LULC units and the reasons for the variation. The interpretation confirms the results 

of the change map, i.e. a significant variation between units, but also and above all 

that the main reason for conversion of the other LULC units is agriculture. 

 

Table 3.27: Land Use Land Cover Change Statistics 

 

2000 

   Bare Soil       Water          Forest   Shrubland Cropland 

1
9
9
0
 

Bare Soil 55401 34 3155 0 3404 

Water 50 13846 346 1492 8442 

Forest 4393 428 64348 872 15573 

Shrubland 0 419 2530 62025 4647 

Cropland 2204 4143 7907 1306 172680 

 
2010 

2
0
0
0
 

Bare Soil 57047 318 1700 0 2984 

Water 5 14208 58 428 4171 

Forest 3168 287 55579 2537 16715 

Shrubland 0 1152 644 61742 2157 

Cropland 671 1739 4943 4502 192892 

 
2020 

2
0
1
0
 

Bare Soil 56105 467 1485 0 2833 

Water 46 14542 237 645 2235 

Forest 1522 41 52978 1072 7309 

Shrubland 0 35 188 64206 4779 

Cropland 1903 1526 4953 1041 209497 

 
2020 

1
9
9
0
 

Bare Soil 54381 704 1497 0 5412 

Water 18 13660 280 383 9836 

Forest 4055 441 53392 1541 26187 

Shrubland 0 115 307 63655 5544 

Cropland 1122 1692 4366 1384 179676 

 

Losses and gains in LULC units were noted between 1990 and 2020. Water (-22%) 

forest (-9%), and shrubland (-6%) decreased during the first teen years (1990-2000) 

whereas farmland rise by 9% Table 3.28. From 2000 through 2010, the same 

dynamics were observed, with some variations. Bare land, water, and forest all fell by 

-2%, -6%, and -20%, respectively, while shrubland and farmland increased by 5% and 

7%, respectively. The reduction in water body area could be attributed to the 

exploitation of minor beds for rice production in the zone's full growth. Overall, 

farmland increased by 20% in the LRB over the last 30 years. Between 1990 and 
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2020, it is probable that the increase occurred by sacrificing forests and water 

resources, which experienced a decline of approximately 30% and 31% respectively. 

 

Table 3.28: Area of change from 1990 to 2020 

LULCC 

Units 

1990-2000 2000-2010 2010-2020 1990-2020 

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) % 

Bare soils 55 0 -1159 -2 -1314 -2 -2418 -4 

Water -5307 -22 -1165 -6 -1093 -6 -7565 -31 

Forest -7328 -9 -15363 -20 -3082 -5 -25773 -30 

Shrubland -3925 -6 3514 5 -2245 -3 -2657 -4 

Cropland 16506 9 14174 7 7734 4 38414 20 

 

Degree of Dynamics Land 

Land use and land cover dynamics showed similar results in the whole study area. 

Bare soil, Water, Forest and shrubs recorded a negative dynamic degree per annum. 

While cropland showed a positive dynamic degree per annum. 

In the entire study area (Figure 3.35), slight positive dynamic was observed in shrubs 

area from 2000 to 2010. The most important negative dynamic in water (-31%), forest 

land (-30%) was recorded from 1990 to 2020, while the most important positive 

dynamic in cropland (20%) was registered from 1990 to 2020. For bare soil, the 

highest negative dynamic was -4% (1999-2020). 

 

Figure 3.35: Land use and land cover dynamics in Lotio River Basin from 1990 

to 2020 
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3.4.3.3 Land use and land cover matrix of Change  

The matrix of change analysis enables an understanding of the nature of changes from 

one LULC class to another between years. Overall, there was a predominant 

conversion of forest land into shrub/grassland and a transformation of shrub/grassland 

into cropland. From 1990 to 2000 (Table 3.29), the foremost conversion was noticed 

in water with 27%, followed by forest (18%) and cropland 16%). From 2000 to 2010, 

the greatest rate of conversion occurred in water (19%), followed by cropland (13%) 

and shrubland (11%). On the other hand, from 2010 to 2020, the most substantial loss 

was registered in water with 11%, followed by forest (9%), and cropland with 8%. 

Furthermore, from 1990 to 2020, the highest rate of change was observed in cropland 

with 23%, followed by water (16%), bare soil and forest (8%).  

