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Abstract

In this thesis, well studied linear algebra theory “singular value decomposition”

(SVD) and its applications is presented. Singular Value Decomposition is extraor-

dinarily useful and has many applications such as data analysis, signal processing,

pattern recognition, objects detection and weather prediction. SVD method can

transform matrix A into product USV T . Some of these application areas dis-

cussed include the Moore-Penrose psuedoinverse, the low rank approximation of

matrices, the least square solution to linear systems and image face recognition.

To perform face recognition with SVD, the set of known faces were treated as vec-

tors in a subspace, called “face space”, spanned by a small group of “basefaces”.

The projection of a new image onto the baseface was then compared to the set of

known faces to identify the face. The study also investigated the characteristics

of singular values and singular vectors in image processing. SVD was found to

be a stable and effective method to decompose a system into a set of linearly

independent components. The approach is robust, simple, easy and fast to im-

plement and provides a practical solution to image recognition problem. It was

also found that, though the singular values are unique, the singular vectors are

more important in image processing. MATLAB R2012a with image processing

toolbox was used as the development tool for implementing the algorithm.
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Chapter 1

Introduction

This chapter introduced the history and concept of Singular Value Decomposition

and gave a brief definition of an image. It also discussed the objectives of the

study. Finally, the organization of the thesis was done.

1.1 Background of the study

Singular value decomposition (SVD) is an important concept in linear algebra.

Consequently relatively few mathematicians are familiar with what the Mas-

sachusetts Institute of Technology Professor, Gilbert Strang calls “absolutely a

high point of linear algebra”(Autonne, 1913). According to (Soumya, Soumya,

& Soman, 2009) Singular Value Decomposition was developed in the mid 19th

century but most of its applications emerged in the 21st century. Singular Value

Decomposition (SVD) for square matrices was developed by Eugenio Beltrami

(1873), Camille Jordan (1874), James Joseph Sylvester (1889) and Autonne

(1915). Eckart and Young developed Singular Value Decomposition in the 1930’s

for rectangular matrices and its use as a computational tool dates back to the

1960’s. Singular values and the singular value decomposition play an important
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role in high-quality statistical computations and in schemes for data compression

based on approximating a given matrix with one of lower rank. They also play a

central role in the theory of unitarily invariant norms. Many modern computa-

tional algorithms are based on singular value computations because the problem

of computing the eigenvalues of a general matrix (like the problem of computing

the eigenvalues of a Hermitian matrix) is well-conditioned.

The singular value decomposition (SVD) is known by many names, such as princi-

pal component analysis. In numerical analysis, the singular value decomposition

provides a measure of the effective rank of a given matrix. In statistics and time

series analysis, the singular value decomposition is a particularly useful tool for

finding least-squares solutions and approximations.

Singular Value Decomposition is a widely used technique to decompose a matrix

into several component matrices, exposing many of the useful and interesting

properties of the original matrix. The decomposition of a matrix is often called

a factorization. Ideally, the matrix is decomposed into a set of factors (often

orthogonal or independent) that are optimal based on some criterion. The de-

composition of a matrix is also useful when the matrix is not of full rank. That is,

the rows or columns of the matrix are linearly dependent. Theoretically, one can

use Gaussian elimination to reduce the matrix to row echelon form and then count

the number of nonzero rows to determine the rank. However, this approach is

not practical when working in finite precision arithmetic. A similar case presents

itself when using LU decomposition where L is in lower triangular form with 1’s

on the diagonal and U is in upper triangular form.

Ideally, a rank-deficient matrix may be decomposed into a smaller number of

factors than the original matrix and still preserve all of the information in the

matrix. The singular value decomposition, in general, represents an expansion of
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the original data in a coordinate system where the covariance matrix is diagonal.

Using the singular value decomposition, one can determine the dimension of the

matrix range or more-often called the rank. The rank of a matrix is equal to

the number of linear independent rows or columns. This is often referred to as

a minimum spanning set or simply a basis. The singular value decomposition

can also quantify the sensitivity of a linear system to numerical error or obtain a

matrix inverse. Additionally, it provides solutions to least-squares problems and

handles situations when matrices are either singular or numerically very close

to singular. In singular value decomposition transformation, a matrix will be

decomposed into three matrices that are of the same size as the original matrix.

Images and Digital Images

From the view point of linear algebra, an image is an array of non-negative scalar

entries, or a matrix of square pixels (picture elements) arranged in columns and

rows. A digital image differs from a photo in that the values are all discrete. Usu-

ally they take on only integer values. A digital image can be considered as a large

array of discrete dots, each of which has a brightness associated with it. These

dots are called picture elements, or more simply pixels. The pixels surrounding

a given pixel constitute its neighborhood. A neighborhood can be characterized

by its shape in the same way as a matrix. According to Robert M. Gray and

David L. Neuhoff, a digital image is a discrete two-dimensional function, f(x, y)

which has been quantized over its domain and range (Gray & Neuhoff., 1998).

Without loss of generality, it will be assumed that the image is rectangular, con-

sisting of Y rows and X columns. The resolution of such an image is written as

X×Y . By convention, f(0, 0) is taken to be the top left corner of the image, and

f(X − 1, Y − 1) the bottom right corner. The distinct coordinates in this image

is the pixel. The nature of the output of f(x, y) for each pixel is dependent on
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the type of image. Most images are the result of measuring a specific physical

phenomenon, such as light, heat, distance, or energy. The measurement could

take any numerical form. This is summarized in the figure below.

f(x, y) =


f(0, 0) f(0, 1) f(0, 2) · · · f(0, Y − 1)
f(1, 0) f(1, 1) f(1, 2) · · · f(1, Y − 1)
f(2, 0) f(2, 1) f(2, 2) · · · f(2, Y − 1)

...
...

...
...

...
f(X − 1, 0) f(X − 1, 1) f(X − 1, 2) · · · f(X − 1, Y − 1)


Figure 1.1: A rectangular digital image.

Some aspects of image processing different face recognition from image com-

pression includes image enhancement, Image Restoration and Image Segmenta-

tion. Processing an image so that the result is more suitable for a particular

application is referred to as image enhancement. This deals with sharpening or

deblurring an out of focus image, highlighting edges, improving image contrast,

or brightening an image, removing noise (any degradation in the image signal,

caused by external disturbance). Image restoration may be considered as revers-

ing the damage done to an image by a known cause. This include removing of blur

caused by linear motion and the removal of optical distortions. Image segmen-

tation involves subdividing an image into constituent parts, or isolating certain

aspects of an image. This is normally done by finding lines, circles, or particular

shapes in an image in an aerial photograph, identifying cars, trees, buildings, or

roads. People use digital images in many ways. The same image can be viewed on

a wide variety of monitors, printed in many formats, and transmitted electron-

ically through electronic-mails, cell phones, and other systems. Digital images

are stored electronically on media such as computer hard drives, CDs, DVDs and
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magnetic tapes.

Types of Digital Images

The various types of digital image include the Binary, Grayscale and the True

Color or RGB images.

Binary image:

In the binary image, each pixel is just black or white. Since there are only two

possible values for each pixel (0,1), we only need one bit per pixel. Such images

can therefore be very efficient in terms of storage. Images for which a binary

representation may be suitable include text (printed or handwriting), fingerprints,

or architectural plans. An example of a binary image is shown in the figure(1.2).

Figure 1.2: An Example of a Binary Image

Grayscale images:

In Grayscale images, each pixel is a shade of gray, normally from 0 (black) to 255

(white). This range means that each pixel can be represented by eight bits, or

exactly one byte. Other grayscale ranges are used but generally they are a power

of 2. Such images arise in medicine (X-rays), images of printed works, and indeed

different gray levels is sufficient for the recognition of most natural objects. An

example of a grayscale image is shown in the figure(1.3).
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Figure 1.3: An Example of Grayscale Image

True Color or RGB

In True Color or RGB each pixel has a particular color; that color is described by

the amount of red, green and blue in it. If each of these components has a range

0 - 255, this gives a total of 2553 = 16, 581, 375 different possible colors. Such an

image is a “stack” of three matrices; representing the red, green and blue values

for each pixel. This means that for every pixel, there corresponds 3 values. An

example of a true color or RGB image is shown in the figure (1.4).

Figure 1.4: An Example of a True Color or RGB Image
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Spatial Resolution

Spatial resolution is the density of pixels over the image. The greater the spatial

resolution, the more pixels are used to display the image. Halving the size of the

image, by taking out every other row and every other column, that is, leaving

only those matrix elements whose row and column indices are even. Doubling

the size of the image, all the pixels are repeated to produce an image with the

same size as the original, but with half the resolution in each direction.

1.2 Statement Of Problem

The rapid evolution of digital technology has improved the ease of access to digital

information enabling reliable, faster and efficient storage, transfer and process-

ing of digital data. The need for storage spaces has increased the rate at which

newer versions of personal computers are produced. The issue of storage space

brought about the idea of producing newer versions of personal computers which

has made the field of image processing a very important area to research. Instead

of producing storage devices with higher storage capacities, image processing

(compression) based on singular value decomposition, rather reduces the size of

an image(data) to enable smaller storage space to be used.

The Singular Value Decomposition (SVD) is a popular matrix factorization that

has been used widely in applications ever since an efficient algorithm for its com-

putation was developed in the 1970s (Stewart, 1992). In recent years, the Singular

Value Decomposition has become even more prominent due to a surge in appli-

cations and increased computational memory and speed.

Humans have evolved very precise visual skills such that we can identify a face in

an instant, differentiate colours and process a large amount of visual information
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very quickly. But the problem is that, the world is in constant motion. As one

stares at something long enough and it will change in some way. Even a large

solid structure, like a building or a mountain, will change its appearance depend-

ing on the time of day (day or night), amount of sunlight (clear or cloudy) or

various shadows falling upon it. This narrows down to the nucleus of the study,

the problem of face recognition.

Face recognition is one of the most relevant applications of image analysis. It is a

true challenge to build an automated system which equals human ability to rec-

ognize faces. Although humans are quite good in identifying known faces, we are

not very skilled when we must deal with a large amount of unknown faces. The

computers, with an almost limitless memory and computational speed, should

overcome such humans limitations.

1.3 Research Objectives

1.3.1 General Objective

The main objective of this study was to process digital images using the concept

of singular value decomposition(SVD).

1.3.2 Specific Objectives

The specific objectives of this study are as follows:

• To review the concept of singular value decomposition.

• To investigate the characteristics of singular values and singular vectors in

image processing.
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• To develop a program for face recognition using singular value decomposi-

tion.

1.4 Outline of the study

This thesis contains five main chapters. In chapter one, the concept of Singular

Value Decomposition and image processing were introduced. In Chapter two,

a comprehensive theoretical framework, review of the related literature in the

field which served as the basis for the theoretical framework for the study was

discussed. Chapter three presented a detailed outline of the Singular Value De-

composition procedure and its application to digital image processing. In Chapter

four, interpretive critique and discussion of the results of the study are presented.

Chapter five concludes the entire study by stating the way for further study based

on the major findings made in the study.
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Chapter 2

Review of Literature

2.1 Introduction

In this chapter, some basic concepts and notations relating to the concept of sin-

gular value decomposition are discussed. This chapter also reviewed literature in

the area of Singular Value Decomposition and image processing. Major theories,

arguments, methodologies, approaches and controversies in the existing literature

on the subject of this study are discussed in this chapter. Some of the applica-

tions of the singular value decomposition as a method in linear algebra are also

discussed.

2.2 Some basic definitions and Notations

Matrix Norms

A general matrix norm is a function ‖ · ‖ from the set of all complex matrices (of

all finite orders) into < that satisfies the following properties.

