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Abstract

Some medical experts and researchers have in recent times expressed interest in

Malaria due to its life threatening nature and debilitating effect especially on

pregnant women and children. This study seeks to model the risk of reduction in

malaria reporting by children under five years in the Obuasi Municipality given

the types of interventions.

Data gathered from a baseline survey across 22 clusters on a maximum of 508

sampled children is being modeled by means of logistic regression. The data was

restricted to a 5-year span (2009−2014) because of the vested interest in the under

5- year group. A paired t-test which compares the p-value of 0.00 to a threshold

p-value of 0.05 was used to establish whether there is a significant difference

between the two sets of data on clinical visits in the past and in the current year.

The same test was used to establish that there was a mean reduction of 1.36

(with 1.53 standard deviation) in malaria reporting. Our analysis also provides

some parameter estimates for our model. These are tested using Wald statistics

and form the basis of our model equation. Again since our analysis of parameter

estimates reveals that the parameter 1.2330 corresponding to the use of both IRS

and ITN interventions only, has the least p-value of 0.0052 < 0.05, we conclude

that children who experience both interventions are likely to risk reduction in

malaria reporting and therefore contribute significantly to model.
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Chapter 1

INTRODUCTION

1.1 Overview

This chapter focuses on the profile of the study area, background of the study,

the problem statement, objective of the study and the methodology employed. It

also captures the justification for the write up based on the factors and conditions

which motivated the study and not without the approval of the Thesis topic and

validation of the instrument used in data collection and the testing of the results.

1.2 Profile of Obuasi Municipal

The Obuasi Municipal is one of the thirty (30) districts of Ashanti Region with

its capital as Obuasi. The Municipality was created as part of the government’s

effort to further decentralize governance. It was carved out of the then Adansi

West District on the strength of Executive Instruments (E. I.) 15 of December,

2003 and Legislative Instrument (L. I.) 1795 of 17 March .The Municipality is

located between latitudes 5◦35N and 5◦65N , and longitudes 6◦35′W and 6◦90′W .

It covers a total land area of 162.4 square km. It is located in the Southern part

of the Ashanti Region. It is 64km from Kumasi, the regional capital.According to

the 2010 Population and Housing Census Results Obuasi Municipal has a total

Population of 168,641 of which 81,015 are male and 87,626 are female. Out of

the total 143,644 persons are living in the urban localities with 24,997 persons

in the rural localities. Rocks in the Municipality are mostly of Tarkwain (Pre-

cambrian) and Upper Birimian formation which are noted for their rich mineral

bearing potentials. Areas around Birimian and Tarkwain zones known as reefs

are noted for gold deposits.

1



The municipality has an undulating terrain with more of the hills rising above

500 meters above sea level. Obuasi Municipal experiences semi-equatorial cli-

matic conditions with a double maxima rainfall regime. Mean annual rainfall

ranges between 1250 mm and 1750 mm. Temperatures are uniformly high all

year with the hottest month being March when temperature of 30◦C is usually

recorded. Mean Average annual temperature is 25.5◦C. Relative Humidity is

quite high (75% - 80%) in the wet season. The vegetation is predominantly a

degraded semi-deciduous forest. The forest consists of limited species of hard

wood, which are harvested as timber. The Municipality is administratively com-

posed of the Municipal Assembly headed by the Municipal Chief Executive, five

Zonal Councils and two constituencies namely Obuasi East and Obuasi West and

38 Electoral areas. The Municipality has three traditional authorities namely

Fomena, Akrokerri and New Edubeasi. Each of the traditional authorities has

specific stool lands under its jurisdiction. There are three main religious group-

ings in the Municipality, namely Christianity, Islam and Traditional Religion.

According to 2010 Population and Housing Census Report Christianity domi-

nates with 81.7 percent followed by Islam with 13.3 percent and the Traditional

Religion with 0.2 percent. The Municipality has institutions providing education

from pre-school to secondary level. There are 140 Kindergarten,163 primary, 96

JHS, 5SHS and 2 VOC/TECH/COM Schools (GES,Obuasi 2012/2013 .Mining

and its related activities is the mainstay of the Municipal economy. Some of the

other major industrial activities in the municipality are forest/wood based and

related industries, blacksmithing and metal based industries, construction and

quarrying based industries, mining and allied industries and agro-based indus-

tries. Agro-based industries notably oil palm and palm kernel extraction and

gari processing ventures can also be found in the municipality. A broad spectrum

of economic and financial services exists in the municipality to facilitate business

activities. There are seven (7) reputable financial institutions, six (6) insurance

companies and a number of micro credit institutions are in the municipality.The
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Municipality can be demarcated into 3 agro-ecological zones each of which spe-

cific agric-programmes could be prescribed.

The land is suited for the cultivation of economic tree crops namely cocoa, coffee,

oil palm, citrus as well as staple foods such as plantain, banana, cassava, yams,

vegetables, pineapple, cocoyam, maize, seed production and crop trials. Other

crops cultivated in certain parts of the municipality are rice and sugar cane. There

are twenty-two (22) health facilities in the Municipality which consist of seven

(7) hospitals, two (2) health centres, eight (8) clinics, four (4) maternity homes

and one (1) CHPS centre.

1.3 Background of the Study

Malaria continues to be one of the life threatening ailments among society and

is known to be the leading cause of death in Africa. It is responsible for over 1

million deaths and approximately, 4 in 10 deaths among children globally (Helena

2011).

The epidemiology of malaria in children is difficult to assess as most of clinical

symptoms are non-specific and most of the cases occur in settings where no rou-

tine testing is available.

Malaria remains a leading cause of ill health. More than 40% of the world’s

population (approximately 3 billion people) is exposed to malaria in 108 endemic

countries. It caused between 655 000 and 1.240.0001 deaths in 2010. Approx-

imately 81% of malaria cases and 91% of malaria deaths occur in the African

Region, where it remains one of the commonest causes of death and serious mor-

bidity, especially for children and pregnant women; approximately 86% of malaria

deaths globally are of children under 5 years of age. In fact children are at highest

risk for severe disease and death between six months and five years of age: during

this period children are most vulnerable as they have lost maternal immunity and

they haven’t yet developed specific immunity to infection. However this does not

mean that younger infants are exempt from the death toll, the contrary is true
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given the fact that in addition to the well known inoculum through the blood

meal of an infected female anopheles and through infusion of infected blood prod-

ucts, neonates and young infants might also be vertically infected by plasmodia

crossing the placenta (Richard-Fabian and Elena, 2012).

The malady is still the leading cause of OPD attendance in The Obuasi Mu-

nicipality. According to Obuasi Ghana Health Service, The disease accounts for

approximately 51% Clinical cases. Again the disease accounts for nearly 80% of

sub-Saharan’s 350-500 clinical cases reported for less than 5 years children(Unicef,

2007). Myriad of preventive and antidote interventions continue to come up from

health researchers and other related organizations all in an attempt to reduce

malaria prevalence. These institutions include WHO, UNICEF, Medical Research

Institutions and Universities. Children continue to be the most vulnerable group

across the globe and continue to record high numbers in mortality.

Malaria is a difficult disease to control largely due to the highly adaptable nature

of the vector and parasites involved. While effective tools have been and will con-

tinue to be developed to combat malaria, invariably, over time the parasites and

mosquitoes will evolve means to circumvent those tools if used in isolation or used

ineffectively. To achieve sustainable control over malaria, healthcare profession-

als will need a combination of new approaches and tools and research will play

a critical role in development of those next-generation strategies. The disease

has a significant impact on the health of infants, young children and pregnant

women worldwide. More than 800,000 African children under the age of five die

of malaria each year. Malaria also contributes to malnutrition in children which

indirectly causes the death of half of all children under age five worldwide. (Na-

tional Institute of Allergy and Infectious Disease, 2011)

According to UNICEF’s Ghana Facts Sheet, 2007, 3.5 million people contract

malaria every year. Approx. 20,000 children die from Malaria every year (25 per

cent of the deaths of children under the age of five). Even if a child survives, the

consequences from severe malaria such as convulsions or brain dysfunction can
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hamper long-term development and schooling. The annual economic burden of

malaria is estimated 1-2 per cent of the Gross Domestic Product in Ghana.

In Ghana, malaria and acute respiratory infections (principally pneumonia) are

the leading causes of fever in children. Malaria is responsible for the major-

ity of childhood admissions and 22% of childhood deaths while pneumonia is

also responsible for about 22% of hospital admissions in tertiary health facilities.

Current control strategies for both malaria and pneumonia include early diagno-

sis and prompt treatment, particularly among those at risk of death and severe

complications. Until recently when the Ministry of Health introduced commu-

nity interventions, the official interventions for both illnesses were largely geared

towards the formal health sector, even though many people (especially in rural

areas) have little or no physical access to health facilities - i.e. live beyond 30

minutes travel time from facilities. The result is that many caregivers of chil-

dren seek treatment from outside the home (usually non-hospitals sources) or

self-treat. (Nonvignon et al, 2010).

From a study conducted in 14 localities around Agogo and Konongo in The

Ashanti Region of Ghana) malaria is prevalent during the entire year and ac-

counts for about 32-42% of all outpatient admissions and for major in-patient

causes of death . Socio-demographic factors such as ethnic group, parent’s edu-

cation and occupation, use of protective measures, and living standard of the fam-

ily are suggested to be important risk factors for malaria and malaria epidemics.

The impact of socio-economic factors, namely the family’s financial situation, is

difficult to assess due to the lack of standardized economic data of income and

tax. Additional socioeconomic factors assessed in the Demographic and Health

Survey 2008 are marital status and religion.

Malaria has always been the most significant public health threat to the Obuasi

community of Ghana .To deal with the spread of malaria, AngloGold Ashanti

and Obuasi Municipal Assembly undertook to implement an Integrated Malaria

Control Programme, focusing on Indoor Residual Spraying (IRS) in the Obuasi
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municipality and its surrounding villages. The programme covered the entire

Municipality. The total number of dwellings in the intervention area was 35000.

Malaria, still a major health concern in the Obuasi municipality recorded in 2005,

an average of 12,000 cases monthly. Forty-eight percent (48%) of all Out Patient

attendants were due to malaria and the disease headed the top ten killers, being

responsible for 22% of all deaths.There are consistent efforts to reduce malaria

episodes which include chemical spraying, use of treated mosquito bed nets, clear-

ing bushes, cleaning drains and subsidized treatments and yet prevalence rates

and malaria incidence remain high. It is probable that the efforts to reduce

malaria do not specifically take into account the risks factors likely to aggravate

malaria disease. The high incidence of malaria cases among the age-structured

population is unknown to the district, the season which recorded the highest de-

spite the integrated malaria control programme is also unknown in the Obuasi

Municipality.

Malaria remains an area of concern for AngloGold Ashanti’s operations in Ghana,

Guinea, Mali and Tanzania. Not only does the disease result in death, illness and

absenteeism among employees, but it is a major cause of death in young children

and pregnant women, which has an obvious impact on employees’ families and

communities.

There has been a dramatic decline in the number of cases of malaria in the past

three years. From 79,237 cases in 2005, there were 53,070 in 2006, reducing to

20,976 in 2007 (a 73% decline from 2006 to 2007). Correspondingly, the malaria

incidence rate (per 1,000 people) declined from 238 in 2005, to 164 in 2006 and

69 in 2007. The Malaria Lost Time Injury Frequency Rate (MLTIFR) *was

1,016.00 in 2005,634.74 in 2006 and 229.83 in 2007 (2006: 435) a 77% decrease

in three years. These statistics demonstrate the success of the Malaria Control

Programme, which was introduced at Obuasi in January 2006(Country report

Ghana, Obuasi, 2007).

Malaria is a disease caused by a protozoon called plasmodium. Children under
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five years and pregnant women are vulnerable to this disease in Ghana and Africa

as a whole. The disease is transmitted to humans through the bite of a mosquito.

The effects of malaria go beyond mortality and morbidity as malaria endemic

areas suffer dearly in terms of human productivity and economic loss. AngloGold

Ashanti is a mining company operating in Obuasi and in some other countries in

Africa. It realized that malaria posed threats to its operations in East and West

Africa. This was clearly shown in increased morbidity, mortality and absenteeism

in the workforce as well as decrease in productivity (AngloGold Ashanti Report

to Society 2007).