 

Table 3.29: Land use and land cover change matrix in Lotio River Basin from 

1990 to 2020 

  2000 

  Bare Soil Water Forest Shrubland Cropland 

1
9
9
0

 

Bare Soil 89 0 4 0 2 

Water 0 73 0 2 4 

Forest 7 2 82 1 8 

Shrubland 0 2 3 94 2 

Cropland 4 22 10 2 84 

Total change 11 27 18 6 16 

 2010 

2
0
0
0
 

Bare Soil 92 2 2 0 1 

Water 0 75 0 1 2 

Forest 5 2 71 4 8 

Shrubland 0 6 1 94 1 

Cropland 1 9 6 7 94 

 Total change 6 19 9 11 13 

  2020 

2
0
1
0
 

Bare Soil 90 2 2 0 1 

Water 0 77 0 1 1 

Forest 2 0 68 2 4 

Shrubland 0 0 0 98 2 

Cropland 3 8 6 2 102 

  Total change 6 11 9 4 8 

 2020 

1
9
9
0

 

Bare Soil 88 4 2 0 3 

Water 0 72 0 1 5 

Forest 7 2 68 2 13 

Shrubland 0 1 0 97 3 

Cropland 2 9 6 2 88 

  Total change 8 16 8 5 23 



106 

 

3.4.3.4 Future Land Use and Land Cover Dynamic 

Selection of spatial variables  

The choice of spatial variables is justified by the fact that many studies use mainly 

these spatial factors to study the dynamics of LULCC and all transitions observed are 

essentially between water and forest to cropland. These transitions were influenced by 

a combination of physical and socioeconomic factors. The statistical significance of 

the Pearson correlation values suggests that the chosen variables are appropriate for 

modelling transition potential. The correlation values indicate that incorporating 

physical and socioeconomic explanatory variables, such as DEM (0.63), slope (0.32), 

and distance from roads (0.09), is more advantageous in comprehending and 

forecasting the observed changes in land use and land cover (Table 3.30). 

 

Table 3.30: Person Correlation value of spatial variables 

Spatial Variables Person Correlation 

DEM 0.63 

Slope 0.32 

Distance from roads 0.09 

 

3.4.3.5 Transition Potential Modeling and Model Validation  

The MOLUSCE plugin incorporates a range of established methodologies, such as 

ANN (multilayer perceptron), weights of evidence, multicriteria evaluation, logistic 

regression, and CA algorithm, to model transition potential. This amalgamation of 

techniques enables comprehensive and robust analysis, facilitating the simulation of 

future scenarios and projections regarding land use and land cover (LULC) changes. 

Geographical variables with significant correlations to LULC were selected for model 

calibration using Person's coefficient. The CA-ANN approach was employed for 

transition potential modelling and prediction. To forecast the LULC for 2020, LULC 

data from 2000 to 2010, along with spatial variables, were utilized. The validation 

process yielded a high accuracy level with a kappa value of 0.98. Comparison 

between the projected and actual LULC data for 2020 resulted in an overall accuracy 

of 97.92% and a kappa value of 0.93. Figure 3.36 visually presents the actual LULC 

map, while (Table 3.31) provides a detailed comparison between the forecasted and 

actual LULC maps. 
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Figure 3.36: Actual and projected LULC 2020. 

 

Table 3.31: Actual and projected LULC of 2020 

 
Classified Projected 

Accuracy 
Kappa Value 

 
Ha % Ha % ANN Validation 

Bare soils 59576 13,866 59570 13,866 

97.92 0.98 0.93 

Water 16611 3,866 16612 3,867 

Forest 59841 13,928 59842 13,929 

Shrublands 66964 15,586 66956 15,585 

Croplands 226654 52,754 226638 52,753 

 

3.4.3.6 Prediction of LULC 

Following the successful validation of our model, we proceeded to forecast the LULC 

for the year 2030 Figure 3.37. To make this prediction, we utilised the temporal 

LULC data from 2010 and 2020 in conjunction with spatial variables. The forecasted 

LULC for 2030 was then evaluated, yielding a kappa value of 0.94, indicating a high 

level of accuracy in our predictions. 
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The statistical results of the LULC projection (Table 3.32), which show that cropland 

would dominate the basin area in 2030 (48%), followed by forest and shrubland (18% 

and 15%, respectively). However, in comparison to 2020, cropland will decrease by 

5%, while forest land will increase by 4%. 

 

Figure 3.37: LULC prediction 2030 
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Table 3.32: Predicted area statistics for 2030 

LULCC Units 

2030 

Ha % Accuracy 
Kappa Value 

ANN Validation 

Bare soils 62440 15 

97 0.94 89 

Water 18764 4 

Forest 75806 18 

Shrublands 65609 15 

Croplands 207028 48 

 

3.4.3.7 Prediction of Change 

The analysis of land use and land cover (LULC) change explores the spatial 

fluctuations of the LULC model throughout the study period. The results of the LULC 

changes between 2020 and 2030 forecast a significant reconfiguration of land use and 

land cover dynamics in southern Mali's Lioto River Basin (Figure 3.3). 

Temporal change statistics between 2020 and 2030 predict a -9% decrease in cropland 

and a -2% decrease in shrubland by 2030. At the same time, the area of bare soil, 

water, and forest will increase by 5, 13, and 27%, respectively (Table 3.3). 

 

Figure 3.38:Change 2020-2030 
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3.4.3.8 Future Land use and land cover matrix of Change  

LULC matrix change were computed for 2030 to understand the nature and reasons 

for changes from one LULC class to another in the future. In the Lotio River Basin, 

from 2020 to 2030 (Table 3.31), the foremost conversion was noticed in the forest 

(33%), followed by water (29%), and bare soil (13%). In general, most of the 

cropland will be converted to water and forest, while most of the bare land will be 

forest. 

