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Abstract 
This study is intended to use mathematical models for controlling fluctuations in 

the price of maize by employing a nonlinear continuous time delay differential 

equation derived from linear demand and nonlinear supply functions of price. 

These models are formulated from parameters estimated from real economic 

data of maize price demand and production in the Ashanti Region of Ghana 

through the use of regression methods. The data is obtained from the Ministry of 

Food and Agriculture, Statistical Directorate Kumasi-Ghana, pertaining to years 

from 1994 to 2013. 

The results of the study are connected to the assertion that commodity price is 

dependent on planting time, storage time, relaxation time and total production 

time. It is proven that if all these individual time segments are combined as one 

for supply delay to make up total storage time, which is the delay for the buffer, 

then price oscillations would be drastically reduced. 

Also the study is an improvement on the work done by earlier researchers, whose 

discrete time models are limiting cases of the delay buffer stock model used in 

this study. The efficiency of a buffer system is proven to be dependent on delay 

variation suitable enough to be used by buffer stock operators. 

It is noted that, the more the buffer stock delay and supply delay are reduced in 

connection with the type of price scheme operated in the buffer stock scheme, the 

more stable the price becomes and the effects of buffer stock are felt more by 

stakeholders. The results of the analysis provide an average stable price of maize 

as GHC 30.49 compared to the actual average price of GHC 30.27. The equilibrium 

price in turn provides the average equilibrium weight of 2931.6 and 8217.6 

metric tons for demand and supply respectively. The average excess supply that 

constitutes the stocks in the buffer is also given as 5286 metric tons and they are 

kept in stock for the next market period (i.e planting period). When at another 

period (i.e during harvesting period) demand exceeds supply then the 
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appropriate difference is released from the buffer to the market in order to keep 

price in equilibrium. 

The standard deviation is also reduced to 0.1602 compared to the original 29.48 

before the application of buffer stock scheme. Thus, before the application of 

buffer stock scheme, price oscillated between two price points and could not 

converge. This affirms the fact that buffer stock acts as a reserve against 

shortterm shortages and dampens excessive fluctuations. 

Inferences are drawn from this study that researchers should rather use 

continuous time nonlinear delay models as they reflect the realities prevailing in 

most reallife economic problems. While continuous time delay differential buffer 

stocks models or equations could be applied in managing unstable market price 

of maize irrespective of the type of the supply function it is integrated with, being 

it linear or nonlinear, the discrete time buffer stock models instead work well with 

linear supply functions.  
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Chapter 1 

Introduction 

1.1 Background of the Study 

The price of maize, in recent times tends to fluctuate more than prices of 

manufactured goods and services. This is largely due to the distortion in 

production and distribution of agricultural products coupled with the fact that 

demand and supply are price inelastic (Geoff, 2012). It is believed that in 

agricultural industry, price instability and scarcity are threat to the distribution of 

seasonal staple foods such as maize produced by small-scale farmers. 

There are a lot of disparities in terms of supply during the harvest and 

planting seasons which in effect could create inconveniences to stakeholders such 

as producers, consumers, and government (Sutopo et al., 2012). Thus supplies of 

staple food in agro-industry tend to be extremely different between the harvest 

season and the planting season, and this condition triggers price volatility and 

shortage of food which in turn leads to food security problems such as scarcity 

and affordability challenges for poor households especially. In almost all business 

environments, extensive studies have been done on demand because demand 

uncertainty is clearly inherent in these issues (Liu, 2007). 

However, supply uncertainty, appears to have received less attention in 

terms of research and yet supply also has a significant impact on achieving price 

stability. It is in fact, critical for profit oriented businesses to know the right 

amount of commodities to be sent to a particular location on time to turn potential 

consumer demand of the commodity into revenue (Liu, 2007). 

In detecting the source of price volatility in order to establish the reason 

behind the recurring cycles in the production and prices of staple foods on regular 

bases paved way for cobweb model. This model explains price fluctuations 
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pertaining to a single market for food commodity which takes one unit of time to 

produce by farmers (Ezekiel, 1938; Matsumoto, 1998),. 

In Ghana, like in other developing countries, a staple food such as maize 

normally accounts for quite a significant share of the budget of the poor 

households (FAO, 1997). The poor have limited resources to insure against 

unexpected price increases. For this class of people, price shocks are very 

problematic since the poor are not self-sufficient and such situations are likely to 

jeopardize their capacity to feed themselves. An implementation of food price 

stabilization policies is the only important way by which governments and other 

stakeholders in these countries can express their concern regarding the problem 

(Wright, 2001), since prices of cereal crops such as maize in developing countries 

are extremely volatile due to elasticity of supply-demand and unstable weather 

conditions. 

1.1.1 Price Stabilization Systems 

Many policy interventions have been used by stakeholders to stabilize price, 

improve quality of maize and increase maize production in Ghana for both local 

consumption and export to the world market (Anokye and Oduro, 2015; 

Angelucci, 2012). Price stability depends upon balancing supply and demand 

because supply and demand uncertainties are major obstacles to achieving stable 

price of staple foods. 

In oder to smooth out the fluctuations in prices, one has to operate a price 

support scheme through a buffer stock system by which market price of 

agricultural products are stabilized by buying up supplies of the product when 

harvests are plentiful and selling stocks to the market when supplies are low 

(Geoff, 2012). Thus the basic function of a buffer stock system is to store a certain 

quantity of a particular commodity in boom periods when the price is decreasing 

and to release a certain quantity of the stored commodity in bust periods when 

the price is increasing. 
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1.1.2 Buffer Stock System 

The empirical results from Myers et al. (1989) paint a relatively favourable picture 

of the buffer stock scheme. Thus, while demand shocks are the dominant source 

of variability during the absence of the scheme, the effects of these shocks are 

blunted when stock-holding are introduced. The scheme requires reliable supply 

process which consists of many intermediate steps; starting from producing the 

commodities from suppliers to shelving the commodities by retailers. There is a 

raging scientific debate regarding the storage effects as stabilizer on commodity 

prices, as storage is considered, the core of the explanation of intriguing 

characteristics of price dynamics (Mitra and Boussard, 2011). Recently, it is 

hypothesized that endogenous chaotic behavior of markets is the cause of 

commodity price fluctuations. A nonlinear cobweb model with parameters such 

as adaptive price expectation, private storage and risk averse agents was 

developed and as usual, in the theory of competitive storage, the nonlinear 

cobweb model worked to reduce price variability (Mitra and Boussard, 2011). 

Sutopo et al. (2009) observed in previous researches that, buffer stock 

models have been developed separately based on nonlinear optimization and 

econometrics methods. While optimizations methods had been used to determine 

the level of availability with schemes consisting of time and quantity of buffer 

stock, the econometrics methods on the other hand had been used to determine 

the equilibrium price using the selling-price and the amount of buffer stock. 

Therefore they developed a buffer stock model that integrates both methods using 

decision variables which consist of quantity, time and price to achieve stability. 

Athanasiou et al. (2008) presented a nonlinear cobweb model with supply 

increasing according to certain piecewise linear supply function. Athanasiou et al. 

(2008, 2010) also proposed model under condition of naive price expectation to 

test effect of governmental interventions through the provision of reserve from 

buffer stocks operation to weakening commodity price fluctuations. Their model 

proved that if capacity of the storage for any food commodity is adequately large 
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then there is simple price stabilization scheme, such that the equilibrium price is 

a global attractor for the system. In addition, Athanasiou et al. (2008) showed that 

if the government fixes the supply at the average supply, then price stabilization 

is guaranteed towards average price. 

Anokye and Oduro (2013) developed linear cobweb model to study the 

phenomenon of commodity price fluctuations with the assumptions that there are 

no external shocks needed to cause price variabilities. The model showed 

unstable price oscillations around the equilibrium point. However, after 

incorporating buffer stock model, price stability was achieved but only in the 

short run because in the long run, the buffer stock system suffered instability until 

the supply was reviewed. 

Edwards and Hallwood (1980) developed linear econometric models 

(linear supply and demand) to determine the amount of commodities that 

Government must store, so that the amount of stocks to be released in order to 

stabilize prices could also be determined. The decision variables of these models 

are the parameter values of functions and their performance criteria are 

evaluated based on the level of government expenses. 

Price dynamics of a rice market was examined by Brennan (2003) using 

dynamic programming techniques that parameterized the case of Bangladesh that 

is characterized with high price elasticity (due to income effects), high storage and 

interest costs. In this model various storage inventions (both public and private) 

were explored, and the results showed that both interventions have positive 

impact in ensuring food security and fair prices for the poor. 

Nguyen (1980) proposed a simple rule for the buffer stock authorities to 

stabilize both price and earnings in all circumstances, except when market is 

unstable. The model dampens price fluctuations in all periods and not only in the 

periods when a freely fluctuating price would fall but also outside the chosen 

limits. 

Jha and Srinivasan (2001) evaluated the impact of food buffer stock sys- 
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tem on price stabilization of food commodities when private external trade is 

allowed to compete in a multi-market equilibrium framework adopted in the 

model as endogenous factor. The results from the analysis indicated that under 

liberalized trade, buffer stock scheme is ineffective for stabilizing domestic prices. 

It is therefore prudent to use trade restrictions when buffer scheme is 

implemented to ensure price stabilization. 

This assertion is buttressed by Sutopo et al. (2012), who developed a 

buffer stock model under free-trade that parameterized trade restrictions, tariffs 

and an indirect market intervention in accordance with warehouse receipt and 

collateral management system. The results from this nonlinear programming 

model with multi-criteria decision variables showed that indirect market 

intervention is more efficient than its counterpart, the direct market intervention. 

Soltes et al. (2012), on the other hand, used inventory (buffer stock) model in 

which price tends to equilibrium point not only monotonically but also oscillates 

around equilibrium point, and they attributed the cause of the oscillations 

generated from the system to the order of the differential equations applied in the 

process. 

1.1.3 Time Varying Effect System 

The time varying effects on output responses to policies for reducing and/or 

halting inflation was explored through the use of dynamic general equilibrium 

model in which time-varying component was introduced as endogenous 

parameter for analyzing optimal speed of disinflation. The solution of this 

nonlinear model revealed that output losses would be much larger when 

disinflation boom disappears. It was also found from the analysis that gradual 

disinflation of low inflation is undesirable due to its impact on the economy 

(Evans and Nicolae, 2010). Eduardo and Gergely (2013) studied the dynamics of 

price in a commodity market governed by balance between demand and supply, 

by employing a delay differential model. The researchers also did thorough study 
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of discrete-time case of the model and used the results to obtain new sufficient 

conditions for global convergence of solution to equilibrium in the continuous-

time case. Thus when the delay is large and price is unstable, bound is provided 

to limit amplitude of oscillations that are sharp. Matsumoto (2010) used 

nonlinear delay differential and found out that time delay effects have strong 

stabilizing effect in minimizing 

cyclic oscillations. 

Ruediger et al. (2013) assessed whether time-varying volatility affect 

price setting by firms and transmission of monetary policy into the economy. Data 

analysis were performed to evaluate the impact of idiosyncratic volatility on price 

setting behavior of firms and also measured effects of volatility on transmission 

of monetary policy to economy using calibrated business cycle model. The results 

in twofolds suggest that, sharp business volatility increases the probability of 

price change and tripling of volatility also causes average quarterly price change 

to increase. Secondly, the increase in volatility causes monetary policy output to 

decline (Ruediger et al., 2013). 

Anokye and Oduro (2014) also assessed the effects of delay parameter in 

nonlinear delay equation on price oscillations and it was observed that whenever 

the delay parameter is reviewed downward, oscillations (price fluctuations) are 

suppressed. This result indicates that price fluctuations are reduced, if and only 

if, delay (time-lag) affected factors are improved. The dynamics of human 

endocrine level was studied over time using nonlinear time delayed dependent 

model and it was found that daily variation of endocrine as quantified by time-

delayed mutual information system intuitively provided the expected diurnal 

variation in glucose levels amongst random population of human as opposed to 

the population with no diurnal variation (Albers et al., 2012). Also time-

dependent stimulation through microfluidics technology has proven valuable in 

eliciting previously unseen cellular responses in physiological and cellular 

processes within a framework of distributed time delay HIV model, and thereby 
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potentially allowing researchers to observe new mechanisms in the pathway of 

cellular processes (Karyn, 2014). 

Mackey (1989) on the other hand developed a price adjustment model 

having stated the dependent production and storage delays for studying price 

dynamics in a single commodity market. Conditions for stable equilibrium price 

are defined in terms of variety of economic parameters. It was found out that 

whenever price stability failed, Hopf-bifurcation occurs to give rise to oscillatory 

condition with period in-between two and four times the equilibrium 

productionstorage delay. 

1.2 Statement of Problem 

All the models reviewed so far by the study (under buffer stock systems) have not 

yet considered the effects of delay (time-lag) on price and supply change in 

response to market dynamics. They also failed to consider the effects of this delay 

(time-lag) on buffer stock operation in stabilizing prices of food commodities. 

Mackey (1989), on the other hand, used time-delay parameter and has proven 

that, storage delay can rather be a destabilizing factor for price. 

This study, however, is intended to use mathematical model for 

controlling prices of maize at the market and yet require that the structure and 

parameters of the model replicate circumstances occurring at the market so as to 

prove it that the time varying parameter (delay) is a price stabilizer. The study 

will, therefore, introduce a time varying parameter model through the use of delay 

differential equation constructed from demand and supply functions of price. The 

model would then be integrated with buffer stock model with delay parameter to 

study dynamics of price. This delayed buffer stock model would mimic the 

undelayed differential model used by Soltes et al. (2012) to prove the positive 

impact of the time varying effects on price. 
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According to Papachristodoulou et al. (2004), nonlinear delay differential 

equations are very difficult to analyze and for these reasons most researchers are 

constrained to investigating the properties of their undelayed versions, and this 

is exactly what Soltes et al. (2012) did in their work. 

The parameters of the model would be estimated from maize price and 

production records in the Ashanti Region of Ghana using regression analysis. The 

model would then be integrated with buffer stock model that has a supply delay 

parameter. It is believed that by the introduction of time varying parameter in the 

said models, stakeholders will appreciate their application and effect on price 

dynamics and thus be led to devise mechanisms to ensure food availability and 

the stabilization of food prices. 

1.3 Objectives 

The general objective of the study is therefore intended to construct, solve and 

interpret as an extension of existing cobweb models, the continuous-time delay 

differential buffer stock equation model . This model would determine the 

average amount of a commodity which must be stored and the average stocks to 

be released into market based on previous market information in order to 

stabilize prices of the commodity. 

The study also seeks to explore the causes of price instability in 

perspective of cobweb model and appreciate buffer stock or storage by identifying 

its characteristics and its importance in stabilizing prices of market commodities. 

The specific objectives are as follows: 

1. To construct a delay differential equation model which extends 

continuoustime linear and nonlinear models. 

2. To construct delay differential buffer stock model corresponding to 1. 
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3. To evaluate the ability of the model to stabilize prices through 

simulationusing price and supply of maize data from Ghana. 

4. To use simulation above to compute average price, average stock and supply. 

1.3.1 Assumptions 

1. Market price is determined by the available supply in a single market 

andthere are no equal substitutes for maize and no exogenous shocks exist 

to cause price fluctuations. 

2. Starting the scheme with good harvest; certainly, without stocks in 

thesystem it is impossible to react to a poor harvest. 

3. Government determine scheme target price and guarantee to pay 

farmersthis price for their produce. If market price rises above this price, 

the market price will prevail. But if the market price falls below this price, 

then the target price prevails. 

4. Government is the only one who operates the inventory and controls 

themarket under the assumption of naive price expectation. 

1.4 Methodology 

Difference equations would be used to develop linear and nonlinear supply 

functions of price which at market equilibrium with linear demand function of 

price (also to be built from difference equation) constitute discrete time linear 

cobweb and discrete time nonlinear cobweb models respectively. These cobweb 

models will also be interpreted and compared. 

Linear as well as nonlinear continuous time (delay differential) models 

which take their basic concepts from functional differential equations and 

differential (or ordinary differential) equations with initial boundary conditions 

will also be developed, interpreted and compared. Comparative analysis of the 
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continuous time models and discrete time cobweb models would also be done. 

Buffer stock models will be developed and incorporated into these models to 

stabilize price and (supply) production. Simulation experiments will be 

performed using MATLAB Solver dde23 to determine reliability of the buffer stock 

scheme to determine price, make stock and supply to meet market demands 

during and after harvest. SPSS and MATLAB would be used for mathematical 

modelling, data 

analysis and simulations. 

1.5 Justification of the Study 

The study seeks to incite stakeholders to appreciate the use of mathematical 

models for decision making whenever they intend and try to implement policies 

and find solutions to some basic problems similar to the one contained in this 

thesis. It also seeks to help make the National Buffer Stock industry more viable 

and thus provide employment for the youth in the country. It is believed that 

buffer stock scheme is the only tool through which food security and stability of 

food prices could be achieved. Although the research is being conducted in the 

context of Ghanaian environment, the approach would be applicable to other 

developing countries. 

1.6 Scope of Study 

This study concentrates on price dynamics of maize in sixteen major market 

centres in the Ashanti Region including Kumasi, Bekwai, Mampong, Obuasi, 

Ejura, Tepa, Abofour in Offinso, Adujaman, Agogo, Nsuta, Efiduase, Juaben, Agona, 

Nkawie, Obogu and Ejura-Sekyedumase. 
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1.7 Organization of Thesis 

This thesis is organized as follows: Chapter 1 presents background to the study, 

identification of research gaps for further study, problem statement, the study 

objectives, the methodology and justification of the study. 

Chapter 2 deals with review of relevant literature and comprises different 

perspectives of researchers on the problems related to price fluctuations of farm 

commodities and measures that could be put in place to stabilize prices. Chapter 

3 consists of mathematical methodologies employing the techniques of 

continuous time delay differential equations and difference equations 

constituting discrete time cobweb models. Here the continuous time delay 

differential buffer stock models and the discrete time buffer stock models would 

also be developed for a single commodity in a single market. 

The main results from data analysis and mathematical modeling are presented in 

Chapters 4 and 5, in which the reliability of the buffer stock is measured using the 

real economic data of maize and their simulations. Finally, the conclusion and 

recommendations of the study are given in Chapter 6.  
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Chapter 2 

Literature Review 

2.1 Production and Consumption of Maize 

Maize is the most important cereal crop grown and widely consumed in Ghana. 

It is one of the staple foods whose production has been increasing since 1965 

(Morris et al., 1999). In terms of planting area it is number one crop since it 

accounts for about fifty to sixty percent (50%-60%) of total cereal production. 

This makes maize the second largest commodity crop in Ghana after cocoa and 

one of the most important crops for the country’s food security (MiDA, 2010). 

Maize contributes significantly to consumer diets and according to a 

nationwide survey carried out in 1990 by Alderman and Higgins (1992), ninety 

four percent (94%) of all households had consumed maize during the period of 

the research. Boateng et al. (1990) also found that maize and maize-based foods 

account for about eleven percent (11%) of household food expenditures by the 

poor and ten percent (10%) of food expenditures by all other income groups. The 

per capita maize consumption in Ghana as at the year 2000 was estimated to be 

42.5 kg while national consumption in 2006 was projected to be around 943,000 

Mt (MoFA, 2000; SRID and MoFA, 2007). 

Research has shown that about fifty percent (50%) of the population in 

Sub-Saharan Africa consume maize and almost the same estimated figure could 

be found in their basic calories. This staple food has great nutritional values as it 

contains carbohydrate, protein, iron, oil, fibre, sugar, ash, vitamin B, and minerals. 

People in the sub-region consume maize in starch-based form found in porridges, 

pastes, grits and beer. The green maize (i.e fresh on the cob) on the other hand is 

eaten parched, baked, roasted or boiled and it plays an important role in filling the 

hunger gap after dry season (Chaudhry, 1983). Consumption of white maize is 

projected to increase in proportion to population growth due to increase in per 
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capita income. Recent research about domestic production figures did emphasize 

that, the shortfall between domestic production and domestic consumption could 

reach 267 000 Mt by 2015 if nothing is done to improve on production of maize 

(MoFA, 2011). 