‖ A ‖≥ 0 and ‖ A ‖= 0 ⇔ A = 0.
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‖ αA ‖= |α| ‖ A ‖ for all scalars α

‖ A+B ‖≤‖ A ‖ + ‖ B ‖ for matrices of the same size.

‖ AB ‖≤‖ A ‖‖ B ‖ for all conformable matrices.

The Frobinius Matrix Norm

The space Cm×n is a vector space of dimension m × n, magnitude of matrices

A ∈ Cm×n can be “measured” by employing any vector norm on Cm×n. This

called the Frobinius norm.

The Frobinius norm of A ∈ Cm×n is defined by the equations

‖ A ‖2F=
m∑
i

n∑
j

|aij|2 =
∑
i

‖ Ai∗ ‖22=
∑
j

‖ A∗j ‖22= trace(ATA)

The Frobinius norm, which satisfies the above definition of matrix norm, is fine

for some problems, but it is not well suited for all applications.

Induced Matix norm

A vector norm that is define on Cm×n induces a matrix norm on Cm×n by setting

‖ A ‖= max
‖x‖=1

‖ Ax ‖

for A ∈ Cm×n, x ∈ Cn×1. The induced norm is compatible with its underlying

vector norm in the sense that ‖ Ax ‖≤‖ A ‖‖ x ‖.

When A is singular,

min
‖x‖=1

‖ Ax ‖= 1

‖ A−1 ‖

The 2-norm of a matrix A is the square root of the largest eigenvalue of ATA.
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That is

‖ A ‖2=
√

max
µ∈λ(ATA)

µ

A square matrix A is said to be orthogonal if ATA = I. It is well known that if

A is orthogonal, then ‖ Ax ‖2=‖ x ‖2.

The column rank and the row rank of a matrix are defined as the dimensions of

its column space and row space, respectively. In image processing (compression),

an application of Singular Value Decomposition, if the matrices A,Ak ∈ <m×n

represent an original image and its compressed version respectively, and rank

(Ak) = k, then the compression ratio of Ak with respect to A is given by (m +

n)k/mn.(Pagadala, 1998)

2.3 History of the Singular Value Decomposi-

tion

The singular value decomposition(SVD) has a long history. It was originally de-

veloped in the Nineteenth-century by differential geometers and algebraists who

wanted to determine, for given matrices A = [aij] and B = [bij ∈Mn(R)], whether

the two bilinear forms: ΦA(x, y) =
∑n

i,j=1 aijxiyi and ΦB(x, y) =
∑n

i,j=1 bijxiyi

could be made equal for x = [xi] and y = [yi] ∈ Rn, under independent real

orthogonal transformation of spaces it acts on. That is, does there exist Q1, Q2 ∈

Mn(R) such that ΦB(Q1x,Q2y) = ΦA(x, y) for all x, y ∈ Rn?

This problem could be approached by finding a canonical form to which any such

bilinear form can be reduced by orthogonal substitution, or by finding a complete

set of invariants for a bilinear form under orthogonal substitutions. This is the

original motivation for the study of singular values. Though the singular value

decomposition is over 100 years old, it became popular only by the work of Gene
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Golub and numerical analyst such as Van Loan in the late 1960’s. Gene Golub

and Van Loan demonstrated its usefulness and feasibility in a wide variety of

applications.

Actually in 1873, Beltrami (Stewart, 1992) discovered the singular value decompo-

sition of matrices. Beltrami’s contribution appeared in the journal of mathematics

for the use by Italian Universities. He established an algorithm to determine the

diagonalising transformation. Beltrami discovered the singular value decomposi-

tion for real, square, non-singular matrices having distinct singular values. But it

lacks the extras needed to handle degeneracies (Beltrami, 1990). Beltrami began

with a bilinear form f(x, y) = xTAy, where A is real, nonsingular and of order n.

Making the substitution x = Uξ and y = V η, then f(x, y) = ξTSη where

S = UTAV. (2.1)

Beltrami then observed that if U and V are required to be orthogonal, then there

are n2−n degrees of freedom in their choice, and he proposes to use these degrees

of freedom to annihilate the off diagonal elements of S. Assuming S is diagonal;

that is S = diag(σ1, σ2, ..., σn). Then it follows from the orthogonality of V that,

UT = SV T and similarly, AV = US

Substituting the value of U obtain from AV = US into UTA = SV T , Beltrami

obtained the equation

UT (AAT ) = S2UT , (2.2)

And respectively he obtained (ATA)V = V S2.

Therefore, the singular values are the roots of the equations det(AAT − σ2I) = 0

and det(ATA− σ2I) = 0

Beltrami next stated that by a well-known theorem, these singular values are
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real. Moreover, they are positive. This follows from theory of quadratic forms.

That is

0 <‖ xTA ‖2= xT (AAT )x = ξTS2ξ (2.3)

There is some confusion here. Beltrami appears to be assuming the existence of

the vector ξ, whose very existence he is trying to establish. The vector required

by his argument is an eigenvector of AAT corresponding to σ. But the fact that

the two vectors turn out to be the same caused him to apparently leap ahead of

his assumption to use ξ equation above.

Independently, in 1874, the French algebraist Camille Jordan, can fairly be called

the co-discoverer of the singular value decomposition (Stewart, 1992). Jordan

treated three problems, of which the reduction of a bilinear form to a diagonal

form by orthogonal substitution is the simplest. He started with the form P =

xTAy and seeks to maximize and minimize P subject to ‖ x ‖2=‖ y ‖2= 1. The

maximum is determine by the equation

0 = dP = dxTAy + xTAdy, (2.4)

which must be satisfied for all dx and dy that satisfy dxTx = 0 and dyTy = 0.

Jordan then stated categorically that, the equation dP = 0 will therefore be the

combination of dxTx = 0 and dyTy = 0.

That is;

dxTA+ xTAdy = dxTx+ dyTy

dxTAy = dxTx

Ay = σx (2.5)

xT (Ay) = σxTx = σ
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Similarly,

xTAdy = dyTy

xTA = ρyT (2.6)

y(xTA) = ρyTy = ρ

It follows that the maximum is

xT (Ay) = y(xTA) = σxTx = ρyTy = σ = ρ (2.7)

According to Jordan, the σ is determined by the vanishing of the determinant

D =

∣∣∣∣∣∣∣
−σI A

AT −σI

∣∣∣∣∣∣∣
which contains only even powers of σ.

Now let σ1 be a root of the equation D = 0, and let the equations (2.5) and (2.6)

be satisfied by x = u and y = v where ‖ u ‖2=‖ v ‖2= 1. Let Û = (uU∗) and

V̂ = (vU∗) be orthogonal, and let x = Û x̂ and y = V̂ ŷ. With these substitutions,

let P = x̂T Âŷ. In this system, P attains its maximum for x̂ = ŷ = e1 where

e1 = (1, 0, ..., 0)T .

Moreover, at the maximum we have Âŷ = σ1x̂ and x̂T Â = σ1ŷ
T which implies

that

Â =

 σ 0

0 A1


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Thus with ξ1 = x̂1 and η1 = ŷ1, P assumes the form σ1ξ1η1 + P1 where P1 is

independent of ξ1 and η1. Jordan now applies the reduction inductively to P1 to

arrive at the canonical form

P = ξTΣη

Finally, Jordan notes that when the roots of the characteristic equation D = 0

are simple, the columns of U and V can be calculated directly from equations

(2.5) and (2.6).

Jordan’s approach of using a partial solution of the problem to reduce it to one

of smaller size deflation is the modern term which avoids the degeneracies that

complicated Beltrami’s approach. Incidentally, the technique of deflation appar-

ently lay fallow until Schur, according to (Stewart, 1992) used it to establish

his triangular form of a general matrix. It is now a widely used theoretical and

algorithmic tool. Another consequence of Jordan’s approach is the variational

characterization of the largest singular values as the maximum of a function.

James Joseph Sylvester wrote a footnote and two papers on the subject of sin-

gular value decomposition. The footnote appears at the end of “The Messen-

ger of Mathematics” (Sylvester, 1889a) entitled as “A new proof that a general

quadratic may be reduced to its canonical form (That Is, a Linear Function of

Squares) by means of real orthogonal substitutions”. In his paper he described the

iterative algorithm for reducing a quadratic form to a diagonal form. Sylvester,

Jacobi and Beltrami used linear algebra to solve the singular value decomposition.

Sylvester describes an iterative algorithm for reducing a quadratic form to orthog-

onal form. He presented this algorithm in a final messenger paper.(Sylvester,

1889b).

Sylvester also began with a bilinear form B = xTAy and considered the quadratic
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form

M =
∑
i

(
dB

dyi
)2

Let M =
∑
λiξ

2
i be the canonical form of M . If B has the canonical form

B =
∑
σiξiηi then

∑
[σiξi]

2 is orthogonally equivalent to M =
∑
λiξ

2
i which

implies that λi = σ2
i in some order.

Sylvester introduced the matrix M = AAT and N = ATA to find the substitution

and stated categorically that the substitution for x is the substitution that diag-

onalizes M and the substitution for y is the one that diagonalizes N . Meanwhile,

this is true only if the singular values of A are distinct.

According to Sylvester(1889b), the following rule can be used to find the coeffi-

cients of the x-substitution conrresponding to a singular vale σ. Strike a row of

the matrix M − σ2I. Then the vector of coefficients is the vector of minors of

order n− 1 of the reduced matrix normalized so that their sum of squares is one.

Coefficients of the y-substitution may be obtained analogously from N − σ2I.

This only works if the singular value σ is simple.

Erhard Schmidt was the first person to use integral equations with unsymmetric

kernels to solve the infinite dimensional analogue of singular value decomposition.

But he went beyond the mere existence of decomposition by showing how it can

be used to obtain optimal, low rank approximations to an operator. E. Schmidt’s

two contributions to singular value decomposition are its generalization to func-

tion space and his approximation theorem. Schmidt’s approach is the same as

Beltrami’s; however, because he worked in finite dimensional spaces of functions

he could not appeal to previous result on quadratic forms.

Schmidt began with a kernel A(s, t) that is continuous and symmetric on [a, b]×
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[a, b]. A continuous, nonvanishing function φ(s) satisfying

φ(s) = λ

∫ b

a

A(s, t)φ(t)dt

is said to be an eigenfunction of A corresponding to the eigenvalue λ. By the

assertions of Schmidt, the kernel A has at least one real eigenfunction. Each

eigenvalue of A has at most a finite number of linearly independent eigenfunctions.

The kernel A also has an orthonormal system of eigenfunctions; that is, a sequence

φ1(s), φ2(s), φ3(s), ... of orthonormal eigenfunctions such that every eigenfunction

can be expressed as a linear combination of a finite number of the φj(s). The

eigenvalues satisfy ∫ b

a

∫ b

a

(A(s, t))2dsdt ≥
∑
i

1

λ2i

which implies that the sequence of eigenvalues is bounded.

Schmidt now allows A(s, t) to be unsymmetric and calls any nonzero pair u(s)

and v(s) satisfying u(s) = λ
∫ b
a
A(s, t)v(t)dt and v(s) = λ

∫ b
a
A(s, t)u(t)ds a

pair of adjoint eigenfunctions corresponding to the eigenvalue λ. The sym-

metric kernels were then introduced; that is A(s, t) =
∫ b
a
A(s, r)A(t, r)dr and

A(s, t) =
∫ b
a
A(r, s)A(r, t)dr and shows that if u1(s), u2(s), u3(s), ... is an orthonor-

mal system for A(s, t) corresponding to the eigenvalues λ21, λ
2
2, λ

2
3, ... then the se-

quence defined by vi(t) = λi
∫ b
a
A(s, t)u(s)ds, i = 1, 2, 3, ... is an orthonormal

system for A(s, t).