The situation was not different in the company’s operational area in Obuasi. In

April 2004, the company realized that an estimated average of 11,000 malaria

cases per month was recorded according to the municipal health authority. An

additional 6,800 cases were reported by the mine medical service. At any point

in time, 20% of the workforce had malaria and the average time off work due to

malaria ailment was between two and three days. Extending the trend to the

whole Obuasi community clearly indicated that the disease had gained ground

and therefore called for actions to be taken to reverse the increasing trend of the

disease (AngloGold Report to Society 2004).

For the purpose of the study Insecticide Treated Nets (ITNs) and Indoor Resid-

ual Spraying (IRS), the major interventions executed by the malaria control pro-

gramme in Obuasi shall be defined.

Insecticides treated nets(ITNs) are nets that have been dipped into mosquito in-

secticides within the last 12 months and long lasting insecticides nets are nets

that have been permanently treated with insecticides that lasts for the useful life

of a mosquito net, defined as at least 20 washes and at least three (3) years of

field condition (Unicef, 2007)

Indoor Residual Spraying (IRS) involves applying a long lasting insecticide to the

inside of houses and other structures to kill mosquitoes on interior walls (Unicef,

2007)
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Figure 1.1: A spray operator at the Obuasi Malaria Control Centre.

Here he is spraying a home in the Bongobiri suburb of Obuasi.

Source: Anglogold Ashanti Website, May 7, 2013.

1.4 Problem Statement

Obuasi Municipality, a mining community in the Ashanti Region of Ghana is one

of the endemic environments. Due to its cosmopolitan nature, the Municipality

invariably has its fair share of environmental hazards. The malaria control pro-

gramme , an Indoor Residual Spraying Exercise, happens to be the Brainchild of

Obuasi AngloGold Ashanti. It was initiated in 2006 as part of their cooperate

responsibility to the indigenous of Obuasi. Again it was equally purported to

augment Obuasi Ghana Health Service’ Insecticide Treatment Nets (ITNs) dis-

tribution exercise.

The Obuasi Ghana Health Service reports waning trend in OPD malaria cases in

the particular instance of under 5 children. An average decline of 5800 cases per

month is recorded since 2006. The veracity of this feat is being studied for the
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last 5 years. Thus whether the intervention strategies namely the use of Insecti-

cide treated nets or Indoor residual Spraying or Both have indeed contributed to

a significant reduction of malaria cases for children under 5 years.

1.5 Objectives

The study seeks to:

1. To establish the relationship between the intervention strategies and the

incidence of malaria.

2. To test the difference in clinical visits in the past and current years, given

the types of malaria interventions, by children under 5 years.

1.6 Methodology

The data capture is limited to the last five years (2009-2014) because of Target

group concerned that is children under 5 years. Mothers of such children have

been the major respondents. The data is collected from primary source through a

baseline household survey with an unbiased sample between 450 and 500 children

across 22 clusters in the Obuasi Municipality. For this study a cluster is one of

the 22 carefully selected defined geographical areas (suburbs or localities) across

which our samples are selected proportional to the population size of that locality.

A major statistical tool that will be used in the data analysis and processing is

SAS and the study is modeled by logistic regression where the individual inter-

vention tools are modeled against Risk of reduction in malaria cases.

In statistics, logistic regression or logit regression is a type of probabilistic sta-

tistical classification model. It is also used to predict a binary response from

a binary predictor used for predicting the outcome of a categorical dependent

variable (i.e., a class label) based on one or more predictor variables (features).

That is, it is used in estimating empirical values of the parameters in a qualitative

9



response model. The probabilities describing the possible outcomes of a single

trial are modeled, as a function of the explanatory (predictor) variables, using

a logistic function. Frequently ”logistic regression” is used to refer specifically

to the problem in which the dependent variable is binary-that is, the number

of available categories is two-and problems with more than two categories are

referred to as multinomial logistic regression or, if the multiple categories are or-

dered, as ordered logistic regression. Logistic regression measures the relationship

between a categorical dependent variable and one or more independent variables,

which are usually (but not necessarily) continuous by using probability scores as

the predicted values of the dependent variable. As such it treats the same set of

problems as does probit regression using similar techniques

In this write-up, references are made from the internet, Ghana Health Service

library, The University library and the Ghana Statistical Service library among

others.

1.7 Justification

In Ghana Up to 30% deaths in children less than 5 years are attributable to

malaria (MOH,2008) Again Boateng,2010 reports that Under 5 mortality is 80/1000

live births. The National Malaria control programme a subsidiary of Anglogold

Ashanti has been the major initiator of Indoor residual spraying and has been

collaborating with Zoomlion company limited in spraying stands (houses) and

structures (rooms). It has also on one time or the other carried out the distribu-

tion of Insecticide treated nets in conjunction with Ghana Health Service, Obuasi

all in an attempt to combat the debilitating and life threatening malady. Two

rounds of spraying is done each year since the inception of The programme from

February to April and July to December. The malaria control programme has

been expanded to cover other Anglogold operational areas particularly districts

that share immediate boarders with Obuasi Municipality. There is the evidence

of the people’s continued reliance on available health facilities for malaria treat-
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ment in Obuasi. Besides Obuasi Health Service reports waning trends in OPD

malaria cases in the particular instance of children under five years old and Angl-

ogold Ashanti reports of an average decline of 5800 cases per month. According

to Steve Knowles (AngloGold’s Malaria control programme Director), 2012, there

is an average monthly decline in cost of medication from $ 55,000.00 (2005) to $

510.00 (2012).Thus malaria control interventions has not only reduced the burden

of malaria in the community, increased school attendance and won the gratitude

of the Obuasi community, but has also reduced absenteeism at the mine, increased

productivity and reduced the cost of malaria medication to employees and depen-

dants. Consequently the need to assess the veracity of the foregoing feats and the

efficacy of the various interventions will not be out of place. It is envisaged that

the write-up will not only be consumed by the academics but the larger research

community. The study will augment related studies carried out by the Malaria

Control Department of AngloGold Ashanti and individual researchers. Again it

is expected that child mortality figures in Obuasi Municipal reduces if indeed

the study reveals a reduction in clinical cases. The document will also be useful

to the Obuasi Municipal Assembly particularly it’s environmental and sanitation

Department in addressing the environmental challenges faced by the Assembly.

The recommendations there- in if implemented shall go a long way to ameliorate

the health, social and economic status of the indigenous of Obuasi.

1.8 Limitation and Scope of Study

The study was intently restricted to the under five years’ group since that class

is perceived to be vulnerable. Also due to budgetary constraints the sample

size has been restricted to not more than five hundred households but with an

unbiased spread among 22 clusters. Again the study has been confined within the

boundaries of the municipality considering the extent of the IRS coverage. In the

absence of existing data from a baseline survey, I had to fall on secondary data

from Edwin Cade memorial Hospital (AGA) and Obuasi Government Hospital
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to support my work.

1.9 Thesis Organisation

The Thesis has been carefully organized in a sequel of chapters as follows.

The chapters are preceded by a list of Appendices and Table of Contents. Chapter

one which is the introduction comprises the background of the study, statement

of the problem, purpose or objective of the study, methodology used and justifi-

cation of Thesis Topic or problem statement. Chapter two which is the literature

review of previous works of a number of authors focuses on the computational

and analytical part of the document with about three abstract summaries on a

page.

Chapter three which elaborates on the methodology employed in the study deals

with formulations, models and variants, research design, procedures and instru-

mentation. Chapter four deals with data collection, analysis and results. Finally,

chapter five deals with conclusions and recommendation for researchers and policy

makers.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the related literature on the current study has been reviewed.

The review constitutes the computational and analytical aspects of their study

which is captured in their abstract documents and primarily modelled by logistic

regression.

The intervention effectiveness experienced by children under the age of

5 (in Sub-Saharan Africa) exposed to both insecticide treated nets and the in-

door residual spraying compared to each intervention alone based on nationally

representative sample collected from 17 communities has been assesed. Living in

households with both Insecticide Treated Nets (ITNs) and Indoor Residual Spray-

ing (IRS) was associated with a significant risk reduction against Parasitaemia

in medium and high transmission areas, 53% and 31% respectively. For low and

high transmission areas, having both ITN and IRS was not significantly more

protective against the parasitaemia.In rural and the urban settings exposure to

both interventions provided significant protection against parasitaemia, 57% and

39% respectively. The effect was significantly greater than having singular inter-

vention. According to Fullman et al,the findings suggest greater reductions in

malaria morbidity and health gains for children may be achieved with ITNs and

IRS combined beyond the protection offered by IRS or ITNs alone.

Again a related study asseses the effect of insecticide-treated nets and indoor

residual spraying for malaria control in the rural ’Koboles’ of Adam District,

south central Ethiopia. According to them Indoor residual spraying (IRS) and

Insecticide-treated nets has been the main tool used to control malaria. The study
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was purported to examine the effect of IRS and ITS control strategies in Anono

shisho kebele compared with Kamo Gerbi which was supplied with ITN only and

the Jela Aluto (no IRS and ITNs) with regard to the prevalence of malaria and

mosquito density. Data collected on parasitological and knowledge, attitude and

practice surveys were managed and analyzed using SPSS 13.0.A p− value < 0.05

was considered statistically significant. According to Damtew et al the overall

prevalence of malaria was 8.6% in Jela Aluto, 4.4% in Kamo Gerbi and 1.3% in

Anono Shisho in two seasons surveys. The difference in overall malaria preva-

lence and mosquito density between the three Kelebes was significant (p < 0.05).

The study has provided some evidence for the success of ITNs or IRS combined

malaria control measures in Anono Shiho Kebele in Adam Tulu District.

Gabriel et al. (2013) analyses the effect of malaria prevalence and the indoor

spraying on the probability of sleeping under an insecticide-treated bed net in

nine sub-Saharan countries .Their study examines specifically the responsiveness

of insecticides treated nets usage to malaria prevalence and also whether indoor

residual spraying crowds out usage of net.

According to Gabriel and colleagues, bed net usage elasticity to malaria preva-

lence ranges from 0.42 for adult women to 0.59 for older women .Thus by their

model they demonstrate that malaria prevalence has positive effect on usage of

bed net but that net usage is inelastic with respect to malaria prevalence. They

further suggest that indoor residual spraying(IRS) does not ”crowd out” sleeping

under Insecticide treated nets (ITNs) for any of the population group studied and

that households consider IRS and ITN usage as complements.

Helena 2011, in her Dissertation write up towards the award of a Master of Science

Degree by the university of Science and Technology(Dept of social and clinical

pharmacy) outlines the use of bed nets by mothers of under 5 children in the Pe-

diatrics Out-Patients Department (P.O.P.D.) of the 37 Military Hospital against

the background of mothers. According to Helena over 3.2 billion deaths are

threatened globally by malaria and more than one million malaria related deaths
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are recorded annually. The disease accounts for 44% clinical (OPD) attendance

and 22% of mortality among children under 5 years .Helena further indicates that

insecticide treated nets are becoming increasingly available to vulnerable popula-

tions. Nonetheless the use of insecticide treated nets (ITNs) does not measure up

to ownership. According to her findings from the Rollback Malaria(RBM) initi-

ated by WHO,UNICEF,UNDP and World Bank in one of their recent researches

suggests that ITNs can reduce malaria prevalence by 48-50% and can prevent

nearly 7% under 5 mortality globally.

According to Unicef (2007) Rollback Malaria Program (RMP), 3 billion people

(almost 50% of world’s population) live in malaria endemic areas. The disease

is prevalent in 107 countries as well as tropical and subtropical regions and the

hardest hit is sub-Saharan Africa. The report further suggests that 350-500 mil-

lion clinical malaria cases occur each year culminating in nearly 1 million deaths.

Of this number 8 in 10 are children under age 5.It assess available key interven-

tions that reduce malaria burden with particular emphasis on the progress across

sub-Saharan Africa. According to UNICEF, the use of insecticide treated nets

(ITN) is gaining coverage in the Sub-Saharan region and immense progress has

been made. The use of ITNs among children under 5 is at least tripling coverage

with between 16-20 countries. Notwithstanding these gains, global target are yet

to be met.