Cultivation of maize is essentially done by few small holder farmers who 

depend on traditional tillage and rain-fed conditions which are increasingly 

erratic for production. Thus total production of maize is closely related to rainfall 

conditions during a particular season. In periods of good moisture conditions, 

inefficient storage systems also result in price pressures arising from glut during 

harvest time and non-availability towards the end of the season (Amanor-Boadu, 

2012). Maize is staple food for a significant proportion of the world’s population 

since it is cultivated worldwide (Council, 1990). As a result of this level of 

consumption, price instability is of great concern in that increase in staple food 

prices has dire implications on food security situation for the poor in Ghana. In 

agriculture, planting decisions in regards to quantity of commodity to supply are 

taken in respect to price level during harvest. Therefore, for farmers to take 

informed decisions during planting season, they need to have knowledge of the 

dynamics of price (White and Dawson, 2005). 

2.2 Price Trend of Maize 

Prices of agricultural food commodities could be used a measure to assess 

production possibilities and also allocate scarce resources to our advantage 

within an economy. Interestingly, producers and consumers in competitive food 

markets are becoming increasingly relevant to changes in price of food 

commodities (Gortz and Weber, 1986; Kuwornu et al., 2011). It is found that prices 

of foodstuffs including maize shoot up astronomically, few weeks after the 

Christmas festivities, affecting consumers negatively (ModernGhana, 2012). It has 

also been revealed that foodstuff prices exhibited high volatility with maize 
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showing continual increasing price in recent years by as much as twenty three 

percent (23%) in research conducted by Kuwornu et al. (2011) and also 

buttressed by the findings of Wodon et al. (2008) that food prices for maize and 

other cereals increased by twenty to thirty percent (20%-30%) between the last 

few months of 2007 and the beginning of 2008. 

Undoubtedly soaring price of foodstuffs have different radical effects 

across countries and population groups. The net food exporting countries benefit 

from improved terms of trade while net food importing countries struggle to meet 

domestic food demand. The fact that most countries in Africa are net importers of 

cereals means the poor in these countries are affected by soaring prices thereby 

limiting their food consumption options. Some will prefer taking less-balanced 

diets with consequential harmful effects on their health in the long run due to 

financial difficulties (ISSER, 2008). Sanyang and Jones (2008) also affirm that 

people tend to eat cheaper and less nutritious food frequently and in lesser 

quantities, as a result of higher food prices. 

Since mid 2007, prices of basic foodstuffs have been increasing rapidly 

with dire consequences for the poor. Although effects of rising prices at the 

international market through the first half of 2008 seem to have subsided, price 

of maize remained well above that of the previous year and would likely to remain 

volatile for years to come due to rapid economic growth in China and India. This 

trends are expected to put upward pressure on price as demand of maize simply 

out-pace supply (Timmer, 2008). 

Ghana was not left out in the hook of this international market price crisis 

and according to Amanor-Boadu (2012), Ghana could not escape price crisis that 

hit the global commodity markets between the year 2007 and 2010. The price 

range in crop year 2007/08, was GHC 35.35 per 100kg compared to GHC 12.51, 

for the previous crop year and GHC 17.91 two crop years later. Ghana experienced 

the highest variability in market prices in the same year (2007/08) with standard 
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deviation GHC 11.76 and coefficient of variation around thirty three percent 

(32.6%), which was the highest estimate in the last five crop years. 

2.3 Causes of Price Fluctuation 

It is well established fact that price fluctuations have negative effects on peoples’ 

welfare, particularly on children’s health (Jensen, 2001), food security and growth 

(Myers, 2006) in developing countries. Extreme price fluctuations of agricultural 

food commodity mean food insecurity and a cause of great concerns for the poor. 

Particularly in Ghana where people depend so much on imports, extreme price 

fluctuations are likely to put food supplies at risk during times of low supply and 

high demand. Thus uncertainty in price of staple foods is a major constraint to a 

sustained increase in production (Demeke et al., 2012). The various factors 

identified to be responsible for volatility of maize price and any other agricultural 

foodstuffs are discussed in two main categories which are economically defined 

as endogenous and exogenous factors. 

2.3.1 Endogenous Factors 

Peaks and troughs in production are directed related to price variability and this 

is often made worse by host of endogenous causes (Gilbert and Morgan, 2010). 

The explanation of endogenous factors is tricky, but more plausible, since they are 

responsible for changes in fundamental supply and demand factors. Thus 

commodity price are driven by factors such as increased demand, decreased 

supply and may be cost of fertilizer to mention just a few (Mueller et al., 2011). 

Price expectation 

Producers expectations about future prices are connected to observations made 

in relation to previous prices. If expectations are not projected well, it could lead 

to supply uncertainty and in turn create an inelastic demand that magnifies 
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imbalances to result in large and detrimental price fluctuations (Ezekiel, 1938). 

Normally farmers in their quest of forming price expectations, look back at the 

most recent prices and forecast future prices. This backward looking forecasting 

could sometime turn out to be vital reasons for models’ fluctuations (Nerlove, 

1958) . 

If high prices are expected to continue, farmers would produce so much 

and thereby end up selling at low prices, and vice versa. Thus high production 

level and low prices of food commodities are expected to be followed by shortages 

and high prices of the commodities and create market instability if production 

decisions taken during planting period are based on expectation that current 

prices will remain the same after harvest. It means that if current commodity 

price is rising, producers may expect it continue and accordingly plan to expand 

production towards the following season, resulting in high levels of production 

and price collapse. The reverse of the process takes place the following season and 

the cycle of production and price instability continues (Boussard, 1996; Boussard 

et al., 2006; Galtier, 2009), especially if farmers have limited information about 

the future. 

Goeree and Hommes (2000) investigated heterogeneity in beliefs or expectations 

using dynamic cobweb model and it was observed that heterogeneous 

expectations always lead to price and supply instability and even chaotic market 

situation. Speculation on commodity markets is one of the root causes of price 

volatility and should not be considered as random bet that can be smoothed out 

easily from the price system. Market and non-market factors that influence 

behavioral and strategic choices of speculators must be given serious attention 

since speculation caused by demand and supply in physical markets can also 

serve as price discovery, liquidity and risk-hedging mechanisms (Joachim and 

Getaw, 2012). 
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Lagi et al. (2011) also constructed dynamic model that is quantitatively 

in agreement with food prices and it was proven from the analysis that, investor 

speculation is one of the dominant causes of price increase in commodity markets. 

Frankel (2013) modeled oil prices and other storable commodities using 

econometrics. The model focused on speculative factors, such as trade-off 

between interest rates and changes of future price expectations by market 

participants. The analysis went beyond past research to bring to bear new data 

sources to measure expectations of future prices changes and options data to 

measure risk perceptions. 

Influence of Fuel Demand 

The recent steady upward trend in staple food prices is found to be contributed 

by the increase in crude oil price, since jump in food prices over the last decade 

has been explained by large increase in crude oil prices which stands out among 

numerous factors that causes price change. In recent World Bank study, oil prices 

were found to be major contributing factor to food price increase than several 

other long-term price drivers (Baffes, 2013). Oil price increase exerts both direct 

and indirect upward pressures on aggregate prices of food (ISSER, 2008). 

Prices of grains or cereals between March 2007 and March 2008 were 

more than doubled, and the available data suggests, that record high grain prices 

in 2008 as actually the result of increased production costs driven by high 

petroleum prices (Mueller et al., 2011). Prices of agricultural commodities are 

frequently affected by higher energy prices more than usual adverse weather 

conditions and diversion of some food commodities for the production of bio-

fuels (Baffes, 2013). The recent global food commodity price inflation was also 

attributed to increased demand for biofuels (produced from food grains including 

maize and oilseeds) and rising energy prices (Trostle, 2008). Global biofuel 

production tripled between year 2000 and 2007 and was projected to double by 

the year 2011 (Molony et al., 2010). The price projection is expected to contribute 
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to food price increase and eventually lead to food insecurity if gains from biofuel 

production are not used effectively to reduce cost of food production (Ansah, 

2014). 

Baier et al. (2009) also affirm that, the increase in biofuels production in 

recent times have had a sizeable impact on the price of corn, and estimated that 

the increase in worldwide biofuels production pushed up corn price by twenty 

seven percentage (27%) points. According to Donald (2008), the rapid increase 

in food prices can be linked to the increased production of biofuels from food 

grains and oilseeds and also the increase in food production costs due to higher 

energy prices. The contribution of biofuels to rise in food prices raises important 

policy issues which must be considered in light of their effects on food prices. 

Kristoufek et al. (2011) examined relationship between wide array of food and 

fuel commodity prices collected from the United States and European Union and 

the results indicated significant correlation between food and fuel prices with 

biofuels linking the two markets. It is also hypothesized that biofuels have been 

exacerbating price of agricultural commodities. However, magnitude of the 

impact of biofuel on food prices is unsettled. High food prices have been indirectly 

accompanied by record high oil prices. (Sexton et al., 2008). 

Sudden Jumps in Agricultural Input Prices 

Agricultural input price increase arises from several sources, including general 

inflation, weather-related supply problems and/or energy-related price spirals 

(Chinkook, 2002). Oil prices are blamed for the rise in prices of fertilizers, other 

farm chemicals and machinery costs and therefore, any further rise in oil prices is 

expected to quickly translate into increasing production costs. Input like water is 

also becoming increasingly constraint in availability to agriculture and more 

costly to procure needed supplies. However, higher energy and oil prices and 

rising costs of inputs are factored into commodity price projections through 

higher supply costs (OECD and FAO, 2013). Higher energy prices according to 
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Joachim (2008), could make agricultural production more expensive by raising 

the cost of mechanical cultivation, fertilizers and pesticides and transportation of 

inputs and outputs. 

The impact of intermediate input price increases on food prices was ana- 

lyzed on assumption that the producers can pass the increased production costs 

through to the final consumers. Findings from the research indicated that 

intermediate inputs prices increase have a greater impact on food price 

(Chinkook, 2002). While transportation cost affect cost-to-market for agricultural 

producers, the variable input cost affect cost of energy intensive farming input 

such as seed, chemical fertilizer, herbicides and pesticides. These two effects 

increase costs and reduce agricultural supply, since demand for food is relatively 

price inelastic. Therefore, any decrease in food supply induced by rising energy 

prices also leads to significant food price increase (Zilberman et al., 2008). 

Lack of Adequate Storage Facilities or/and Low Stock Levels 

In some developing countries about twenty five percent (25%) of food produced 

is never consumed by humans and instead left spoilt or eaten by insects, rats and 

other pests due to lack of storage facilities. Adequate on-farm storage is crucial 

for storing surplus food items to enable farmers to supply food beyond harvest 

period and ensure year round availability of needed food (FAO, 1997), which in 

effect stabilizes prices of food commodities. Lack of stocks render vulnerable 

markets to unpredictable disturbances (Wright, 2012), since any minor shock can 

trigger major price increase if stocks are low (Gilbert and Morgan, 2010). 

According to Deaton and Laroque (1992, 1996), when stocks are high (or low), 

then with perturbations stationary, the probability of a low (or high) price during 

the next period is increased. The recent price volatility of major grains is not 

anomalous because maize is highly substitutable for calories in the global market. 

Therefore, when aggregate stocks decline to minimal feasible levels, prices 
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become highly sensitive to small shocks and these are consistent with economics 

of storage behavior (Wright, 2012). 

As a result of poor storage management in Ghana, tones of maize are 

rotting away in silos making farmers so frustrating. For instance a maxi bag of 

maize was selling for GHC 32 compared to GHC 55 the previous year. Thus Poor 

management of agricultural storage facilities could potentially affect the supply of 

agricultural commodities and their prices (Ghana, 2010). Marketing and storage 

facilities for agricultural produce in some districts in Ghana are generally poor. 

Due to poor conditions of existing traditional storage facilities most farming 

communities experience heavy post harvest losses. These farmers dry and store 

their maize through traditional method of hanging in their kitchen. However, 

these processing methods and storage facilities are inefficient and inadequate, 

and therefore farmers have to either sell their produce at low prices during the 

harvest or suffer high post harvest losses (NEMA, 2006). 

The National Food Reserve Agency also in Malawi 2012 lost 32,222 MT of 

maize stock due to heavy rains and poor storage facilities. This loss of maize stock 

resulted in breaks for humanitarian food distributions for food insecured 

households in the Southern Region. Then in response to the loss of maize stock 

and rapidly rising maize prices, the Government of Malawi had to resort to 

importing 35,000 MTs of maize from Zambia (FEWSNET, 2013). 

2.3.2 Exogenous Factors 

Exogenous factors are that having important economic consequences but not 

being controlled by economic factors (Lamberton, 1984). Thus factors such as 

weather (e.g rainfall, temperature pattern), trade liberalization or restrictions or 

any other non-economic factors that could disturb supply are exogenous. 

Climatic Effects 
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Research has shown that climatic conditions can play a role in reducing 

agricultural commodity supply and increase consumer prices (Davenport et al., 

2013). It is found that recent increased of basic food prices which severely 

impacted on vulnerable populations worldwide was caused by adverse weather, 

which causes shortages of agricultural foods (Lagi et al., 2011) as confirmed by 

ISSER (2008) that poor weather conditions played a role in rising food prices 

when northern part of Ghana experienced severe flood in 2007 resulting in loss 

of most farm produce. 

Since 2007-08 food crisis, many thoughtful analyses have addressed 

causes and impacts of high and volatile international food prices so as to be able 

to propose solutions to the crisis. However, both empirical and theoretical 

evaluations suggest extreme weather conditions as one of the root causes 

(Joachim and Getaw, 2012). Agriculture is highly dependent on specific climate 

conditions for the growth of certain crops. Thus temperature changes, amount of 

carbon dioxide (CO2) and weather intensity could have significant effects on crop 

yields. For instance warmer temperatures make certain crops grow quickly and 

yet reduce their yields. In other words, crops tend to grow faster in warmer 

conditions but for some crops such as grains, faster growth reduces the amount 

of time needed for the seeds to grow and mature (USGCRP, 2009) which in effect 

brings about food shortage that triggers price volatility and pose humanitarian 

crisis. 

Changes in climatic conditions also affect water availability needed for 

crop growth and for that farmers forced to continually adapt irrigation for their 

agricultural production. Climate change has socioeconomic and environmental 

implications for agriculture since changes in availability and quality of land, soil 

and water resources are reflected in crop yield which leads to food shortage and 

thereby causes prices to rise (Institute, 2014). According to Ringler et al. (2010) 

shifts in crop yield and area for its growth and food price increase are caused by 

climate change. Changes in these parameters also affect food affordability which 
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leads to less calorie intake to cause malnutrition problems in children. It is 

projected that cereal production growth in Sub-Saharan Africa would be declined 

by about three percent (3.2%) as a result of climate change. Extreme weather 

conditions caused significant jumps in food prices by an average of one hundred 

and twenty five percent (125%) for corn (or grains) between 2006 and 2008 in 

both developing and developed countries. For instance, severe droughts in grain-

producing regions were the cause of world food price fluctuation (Mazhirov, 

2011). As projected in Australia, global frequency and severity of drought is likely 

to increase as a result of climate change. According to the regional projections 

South-Eastern Australia will be adversely affected by changes in rainfall patterns 

as well as rising temperatures to increase severity of droughts and thereby 

contributing to broad and sustained increases in prices of food (Quiggin, 2010). 

Trade Liberalization 

Studies have shown that trade liberalization leads to price increase of farm inputs, 

causing huge problems for small holder farmers. In Ghana food imports is 

demoralizing small holder farmers since having produced the commodity, 

farmers have to compete with cheaper imports to obtain economically viable 

prices for their produce even in village markets. This is simply subjecting 

domestic agricultural food production to risk (MAGAZINE, 2001). 

Trade liberalization affects the poor by changing the prices at which they 

buy as consumers and sell as producers (Matusz and Tarr, 1999). One major direct 

effect of international higher food prices on developing countries is that it puts up 

pressure on local food prices to make food less affordable for consumers. 

The real income and welfare of population including the poor are then affected 

(Plan, 2008). The volatility in international food prices affects households and 

businesses to the extent that the impact is transmitted to domestic markets. 

Since Africa is vulnerable to such international trade impacts, food prices 

in Africa have become more volatile in recent years (Gerard et al., 2011; G20, 



 

23 

2011). However, these price trends provide incentives for increase in production 

of foodstuffs to local farmers (Plan, 2008). 

Even though high food prices affect the poor a lot, the extent of the impact 

is dependent on structure of the economy and whether they are net food buyers 

or sellers (Aksoy and Hoekman, 2010). Most cross-country research gives 

indication that poor are affected by high food prices because they are net food 

buyers (Ivanic and Martin, 2008; Wodon et al., 2010). 

2.4 Stabilization of Maize Price 

Stabilization of food prices is another important area in agricultural economics. 

While producers expect prices to shoot up in order to earn enough income, 

consumers always expect prices of foodstuffs to be stable and affordable because 

foodstuffs are basic necessities of life. Supply variations cause price fluctuations 

and in turn affects income of producers therefore to suppress supply variations 

so as to regulate prices to guarantee producers’ incomes, governments in many 

economies often intervene the markets with price stabilization policy 

(Matsumoto, 1998). 

High levels of production instability and large disparity of agricultural 

commodity prices between import and export commodities in Southern Africa 

countries have led to the call for market intervention in the form of price 

stabilization and stock holding of food surpluses (Pinckney, 1991). Gerard et al. 

(2011) argue that the high and volatile prices of food strengthen the case for 

governments in developing countries to implement market intervention policy to 

stabilize food prices, in spite of the practical difficulties associated with the policy. 

Research interest was triggered towards price fluctuations and how they could be 

halted when global market in 2007/2008, witnessed extreme increase in prices 

of agricultural commodities. It is fundamental to understand how price 

fluctuations arise in the first place before any policies aimed at curtailing price 

fluctuations are rolled up. 
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2.4.1 Buffer Stock Scheme 

The buffer stock scheme (also known as intervention storage) is a policy used 

purposely for stabilizing prices in an agricultural commodity market by 

regulating supply of the commodity through storage system. Under the scheme, 

commodities are bought and kept in store when there is surplus in market, then 

when there is economic shortage stocks are released to the market (Morrow, 

1980). If buffer stocks are used strategically, prices volatility could be reduced 

drastically. However, the system requires infrastructure and skills to manage and 

procure stocks to be able to provide timely response to any unexpected shortfalls 

in the market. Studies have shown that impacts of factors that affect food 

commodity price would be overestimated, if inventory effects are not taken into 

account (Gal et al., 2014). 

buffer stock scheme assumes that governments carry out all planning in 

regards to procurement, inventory management and market operation policy 

(Bahagia, 2006) and also control the market without having any competition from 

any storage firms. Local market intervention by governments though considered 

purely political, it is also justified on economic grounds due to improved 

macroeconomic and dynamic efficiency derived from stable food prices (Timmer, 

1989). 

In microeconomic theory, inventories (or buffer stocks) are considered as 

stabilization factor or something a cost-minimizing firm can use to smooth out 

production in the face of commodity fluctuations (Blinder and Maccini, 1991). 

Newbwey (1984) found that with linear demand, dominant producers of a 

particular commodity choose more stable prices than under perfect competition 

and price stability increases with their market share. Therefore, with constant 

elastic demand, competitive degree of price stabilization is achieved. 

In buffer stocks schemes, the government either imports or procures 

commodities from domestic production at set prices, then holds stocks and 
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distributes them at fixed prices through wholesales that are government 

regulated (Knudsen and Nash, 1990). 

Two-Price Scheme 

Any buffer stock scheme that is run on two-price policy scheme has two prices 

namely, floor and ceiling prices. When price drops close to floor price, 

governments (scheme operator) in ensuring that the price does not fall further 

start buying up stocks. In same vein, when the price rises close to the ceiling, 

governments in order to depress prices, sell off its holding (Edwards and 

Hallwood, 1980). Athanasiou et al. (2008) developed nonlinear cobweb model 

with buffer which stabilized prices at two equilibrium points based on the 

capacity of the storage. it was observed that when storage is enlarged then the 

system has equilibrium price called global attractor. Also, if supply is 

approximated at average supply then average equilibrium price is achieved and is 

also referred to as average 

price. 

Westerhoff and He (2005) developed commodity market behavioral 

model that encompassed parameters such as consumers, producers and 

heterogeneous speculators to characterize commodity price fluctuations and 

evaluate price stabilization schemes. They examined how nonlinear interactions 

with stakeholders could trigger price fluctuations between bull and bear markets 

through homoclinic bifurcation. When floor and the ceiling prices were imposed 

on the model, homoclinic bifurcations were eliminated and price volatility 

reduced (Westerhoff and He, 2005). 

Another buffer stock model was developed by Sutopo et al. (2008) on 

assumption of limited supply time and continuous consumption and price 

fluctuation was stabilized through market scheme where stocks are bought from 

both domestic and import supply points. The model worked with price band 
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policy that bounds domestic price variation between sets of upper and lower 

bounds. 