Schmidt then went on to consider the expansion of functions in series of eigen-

functions and deduced an expression which according to him, “corresponds to the

canonical decomposition of a bilinear form.”

18



Schmidt’s Approximation Theorem

The problem Schmidt sets out to solve is to find the best approximation to A if

the form A ∼=
∑k

i=1 xiy
T
i in the sense that ‖ A −

∑k
i=1 xiy

T
i ‖= min. In other

words,he is looking for the best approximation of rank not greater than k.

He started by noting that if

Ak =
k∑
i=1

σiuiv
T
i (2.8)

then ‖ A− Ak ‖2=‖ A ‖2 −
∑k

i=1 σ
2
i . If for arbitrary xi and yi

‖ A−
k∑
i=1

xiy
T
i ‖≥‖ A ‖2 −

k∑
i=1

σ2
i , (2.9)

the Ak will be the desired approximation.

Without loss of generality it may be assume that the vectors x1, x2, ....xk are or-

thonormal. We can use Gram-Schmidt orthogonalization to express them as linear

combinations of orthonormal vectors even if they are not orthonormal (Bradley,

1975). Substituting these expressions into
∑k

i=1 xiy
T
i , and collect terms in the

new vectors.

Now

‖ A−
k∑
i=1

xiy
T
i ‖

= trace((A−
k∑
i=1

xiy
T
i )T (A−

k∑
i=1

xiy
T
i ))

= trace(ATA+
k∑
i=1

(yi − Axi)(yi − ATxi)T −
k∑
i=1

ATxix
T
i A)
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Since trace((yi − ATxi)(yi − ATxi)T ) ≥ 0 and trace(Axix
T
i A

T ) =‖ Axi ‖2, the

result will be established if we show that

k∑
i=1

‖ Axi ‖2≤
k∑
i=1

σ2
i

Let V = (V1V2) where V1 has k columns, and let Σ = diag(Σ1,Σ2) be a conformal

partition of Σ. Then

‖ Axi ‖2= σ2
k + (‖ Σ1V

T
1 xi ‖2 −σ2

k ‖ V T
1 xi ‖2)− (σ2

k ‖ V T
1 xi ‖2)−σ2

k(1− ‖ V Txi ‖)

(2.10)

The last two terms are clearly nonnegative. Hence

k∑
i=1

‖ Axi ‖2 ≤ kσ2
k +

k∑
i=1

(‖ Σ1V
T
1 xi ‖2 −σ2

k ‖ V T
1 xi ‖2)

= kσ2
k +

k∑
i=1

k∑
j=1

(σ2
j − σ2

k)|V T
j xi|2

=
k∑
j=1

(σ2
k + (σ2

j − σ2
k)

k∑
i=1

|V T
j xi|2)

≤
k∑
j=1

(σ2
k + (σ2

j − σ2
k))

=
k∑
j=1

σ2
j

which establishes the result.

The generalization to function spaces and the approximation theorem are the

two contributions of Schmidt to singular value decomposition. An important

difference in Schmidt’s version of the decomposition is the treatment of null-

vectors of A. The crowning glory of Schmidt’s work is his approximation theorem,

which is nontrivial to conjecture and difficult to prove from scratch. An important
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application of the approximation theorem is the determination of the rank of a

matrix in the presence of error. We will examine the more elegant approach of

Weyl.

According to (Stewart, 1992), Hermann Weyl also used integral equations to solve

the singular value decomposition. His contributions to theory of the singular

value decomposition were to develop a general perturbation theory and use it

to give an elegant proof of the approximation theorem. Although Weyl treated

integral equations with kernels, in a footnote on Schmidt contribution he states

“E. Schmidt’s theorem by the way treats arbitrary kernels. However our proof

can also be applied directly to this more general case” (Weyl, 1912). Weyl did

not actually write about the development of unsymmetric kernels.

The heart of Weyl’s development is a lemma concerning the singular values of a

perturbed matrix. Specifically, if Bk = XY T , where X and Y have k columns

((Bk) ≤ k), then

σ1(A−Bk) ≥ σk+1(A)

where σi(·) denotes the ith singular value of its argument.

Since Y has k columns, there is a linear combination

v = γ1v1 + γ2v2 + . . .+ γk+1vk+1

of the first k+ 1 columns of V (from the singular value decomposition of A) such

that Y Tv = 0.

Assuming that ‖ v ‖= 1 or equivalently that γ21 + γ22 + ... + γ2k+1 = 1. It follows
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that

σ2
1(A−B) ≥ vT (A−B)T (A−B)v

= vT (ATA)v

= γ21σ
2
1 + γ22σ

2
2 + ...+ γ2k+1σ

2
k+1

≥ σk+1

According to Weyl(1912), the following assertions hold true; if A = A′+A′′ then

σi+j−1 ≤ σ′i + σ′′j (2.11)

where the σ′ and σ′′ are the singular values of A′ and A′′ arranged in order of

magnitude. Also, if we set A′ = A − Bk and A′′ = Bk, where Bk has rank k.

Since σK+1(BK) = 0 we have by substituting j = k + 1 in (2.11)

σi(A−Bk) ≥ σk+1,

for i = 1, 2, 3, ...

As a corollary to this result we obtain

‖ A−Bk ‖2≥ σ2
k+1 + σ2

k+2 + ...+ σ2
n.

This inequality establishes the approximation theorem. With Weyl’s contribu-

tion, the theory of Singular Value Decomposition can be said to have matured.

In 1902, L. Autonne extended the Singular Value Decomposition to complex ma-

trices. He proved that every non singular complex matrix A ∈Mn can be written

as A = UP , where U ∈Mn is unitary and P ∈Mn is positive definite. In 1913 to
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1915 he returned to these ideas and used the similarity of AA∗ and A∗A to show

that any square complex matrix A ∈ Mn can be written as A = UΣV ∗ where

U, V ∈ Mn are unitary and Σ ∈ M is a nonnegative diagonal matrix. He also

discovered that if A is nonsingular Hermitian then A can be written as UΣUT

for some unitary U , and a nonnegative diagonal matrix Σ (Autonne, 1913).

Eckart and Young (Eckart & Young, 1936) (Eckart & Young, 1939) extended it to

rectangular matrices and rediscovered Schmidt’s approximation theorem which

is often called Eckart-Young theorem. In 1939 Eckart and Young gave the first

complete proof of the singular value decomposition for rectangular complex ma-

trix and they didn’t give any name to the numbers σk’s. The existence proof

of the singular value decomposition opens many ways for the mathematician to

search for inequalities, properties and applications to this decomposition.

The term “singular value” seems to have come from the literature on integral

equations. After the appearance of Schmidt’s paper, H. Bateman refers to the

numbers that are essentially the reciprocals of the eigenvalues of the kernel as

singular values(Bateman, 1908). In 1949, Weyl spoke of the “two kinds of eigen-

values of a linear transformation,”(Weyl, 1949) and in a 1969 translation of a

1965 Russian treatise on non-self adjoint operators Gohberg and Krein (Gohberg

& Krein, 1969) refer to the “s-numbers” of an operator. During 1949-50, a re-

markable series of papers in the Proceeding of the National Academy of Science

established all of the basic inequalities involving singular values and eigenvalues.

One of these papers is “Inequalities Between the Two Kinds of Eigenvalues of

a Linear Transformation”, established by Weyl. In 1950 Poyla gave an alterna-

tive proof of a key lemma in Weyl’s 1949 paper( also, established by National

Academy of Science). In 1954, A. Horn proved that Weyl’s 1949 inequalities were

sufficient for the existence of a matrix with prescribed singular values and eigen-
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values, and in this paper he used the expression ”singular values” in the context

of matrices.

The singular value decomposition was introduced into numerical analysis by

Golub and Kahan who proposed a computational algorithm. The QR algorithm

for the singular values of bidiagonal matrices was first derived by Golub in 1968

without reference to the QR algorithm, which has been the workhorse for two

decade. It was Golub who formulated this algorithm which has been used for the

past two decades.

Recently in 1990, Demmel and Kahan proposed an interesting alternative for

Golub’s 1968’s algorithm. In the last 30 years, the singular value decomposition

has become a popular numerical tool in statistical data analysis, signal processing,

system identification and control system analysis and design.

2.4 The Singular Value Decomposition

The singular value decomposition is closely associated with the eigenvalue-eigenvector

factorization of a symmetric matrix A into the form;

A = UΛV T = (orthogonal)(diagonal)(orthogonal).

Here the eigenvalues are in the diagonal matrix Λ, and the eigenvector matrix U

and V T are orthogonal. The diagonal (but rectangular) matrix in the middle can

be made nonnegative, denoted by S and its positive entries called the singular

values will be σ1, σ2, ..., σr. They fill the first r places on the main diagonal

of S and r is the rank of A. The key to working with rectangular matrices is

to consider AAT and ATA. Singular Value Decomposition can be considered

as a generalization of the spectral decomposition of square matrices, to analyze
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rectangular matrices. Singular Value Decomposition decomposes a rectangular

matrix into three simple matrices. Two orthogonal matrices and one diagonal

matrix (Strang, 1980). In general, Singular Value Decomposition theorem can be

stated as follows: any m × n matrix A, with m ≥ n can be factored into three

matrices: U (column orthogonal, m× n matrix), Λ (diagonal,n× n matrix) and

V (orthogonal n×n matrix). When A is real, A = UΛV T . For complex matrices,

Λ remains real but U and V become unitary. The diagonal elements of Λ matrix

are known as the singular values of A. This decomposition is a technique that

works well with matrices that are either singular or else numerically very close to

singular. Singular Value Decomposition is also used to calculate pseudo-inverses

when the natural inverse of the matrix does not exist (Benyah, 2012). Singular

Value Decoposition and pseudo-inverses are generally used in statistics for solving

least square problems. Data compression using singular value decomposition is

one of the standard applications in image processing.

2.4.1 Geometric Interpretation of the SVD

The purpose of this section of the study is to give an overview of the geometric

interpretation of the singular value decomposition of real matrix.

Theorem 2.1 The image of a unit circle C in R2 under any nonsingular matrix

A ∈ R2×2 is an ellipse in R2.

Proof. Let v be the unit vector in R2. That is v =

 v1

v2

 and let A be a

nonsingular 2× 2 matrix

 a b

c d

.

We will show that Av is an ellipse.
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To prove this we let Av = u. Then v = A−1u, where u =

 u1

u2


Since v is a unit vector v = A−1u gives

1 =‖ v ‖22 =‖ A−1u ‖22

= (A−1u)T (A−1u)

= uT (A−1)TA−1u.

(2.12)

Substituting

A−1 =
1

ad− bc

 d −b

−c a


into (2.12) we obtain

(d2 + c2)u21 + (b2 + a2)u22 − 2(db+ bc)u1u2 − (ad− bc)2 = 0 (2.13)

Equation (2.13) is of the form

AX2 +BXY + CY 2 +DX + EY + F = 0, (2.14)

which is the general equation of a conic whose axes are rotated so that they are

not parallel to the x and y-axis.

If the discriminant B2 − 4AC < 0, then equation(2.14) is an ellipse.