 

Table 3.33: Land use and land cover dynamics in Lotio River Basin from 2020 to 

2030 

2
0
2
0
 

Land class 
2030 

Bare Soil Water Forest Shrubland Cropland 

Bare Soil 88 0 4 0 1 

Water 1 71 0 1 1 

Forest 3 2 64 1 3 

Shrubland 0 1 4 92 2 

Cropland 8 26 25 7 94 

Total change 13 29 33 8 7 

 

3.4.4 Discussion 

On a global scale, significant advancements in living conditions, particularly in the 

21st century, have brought about extensive transformations in natural habitats and 

landscape configurations. The improvement of living conditions has emerged as a 

primary driver behind deforestation, propelled by a range of physical and socio-

economic factors including geography, demography, and economic expansion, among 

others. Notably, socio-economic development exerts a more significant influence on 

the expansion of deforestation and the fragmentation of landscapes, raising 

apprehensions regarding climate change, food security, and the depletion of natural 

resources. 

The transformation of land use and land cover is intricately linked to geographical 

factors and development policies. Following the introduction of democracy in Mali in 

March 1992, economic reforms triggered significant displacements, migrations, and 

urbanization. Our study examined the changes in land use and land cover from 1990 

to 2020 by analyzing spatiotemporal data alongside physical and socioeconomic 

variables. We employed the MOLUSCE plugin within the QGIS software to generate 
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transition probability matrices for each time interval. Additionally, utilizing the CA-

ANN multilayer perceptron technique integrated into the MOLUSCE plugin, we 

made projections for land use and land cover (LULC) in 2030. 

The results of our study highlight the substantial influence of both physical and 

socioeconomic factors on landscape patterns throughout the research timeframe. 

Generally, lower elevations exhibit more pronounced changes in land use and land 

cover (LULC) due to their geographical suitability for human activities. The most 

notable transformations have been observed in forested areas and along river systems. 

Mali's vision as a landlocked country with a primary-sector-based economy has 

broader reform goals centred on agricultural development and food security. Many 

studies have shown that population growth and economic development are the 

primary causes of forest loss (Li et al., 2016; Zhe & Shashi, 2017). The expansion of 

cropland has adverse effects on the environment, aquatic habitat, and biodiversity. 

Based on our research findings, significant changes in land use and land cover 

(LULCC) have occurred within the Lotio River Basin during the past 30 years. These 

changes primarily stem from the extensive expansion of cultivated land, which has 

resulted in the rapid conversion of forests and water bodies, particularly within the 

last decade. Cropland increased from 44% to 53% between 1990 and 2020, with 

forest contributing 12%, water contributing 4%, and bare soil and shrub contributing 

2%. Furthermore, the results of the future simulation show that forests will increase 

by 27% from 2020 to 2030, while water will increase by 12%. However, cropland 

will decrease by -9% and shrubland will decrease by -2% during the same time 

period. 

Finally, dramatic changes in LULCC, particularly the expansion of agricultural land 

and the decline of forests, may endanger natural resources, the environment, and food 

security. Consequently, the outcomes of our spatial-temporal analysis and future-

oriented simulations of land use and land cover change (LULCC) will provide 

valuable insights to policymakers. These insights will aid in analysing the evolving 

patterns of LULCC, identifying the socioeconomic factors that contribute to these 

changes, and facilitating the formulation of policies that promote environmental 

conservation and sustainable development. It is important to note that our modelling 

and prediction of LULCC solely relied on physical and socioeconomic characteristics. 
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Future research, on the other hand, could incorporate development policies and 

climate variables. 

 

3.4.5 Conclusion  

The findings indicate a rapid change in the past (1990-2020) Land Use and Land 

Cover (LULC) in the study area, dominated by an increase in agricultural land at the 

expense of primarily forest and water. The majority of agricultural land is being 

converted to forest, and there is a shift in all land use and cover classes except 

shrubland and bare soil. Agricultural areas will continue to dominate LULC dynamics 

in 2030. In comparison to 2020, agricultural land will decrease by 5%, while forest 

land will increase by 4%. 
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CHAPTER 4 :GENERAL DISCUSSION 

4.1 Delineation and distribution of Lowlands in the Lotio Catchment 

The study estimated the area of the lowlands at 71,479 ha with a compliance rate of 

58.48%. This means that the area has a significant potential in lowlands. The same 

result was found on a national scale by (Dembele, 2019), who indicated detected areas 

with agricultural potential in the rural commune of Bougaribaya. At the international 

level, Benin which within the framework of the implementation of the Atlas of the 

lowlands of the North-West of the country in 2015-2016, the total area of the 

lowlands surveyed is estimated at 46,264 ha for the department of Atacora-Donga 

(Souberou et al., 2017). The multi-criteria approach adopted showed the importance 

of GIS and remote sensing and the degree of reliability of the results in the 

identification, estimation and mapping of the lowlands as it had been highlighted by 

several previous studies (Chabi et al., 2010; Demblele, 2019; Kindjinou, 2013; O 

loukoi, 2016; Souberou et al., 2017).  