Market stabilization schemes that run under price band rules have the 

advantage of transparency whether it is international or domestic system. The 

effects of the scheme on behavior of prices and aggregate costs of operation are 

much less straightforward. The price tends to hover around the upper or lower 

bound of the band (the ceiling or the floor price). The overall effect of the scheme 

on volatility relative to competitive storage is ambiguous and the reason is that if 

stocks are released towards ceiling price, price peaks are contained as long as 

stocks are available. However, in anticipation of this developments private storage 

is discouraged as price rises to the ceiling to abandon idea of stabilizing 

production in response to anticipated shortages (Sutopo et al., 2008). 

Single Price Pcheme 

In this buffer stock scheme the lower and upper bounds are equal, in that this 

market intervention approach ensures that there is only one fixed price. This 

scheme ensures that average supply is adjusted regularly to keep up with any 

broad trends toward increased yield. That is, it must truly be an average of 

probable yield outcomes at any given point in time (Edwards and Hallwood, 

1980). 

It is also confirmed in linear buffer stock model developed by Anokye and Oduro 

(2013) that if price is fixed at a particular level, the average supply of commodity 

to the market must be reviewed regularly else prices are bound to oscillate in the 

long run. Anokye and Oduro (2015) employed nonlinear continuous-time delay 

differential buffer stock model to control prices of maize. This buffer stock model 

was proven to be dependent on delay variation such that, farther the delay for 

buffer stock and supply are reviewed downwards, more stable the prices become 

towards fixed average price point. 
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Corron et al. (2005) used commodity market model to examine dynamics 

of correlations between price limiters and growth rate of buffer stocks. It was 

discovered that optimal price limiters provide commodity market system that is 

inexpensive to regulate. However, such price schemes have unexpected 

consequences in irregular commodity price fluctuations between bull and bear 

markets and even complicate impacts on the size of buffer stocks. On the other 

hand, by imposing lower price boundary buffer stock become very huge and make 

storage costs impossible to finance over time (Corron et al., 2005). 

Moir and Piggott (1991) presented composite model comprising 

bufferfund and buffer-stock as an alternative to pure buffer-fund or pure buffer-

stock for stabilizing prices. From the results of the analysis each model provided 

the same stable prices to producers as did by the floor price scheme (or reserve 

price scheme-which has no ceiling price). However, the combined model proved 

very effective in terms of cost and degree of stability of the price (Moir and Piggott, 

1991). 

The effectiveness of buffer stock on price is dependent on the trigger 

price defined either on fixed-band rule or on adaptive-band rule around the 

estimated mean price. While the adaptive band incorporates the effects of supply 

response, fixed band on the other hand disregards behavioural response of 

producers to reduction in price fluctuations. However, if governments attempt to 

stabilize price around mean price without taking stabled supply response into 

account, then governments face steady accumulation of stocks and thus suffer 

increasing losses (Nurul and Thomas, 1996). 

2.4.2 Market Structure 

Market structure is another important consideration associated with price 

stabilization scheme. The extent changes in prices are transmitted into markets 

from other markets are affected by the overall economic environment and the 

market structure (i.e oligopolistic, or competitive or the market is spatially 
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integrated or not) where prices are determined by the forces of supply and 

demand (Lovendal et al., 2007). If markets are segmented then it implies that 

segments of the market with excess demand do not get feedback from other 

markets that have excess supply and so transmission of prices across markets is 

absent. Generally markets are neither totally segmented nor totally integrated 

(Nurul and Thomas, 1996) and according to Ahmed and Bernard (1989) markets 

in developing countries are not fully integrated. 

Although issues of segmented market is relevant to developing 

economies where production and consumption are geographically dispersed over 

wide areas and transportation is a problem, tt is also plausible to some regions in 

developed countries (Bobenrieth et al., 2006) where market is segmented into 

local market where farmers sell commodities to storage firms and central market 

where storage firms sell commodities. Awudu (2000) utilized threshold 

cointegration tests that allow for asymmetric adjustment towards long-run 

equilibrium and examined price linkages between principal markets in Ghana. 

The results of the research indicated that major markets are well integrated and 

wholesale prices in most of the local markets respond more swiftly to upward 

price change than they to downward price changes. 

2.4.3 Buffer Stock Combined with Trade Liberalization 

Dorosh and Shahabuddin (2002) constructed mathematical model to measure the 

variability of domestic and international grain prices, and also examined the 

interaction of government intervention and private sector participation in 

commodity markets. It was found that relative high degree of price stability is 

achieved due to private sector imports that stabilized markets following major 

production shortfalls. Domestic grain procurement on the other hand contributed 

relatively little to rising domestic producer prices during harvest time as only a 

small percentage of farmers engaged in production of food commodities. 
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According to Gersfelt and Jensen (2006) minimum market intervention 

prices are guaranteed to producers for certain agricultural produce in the EU, 

through combination of sales at floor prices to buffer stock agency and measures 

taken at the border. It was observed that if intervention price is lowered, floor 

price at which stock agency starts purchasing also reduced and direct support 

payment are given to farmers as compensation for reductions in intervention 

prices. More open and liberalized grain market under the same constraints, 

incentives and commercial standards facilitate more rapid trade responses to 

grain surpluses and shortages and make grain market more stabilizing. Thus an 

effective buffer stock system as part of domestic marketing strategy could be run 

in conjunction with imports to buffer domestic prices (Nyberg and Rozelle, 1999). 

Jie et al. (2013) studied the fluctuation characteristics of grain price in 

China during the past two decades by using Structural Break Regime Switching 

Model, and found that grain price growth has become more stable since 2004 with 

slight growth change regimes. The implementation of minimum grain purchase 

price policy and the improved market structure among others, found to be the 

most important contributing factors. When the procurement and distribution of 

grains are done by only the public agency, it becomes disincentives for the private 

sector to invest in the market. However it is not advisable to leave the grain 

economy fully at the behest of the markets owing to the importance of grain food 

in household consumption and production. 

It is therefore, suggested that the government slowly steps out of the food 

market and let it operates freely, while ensuring effective monitoring and 

maintenance of an optimal size of buffer stock for grains to avoid extreme food 

price fluctuations and shortages in the country. The stock purchased and released 

by the government should also base on prevailing market prices (Munir et al., 

2006). 
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2.5 Model Types in Price Dyanmics/Stabilization 

In modeling economic dynamics of commodity markets, many examples of 

cobweb models with different form of functions (linear or nonlinear) have been 

demonstrated. Finkenstadt (1995) applied linear supply with nonlinear demand 

functions. Hommes (1991) used linear demand with nonlinear supply equations. 

Junhai and Lingling (2007) established a nonlinear model derived from quadratic 

demand and supply functions where findings indicated that nonlinear cobweb 

models explain irregular variations observe in real economic data (Jensen and 

Urban, 1984). 

In fact, a great deal of recent economic models entirely discount the role 

of delays in generating price fluctuations and a good mathematical setting in 

which to consider this gap is provided by delay-differential equations (Howroyd 

and Russel, 1984; Eduardo and Gergely, 2013). Loretti et al. (2012) employed 

delay differential similar to that of (Dibeh, 2007) to study price dynamics of two 

markets that are coupled via diffusive coupling terms. Two different time delay 

cases were studied namely, when the two markets experience the same delay time 

, and when the delay time is different across markets to determine their 

equilibrium and stability state. Numerical simulations were used to confirm the 

theoretical 

findings. 

2.5.1 Effects of Nonlinear Models 

Although, a lot of attention has been paid to linear difference and differential 

equations, nonlinear equations have received less attention. However, there has 

been a significant change of late, as many recent researches conducted in 

economics are considering nonlinearities (Shone, 2002). Anokye et al. (2014) 

studied price dynamics of maize in Ghana using linear and nonlinear cobweb 

models which are constructed from real economic price and production data. It 
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was deduced from their study that researchers rather use nonlinear models to 

avoid under or overestimation and make better predictions in real economic 

situations. 

The use of nonlinear dynamic models in economics and finance has 

expanded rapidly in the last two decades (Diks et al., 2008) and in studying the 

differences between linear and nonlinear models in engineering, SolidWorks 

(2013) discovered that neglecting nonlinear effects can lead to serious errors as 

a nonlinear model can help one to avoid overdesign and build better products. 

SolidNotes (2009) in other words, states that whereas it takes longer time to run 

a nonlinear solution, yet nonlinear models replicates the actual physical system 

under study and provide accurate results. 

Price dynamics of maize was also studied using on two different types of 

continuous time delay differential equation models by applying numerical 

solutions. The results from the study recommended the use nonlinear models to 

researchers instead of linear models to avoid misleading conclusions when 

solving real-life economic problems . The recommendation was deduced from the 

fact that, the results from the nonlinear delay differential model seemed more 

realistic than that of the linear delay differential model (Anokye and Oduro, 2014). 

2.5.2 Effects of Continuous-time Models 

Cobweb model of market stability is a discrete-time model that leads to a 

recurrence equation which describes the sequence of prices when the initial price 

is not the equilibrium value. One of the implicit assumptions in the demand and 

supply analysis is that suppliers decide the quantity of goods to be sent to market 

after they have known the price of that good. In reality, however, most suppliers 

commit themselves to the supply decision before they know the price of the good 

in question. Thus, in reality, time is continuous although it is assumed that it 

evolves discretely so that under this framework the market is cleared once per 

fixed period of time (Asano, 2012). It is therefore plausible to use continuous-time 

models, and these models lead to differential equations rather than recurrence 
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equations with price being given as a function of the continuously varying time 

parameter (Anthony, 1996). 

Nowman (1997) applied continuous-time model to study the short-term 

interest rate in finance and it was noted that, the volatility of short-term rates is 

highly sensitive. Lindsey and Ryan (1994) also found that the continuous-time 

model is preferable to the discrete and mixed-time models for the reason that it 

gives reasonable estimates with relatively few intervals while still making full use 

of the available information. Continuous-time linear models are also found to be 

fitting well to irregularly spaced time series data (Jones, 1981; Jones and 

Ackerson, 1990). 

Several other recent papers Brockwell et al. (1991), Tong and Yeung 

(1991), Brockwell and Hyndman (1992) and Brockwell (1994) have also applied 

continuous-time models, in modelling conveniently, irregularly spaced data when 

discrete-time linear models had been found inadequate. However, these 

differential equations models for lack of consideration on time lag in the 

modelling makes them less representative of the real situation. Thus the lack of 

time lags (delay) in these models make them quite different from the realistic 

problems under consideration. 

2.5.3 Effects of Delay Differential Equations 

For most farm produce there is a finite time which elapses before a change in 

production occurs. Consumers on the other hand take buying decisions based on 

the current market price. This time lag in production could be informed by several 

factors (Mackey, 1989) and therefore delay should be considered in mathematical 

modelling to evaluate its effects on production and price. 

Delay Differential Equations arise in many applied economic models 

when traditional simplifications are abandoned for realistic hypotheses 

(Engelborghs et al., 2002). Delay differential equations have been widely used for 

many years in control theory and have recently become popular in biological and 

economical models. Walther (1981) used nonlinear delay differential equations 
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and the results showed that there broad spectrum of dynamic behaviours that 

exist in DDEs. Meng-xing and Cui (2008) also developed a delayed mathematical 

model to assess price cooperation certain economic parameters so that when 

some conditions are satisfied, the existence and stability of periodic price are 

investigated. 

In considering the dynamics of price, production and, consumption of 

commodities, Belar and Mackey (1989) and Mackey (1989) proposed the price 

fluctuation models and under relatively mild conditions, determined the stability 

of equilibrium price. Farahani and Grove (1992) and Cheng (2005) considered 

naive consumer models and studied the oscillation of equilibrium price. 

Chapter 3 

Methodology 1 

3.1 Introduction 

This chapter gives a review of mathematical models that are used in the study. 

These models will be compared with existing mathematical models in which 

knowledge gaps have been identified. The models may include the 

continuoustime linear and nonlinear cobweb models constructed from delay 

differential equations of price and also consider discrete-time cobweb models 

obtained from difference equations of price comprising linear and nonlinear. 

3.2 Ordinary Differential Equations 

Ordinary differential equations (ODEs) are mathematical relations containing one 

or more functions of one independent variable and its derivatives. They are 

continuous time equation which can be used to describe dynamically changing 

phenomena or systems and therefore when incorporating demand and supply 

functions, the price is given as function of time (Anthony, 1996). Most suppliers 



 

34 

in reality commit themselves to the supply decision before they know the price of 

the good in question as opposed to the standard assumptions under the cobweb 

theory concerning demand and supply. 

Thus ordinary differential equations are equations that relate functions 

with their derivatives. The functions in most applications, replicate physical 

quantities while their derivatives replicate rates of change of the quantity. The 

equation then relate the physical quantities to their rates of change. The role of 

differential equations in other disciplines cannot be overemphasize, they be could 

applied in engineering, physics, economics and biology because such phenomenas 

are common (Asano, 2012; Shapiro, 2011). 

Most economic models with temporal dimensions involve relationship 

between values of variables at specific time and changes of the values over time. 

An economic growth model may typically contain a relationship between change 

in capital stock and its output value. When time is considered as continuous 

variable in function, then their relationship may be modeled as differential 

equation (Osborne, 2003). 

3.2.1 General Definition of Ordinary Differential Equation 

Given F, as function of y and t and the derivatives of y, then general form of 

ordinary differential equation may be written as: 

 F(y,y0,y00,...yn,t) = 0 (3.1) 

which is also called implicit ordinary differential equation with order n. This 

implies that equation of the form: 

F(y,y0,y00,...yn−1,t) = yn 

may be called explicit ordinary differential equation with order n. 
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3.2.2 Linear Differential Equation 

Differential equation can be said to be linear if F as function of the system is linear 

combination of derivatives of say x as: 

 an(t)x(n) + an−1(t)x(n−1) + ... + a2(t)x00 + a1(t)x0 + a0(t) = g(t) (3.2) 

where each ai(t) is either zero, constant or dependent only on t, and not on x. It is 

important to note that linear differential equations have no products of the 

function x(t) and its derivatives and the function or its derivatives occur to power 

first order. The coefficients ai(t) and g(t) are continuous functions in t. The 

linearity of differential equations are determined only by the function x(t) and its 

derivatives. 

In particular, consider the following differential equation whose 

derivative depends on itself only linearly and having a single variable (say x(t)) 

given as: 

 ) (3.3) 

This can also be referred to as the standard form of the linear ODE or DE. For 

convenience, sometimes the equation could be written without the t (but the 

dependence will be implied) on the p and q and write the derivative with a prime 

as: 

 x0 + px = q (3.4) 

The Equation (3.4), could be solved by integrating factor technique (see for 

example Shapiro (2011)). Both sides of equation (3.4) is multiplied by integrating 

factor µ(t) such that the following equation is obtained: 

  (3.5) 
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Multiplying both sides by dt and integrating gives 

  (3.6) 

Therefore  

Z µ(t)x =

 µ(t)q(t)dt + c (3.7) 
by dividing through (3.7) by µ(t), it could be seen that (3.5) is satisfied by the 

integrating factor µ(t) and therefore provide the general solution of equation (3.4) 

as: 

  (3.8) 

Systems of Differentiation Equations and Stability Analysis: 

This section of the study discusses phase portrait of linear differential systems. 

The stability of equilibrium solutions for any given linear systems be it 

homogeneous or non-homogeneous will be classified according to shape and 

behaviour of their phase portraits. 

Equilibrium Solution (Critical Point) 
0 

Critical point of the system of equations y = Ay may occur at (y1,y2) where 

. Thus the solution of the homogeneous system Ay 

= 0, gives only one equilibrium solution which occurs at the origin provided det(A) 

6= 0, or infinitely many solutions ff det(A) = 0 (Tseng, 2008). 

 0 0 
Example: Given y = Ay, with (0,0) as the only critical point, then y = Ax is 

written as: 

 

For matrix A = (aij), with eigenvalues λ1 and λ2, and its corresponding linear 

eigenvectors  and , the general solution is given by 

 y(t) = c1v1eλ1t + c2v2eλ2t, 3.8i 
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with c1 and c2 as constants. In this case, the characteristic polynomial is also given 

by: 

p(λ) = λ2 − (a11 + a22)λ + ∆ = 0; ∆ = a11a22 − a12a21: 

If matrix A is real, then the characteristic equation has real coefficients. Its roots 

may be both real or complex conjugates: λ1,2 = ρ ± σ, where ρ and σ are real. For 

complex conjugates, the eigenvectors v1 and v2 are supposed to be complex 

conjugates as well as constants c1 and c2, if the solution (3.8i) have to be real. 

The case when eigenvalues are both real 

When the two eigenvalues are negative, the solution decays to zero exponentially 

and the origin will be asymptotically stable. If one eigenvalues is zero and the 

other is negative, then the origin is stable but not asymptotically stable. On the 

other hand, if the system has at least one positive eigenvalues, then the origin 

becomes unstable. Suppose λ1 > 0, then in for c2 = 0 in equation (3.8i) and any non-

zero value of c1, the norm of the solution increases without bound which implies 

instability (Tseng, 2008). 

The case when only one eigenvector v1 exist: The general 

solution of equation (3.8i) will then be given by: 

y(t) = [(c1 + c2t)v1 + c2v2]eλt 

If λ > 0, then the system is unstable and all trajectories diverge from the critical 

point to infinite-distant away or they converge to the critical point (when λ < 0). 

If λ < 0, then teλt increases until it reaches its finite maximum where ||y(t)|| is made 

arbitrarily small by choosing sufficiently small values for c1 and c2, to make the 

system asymptotically stable (Tseng, 2008). 

The case of two complex eigenvalues: 
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In the case when the two eigenvalues are complex equation (3.8i) will have its 

general solution given by y(t) = c1eλt(acos(µt) − bsin(µt)) + c2eλt(asin(µt) + cos(µt)) 

Here λ1,2 = ρ ± σ, and when the real part is nonzero, the system either grows or 

decays exponentially according to the term eλt from the critical point. Therefore, 

the trajectories will spiral away from the critical point towards infinite-distant 

away when (λ > 0) or will spiral toward the critical point and converge when (λ < 

0). This critical point is called spiral point and it is asymptotically stable when λ < 

0, and unstable when λ > 0. 

When λ is zero, the trajectories will neither converge towards critical point nor 

move to infinite-distant away and this critical point is called center and has a 

unique stability classification shared by no other: stable (or neutrally stable). 

(Tseng, 2008). 

Nonhomogeneous Linear Systems with Constant Coefficients: 

This section discusses stability condition of equilibriums points (critical points) 

of nonhomogeneous system as given by 

0 
 y = Ax + b. 3.8ii 

where b is a constant vector. The system above is explicitly written as: 

0 

y1 = ay1 + by2 + g1 
0 

y2 = cy1 + dy2 + g2 

Just as was done earlier with homogeneous system of differential equation, the 

critical point could be found if we let  = 0 and solve the resulting 

nonhomgeneous system of equations. Since the zero vector is not solution of the 

nonhomogeneous linear system, the origin is no longer the critical point. Instead, 

the unique critical point (if A has nonzero determinant) located at solution of the 

system of algebraic equations given by: 
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0 = ay1 + by2 + g1 

 0 = cy1 + dy2 + g2 3.8iii 

Suppose the critical point, say (y1,y2) = (α,β), is determined from the system then 

it could be moved to (0, 0) via translations γ1 = y1 − α and γ2 = y2 − β. 

0 
We obtain linear homogeneous system γ = Aγ after translation. The two systems, 

before and after the translations should have same coefficient matrix and 

identical stability classifications for their respective critical points. 

Thus if critical points, say (y1,y2) = (α,β) are plugged into equation 3.8iii, then 

0 = aα + bβ + g1 

0 = cα + dβ + g2 

Now apply the translations γ1 = y1 − α and γ2 = y2 − β. Then y1 = γ1 + α, 

, and . Substitute them into the system 3.8ii we 

have 

, 

y1 = aγ1 + bγ2 + (aα + bβ + g1) = aγ1 + bγ2 

0 

y2 = γ2 = cy1 + dy2 + g2 = c(γ1 + α) + d(γ2 + β) + g2 y2 = cγ1 

+ dγ2 + (cα + dβ + g2) = cγ1 + dγ2 

for the new variables γ1 and γ2, the given system has become 

0 

γ1 = aγ1 + bγ2 
0 

γ2 = cγ1 + dγ2 

0 which is in the form of 

homogeneous system γ = Aγ, having critical points at the origin and same 

coefficient matrix A, compare to original system (Tseng, 2008). 
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Example Find the equilibrium point of the following system of differential 

equation and define its stability 

y10 = y1 − 2y2 − 1 y20 

= 2y1 − 3y2 − 3 

If (3, 1) is the critical point, when = 0, then the characteristic polynomial λ2 

+2λ+1 = 0, gives repeated eigenvalue of λ = −1, and one linear eigenvector. This 

means at (3, 1) the system is asymptotically stable improper node. 