From equation(2.13) and (2.14)

B2 − 4AC = (−2(db+ ac))2 − 4(d2 + c2)(b2 + a2)

= −2(cd− 2bd)2 < 0

Therefore Av is an ellipse.
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Theorem 2.2 (Blank, Krikorian, & Spring, 1989) Let Sn−1 be the unit sphere

in Rn : Sn−1 = {x ∈ Rn :‖ x ‖2= 1}. Let ASn−1 be the image of Sn−1 under

A : ASn−1 = {Ax : x ∈ Rnand ‖ x ‖2= 1}. Then ASn−1 is an ellipsoid centered

at the origin of Rn with principal axes σiui

Proof. Let us assume that A is square and nonsingular. Since V is orthogonal,

it maps unit vector to other vectors, that is, V TSn−1 = Sn−1.

Since v ∈ Sn−1 if and only if ‖ v ‖2= 1, w ∈ ΣSn−1 if and only if ‖ Σ−1w ‖2= 1

Hence,
n∑
i=1

(
wi
σi

)2 = 1

which is an ellipsoid with principal axes σiei where ei is the ith column of the

identity matrix. Finally multiplying each w = Σv by U just rotates the ellipse so

that each ei becomes ui the ith column of U . This completes the proof when the

matrix A is square and nonsingular.

Now let A : Rm −→ Rn. First we restrict A to orthogonal complement of its null

space in Rm. It is known (Strang, 1980) that matrix A is nonsingular on this

subspace. Using the above procedure we can find orthogonal bases v1, v2, ..., vk of

this subspace in Rm and u1, u2, ..., uk of the range space of A on Rn. Then extend

these sets to orthonormal bases of Rm and Rn, respectively.

2.4.2 Low Rank Approximations of a Matrix Using SVD

The overview of the known results on best approximation of a matrix by low rank

matrices is the purpose of this section of the study. The Frobenius matrix norm

and the 2-norm will be used here.

Theorem 2.3 (Bau & Trefthen, 1997) For any k with 0 ≤ k ≤ r, where r =
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rank(A) and define

A =
r∑
i=1

σiuiv
T
i

and

Ak =
k∑
i=1

σiuiv
T
i ;

if k = min{m,n}, define σk+1 = 0. Then

‖ A− Ak ‖2= inf
B∈Rm×n

‖ A−B ‖2= σk+1.

where rank(B) ≤ k

Proof. Given that

Ak =
k∑
i=1

σiuiv
T ,

we can also write

Ak = USkV
T ,

where SK = diag(σ1, σ2, σ3, ..., σk, 0, ..., 0) and U , V are orthogonal matrices. We

have

‖ A− Ak ‖2 =‖
r∑

i=k+1

σiuiv
T
i ‖2

=‖ U(diag(0, ..., σk+1, ..., σr))V
T ‖2

= σk+1

To show that there is no matrix of rank k closer to A, we assume B to be

any rank k matrix so its null space has dimension r − k. The space spanned

by {v1, v2, ..., vk+1} has dimension k + 1. Since the sum of their dimensions is

(r − k) + (k + 1) > r these two spaces must overlap. Let h be a unit vector in
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their intersection. Then

‖ A− Ak ‖22≥‖ (A−B)h ‖22 =‖ Ah ‖22

=‖ USV Th ‖22

=‖ S(V Th) ‖22

= σ2
k+1 ‖ V Th ‖22= σ2

k+1.

A similar result holds true when the Frobinius matrix norm is used.

Theorem 2.4 (Bau & Trefthen, 1997). For any k with 0 ≤ k ≤ r, the matrices

Ak and A of theorem (2.3) also satisfy

‖ A− Ak ‖F= inf
B∈Rm×n

‖ A−B ‖F=

√√√√ r∑
i=k+1

σ2
i .

where rank(B) ≤ k

Proof. Let U and V be orthogonal matrices. Then ‖ B ‖F=‖ UTBV ‖F . That

is

‖ A−B ‖F =‖ UT (A−B)V ‖F

=‖ UTAV − UTBV ‖F

=‖ S − Sk ‖F ,

where A = USV T and Sk = UTBV. That is

‖ A−B ‖F=

√√√√ r∑
i=1

|σi − σj|2.
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for 1 ≤ j ≤ k

It follows now that

‖ A− Ak ‖F = min ‖ A−B ‖F

= min ‖ S − Sk ‖F .

=

√√√√ r∑
i=k+1

σ2
i .

The low rank approximation is normally used in image processing, specifically

image compression. The rank of matrix A is equal to the number of its nonzero

singular values(Leon, 1996). In many applications, the singular values of a matrix

decrease quickly with increasing rank. This propriety allows us to reduce the noise

or compress the matrix data by eliminating the small singular values or the higher

ranks. When an image is SVD transformed, it is not compressed, but the data

take a form in which the first singular value has a great amount of the image

information. With this, we can use a few singular values to represent the image

with little differences from the original.
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2.5 Image Processing

Image processing has received enormous focus in the last century. This is mainly

related to the wide area of its applications. The other important feature of image

processing tasks is their triviality when we compare them with what our visual

system performs. The first image processing research projects were devoted to

processing binary and then grayscale images. This was the clear choice at the

time, because time had to be spent on developing the first color recording cam-

era. Though, decades passed before digital cameras of acceptable quality and

resolution came into market. Working on color image processing was presumed

to be unnecessary even in the last decade.

When researchers started to think about color image processing, the first algo-

rithms were just parallelized versions of the available grayscale algorithms. At

that time, it was just common to think of a RGB color image as a set of three

parallel grayscale images. Unfortunately, this missunderstanding is extensively

common in todays image processing community. When working with color im-

ages, one has to face the correlation between color components and the distri-

bution of energy among them. This twofold phenomena is both a threat and an

opportunity. Thanks to the physical evidences, principal component analysis has

proved to be an appropriate tool for both decorrelating color components and

compacting the energy. As such, it is the time to quit working with fixed color

transformations and face the data-adaptive transformation of principal compo-

nent analysis(PCA) which seek to find k “principal axes” which are orthonormal

coordinate system that can capture most of the variance in data.

Image Processing (face verification) plays an important role in biometrics based

personal identification. A biometrics verification system is designed to verify
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or recognize the identity of a living person on the basis of his/her physiological

characters, such as face, fingerprint, and iris, or some aspects of behavior such as

handwriting or keystroke pattern. According to Steve Lawrence, the biometrics

verification technique acts as an efficient method and has wide applications in

the areas of information retrieval, automatic banking, control of access to secu-

rity areas, and buildings. Compared with other biometric verification techniques,

face recognition has the advantages of being passive and non-intrusive(Lawrence,

Giles, Tsoi, & Back, 1998).

Great progress has been made in face recognition in the past years. For almost

all previously proposed techniques, the success of face recognition depends on the

solution of two problems of representation and matching (Zhang, Yan, & Lades,

1997). The representation of a pattern can be considered as feature extraction in

pattern recognition. In Hong(1991), image features are divided into four groups:

visual features, statistical pixel features, transform coefficient features, and alge-

braic features. The algebraic features represent intrinsic properties of an image

and have good stability. Hong suggested that the algebraic features are valid fea-

tures in object recognition such as face recognition and proposed a singular value

decomposition (SVD) based recognition method which uses the singular values

as the feature vectors (Hong, 1991). The effectiveness of the Singular Value De-

composition has been tested in (Hong, 1991) and (Yong-Qing, 1991) respectively.

In Hong(1991), an error rate of 42.47% was recorded which was thought to be

caused by the statistical limitations of the small samples. Cheng (Yong-Qing,

1991) proposed a human face recognition method based on the statistical model

of small sample size that also used the singular values as the face features.

In his paper, Hong constructed an optimal discriminate transformation to trans-

form an original space of singular value (SV) vectors into a new space whose
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dimension is significantly lower than that of the original space to minimize the

small sample size effect. That approach was tested on 64 facial images of eight

people. Good discrimination ability was obtained with an accuracy rate of 100%

(Yong-Qing, 1991). It should be noted that in order to make the method in-

dependent of translation, rotation and scaling, the images were represented by

Goshtasby’s shape matrices. The Goshtasby’s shape matrices are invariant to

translation, rotation, and scaling of the facial images and are obtained by polar

quantization of the shape (Cheng, Liu, Yang, & Wang, 1992). The above two

methods have never been tested with large face databases and their effectiveness

with large databases remains unknown. Especially when there are variations in

lighting and viewpoint. Both methods use only singular values as face features.

Face recognition is one of the most important biometrics which seems to be a

good compromise between actuality and social reception and balances security

and privacy well. It has a variety of potential applications in information se-

curity law enforcement and access controls. Face recognition systems fall into

two categories: verification and identification. Face verification is 1:1 match that

compares a face images against a template face image. On the other hand face

identification is 1: N problem that compares a probe face image against all image

templates in a face database (Hasan, Jouhar, & Alwan, 2012). Face recognition

is a very difficult problem due to a substantial variations in light direction (illu-

mination) , different face poses , diversified facial expressions , Aging (changing

the face over time) and Occlusions (like glasses, hair, cosmetics). So the building

of an automated system that accomplishes such objectives is very challenging. In

last decades many systems with recognition rate greater than 90% has been done

however a perfect system with 100% recognition rate remains a challenge. Face

recognition algorithms are divided according to (Kachare & Inamdar, 2010) and

33



(Patil, Kolhe, & P.M, 2010) into three categories. The Holistic, Feature based

and the Hybrid methods. The Holistic methods identify a face using the whole

face images as input and extract the overall features of the face. Feature based

methods uses the local facial features like eyes, mouths, and fiducial points for

recognition. The Hybrid methods uses both feature based and holistic features to

recognize a face. These methods have the potential to offer better performance

than individuals.

2.5.1 Image File Formats

In the context of Digital Image processing, an image file format is a standard way

to organize and store image data. It defines how the data is arranged and the type

of compression that is used. There are several formats file in which image files can

be compressed (V.J & Dasgupta, n.d.). These include Bitmap(BMP), Graphics

Interchange Format(GIF), Portable Network Graphics(PNG), Tagged Image File

Format(TIFF), Portable Pix Map(PPM), Portable Grayscale Map(PGM) and

Joint Photographic Expert Group(JPEG):

Bitmap (BMP):

Windows Bitmap or BMP files are image files within the Microsoft Windows

Operating System. Bitmap files are not very popular as they do not scale or

compress the images well. Being oversized, this format is not web friendly.

Graphics Interchange Format(GIF):

Graphics Interchange Format is a popular image format on the internet. This is

because its file size is relatively small compared to other image compression types.

Graphics Interchange Format is most suitable for graphics, animations, diagrams

and cartoons. Graphics Interchange Format was introduced in the 1980’s to al-

low high-quality, high-resolution graphics to be displayed on a variety of graphics

34



hardware and was intended as an exchange and display mechanism for graphics

images. The rise of the Internet and in particular the web saw the Graphics

Interchange Format usage explode. A Graphics Interchange Format graphic is

stored as a sequence of pixels with 256 color values from a image specific color

palette. Dithering reduces the visual impact of the reduction in number of colors.

Portable Network Graphics(PNG):

This format is designed specifically for web applications. This format is lossless

so it does not lose quality and detail after image compression. PNG format is

not suitable for large images because they tend to generate a very large file. The

Portable Network Graphics (PNG) format was designed to replace the older and

simpler Graphics Interchange Format and, to some extent, the much more com-

plex Tagged Image File Format(TIFF) format. For image editing PNG provides

a useful format for the storage of intermediate stages of editing. PNG’s compres-

sion is fully lossless and since it supports up to 48-bit truecolor(RGB) or 16-bit

grayscale saving, restoring and re-saving an image will not degrade its quality.