 

4.2 Variation and trend of Annual and seasonal of Rainfall and temperature  

The result of the existence of significant variation and positive trend in annual and 

seasonal rainfall on the one hand and the significant increase with a positive trend in 

the south of Mali in mean annual and seasonal temperatures on the other hand, 

confirms previous work (Barry et al., 2018; Bichet & Diedhiou, 2018b, 2018a; Cook 

& Vizy, 2015; Dosio, 2017; Gutiérrez et al., 2021; Kennedy et al., 2016; Lelieveld et 

al., 2016; Moron et al., 2016; Nicholson et al., 2018; Nikiema et al., 2017; 

Ranasinghe et ail., 2021; Sanogo et al., 2015; Sylla et al., 2016; Thomas & Nigam, 

2018). These studies show a positive trend, accompanied by an increase in 

precipitation and temperature variability in Africa's Saharan and Sahelian countries, 

caused by a combination of anthropogenic aerosols and GHG. 

 

4.3 Farmer’s Perception and Adaptation strategies of climate variability changes  

Based on the survey conducted, the study area predominantly consisted of lowland 

producers aged above 20, with the majority having 10 to 50 years of farming 

experience. Consequently, they possess valuable knowledge regarding climate change 

and its impacts in the study area. However, it should be noted that the educational 

level of these farmers was generally low. The ability of farmers to understand climate 

patterns and adapt to them is influenced by their level of education. Farmers with 
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primary and secondary education in the lowland areas exhibit a more positive 

perception of climate change, likely attributed to their frequent interaction with the 

outside world through migration and easier access to information sources like the 

media (Kabore et al., 2019; Koné et al., 2022; Sanogo et al., 2016; Assoumana et al., 

2016). Hence, the educational background of farmers positively influences their 

ability to adapt to varying temperature and precipitation patterns. Educated farmers 

exhibit greater awareness of accessing, understanding, accepting, and adapting to 

climate change information and advancements in technology, leading to enhanced 

productivity. The level of education among farmers was found to be strongly 

associated with their extensive understanding of climate change (Jha & Gupta, 2021; 

Sanogo et al., 2016; Assoumana et al., 2016). 

Globally, significant efforts have been made to enhance living conditions, leading to 

profound transformations in natural habitats and landscape configurations, 

particularly in the 21st century. These improvements, driven by physical and socio-

economic factors such as geography, demography, and economic expansion, have 

notably contributed to deforestation. However, it is the socio-economic development 

that has exerted the most substantial impact on the expansion of deforestation and the 

fragmentation of landscapes, thereby raising concerns regarding climate change, food 

security, and the scarcity of natural resources. 

The correlation between land use and cover changes and geography, as well as 

development policies, is tightly intertwined. Following the establishment of 

democracy in Mali in March 1992, economic reforms triggered significant population 

displacements, immigration, and urbanization. In order to analyze the transformations 

in land use and land cover between 1990 and 2020, we employed spatiotemporal data 

in conjunction with physical and socioeconomic variables. The MOLUSCE plugin, 

integrated into the QGIS software, was utilized to generate transition probability 

matrices for each time period. Additionally, the CA-ANN multilayer perceptron 

technique was employed to forecast land use and land cover (LULC) for the year 

2030. 

Our research findings underscore the substantial influence of physical and 

socioeconomic factors on landscape patterns throughout the study period. Generally, 

lower elevations undergo more rapid changes in LULC due to their inherent 
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suitability for human activities. Notably, forests and rivers have experienced the most 

significant transformations. 

Mali, as a landlocked country with an economy primarily dependent on the primary 

sector, has outlined broader reform goals centered around agricultural development 

and food security. Numerous studies have indicated that population growth and 

economic development are the primary drivers of forest loss (Li et al., 2016; Zhe & 

Shashi, 2017). The expansion of cropland has detrimental effects on the environment, 

aquatic habitats, and biodiversity. 

Our findings reveal the remarkable transformation of the Lotio River Basin's LULCC 

over the past three decades, driven by the rapid expansion of cultivated land and the 

subsequent conversion of forests and water bodies. Cropland has increased from 44% 

to 53% between 1990 and 2020, with forests contributing to 12%, water contributing 

to 4%, and bare soil and shrubland contributing to 2%. Additionally, the future 

simulation results indicate a projected increase of 27% in forests and 12% in water 

from 2020 to 2030. Conversely, cropland is expected to decrease by -9%, and 

shrubland by -2% during the same period. 

The significant shifts observed in land use and land cover change (LULCC), 

specifically the expansion of agricultural land and the reduction of forests, pose 

considerable risks to natural resources, the environment, and food security. As a 

result, the spatiotemporal analysis and forward-looking simulations of LULCC offer 

invaluable insights for policymakers to examine the changing patterns and 

socioeconomic drivers of LULCC. Moreover, these findings can contribute to the 

formulation of policies that promote environmental conservation and sustainable 

development. It is important to note that our modeling and prediction of LULCC 

focused solely on physical and socioeconomic factors. Future research endeavors 

could explore the integration of development policies and climate variables into the 

analysis. 