Example 2 Define stability of the following system of differential equation, given 

critical point (1, 1): 

y10 = −2y1 − 6y2 + 8 y20 

= 8y1 + 4y2 − 12 The 

solution matrix has 

characteristic 

equation given by λ2 − 

2λ + 40 = 0, that 

results in complex 

conjugate eigenvalues 

having positive real 

part λ = 1. At critical 

point (1, 1), the 

system becomes 

unstable spiral. 
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3.2.3 Nonlinear Differential Equation 

Nonlinear differential equations are defined as any equations that cannot be 

written in the form of equation (3.2), and these include all equations that have 

y,y0,y00, etc., raised to any power (such as y2 or (y0)3) or nonlinear functions of y or 

any derivative to any order such as sin(y) or ety or any product of function of these. 

The order of differential equations are degree of the highest derivative contained 

in the equation (Shapiro, 2011). 

Only few methods are available for solving nonlinear differential 

equations exactly and yet some of these methods require that the equations have 

particular symmetries before they could be applied . Nonlinear differential 

equations sometimes exhibit complicated behavior and even their existence, 

uniqueness and extendability are hard problems (Boyce and DiPrima, 1967). For 

qualitative analysis of nonlinear differential equations, the following common 

methods are applied; 

• Linearization by means of Taylor’s expansion. 

• Changing of variables into something easier to study. 

• Bifurcation theory. 

• Perturbation theory (Boyce and DiPrima, 1967). 

Lets us consider the following nonlinear differential equation (3.9) obtained from 

the traditional market equations of demand, Dt = α − β(pt) and supply, St = 

) which is in stable state. This like all nonlinear differential 

equations has many ways of solving it. By transforming it to linear form, it could 

be solved using Taylor’s expansion. 

At equilibrium, it is assumed change in price is proportional to the difference 

between supply and demand functions. The lag operator is also applied so as to 

simplify the equation as given by: 
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 p0(t) = λ[c − bp + ap2] or p0(t) + bp − ap2 = c (3.9) 

where c = (α − δ), b = (β − γ) and a = ρ. This equation has two fixed points 

(equilibrium points) obtained from solving 

 λ[c − bp + ap2] = 0 (3.10) 

Therefore: 

 0 we have two equilibrium points, 

= 0 only one equilibrium point exists,  

0 then there are no equilibrium points. 

Taking the first order Taylor expansion about the point p*, we have: 

 f(p) = f(p∗) + f0(p∗)(p − p∗) (3.11) 

where f0(p∗) = −b+2ap∗ and for p* being a fixed point (equilibrium), f(p∗) = 0. On 

considering that , then: 

  (3.12) 

Then from equation (3.11): 

 (3.13) Therefore equation (3.13) is a first-order 

linear approximation about the this equilibrium and the linear approximate 

solution is given by: 

  (3.14) 
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Equilibrium and Stability Condition 

It is found from the above solution that fixed point  is locally unstable, since c = 

(α−δ), b = (β −γ) and a = ρ are all positive and so as t → ∞ then pt → ∞ 

(Shone, 2002). 

Similarly, the approximate solution of the differential equation at equilibrium 

point  is also given as: 

  (3.15) 

where  is a locally stable equilibrium therefore as t → ∞ then . 

Now for the repeated equilibrium point  

 ) = 0 (3.16) 

For which no first-order linear approximations exist for this equilibrium point. 

Equilibrium and Stability Condition of Nonlinear Systems: 

In building on the eigenvalue analysis for linear systems, we consider the 

following nonlinear differential system of equations: 

0 
x = P(x,y) 
0 
y = Q(x,y) 

where P and Q are functions of two variables: x = x(t) and y = y(t), but they are 

both not linear. Unlike linear systems, nonlinear systems could have more 

0 0 than one 
critical points. However, like the linear systems, if we let x = y = 0, then critical 
points can be found by solving the resulting systems; 

0 = P(x,y) 

0 = Q(x,y) 

whose solution is critical points of the system of differential equations. On the 

phase portrait, are multiple critical points and each trajectory is influenced by 
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more than one critical points which results in chaotic appearance of the phase 

portrait. Consequently, stability of each critical point is obtained locally on case-

by-case basis (Tseng, 2008). Usually, linearizations of P and Q at critical points are 

used to approximate the behavior of nearby trajectories. In process the nonlinear 

system is converted to linear system, whose phase portrait approximates local 

behaviour of the original nonlinear system near the critical point (Tseng, 2008). 

Generally, given that the systems P and Q have the critical points (x,y) = 

(α,β), one can determine stability of the system by linearization using first three 

(3) terms in the Taylor series expansion for each function as follows: 

x0 = P(x,y) ≈ P(α,β) + Px(α,β)(x − α) + Py(α,β)(y − β) y0 = Q(x,y) 

≈ Q(α,β) + Qx(α,β)(x − α) + Qy(α,β)(y − β) 

If (α,β) is critical point and P(α,β) = 0 = Q(α,β), then above linearizations becomes; 

x0 ≈ Px(α,β)(x − α) + Py(α,β)(y − β) y0 ≈ 

Qx(α,β)(x − α) + Qy(α,β)(y − β) 

and like the linear nonhomogeneous system, the critical point could be translated 

to (0, 0) and still maintains its type and stability using the substitutions χ = x−α 

and γ = y − β. After translation, the approximated system becomes; 

0 
x = Px(α,β)x + Py(α,β)y 

0 
y = Qx(α,β)x + Qy(α,β)y 

which is now homogeneous linear system with coefficient matrix: 

   

 ˆA =  Px(α,β) Py(α,β) . 

  Qx(α,β) Qy(α,β) Taking the 
first partial derivatives of the 
matrix and substituting x = α 
and y = β, the following 

Jacobian matrix is obtained; 
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 ˆJ =  Px Py . 

   

 Qx Qy 

and it has to be calculated once for each nonlinear system. For each critical point 

of the system, coefficient matrix of the linearized system about a given point (x,y) 

= (α,β), is computed and then use the resulted eigenvalues to approximate its 

behaviour and stability (Tseng, 2008). 

Example: Given the following system of differential equations, determine critical 

points and its behaviour: 

x0 = x − y y0 = x2 

+ y2 − 2 

0 0 
By setting x = 0 = y and solving the system, the critical points found as (1, 1) and 
(-1,-1). The Jacobian matrix is also given by; 

 

1 

Jˆ =   

2x 

 
−1 . 

 
2y 

At point (1,1), the linearized system has coefficient matrix: 

 

1 

ˆA =  

 

2 

−1 

2 

 

. 

 

with eigenvalues  and the results show an unstable spiral point. Also 

at (-1,-1), the linearized system gives coefficient matrix: 

 

1 

ˆA =  

 

−2 

 
−1 . 

 
−2 

with eigenvalues  and an unstable saddle point. 
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Example 2: Compute the critical points and define the behaviour of the 

equilibrium point of the following system of differential equations; 

x0 = x − xy 
0 
y = y + 2xy 

with critical points computed as (0,0) and (1/2,1), and Jacobian matrix given by; 

   

1 − y −x 

 ˆJ =  . 

   

 2y 1 + 2x 

then point (0,0), the linearized system has the following coefficient matrix: 

 

1 

ˆA =  

 

0 

 

0 . 
 

1 

The characteristic equation provides repeated eigenvalues λ = 1, and for this 

result, while linear system will have an unstable proper node (star point), 

nonlinear system will have an unstable node. 

At critical point ( 1), the linearized system has the following coefficient matrix: 

ˆA  

which has eigenvalues λ = ±1, with results indicating unstable saddle point for the 

critical point (Tseng, 2008). 

3.2.4 Initial Value Problems 

If differential equation is given together with specified value (or an initial 

condition) of the unknown function for a given point in domain of the solution 
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then we have an initial value problem. Thus the problem of finding solution for a 

function of say y of x when its derivative and initial value y0 at a particular point 

say x0 given, is an initial value problem (Wood, 2015). 

In mathematics, any dynamic systems that are modelled usually amount 

to solving an initial value problem. This means that such systems specify how they 

will evolve with time given initial conditions. 

Theorem 1: If the functions p(t) and g(t) are continuous in an interval I : α < t < β 

containing the point t = t0, then there exists unique function y = φ(t) that 

satisfies the differential equation: 

 

for each tεI. The unique solution must satisfy the initial condition y(t0) = y0 where 

y0 is an arbitrary initial value. Generally, problem of initial value could be solved 

using either integrating factor approach (and write the solution as shown in 

equation 3.10) or method of separation of variables. If general solution of the 

differential equation can be determined then either method should work. 

Solution of initial values involves the following steps: 

1. Finding general solution of the system. 

2. Determining constant value(s) using the initial conditions and obtain the 

3. Actual solution of the system. 

Example: Given the following differential equation and initial condition; 

. 

It implies that 

 

By substitution LHS becomes 
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By integration by parts, the RHS also becomes 

 

To obtain general solution as: 

√  

y(x) = ± ke2sin(x)−2xcos(x) − 1 

For y(0) = 1, i.e. at x = 0, actual solution is given as: 

 

3.2.5 Existence and Uniqueness of Solutions 

Sometimes initial value problems are solved and it is assumed that the solution is 

valid and is the only solution one may have, most especially if differential 

equations techniques are used to model physical systems. Therefore one must 

know that the differential equation has a solution before time and/or energy is 
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spent trying to find it. As much as possible it is expected of the solution to be to 

be unique if the solution is to be a useful predictive tool (Lindblad, 2014). 

This is an amazing theorem as it says not only that a solution exists, but 

that solution is unique. It also tells one where that solution exists, in the interval 

over which function is continuous and containing the initial point (Lindblad, 

2014). 

Linear Differential Equations: 

Supposing the following problem is given to determine the interval within which 

the solution is valid; 

 xy0 + 2y = 4x2; y(1) = 2 

Then one divides through the function by x to obtain the following 

 

Computing the integrating factor we have 

 

Multiply through by the integrating factor we obtain 

x2y0 + 2xy = 4x3 

Therefore 

 

Applying the initial condition, c = 1, and this provides the actual solution as 

follows: 

 
This equation sought a solution in interval containing x = 1. Since the coefficients 

in the equation are continuous except at x = 0, then from theorem 1, the given 

initial value problem has solution that is valid at least in the interval 0 < x < ∞. 



 

50 

However, if the initial condition is changed to y(1) = 1, then from the general 

solution, c = 0. Hence actual solution is given as: 

y = x2, 

which is bounded and continuous even in the neighbourhood of x = 0. 

Nonlinear Equations: 

Nonlinear equations are noted to be more complicated to solve than linear ones 

(Lindblad, 2014). 

Theorem 2: If the functions f(x,y) and ∂(f)/∂(y) are continuous in some rectangle 

R : |x| ≤ a, |y| ≤ b containing the point (x0,y0), then in some interval, |x| ≤ h ≤ a 

contained in |x| ≤ a, there is a unique solution y = φ(x) of the initial value problem: 

  (3.17) 

Example Suppose that an initial value problem; 

 

is also given to find the interval of solution for for x ≥ 0. By 

the separation of variables method 

 

so 

 
Then if c = 0, then the initial condition is satisfied and so 

 

The function on the other hand can be given as; 

 

which also satisfies the initial value problem. Moreover, the following function; 
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 y(x) = φ(x) = 0, x ≥ 0 

is yet another solution to the same initial value problem. For non-negative 

arbitrary value x0, the piecewise functions; 

, 

are continuous and differentiable particularly (at x = x0), and are also solutions to 

the initial value problem. This means the problem has multiple solutions which 

illustrates the troublesome nature of initial value problems equations are 

nonlinear. The singularity of the solution is dependent on the differential equation 

and its initial conditions. 

One important distinction of a linear initial-value problem from a nonlinear one 

is the fact that the size of interval for existence of solution to linear initial-value 

problem does not depend on the initial value of the dependent variable. Instead, 

it depends only on the points of discontinuity of the coefficient function p(t) and 

the non-homogeneous term g(t). This is often referred to as the statement that 

linear problems have fixed singular points (Kwa, 2011). On the other hand, the 

size and endpoints of interval of existence for solution to nonlinear initial-value 

problem are also dependent on the initial value of the unknown function. This is 

often referred to as the statement that nonlinear problems have movable singular 

points (Kwa, 2011). 

Method of Successive Approximation: 

This method is used to solve and approximate solutions of differential, integral 

and integro-differential equations and also prove the existence of the solutions 

(Boyce and DiPrima, 1967). Other uses of method of successive approximation 

include, obtaining of a qualitative characterization of a solution. It is one of the 

mathematical methods of solving problems by means of sequence of 
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approximations that converge. The sequence is constructed recursively such that 

each new approximation is calculated on the basis of the preceding 

approximation. 

From theorem 2, it is assumed that there is function y = φ(x) that satisfies the 

initial value problem, and f[x,φ(x)] is continuous function of x only. Hence one can 

integrate ), from the initial point x = 0 to an arbitrary value of x, 

to obtain; 

  1.19a, 

where the initial condition φ(0) has been used. 

There is another relation satisfied by the solution of the initial value problem 
0 

y = f(x,y), y(0) = 0, which was provided by the integral equation. 

Conversely, if integral equation 1.19a is satisfied by the continuous function y = 

φ(x), then the same function also satisfies the initial value problem. One can prove 

this by substituting x = 0 in equation 1.19a, and thus obtain y(0) = 0. Furthermore, 

it is known that the integrand in equation 1.19a is continuous and 

0 therefore φ = 
f[x,φ(x)]. 

In conclusion, one can conveniently say that the initial value problem is equivalent 

to integral equation in the sense that, any solution of one function is also solution 

of the other function (Boyce and DiPrima, 1992). 

Now by the application of the method of successive approximation it will be 

shown that integral equation 1.19a has a unique solution starting with the initial 

function φ0, either arbitrarily or approximating the initial value problem. 

If one chooses that: 

φ0(x) = 0 

then presumably φ0 satisfies the initial condition y(0) = 0, and not the differential 
0 

equation y = f(x,y). 

From equation 1.19a, φ1(x) is obtained from φ0(x) as given by; 
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Similarly, 

 

and so in general 

 

Generally, each sequence of functions φn(x) = φ0(x),φ1(x),φ2(x),...,φn(x)..., satisfies 

the initial condition y(0) = 0, but none satisfies the differential equation. If it is 

found in the process that φk+1(x) = φk(x), for n = k, then φk(x) is the solution of 

equation 1.19a and the initial value problem, therefore we terminate the sequence 

at this point. However, it is very difficult for this to occur and so the entire infinite 

sequence of piecewise functions are considered and checked if every member of 

the sequence exist, do not break down or interrupt in the process at any stage 

and/or the sequences converge. Then at this stage, one can find unique function 

and check whether its limit properties satisfy the integral solution (1.19), as well 

as the initial value problem (Boyce and DiPrima, 1992). 

Example Solve the following problem using method of successive approximation; 

0 
 y = 2x(1 + y), y(0) = 0. 

The following integral equation holds if y = φ(x); 

 , 1.19b. 

Given that φ0(x) = 0, it follows that; 

. 

Similarly, 

. 

and 

. 
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Equating φ1(x),φ2(x) and φ3(x) suggest that 

. 

for each n ≥ 1, using mathematical induction. We must now find out if φn(x) is true 

for n = k, and n = k + 1. 

Then it follows that 

 

 

. 

Hence proof of induction is complete and that φn(x) is the nth partial sum of the 

infinite series; 

 , 1.19c 

The limn→∞φn(x) exists if and only if the series 1.19c converges. By applying the 

ratio test, it is seen that for each x; 

 0, as k → ∞ 

thus 1.19c converges for all x, and this confirms that; 

 , 1.19c 

is solution of the equation 1.19b, and the fact that x is defined in interval on the x-

axis this function can be differentiated or integrated term by term (Boyce and 

DiPrima, 1992). 

Uniqueness of the Solution: 

For uniqueness of the function 1.19c, it is assumed that φ(x) and ψ(x) are 

solutions of the initial value problem and both satisfy the integral equation 1.19b. 

Then by subtraction 
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, 

Taking absolute values of both sides, then for x > 0, 

, 

If x is made to lie within 0 ≤ x≤ A/ˆ 2, where Aˆ is arbitrary, then 2t ≤ Aˆ, and 

 ,1.19d, 

At this point a function Uˆ is introduced and this function defined by 

, 

It follows that 

 Uˆ(0) = 0, 1.19e, 

 Uˆ(x) ≥ 0, for x ≥ 0, 1.19f 

Furthermore, Uˆ is differentiable and Uˆ0(x) = |φ(x) − ψ(x)|. Hence by 1.19d 

 Uˆ(x) − AUˆ (x) ≤ 0 1.19g, 

By multiplying equation 1.19g by non-negative quantity e−Ax, gives 

 [e−AxUˆ(x)]0 ≤ 0 1.19h, 

Then, by integrating equation 1.19h with limit [0,x], and using equation 1.19e, we 

have 

 e−AxUˆ(x) ≤ 0 for x ≥ 0, 

Hence Uˆ(x) ≤ 0 for x ≥ 0, but from equation 1.19g Uˆ(x) = 0; for each x ≥ 0, which 

implies U0(x) ≡ 0 and therefore ψ(x) ≡ φ(x) contradicts the hypothesis, and for 

that matter the initial value problem cannot have two different solutions (Boyce 

and DiPrima, 1992). 



 

56 

3.2.6 Difference Equations 

Discrete-time systems are described by difference equations whereas 

continuoustime systems are described by differential equations. Difference 

equation constructs relations between an input signal and an output signal at 

discrete-time interval. Usually the output signal is calculated based on the past 

and current input signals (CTMS, 2015). 

According to Neusser (2012) difference equation (also known as 

dynamical system) describes evolution of some variable denoted by Xt over time 

index t that takes on discrete values and typically runs over all integers Z. By 

interpretation, t as time index introduces concept of past, present and future 

which makes difference equation a function that specifies how to compute the 

value of variable of interest at period t given past values of the variable and time. 

In most cases the system may be initialized at some point t0 = 0, so that t runs over 

all natural numbers, i.e. tεN. 

3.2.7 General Definition of Difference Equation 

Given F, as function of x and t, the general form of difference equation can be 

written as: 

 Fˆ(Xt,Xt−1,Xt−2,...,Xt−p,t) = 0 (3.18) 

where the variable Xˆt is endogenous or dependent variable and is n-vector, i.e 

Xˆ
tεRn,n ≥ 1, with n as dimension of the system. The difference between the largest 

and the smallest time index of dependent variable explicitly involved is order of 

the difference equation. Therefore in equation (3.18), p is the order. If time index 

appears as argument of the function F, then it is non-autonomous equation. On 

the other hand, if time is not a separate argument and enters only as a time index 



 

57 

of the dependent variable, then the equation is said to be autonomous or time-

invariant (Neusser, 2012). 

3.2.8 Linear Difference Equation 

A linear difference equation, in particular first order homogeneous difference 

equation normally takes the general form; 

 aqn + bqn−1 = 0 (3.19) 

where qn, with n = 0,1,2,3,... are unknown and a and b as fixed constants. Equation 

(3.19) is solved by rewriting it as; 

 

with ). The equation is now solved recursively as follows 

qn = αqn−1 = α(αqn−2) = α2qn−1 = ... = αnq0 

If the initial condition at time 0 is given as q0, then state of the system at time n is 

given by qn = αnq0. Therefore, general solution of equation (3.19) is given by; 

 

First order inhomogeneous equation: 

In considering another linear equation of the form; 

 aqn + bqn−1 = cn (3.20) 

where cn is a given sequence and qn is unknown. For this equation, one for instance 

may take cn = c ; cn = cn ; cn = cαn;, and is called inhomogeneous equation because 

of the term cn. In solving such equations the following simple fact may be useful. 

Linearity principle: Supposing  is a solution of the inhomogeneous aqn + bqn−1 

= cn, and qn a e 
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solution of the homogeneous equation aqn + bqn−1 = 0, then  is a solution of 

the inhomogeneous equation aqn + bqn−1 = cn. Indeed we have 

 

aqn + qn−1 = 0 e
 e 

and thus adding the two equations give 

 

The general solution of a first order inhomogeneous equation could obtained 

using the following three steps; 

1. finding solution of the homogeneous equation 

2. finding particular solution of the inhomogeneous term and 

3. finding general solution of the inhomogeneous equation by adding up 

solutions of the steps 1 and 2 above. 