Unlike TIFF, the PNG specification leaves no room for implementors to pick and

choose what features they’ll support; the result is that a PNG image saved in

one application is readable in any other PNG-supporting application. For the

Web, PNG really has three main advantages over GIF: variable transparency,

cross-platform control of image brightness, and a method of progressive display.

PNG also compresses better than GIF in almost every case.

Tagged Image File Format (TIFF ):

It is recommended especially for text, black and white images. Tagged Image

File Format is very flexible; it can be lossy or lossless. It is a rich format and

is supported by many imaging programs. It is the standard format for printing,

scanned documents and optical character recognition since it does not have any
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artifacts. Drawbacks of this format include long transfer time, huge disc space

consumption and slow loading time.

Portable Pix Map (PPM):

It is a very old image format that can represent any ordinary colour image.

Portable Pix Map files are basically plain text files making it one of the simplest

formats. The PPM format is not intended to be an archival format, so it does

not need to be too storage efficient.

Portable Grayscale Map (PGM):

Portable Grayscale Map format represents a grayscale graphic image. The PGM

format is a lowest common denominator grayscale file format. It is designed to be

extremely easy to learn and write programs for. (It’s so simple that most people

will simply reverse engineer it because it’s easier than reading this specification).

There are many pseudo-PGM formats in use where everything is as specified

herein except for the meaning of individual pixel values. For most purposes, a

PGM image can just be thought of an array of arbitrary integers, and all the

programs in the world that think they are processing a grayscale image can easily

be tricked into processing something else.

Joint Photographic Expert Group (JPEG):

JPEG (pronounced “jay-peg”) is a standardized image compression mechanism.

Joint Photographic Experts Group (JPEG), is the original name of the commit-

tee that wrote the standard. Joint Photographic Expert Group file format differs

from other file formats as it is lossy. JPEGs compression technology reduces the

true quality of the image in order to achieve its striking file size reduction. JPEG

compression is lossy, meaning that the decompressed image isn’t quite the same

as the one you started with. This file format was designed specifically for use with

highly detailed or photo realistic images, and is typically applied to rendered im-
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ages and digitized photographs. It is not suitable for use with rough drafts, line

drawings, screen captures and other image types which use sharply defined lines

and coloured images. JPEG is designed to exploit known limitations of the human

eye, notably the fact that small color changes are perceived less accurately than

small changes in brightness. That is, JPEG is intended for compressing images

that will be looked at by humans. If you plan to machine-analyze your images,

the small errors introduced by JPEG may be a problem for you, even if they are

invisible to the eye.A useful property of JPEG is that the degree of lossiness can

be varied by adjusting compression parameters. This means that you can trade

off file size against output image quality. The quality scale is purely arbitrary;

its not a percentage of anything.
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Chapter 3

Methodology

3.1 Introduction

This chapter describes the theory of the concept used, derivation and methods of

analyzing the available data to satisfy the objectives of the study. It focused on

the detail and comprehensive understanding of the Singular Value Decomposition

methodology for image processing. Among the aspects that will come under dis-

cussion include the methodologies used in the image processing. The algorithms

for generating processed images will be written in language of Matlab.

3.2 The Process of Singular Value Decomposi-

tion

Singular Value Decomposition is an effective numerical analysis tool used to

analyze matrices. Singular Value Decomposition is an optimal matrix decompo-

sition technique in a least square sense that it packs maximum signal energy into

as few coefficients as possible. It has the ability to adapt to the variations in
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local statistics of an image. In Singular Value Decomposition transformation, a

matrix can be decomposed into three other matrices that are of the same size

as the original matrix. From the view point of linear algebra, an image is an

array of non-negative scalar entries that can be regarded as a matrix. Without

loss of generality, if A is a square image(matrix), denoted as A ∈ Rn×n, where R

represents the real number domain, then the singular value decomposition of A

is defined as

A = USV T (3.1)

where U ∈ Rn×n and V ∈ Rn×n are orthogonal matrices, and S ∈ Rn×n is a

diagonal matrix, as



σ1

σ2

. . .

σn


Here the diagonal elements, σ′s, are referred to as the singular values and satisfy

the condition

σ1 ≤ σ2 ≤ σ3 ≤ ...σr ≤ σr+1 ≤= ... = σn = 0

Generally, in every real m× n matrix, A, there exist orthogonal matrices U and

V such that

UT
m×mAm×nVn×n = Sm×n =

 S1 0

0 0

 (3.2)

where S1 is a nonsingular diagonal matrix. The diagonal entries of S are non-

negative and can be arranged in a nonincreasing order. The number of a nonzero
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diagonal entries of S equals the rank of A.

To justify the assertion above, consider the symmetric positive semidefinite ma-

trix ATA; its eigenvalues are nonnegative. Represent the eigenvalues of ATA

by λ1 = σ2
1, λ2 = σ2

2, ..., λn = σn. Denote the set of orthonormal eigenvectors

of ATA corresponding to eigenvalues by v1, v2, ..., vn; that is v1 through vn are

orthonormal and satisfy ATAvi = σ2
1vi, i = 1, 2, ..., n Then

vTi A
TAvi = σ2

i 6= 0, (3.3)

for i = 1, 2, ..., r and

vTi A
TAvj = σ2

i = 0, (3.4)

for i = 1, 2, ..., r; j 6= i

Write V1 = (v1, v2, ..., vr) and V2 = (vr+1, vr+2, ..., vn) where v1 through vr are the

eigenvectors associated with the nonzero eigenvalues λ1 through λr and vr+1, ..., vn

correspond to the zero eigenvalues. Then

V T
2 A

TAV2 = V T
2 A

TA(vr+1, vr+2, ..., vn)

= V T
2 (0, 0, ..., 0) = 0

This implies that AV2 = 0, or

Avk = 0, k = r + 1, r + 2, ..., n (3.5)

Next define a set of nonzero vectors {ui} by

ui =
1

σi
Avi (3.6)
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for i = 1, 2, ..., r.

This form an orthonormal set because

UT
i Uj =

1

σi
(Avi)

T 1

σj
(Avj)

=
1

σiσj
(vTi A

TAvj)

=

 0 when i 6= j;

1 when i = j.

(3.7)

Define U1 = (u1, u2, ..., ur), and choose U2 = (ur+1, ..., um) such that U = (U1, U2)

is orthogonal. Then for any k > r,we have

uTkAvi = σiu
T
k ui = 0, i = 1, ..., r

from equation (3.6). that is by the orthogonality of the vectors of U and uTk vi = 0,

i = r + 1, ..., n from equation (3.5).
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Let V = (V1, V2) then

UTAV =



uT1

uT2
...

uTm


A(v1, v2, ..., vn)

=



1
σ1
vT1 A

T

1
σ2
vT2 A

T

...

1
σr
vTr A

T

uTr+1

...

uTm



A(v1, v2, ..., vn)

(3.8)

UTAV =



a1 0

a2

. . .

ar

0 0


= S =

 S1 0

0 0



where ai = 1
σi
σ2
i for i = 1, 2, ..., r and S1 is the diagonal matrix whose diagonal

entries are the nonzero singular values of A.

The statement about the rank of A becomes obvious, because

rank(A) = rank(USV T ) = rank(S) = r.

The decomposition A = USV T is known as the singular value decomposition

or SV D of A. The column vectors of U and V are called respectively, the left
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singular vectors and right singular vectors of A.

There are k = min(m,n) singular values of A. If r is the rank of A, then there are

r positive singular values of A. These are the positive square roots of the nonzero

eigenvalues of ATA (or AAT ). The remaining (k − r), if r < k, singular values

are zero. That is, the singular values are unique. However,the singular vectors

are not unique. For example, if A has a multiple singular value σ > 0, then the

corresponding columns of the matrix V can be chosen as any orthonormal basis

of the space spanned by the eigenvectors associated with the multiple eigenvalue

λ = σ2 of ATA.

Theorem 3.1 Let A be an m× n matrix, (m ≥ n). Then

1. The matrices (ATA)n×n and (AAT )m×m are symmetric with real and nonneg-

ative eigenvalues.

2. If λ is a nonzero eigenvalue of ATA corresponding to the eigenvector x, then λ

is also an eigenvalue of AAT with corresponding eigenvector Ax. In other words,

ATA and AAT have the same nonzero eigenvalues.

Proof 3.1

1. (ATA)
T

= AT (AT )
T

= ATA, and so ATA is symmetric. Similarly, for AAT ,

(AAT )
T

= (AT )
T
AT = AAT .

Let x be an eigenvector of ATA corresponding to a nonzero eigenvalue λ. Then

ATAx = λx (3.9)
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Multiplying through equation (3.9) on the left by xT yeilds

xTATAx = λxTx

(Ax)T (Ax) = λ ‖ x ‖22

‖ Ax ‖22 = λ ‖ x ‖22

≥ 0

Hence

λ =
‖ Ax ‖22
‖ x ‖22

≥ 0

This holds for AAT .

2. Multiplying through equation (3.9) on the left by A gives

A(ATA)x = A(λx)

AAT (Ax) = λ(Ax)

That is, Ax is an eigenvector of AAT corresponding to the eigenvalue λ, where

x is an eigenvector of ATA corresponding to the eigenvalue λ. Hence ATA and

AAT have the same nonzero eigenvalue λ.

Properties and Observations of the SVD

There are many properties and attributes of Singular Value Decomposition, parts

of the properties that are used in this research are presented as follows.

1. The singular values σ1, σ2, ..., σn of A are unique; however the matrices U and

V are not unique.

2. Since ATA is symmetric, we can find an orthonomal set of eigenvectors vi,

i = 1, 2, .., n such that the orthogonal matrix V = [v1, v2...vn] diagonalizes

ATA.
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3. Similarly, we can find an orthonormal set of eigenvectors ui, i = 1, 2, ..,m

such that the orthogonal matrix U = [u1, u2...um] diagonalize ATA. Moreover,

AAT = USSTUT

4. Comparing the jth column of each side of the equation AV = US we get

Avj = σjuj, j = 1, 2, ..., n. Similarly, ATU = V ST , and so ATuj = σjvj for

j = 1, 2, ..., n and ATuj = 0 for j = 1, 2, ...,m

5. If the matrix A has rank r, then

• v1, v2, ..., vr form an orthonormal basis for R(AT )

• vr+1, vr+2, ..., vn form an orthonormal basis for N(A)

• u1, u2, ..., ur form an orthonormal basis for R(A)

• ur+1, ur+2, ..., um form an orthonormal basis for N(AT )

6. The rank of the matrix A is equal to the number of its nonzero singular val-

ues (where singular values are counted according to multiplicity). A similar

assumption about eigenvalues is not true. For example, the matrix

C =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


has rank 4 even though all of its eigenvalues are 0.

7. In the case that A has rank r < n, if we set U1 = (u1, u2, ..., ur), V1 =

(v1, v2, ..., vr) and define S1 as the diagonal matrix whose diagonal entries are

the nonzero singular values of A, then we obtain the following factorization
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called the compact form of the singular value decomposition of A

A = U1S1V
T
1

Obtaining the rank of a matrix is useful in many applications of Linear Algebra.

One example can be computing the number of solutions of a system of linear

equations. In many applications, it is necessary to either determine the rank

of a matrix or to determine whether the matrix is deficient in rank. Gaussian

elimination is one approach to obtain the rank by reducing the matrix to the

echelon form and then counting the number of nonzero rows. However, this

approach will often produce errors during the elimination process. The singular

value decomposition presents a method for determining how close the given matrix

is to a matrix of smaller rank.