According to Netforlife’s Episcopal Relief and Development program(2011),there

are an estimated 216 million cases of malaria each year, resulting in nearly 660,000

deaths, most of which are under 5 years old children. Long lasting insecticide

treated nets simultaneously provide a protective covering for the body while re-

leasing chemicals to useful repel and kill the infection carrying mosquitoes. The

net in recent times has been effective for children under 5 years because latest

technology has dramatically improved their efficacy infusing the insecticide in

the netting material. The report further suggests that scientific evidence has

validated the safety of indoor residual spraying (IRS).It defines IRS as the appli-
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cation of long lasting insecticides (including DDT) on walls and roofs of houses,

public buildings and domestic animal shelters in order to kill malaria-carrying

mosquitoes that settle on these surfaces .The report warns that the spraying is

ineffective at specific places and must not be encouraged.

Morel et al assess cost effectiveness analysis of strategies to combat malaria in

the Developing countries .The objective was to determine the cost effectiveness of

selected malaria control interventions in the context of attaining the millennium

development goals for malaria. Two highly endemic Sub-Saharan African regions

predominantly Southern and Eastern African (African-E) and Western Africa

(Africa-D) which high child and adult mortality is recorded were selected for a

case study. Under 5 malaria incidence measures 1436 per 1000 in Africa-D while

it is 1184 per 1000 for Africa-E. Cost were assessed in year 2000 international

dollars against effects as disability adjusted life years averted by 10-year imple-

mentation plan. According to Jeremy et al(2005) limited number of preventive

interventions include insecticide treated nets (ITNs) and Indoor residual spray-

ing(IRS).By their findings, the study quantifies the gains of shifting resources

towards artemisinin based combination treatment besides using preventive and

curative interventions in tandem.

Malaria prevalence remains high in many African countries despite massive scal-

ing -up of insecticide treated nets (ITNs) and indoor Residual Spraying (IRS).Data

collected on IRS and ITN coverage age group 0.5-14years in two separate surveys

reveals plasmodium falciparum infection prevalence was 9.3% and 22.8% respec-

tively, Philipa et al (2013).Two main transmission periods which occur after the

short and long raining seasons were considered in the two surveys which covered

5,152 and 4,325 children aged 0.5-14years.

An estimated 17% global reduction in malaria incidence has been achieved be-

tween 2000 -2010, nonetheless, 174 million malaria episodes are recorded in 2010

for only Africa. In Africa 53% of household owns ITN and 11% of population

at risk use IRS, (WHO world malaria report, 2012).Thirty-one (72%) endemic
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countries in Africa were reported to use both IRS and ITN in at least some spe-

cific areas in 2010.

The effectiveness efficacy and cost-effectiveness of indoor residual house-spraying

(IRS) and insecticide treated nets (ITNs) against plasmodium falciparum consid-

ered as part of malaria control in the highlands of western Kenya. A sample of

590 households comprising 200 with no vector control ,200 with IRS and 190 with

ITNs were selected with the ages of 0.5-4years,5-15years and > 15years as the

target groups.(Guyatt et al,2002).Plasmodium falcum prevalence among house-

hold members not protected by either IRS or ITN was 13%.ITN usage reduced

risk of infection by 63% and usage of IRS reduced infection by 75%.The economic

costs for the IRS and ITN interventions were respectively US$9 and US$29.

Studies over the past two decades suggest that ITNs could substantially reduce

the burden caused by plasmodium falciparium in Africa. ITNs are currently

widely promoted as a means of preventing man-vector contact in malaria control

and form the basis of disease control within the recently launched roll back malaria

initiative. The role and cost effectiveness of indoor residual-house spraying (IRS)

for malaria control has received little attention. A comparison of historical trials

of IRS in Africa against contemporary evidence of ITN effects emphasized the

need to re-visit the comparative advantage of the two interventions under a vari-

ety of endemic environment.(Antis & Mnzava, 2000).

Both Insecticides Treated Bed Nets (ITNs) and Indoor Residual Spraying (IRS)

reduce malaria in high transmission areas. The combined effect of these in-

terventions is unknown. Malaria continues to be a leading cause of morbidity

and mortality in Africa. Over 247 million cases of malaria and nearly 1 million

deaths were recorded in 2008. ITN reduced malaria morbidity and all causes of

malaria mortality across a variety of transmission settings. Though IRS also re-

duces malaria morbidity and mortality, the intervention has relegated to seasonal

transmission or epidemic prone areas due to logistical complexity and expensive

nature of spray comparison (Hamel et al., 2011). A non-randomized prospective
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cohort study was conducted to determine protective efficacy (P.E) of IRS with

ITN (IRS+ITN) compared with ITNs alone in preventing plasmodium falcipar-

ium parasitemia. At base line, participants provided blood samples for malaria

smears, were presumptively treated for malaria and received ITNs. Blood smears

were made monthly and at sick visits.

Transparent evidence based on the cost and cost effectiveness of malaria control

interventions is provided to inform rational resource allocation by donors and

domestic health budgets and the selection of optimal packages of interventions

of malaria control programs. Despite being a largely preventable and treatable

disease, malaria is responsible for an estimated 800,000 deaths globally each year

with a majority of morbidity and mortality occurring in children in sub-Saharan

Africa. Besides its impact on health, malaria imposes heavy economic burden on

individuals and entire economies. In response to calls for widespread control and

elimination of malaria and the challenge of meeting the Millennium Development

Goals, there has been a rapid scale-up of existing effective anti-malaria interven-

tions, in particular ITNs. There is a wide range of malaria control interventions

whose efficacy and effectiveness have been repeatedly demonstrated over many

years. These include ITNs and IRS interventions (White et al., 2011).

Long term success of ongoing malaria control effort based on mosquito bed nets

(long lasting insecticide nets) and Indoor Residual Spraying is dependent on con-

tinues monitoring of mosquito vectors and thus effective mosquito sample tools.

With the low vector densities in coastal Kenya and across much of sub-Saharan

Africa wherever malaria interventions, long lasting insecticidal nets (LLITN) and

/ or Indoor Residual Spraying (IRS) are in place the use of a single collection

method will not be sufficient to achieve a representative sample of mosquito pop-

ulation structure Onyango et al. (2013).

Participatory health education intervention contributes to decreased malaria preva-

lence among children. It has a positive impact not only on school children but also

on community adults through the improvement of knowledge and practices. An
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estimated 90% of the world’s malaria-attributable deaths occur in sub-Saharan

Africa. In Ghana malaria account for more than 44% of reported clinical cases

and those 2 in 10 children under age 5 die of malaria. Malaria Control Interven-

tion in Ghana target pregnant women and children under 5 years as this group

is most vulnerable. Major activities involved in the program are the distribution

of Insecticide Treated Nets (ITNs) during antenatal care and the provision of

intermittent preventive treatment (IPT) (Ayi et al., 2010).

Improving the health of school-aged children can yield substantial benefit for

cognitive development and educational achievement. However, there is limited

experimental evidence of the benefit of alternative school based malaria interven-

tions or how the impacts of interventions vary according to intensity of malaria

transmission. In many malaria endemic countries, successful control programs

have recently reduced the level of malaria transmission, and as a consequence,

immunity to malaria is acquired more slowly and the burden of clinical malaria

is stiffing from the very young to older children (Haliday et al., 2014).

Insecticide-treated mosquito net (ITNs) and Indoor Residual Spraying (IRS) are

recommended strategies for preventing malaria in children. While their impact

on all-cause child mortality is well documented, their impact on reducing malaria-

attributable mortality has not been quantified. Two systematic literature reviews

in plasmodium falciparium endemic settings: one to estimate the effect of ITNs

and IRS on preventing malaria-attributable mortality in children 1-59 months

and another to estimate the effect of ITN and intermittent preventable therapy

(IPTp) on preventing neonatal and child through improvement in birth outcomes.

The protective efficacy (PE) of ITNs and IRS on reducing malaria-attributable

mortality 1-59 months is estimated to be 55% with a range of 49-51% (Eisele

et al., 2010).

According to Moorthy et al. (2009) in their methodological review of clinical trials

to estimate the efficacy of preventive interventions against malaria in pediatric

populations, recent years have seen publications of a considerable number of clin-
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ical trials of preventive interventions against clinical malaria in children. There

have been variability in the specification of end-point, case definitions, analysis

methods and reporting and the relative lack of standardization complicates the

ability to make comparative evaluation between trials. Control trials of preven-

tive interventions against children in endemic countries were identified in which

clinical malaria or death had been one of the main points. Trials were included

that evaluated the impact of vaccines, Insecticide Treated Nets (ITN), Intermit-

tent Presumptive or Preventive Therapy (IPT) in infants. These were aimed at

preparing for a WHO consultation on design issues in malaria vaccine trials. 29

controlled trials of preventive malaria interventions were identified of which eight

were vaccine trials. Vaccine trials that were designed to detect an effect on clini-

cal malaria all reported the incidence rate of first episodes of clinical malaria of

their end point. Only one trial of preventive intervention (of ITN) was identified

that was designed to detect an effect on severe malaria. The development and

deployment of new and improved intervention methods for malaria control shows

promising signs of reducing significantly the global burden of malaria. Control

trials still remain essential for the rigorous assessment of the potential impact of

new tools and strategies to reduce morbidity and mortality caused by malaria.

In their systematic review for the Lives Saved Tools (LiST) on protective efficacy

of malaria case management and intermittent preventive treatment for prevent-

ing malaria mortality in children, Thwin et al, 2011 reveals that the LiST model

was developed to estimate the impact of the scale-up of child Survival interven-

tions on child mortality. Systematic literature reviews of published studios in

P. falciparum endemic settings to determine the protective efficacy (PE) of ATI

treatment against malaria deaths among children with uncomplicated malaria.

In lieu of randomized placebo-controlled trials of malaria treatment, multiple

data sources to ascertain estimates of Protective Efficacy (PE) including a pre-

viously performed Delphi estimate for treatment of uncomplicated malaria. The

Protective Efficacy of ACT treatment of uncomplicated P. falciparium malaria
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with effective case management including intravenous quinine on reducing malaria

mortality in children 1- 59 months is estimated to be 82% (range: 63-94%) com-

pared to no treatment.

In their global digital fundraising comparing to help eliminate malaria deaths,

Novartis through their ”power of one” campaign aims to address the malaria

treatment gap through direct donations and existing government Commitments

(Novartis, 2013). Malaria is a preventable and treatable disease but it still kills

a child every minute. It is estimated that over 300 million additional treatments

will be needed to treat malaria patients across Africa between now and the end

of 2015.

According to AngloGold Ashanti sustainability Review, 2009, the reduction of

malaria in the community and mine made good economic sense besides bene-

fiting employees, their families and communities. A malaria control program is

the set example of a sustainable corporate social responsibility program for a

company operating in a malaria endemic area, a win/win for company and com-

munity. You only have to superimpose a map of our global operations over the

world malaria map to see the need for an overall group malaria strategy (Steve

Knowles, AngloGold, 2009). At Obuasi the program has not only reduced the

burden of malaria in the community, increased school attendance and won the

gratitude of the community, but has also reduced absenteeism at the mine, in-

creased productivity and reduced the cost malaria medication to employees and

dependants.

In analyzing the effect of pyrethroid resistance on the cost effectiveness of mass

distribution of long- lasting insecticidal nets, Hardy et al, 2014 indicates that

the effectiveness of insecticides- treated nets in preventing malaria is threatened

by developing resistance against pyrethroids and that little is known about how

strongly pyrethroid resistance affects the effectiveness of vector control programs.

In their analysis, data from experimental hut studies on the effect of long lasting,

insecticidal nets (LLINs) on mine anopheline mosquito populations, with varying

21



levels of mortality in World Health Organization susceptibility tests, were used

to parameterize models.

IRS is an effective strategy for reducing malaria incidence. It is about as effec-

tive as using ITNs though the later may be more effective at reducing morbidity

in some situations (Pluess et al., 2010). In assessing the cost effectiveness and

efficacy of IRS The review identifies that a few studies have directly compared

the cost effectiveness of IRS directly with other methods of malaria control. Ac-

cording to Pluess et al. (2010) a study from 2008 assessed the cost effectiveness

of seven African anti malaria campaigns: two IRS campaigns and five insecti-

cides treated bed nets (ITN) distribution campaigns. On a cost-per-child-death

averted basis all interventions were about the same but the ITN campaigns were

slightly more Cost effective.