 

4.4 Modelling Land Use Land Cover Change in the Lotio Catchment 

The results of this study reveal the spatiotemporal dynamics of land use and land 

cover (LULC) in the Lotio River basin, utilizing temporal Landsat data and projecting 

future scenarios based on driving factors. The findings highlight the significant 
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challenges posed by rapid agricultural land expansion and forest fragmentation, 

leading to environmental degradation and depletion of water quality in the Lotio 

region. These issues further complicate the task of achieving sustainable regional 

development and preserving the environment. 

While acknowledging that development policies, migration, immigration, and climatic 

conditions can all contribute to shaping landscape patterns, our modeling and 

prediction focused solely on incorporating physical and socioeconomic factors. By 

limiting our analysis to these specific elements, we aimed to capture the essential 

aspects influencing LULC changes in the Lotio River basin. 

In light of the findings, it is crucial to establish a strong connection between 

agricultural and development policies to promote sustainable land management 

practices. This integrated approach can effectively address the challenges posed by 

rapid changes in LULC and ensure the preservation of the environment while 

fostering regional development. use. It is suggested that future studies examine the 

effects of more factors and data on landscape patterns. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions 

Based on the formulated objectives, the methodology employed, data collected and 

the analysis, the following conclusions are drawn: 

The southern zone of Mali has a rich potential in lowlands with a good spatial 

distribution. The multi-criteria approach is a recognized and recommendable method 

for the identification, area estimation, geophysical and geomorphological 

characterization of lowlands. Precipitation and temperature in the Sikasso District 

exhibit considerable variability throughout the year. There is a slight upward trend in 

both annual and seasonal rainfall, particularly during the AMA (April to May) and 

SON (September to November) seasons. However, there is no statistically significant 

trend observed for the JJA (June to August) season, which shows a decrease in 

rainfall. The average annual temperature in the study area ranges from 26.6 to 28.5 

degrees Celsius, with a noticeable increase over time. The rise in mean annual and 

seasonal temperatures is statistically significant. While there are intermittent shifts in 

average annual and seasonal precipitation, no breaks are observed in the temporal 

variation of average annual and seasonal temperatures. Farmers in the research area 

possess a comprehensive understanding of climate variations and have developed 

numerous strategies to adapt to these changes. 

In the present study, the potential impacts of climate change on the long-term trends 

of the rainfall anomaly index over Sikasso district in southern Mali were examined 

using 61 years of monthly records. The analysis examines both long-term and short-

term trends in rainfall using various statistical measures, including parametric and 

non-parametric methods. These measures include monotonic linear regression trend 

analysis, the Mann-Kendall trend test, and the Mann-Kendall seasonal trend. The 

assessment considers both the presence and absence of serial correlation, utilizing 

Sen's slope to account for the serial correlation. To fully capture the trends and 

variability of the annual, seasonal precipitation anomaly index, the data were divided 

into six aggregated periods. It is worth mentioning that when a clear trend emerges, 

the linear regression analysis and the Sen slope corresponding to the Mann-Kendall 

test are in perfect agreement. In other words, the results showed that despite the 

prevailing preference of non-parametric tests for assessing trends in climate data, 

simple linear regression can still give as good a trend analysis as other tests. 
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In general, it was found that the trend of the annual rainfall anomaly index over the 

South Mali district has been in a phase of return of wet periods for about two decades 

(2003). The seasonal rainfall anomaly index for March-April-May and September-

October-November is also dominated by the return of wet periods. This result is 

important because the period (September-October-November) corresponds to the end 

of season period and the end of season precipitation is important for a good crop 

maturity and also especially the quality of the crops. Furthermore, the examination of 

anomaly indices for seasonal precipitation in June, July, and August revealed a slight 

reduction in peak precipitation levels over the past two decades. This consistent and 

significant long-term alteration in the occurrence of precipitation peaks emphasizes 

the need for additional investigation into potential climate change concerns and risks 

in the southern region.  

Analysis of the climate period average highlights the fact that rainfall patterns are 

characterized by long periods of drought that are interspersed with episodes of 

extreme heavy rainfall with short recurrence intervals.  The decadal analysis 

potentially indicates a succession of wet and dry decades with a variation in the 

number of years with a negative and positive RAI. In summary, the long-term rainfall 

analysis in Sikasso District shows a trend towards a recovery in rainfall and, in light 

of the current evidence, strategies for preparing, developing and managing water 

resources in a changing climate are recommended as a way forward for sustainability. 

Flood risk management should also be designed as an integral part of Mali's strategic 

plans for climate change adaptation and mitigation. In addition, it is strongly 

recommended that a more comprehensive research and analysis of the impact of 

climate change in Mali be conducted using a broader spectrum of temporal and 

especially spatial climate data. 