3.2.1 The Moore-Penrose Pseudoinverse of a Matrix

If A is an n× n matrix with linearly independent columns, then A is invertible,

and the solution of the linear system Ax = b is x = A−1b. On the other hand, if A

is an m× n matrix (m > n) with linearly independent columns, then the system

Ax = b, A ∈ Rm,n has a unique least-squares solution given by x̂ = (ATA)−1AT b

The pseudo-inverse (also called the Moore-Penrose inverse and denoted by (A†))

of an n×m matrix (n > m) A is defined by

A† = (ATA)−1AT .

Singular Value Decomposition provides an intuitive framework to compute a

pseudo-inverse A† of a matrix operator A (Shilov, 1977). If the rank A = r < n,
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then

A = USV T =

[
Ur Um−r

] Dr 0

0 0


 V T

r

V T
n−r


= UrDrV

T
r

(3.10)

where Ur = [u1u2...ur], Um−r = [ur+1ur+2...um], Dr is the r × r diagonal ma-

trix with diagonal entries σ1 ≥ σ2 ≥ ... ≥ σr > 0, Vr = [v1v2...vr], Vn−r =

[vr+1vr+2...vn]. This factorization of A is called reduced singular value decompo-

sition of A.

Since the diagonal entries of Dr in equation(3.10) are nonzero, the matrix Dr is

invertible. In this case, we can use Singular Value Decomposition to obtain a

pseudo-inverse operator A† which exactly inverses the operations of the original

matrix A which will satisfy the equation x̄ = A†b. The pseudo-inverse (A†), is

given by

A† = V D−1UT

=

[
v1 v2 ... vn−1 vn

]


1
σ1

0 0 0 0 0 0

0 1
σ2

0 0 0 0 0

0 0 1
...

0 0 0 0

0 0 0 1
σn−1

0 0 0

0 0 0 0 1
σn

0 0





uT1

uT2

...

uTm−1

uTm


The activity of the above pseudo-inverse on the target value b can be interpreted

as the target vector b is projected onto the basis in the output space. Then, the

projected values are reverse-stretched (scaled) with respect to the corresponding

inverses of the singular values. We note that some of the basis disappear due

to the zero singular values. This disappearance guarantees that the target value
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b is now in the column space of the matrix A (Strang, 1980). The result is re-

expressed with respect to the basis in the input vector space V . Hence, the

Singular Value Decomposition of A already guarantees that we can obtain a

pseudo-inverse readily from the factorization which is always possible. When the

matrix is not full rank, the pseudo-inverses are used (Golub & Kahan, 1965).

Properties of pseudo-inverse

The Pseudo-inverse of a matrix A, has the following properties.

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

• For each x ∈ <n, A†Ax is the orthogonal projection of x onto RowA.

• For each b ∈ <m, AA†b is the orthogonal projection of b onto ColA
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3.3 The Singular Value Decomposition and Lin-

ear Systems

A set of linear algebraic equations can be written as

Ax = b

where A is a matrix of coefficients (m×n) and b(m×1) is some form of a system

output vector. The vector x is what we usually solve for. If m = n then there

are as many equations as unknowns, and there is a good chance of solving for x.

That is

A−1Ax = A−1b

x = A−1b

Here, we simply compute the inverse of A. This can prove to be a challenging task,

however, for there are many situations where the inverse of A does not exist. In

these cases we will approximate the inverse via the Singular Value Decomposition

which can turn a singular problem into a non-singular one.

3.3.1 Linear Systems with equal number of equations and

unknowns

This is the case when matrix A is square. We have already presented the case

when A is both square and symmetric. But what if it is only square, or more

importantly, square and singular or degenerate (i.e., one of the rows or columns

of the original matrix is a linear combination of another one). Here again we use

49



Singular Value Decomposition. Take for example the following matrix

A =

 1 1

2 2


This matrix is square but not symmetric. Furthermore it is singular since the

determinant |A| = 0. This would imply A−1 does not exist. Using the Singular

Value Decomposition, however, we can approximate an inverse. The Singular

Value Decomposition approach tells us to compute eigenvalues and eigenvectors

from the inner and outer product matrices:

ATA =

 5 5

5 5


and

AAT =

 2 4

4 8


The inner and outer product matrices are both symmetric. The eigenvalues from

these matrices are λ1 = 0 and λ2 = 10. Consequently, the singular values of A

are σ1 = 0 and σ2 =
√

10. Therefore the rank of A is 1. The singular value

decomposition is then expressed as

A = USVT =

 2√
5

1√
5

−1√
5

2√
5


 0 0

0
√

10


 1√

2
1√
2

−1√
2

1√
2


T

=

 1 1

2 2



3.3.2 Underdetermined Systems

This is the case where the matrix A in the system Ax = b is m×n with m < n.

That is, the number of equations are less than the number of unknowns. For
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example, if

A =

 3 1 1

−1 3 1

 ,
then

ATA =


10 0 2

0 10 4

2 4 2


and

AAT =

 11 1

1 11


The eigenvalues from ATA are λ1 = 12, λ2 = 10 and λ3 = 0. The eigenvalues

from AAT are λ1 = 12 and λ2 = 10. Consequently, the non-zero singular values

of A are σ1 =
√

12 and σ2 =
√

10. Therefore the rank of A is 2. The singular

value decomposition is then expressed as

A = USVT =

 1√
2

1√
2

1√
2

1√
2


 √12 0 0

0
√

10 0




1√
6

2√
5

1√
30

2√
6
−1√
5

1√
30

2√
6

0 −5√
30


T  3 1 1

−1 3 1



3.3.3 Overdetermined Systems

This is the case where the matrix A in the system Ax = b is m×n with m > n.

That is, the number of equations are more than the number of unknowns. When

we have a set of linear equations with more equations than unknowns, and we

wish to solve for the vector x, we usually do so in a least-squares sense. For
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example, if

A =


1 1

1 1

0 0

 ,

then ATA

 2 2

2 2

 and AAT =


2 2 0

2 2 0

0 0 0


The eigenvalues from ATA are λ1 = 4 and λ2 = 0. The eigenvalues from AAT

are λ1 = 4, λ2 = 0 and λ3 = 0. Consequently, the non-zero singular values of

A are σ1 = 4 and σ2 = 0. Therefore the rank of A is 1. The singular value

decomposition is then expressed as

A = USVT =


1√
2

1√
2

0

1√
2
−1√
2

0

0 0 1



√

4 0

0 0

0 0


 1√

2
1√
2

1√
2
−1√
2



3.3.4 Overdetermined System: Least-Squares Solution

The Singular Value Decomposition provides the most numerically efficient ap-

proach for solving the least-square problem

Ax = b (3.11)

where A ∈ Rm×n, m ≥ n, x ∈ Rn, b ∈ Rm.

Assume that the singular values are arranged so that σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σn ≥ 0

and that the rank of A is n. Then a least-squares solution x0 of equation(3.11)

satisfies

ATAx0 = ATb (3.12)
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If we write b ∈ Rm as

b =
m∑
i=1

biui

where the ui’s are orthonormal eigenvectors of AAT , then by the orthonormality

of the ui’s, we have

bi = uTi b

Similarly, we can expand x0 ∈ Rn as

x0 =
n∑
i=1

aivi

where the vi’s are orthonormal eigenvectors of ATA. Then,

ATAx0 = ATA
n∑
i=1

aivi

=
n∑
i=1

aiσ
2
i vi

(3.13)

Also,

ATb = AT
m∑
i=1

biui

=
n∑
i=1

biσivi

(3.14)

since ATui = 0, i = n + 1, n + 2, ...,m. Substituting equation(3.13) and (3.14)

into (3.12) gives

ai =
bi
σi

=
uTi b

σi

and therefore

x0 =
n∑
i=1

uTi b

σi
vi (3.15)
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as the solution to the linear system.

3.4 SVD Approach for Face Image Recognition

Singular Value Decomposition treats a set of known faces as vectors in a subspace,

called “face space”, spanned by a small group of “base-faces” (Zeng, 2006). Face

image recognition in singular value decomposition is performed by projecting a

new image onto the face space, and then classifying the face by comparing its co-

ordinates (position) in face space with the coordinates (positions) of known faces.

However, the Singular Value Decomposition approach has better numerical prop-

erties than Principal Component Analysis (PCA). In the case of Singular Value

Decomposition, we redefined the matrix A as set of the training face. Assume

each face image has m×n = M pixels, and it is represented as an M × 1 column

vector fi , a ‘training set’ S with N number of face images of known individuals

forms an M ×N matrix:

S = [f1, f2, f3, ..., fN ] (3.16)

.

The mean image f of set S, is given by

f =
1

N

N∑
i=1

fi (3.17)

Subtracting this mean from the original faces gives

ai = fi − f, (3.18)

i = 1, 2, 3, ..., N.
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This gives another matrix

A = [a1, a2, ..., aN ] (3.19)

with dimension M ×N .

We then apply the concept of Singular Value Decomposition to decompose A into

USV T .

Since {u1, u2, ..., ur} form an orthonormal basis for R(A), the range (column)

subspace of matrix A and matrix A is formed from a training set S with N face

images, R(A) is called a ‘face subspace’.

Let X = [x1, x2, ..., xr]
T be the coordinates (position) of any m× n face image f

in the face subspace. Then it is the scalar projection of f − f onto the basefaces:

X = [u1, u2, ..., ur]
T [f − f ] (3.20)

This coordinate vector X is used to find which of the training faces best describes

the face f . That is to find some training face fi, where i = 1, 2, ..., N , that

minimizes the distance:

εi =‖ X −Xi ‖2

= [(X −Xi)
T (X −Xi)]

1
2

(3.21)

where Xi is the coordinate vector of fi, which is the scalar projection of fi − f

onto the basefaces:

Xi = [u1, u2, ..., ur]
T [fi − f ] (3.22)

A face f is classified as face fi when the minimum εi is less than some predefined

threshold ε0. Otherwise the face f is classified as “unknown face”. If f is not

a face, its distance to the face subspace will be greater than 0. Since the vector
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projection of f − f onto the face space is given by

fJ = [u1, u2, ..., ur]X (3.23)

where X is given in equation (3.20).

The distance of f to the face space is the distance between f−f and the projection

fJ onto the face space:

εf =‖ (f − f)− fJ ‖2

= [(f − f − fJ)T (f − f − fJ)]
1
2

(3.24)

If εf is greater than some predefined threshold ε1, then f is not a face image.

Steps to Conduct Face Recognition with SVD

1. Obtain a training set S with N face images of known individuals.

2. Compute the mean face f of S by using equation (3.17)

3. Form the matrix A in equation (3.19) with the computed mean face f . Cal-

culate the singular value decomposition of A as shown in equation (3.1).

4. For each known individual, compute the coordinate vector Xi from equation

(3.22). Choose a threshold ε1 that defines the maximum allowable distance

from face space.

5. Determine a threshold ε0 that defines the maximum allowable distance from

any known face in the training set S.

6. For a new input image f to be identified, calculate its coordinate vector X

from equation (3.20), the vector projection fJ , the distance εf to the face

space from equation (3.24). If εf > ε1, then the input image is not a face.
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7. If εf < ε1 , compute the distance εi to each known individual. If all εi > ε0, the

input image may be classified as unknown face, and optionally used to begin

a new individual face. If εf < ε1, and some εi < ε0, classify the input image

as the known individual associated with the minimum εi (Xi), and this image

may optionally added to the original training set (Jain & Gautam, 2012).

The flowchart for face recognition with SVD is showed in the figure below.
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Real Image Data

From training set?