During the last decade, pyrethroid-treated mosquito nets have become the main

method of malaria prevention in many malaria-endemic African countries. In a

few notable exceptions, usually those with a more developed health infrastruc-

ture such as South Africa, a long standing practice of applying Indoor residual

spraying (IRS) has been successful. The two approaches to malaria prevention,

Insecticide Treated Nets (ITNs) and spraying(IRS) are not mutually exclusive

and in malaria-endemic areas where ITN coverage is still limited, the feasibility

of introducing IRS to reduce transmission is being considered (N’Guessan et al.,

2007).

Spraying houses with insecticides (Indoor Residual Spraying) to kill mosquitoes is

one of the main methods that have been used to control malaria on a larger scale:

IRS has helped to eliminate malaria from great parts of Asia, Russia, Europe,

Latin America and successful IRS programmes have also been run in parts of

Africa. Another successful method of mosquito control relies on the use of physi-

cal barriers such as bednets or curtains that can also be sprayed with insecticides.

(Insecticide Treated Nets; ITN). In this review Pluess et al, 2010 compares the

health benefits and efficacy of IRS and ITN. Primarily malaria prevention on a
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large scale depends on two vector control interventions: Indoor Residual Spray-

ing (IRS) and Insecticide Treated (mosquito) Nets(ITNs). Historically IRS has

reduced malaria transmission in many settings in the world but the health effects

have never been properly quantified. Cluster randomized control trials (RTCs),

controlled before-and-after studies (CBA) and interrupted time series (ITS) of

IRS compared to no IRS or ITNs are some selection criteria considered.

Vector control is the key intervention for global malaria control and elimina-

tion efforts. It is critical for the reduction and ultimately, for the interruption

of malaria transmission. Currently, the two most common vector control inter-

ventions are long-lasting insecticidal nets (LLINs) and Indoor Residual Spraying

(IRS). Together these account for almost 60% of global investment in malaria

control. The number of LLINs delivered by manufacturers has increased dramat-

ically in recent years, rising from 5.6 million in 2004 to 145 million in 2010 in sub-

Saharan Africa. The number of people protected by IRS in the WHO African

Region increased from 10 million in 2005 to 78 million in 2010, representing 6%

of the global population at risk (WHO, 2013).

Malaria control has been dramatically scaled up the past decade, mainly due

to increasing international donor funding since 2003.Assessments used domes-

tic malaria financing reported by national programmes and global fund data on

donor financing for 90 endemic low and middle-income countries, WHO esti-

mates of households owning one or more insecticide-treated mosquito net (ITN)

for countries in sub-Saharan Africa and WHO-estimated malaria case incidence

and deaths in countries outside Sub-Saharan Africa. ITN coverage in 2010 in

Africa and declines in case and death rates per person at risk over 2004 to 2010

outside Africa were greatest in countries with highest donor funding per person

at risk and smallest in countries with lowest donor malaria financing per person

at risk. Associations between programme financing per person at risk and ITN

coverage increases and declines in case and death rates suggest opportunity to

maximize the impact of donor funding, by strategic re-allocation to countries with
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highest and continued need (Korenromp et al., 2013).

As successful malaria control programmes re-orientate towards elimination, the

identification of transmission foci, targeting of attack measures to high risk areas

and management of importation risk become high priorities. Using the Namibia

Example a method of targeting of interventions using surveillance data satel-

lite imagery, and mobile phone call records to support elimination planning is

described. One year of aggregated movement patterns for over a million people

across Namibia are analyzed and linked with case- based risk maps built on satel-

lite imagery. By combining case-data and movement, the way human population

movements connect transmission risk areas is demonstrated. Communities that

were strongly connected by relatively higher levels of movement were then iden-

tified and net export and import of travelers and infection risks by region were

quantified (Tatem, 2014).

The review highlights malaria events, achievements and scaling up impact with

scientific evidence in moving malaria from epidemic status towards sustained

control and elimination from 1960-2011. The unprecedented and substantial re-

duction in malaria incidence and consequently mortality rates, at varied degrees

across African countries and People’s Republic of China (P.R. China) are very en-

couraging although the gains are still fragile. There has been improvement in the

health situation in most African countries since 1960 and malaria in particular is

decreasing over time in South Saharan Africa where the global burden of disease

is significantly approximately 90% and People’s Republic of China accounts for

less than 10% (Tambo et al., 2012).

In an attempt to determine whether scaling up of malaria control by combining

Indoor Residual Spraying (IRS) and long-lasting Insecticidal nets (LLIN), en-

hance protection to population, Kleinschmidt et al. (2009) presents results from

a literature search and household surveys in Bioko, Equatorial Guinea, Zambezia

and Mozambique. Five out of eight previous studies reported a reduced risk of

infection in those protected by both interventions compared with one interven-
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tion alone. Surveys in Bioko and Zambezia showed strong evidence a protective

effect of IRS combined with nets relative to IRS alone. Odds ratio (OR) = 0.71

for Bioko and OR = 0.63 for Zambezia. The effect of both interventions com-

bined compared with those who had neither OR = 0.46 in Bioko and 0.34 in

Zambezia. Although the effect of confounding cannot be excluded, these results

provide encouragement that the additional resources for combining IRS and LLIN

are justified.

Insecticide Treated Nets (ITNs) and Indoor Residual Spraying of houses pro-

vide effective malaria transmission control. There is conflicting evidence about

whether it is more beneficial to provide both interventions in combination. A

cluster randomized control trial was conducted to investigate the combination

provides additional protection compared to ITN alone. Fifty clusters in North-

west Tanzania were randomly allocated to ITNs only or ITNs and IRS. Dwellings

in the ITN+IRS arm were sprayed with two rounds of bendiocarb in 2012. Plas-

modium falciparium prevalence rate (P/PR) in children 0.5-14 years old (primary

outcome) were compared using three cross- sectional surveys in 2012. IRS cover-

age was 90%. ITN use ranged from 36%-50%. P/PR was 13% in the ITN+IRS

arm and 26% in the ITN only arm. Odds ratio = 0.43 (West et al., 2014).

2.2 Modeling on Malaria Interventions

De Oliveira et al. (2013), examine the use of Geographic information systems

(GIS) analysis and logistic regression as a tool to identify the relative likelihood

and its socio environmental Determinants of malaria infection in the vale do

Amanhecer rural settlement, Brazil.

The model that represents the likelihood of infection by malaria at the Vale do

Amanhecer settlement was generated based on Logistic Regression with the ’back-

ward conditional stepwise’ procedure, comparing cases/non-cases with multiple

explanatory variables. It was opted for a dichotomous modeling approach, as no

reliable statics on the total number of inhabitants domicile could be obtained,
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which would a pre-requisite of bias-free estimate of absolute cases or its probabil-

ity (eg. by Poisson regression or generalized linear models). Model performance

for different cut-off values was assessed by its sensitivity and specificity (ROC

curve). In logistic regression, the canonical link functions (logits) for the bino-

mial distribution, of the unknown binomial probabilities are modelled as a linear

function of the risk factors (xi):

g(Pi) = β0 + β1x1 + β2x2 + ...+ βixi

In which:

g(Pi) = link function

Pi = likelihood of response for the −ith factor (or covariate)

β0 = intercept

βi = coefficient

xi = independent variables

Logistic regression outcomes such as the Wald statistics, significance levels of

variable coefficients and overall classification accuracy were used to test the im-

portance of the environmental factors for the occurrence of malaria cases and

for the development of a risk model. Using the stepwise, backward conditional

method, as implemented in SPSS 15 (SPSS Inc.), only variables with significance

higher than 95% (p < 0.05) were maintained in the final model.

In 2005, the Vale do Amanhecer settlement had 718 inhabitants, of which 394

(54.87%) were men and 324 (45.13%) were women. In the settlement, 359 cases of

malaria were notified, distributed in 200 domiciles, the city of Juruena presented

720 positive smears for malaria in 2004. This corresponded to an API of 116.8

per 1.000 inhabitants, which represented an increase of 284.9% in the incidence

of positive slides when compared to the 2003 API of 41.0 per 1,000 inhabitants.

Five cases were excluded because the notification forms of SIVEP-malaria did

not inform their dwelling places and another 18 because they belonged to domi-

ciles outside the settlement limits. The 7,200 ha reserved for land owners and

another 7,200 ha designated to permanent environmental reserve was considered
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the official limit area of the settlement. Out of the total 336 cases of malaria,

133 positive slides were from dwellers at Road 08, which corresponds to 37.60%

of the notifications. As for Roads 13 and 5, 124 cases were notified (35, 10%)

and 58 (16, 40%) cases of malaria were notified, respectively .The logistic regres-

sion model performance for a cut-value of at least one case per domicile show

a poor overall performance (65.4%), very low sensitivity (0.39) and percentage

of explained variance (Nagelkerke R square = 0.22), as only VSHI and mining

area distance are found to be significant predictors . A cut-value of 2 strongly

improves the logistic regression model, increasing overall performance to 74.5%,

sensitivity to 0.79 and Nagelkerke R square to 0.46. For higher cut-offs, both

overall performance and specificity sharply decrease. This model for a cut-off

value of 2 included as significant (p < 0.05) the variables Land Use, VSHI, and

NDVI; moreover, it included as highly significant (p < 0.01) the variable mining

area distance.

The Wald statistics underpin the high importance of this variable (26.4) as predic-

tor. Consequently, areas with highest likelihoods of malaria infection are located

in the southern part of the settlement, where mining activities are concentrated

(negative variable coefficient). In the model these situations are related. The

highest relative likelihoods however are only obtained if an area presents intense

use and occupation, high level of wetness (positive coefficients) and low NDVIs,

indicating little remaining vegetation. Additional hot-spots of elevated risks oc-

cur in the mid-western region of the settlement where secondary predictors such

as VSHI, NDVI and land use account for elevated risks, but where the density

of mining areas is lower. Razo et al,2012 models risk among children in Cote

d’ivoire.

Binomial regression models were fitted in STATA/IC version 10.1 (StataCorp LP;

College Station, TX, USA) to assess the relation between ecological predictors

and Plasmodium spp. prevalence. Significant ecological factors, based on likeli-

hood ratio test (LRT) with significance levels of 15%, were included as covariates
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in further analyses. Bayesian non-spatial and geo-statistical logistic regression

models were fitted in Open BUGS version 3.0.3 (Imperial College and Medical

Research Council; London, UK). Spatial dependency was modeled assuming sta-

tionary (i.e. spatial correlation was modeled as a function of distance between

locations only), as well as non-stationary (i.e. spatial correlation was modeled

as a function of distance between locations and position within the study area)

latent spatial processes.

Let Ni be the number of children tested at location si (i = 1, ..., n) and Yi the num-

ber of those found with Plasmodium parasites in a blood sample. It was assumed

that Yi arises from a binomial distribution, that is Yi Bin(Ni, pi), with pi measur-

ing malaria risk at location si. The relation between the malaria risk and the m

associated environmental covariates Xi at location si, Xi = (Xi1, Xi2...Xim)T , was

modeled via the logistic regression logit(pi) = XT
i β, where β = (β1, β2, ..., βp)

T

are the regression coefficients. Exchangeable random effects εi were added on the

logit scale, such as logit(pi) = XT
i β + εi. Spatial correlation was introduced on

location-specific random effect parameters ϕi, that is logit(pi) = XT
i β + φi, as-

suming that φi = (ϕ1, ϕ2, ..., ϕn)T ∼MVN(0, ξ) with variance-covariance matrix

ξ. It was further assumed that spatial process is isotropic and decays exponen-

tially with distance, i.e. ξij = σ2exp(−ρdij), where dij is the Euclidean distance

between villages si and sj; σ
2 is the geographic variability known as sill, and ρ is

a smoothing parameter that controls the rate of correlation decay with increasing

distance. The spatial range is defined as the minimum distance at which spatial

correlation between locations is below 5%, and is calculated as 3/ρ for the expo-

nential correlation structure.

To take into account non-stationarity, the study area was partitioned into three

ecological sub-regions (K = 3), assuming local independent stationary spatial

processes ωk = (ωk1ωk2, ..., ωkN)T in each ecological sub-region (k = 1, ..., K).

The spatial processes were assumed to be multi-variate normally distributed,

ωk ∼ MVN(0, ξk), with variance-covariance matrixes ξk defined by (ξk)ij =
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σ2
kexp(ρkdij). It was further considered that the spatial correlation ϕi at location

si in the study area is a mixture of the independent spatial processes modeled

as weighed average, such as ϕi =
∑
Kk = 1aikωik, where the weights aik are

decreasing functions of the distance between location si and the centroids of the

sub-regions k. Under these specifications, ϕ follows a multivariate normal distri-

bution, ϕ ∼MVN(0,
∑
Kk = 1ATkξkAk), where Ak = diag(a1ka2k, ..., ank).