The findings of this study demonstrate the spatiotemporal variations in land use and 

land cover (LULC) in the Lotio River basin, utilizing temporal Landsat data and 

projecting future scenarios based on driving factors. The rapid expansion of 

agricultural land and the fragmentation of forests in the Lotio area have resulted in 

environmental degradation and the depletion of water quality. These factors further 

complicate the challenges associated with sustaining regional development and 

preserving the environment. While acknowledging that development policies, 
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migration, immigration, and climatic conditions can all contribute to shaping 

landscape patterns, our analysis focused solely on the incorporation of physical and 

socioeconomic factors for modelling and prediction. However, it is important to 

recognize that a comprehensive understanding of landscape patterns may require the 

consideration of additional factors and data in future studies. Moreover, the 

integration of agricultural and development policies can play a crucial role in 

promoting sustainable land use practices. By aligning these policies, we can 

effectively address the challenges posed by rapid LULC changes and work towards 

achieving both regional development and environmental preservation objectives.  

 

5.2 Limitations of the Study 

Like all human works this study has some limitations. They are  

Sample size  

The number of units of analysis used in this study was determined by the type of 

research question being investigated. Thus, we took the household as the unit, 

surveying 395 households in 25 villages, which is quite large, but the number of 

households per village was still quite low, at less than 25. The future researchers 

should modify the specific approach to data collection. 

Lack of available or reliable data 

A lack of observed daily climatic data in the study area was a limiting factor in the 

choice of the type of analysis of certain climatic parameters on the one hand, and on 

the other, the existence of gaps in the monthly data collected reduced the study period 

initially desired. 

 

5.3 Recommendations 

5.3.1 Recommendations for further research 

Based on the research, the possible future researches are as follows; 

The approaches used in this study showed usefulness and applicability, but require 

further validation and refinement, and ideally the inclusion of both good observation 

or gridded data, 

 Earth observation can considerably contribute to monitoring vegetation 

conditions over time,  
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 Prediction results highlighted hotspots of significant change that need 

subsequent detailed investigation on the ground 

 

5.3.2 Recommendations for Policy 

The following recommendations are articulated to assist policy and decision-making 

for better planning, management and sustainability of the available natural resources 

in the LRB. 

 Farmers should be encouraged to leave more trees on their farmland to 

compensate for the forest loss 

 The rapid land use and cover change could be reduced by reforestation and 

afforestation 

 Raising awareness of the threats posed by forest and water transformations to 

the preservation, availability, sustainable and efficient management 

 

5.4 Contribution to Knowledge 

The findings from this work will contribute to the knowledge gap with regards to 

lowlands distribution, land use and land cover dynamics and its predictions, 

variability, trends, farmers’ perceptions and adaptations strategies of temperature and 

rainfall in the Southern Mali.  

 The results from the first objective which focused on inventory and map the 

spatial distribution of lowland indicated that there is 71 479 Ha and it is 

mostly concentred in the north of the study are for agriculture. And GIS and 

remote sensing methods and technics are reliable and give very good results 

within lowlands identifications.  

 Annual and seasonal precipitation and temperature are highly variable and the 

temperature present a positive trend between 1960 to 2020 in southern Mali. 

The producers of southern Mali have a good knowledge about climate 

variability and have adopted lot of measures to face of this problem. The 

observation data of rainfall and temperature are importance for climate 

variability analysis and the filled gap in data with the median is better 

appropriate than mean. Mann Kendall Test, Sen’s Slope analysis, Pettit test for 

change point detection, seasonal trend analysis and Rainfall Anomaly Index 
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used in this work are adequate to capture climate variability over the time 

series.  

 Google Earth Engine is a sophisticated cloud-based geospatial analysis 

platform that combines a massive collection of satellite imagery and 

geographic datasets with a suite of analysis tools and processing capabilities, 

allowing for advanced geospatial research at any scale. Among Classification 

and Regression Tree (CART), Support Vector Machine (SVM), Random 

Forest (RF) and Gradient Tree Boosting (GTB) classification technics used in 

this study the SVM technic is the mostly used because of the quality of its 

final result within LULC detection.  The result of the study demonstrates, the 

domination of cropland compares to others LULC classes and the fast change 

in the past LULC in this zone.  

 Through this work, future LULC have been ass and it will be dominated by 

cropland. The dynamic in 2030 compare to 2020, indicates the decreasing by 

5%, while forest will be increasing by 4%. These are important for the 

environment and human activities in the study site. 
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APENDICES 

Survey on the Perceptions and Adaptations of Farmers in Southern Mali to 

Climate Change  
Geographical coordinates:  

Latitude :…..………………….  Longitude : …………………    Date of survey: …………… 

 

QUESTIONNAIRE ADDRESSED TO THE HEAD OF THE HOUSEHOLD (please write 

in lower case, do not capitalize the form) 

  codes 

Region   

District   

Commune   

Town/Village   
  

IDENTIFICATION 

First and last Name of interviewer: 

First and last Name of respondent 

 

I. HOUSEHOLD SOCIO-DEMOGRAPHIC CHARACTERISTICS 

Gender of respondent 
Male 1 

Female 2 

Age of respondent (age 

absolutely, do not enter year) 

0-25 

25-35 2 

35-45 3 

45-50 4 

Plus 50 5 

What is your marital status? 