Compute the
mean face f

ai = fi − f , create A

Calculate the
SVD of A

Compute the vector
Xi in the basespace

Compute
the vector
X in

basespace

εi =‖ X − Xi ‖2

εi ≤ ε0?

Face is in the
training set

Face not in the
training set

Yes

No

Yes

No

Figure 3.1: Flow chart of Face Recognition with SVD
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Chapter 4

Experimentation and Results

4.1 Introduction

The algorithm was implemented using MATLAB R2012a software. MATLAB is

a production of MathWorks Co. and can perform algorithm development, data

visualization, data analysis, and numeric computation with traditional program-

ming language. Signal processing, image processing, controller design, mathemat-

ical computation, etc. may be implemented easily with MATLAB that includes

many toolboxes which simplifies generation of algorithm more powerfully. Image

Acquisition Toolbox, Image Processing Toolbox and other Toolboxes are used

while implementing the algorithm of Face recognition. Image Acquisition Tool-

box enables image acquiring from frame grabber or other imaging system that

MATLAB supports. This toolbox supports acquiring resolution of frame grab-

ber, triggering specification, color space, number of acquired image at triggering,

and region of interest while acquiring. This toolbox will bridge between frame

grabber and MATLAB environment. Image Processing Toolbox provides many

reference algorithms, graphical tools, analysis, etc. Reference algorithm provides

fast development of algorithms. Filters, transforms, and enhancements are ready
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to use functions which simplify to code generation. This toolbox is used in face

detection and some part of face recognition sections.

4.2 Coding Face Recognition With Matlab

Many in-built MATLAB functions are for image processing since it is a numerical

computing environment that allows easy matrix manipulation. Matlab is used

to test new image processing techniques and algorithms. Almost everything in

MATLAB is done through programming and manipulation of raw image data.

MATLAB does include standard “for” and “while” loops, but using MATLAB’s

vectorized notation often produces code that is easier to read and faster to exe-

cute. In this, face recognition using singular value decomposition were recoded

with MATLAB. The programs utilize matrices operation to manipulate data to

reduce “for” loops, which reduce lines of the code.

The consideration for using matrix operations is that the inner matrix dimensions

must agree. In the program below, U is a M ×M right matrix of Singular Value

Decomposition of A(M ×N), Ur is M × r matrix that are form from U ( r is the

number of singular values we choose). X = Ur ∗ A is the coordinates (position)

matrix that is the r×N dimensions for training set A. x is a coordinates vector

in the r ×N subspace for testing image.

X = Ur ∗ A

= [Ur ∗ a1, Ur ∗ a2, ..., Ur ∗ aN ]

= [x1, x2, ..., xN ]

Where
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= x1 =



x11

x12

x13

· · ·

x1r


,x2 =



x21

x22

x23

· · ·

x2r


,xN =



xN1

xN2

xN3

· · ·

xNr


and

x =



x1

x2

x3

· · ·

xr


When computing the distance of each points between the training set and testing

image,

D = X− x ∗ ones(1, N)

In order to have agreed dimensions to operate the matrix X and vector x , we

need to transfer the vector x to the matrix form by operation x ∗ ones(1, N),

x ∗ ones(1, N) =



x1

x2

x3

· · ·

xr


[

1 1 1 · · · 1

]
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=



x1 x1 x1 · · · x1

x2 x2 x2 · · · x2

x3 x3 x3 · · · x3

· · · · · · · · · · · · · · ·

xr xr xr xr xr


(r×N)

So that the coordinates distance matrix between the testing image and each image

in the training set

D = [D1, D2, D3..., DN ]

Where

D1 =



x11 − x1

x12 − x2

x13 − x3

· · ·

x1r − xr


, D2 =



x21 − x1

x22 − x2

x23 − x3

· · ·

x2r − xr


, ..., DN =



xN1 − x1

xN2 − x2

xN3 − x3

· · ·

xNr − xr


The minimized distance between training face and testing image:

d = sqrt(diag(DT ×D))

where

DT ×D =



DT
1

DT
2

DT
3

· · ·

DT
N


[
D1 D2 D3 · · · DN

]
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=



DT
1D1 DT

1D2 DT
1D3 · · · DT

1DN

DT
2D1 DT

2D2

DT
3D1 DT

3D3

· · · · · ·

DT
ND1 DT

NDN


diag(DT ×D) =

[
DT

1D1 DT
2D2 DT

3 · · · DT
NDN

]
Therefore

d = sqrt(diag(DT ×D))

is a vector of the minimized distance between the training face images and testing

image. The source code is shown below.

func t i on [ e f , d ] = svdRecognit ion0 (newName , r , N, A, U, S , V,

fbar , e0 , e1 )

%newName = ’ gideon . jpg ’ ? r = number o f s i n g u l a r va lue s choosed ;

Ur = U( : , 1 : r ) ; X = Ur ’∗A;

f i d = fopen (newName ) ;

f a c e = f g e t l ( f i d ) ;

fnew = rgb2gray ( imread ( f a c e ) ) ;

fnew = i m r e s i z e ( fnew , [ 112 , 9 2 ] ) ;

f = reshape ( fnew , 10304 , 1 ) ;

f 0 = double ( f ) − f ba r ;

x = Ur ’∗ f 0 ;

fp = Ur∗x ;

e f = norm( f0−fp ) ;

i f e f < e1
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D = X−x∗ones (1 , N) ;

d = s q r t ( diag (D’∗D) ) ;

[ dmin , indx ] = min (d ) ;

i f dmin < e0

f p r i n t f ( [ ’ This image i s f a c e #’ , num2str ( indx ) ] ) ;

e l s e

f p r i n t f ( ’ The input image i s an unknown face ’ ) ;

end

e l s e

d=0;

f p r i n t f ( ’ The input image i s not a face ’ ) ;

end

func t i on [A, U, S , V, fbar ] = svdRecognit ion ( fi leName , N)

%fi leName = ’ knust . txt ’ ;

f i d = fopen ( f i leName ) ;

chk = imread ( ’ Newface/ v a l e n c i a . jpg ’ ) ;

s i z = s i z e ( chk ) ;

S = ze ro s ( s i z (1)∗ s i z ( 2 ) , N) ;

f o r i =1:N

f a c e = f g e t l ( f i d ) ;

f i = rgb2gray ( imread ( f a c e ) ) ;

subp lot ( c e i l ( s q r t (N) ) , c e i l ( s q r t (N) ) , i ) ;

f p r i n t f (1 , ’% s .\n ’ , f a c e ) ;

f i g u r e ( 1 ) ; imshow ( f i ) ;

f i = double ( reshape ( f i , s i z (1)∗ s i z ( 2 ) , 1 ) ) ;
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S ( : , i ) = f i ;

end

S = S ’ ;

fba r = (mean(S ) ) ’ ;

f i g u r e ( 2 ) ; imshow ( reshape ( u int8 ( fbar ) , 112 , 9 2 ) ) ;

A = S ’ − f ba r ∗ones (1 , N) ;

[U, S , V] = svd (A, 0 ) ;
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4.3 Results for Face Recognition

The test was conducted under a training set with images of Size M = 92× 112 =

10, 304,. The number of known individual face images is: N = 40, Different

Conditions such all frontal and slight tilt of the head, different facial expressions

and the use of glasses were taken into consideration. Essentially, a face image is

of M (say 10,000) dimension. But the rank r of matrix A is less than or equals

N . For most applications, a smaller number of basefaces than r are sufficient for

identification. In this way, the amount of computation is greatly reduced. The

following figures show the base face image, the average of training set image, and

the training set image that was used for this experiment.

Figure 4.1: RGB Images of the Training Set

The face recognition in this study was performed using the RGB images in

figure(4.1). This is possible because the recoded Matlab programme converted

all images into grayscale before the implementation.

The figure(4.2) shows the image of the computed mean face of the training set
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images.

Figure 4.2: Grayscale Image of the Computed Mean face of the Training Set

4.4 Experiments on the Properties of SVD

One of the properties of the Singular Value Decomposition is that, the singular

values σ1, σ2, σ3, ..., σn are unique, but the singular vectors U and V are not

unique. The uniqueness of the singular values makes its study very important. To

investigate this characteristic of the Singular Value Decomposition, an experiment

was performed using three person’s face images by combining their singular values

and the singular vectors. The experiment was repeated using the face image of a

person and a flower as a confirmation of the results obtained.

4.4.1 Experiments on the Properties of SVD using three

Face images

The Singular Value Decomposition of the images were performed. The face images

of Gideon (f1), Dora (f2) and Baby (f3) were first decomposed into U, S, V T so

that f1 = U1S1V
T
1 , f2 = U2S2V

T
2 and f3 = U3S3V

T
3 . The result of the combination

of the singular values and singular vectors of the face images is shown in the table

below.
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1U1S1V T
1

2U1S1V T
2

3U1S1V T
3

10U1S2V T
1

11U1S2V T
2

12U1S2V T
3

4U2S1V T
1

5U2S1V T
2

6U2S1V T
3

13U2S2V T
1

14U2S2V T
2

15U2S2V T
3

7U3S1V T
1

8U3S1V T
2

9U3S1V T
3

16U3S2V T
1

17U3S2V T
2

18U3S2V T
3

19U1S3V T
1

20U1S3V T
2

21U1S3V T
3

22U2S3V T
1

23U2S3V T
2

24U2S3V T
3

25U3S3V T
1

26U3S3V T
2

27U3S3V T
3

Table 4.1: Result of Exchanged Singular Values with Singular Vectors for three
face images

In Table (4.1), the images labelled 1, 14 and 27, shows the combination of

the singular values and singular vectors, U1S1V
T
1 , U2S2V

T
2 and U3S3V

T
3 which

are the original images of Gideon, Dora and baby respectively. However, when

we combined Gideon’s singular values (SVs) with Dora’s singular vectors,(U2)

and (V T
2 ) it shows Dora’s face image (see Table(4.1) (Image. 5). The image has

different brightness with Doras original image as shown in Table (4.1) Image 14.

The difference in brightness is due to the fact that, the singular values are not

from the face image of Dora. Image 9 shows Baby’s face, but it is a combination

of Gideon’s singular values (SVs) and Baby’s singular vectors(U3) and (V T
3 ).

Image 10 shows Gideon’s face, but it is a combination of Dora’s singular values(S2)
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and Gideon’s singular vectors(U1) and V T
1 . Similarly, Image 18 shows Baby’s face,

but it is a combination of Dora’s singular values (SVs) and Baby’s singular vec-

tors U3 and V T
3 .

When we combined two pair of singular vectors Ui and V T
j , which are from two

different images i and j respectively, with the singular values of either image i or

j, the outcome images looks like the “cloud”. The results are shown in images 2,

3, 4, 6, 7, 8, 11, 12, 13, 15, 16, 17, 20, 21, 22, 24, 25 and 26 of Table (4.1).

The experiment showed that the combinations of Gideon’s singular vectors(U1, V
T
1 ),

Dora’s singular vectors(U2, V
T
2 ), and Baby’s singular vectors(U3, V

T
3 ) with any

singular value Si, (i = 1, 2, 3) produces Gideon’s image, Dora’s image and Baby’s

image respectively. These images even though appear to be the same, the are

numerically different. The images with the corresponding line graphs of the pixels

(x, y) below, demonstrate clearly, these differences.