In a Bayesian modeling framework, specification of prior distributions of all model

parameters is required. Vague normal priors with large variance were assumed

for the β parameters, while inverse gamma priors were chosen for σ2 and σ2
k and

uniform priors for ρ and ρk. Markov chain Monte Carlo (MCMC) simulation

was employed to estimate the model parameters . A single chain sampler with

a burn-in of 2,000 iterations was run for around 100,000 iterations. Convergence

was assessed by inspection of ergodic averages of selected model parameters. The

deviance information criterion (DIC) was used to assess the goodness-of-fit of

the models without and with exchangeable random effects, and the stationary

and non-stationary geo-statistical models . The smaller the DIC, the better the

model fit. Finally, Bayesian kriging was used to generate smooth risk maps for

Plasmodium infection prevalence based on the parameter estimates of the best

fitting model.

Chirombo et al. (2014) attempt to model risk factors of malaria from a Malaria

Indicator Survey data.

Suppose yi is the malaria status of a child such that positive malaria test is

recorded as 1, or 0 otherwise. Then, binary response data is generated, which

follows a Bernoulli distribution, yi ∼ Bernoulli(pi), where pi is the probability of

a positive test. With an appropriate link function, the risk of malaria disease can

be associated with explanatory variables using a generalized linear model (GLM)

framework. GLMs are a flexible alternative to ordinary linear regression, that

allow for non-normal response variables

The GLM can be specified with linear predictor ηi = ω
′
iα where ηi = logit

(
pi

1− pi

)
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is the logit link function and ω
′
i = (ωi1, ωi2, ..., ωip)

′
is a matrix of explanatory

variables. An ordinary logistic regression is then specified as follows

ηi = logit

(
pi

1− pi

)
= α0 + ω

′

iαi (2.1)

where α0 is the intercept, ω
′
i is a vector of covariates and αi is a vector of regression

coefficient A limitation to standard GLMs is that they assume independent (or at

least uncorrelated) observations. However, this assumption is not always met as

sometimes observations exhibit spatial and/or temporal dependence. This needs

to be incorporated in models in order to provide a more accurate estimation and

prediction of the response variable. The linear predictor, by taking into account

the spatial autocorrelation, can be expanded as follows

ηi = logit

(
pi

1− pi

)
= α0 + ω

′

iαi +

q∑
k=1

fk (xik) + φi + vi (2.2)

where α0 is the intercept, αi is the parameter corresponding to the categorical

fixed variables, ω
′
i = (ωi1, ωi2, ..., ωip)

′
(e.g. wealth index, age category, location,

bed net use) and f is an appropriate smoothing function of continuous covariates,

xik (rainfall, minimum temperature, altitude). Spatially unstructured random

effects, φi, capture the unobserved spatial heterogeneity and over dispersion at

each location such as immunity to malaria while spatially structured random

effects, vi, allow for spatial autocorrelation and clustering, for example variation

in access to interventions such as ITNs among the communities. Equation 2.2

gives rise to a class of models known as structured additive regression (STAR)

models. Generalized additive models (GAM), generalized additive mixed models

(GAMMs) and geoadditive models are special cases of the STAR models. All

of these models make use of smooth functions to model covariate effects on the

response variable. These models are increasingly being applied to model health

impacts and outcomes such as spatial variation of HIV infections and effects of

climate on malaria across Africa. The implementation of the model follows a

30



Bayesian approach. In Bayesian analysis, all the regression coefficients and the

smooth functions fj are considered as random variables and are assigned prior

distributions. Without any prior knowledge, the coefficients α of the continuous

covariates are assigned diffuse priors, i.e p (αi) ∝ const. The unknown smooth

functions fi (xik) are assigned Bayesian penalized splines priors . The functions

are assumed to be approximated by a polynomial of degree l which is defined over

a set of equally spaced knots of the form xmin = ς0 < ς1 < ... < ςm−1 < ςm = xmax.

The spline is expressed as a linear combination of B-spline basis functions. This

approach is similar to fitting second order random walk priors of the form βk =

2βk−1 − βk−2 + µk with Gaussian errors,µk, assigned to the smooth terms. The

spatial random terms are also fitted as splines, particularly as a two-dimensional

tensor product. The unknown βj are assigned priors of the general form

p
(
βj|τ 2j

)
∝ 1(

τ 2j
)rank( kj

2
)
exp

(
− 1

2τ 2j
β
′

jKjβj

)
(2.3)

where Kj is the penalty matrix and τj s the variance parameter that controls the

tradeoff between flexibility and smoothness. The τ 2j is assigned non-informative

dispersed inverse Gamma priors , p
(
τ 2j
)
∼ IG (aj, bj) where

τ 2j ∝
1

(τj)
aj+1 exp

(
−bj
τj

)
(2.4)

To capture the spatial effects we assumed stationary Gaussian process with zero

mean and variance ξij = σ2corr (dij, ρ) where σ2 is the sill, and corr (dij, ρ) is the

spatial correlation. The spatial correlation is considered a function of distance, dij

between the spatial locations si and sj under isotropic assumptions. Usually the

exponential correlation function is assumed such that corr (dij, ρ) = exp (−dij, ρ).

The parameter ρ measures how fast the correlation decays as the distance between

the locations increases. Bayesian inference was done using MCMC simulation
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based on the posterior distribution

p
(
β1, ..., βp, τ

2
1 , ..., τ

2
p , α|y

)
∝ L (y, β1, ..., βp, α)

p∏
j=i

p
(
βj|τ 2j

)
p
(
τ 2j
)

(2.5)

In order to assess factors that are associated with the probability of an under five

child testing positive for malaria, different models were fitted as follows:

J : ηi = α0 + ω
′

iαi

K : ηi = α0 + ω
′

iαi + f1(rainfall) + f2(altitutde) + f3(min temp) + f4(latitude)

L : ηi = α0 + ω
′

iαi + φi + vi

K : ηi = α0 + ω
′

iαi + f1(rainfall) + f2(altitutde) + f3(min temp) + f4(latitude) + φi + vi

In the fixed effects model, J , categorical and continuous variables were fitted

linearly in the usual GLM framework. In these models, α0 is the intercept and

αi is the vector of coefficients of the categorical variables, ω
′
i. The second model

K includes smooth functions of the q continuous
q∑
k

fkxik such as rainfall and

altitude, to assess the importance of possible non-linear associations. In model

L random effects of location were included, together with all other covariates,

fitted as fixed effects. Lastly, model M included categorical variables fitted as

fixed effects, continuous covariates fitted as smooth functions to account for non-

linearity, and spatial random effects.

Bivariate tests were carried out in order to determine which variables to include

in the models. Initial descriptive analysis was done using cross tabulations and

assessed using the Chi-square test to investigate the relationship between the out-

come of the malaria test and several categorical variables at the 95% confidence

level (CI).

In running the MCMC algorithm, 10 000 iterations were made with a burn in

of 1000 and a thinning parameter of 50. To ensure that the choice of the priors

in the Bayesian analysis did not influence the results, a sensitivity analysis was

performed by running the chosen model several times, changing the prior param-
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eters at each run and then comparing the observed changes in the estimates. The

default gamma prior with hyper-parameters equal to (a = 0.001, b = 0.001) was

changed and the model was run 3 times with the new priors (a = 0.00001, b =

0.00001), (a = 0.0005, b = 0.0005) and (a = 1, b = 0.005). The Deviance Infor-

mation Criterion (DIC) was used to compare the fitted models J,K, L and M

(the smaller the DIC, the better the model). Convergence was assessed through

trace plots. Analyses were performed using the free software BayesX in a full

Bayesian approach using MCMC. The R statistical software and BayesX package

in R were also used to analyze and visualize results.

Adekunle et al. (2013), analyses treatment decision making in the home manage-

ment Of malaria among children in south western Nigeria. The variable ”persons

who advised caregivers on the drug to give the child (Yi)” which is the outcome

variable has 3 categories which are (1) Mother and Grandmother (2) Father and

(3) CBD which comprised of health worker, mother, trainer and Patent Medicine

Seller (PMS).The outcome variable has more than two categories hence; the multi-

nomial logistic regression model was fitted. The dependent variable, Yi, is the

choice made by the ith individual among the treatment decision makers while the

independent variables say xi = xi1, xi2,xi3T are divided into a set of individual-

specific decisions that are alternative-specific, say wi = (wni1, ..., wniKa)T for

i = 1, ..., j. The probability of individual ”i” choosing alternative ”j” is given by

the standard multinomial logit formula:

Pij =
eyij∑

j=1

eyij

Where, Log(Yij) = β0+β1Xi1j+β2Xi2j+β3Xi3j. The models as expressed

above has one important property related to the odds for two response which is

the ability to determine the probability of decision making in each category for

individuals I making alternative decision j. A base alternative is set and the

remaining alternatives are treated as differences to the base.Thus, if the base
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alternative is 1, Vi1 = 0 for all i. Since each decision maker has a probability

then the relative risk ratio of decision making relative to the base decision maker

is given by .

P (Yij = k (xi, Uij, εij))

P (Yij = l (xi, Uij, εij))
= eV

k
ij−Vj (2.6)

The equation above proves that the probability depends only on the difference

on the linear predictor.The responses are conditionally uncorrelated when con-

trolling for Uj. In this case, the introduction of the random effects allows the

independence from irrelevant alternatives conditionally on the covariates to hold.

The factors that were considered as independent variables are ”How far is your

home from where orthodox medicine was received (x1j)”, ”When did you start

treatment afterillness started (x2j)” and ”If orthodox medicine was given, where

was the treatment obtained (x3j)”. Like a binary logistic model, the multinomial

logistic model helps to measure the contribution of each independent variable to

the category of the dependent variable using their relative risk ratios.The multi-

nomial model used for the data is given by :ln(p(y1 = k2/x, Uj,

varepsilonij)) = b1(When did you start treatment after illness started)i1

+ b2(How far is your home from where orthodox medicine was received)i2

+ b3(If orthodox medicine was given, where was the treatment obtained)i3

where: (yi = k1) = person who makes decision(mother /grandmother)(yi = k2) =

person who makes decision (father).

In an attempt to analyze spatially exploit Burden estimates of malaria, Goso-

nia et al, 2012 models a malaria survey data in Tanzania. At each location in

S = (s1, s2, ..., sn)T let us consider the binary outcome Yij which takes value 1 or

0 to indicate whether the child j at location si was found parasitaemia positive.

A logistic regression model was used to relate the outcome to its predictors. The

multivariate logistic regression model is given by

logit (pij) = β0 +

p∑
k=1

βkX
k
ij (2.7)
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where pij is the risk of child j at location si of having parasitaemia, Xij =(
X1
ij, X

2
ij, ..., X

p
ij

)T
are the covariates and β = (β0, β1, β2, ..., βp)

T is the vector of

regression coefficients, including the intercept. Preliminary frequentist statistical

analysis was performed in Stata version 10.0 (Stata corporation, College Sta-

tion, TX) to identify the covariates significantly associated with the parasitaemia

prevalence and to check for possible nonlinear trends of the relationship between

explanatory variables and response variable. To account for the nonlinear re-

lationship between malaria and demographic or environmental and climatic co-

variates, the continuous variables were categorized, where the cutoffs points were

chosen based on outcome-covariate scatter plots. The model described above

does not consider the spatial relationship among the parasitaemia survey loca-

tions. The standard way of incorporating the geographical dependence in the

model is by introducing spatially correlated random effects φ at every sampled

location . Using the geostatistical design described in si the underlying spa-

tial process was modeled by the residuals via a multivariate Normal distribution

with mean 0 and the covariance matrix ξ, φ = (φ1, ..., φn) ∼ MVN (0, ξ). The

covariance matrix is defined as a function which represents the decay in correla-

tion between pairs of locations with distance. For this analysis, an exponential

correlation function was chosen, that is ξij = σ2exp

(
−dij
ρ

)
where ρ describes

how fast the spatial correlation declines with distance between locations i and

j and σ2 represents the variance of the spatial process. Measurement error or

microscale variations are modeled by the independent and normally distributed

random effects εi ∼ N(0, τ 2) where τ 2 is interpreted as a nugget effect. The

model in equation 2.7 can be written

logit (pij) = β0 +

p∑
k=1

βkX
k
ij + φi + εi (2.8)

This type of hierarchical models are usually fitted within a Bayesian framework

because it allows flexible modeling and inference and avoids the computational

problems met in likelihood-based fitting. The trade-off for the flexibility of a
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fully Bayesian approach is the complexity of the model fit. This step is carried

out via the implementation of Markov chain Monte Carlo methods. To complete

the specification of the Bayesian hierarchical model, prior distributions need to

be assigned to the model parameters θ = (β, σ, ρ) . Further, Bayesian inference

is based on the posterior distribution, that is the conditional distribution over

parameters given observed data. Non-informative Normal prior distributions were

specified for the intercept and the regression coefficients,p(β) = N(0, 1000) . The

spatial correlation parameters σ and ρ were assigned an inverse gamma and a

gamma prior distribution, respectively, p(σ) = IG(a1, b1) and p(φ) = IG(a2, b2) .