Example : Solve the following inhomogeneous equation where the term 

cn = c, 

aqn + bqn−1 = c 

First the particular solution is computed, and since c is a constant, one 

can let qn = d, so we will find 

 ad + bd = c; or  

Then from equation (3.19), general solution of the inhomogeneous difference 

equation is obtained by; 

 

Equilibrium and Stability Analysis: 

The stability of inhomogeneous difference equation is dependent on the absolute 
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value of  1, then system is stable and converges towards 

equilibrium point  . Else it will diverge form the equilibrium point  if the 

absolute value of α > 1. However, if the absolute value of α = 1, in system will 

oscillate in a period-2 cycle in between two equilibrium points (Neusser, 2012). 

3.2.9 Nonlinear Difference Equation 

Stability condition of linear dynamic systems are fairly easy to determine but the 

same cannot be said about nonlinear systems, since they can create complex cycle 

phenomena. The complexity of nonlinear systems is illustrated using the 

following quadratic equation; 

yt+1 = ayt − byt2 

First the fixed points of the quadratic system has to be established, and these are 

computed as follows; 

 

and the points given by; 

 yˆ∗ = 0 and ˆ 

Equilibrium and Stability Analysis: 

From results above, we now determine whether the fixed points are stable or 

unstable by using the following approach on the assumption that y∗ is equilibrium 

point of the nonlinear difference equation; 

 yˆt+1 = f(yt) or fˆ(yt) = ayt − byt2 

where fˆis continuously differentiable at ˆy∗. By taking derivative of the nonlinear 

difference equation we observe that; 

1. If |fˆ0(y∗)| < 1, then ˆy∗ is asymptotically stable ot attractor. 



 

60 

2. If |fˆ0(y∗)| > 1, then ˆy∗ is unstable or repellor 

3. If |fˆ0(y∗)| = 1, then ˆy∗ is in oscillation between two equilibrium points. 

Example: Let us consider the stability condition of the following nonlinear 

system; 

yˆt+1 = 2yt − yt2 

The fixed points can be found from 

aˆ = 2aˆ − aˆ2 

aˆ2 − aˆ = 0 

aˆ(aˆ − 1) = 0 

 aˆ = 0 aˆ = 1 

To determine stability of the system, let 

yˆ = f(x) = 2x − x2 

then for 

fˆ0(x) = 2 − 2x we 

have 

fˆ0(0) = 2 

since 

and fˆ0(1) = 0 

|fˆ0(0)| > 1, 

and since 

aˆ = 0 is unstable 

|fˆ0(1)| < 1, aˆ = 1 is stable 
Many researchers have conducted research using these existing models, for 

example researchers like Farahani and Grove (1992) and Cheng (2005) developed 

naive consumer models and studied the oscillation of equilibrium price base on 
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ordinary differential equations. Most of these economic models have utterly 

ignored the ability of delays in generating economic fluctuations. The lack of time 

lags (delays) in these models makes them quite different from the realistic 

problem they seek to model. Therefore delay-differential equation is introduced 

in the study to deal with this gap (Eduardo and Gergely, 2013; Howroyd and 

Russel, 1984). 

Meanwhile, above existing differential equation models would only help one to 

grasp the concept of delay differential equation models which would be applied 

directly in this study to model demand and supply as they contain delay 

parameter which reflects supply response to market changes. 

3.3 Delay Differential Equations 

In mathematics, delay differential equations (DDEs) are defined as type of 

differential equation in which derivative of the unknown function at certain time 

is given in terms of values of the function at previous times. Thus in DDEs there 

are constraints that its time evolution can only depend on specific past values of 

the state variable at discrete or continuous times. They arise in many applied 

models when traditional simplifications are abandoned for more realistic 

assumptions (Engelborghs et al., 2002). Delay differential equations are also 

important class of dynamical systems and according to Roussel (2005), they are 

applied in either natural or technological control systems. In these systems, a 

controller monitors the state and makes adjustments to the system based on its 

observations. Since these adjustments can never be made instantaneously, a delay 

arises between the observation and the control action. 

DDEs belong to class of systems with functional state, i.e. partial 

differential equations (PDEs) which are infinite dimensional as opposed to 

ordinary differential equations (ODEs) having a finite dimensional state vector 

(Jean-Pierre, 
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2003). 

Generally, delay differential equation could be written in the form: 

 y0(t) = f(y(t),y(t − τ1),y(t − τ2),...,y(t − τn)) (3.21) 

where the quantities τi are positive constants which define fixed discrete delays. 

There are other DDEs, notably equations with state-dependent delays where τi0s 

depend on y or equations with distributed delays where the right-hand side of the 

differential equation is weighted integral over past states. 

Unlike the finite-dimensional dynamical systems where initial conditions 

are given and a small set of numbers specified; namely the initial values of the 

state variables and perhaps the initial time in non-autonomous systems, to solve 

delay differential equation more is required. One has to provide an initial function 

which denotes behavior of the system prior to time (say 0, assuming that we start 

at t = 0). The function has to cover a period as long as the longest delay, since we 

will be looking back to earlier values of say y in time that far (Roussel, 2005). 

In other words, dynamics induced by delay equation could be understood 

if it is considered in same terms as done in differential equations, where the 

solution consists of sequence of y values at increasing values of t. However, from 

theoretical perspective, solution of DDE is mapping from functions on interval say 

[t−τ,t], into functions on the interval [t,t+τ] through stepwise fashion using the 

method of steps (Roussel, 2005). 

For instance in considering delay differential equation with single delay 

given by: 

 y0(t) = f(y(t),y(t − τ)) (3.22) 

we will need initial condition defined by φ : [−τ,0] → Rn, so that solution on interval 

[0,τ] will also be given by ψˆ(0) which is solution to the inhomogeneous initial 

value problem: 
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 ψˆ0(t) = f(ψˆ(t),φˆ(t − τ)) (3.23) 

where ψˆ(0) = φˆ(0). The procedure can be continued for the successive intervals 

using solution of the previous interval as inhomogeneous term. In practice initial 

value problem for DDEs are solved numerically (Roussel, 2005; Rodney, 1977; 

Wim and Silviu-Iulian, 2007). 

Generally, supposing y0(t) = f(y(t),y(t − τ)) and φˆ(t) = 1, then DDE initial value 

problem is solved by integration as given by: 

 

which implies that y(t) = at+1, when the initial condition is set at y(0) = φˆ(0) = 

1. 

Similarly, on interval tε[τ,2τ], one integrates and fits the previous 

condition such that: 

 

Example: 

We can now use the preceding method (method of steps) to solve DDE initial value 

problem where interval of the history function is specifically defined: 

y0(t) = x(t − 1), for t > 0 and history function 

y(t) = 1, for − 1 ≤ t ≤ 0 

The Method of Steps mimics the Method of Successive Approximation and it’s 

applied as follows. The method involves solving the equation on one interval at a 

time. 
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On the first interval [0,1], 

 

This implies that 

 

If y0(t) = y(t − 1), then so is y0(s) = y(s − 1). 

 

On the interval 0 ≤ s ≤ 1, also means −1 ≤ s − 1 ≤ 0, so that history function y(s − 1) 

= 1, on this interval 

y(t) = y(0) + R0t 1ds 

y(t) = 1 + s|t0 y(t) = 

1 + (t − 0) y(t) = 1 

+ t 

which is the first piecewise function obtained on the interval [0,1]. The solution 

on this interval is used to find next solution on [1,2], 

 

To get 

 

From the solution [0,1], y(1) = 1 + 1 = 2, and y0(s) = y(s − 1), and so 

 

On the interval 1 ≤ s ≤ 2, also means 0 ≤ s − 1 ≤ 1, so that history function y(s − 1) 

= 1 + (s − 1), on this interval 

 
To find next solution on [2,3], 
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To get 

 

From the solution [1, , and y0(s) = y(s − 1), and so 

 

On the interval 2 ≤ s ≤ 3, also means 1 ≤ s − 1 ≤ 2, so that history function 

, on this interval 

 

and this process continues until a unique solution is obtained, then the process is 

terminated. This function is supposed to be converging one and satisfies the 

properties of limits in continuity. The difficulty of this process makes it easy to see 

the value of software that can solve DDEs numerically. 

Continuity Analysis: 

Continuity analysis is done to ascertain whether piecewise functions obtained by 

the method of steps are continuous. Limits analysis will be used to verify if they 

are also defined in the interval within which they are derived. Given that; 

, 

2 ≤ t ≤ 3, 

lim ((1 + t)) = 1 + 1 = 2, 
t→1+ 
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These results prove that the first two functions have passed continuity test 

because left hand limit is equal to right hand limit in the interval [0, 2]. 

Also in the interval [2, 3]; 

, 

, 

These results also prove that the second and third piecewise functions are 

continuous in the given interval and one can conclude that the functions are 

continuous and defined in each interval. 

Specifically, if p denotes the price of a certain article and S = S(p) and D = D(p) 

denote the supply and demand functions or curves of price for that product, 

respectively, then as the price increases, so also does the supply, whereas as the 

price increases the demand decreases. The price p = p∗ where the two curves 

intersect is where S(p∗) = D(p∗) and is called market equilibrium. A class of 

behavior related to this equation is known as cobweb phenomena (Ezekiel, 1938; 

Gettrick, 2013; Goldberg, 1996; Aarts, 2014). 

3.3.1 Cobweb Theorem 

The cobweb theorem purports to explain persistent fluctuations of prices of 

agricultural produce in some selected agricultural markets. The theorem was 

developed in the 1930s under the assumption of static price expectations where 

the predicted price equaled actual price in the last market period (Pashigian, 

2008). 

Thus cobweb model is an economic model that explains reasons for fluctuations 

in prices and quantities or supplies that occur in some markets. This model is 
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affected by time expectations of prices are formed, since fluctuations in prices and 

quantities are influenced by way the price expectations are adapted . 

This phenomenon of market behaviour is explained by Kaldor (1934) in 

agricultural market setting such that, If weather conditions for instance are not 

favourable during a year, then quantity supplied of a certain crop will be quite 

small and creates excessive demand or shortage to cause prices to be unusually 

high. In anticipation that prices would remain high farmers plant more so as to 

supply more the following year. If supply happens to be so high, prices decrease 

to meet consumers’ demand. When farmers realize that prices are low, they cut 

down supply the following year, resulting in high prices again. 

This cycle, also known as cobweb phenomena continues until equilibrium is 

reached after few fluctuations. Thus in every unstable market situation, 

equilibrium is reached when in absolute terms, the marginal demand is higher 

than the marginal supply (Kaldor, 1934). 

3.3.2 Price Expectations 

The future expectations or beliefs of economic agents have direct influence on 

their decisions taken today. Predictions of Producers of farm produce and 

Investors about future commodity or stock prices for instance may affect 

commodity or financial market movements today (Hommes, 2013). A classic 

example is ”dotcom bubble”, the rapid run up of stock prices in financial markets 

worldwide in late 1990s and their subsequent crash. The rise in stock prices was 

in anticipation of favourable economic fundamentals such as new communication 

technology and the internet. An over-optimistic estimate of future growth of 

information and communication technology (ICT) industries seemed to have 

contributed and strongly reinforced stock prices to rise excessively in the year 

1995 to 2000, leading to extreme stock markets valuation worldwide and their 

subsequent fall in the year 2000 to 2003 (Galbraith and Hale, 2004; Keith et al., 

2010; Gaither, 2006). 
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Another recent expectations driven crisis is the year 2008 to 2012 

financialeconomic crisis. It is hard to believe that the decline of worldwide 

financial markets in 2008 of more than fifty percent (50%) was completely driven 

by changes in economic fundamentals. Rather, the large decline was strongly 

amplified by pessimistic expectations and market psychology. The predictions, 

expectations or beliefs of consumers and producers about future state of the 

economy are part of ” the law of motion”. The beliefs or expectations of consumers 

and producers are among contributing variables that describe how the economy 

evolves over time. Therefore, the theory of expectations is crucial component of 

any dynamic economic model since market economy is a highly nonlinear 

expectations feedback system (Hommes, 2013). 

Static or Naive Expectation 

The naive expectation hypothesizes that the most reliable forecast of future price 

is current price. This price expectation condition disregards any possible 

producer knowledge of future supply or demand shifts and its effects on price. 

The naive expected price variance and covariance for period t are formed using 

the squared difference between lagged price and the mean price of data from 

sample beginning through period t−1. Naive price expectations are widely used in 

early literature of researches (Ezekiel, 1938; Hommes, 2013). 

If producers apply naive expectations, then in context of cobweb model, their 

prediction equals last observed price and the equation takes the form: 

  (3.24) 

When supply is increasing and demand is decreasing, then provided they are 

bounded, there are only two conditions concerning price dynamics in regards to 

the ratio of marginal supply over marginal demand at steady state (i.e. when 

demand and supply intersect): 
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• If |S0(p∗)/D0(p∗)| < 1, then the steady state is (locally) stable and price 

converges to p∗. 

• If |S0(p∗)/D0(p∗)| > 1, then the steady state is unstable and price diverges 

from p* and converges to a stable 2-cycle. 

Thus due to nonlinearity of the supply curve, prices converge to stable 2-cycle 

price fluctuations (Ezekiel, 1938; Hommes, 2013; Irma et al., 1999). 

Adaptive Expectations 

Adaptive expectations in economics is a condition under which stakeholders form 

price expectations about future based on what has happened in the past. This 

economic theory attach much importance to past events in predicting future 

(Evans and Honkapohja, 2001). Thus an adaptive expectation states that if price 

of commodities (or inflation) for instance has been higher in the past, then 

stakeholders are most likely to use this as reference to revise expectations for the 

future. 

Adaptive price expectation is stated in the following equation based on the theory 

of cobweb modeling, where pe is next year’s price of goods that is currently 

expected,  this year’s price of the good that was expected last year and p this 

year’s actual price of the commodity (or rate of inflation). 

 ) (3.25) 

where λ is between 0 and 1. This condition states future price expectations formed 

currently in respect to past expectations and an error-adjustment of which 

current expectations are raised (or lowered) according to the gap between actual 

and previous expectations. The error-adjustment is known as partial adjustment. 

In other words, expected price is the weighted average of previous price and 

previous expected price (Nerlove, 1958; Evans and Honkapohja, 2001). 
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The theory of adaptive expectations is applicable to all previous periods and so 

current price expectations can be equally given as: 

 ) (3.26) 

where pj is the actual price and j the years in past. The current expected price of 

commodities is the weighted average of all past prices at the market. Usually, the 

weights get smaller and smaller as one moves further in the past. Due to stochastic 

shock, once forecasting error is made, agents will be unable to forecast price 

correctly again even when prices experience no further shocks since part of their 

errors is incorporated in the forecast (Nerlove, 1958; Evans and Honkapohja, 

2001). Nerlove (1958) also stressed that agents form price expectations using 

recent past data and these lead to over or under supply due systematic forecast 

errors made in doing so, and they are considered endogenous fluctuations in the 

cobweb model. 

Rational Expectations Theory 

The rational price expectations make readily available better forecast rules when 

observations are made that adaptive expectations or any other fixed-weight 

distributed lag formula have provided poor forecasts in certain contexts. Rational 

expectations hypothesize that future predictions of economically relevant 

variables are not systematically wrong and so errors that appear in the 

predictions are random (Muth, 1961; Sargent, 1987; Savin, 1987; Evans and 

Honkapohja, 2001). Alternatively, the expectations are model-consistent and that 

future prices as predicted by the model are always considered valid. 

It is assumed that on average, expectations made by agents may be correct but 

individually wrong because forecasts do not differ steadily from the market 

equilibrium results and that any deviations observed are only random. In a typical 
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economic model, rational expectations are modelled on assumption that expected 

value of a variable is equal to the expected value predicted by the model (Muth, 

1961; Sargent, 1987; Savin, 1987). 

But how can agents have rational expectations or perfect foresight in a complex, 

nonlinear world, when the true law of motion is unknown and prices and 

quantities move irregularly on a strange attractor exhibiting sensitivity to initial 

conditions? 

Rational farmers would discover the regular cyclic pattern in prices, learn from 

their systematic mistakes, change expectations accordingly and the hog cycle 

would disappear, so the argument goes. In rational expectations equilibrium, 

agents use economic theory, and compute their expectations as the conditional 

mathematical expectation derived from the market equilibrium equations. 

Therefore, in cobweb model, by taking conditional mathematical expectations on 

both sides of the market equilibrium, one derives that the rational expectations 

forecast is exactly given by the steady state price p∗. Thus in context of cobweb 

model without uncertainty (i.e., εt ≡ 0), the forecast is given by: 

 pet = p∗ (3.27) 

This assumed to be always exactly right and the rational expectations coincides 

with perfect foresight. In a noisy cobweb world with uncertainty, the rational 

expectations forecast pet = p∗ will be correct on average so that agents make no 

systematic mistakes, since forecasting errors are proportional to the exogenous 

random demand shocks εt (Muth, 1961; Hommes, 2013). 

3.3.3 Cobweb Modelling from Delay Differential Equation 

The linear demand function of price will be given as follows if price of a good is 

denoted as p, : 
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 D(p(t)) = a − αp(t) where a,and α are constants (3.28) 

This curve is generally negatively sloped-decreasing in mathematical term with a 

and α as positive constants. On the other hand, the linear supply function of price 

with delay τ is positively sloped-increasing and it can be given by: 

 S(p(t)) = b + βp(t − τ) where b, β and τ are constants (3.29) 

Continuous Time Linear Model: 

The following equation is derived on the assumption that, price change is 

mathematically relative to difference between supply and demand functions 

(Soltes et al., 2012; Mackey, 1989; Anokye et al., 2014). 

 p0(t) = [D(p(t)) − S(P(t))] (3.30) 

This delay differential equation (DDE) describes how market price changes over 

time. Whenever demand exceeds supply, price rises and whenever supply exceeds 

demand, price falls. And only the market price at time t − τ, has effect on the 

current supply such that: 

 p0(t) = [(a − b) − αp(t) − βp(t − τ)], where τ > 0, on [0,d], d > 0 (3.31) 

This equation with a single delay like all delay differential equations could be 

solved in stepwise manner using the principle of method of steps. Equation (3.31) 

would have initial function (also known as history function) as p(t) = s(t) defined 

interval [−τ,0] and then its solution is mapped onto solutions of other functions. 

Thus the solution of this equation will be mapped on functions on interval [t − τ,t] 

onto functions on intervals [t,t + τ], [t + τ,t + 2τ],..., from time points t = 0,τ,2τ,... 

Thus the solutions of system will provide sequence of piecewise functions 

p0(t),p1(t),p2(t),..., defined over contiguous time interval of length τ (Roussel, 
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2005). This system of initial value problem is normally solved by numerical 

approach and in this study, MatLab solver dde23, which applies the principles of 

Runge-Kutta would be used to solve it because MatLab solver dde23 is developed 

to solve such systems with distinct degree of accuracy. 

3.3.4 Continuous Time Non-Linear Model 

Considering a simple nonlinear delay differential equation (of quadratic form) for 

the supply function of price as: 

S(P(t)) = b + βp(t − τ) − δp2(t − τ) 

And linear demand function of price also given as: 

(3.32) 

D(P(t)) = a − αp(t) (3.33) 

where a,b,α,β,δ and τ are positive constants. Whenever price increases, supply 

increases until it exceeds demand where the trend changes. Therefore, price 

change equation is given as follows; 

 p0(t) = [(a − b) − αp(t) − βp(t − τ) + δp2(t − τ] (3.34) 

This is simple nonlinear delay differential equation (DDE) that mimics the 

undelayed difference equation used in (Jensen and Urban, 1984) and in practice 

solution of this equation (3.34) is very tedious using an analytical method. 

Therefore, a numerical method is applied using MatLab solver dde23 with history 

function of p(t) = s(t), on [−τ,0]. 

3.4 Buffer Stock-Based Pricing Model 

This model relaxes the assumption that supply must equal demand in order to 

maintain price in equilibrium or moderate any possible instability. Thus buffer 

stock-based pricing model introduces an inventory, buffering the difference 
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between supply and demand and letting prices respond to the level of the 

inventory or buffer stocks so as to eliminate the instability and cycles that are 

usually associated in the basic cobweb model (EconModel, 2015). 