Married/in Couple  1 

Single  2 

Veuf (Ve) 3 

Divorced 4 

What is your level of education 

Any 1 

Primairy 2 

Secondairy 3 

Higher 4 

Quranic school 5 

Ethnic group     

What's your status in the zone? 

Indigenous 1 

Allochthonous 2 

Allogenic 3 

Household size 

1. Number of women (if male and married) 1: 

2. Nomber of children 2: 

3. Other family members 3: 

Relationship with head of 

household (if respondent is not 

head of household) 

Head of household 1 

Wife 2 

Child 3 

Brother 4 

Nephew 5 

Other to specify 6 

Are you a member of a 

producer cooperative? 

Yes 1 

No 2 

If yes, name of cooperative   
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II. HOUSEHOLD ECONOMIC CHARACTERISTICS 

How many years have you been growing cotton? ……………………………………… 

How do you access land? 

Heritage 

Donation 

Purchase 

Rental 

Loan 

Land metayage 

Pledge 

1 

2 

3 

4 

5 

6 

7 

Do you use a workforce? 
Yes 

No 

1 

2 

If so, what type of manpower do you use? 

Family 

Employee 

Entraide 

1 

2 

3 

If so, what is the number of this workforce by 

type? 

Family 

Employee 

Entraide 

………………… 

What are your main crops? In order of 

importance? 

Cotton 

cashew nuts 

Rice  

Corn 

Orchard 

Yam  

Sorghum 

Millet 

1 

2 

3 

4 

5 

6 

7 

8 

Justify your answer ………………………………………… 

 

 

 

 

Give the area of your main crops 

Cotton …… 

Groundnut ……….. 

Rice  …… 

Corn ……… 

Swede …….. 

Sesame ……. 

Sorghum ……. 

Millet …… 
 

Economic information about your cotton farm over the last 5 years 

Years Area (ha) Production (t) Yield (t/ha) Coast of 

production 

Imput charges 

2016      

2017      

2018      

2019      

2020      

 

IMPORTANCE OF COTTON GROWING 

(Name and rank the varieties of cotton grown in the region in order of importance for 

production, marketing or consumption in the locality.) 

Number Variety Name Importance of 

production 

Importance of commercialization 

1    

2    

3    
1Production: High yield, early cycle, adapted to regional soil, cultivation habit  
2Commercialization: strong market demand, high selling price, profitability  
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III. PERCEPTION OF CLIMATE DYNAMICS 

How do you rate the length of the rainy season in your 

area over the past decade, compared with the two or 

three years ago? 

Longer    1 

Shorter 2 

No change 3 

How do you feel about the arrival of the rainy season in 

recent years compared with the two or three years ago? 

Early 1 

Normal  2 

Late 3 

What elements in nature indicate the arrival of rain or 

the dry season? Justify your answer? 
    

How do you rate the number of rainy days in recent 

years? 

Increase 1 

Decrease 2 

No change 3 

If changes (increase or decrease), when do they occur? 
Period of increasing rainfall   

Period of reduced rainfall   

  Increase 1 

How do you rate the weather in your area in recent 

years? 
Decrease 2 

  No change 3 

If changes (increase or decrease), when do they occur? 

Period of rising temperature (1 

Dry, 2 Wet) 
1 

Period of falling temperature (1 

Dry, 2 Wet) 
2 

In your locality, winds tend to be? 

Stronger  1 

Less strong  2 

No change 3 

If changes, when do they occur? 
Period of strong winds  1 

Period of lighter winds 2 

With the observations you've just made, can we talk 

about climate change in your area? 

Yes 1 

No 2 

Justiy your response 
 

In your opinion, what are the causes of climate change 

in your area? 

Deforestation  1 

Bush fires 2 

Violation of traditional 

prohibitions 
3 

Others to be 

specified...................... 
4 

If the climate changes (rainy season, temperature), do 

you think the men in the village are responsible? 

Yes 1 

No 2 

Justify youre response  
 

Have you noticed any impact of climate change on 

production in your area? 

Yes 1 

No 2 

If so, how? 

Decrease in production 1 

Disruption of cropping calendar 2 

Soil impoverishment 3 

Proliferation of insect pests 4 

Increase in weeds  5 

Others to be specified 6 

If the cultivation calendar is disrupted, at what time of 

year do you carry out these different cotton cultivation 

operations? 

Soil preparation 1 

Pre-emergence herbicide  2 

Reseeding 3 

Disbudding 4 
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Post-emergence herbicide 5 

First weeding 6 

Second weeding 7 

Application of NPK fertilizer  8 

Urea application 9 

Insecticide treatments 10 

Harvest 11 

If the cultivation calendar has been disrupted, at what 

time of year do you now carry out these different cotton 

cultivation operations? 