Non-informative inverse gamma prior distribution was chosen for the non-spatial

variance, p(τ 2) = IG(a3, b3) . The values of the parameters a1, b1, a2, b2, a3, b3

were chosen such that the mean of the corresponding distribution is 1 and the

variance 100 . A two chain sampler of 100000 iterations was run with a burn-in

of 10000 iterations and the convergence was assessed by examining the ergodic

averages of selected parameters.

In an ecological study to detect possible risk factors in the Brazilian Amazon

region, Achcar (2011) uses a longitudinal data analysis approach dubbed Poisson

spatiotemporal regression models to analyze malaria count for the period from

1999 to 2008. Let Yij be the yearly number of malaria cases for province i in

the year j, i = 1, ..., n and j = 1, ..., T , with a Poisson distribution, given by

Yij|µij ∼ P (µij) where P (µ) denotes a Poisson distribution with parameter µ.

In connection with the malaria data we consider the following covariates: X1i,

denoting the number of inhabitants per km2 (in the year 2004) in province i; X2i,

denoting the percentage of urban population (in the year 2004) in province i;

X3i, denoting the number of doctors per 10,000 inhabitants (in the year 2005) in

province i; and X4i, denoting the human development index (HDI) (in the year

2005) in province i of the Amazon forest region, i = 1, ..., 9. We also consider the

deforestation index for province i in the year j as another covariate, denoted by

X5iji, i = 1, ..., 9, j = 1, ..., 10 (corresponding to the years 1999 to 2008).
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Considering the covariates X1, X2, X3, X4, and X5, let us assume the following

regression model for the Poisson distribution

log (µij) =β0j + bi +Wij + β1j
(
X1j − X̄1

)
+ β2j

(
X2j − X̄2

)
+ β3j

(
X3j − X̄3

)
+ β4j

(
X4j − X̄4

)
+ β5j

(
X5j − X̄5

)
(2.9)

for i = 1, ..., 9 (provinces) and j = 1, ..., 10 (years); , l = 1, ..., 4 denotes the sample

average for the covariate Xl, that is, X̄l =
n∑
i=l

Xli. In equation 2.9, we observe

that β0j, β1j, β2j, β3j, β4j, and β5j are fixed effect regression parameters associated

with the covariates X1, X2, X3, X4, and X5; i = 1, ..., 9 and j = 1, ...., 10. bi is a

random effect that captures the possible correlations among the malaria counts,

taking into account the region effects of neighboring provinces assumed to have

a normal CAR structure model, that is,

bi|{bi∗ , i∗ ∈ A∗(i)}, ςb ∼
(
η̄i,

ς2b
n(i)

)
(2.10)

where A∗(i) denotes the set of neighbours corresponding to province i, n(i) de-

notes the number elements in A∗(i), η̄i denotes the mean of the neighbouring

random effects for province i, and ςb is an unknown parameter.

In equation 2.8 we also assume a random effect Wij for the longitudinal trend

specified as a Gaussian process with a multivariate normal distribution with a

mean vector 10 × 1, with all components equal to zero and a 10 × 10 variance-

covariance matrix ξ = [Cov(Wij,Wij∗)] , with elements given by:

Cov(Wij,Wij∗) = θ1exp

(
K∑
k=2

θk |j − j∗|k−1
)

(2.11)

assuming a fixed value for K. Different fixed values for K can be considered,

which gives a great flexibility of fit for the data, and θk, k = 1, 2, ..., K, is an un-

known parameter. Observe that model (2.11) generalizes the longitudinal trend

specification introduced by Branscum et al
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For the first stage of the hierar-chical Bayesian analysis, let us assume normal

prior distributions β1j ∼ N(0, a2lj), l = 0, 1, 2, ..., 5, j = 1, ..., 10, where alj are

known hyperparameters. Taking large values for alj, we have highly dispersed

prior distributions for the regression parameters. For the second stage of the hi-

erarchical Bayesian analysis, let us assume uniform prior distributions ςb ∼ U(0, c)

and θk ∼ U(0, dk) for k = 1, 2, ..., K; c and dk are known hyperparameters.

For a hierarchical Bayesian analysis of the model, we consider the use of Markov

Chain Monte Carlo (MCMC) methods. For the model choice, assuming differ-

ent values for K in (2.11), we use some existing Bayesian model discrimination

criteria, one of which is given by the Deviance Information Criterion (DIC). The

smaller the DIC, the better the fit of the model for the data. We also consider

some goodness-of-fit techniques in choosing the best model. In this way, we com-

pare the observed data with the fitted or estimated posterior means for µij using

the simulated Gibbs samples for each parameter of the model, given by:

C (l) =
9∑
i=1

10∑
j=1

|yij − µij| (2.12)

where l indexes the model (l = 1 for model 1 and l = 2 for model 2), and µij is

the MCMC estimate for E(µij|y, x), i = 1, ..., 9, j = 1, ..., 10.

To verify if the covariate deforestation rate and the covariate number of inhab-

itants per km2, percentage of urban population, number of doctors per 10,000

inhabitants, and HDI index have some significative effects in the yearly counts

of malaria in the Brazilian provinces of the Amazon forest region, we assume the

Poisson regression considering two special cases. First, a model defined by (2.7)

and (2.8), not considering the temporal random effect Wij and assuming that

the random effect bi has a normal distribution N(0, σ2
b ), where σ2

b is an unknown

variance; let us denote this as model 1. Second, a model defined by (2.7) and

(2.8), with a normal CAR structure (2.9) for the random effects bi (spatial struc-

ture) and a multivariate normal distribution with covariance structure (2.11) for

the random effect Wij (temporal structure) with K = 2; let us denote this as
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model 2. For a hierarchical Bayesian analysis of model 1 and model 2, let us

assume a uniform U(0, 1) prior distribution for ςh, where ςh =
1

σ2
b

, the normal

prior distributions for the regression parameters, βlj ∼ N(0, α2
lj), l = 0, 1, ..., 5;

j = 1, 2, ..., 10; and the uniform prior distributions for ς2b and θk, k = 1, 2 with

α2
lj = 10; b = 0, c = 1, d1 = 3, and d2 = 1. Using the WinBUGS software, we

simulate the two models: 10,000 initial Gibbs samples as a burn-in sample to

eliminate the effect of the initial values on the Gibbs sampling algorithm. Af-

ter this burn-in sample period, we simulate another 1,600 samples, taking every

50th sample to have approximately uncorrelated samples for the joint posterior

distribution of all parameters of the model. Convergence of the Gibbs sampling

algorithm was observed using plots of the simulated time-series samples.

In a conscious effort to measure malaria transmission intensity and to observe

transmission patterns, Bosomprah,2012 formulates a ’Mathematical model of

seropositivity to malaria antigen; allowing seropositivity to be prolonged by ex-

posure’. He models from samples from two separate data sources and time points

in Tanzania. The concept of superinfection has been used to describe periods of

infection prolonged by repeated exposure to infection. Persons in endemic areas

often have pre-existing partial immunity. But when these persons are removed

from exposure the immunity can be lost gradually. When the person is re-exposed

while seropositive the level of antibody response can be boosted. A simple way

to allow for the antibody response to be boosted by exposure is to consider that

each exposure gives rise to an antibody response. This can be thought of as a

set of antibody-producing cells that are triggered by the exposure. Suppose the

random variable v represents the number of such sets of cells, and xi is the prob-

ability P (v = i). For every exposure the value of v has a one-unit increase, and

when any of the sets of cells dies the value of v has a one-unit decrease. If the

average duration of a set of cells is
1

r
, the rate for the transition from v = i to

v = i − 1 is the product of i and r (i.e. i × r). Because there are i sets of cells

the value of v reverts from i to i− 1 when any of the i sets of cells dies off .
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The compartmental model can be represented in differential equation as shown

in equation (2.13) below.

dxi
da

= λxi+λxi−1−1− irxi+(i+1)rxi+1, i = 0, ...,∞;xi = 0 for i < 0 (2.13)

where xi = Probability (number of exposures, v = i), so that
∑
∞, i = 0, xi = 1.

These equations can be solved by a standard method, using generating functions

. The basic superinfection model with seroconversion rate, λ, assumed constant

over time has been derived as:

P (a) = 1− exp (−λr (1− exp(−ra))) (2.14)

where r is the annual rate of reversion from seropositive to seronegative state per

exposure. It follows that the number of exposures in a person aged, a, follows a

Poisson distribution with mean:

P (a) = λr (1− exp(−ra)) (2.15)

Suppose that λ has changed abruptly from λ1 to λ2 at a certain point in calendar

time, µ, but is otherwise constant for different ages (i.e. λ(t) = λ1(t < µ),

λ(t) = λ2(t > µ)) , and people were observed at time t = µ+ c, where c > 0. The

seroprevalence at age a at time t is therefore given by:

P (t, a) = 1− exp [−{(λ1r (exp [−r(t− u)]− exp[−ra])) f(t− a) + λ2r(1− exp[−r(t− µ)])}]

(2.16)

This is the superinfection model with an abrupt change in seroconversion rate, λ.

This model can be used to investigate abrupt changes in malaria transmission in

the recent time past. In the specification of the basic superinfection model there

are two main parameters (λ, r). But in the specification of the superinfection

model, which allowed an abrupt change in seroconversion rate there are three
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main parameters (λ1, λ2, r). The model was fitted to age-stratified serological

data using the method of maximum likelihood. In this model, the dependent

variable Y is an indicator variable, meaning that it takes on only the values 0

(= seronegative state) or 1 (= seropositive state). The probability mass function

from the Bernoulli distribution - the distribution for the random indicator variable

is: f(yj; πj) = πj if yj = 1, 1− πj if yj = 0

where 0 ≤ πj ≤ 1 and πj was identified as the probability for a success (arbitrarily

yj = 1 is called a success). The log-likelihood function for the jth observation is:

ln `j = ln(P (αj)) if yj = 1, ln(1− P (αj)) if yj = 0 (2.17)

where yj is the indicator variable yj = 1 if person j is seropositive and yj = 0

if they are seronegative, and aj is their age and P (aj) is the proportion seropos-

itive at age aj. Cator variable, meaning that it takes on only the values 0 (=

seronegative state) or 1 (= seropositive state). The probability mass function

from the Bernoulli distribution - the distribution for the random indicator vari-

able is: f(Yj, πj) =


πj if Yj = 1

1− πj if Yj = 0

where 0 ≤ πj ≤ 1 and πj was identified

as the prob. For a success (arbitrary Yj = 1 is called success).The log-likelihood

function for the jth observation is: ln ` =


ln(P (αj)) if Yj = 1

ln(1− P (αj)) if Yj = 0

Where yj

is the indicator variable yj = 1 if person j is seropositive and yj = 0 if they are

seronegative, and aj is their age and P (aj) is the proportion seropositive at age

aj.