3.4.1 Delay Differential Model with Buffer Stock 

We shall study how the dynamics of price adjustment will be affected when buffer 

stock is incorporated into equation (3.34). It is assumed that buffer has negative 

effect on price. Buffer stock model is mathematically formulated as given below: 

 (3.35) 

The second term is the integral of past differences which expresses the 

accumulated stock (say G) in the buffer. If G > 0, then G causes downward 

adjustment of price because government releases stocks to the market. If G < 0, 

the buffer stock operator rather buys from the market to adjust price upward 

while G = 0, denotes no interference from the government (Athanasiou et al., 

2008; Soltes et al., 2012; Anokye and Oduro, 2013). Equation (3.35) is a price 

adjustment model obtained from continuous time delay integro-differential 

equation that mimics the undelayed integro-differential model used by (Soltes et 

al., 2012),can be transformed into differential equation by simplifying it into the 

form given by: 

 p00(t) = [D0(p(t)) − S0(p(t))] − [S(p(t)) − D(p(t)] (3.36) 

The following equation is obtained when the expressions for S(p(t)) and D(p(t)) 

in equations (3.32 and 3.33) are fixed into the equation (3.36): 

 p00(t) = p0(t) − [(b − a) + αp(t) + βp(t − τ) − δp(t − τ)] (3.37) 
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where p0(t) is the equation (3.34). Equation (3.37) is a continuous-time second 

order nonlinear delay differential equation which also mimics the second order 

undelayed differential equation used by Soltes et al. (2012) which can also be 

solved numerically using MatLab solver dde23 that applies the principles of 

Runge-Kutta. However, equation (3.37) has to be converted into two first order 

nonlinear delay differential equations before one can use MatLab dde23 to solve 

it (Code B.3 at appendix B). 

3.4.2 Cobweb Modelling from Difference Equation 

Supply and demand models are effective means of modelling how market forces 

determine the price, the quantity supplied of commodities by producers and the 

quantity demanded of goods or services by consumers. At the market-clearing 

equilibrium (MCE), it is assumed that demand must equal supply. Thus cobweb 

model uses the demand and supply difference equations of price to determine 

price pt at t time from price pt−1 at time of supply at t − 1. The market clearing 

equation that describes the process is a first order non-homogeneous difference 

equation (Nicholson, 1987). 

Linear Cobweb Models: 

Given an initial price of pt−1, the market responds at time t a demand quantity Dt 

determined by the quantity of supply St. Therefore current market price Pt 

decided by demand. 

If demand and supply curves are both linear and are given as: 

 

Dt = α − βpt (3.38) 

St = δ + γpt−1 (3.39) 

then β represents the slope and α represents intercept for demand equation of 

price and the parameters γ and δ respectively denote the slope and intercept of 

supply function of price (Ezekiel, 1938; Goldberg, 1996; Aarts, 2014). 

At the Market Clearing Equilibrium (MCE) (3.38) = (3.39) i.e. Dt = St: 
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 pt = Apt−1 + B for t = 1,2,3,... (3.40) 

where A = −γ/β and B = (α − δ)/β. Equation (3.40) constitutes first order cobweb 

model and could be solved as given by: 

 pt = Atp0 + B(1 − At/(1 − A)) for t = 0,1,2,... (3.41) 

where A 6= 1. The solution of homogenous part from equation (3.41) is also given 

by: pht = Atp0 

Since lag operators do not affect constants when they are applied on them, 

(Kirchgassner and Wolters, 2007; Anokye and Oduro, 2013; Fulford et al., 1997), 

the lag operator is applied on equation (3.40) to obtain particular given by: 

pt = B/(1 − A) = (α − δ)/(β + γ), where A = −γ/β and B = (α − δ)/β 

At equilibrium, it is assumed that price remains constant for all time periods in 

the system. By letting pe be the equilibrium price, one can obtain: 

 pt = pt−1 = ... = pe = (α − δ)/(β + γ), where α ≥ δ (3.42) 

Therefore the actual solution (i,e in simplified form compared to (3.41)) of the 

linear equation with equilibrium price pe of the function pt will be given as; 

pt = At(p0 − pe) + pe 

where p0 is the initial market price. 

Stability condition of Linear Difference Equation 

It is observed from above solution that stability of the system is dependent on the 

value of |A| = |γ/β|, and so if; 

1. |γ/β| < 1, then price of the system converges towards equilibrium price pe, 
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2. |γ/β| > 1, then the system is unstable and no equilibrium price will be 

obtained, 

3. |γ/β| = 1, then price oscillates in between pt−1 and pt, and 

4. |γ/β| < 0, then price oscillation involved whether the system is non-stationary 

or stationary or damped oscillations obtained 

3.4.3 Nonlinear Cobweb Models 

If the demand function of price is linear and supply function of price is (of 

quadratic form) or backward bending nonlinear and they are given as: 

 Dt = α − βpt (3.43) 

  (3.44) 

Then at MCE, (3.43) = (3.44), and the following nonlinear difference equation that 

constitute nonlinear cobweb model, similar to that of Jensen and Urban (1984) is 

obtained as: 

 

After applying lagging operator on (3.45), this equation will be similar to 

quadratic equation having two fixed points given as follows, provided (1 + B) − 

4AC ≥ 0: 

  (3.46) 

Bifurcation Discussion 

This implies that bifurcation occurs when 

and therefore: 

  (3.47) 

√  
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• At the left of (1 + B) = 2 AC ; no equilibrium. 

√  
• At (1 + B) = 2 AC ; we have a ’node’ up, i.e. attractive from below and 

repelling from above. 

√ 

• At the right of (1+B) = 2 AC ; we have two equilibria, the smaller one is a 

’sink’, while the bigger one is a ”source” which explains the node behaviour 

of (3.47). 

Note that similar conclusions hold for the other value (Junhai and Lingling, 2007; 

Fulford et al., 1997). 

Stability Condition of Nonlinear Difference Equation 

Theorem 3: If an equilibrium point of the following nonlinear autonomous 

difference equation is given as p∗; 

pt+1 = f(pt) 

where f is continuously differentiable at p∗, then 

1. If |f0(p∗)| < 1, then p∗ is an asymptotically stable equilibrium point. 

2. If |f0(p∗)| > 1, then p∗ is unstable. 

Proof 

According to Elaydi. (2005), if |f0(p∗)| ≤ M < 1 then, due to continuity of the 

derivative, there exists an interval J = (p∗ − γ,p∗ + γ), γ > 0, such that 

|f0(p)| ≤ M < 1 for all pJ. And also for , 

|p1 − p∗| = |f(p0) − f(p∗)| 

so from the mean value theorem, there exists ξ,p0 < ξ < p∗, such that 

|f(p0) − f(p∗)| = |f0ξ||p0 − p∗| 
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hence 

|p1 − p∗| ≤ M|p0 − p∗| 

This shows that p1 is closer to p∗ and so also in J because M < 1. By mathe- 

matical induction; 

|pt − p∗| ≤ Mt|p0 − p∗| 

Therefor for any ε > 0, if δε = min{γ,ε}, then |p0 −p∗| < δε implies |pt −p∗| < ε for all t 

≥ 0. So in conclusion p∗ is the stable equilibrium point. In addition, since lim−→∞ 

|pt − p∗| = 0, p∗ is asymptotically stable (Elaydi., 2005). 

3.5 Buffer Stock Model-At Average Supply 

If the buffer stock operator or government in particular decides to set supply of 

maize at average supply then, it is assumed that stabilization is guaranteed 

towards the average price and this policy is referred to as keep supply at average. 

Given the average equilibrium quantity of maize supplied at last time t as shown 

in the following expression: 

  (3.48) 

If Gt−1 denotes control variable which amounts to the quantity of commodity 

released to the market by government at any time t, then whenever G < 0, the 

government buys and stores |Gt−1| units of commodity at time t (Anokye and 

Oduro, 2013; Athanasiou et al., 2008). 

At market clearing condition: 

 Dt = St + Gt−1 (3.49) 

where 
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 ) (3.50) 

with  ) as the estimated supply at period t. The total average quantity of 

maize available in market at any time t is always given as St +Gt−1, which is very 

close to average equilibrium supply StA. When equations (3.43) and (3.44) are 

substituted in the equation (3.49), the following nonlinear difference is obtained: 

 )) (3.51) 

 )) (3.52) 

where  and D = β1 

According to Anokye and Oduro (2013) and Athanasiou et al. (2008), market runs 

short of commodity if the difference between average supply and available supply 

is positive. Then it means government has to intervene by selling out certain 

quantity of commodity from stock. Obviously quantity released at period t cannot 

exceed the quantity stored at period t−1. Moreover, whenever commodity is in 

abundance then it means difference between average equilibrium supply and 

available supply is negative and therefore government quickly buys certain 

quantity of commodity from the market to keep price stable (Anokye and Oduro, 

2013; Athanasiou et al., 2008). 

Chapter 4 

Main Results 1: Discrete-time Cobweb Models 

4.1 Introduction 

This session evaluates discrete time cobweb model derived from linear demand 

and nonlinear supply functions of price and then linear demand and supply 

functions of price using real economic data of maize price and production from 

Ashanti Region, Ghana. The cobweb model would be integrated with buffer stock 
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model to study how price fluctuations could be curtailed. The modeling of the 

various price functions and estimate of their model parameters values in this 

study are done using SPSS statistical software by applying the principle of 

regression analysis. The numerical solution of the various discrete time equations 

are run using Matlab. 

4.1.1 Preliminary Analysis of Price and Production Data 

The data (from table A.1. at appendix A) are checked to correct any errors and 

then verified the stationary status for both price and production data sets by 

applying time series techniques, before formulating the demand and supply 

functions of price using regression analysis. 

 

Figure 4.1: Time Series Plot of Price 

The above figure shows the time series plot of price in Ghana cedis (Ghc). It 

indicates that price data is non-stationary and also exhibits nonlinearity 

characteristics in the form close to quadratic. 

4.1.2 Estimates of Demand and Supply Functions 

After the preliminary data analysis have been performed to ensure that the price 

and production data sets (from table A.1. at appendix A) are stationary, regression 
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analysis was employed to formulate price functions for demand and supply. The 

following table contains estimates of coefficients or the parameters values of the 

variables used in the various functions of prices. 

Table 4.1: Parameter Estimates for Functions of Price 

Coefficients of Demand and Supply Functions 

Model Unstandard Standard Type 

  B Error Betta t Sign  

1.Price -96.16 20.26 -0.49 -4.95 0.000 Demand 

2.Price 354.28 36.89 1.72 9.60 0.000  

2.Price2 -2.78 0.45 -1.096 -6.14 0.000 Supply 

3.Price 167.79 43.23 0.42 3.89 0.000  

The table 4.1 above contains the parameter values of demand and supply 

functions of price with their p-values showing significant level of the respective 

parameter values in the functions. The regression was carried out through the 

origin because in both cases the intercepts were not statistically significant. It 

contains parameter values of linear demand function of price numbered (1), while 

the parameter values for quadratic supply function of price are contained in 

numbered (2) and numbered (3), containing that of linear supply function of 

price. 

Demand Function of Price 

The following difference equation that constitutes demand function of price 

obtained its estimated parameters values from the table 5.1. The parameters 

values are checked to be statistically significant as shown in the same table 

mentioned here. The equation was obtained from price data of order two (2) 

differencing and production data of order one (1) differencing. The confirmation 

of data stationarity are provided by stationarity test statistics (values) from the 

Augmented 
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Dickey-Fuller (ADF) test corresponding to price order of two (2) are given as; ADF 

test-statistic (-7.252508) is more negative (or greater) than the critical values (-

3.540244, -2.909191 and -2.592233) at 1%, 5% and 10% respectively (refer to 

table A.3, appendix A) while that of production data are also given as; ADF test-

statistic (-5.863945) is more negative (or greater) than the critical values 

(3.531639, -2.905504 and -2.590279) also at 1%, 5% and 10% respectively (refer 

to table A.4, appendix A ). The resulted equation from this analysis is similar to 

equation (3.38): 

 Dt = −96.16pt where α = 0 (4.1) 

Supply Functions of Price 

The following difference equations that constitute supply functions of price also 

obtained their estimated parameters values from the table 4.1. Equation (4.2) was 

obtained from price data of order one (1) differencing, with confirmed 

stationarity values from the Augmented Dickey-Fuller (ADF) test corresponding 

to differenced order one (1) given as; test-statistic (-6.027941) in magnitude is 

greater than critical values (-3.531639, -2.905504 and -2.590279) at 1%, 5% and 

10% respectively (refer to table A.5, appendix A). The production data of order 

two (2) differencing is also having the stationarity values given as; ADF 

teststatistic (-7.637633) is more negative (greater in magnitude) than the critical 

values (-3.534915, -2.906909 and -2.591024) at 1%, 5% and 10% respectively 

(refer table A.6, appendix A). The resulted equation is given in (4.2). However, 

equation (4.3) was obtained with no order of differencing. 

These equations whose parameters values also checked to be statistically 
significant are similar to equation (3.39 and 3.44) respectively: 

St = 167.99pt−1 where δ = 0 (4.2) 

 = 0 (4.3) 
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4.1.3 Linear Cobweb Model 

Analytical Solution: market Clearing Equation for equations (4.1 and 4.2) 

provide first order linear cobweb model derived from difference equation as 

follows: 

 pt = −1.75pt−1 (4.4) 

Equation (4.4) is similar to equation to (3.40) where B = 0 and A = −1.75. Since 

|γ/β| > 1, the system is unstable and there would be no equilibrium price point. 

Thus prices would never converge towards the equilibrium price point, pe = 0, 

which is also not realistic because producers are more sensitive to price. If B = 0 

then in this case, it also mean that every point is an equilibrium point or price, so 

it only makes sense that it is unstable (Neusser, 2012). 

Numerical Solution: 

The following graphical representation of equation (4.4) obtained when Matlab 

code was used to run and solve it numerically. The code is attached at the 

appendix B (Code B.4). 

 

Figure 4.2: Oscillation of Price around Equilibrium-Linear Approach 
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The figure 4.2, confirms that with time, price of maize would never converge 

towards equilibrium price point (Ghc=0.00) as shown in the analytical solution. 

However, price of maize seemed to have stabilized at equilibrium point (Ghc 0.00) 

as demonstrated in the above graph, long before it started to destabilize around 

the equilibrium point. This makes the market situation unrealistic as no 

producers would continue to supply food commodity in that market price 

condition. 

4.1.4 Nonlinear Cobweb Model 

Analytical Solution: at the market clearing condition, equations (4.1 and 4.3) 

provide the following first order nonlinear equation difference which make up 

nonlinear cobweb model similar to equation (3.45) where the parameter values 

C = 0, B = −3.684 and A = 0.029: 

  (4.5) 

This price function is like quadratic equation having two price fixed points, 

, 

where P1 = 161.52 and P2 = 0. The bifurcation occurs when Pk = 80.75 and it’s very 

attractive from below and repelling from above. 

This nonlinear cobweb shows that price will be unstable at both P1 = 161.52, and 

P2 = 0 since |p0(161.52)| > 1 and |p0(0)| > 1, (refer to theorem 3) and therefore 

fluctuating scope would be bigger and bigger around and in between these price 

points. In reality price of maize cannot be expected to be P2 = 0 due to price 

sensitivity of farmers and it thus makes sense that it is unstable too. 

Numerical Solution: 

Matlab code (Code B.5, appendix B) was written to run the nonlinear cobweb 

model (equation 4.5) and the following graphical representation was obtained for 
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it. 

 

Figure 4.3: Oscillation of Price around Equilibrium-Nonlinear Approach 

From figure 4.3, above it is clear that price stability of maize can only be achieved 

in short term at Pt = 0. The reason being that supply curve is steeper than that of 

demand curve and that, it would cause price to diverge from equilibrium price 

point. This results support the fact producers are sensitive to price and they 

would be attracted towards any other price or unstable equilibrium price 

(Pt = 161.52 or GHC 161.52) instead of the zero equilibrium price (Pt = 0.00 or GHC 

0.00) as demonstrated by the analytical solution. 

4.2 Elasticity of Supply Curve and Price Varia- 

tion 

The price stability is dependent on the slope of supply curve or elasticity of supply. 

The responsiveness of demand and supply to changes in price is quantified using 

elasticity which is an economic measure designed for such purpose. 

Mathematically, when the coefficient of price in supply function of price (denoted 

CPS) is greater than coefficient of price in demand function of price (denoted CPD) 

then there would be no equilibrium solution. In other words, if ratio of the 
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marginal supply over marginal demand is greater than one, the price system 

experiences instability (Varian, 1992). 

Numerical Presentation: 

 

Figure 4.4: Slope of Supply Curve in Nonlinear Model with |γ/β| > 1 

The system (equation 4.5) is perturbed on assumption that CPD remains the 

same, while CPS is varied to observe its effect on price behaviour of maize at the 

market. The above graph was obtained as a result of price parameter variation 

using numerical analysis. 

In the figure 4.4 above, it is shown that when CPS is far reduced to 156.12 from 

354.28 (refer to equation 4.3), then with CPD still at 96.16 so that |CPS/CPD| > 1, 

the oscillatory behaviour of nonlinear cobweb model has now conformed to the 

condition of nonlinearity model operated on assumptions of naive price 

expectation. Thus the system has unstable steady state and so prices will diverge 

from p* and converge to 2-cycle stable state (Ezekiel, 1938; Hommes, 2013; Irma 

et 

al., 1999). 
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Figure 4.5: Slope of Supply Curve in Nonlinear Model with |γ/β| < |0.5| 

CPS is further reduced to 47.08, far from 354.28 (refer to equation 4.3), while CPD 

remains the same as assumed. From figure 4.5, it is now clear that farther the 

slope is reduced, more the fluctuations of maize price is stabilized after few 

periods of instability. 

 

Figure 4.6: Slope of Supply Curve in Nonlinear Model with |γ/β| = 1 
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From the figure 4.6 above, the price oscillates in 2 cycle between two price points 

and continues indefinitely without converging. It happened so because both CPS 

and CPD are 96.16. 

 

Figure 4.7: Slope of Supply Curve in Linear Model with |γ/β| = |0.75| 

When the CPS in linear equation 4.2, is reduced to 72.12 from 167.99, the price 

was in stable form which is directly opposite to that displayed in figure 4.2. 

Price of maize would now converge towards an equilibrium price point other than 

(Ghc=0.00). It will give few oscillations and then converge towards equilibrium. 

4.2.1 Nonlinear Cobweb Model with Buffer Stock 

When the nonlinear equation (3.52) is applied with supply fixed at the average, 

where C = 0, B = −3.684, D = 0.0104 and A = 0.029, and the average equilibrium 

supply also given as 72, then the following equation is 

obtained; 

 )) (4.6) 

Where the estimated supply  is the negation of supply function at t with 

= 1. The equation 4.6 is solved through numerical approach 
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using matlab code (Code B.6, appendix B). 

 

Figure 4.8: Buffer Stock at Average Supply 

From figure 4.8, the price behaviour of maize is similar to that of figure 4.3 where 

the supply slope is far greater than that of demand curve and it would cause price 

to diverge from equilibrium price point. Producers would be attracted towards 

any other price or unstable equilibrium price (GhC 161.52) instead of the zero 

equilibrium price (Pt = 0.00). The buffer stock seems to have no effects on the 

price. 

Elasticity of Supply and Buffer Stock 

The elasticity of supply (or CPS) is varied to study its effects on price stability in 

connection with the buffer stock model. As shown in the figure below, the CPS is 

reduced to 47.05 from 354.28. 
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Figure 4.9: Buffer Stock at Average Supply with |γ/β| < 0.5 

From the figure above 4.9, it is shown that when discrete time nonlinear cobweb 

model is incorporated with buffer stock model, prices of maize would still be 

unstable even though supply elasticity is reviewed downwards. 

4.2.2 Structure of the Model and Effects of Buffer Model 

It is shown that when the quadratic term in the nonlinear difference equation of 

supply (equation 4.3) is reviewed downwards then when the function is 

connected with buffer stock model, more stable the prices of maize would become 

provided CPS is also reviewed simultaneously downwards. This demonstrates 

that discrete time buffer stock model (equation 4.6) works as expected in 

managing price fluctuating systems when the structure of supply function of price 

is more close to being linear function. 

Numerical Presentation: 
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Figure 4.10: Buffer Stock at Average Supply with |γ/β| = 0.6 and ρ < 1 

From the figure above it is shown that price stability of maize is achieved with 

buffer stock model after few oscillations. Meanwhile CPS should be greater than 

CPD before one can apply buffer model to achieve price stability. 