Soil preparation 1 

Pre-emergence herbicide  2 

Reseeding 3 

Disbudding 4 

Post-emergence herbicide 5 

First weeding 6 

Second weeding 7 

Application of NPK fertilizer  8 

Urea application 9 

Insecticide treatments 10 

Harvest 11 

If production is down, what are you doing to increase 

it? 
  

If soil decline, impoverishment, what are you doing to 

improve it? 
  

 

V. PERCEPTION OF LAND USE 

How has vegetation cover changed in your region over 

the past 20 years? 

Increase 1 

Intact 2 

Decrease 3 

How do you feel about the level of deterioration over 

the past 20 years? 

Low 1 

Medium 2 

High 3 

How land use affects soil fertility 

Through chemical fertilizers 1 

Through water erosion 2 

Unsuitable cultivation practices 3 

Others to be specified 4 

Justify your response   

How do you weed your plot? 

Cattle plough 1 

Tractor 2 

Daba    3 

Machete 4 

Herbicides 5 

Do you combine cotton with other crops in your field? 
Yes 1 

No 2 

If so, which crops 
Food crops 1 

Other to be specified …... 2 

Why do you make the association?   

If food crops, does this association have any impact on 

cotton? 

Yes 1 

No 2 

Justify your response   
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VI. IDENTIFYING ADAPTATION MEASURES 

What tools do you no longer use?   

What new tools do you use now?   

In the face of climate change, have you changed your 

cotton varieties? 

Yes 1 

No 2 

If so, do these varieties give good yields?        
Yes 1 

No 2 

If yes, do these new varieties adapt to the climate?         
Yes 1 

No 2 

If yes, with these new varieties, how many tons do you 

produce per hectare? 
  

With climate change, which cotton varieties do you 

prefer? 

Early 1 

Medium 2 

Late 3 

Why?   

Faced with climate variability, have you increased or 

reduced your acreage? 

Yes 1 

No 2 

Have you changed your technical itinerary by : 

Choice of plot 1 

Cultivation technique 2 

Other 3 

Why?   

With climatic variability, have you changed your semi-

period? 

Yes 1 

No  2 

Justify response   

If so, in which decade do you currently sow cotton? 

D1 1 

D2 2 

D3 3 

D4 4 

With climate change, do you practice semi-drying? 
Yes 1 

No 2 

Justify your response   

Do you use plant protection products 
Yes 1 

No 2 

If so, which ones and why?   

Did this climatic context push you towards other crops? 
Yes 1 

No 2 

Do you grow other crops in association or rotation with 

cotton?      

Yes 1 

No 2 

If so, why?   

In your opinion, are there other adaptation strategies?         
Yes 1 

No 2 

If so, which ones?   

In the face of climate change, what would you like to 

see done to improve your cotton production? 
  

Thank you for your availability and participation 
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Confusion matrices of 1990 image classification 

 Class Bare Soils Water Forest  Shrub Crop Total Prod Acc. User Acc. 

Bare Soils 31 3 7 0 12 53 0,58 0,79 

  Water 1 44 4 2 12 63 0,70 0,62 

  Forest  1 4 11 8 24 48 0,23 0,4 1 

  Shrub 0 4 0 63 2 69 0,91 0,79 

  Croplands 6 16 5 7 64 98 0,65 0,56 

  OA 0,64 

Accuracy statistics(kappa) 0,54 

 

Confusion matrices of 2000 image classification 

Class Bare Soils  Water  Forest   Shrub  Crop  Total  Prod   Acc.  User Acc. 

Bare Soils 28 1 10 0 14 53 0,53 0,82 

Water 1 46 5 4 7 63 0,73 0,70 

Forest  0 4 23 6 15 48 0,48 0,56 

Shrub 0 2 0 65 2 69 0,94 0,78 

Croplands 5 13 3 8 69 98 0,70 0,64 

OA 0,70 

Accuracy statistics(kappa) 0,61 

 

Confusion matrices of 2010 image classification 

Class Bare Soils Water Forest  Shrub Crop Total Prod Acc. User Acc. 

Bare Soils 52 0 0 0 1 53 0,981 0,98 

Water 0 61 0 0 2 63 0,968 1,00 

Forest  1 0 47 0 0 48 0,979 1,00 

Shrub 0 0 0 67 2 69 0,971 0,99 

Crop 5 0 0 0 1 97 0,052 0,95 

OA      0,979 

Accuracy statistics(kappa)    0,973 

 

Confusion matrices of 2020 image classification 

Class Bare Soils Water Forest  Shrub Crop Total Prod Acc. User Acc. 

Bare Soils 53 0 0 0 0 53 1,000 1,000 

Water 0 63 0 0 0 63 1,000 0,969 

Forest  0 0 47 0 1 48 0,979 1,000 

Shrub 0 2 0 67 0 69 0,971 0,985 

Crop 0 0 0 1 97 98 0,000 0,990 

OA      0,988 

Accuracy statistics(kappa)    0,985 

 

Seasonal (DJF) Rainfall Variation  
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Seasonal (DJF) Rainfall Break  

 

Seasonal (DJF) Temperature Variation 

 

Seasonal (DJF) Temperature Break 

 
 

 