Mideo et al. (2008), attempts to model malaria pathogenesis. To illustrate what

such models typically look like and how, through the process of model devel-

opment, the irrelevant biological details are uncovered, we present a simplified

generic example based on Mideo et al. (2008). The model is in discrete time to

account for the distinctly discrete life cycle of malaria parasites, and the densities

are evaluated every day, corresponding to the 24 h cycle of the rodent malaria
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system on which this model was based. The model predicts how the density

of three quantities, merozoites (M), gametocytes (G), and red blood cells (R),

change from one day to the next;

M(t+ 1) = fM [M(t), R(t)]

G(t+ 1) = fM [M(t), R(t), G(t)]

R(t+ 1) = fR[M(t), R(t)]

The above equations capture the idea that the density of each quantity in the

next day (time t+ 1) is some function of their densities on the present day (time

t). Notice that two of these functions do not depend on the gametocyte density,

G(t), reflecting an assumption that gametocytes play no role in determining the

merozoite or RBC counts on the next day. Other assumptions about how various

biological processes work (e.g. erythropoeisis, RBC infection, gametocytogenesis,

etc.) are captured by the specific forms of the functions fM [M,R], fM [M,R,G]

and fR[M,R] (TabModels like that above can also be further refined as necessary,

by including things such as RBC age structure and time-lags in erythropoeisis.

They can also be extended to include other regulatory factors related to innate

and adaptive immune responses. For example, one might introduce other vari-

ables that represent the densities of different immune effectors molecules and

cells. If we use T (t) to denote the density of specific T cells on day t then the

model might be extended as

M(t+ 1) = fM [M(t), R(t), T (t)]

G(t+ 1) = fM [M(t), R(t), G(t), T (t)]

R(t+ 1) = fR[M(t), R(t), T (t)]

T (t+ 1) = fT [M(t), R(t), T (t)]

where the functions fM [M,R, T ], fG[M,R,G, T ], fR[M,R, T ] and fT [M,R, T ]

are specified to account for the relevant assumptions about how these processes
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work .The predictions of each model obtained by employing a different set of

assumptions can then be tested against data to determine its ability to explain

known patterns of pathogenesis (Mideo et al., 2008).

Key words:

Indoor Residual Spraying (IRS)

Insecticide Treated Nets (ITNs)

Long Lasting Insecticides Nets (LLINs)
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Chapter 3

METHODOLOGY

3.1 Data Collection

The data obtained for this study was mainly from a primary source due to the

group and scanty nature of existing secondary data at the various health posts

and malaria control outfit.

The data collection involved a 3 week household cross sectional survey across

22 clusters within The Malaria Control Programme (MCP) Coverage area in

the Obuasi Municipality. The target group was children under 5 years and the

respondents were mostly mothers aged between 15 and 55 years old. A sample

of 508 children was selected by Quota and Simple Random Sampling (SRS) from

22 clusters.

Again, the mothers of some of these children misreported the ages of their children

by either underestimating or rounding them off to 1 year. These mothers could

not produce the weighing cards or relevant documents to confirm the ages of their

children. The instrument used for the data collection (the questionnaire) went

through some validation and scrutiny. It was also pre-tested before the main data

collection.

The Survey was meant to capture information on whether children under 5 years

in the Obuasi Municipality benefited from the two major malaria interventions

strategies namely Indoor Residual Spraying (IRS) and Insecticide Treated Nets

(ITNs) distribution and to use this data to obtain a logistic regression model. It

was also purported to exact information on the status of clinical visits within two

extreme time points namely the first one year and the last one year of the child

and subsequently use the data as a basis for paired samples test.
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The main objectives of the study as the foregoing discussion suggests and

stated earlier in chapter one are

1. To model the risk of reduction in clinical visits, given the types interven-

tions, in the under 5 years

2. To model frequency of clinical visits in the 1st one year (past) and last 1

year (present) by the Under 5 years, given the types of malaria Control

interventions. Consequently for the logistic regression model, we derive the

following outcomes.

Reduction (success or ’case’) = 1

Increase in visits (Failure or ’No case’) = 0

Net usage (ITN) = 1, otherwise = 0

Indoor residual spraying (IRS) = 1, otherwise = 0

Both ITN and IRS = 1, otherwise = 0

Neither = 1, otherwise = 0

In considering several predictors which were factored into the outcomes (Increase

or Reduction), their aggregated ODDS was obtained as

ODD =
P

1− P
= e(β0+β1(ITN)+β2(IRS)+β3(Both)+β4(Neither)) (3.1)

Taking the logit

P (x = 1) = logit

(
P (x = 1, y = 0)

1− P (x = 1, y = 0)

)
This converts the original discrete nature of the data to its continuous form

and to enable the determination of individual Contribution of each Covariate

(x1, x2, ..., xp) to the probability of success or to make the estimation of the Odds

ratio more feasible.

In this case, the parameters β0, β1, β2, ... are clearly defined. Thus

β0... Risk of clinical visits (reduction or increase) in totality.

β1...Marginal change in ITN usage

β2...Marginal change in IRS usage.

45



3.2 Modeling Logistic Regression

The multivariate problem that usually crops up in studies that involve the use of

logistic model is discussed briefly. Here the relationship established between at

least one explanatory (exposure) variable and a dependent (response) variable is

being described. Thus a binary risk of reduction in clinical attendance outcome

with one (1) denoting a reduction in clinical attendance (success or case) and

zero (0) representing an increase in clinical attendance (failure or no case) is being

examined in this study. Apparently, we seek to use the variables X1, X2, X3, ..., Xk

(where k is the number of explanatory variables or number of exposures available

to the subjects) to determine (predict) the dependent binary variable Y .

3.3 Brief Historical Background

Logistic regression was put forth in the 1940’s as an alternative to Fisher’s 1936

classification method linear discriminant analysis. It is extensively used in many

disciplines, including the medical and social science fields. For example, the

Trauma and Injury Severity Score (TRISS), which is widely used to predict mor-

tality in injured patient, was originally developed by Boyd et al using logistic

regression. In recent times, a number of researchers have extensively used logistic

regression to model their study. For example, Chirombo et al. (2014) attempt to

model risk factors of malaria from a malaria Indicator data. They tried to as-

sess factors associated with the probability of an under five child testing positive

for malaria by fitting different logistics models. Again, Adekunle et al. (2013),

analysis treatment decision making in the home management of malaria among

children in south western Nigeria. A multinomial logistic regression was fitted

for the outcome variable Y1 which is the choice made by the individual among

the treatment decision makers and the explanatory variables categorized into (i)

Mother and grandmother (ii) Father and (iii) Health worker, mother, trainer and

patent medicine seller and unpresented by X1 = X11 , X12 , X13
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3.4 The Logistic Function

An explanation of the logistic regression begins with an explanation of the logistic

function which always takes on values between zero (0) and one (1). That is a

logistic function; f(g) : 0 ≤ f(g) ≤ 1.Whenever we are analyzing a multivariate

problem involving a set of k explanatory variable X and an outcome (dependent)

variable Y , a typical mathematical model is fitted to cater for the absolute re-

lationship among several variables. Logistic regression is a type of probabilistic

statistical classification model used in establishing or describing the relationship

between many of X ′s (explanatory variables) and a binary outcome (dependent)

variable Y .

Logistic regression is the most ubiquitously used modeling approaches compared

to other approaches because it is suited for analyzing survey data whenever the

outcome variable is binary. The logistic function which describes the mathemat-

ical nature of the logistic model is

f(g) =
1

1 + e−g
(3.2)

f(−∞) =
1

1 + e−(−∞)
(3.3)

f(+∞) =
1

1 + e+∞
(3.4)

The logistic function f(g) necessarily takes values in the range 0 to

1.Thus; it presupposes that the model is designed to assume a risk estimate

between the 0 and 1 inclusive. Consequently, the logistic function has the prac-

tical effect of converting the probability (which is bounded to be between 0 and

1) to a variable that ranges over (−∞,+∞).

The characteristic S-shaped logistic function is believed by researchers to be suited

for numerous research conditions. It explains the extreme 0 and 1 cut-off point

conditions where f(g) becomes extremely close to 0, low for minimal values of g

and becomes extremely close to 1, high for high values of g respectively and also
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Figure 3.1: The logistic Model

increases sharply for some ranges of g values. This epitomizes the S-shape of f(g)

which represent the risk estimate of the index g which aggregates the inputs of

many risk determinants.

3.5 The Logistic Model

The logistic model is derived by writing g as the linear sum;

g = β0 + β1X1 + β2X2 + ...βkXk, (3.5)

modeling the risk of reduction in clinical attendance against some explanatory

variables defined in this context as;

X1; The use of Insecticide Treated Nets (ITNs)

X2; The use of Indoor Residual Spray (IRS)

X3; The use of both Interventions

X4; The use of neither of the Interventions

and β0, β1, β2, ..., βk denote unknown but determinable parameters. Essentially

the X variables are aggregated by the index g. Again we present our logistic
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model in (3.5) as function of X as

π(x) =
eβ0+εβiXi

1 + e−(β0+εβiXi)
(3.6)

The model takes into account the occurrence chances of some observed explana-

tory variables X1, X2, ..., Xk. Thus, if success (or case) is assigned 1 and failure

(non -case) is assigned 0, then within a time span Tk, Xk → Y (0, 1).Consequently,

the probability statement

P (Yi|X1, X2, ..., Xk) =
1

1 + e−(β0+εβiXi)
(3.7)

defines the success of an event X, hence the logistic model in (3.6), where β0 and

βi are unknown but determinable parameter is used to predict the probability of

an event X being a success within a time span Tk. We write are logistics model

as

π(x) =
1

1 + e−(β0+εβiXi)
(3.8)

3.6 Application To Risk Ratio (RR)

The ratio between probabilities π1 and π2 of success for two subjects usually in

a follow up study is the Risk Ratio .Thus RR =
π1
π2

.

Supposing we fit a model and it yields the following estimated parameters; β0 =

3.910, β1 = 0.650, β2 = 0.028 and β0 = 0.34, substituting, our model now is

π(X) = 1
1+e−(−3.910+0.650X1+0.028X2+0.340X3)

Now we consider the following data

sets for two individual subjects ;

SET A: X1 = 0, X1 = 40, X1 = 0

SET B: X1 = 1, X1 = 40, X1 = 0

For data SET A, π1(X) = 0.7000 , for data SET B, π2(X) = 1100.The risk ratio

is estimated to be RR = 0.1100 / 0.0700 = 0.6364,thus the logistic model can be

used to estimate a Risk Ratio which makes two separate individual subsets in a
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follow-up study comparable with each other. The direct estimation of Risk Ratio

(RR) is guaranteed by the following conditions:

1. There must be a follow-up study to conveniently determine individual Risk

estimate.

2. The numerical values for the entire set of explanatory variable need to

be stated in our fitted model in order to obtain individual subject’s Risk

estimates.

One these conditions are met, Risk Ratio (RR) can be estimated directly.

3.7 The Odds Ratio

To overcome aforementioned challenges association between two subjects irrespec-

tive of whether a particular design is a follow-up, cross sectional or case control

was formulated as an indirect means of computing the Risk Ratio.

Research paper from a couple of researchers including Pike and Prentice, 1979

and Bay and Breslow, 1981 have examined and come out with situations in which

logistic model can apply to case-control and cross sectional data. In case control

for instance, the converse is what obtains in the modelling of a follow-up study.

In the latter the response variable is the outcome (Yi) and explanatory (exposure)

variables. However, in a follow-up study the situation is the other way round.

Essentially, the data from a case-control study is manipulated to conform to a

follow-up design, and then a logistic model can be fitted.

Non-the less, there is a unique drawback in a case-control or cross sectional study

with respect to logistic modelling. Though the follow-up studies individual sub-

jects’ risk is determinable given specific explanatory variables by use of a fitted

logistic model, same model cannot be employed in predicting individual risk for

case control and cross sectional designs. To overcome this limitation, ODD Ra-

tio estimates are determined for case- control or cross sectional studies. This

presupposes that it is the ODD Ratio (OR) and not individual Risk which is
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determinable for case-control and cross sectional studies. The ODD Ratio can be

extended to the analysis of some simple data, specifically two by 2 tabular data

construct. We demonstrate an example as follows:

For such a simple matrixed data the ODD Ratio is suitable so long as the set

Table 3.1: 2 by 2 tabular data analysis
Y = 1 p q
Y = 0 r s

is generated from a case-control or cross sectional data. However, if the data is

obtained from a follow-up data, then the Risk Ratio (RR) applies.

From the table 1, the cell frequencies are denoted by p, q, r, and s. The Odd

Ratio estimate is given by;

OR =
ps

qr
(3.9)

Alternatively, the foregoing expression can be expressed as ratio of probabilities

for exposure status as far as case control and cross sectional studies are concerned.