 

Figure 4.11: Buffer Stock at Average Supply with |γ/β| > 1 and ρ < 1 

It is clear from figure above, that if the coefficient of quadratic term and the CPS 

are both reduced (i.e CPS = 106.92 from 354.28 and ρ = 0.00028 from 2.782 refer 

to equation 4.3). This suggests the fact that on regular basis, supply of maize has 
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to be reviewed by the buffer operator in order to keep prices at certain level else 

in the long run buffer will fail. It is found that if CPS and ρ are reviewed, the 

nonlinear discrete time models begin to work as expected to contain price 

fluctuations. 

It is found that within the intervals [0.1, 1.3], for the ratio of CPS over CPD and 

[0.0000028, 0.0001] for the ratio of quadratic term over CPD, stability is 

guaranteed. 

These results support the assertion by Jensen and Urban (1984) that discrete time 

nonlinear models work very well within certain estimated parameter value 

boundary and beyond the boundary nonlinear models exhibit spectrum of 

behaviour including chaos. 

Any change of coefficients in the models formulated, affects the behaviour of the 

model which also affect the price, supply and demand as well as quantity of stock 

that would predicted from the model. Therefore predicted values would not 

reflect the true market circumstance. 

Chapter 5 

Main Results 2: Continuous-time Cobweb 

Model 

5.1 Introduction 

In this session the notion of time dependence in respect to maize price 

determination would be discussed thoroughly through the use of mathematical 

modeling of delay differential equations derived from supply and demand 

functions of price of maize in Ghana. The session would also demonstrate 

instability phenomenon involving delay differential equation models having 

single delay (time-lag). Following this is a process of instability quenching 

phenomenon which is presented by varying the delay parameter in gradual 
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manner. Proceeded to this would then be buffer stock model incorporated into the 

delay differential equation model to achieve stability in connections with 

variation of supply delay parameter and buffer stock delay parameter. The delay 

variations are done in connection with the type of price scheme that is run by the 

buffer stock scheme. The study will use real economic data acquired from records 

of Ministry of Food and Agriculture, Statistical Directorate in Kumasi, Ashanti 

Region, Ghana. 

5.1.1 Parameter Estimates 

Modelling of various mathematical functions and their parameter estimates were 

done by the use of SPSS (refer to table 4.1) and then the numerical solutions of 

the delay differential equation run using MatLab solver dde23. 

5.1.2 Demand Function of Price 

The following demand functions of price whose parameter values taken from the 

table 4.1, is in the form of equation 3.28. The parameter estimates are checked 

and found to be statistically significant. This function was obtained from price 

data of order two (2) differencing and production data of order one (1) 

differencing. The ADF test statistics were used to check the stationary status of 

the data before deriving the estimates of the models using regression techniques, 

just as were done for discrete time case in chapter 4. 

 D(p(t)) = −96.16p(t) where a = 0 (5.1) 

5.1.3 Supply Function of Price 

Similarly, supply functions with time delay τ are given below (in the form of 3.29 

and 3.32). Equation (5.2) was obtained from price data of order one (1) 

differencing and production data of order two (2) differencing. However, equation 

(5.3) was obtained with no order of differencing in respect to the price and 

production data sets. Similarly, ADF tests were run to verify the stationary status 

of the various data sets before estimating the parameters. 
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S(p(t)) = 167.99p(t − τ) where b = 0 (5.2) 

S(p(t)) = 354.28p(t − τ) − 2.78p2(t − τ) where b = 0 (5.3) 
The delay τ expresses time that is needed to realize change of supply in 

dependence on trend of price. Thus current production depends on the past price. 

Analysis of Continuous Time Linear Model 

From equations (5.1) and (5.2), an equation for price change is derived and it is in 

the form of (equation 3.31) where a = b = 0 and τ = 1: 

 0 (5.4) 

Analytical Solution: This linear delay differential equation is solved analytically 

using method of steps. 

Given that equation (5.4) is solved on say [0,10], and with history function (initial 

function) also given as p(t)=1.23 on t ≤ 0, then for interval [0,1]; 

 (0) (5.5) 

 

If p0(t) = p(t − 1), then p0(s) = p(s − 1), and so 

 

Then on the interval 0 ≤ s ≤ 1, implies −1 ≤ s − 1 ≤ 0, so that history function 

p(s-1)=1.23, on this interval; 

 

 

 p(t) = 1.23 + (−3.38)t (5.6) 

This method involves solving the equation (5.4) on one interval at a time. To find 

the next solution of equation (5.4), implies that one uses the solution from the 
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previous interval [0,1] to obtain the solution on the next interval [1,2], using the 

same process; 

 
The solution on [0,1] is p(t) = 1.23 + (−3.38)t, and so 

p(1) = 1.23 + (−3.38)(1) = −2.15. 

Also on the on the interval 1 ≤ s ≤ 2, implies 0 ≤ s − 1 ≤ 1, so that previous solution 

would be p(s − 1) = 1.23 + (−3.38(t − 1)), so on this interval; 

 

 

 

  (5.7) 

The solution for equilibrium price points continues in same manner for successive 

intervals, and it tends to get more complicated as one moves from one interval 

onto the other. 

Like the method of successive approximation applied in existence and uniqueness 

theorem, method of steps are meant to derive unique solution that satisfies the 

integral system. If unique solution exists in the said solution interval, then the 

solution holds for both initial value problem and the integral part. The method of 

steps therefore generates sequence of functions which only satisfy the initial 

conditions but do not satisfy the initial value problem given by delay differential 

equation (Boyce and DiPrima, 1992). 

Thus, if in the process, a solution is found to be equal to the immediate solution 

function before it, then unique solution is obtained for the integral equation (5.5), 

and the process is terminated. Hence solution is also found for the initial value 

problem (5.4) (Boyce and DiPrima, 1992). 

In general, it is very difficult to obtain a unique solution and so the entire infinite 

sequence of piecewise functions can be checked to ascertain if every member of 
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the sequence exist, do not break down or interrupt in the process at any stage 

and/or the sequences converge. Then at this stage, one can find unique function 

and check whether its limit properties satisfy the integral solution (5.5), as well 

as the initial value problem (Boyce and DiPrima, 1992). 

The difficulty of the process makes it easy to see the value of the application of 

MatLab solver dde23 for solution. Matlab solver dde23 also follows the principles 

of method steps using Runge Kutta triple BS(2,3). 

Numerical Solution: 

The linear delay differential equation is now solved through numerical approach 

using MatLab solver dde23, with code attached at appendix B (Code B.1). 

Equation (5.4) is divided by 96.162 so as to make the solution very smooth when 

it is run. The history function is set at P(t) = 1.23 (initial price from table A.1 at 

appendix A), when t ≤ 0, and equation (6.4) on the interval [0,100]. The solution 

of equation (5.4) is presented in graphical form (see figure 5.1) below; 

 

Figure 5.1: Oscillation of Price around Equilibrium 

It is clear from the figure 5.1, above that the solution of equation (5.4) oscillates 

and tends to an equilibrium price of zero with time. However, this equilibrium 
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price is unrealistic, due to the fact that producers are sensitive towards price and, 

moreover, there is insufficiency of food supply. 

Analysis of Continuous Time Nonlinear Model 

From equations (5.1) and (5.3), the price equation (5.8) is obtained following 

equation (3.34) where τ = 1 and a = b = 0: 

 0 (5.8) 

Analytical Solution: Given the history function p(t)=1.23 defined on t ≤ 0, and 

solution sequence of equation (5.8) also defined on interval [0,10], then for 

[0,1]; 

 (0) (5.9) 

If p0(t) = p(t − 1), then p0(s) = p(s − 1), and so 

 

Then on the interval 0 ≤ s ≤ 1, implies −1 ≤ s − 1 ≤ 0, so that history function 

p(s-1)=1.23, on this interval; 

 

 

 p(t) = 1.23 + (−5.72)t (5.10) 

The method of steps involves solving the equations on one interval at a time. To 

find the next portion of the solution of equation (5.8), the solution from [0,1] is 

used to find the solution on the next interval [1,2]. Using similar process; 

 

The solution function from [0,1] is p(t) = 1.23 + (−5.72)t, and so 

p(1) = 1.23 + (−5.72)(1) = −4.49. 
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Also on the on the interval 1 ≤ s ≤ 2, implies 0 ≤ s − 1 ≤ 1, so that previous solution 

would be p(s − 1) = 1.23 + (−5.72(t − 1)), so on this interval; 

 

 

  (5.11) 

The solution found for equation (5.8) thus far can be described as piecewise 

function, and each new step will add a new piece. The solutions tend to get more 

complicated over each successive interval. It would take ten full iterations of this 

process simply to solve equation (5.8) on say [0,10], and the solution would be a 

piecewise function with ten distinct pieces. like equation (5.4), sequence of 

piecewise functions are generated until unique solution is found to satisfy the 

initial value problem and the sequence is terminated at that point in the solution 

interval given. 

Continuity Analysis: 

Continuity analysis is done on the analytical solution to confirm that the piecewise 

functions so far obtained are continuous in the interval [0,2], using limits 

analysis. 

Given that; 

0 ≤ t ≤ 1, 

1 ≤ t ≤ 2, 

49, 

12, 

These results confirm existence of limits for both functions as t approaches 1 for 

the first function and t approaches 2 for the second function respectively. 
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Proof of Continuity: 

One (1) as the common interval value between the two solution functions is also 

put into each of them and the same results obtained; lim p(t) = (1.23 + (−5.72)t) 

= −4.49, t→1+ 

49, 

These results prove that the model has passed continuity test since left hand limit 

is equal to right hand limit and so the model is continuous on the given interval, 

since the solution functions obtained so far are defined at every point on the 

interval and they also exhibit no interruption, jump or break. 

Numerical Solution: 

Based on same assumption for smoothness of the solution using MatLab solver 

dde23 (code B. 2, appendix B), equation (5.8) is also divided by 96.162 and the 

history function set at P(t) = 1.23, when t ≤ 0, with (5.8) hold on the interval 

[0,100]. The solution of equation (5.8) in numerical form is presented graphically 

as follows (see figure 5.2 below): 

 

Figure 5.2: Oscillations of Price around 2 Equilibrium Points for τ = 1 

It is clear from the Figure 5.2, above that the solution of equation (5.8) would 

initially show little stability and in a very short time oscillates between two (2) 
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equilibrium (price) points. This conforms to the condition of nonlinear models 

under naive price expectation (Ezekiel,1938; Hommes,2013; Irma et al., 1999). 

5.2 Continuity and Model Truncation Error Anal- 

ysis 

The nonlinear delay differential model (5.8) also meet the spline interpolant fits 

analysis. This is one of the Matlab numerical techniques used to check model 

continuity and truncation error. In spline interpolation, the interpolant is a special 

type of piecewise polynomial function called a spline. For the fact interpolation 

error are made small even when using low degree polynomials for the spline, 

spline interpolation is frequently preferred over polynomial interpolation. Spline 

interpolation avoids the phenomenon of Runge, in which oscillation occurs 

between points when interpolating using high degree polynomials (Hazewinkel, 

2001). Splines usually minimizes the bending and this can only be achieved or 

proved efficient if polynomials of degree 3 or higher are used (Hazewinkel, 2001). 

 

Figure 5.3: Oscillations of Price around 2 Equilibrium Points for τ = 1 (Spline 

Interpolant) 

From figure 5.3, it shows that equation (5.8) could have still performed 

with order three (3) polynomial and the fact that it fits with spline interpolant 
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means the order (2) polynomial has shown goodness of fit for the study. Therefore 

the choice of order two (2) polynomial or quadratic for the study is in order. This 

also shows little stability and in a very short time oscillates between two (2) 

equilibrium (price) points. 

Note that the order two (2) was also chosen because the existing models 

used order two (2) and so it only makes sense using the same order to prove the 

point before one tries to go beyond the order. 

Residual Analysis Plot: 

The Matlab solver dde23 also has the features to track down discontinuities at low 

order and integrate them using the method of extrapolation. 

 

Figure 5.4: Residual Plot of price Oscillation with delay τ = 1 

The figure 5.4, confirms the continuity of the model as it fits well with spline 

interpolation. The residual plot shows residual norm of zero (0), an indication of 

goodness of fit. 
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5.3 Time Varying Effects on Price Stability 

The effects of system perturbation in regards to delay parameter τ on price 

oscillations (fluctuations) are discussed. The delay parameter can decrease or 

increase fluctuations of price (Eduardo and Gergely, 2013). This time varying 

analysis helps one to have fore knowledge of time needed for supply to respond 

to price changes and keep the system symmetrical about the equilibrium price. 

 

Figure 5.5: Oscillation of price equilibrium with delay τ ≤ 0.5 

From figure 5.5, it is indicated that price would be in stable equilibrium in the long 

run when factors affected by time lag in the system are improved. Thus the 

oscillations with time are suppressed for τ ≤ 0.5, as shown above using equation 

(5. 8). 
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Figure 5.6: Oscillation of price equilibrium with delay τ > 0.5 

The price oscillations (fluctuations) start to increase as seen in figure 5.6, above 

and with time become asymmetric (just like figure 5.2) about the equilibrium for 

τ > 0.5, using the same equation (5.8). 

On the contrary, equation (5.4), for τ > 0.5, would still be in stable equilibrium. 

5.4 Continuous Time Nonlinear Model with Buffer 

Stock 

The buffer stock operator is always committed to achieving price stability and 

sustaining a constant price level. It is clear from figure 5.4, above that if delay in 

response to supply dynamics is improved then price stability can be achieved. 

From equation (3.37), the buffer stock equation is obtained as follows: 

 

(5.12) 

where b = a = 0. If delay is fixed at 0.45 for both the inventory (buffer stock) and 

supply system, the following price oscillation graph is obtained using the Matlab 

solver dde23 whose written code could be found at appendix B (code B.3): 
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Figure 5.7: Oscillations of Price about equilibrium with Buffer Stock, τ = 0.45 

From figure 5.7, above, the buffer stock and the supply are of different oscillation 

length which signifies no effects on price from the buffer operation. For the buffer 

stock to have greater impact, the two systems (buffer stock and supply) should 

synchronize. 

 

Figure 5.8: Oscillations of Price about Equilibrium with Buffer Stock, τ = 0.22 

Now from figure 5.8, when the delay for the buffer stock is reduced to τ = 0.22, 

and supply delay set at τ = 0.45, the two systems are synchronized to indicate 
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effects of buffer stock operations on price oscillations of maize. The oscillations 

as well as amplitude (wave length) are also reduced. 

 

Figure 5.9: Oscillations of Price about Equilibrium with Buffer Stock, τ = 0.20 

It is clear from figure 5.9, that if delay parameter (τ = 0.20) for buffer stock model 

and delay (τ = 0.35) for supply model are further reduced, the more stable price 

becomes. Now buffer stock scheme have had significant impact on price and they 

are felt by stakeholders. 

 

Figure 5.10: Oscillations of Price about Equilibrium with Buffer Stock, τ = 0.21 

From figures 5.8 and 5.9, we obtain best average delay times of τ = 0.21 and τ = 
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0.40 for buffer and supply respectively. These delay times give figure 5.10 which 

provides an average stable price of maize (from the simulated data in table 6.1 

below) as GHC 30.49, that is very close to the mean maize price of GHC 30.27 

obtained in the descriptive statistics of the raw data in table A.2 at appendix A. 

Thus the mean price value (GHC 0.317) from the table 6.1 below is multiplied by 

96.16 to obtain the stable equilibrium price of GHC 30.49, which in turn provides 

the equilibrium average demand and supply respectively as 2931.6 metric tons 

and 8217.6 metric tons. The average excess supply is given as 5286 metric tons, 

and they are kept in stock for the next market period (i.e planting period). When 

at another period (i.e during harvesting period) demand exceeds supply then the 

appropriate difference is released from the buffer to the market in order to keep 

price in equilibrium. 

Table 5.1: Descriptive Statistics of Maize Price in Simulation 

N Range Mean Std. Dev. Variance  Skewness Kurtosis 

Stat Stat Stat Std.Error  Stat Stat Stat Std.Error Stat Std.Error 

Price 7 

Valid N 7 

0.490 0.317 0.061 0.160 0.026 -0.398 0.794 0.336 1.587 

Table 5.1 shows the statistic values of the simulated data (within time 

points of stability) when the buffer stock was run with Matlab dde23 solver. The 

values include range, mean, skewness less than 1 (moderate), kurtosis greater 

than 0 but within the expected value of 3 and their respective standard errors. The 

standard deviation has been reduced as far as to 0.1602 from 29.48 in table A.2 

(appendix A), and the same applies to the variance. 

It should be noted that the choice and variation of delay parameter for price 

stability is informed by the price scheme run by the buffer stock operator. Usually, 

there are three price schemes that are run in buffer stock schemes which include 

floor, mean and ceiling price. The choice of any price is mostly influenced by the 

past information available. 
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These affirm the fact short-term shortages and excessive price fluctuations in 

market could be significantly curtailed by buffer stock scheme (Bahagia, 2006). 

This study disagrees with Mackey (1989), in that, when storage delay is used as a 

buffer stock delay that is well managed, it could rather be a commodity price 

stabilizer. 

The study also disputes the assertion by Soltes et al. (2012) that the order of the 

undelayed buffer stock model was the source of price instability. It is proven that 

if the same model used by Soltes et al. (2012) is fixed with time delay parameter, 

it makes the model good for managing price fluctuations. 

5.5 Elasticity of Supply Curve and Price Varia- 

tion 

At this session, time delay is maintained at one (τ = 1), and then the CPS or 

elasticity of supply is varied to determine its effects on price stability of maize as 

modeled in this study. 

 

Figure 5.11: Slope of Supply Curve in Linear Model with |γ/β| = 0.75 

It is clear from the figure 5.11, above that oscillations diminished and prices tend 

to an equilibrium price other than zero as envisaged in the solution of equation 
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(5.4). This equilibrium price is realistic, and producers would be motivated to 

respond to price changes at the market as CPS reduced to 72.12 from 167.99 and 

time delay set at (τ = 1). 

 

Figure 5.12: Slope of Supply Curve in Nonlinear Model with |γ/β| = 0.75 

From the figure 5.12, price oscillations almost diminished and prices tend to an 

equilibrium price rather than oscillating between two equilibrium price points as 

were observed in the solution of equation (5.5), if CPS is far reduced to 72.12 from 

354.28. However, delay remained at τ = 1, yet prices converged to equilibrium. 

It is clear from the above graph that if time delays set at τ = 1 for both buffer and 

supply delays and also maintain the quadratic term as ρ = 2.78, when CPS = 57.7, 

then prices of maize would be stabilized irrespective of the type of supply model 

linked with the buffer stock model which in essence contradicts that of the case 

in discrete time cobweb models. The coefficient of the quadratic term in the 

nonlinear supply function was also reduced to 0.78 from 2.78 and it provided 

similar graph. Therefore, it deduced that delay differential buffer stock model 

works as expected in managing price fluctuations with delay differential supply 
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Figure 5.13: Buffer Stock and Supply with |γ/β| = 0.6 and same ρ = 2.78 

model irrespective of the type of supply model being it linear or nonlinear. This 

makes delay differential model very robust in modeling real life conditions. 

5.6 Stock Dynamics and Reliability 

Quantity of Maize to Store during Harvesting 

It is found that average quantity of maize demanded at the market during 

harvesting is 2931.6 metric tons, while the average quantity of maize supplied by 

farmers in harvesting season is also 8217.6 metric tons. Therefore the difference 

between the average supply and demand constitutes the average quantity of 

maize to be kept in stock during harvesting which is 5286 metric tons. 

Quantity of Maize to Release to Market during Planting 

If the market dynamics remain the same such that maize will sell at GHC 30.49, 

and quantity supplied and demanded of maize would be just as happened in the 

harvesting period, then in the planting season, the buffer stock system could be 

run to meet market demand at 2931.6 without any shortage. The reason is that, 

there would still be a reserve of 2354.4 metric tons in stock to take care of any 
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upward demand surge. Thus a reliable buffer stock operation would be 

guaranteed using delay differential buffer stock model. 

Now it is established that time (delay) affects price maize and it is also continuous 

because price, supply, demand and stock trend could be changed at any time 

during harvesting or planting season.  
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Chapter 6 

Conclusions and Recommendations 

6.1 Summary 

The models in this study performed on the assumptions that price at the market 

is established based on supply available in a single market. 

It is found that suppliers do not undertake decisions regarding production and 

price of their farm produce in only one time as assumed in the case of discrete 

time cobweb models. At any time when there is the need, they will review 

decisions concerning supply and price of their farm produce, since it is 

established in study that time is continuous in the sense of delay, and generation 

of price fluctuations is associated with delay. The more the delay of suppliers 

responding to market changes, the more fluctuating the price becomes. 