1U1S1V T
1

Table 4.2: A graph of Image with combination U1S1V
T
1

69



10U1S2V T
1

Table 4.3: A graph of Image with combination U1S2V
T
1

19U1S3V T
1

Table 4.4: A graph of Image with combination U1S3V
T
1

5U2S1V T
2

Table 4.5: A graph of Image with combination U2S1V
T
2

14U2S2V T
2

Table 4.6: A graph of Image with combination U2S2V
T
2
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23U2S3V T
2

Table 4.7: A graph of Image with combination U2S3V
T
2

9U3S1V T
3

Table 4.8: A graph of Image with combination U3S1V
T
3

18U3S2V T
3

Table 4.9: A graph of Image with combination U3S2V
T
3

27U3S3V T
3

Table 4.10: A graph of Image with combination U3S3V
T
3
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4.4.2 Experiments on the Properties of SVD using a Face

Image and a Flower

The same experiment was performed using two images where one is a face image

and the other, a flower image. Again, the singular value decomposition of the

images were again performed. The result of the combination of the singular values

and singular vectors of the face image and the flower is shown in the Table below.

(a)U1S1V T
1

(b)U2S1V T
1

(c)U1S2V T
1

(d)U2S2V T
1

(e)U1S1V T
2

(f)U2S1V T
2

(g)U1S2V T
2

(h)U2S2V T
2

Table 4.11: Result of Exchanged Singular Values with Singular Vectors for a face
image and a flower

The experimentation showed the same result as two face images. In Table(4.11),

images (a) and (h) shows the combination of U1S1V
T
1 , and U2S2V

T
2 which are the

original images of the flower and Dora respectively. However, when we combined

the singular values of the flower with Dora’s singular vectors, it shows Dora’s

face image (see Table(4.11) image (f)). This image has different brightness when

compared Dora’s original image in (h). (c) shows the image of the flower, but it

is a combination of Dora’s singular values and the singular vectors of the flower.

When we combined two pair of singular vectors Ui and V T
j , from two images i and

j respectively, the outcome images, again, looks like a “cloud”. (See Table(4.11),

images (b), (d) (e) and (g)).
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The experiment as seen above, showed that the combinations of Dora’s singular

vectors(U1, V
T
1 ), and the flower’s singular vectors(U2, V

T
2 ) with any singular value

Si, (i = 1, 2) produces Dora’s image and the flower’s image respectively. These

images are numerically different even though they appear to be the same. The

images with the corresponding line graphs of the pixels (x, y) below demonstrate

clearly, these differences.

(a)U1S1V T
1

Table 4.12: A graph of Image with combination U1S1V
T
1

(c)U1S2V T
1

Table 4.13: A graph of Image with combination U1S2V
T
1
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(h)U2S2V T
2

Table 4.14: A graph of Image with combination U2S2V
T
2

(f)U2S1V T
2

Table 4.15: A graph of Image with combination U2S1V
T
2
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The study first reviewed the concept of singular value decomposition. It then

briefly mentioned some application areas such as the low ranked approximation

of matrices, the pseudo-inverse of matrices and the solution to linear systems via

singular value decomposition.

Singular value decomposition as a technique of linear algebra, has been applied

to digital image processing. Face recognition as an area of image processing was

investigated and tested. Based on the theory and result of experiments, it was

found that singular value decomposition is a stable and effective method to de-

compose a system into a set of linearly independent components, each of them

carrying its own data (information) to contribute to the system. That is, both

rank of the problem and subspace orientation can be determined.

The face recognition test performed using the image that project into facebase

show that it is necessary to improve the algorithm to work with complex objects.

The singular value decomposition approach is robust, simple, easy and fast to

implement. It works well in a constrained environment and provides a practical
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solution to image recognition problems. Instead of searching a large database of

faces, by using basefaces, this small set of likely matches for given images can be

easily obtained.

From the result it is clear that, though the singular values are unique in singular

value decomposition, the singular vectors are more important for image process-

ing. Especially, for face recognition. This fact necessitate a deep research and

further investigation on the characteristics of singular value decomposition in im-

age processing.

From the findings of this study, it is recommended that institutions that house

a lot of people with different face images adapt the use of face recognition to

enhance security.

5.1.1 Further Study

For further study, one may consider working on more complex images such as

vary large size 3D images with singular value decomposition technique for image

recognition. Also, the application can be performed with programming of Octave,

Python or in some other Programming Languages to achieve real-time image

processing.
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Appendix A

Matlab Source codes

A.1 Code for Experiments on the Properties of

SVD

A1=imread ( ’ g ideon . jpg ’ ) ;

A2=imread ( ’ dora . jpg ’ ) ;

A3=imread ( ’ baby . jpg ’ ) ;

s1 = s i z e (A1 ) ; % f i n d out the s i z e o f the image

s2 = s i z e (A2 ) ;

s3 = s i z e (A3 ) ;

s s1 =s i z e ( s1 ) ;

s s2 =s i z e ( s2 ) ;

s s3 =s i z e ( s3 )

i f s s1 (: ,2)== 3 ; % i f the image i s a c o l o r image in jpeg or jog

%formatn i t w i l l cove r t to the g r e y s c a l e

A1 = rgb2gray (A1 ) ;

end
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i f s s2 (: ,2)== 3 ; % i f the image i s a c o l o r image in jpeg or jog

%formatn i t w i l l cove r t to the g r e y s c a l e

A2 = rgb2gray (A2 ) ;

end

i f s s3 (: ,2)== 3 ; % i f the image i s a c o l o r image in jpeg or jog

%formatn i t w i l l cove r t to the g r e y s c a l e

A3 = rgb2gray (A3 ) ;

end

[ u1 , s1 , v1]=svd ( double (A1 ) ) ;

[ u2 , s2 , v2]=svd ( double (A2 ) ) ;

[ u3 , s3 , v3]=svd ( double (A3 ) ) ;

combinf1=uint8 ( u1∗ s1∗v1 ’ ) ;

f i g u r e ( 1 ) ; imshow ( combinf1 ) ;

t i t l e ( ’ combination o f u1∗ s1∗v1 ’ ) ;

combinf2=uint8 ( u1∗ s1∗v2 ’ ) ;

f i g u r e ( 2 ) ; imshow ( combinf2 ) ;

t i t l e ( ’ combination o f u1∗ s1∗v2 ’ ) ;

combinf3=uint8 ( u1∗ s1∗v3 ’ ) ;

f i g u r e ( 3 ) ; imshow ( combinf3 ) ;

t i t l e ( ’ combination o f u1∗ s1∗v3 ’ ) ;

combinf4=uint8 ( u2∗ s1∗v1 ’ ) ;

f i g u r e ( 4 ) ; imshow ( combinf4 ) ;

t i t l e ( ’ combination o f u2∗ s1∗v1 ’ ) ;

combinf5=uint8 ( u2∗ s1∗v2 ’ ) ;

f i g u r e ( 5 ) ; imshow ( combinf5 ) ;

t i t l e ( ’ combination o f u2∗ s1∗v2 ’ ) ;
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combinf6=uint8 ( u2∗ s1∗v3 ’ ) ;

f i g u r e ( 6 ) ; imshow ( combinf6 ) ;

t i t l e ( ’ combination o f u2∗ s1∗v3 ’ ) ;

combinf7=uint8 ( u3∗ s1∗v1 ’ ) ;

f i g u r e ( 7 ) ; imshow ( combinf7 ) ;

t i t l e ( ’ combination o f u3∗ s1∗v1 ’ ) ;

combinf8=uint8 ( u3∗ s1∗v1 ’ ) ;

f i g u r e ( 8 ) ; imshow ( combinf8 ) ;

t i t l e ( ’ combination o f u3∗ s1∗v1 ’ ) ;

combinf9=uint8 ( u3∗ s1∗v3 ’ ) ;

f i g u r e ( 9 ) ; imshow ( combinf9 )

t i t l e ( ’ combination o f u3∗ s1∗v3 ’ )

combinf10=uint8 ( u1∗ s2∗v1 ’ ) ;

f i g u r e ( 1 0 ) ; imshow ( combinf10 )

t i t l e ( ’ combination o f u1∗ s2∗v1 ’ )

combinf11=uint8 ( u1∗ s2∗v2 ’ ) ;

f i g u r e ( 1 1 ) ; imshow ( combinf11 )

t i t l e ( ’ combination o f u1∗ s2∗v2 ’ )

combinf12=uint8 ( u1∗ s2∗v3 ’ ) ;

f i g u r e ( 1 2 ) ; imshow ( combinf12 )

t i t l e ( ’ combination o f u1∗ s2∗v3 ’ )

combinf13=uint8 ( u2∗ s2∗v1 ’ ) ;

f i g u r e ( 1 3 ) ; imshow ( combinf13 )

t i t l e ( ’ combination o f u2∗ s2∗v1 ’ )

combinf14=uint8 ( u2∗ s2∗v2 ’ ) ;

f i g u r e ( 1 4 ) ; imshow ( combinf14 )
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t i t l e ( ’ combination o f u2∗ s2∗v2 ’ )

combinf15=uint8 ( u2∗ s2∗v3 ’ ) ;

f i g u r e ( 1 5 ) ; imshow ( combinf15 )

t i t l e ( ’ combination o f u2∗ s2∗v3 ’ )

combinf16=uint8 ( u3∗ s2∗v1 ’ ) ;

f i g u r e ( 1 6 ) ; imshow ( combinf16 )

t i t l e ( ’ combination o f u3∗ s2∗v1 ’ )

combinf17=uint8 ( u3∗ s2∗v2 ’ ) ;

f i g u r e ( 1 7 ) ; imshow ( combinf17 )

t i t l e ( ’ combination o f u3∗ s2∗v2 ’ )

combinf18=uint8 ( u3∗ s2∗v3 ’ ) ;

f i g u r e ( 1 8 ) ; imshow ( combinf18 )

t i t l e ( ’ combination o f u3∗ s2∗v3 ’ )

combinf19=uint8 ( u1∗ s3∗v1 ’ ) ;

f i g u r e ( 1 9 ) ; imshow ( combinf19 )

t i t l e ( ’ combination o f u1∗ s3∗v1 ’ )

combinf20=uint8 ( u1∗ s3∗v2 ’ ) ;

f i g u r e ( 2 0 ) ; imshow ( combinf20 )

t i t l e ( ’ combination o f u1∗ s3∗v2 ’ )

combinf21=uint8 ( u1∗ s3∗v3 ’ ) ;

f i g u r e ( 2 1 ) ; imshow ( combinf21 )

t i t l e ( ’ combination o f u1∗ s3∗v3 ’ )

combinf22=uint8 ( u2∗ s3∗v1 ’ ) ;

f i g u r e ( 2 2 ) ; imshow ( combinf22 )

t i t l e ( ’ combination o f u2∗ s3∗v1 ’ )

combinf23=uint8 ( u2∗ s3∗v2 ’ ) ;
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f i g u r e ( 2 3 ) ; imshow ( combinf23 )

t i t l e ( ’ combination o f u2∗ s3∗v2 ’ )

combinf24=uint8 ( u2∗ s3∗v3 ’ ) ;

f i g u r e ( 2 4 ) ; imshow ( combinf24 )

t i t l e ( ’ combination o f u2∗ s3∗v3 ’ )

combinf25=uint8 ( u3∗ s3∗v1 ’ ) ;

f i g u r e ( 2 5 ) ; imshow ( combinf25 )

t i t l e ( ’ combination o f u3∗ s3∗v1 ’ )

combinf26=uint8 ( u3∗ s3∗v2 ’ ) ;

f i g u r e ( 2 6 ) ; imshow ( combinf26 )

t i t l e ( ’ combination o f u2∗ s2∗v1 ’ )

combinf27=uint8 ( u3∗ s3∗v3 ’ ) ;

f i g u r e ( 2 7 ) ; imshow ( combinf27 )

t i t l e ( ’ combination o f u3∗ s3∗v3 ’ )
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