It is deduced that linear cobweb models though, provide an acceptable estimate 

of most problems researchers come across but in real economic situation there is 

the need to use nonlinear models as it is shown in this study to avoid under or 

overestimation and make better predictions especially when one wants to 

manage price fluctuations using buffer stock models. The reason is that buffer 

part of the model is also incorporated with delay. Continuous time delay 

differential buffer stock model works as expected in managing price fluctuations 

irrespective of the type of supply function it integrates with, being it linear or 

nonlinear. 

6.2 Discrete Time Cobweb Models 

A nonlinear cobweb model was presented with backward bending or 

quadraticliked supply function of price and linear demand function of price 

derived from difference equations models. It was compared with linear cobweb 
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model which provided an unstable zero equilibrium price point. This was found 

unrealistic because of producers’ sensitivity towards price of farm produce. 

However, the nonlinear model provided two equilibria price points of which one 

is also zero but unstable and the other unstable at non-zero price. which is 

realistic and a reflection of maize price in Ghana due to inflation (even prices of 

petrol are reviewed every two weeks) and it has counter effects on food prices. 

6.3 Continuous Time Cobweb Models 

This section of the study discusses stability conditions of two continuous-time 

cobweb models developed from linear and nonlinear delay differential functions 

of price. 

Results of model evaluation and analysis have shown that nonlinear delay 

differential buffer stock model would oscillate between two price points and 

would not converge with time. Therefore no stable equilibrium price would be 

achieved just as was observed in the discrete case. 

However, after showing little oscillations, the linear model converged to stable 

zero equilibrium price point which is unrealistic due to same reason of farmers’ 

price sensitivity mentioned. 

6.4 Time Varying Effects On Price 

The delay parameter is found to be associated with price oscillations and this is 

also discussed. It was observed that for delay value of τ ≤ 0.5, price oscillations of 

nonlinear delay differential equation models are suppressed. This indicates that 

if all factors affected by delay (time-lag) are improved, then price fluctuations can 

be reduced and thereby achieve price stability. In contrast, for delay value τ > 0.5 

or τ ≤ 0.5, linear delay differential equation remained in stable equilibrium. It is 
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also shown that efficiency of buffer stock system is dependent on delay variation 

selected in line with price scheme to be used by the buffer stock operator. 

6.5 Continuous Time Cobweb Model With Buffer 

This section of the study used delay differential buffer stock model which mimic 

an undelayed integro-differential equation model developed by Soltes et al. 

(2012) for controlling prices by incorporating delay parameter in both the supply 

function and buffer stock part of the model. 

The results of the study dispute an assertion by Mackey (1989) whose argument 

is based on the fact that price of commodity is dependent on time associated with 

planting, storage, relaxation and total production. It is proven that if these 

respective time parameters are put together as one for supply delay and 

constitute storage time, delay for the buffer, then variability in price is likely to 

reduce drastically . The study also improved on researches done by Athanasiou et 

al. (2008), since their models are discrete-time dependent which is a limiting case 

of the delay differential buffer stock model. 

It is realized that, if delays for buffer stock and supply are reviewed in conformity 

with price scheme run by the buffer operator, then price would be more stable for 

the impacts of buffer stock scheme felt by stakeholders. 

The model evaluation results also provided average maize stable price of GHC 

30.49 that is close to actual average price of GHC 30.27. GHC 30.49 in turn 

provided equilibrium average demand and supply respectively as 2931.6 metric 

tons and 8217.6 metric tons. The average excess supply that constitutes the stocks 

in the buffer is also given as 5286 metric tons and they are kept in stock for the 

next market period (i.e planting period). When at another period (i.e during 

harvesting period) demand exceeds supply then the appropriate difference is 

released from the buffer to the market in order to keep price in equilibrium. The 

standard deviation also reduced to 0.1602 compared to 29.48 by raw data in the 

table A.2 (at appendix A), and the same applies to the variance. 



 

115 

6.6 Discrete and Continuous Time Models 

Continuous time delay differential buffer stock models could be applied in 

managing unstable market price of maize irrespective of the type of the supply 

function it is integrated with, being it linear or nonlinear. The continuous time 

delay model makes time an important factor and price stability dependent. The 

larger the time delay, the more price fluctuations are generated. 

However, it is shown that when the coefficient of quadratic terms in both discrete 

and continuous time nonlinear supply equations of prices are reviewed 

downwards then when they are connected with buffer stock models, price 

stability could be achieved provided the coefficients of price in supply functions 

are also reviewed simultaneously downwards. Meanwhile delay differential 

buffer stock can also achieve price stability without perturbing the coefficient of 

quadratic term in the supply function. This demonstrates that discrete time buffer 

stock model works as expected in managing price fluctuating systems when the 

shape of supply function of price is more close to being linear function 

The discrete time cobweb models and continuous time delay differential models 

could be applied to achieve price stability if the marginal supply is less than 

marginal demand. 

6.7 Recommendations 

The findings of the study are interpreted in line with its limitations, of which some 

could be addressed in further studies to evaluate the impact of buffer stock on 

price when private storage is allowed to compete with the government. 

When farmers reduce their production of one produce because they expect a 

lower price, they are likely to increase their production in the same or another 

produce in another market, where price is favourable. Therefore in further studies 

I will recommend that more than one market is considered to see how price 

stabilization could be guaranteed in-between two or more markets. 
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The study is also limited to only naive price expectation and it is proposed that 

further studies consider the effects of adaptive and rational price expectations 

and their relationship with time effects on price stabilization and then also 

consider other shocks like inflation.  
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Appendix A 

Tables of Data and Statistic Outputs 

Table 6.1: Price and Production of Maize in Ashanti Region 

Prices (100 kg) in GHC Production (Metric Tons) 

Year Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 

1994 1.23 1.78 1.49 1.67 10198.13 14830.01 12403.34 13878.19 

1995 2.69 3.53 1.64 2.22 15947.12 20917.51 9730.17 13171.87 

1996 2.80 3.41 4.61 4.45 10152.87 12357.34 16710.75 16125.71 

1997 6.51 8.73 6.74 - 17268.13 23180.01 17886.86 - 

1998 5.06 5.62 4.43 4.26 19354.45 21514.80 16930.53 16287.52 

1999 4.64 4.94 5.76 4.60 15016.85 15978.78 18646.42 14875.28 

2000 9.32 11.05 9.90 10.39 14663.71 17381.97 15579.11 16342.87 

2001 13.87 18.76 12.98 13.04 13403.83 18127.28 12539.71 12595.85 

2002 14.83 15.38 10.97 11.36 25347.56 26300.98 18760.61 19417.51 

2003 14.03 17.06 16.32 14.49 14649.34 17818.76 17039.90 15132.00 

2004 17.80 21.67 23.46 23.06 12629.82 15372.77 16646.07 16362.01 

2005 29.67 45.02 34.25 28.56 11638.64 17660.19 13436.17 11203.67 

2006 25.91 27.39 20.98 18.87 15226.02 16097.10 12328.32 11090.56 

2007 25.85 32.34 26.41 26.06 13190.26 16500.28 13474.43 13296.04 

2008 32.34 56.66 56.72 49.39 10103.38 17700.44 17717.10 15428.41 

2009 60.79 71.77 55.13 52.21 15780.74 18631.95 14311.43 13552.55 

2010 53.29 55.51 52.76 46.82 21597.84 22497.63 21385.72 18976.81 

2011 55.10 75.41 81.34 89.95 10572.89 14470.08 15607.96 17260.74 

2012 110.69 124.44 90.97 76.00 18169.81 20426.27 14932.32 12475.61 

2013 77.09 76.24 74.86 81.67 17036.49 16847.17 16542.22 18047.12 

Table 6.2: Descriptive Statistics of Data in Table A.1 

 N Range Mean Std. Dev.  Skewness Kurtosis 

 Stat Stat Stat Std.Error Stat Stat Std.Error Stat Std.Error 

 Price 79 123.21 30.27 3.32 29.48  1.16 0.27 0.58 0.54 

Production 79 16570.81 16008.72 383.99 3413.04 

Valid N 7 

 0.56 0.27 0.60 0.54 

Table 6.3: ADF Test Table for Price Data at Difference Order (2) 

 
Null Hypothesis: D(tseries,2) has a unit root 
Exogenous: Constant 
Lag Length: 10 (Automatic Based on AIC, MAXLAG=10) 
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  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -7.25251 0.00000 

Test critical values: 1% level  -3.54024 

5% level  -2.90919 

10% level 
*MacKinnon (1996) one-sided p-values. 
Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(tseries,3) 
Method: Least Squares 
Included observations: 62 after adjusting endpoints 

 -2.59223 

Variable Coefficient Std. Error t-Statistic Prob 

D(tseries(-1),2) -9.63365 1.32832 -7.25251 0.00000 

D(tseries(-1),3) 7.95092 1.27705 6.22601 0.00000 

D(tseries(-2),3) 7.23339 1.20875 5.98420 0.00000 

D(tseries(-3),3) 6.74555 1.11554 6.04689 0.00000 

D(tseries(-4),3) 6.15931 1.00768 6.11236 0.00000 

D(tseries(-5),3) 5.33029 0.92018 5.79265 0.00000 

D(tseries(-6),3) 4.42399 0.81447 5.43175 0.00002 

D(tseries(-7),3) 3.44845 0.68492 5.03485 0.00007 

D(tseries(-8),3) 2.70656 0.51002 5.30677 0.00003 

D(tseries(-9),3) 1.83330 0.32120 5.70766 0.00001 

D(tseries(-10),3) 0.94765 0.15899 5.96389 0.00000 

C 0.17573 0.74556 0.23571 0.81462 

R-squared 0.87845 Mean dependent var -0.79742 

Adjusted R-squared 0.76703 S.D. dependent var 15.00684 

S.E. of regression 5.77887 Akaike info criterion 6.51828 

Sum squared resid 1669.76841 Schwarz criterion 6.92998 

Log likelihood -190.06667 F-statistic 32.85092 

Durbin-Watson stat 2.06225 Prob(F-statistic) 0.00000 

Table 6.4: ADF Test Table for Production Data at Difference Order (1) 

 
Null Hypothesis: D(tseries) has a unit root 

Exogenous: Constant 
Lag Length: 6 (Automatic Based on AIC, MAXLAG=10) 

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -5.86395 0.00005 

Test critical values: 1% level -3.513164 

5% level -2.90550 
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10% level 
*MacKinnon (1996) one-sided p-values. 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(tseries,2) 
Method: Least Squares 
Included observations: 67 after adjusting endpoints 

-2.59028 

Variable Coefficient Std. Errort-Statistic Prob 

D(tseries(-1)) -4.76136 0.81197 -5.86395 0.00000 

D(tseries(-1),2) 3.12295 0.74567 4.18810 0.00010 

D(tseries(-2),2) 2.28032 0.64397 3.54101 0.00079 

D(tseries(-3),2) 1.62953 0.51694 3.15228 0.00255 

D(tseries(-4),2) 1.03350 0.37837 2.73147 0.00830 

D(tseries(-5),2) 0.52157 0.23773 2.19395 0.03219 

D(tseries(-6),2) 0.24932 0.12371 2.01529 0.04844 

C 152.94270 491.71758 0.31104 0.75687 

R-squared 0.76646 Mean dependent var -

133.36791 

Adjusted R-squared 0.56212 S.D. dependent var 7862.28556 

S.E. of regression 4018.58449 Akaike info criterion 19.54690 

Sum squared resid 952792255.87848 Schwarz criterion 19.81015 

Log likelihood -646.82108  F-statistic 27.66230 

Durbin-Watson stat 1.98978 Prob(F-statistic) 0.00000 

Table 6.5: ADF Test Table for Price Data at Difference Order (1) 

 
Null Hypothesis: D(tseries) has a unit root 

Exogenous: Constant 
Lag Length: 6 (Automatic Based on AIC, MAXLAG=10) 

  t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic  -6.02794 0.00003 

Test critical values: 1% level  -3.53164 

5% level  -2.90550 

10% level 
*MacKinnon (1996) one-sided p-values. 
Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(tseries,2) 
Method: Least Squares 
Included observations: 67 after adjusting endpoints 

 -2.59028 

Variable Coefficient Std. Error t-Statistic Prob 

D(tseries(-1)) -2.29794 0.38122 -6.02794 0.00000 

D(tseries(-1),2) 1.40664 0.35568 3.95476 0.00021 

D(tseries(-2),2) 1.11295 0.35369 3.14664 0.00259 

D(tseries(-3),2) 1.27543 0.33979 3.75364 0.00040 

D(tseries(-4),2) 1.43969 0.29626 4.85962 0.00001 
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D(tseries(-5),2) 0.91846 0.23579 3.89519 0.00025 

D(tseries(-6),2) 0.47402 0.17245 2.74875 0.00793 

C 2.43950 0.88654 2.75170 00786 

R-squared 0.66504 Mean dependent var -0.50821 

Adjusted R-squared 0.37195 S.D. dependent var 10.35923 

S.E. of regression 6.34117 Akaike info criterion 6.64365 

Sum squared resid 2372.41386 Schwarz criterion 6.90690 

Log likelihood -214.56240 F-statistic 16.73444 

Durbin-Watson stat 1.68831 Prob(F-statistic) 0.00000 

Table 6.6: ADF Test Table for Production Data at Difference Order (2) 

 
Null Hypothesis: D(tseries,2) has a unit root 

Exogenous: Constant 
Lag Length: 7 (Automatic Based on AIC, MAXLAG=10) 

 t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -7.63763 0.00000 

Test critical values: 1% level -3.53492  

5% level -2.90691  

10% level 
*MacKinnon (1996) one-sided p-values. 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(tseries,3) 
Method: Least Squares 
Included observations: 65 after adjusting endpoints 

-2.59102  

Variable Coefficient Std. Errort-Statistic Prob 

D(tseries(-1)2) -11.96776 1.56695 -7.63763 0.00000 

D(tseries(-1),3) 9.59122 1.48736 6.44847 0.00000 

D(tseries(-2),3) 7.76914 1.33673 5.81203 0.00000 

D(tseries(-3),3) 5.87002 1.10641 5.30547 0.00002 

D(tseries(-4),3) 4.04775 0.83817 4.82928 0.00001 

D(tseries(-5),3) 2.42349 0.55909 4.33472 0.00006 

D(tseries(-6),3) 1.20543 0.30472 3.95585 0.00022 

D(tseries(-7),3) 0.38478 0.12116 3.17589 0.00243 

C 16.78251 554.21913 0.03028 0.97595 

R-squared 0.90380 Mean dependent var -199.59815 

Adjusted R-squared 0.81828 S.D. dependent var 13444.96218 

S.E. of regression 4458.13994 Akaike info criterion 19.77074 

Sum squared resid 1113000654.43425 Schwarz criterion 20.07181 

Log likelihood -633.54900  F-statistic 65.76152 

Durbin-Watson stat 2.10787 Prob(F-statistic) 0.00000 

Appendix B 

Written Codes Run for the Models 
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6.8 DDE Code: for linear DDE 

 

function ddeprice1 

%DDEPRICE program for DDE23. 

%This is cobweb model developed from the use delay differential equations. 

%ddeprice are solved on [0,100] with history y1(t) = 1.23, for t <= 0. %The 

lags are specified as a vector [1], the delay differential 

%equations are coded in the subfunction DDEPRICE, and the history is 
%evaluated by the function histprice. Because the history is constant it %could 
be supplied as a vector: 
%sol = dde23(@ddeprice,[1],1.23,[0,100]); sol 
= dde23(@ddeprice, 1, @histprice, [0,100]); 
figure; plot(sol.x, sol.y) title(’delay diff cobweb 
model.’); xlabel(’Time t’); ylabel(’Price’); 
%—————————————————————————— 

function s = histprice(t) 

%Constant history function for ddeprice. 

s = (1.23); 

%—————————————————————————— 

function dydt = ddeprice(t,y,Z) 

%Delay Differential equations function for DDEPRICE. 

ylag1 = Z(:,1); dydt = -1*y(1)-
1.75*ylag1(1); 

6.9 DDE Code: for Nonlinear DDE 

 

function ddeprice2 

%DDEPRICE Solution for Nonlinear Model with DDE23. 

%This is nonlinear cobweb model developed from delay differential equations) 

% ddeprice are solved on [0,100] with history y1(t) = 1.23, for t <= 0. 

% The lags are specified as a vector [1], the delay differential 

% equations are coded in the subfunction DDEPRICE, and the history is % 
evaluated by the function histprice. Because the history is constant it % 
could be supplied as a vector: 
% sol = dde23(@ddeprice,[1],1.23,[0,100]); 
sol = 
dde23(@ddeprice,1.0,@histprice,[0,100]); 
figure; plot(sol.x,sol.y) title(’Nonlinear delay 
diff cobweb model.’); xlabel(’Time t’); 
ylabel(’Price’); x = linspace(0,20,100); y = 
deval(sol,x,1) 
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% ————————————————————————————– 
function s = histprice(t) 
% Constant history function for ddeprice. 

s = (1.23); 

% ————————————————————————————– 

function dydt = ddeprice(t,y,Z) 

% Delay Differential equations function for DDEPRICE. 

ylag1 = Z(:,1); dydt = −1 ∗ y(1) − 3.684 ∗ ylag1(1) + 0.029 

∗ ylag1(1)2; 

6.10 DDE Code: DDE with Buffer Stock Model 

 

function ddebuffer2 

%DDEPRICE Solution for DDE23. 

%This code for delay differential equations with buffer stock 
%ddeprice are solved on [0,100] with history functions y1(t) = 1.23 

%and (0) = 0 ,for t <= 0. 

% The lags are specified as a vector [a,b] (they are varied), the delay differential 

%equations are coded in the subfunction DDEPRICE, and the history is 
%evaluated by the function histprice. Since the history is constant, it %could 
be supplied as a vector: 
%sol = dde23(@ddeprice,[a,b],[1.23;0],[0,100]); sol = 
dde23(@ddebuffer,[0.40,0.21],@histbuffer,[0,100]); 
figure; plot(sol.x,sol.y) title(’delay diff cobweb model 
with buffer stock.’); xlabel(’time t’); ylabel(’solution y’); 
x = linspace(0,20,100); y = deval(sol,x,1); 
% ————————————————————————– 

function s = histbuffer(t) 

% Constant history function for ddeprice. 

s = [1.23,1.23]; 

% ————————————————————————– 

function dydt = ddebuffer(t,y,Z) 

% Delay Differential equations function for DDEPRICE. 

ylag1 = Z(:,1); ylag2 = Z(:,2); dydt = [(−1 ∗ y(1) − 3.68 ∗ ylag1(1) + 0.029 ∗ 

ylag1(1)2);((−1 ∗ y(1) − 3.68 ∗ylag1(1) + 0.029 ∗ ylag1(1)2) − (1 ∗ y(2) + 3.68 ∗ 

ylag2(2) − 0.029 ∗ ylag2(2)2))]; 

6.11 Code: Linear Discrete Time Cobweb Model 

 
%MatLab Code for Discrete Time Linear Cobweb Model 

n = [1 : 100]; y(1) = 1.23; % Initial value of 
commodity price for m=2:100; y(m)=-
1.75*y(m-1); %Linear cobweb model end 
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plot(n,y) title (’Discrete Time Linear Cobweb 
Model’); xlabel(’Time t’); ylabel(’Price’); 

6.12 Code: Nonlinear Discrete Time Cobweb 

Model 

 

%MatLab Code for Discrete Time Nonlinear Cobweb Model n=[1:100]; y(1) = 1.23; % 
Initial value of commodity price for m=2:100; y(m) = −3.684 ∗ y(m − 1) + (0.029 ∗ (y(m 
− 1))2); % Model in the form of quadratic end 

plot(n,y) title (’Discrete Time Nonlinear Cobweb 
Model’); xlabel(’time t’); ylabel(’solution y’); 

6.13 Code: Nonlinear Discrete Time Cobweb 

Model with Buffer stock 

 

%MatLab Code for Discrete Time Nonlinear Cobweb Model with Buffer Stock 

n=[1:50]; y(1) = 1.23; % Initial value of commodity price for m=2:50; y(m) = −.64 

∗ y(m − 1) + (0.0001 ∗ (y(m − 1))2) − 0.0104 ∗ (16008.72− (−.64 ∗ y(m − 1) + 

(0.0001 ∗ (y(m − 1))2))) %Model in the form of quadratic end 

plot(n,y) title (’Discrete Time Nonlinear Cobweb Model With 
Buffer’); xlabel(’time t’); ylabel(’solution y’);  
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