We have;

OR =
P (X = 1|Y = 1)/P (X = 0|Y = 1)

P (X = 1|Y = 0)/P (X = 0|Y = 0)
=
ps

qr
(3.10)

and from follow-up studies

OR =
P (X = 1|Y = 1)

P (X = 1|Y = 0)
=
p

q
(3.11)

It is observed from (3.11) that the ratio assumes the form Pr(Y/X) and Pr(X/Y)

from (3.10). This presupposes that it is extremely difficult to obtain risk estimates

for case-control and cross sectional studies because such estimation necessarily

need to have conditional probabilities of the form P (Y/X),meanwhile the condi-

tional probability that is feasible for the estimation of risk estimates assumes the

form P (X/Y ).

It can be justified mathematically why risk estimates is unobtainable by the use

of logistic regression in case control or cross sectional studies. In demonstrating

this, valid estimates are to be made for the parameters β0 and βi in the logistic
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model in order to obtain an estimated risk P (X) from the fitted model.

P̂ (X) =
1

1 + e−(β̂0+
∑
β̂iXi)

(3.12)

Unfortunately, in the use of the logistic model for case control or cross sectional

data β0 is not validly determinable without obtaining the sample proportion of

the population. Consequently a good estimate of the predicted risk P̂ (X) is

unobtainable without a reliable estimate of β0 since it is determinant of P̂ (X).

Nonetheless the βi can be conveniently estimated from case control or cross sec-

tional studies and this can lead to the estimation of measures of association by

means of the Odd Ratio. In computing the Odd Ratio directly all control vari-

ables are assumed to be constant and not specified. When these conditions are

met the logistic model can be used to estimate Odd Ratio directly. In the event

that the logistic regression is to be employed in obtaining indirectly, a risk esti-

mate, some assumptions need to be made. The major assumption is that, the

Odd Ratio presents a reliable approximation to the Risk Ratio.

3.8 Logit Transformation

From the foregoing discussions, the Odds are defined as the probability that a

particular outcome is a ’case’ or ’success’ divided by the probability that it is a

’non case’ or ’failure’. Logistic regression makes use of at least one predictor vari-

able that may be either continuous or categorical data. However unlike ordinary

linear regression, logistic regression is used for predicting binary outcomes of the

explanatory variable rather than continuous outcomes. Given this distinction, it

is necessary to take the logarithm of the Odd of the explanatory variable being

a ’case’ or ’success’. This is referred to as the logit or log-odds and it creates a

continuous criterion upon which the linear regression is conducted. Consequently

the logit transformation is referred to as the link function in logistic regression.
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We present the logit transformation as;

Logitπ(X) = ln

(
π(X)

1− π(X)

)
(3.13)

π(X) =
exi +

∑
βixi

1 + e−(β0+
∑
βixi)

(3.14)

For an individual explanatory variable X, the transformation in (3.13) enable us

evaluate the logitπ(X) or the log-odds. For an illustration, given that π(X) =

0.109, 1− π(X) = 0.891

π(X)

1− π(X)
=

0.109

0.891
= 0.122

Substituting in (3.13),

logitπ(X) = ln(0.122) = −2.095. Thus logit(0.109) = −2.095.

Now substituting the logistic model π(X) =
1

1 + e−(β0+
∑
βixi)

into the logit

transformation logit π(X) = ln

(
π(X)

1− π(X)

)
and simplifying, we have logit

π(X) = ln

(
π(X)

1− π(X)

)
= β0 +

∑
βixi reducing the logit of π(x) to a linear

sum.

In a nutshell, the ratio
π(X)

1− π(X)
, defines the Odds for modeling a problem with

explanatory variables defined by X.

Illustration: Given that π(x) = 0.20, 1− π(x) = 0.80

Odds =
π(X)

1− π(X)
=

0.2

0.8
=

1

4

INTERPRETATION: The result of one-fourth means that the event has 1 in 4

chance that it will occur or the event is 4 times likely that it will not happen

than it will occur.

3.9 Establishing The Odd Ratio

Ideally, the odds ratio (OR) establishes the relationship between two odds by

determining their ratio. Let the first and second odd denoted by D1 and D2

respectively. Then the Odds Ratio denoted by OR is given by
D1

D2

.

Supposing in a clinical trial the Treatment and the Placebo groups were observed
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to assess their chances of recovering from the following data:

We want to find the Odds Ratio of recovery for Treatment group against the

Table 3.2: Two-way contingency for treatment and placebo group
Recovery Non-Recovery Total

Treatment 46 74 120
Placebo 66 84 150
TOTAL 140 130 270

Placebo group. For the treatment group the Odds of recovery will be D1 =

π1(X)

1− π1(X)
=

46/120

1− 46/120
=

46/120

74/120

D1 =
46

74
= 0.622

For the placebo group the odds of recovery will be D2 =
π2(X)

1− π2(X)

66/120

84/120

D2 =
66

84
= 0.786

Odd Ratio (OR) Treatment, Placebo =
D1

D2

=
0.622

0.786
= 0.791 .This means that

the Treatment group has 0.8 times chance of recovery as the placebo group, in

fact almost equal chances of recovery.

3.10 Derivation of a General Odd Ratio For-

mula

It is already established that two given data set S1 and S2 we can be compared

by means of their Odd Ratio, OR =
D1

D2

where D1 is the Odd of data set S1 and D2 is the Odd of data set S2. Again,

D1 =
π1(X)

1− π1(X)
and D2 =

π2(X)

1− π2(X)
.

The Odd Ratio is therefore;

OR =
D1

D2

=

π1(X)
1−π1(X)

π2(X)
1−π2(X)

(3.15)

It is also true to say that the probabilities D1 and D1 in OR (Odd Ratio) are both
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Table 3.3: Two-way table for the logistic analysis
X X

Y p q
Y r s

risk estimates and therefore OR is indeed a risk Odds Ratio. Now substituting

our logistic model from (3.8) i.e π(x) =
1

1 + e−(β0+
∑
βiXi)

and simplifying

ORs1,s2 =

π1(s1)
1−π1(s1)
π2(s2)

1−π2(s2)

=
e(β0+

∑
βiX1i)

e(β0+
∑
βiX2i)

=
e
∑
βiX1i

e
∑
βiX2i

= e
∑
βi(X1i−X2i) =

k∏
i=1

eβi(X1i−X2i)

(3.16)

Thus the product Odd Ratio (OR) formula is derived and by the logistic model

it is the most suitable for the purpose of estimation. Supposing for i = 3 and

i = 5 equation (15) yields 6 and 9 respectively, then we obtain 6× 9 = 54 as OR.

3.11 Analysis Of Logistic Model Involving One

Binary Exposure Variable

We discuss a simple scenario that takes into account one binary exposure variable

represented by X1 = X(0, 1). We also denote the outcome variable by Y which

is equally binary. To explain this analysis condition, we use a four celled matrix

table.

An analysis scenario of this nature will have logistic model
1

1 + e−(β0+β1X)
with

X = (0, 1) variable. The corresponding logit model assumes the form

Logit π(X) = β0 + β1X (3.17)

The expression π(X) in this very analysis represents the probability that the

outcome variable Y is assigned the value 1, for any given explanatory variable X.

For a given research design π(X) denote the Likelihood of the outcome being a
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’success’ or ’case’ for any given exposure status. A situation in which the exposure

variable is 1, is referred to as risk (R1). This is interpreted as the conditional

probability of Y being equal to 1 when X = 1.When X takes on the value 0, R0

represents the risk and this situation is the conditional probability that Y is 1

given that X is 0.Thus ;

π(X) = P (Y = 1)

X = 1 : R1 = P (Y = 1|X = 1)

X = 0 : R0 = P (Y = 1|X = 0)

We can now state our Odds Ratio as

ORX=1,X=0 =
R1

1−R1

R0

1−R0

we substitute the logistic model expression into the above formula for Odd Ratio

to be able to estimate the Odd Ratio in terms of the parameters β0 and β1.

π(X) =
1

1 + e−(β0+β1X1)

X = 1 : R1 =
1

1 + e−(β0+β1X1)
=

1

1 + e−(β0+β1)

X = 0 : R0 =
1

1 + e−(β0+β1X1)
=

1

1 + e−β0

OR1,0 =
R1

1−R1

R0

1−R0

Substituting

OR1,0 =
1

1 + e−(β0+β1)
/

1

1 + e−β0
⇒ 1 + e−β0

1 + e−(β0+β1)
=

1

e−β1

Therefore

OR1,0 = eβ1 (3.18)
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3.12 Modelling For Matched Variables

In epidemiological case-control design people with infection and are being inves-

tigated are compared with a control group (people without the infection).Here

cases and control are compared for a possible risk factor in a conscious effort

to examine the nature of the infection. In medical and epidemiological research

alike, cases and controls sometimes happen to be matches. In order to ensure

that cases and controls are alike in terms of variables, they are matched. Such

variables might be related to those ones being studies but are not necessarily

variables of interest.

We discuss here a unique situation of logistic model and it’s Odd Ratio for a

matched data analysis. An essential feature concerning matched data in is its

stratified nature .In this case; the strata are the matched which invariably display

homogeneity among the pairs. Examples are the pairs in a matched case-control

study of association between Use of Oral Conjugated Estrogens and Cervical

Cancer.

In defining the strata of matched sets, we use dummy variables, that is, if lo-

gistic regression is employed in doing the matched analysis. Again in trying to

define a model for a matched analysis, we examine the case of a single (0,1) ex-

posure variable of paramount interest in tandem with a set of control variable

T1, T2, T2, ...Tq, subject to adjustment due to likely confounding and interaction

effects. The assumption here is that some of the C variables have already been

matched design by use of one of frequency matching, individual matching or pair

matching. The unmatched C variables, as a matter of interest, are treated as

control variables.

Let S= (0, 1) exposure variables, T1, T2, T2, ...Tq denote control variables. Also

assume some T’s matched by design, other T’s unmatched. We define some set

of variables, given the foregoing background, and factor them in a logistic model

for matched data. We define an outcome variable Y by (0,1) and an exposure
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variable X by (0,1).Again V1i are (matched) dummy variables, V2i are variables

for prospective confounders and there are a set of X ′s resulting from the product

YWi, in which case the W ′s usually assumes the form of V ′2is. Consequently, we

state the logistic model for a matched variable as

Logit π(X) = β0 + βX + ΣY1iV1i + ΣY2iV2i +XΣδiWi (3.19)

where ΣY1iV1i =matching, ΣY2iV2i =confounder, ΣδiWi =interaction and

β0, β, Y1i, Y2i, δi are coefficients.

3.13 Odds Ratio For Coding ’X’ Arbitrary

Here we discuss an expression for the Odd Ratio for non-specific single exposure

variable X, irrespective of whether binary, interval or ordinal which for controls

for a set a set of T variables. Invariably X is defined as an arbitrary variable of

interest.

Logit π(X) = β0 + βX + ΣY1iV1i +XΣδiWi (3.20)

For a generally defined X of this nature, it is important to have two specific

comparable X values in order to determine an Odd Ratio. Let the two specific

values of interest be represented by X∗ and X∗∗. We thus emphasize that even

for more than two values of X in the particular instance of X being interval or

ordinal, two levels of X is a prerequisite. Again it takes the comparison of two

data sets to determine the Odds Ratio.The Odds Ratio for our two values of

interest X∗ and X∗∗ is given by:

ORX∗,X∗∗ = exp[(X∗ −X∗∗)β + (X∗ −X∗∗)× ΣδiWi]

Illustration:

Suppose X denotes Health Insurance status (HI) being an index spanning from

1 to 6 where 1 represents someone without Health Insurance and 6 represent a
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person with absolute Health Insurance Cover. We seek to determine an Odd Ratio

concerning health Insurance status (HI) in the context of X, V,W model. We

state two specific values of X, namely HI∗ = 6 and HI∗∗ = 1, which conveniently

compares the odds of persons who have absolute (maximum) Health Insurance

cover with the Odd of persons who have the least Health Insurance Cover. With

the foregoing background we compute the Odds Ratio expression:

HI∗ = 6 vrs HI∗∗ = 1

OR6,1 = exp[(HI∗ −HI∗∗)β + (HI∗ −HI∗∗)× ΣδiWi]

= exp[(6− 1)β + (6− 1)× ΣδiWi]

= exp[5β + 5ΣδiWi]

(3.21)

3.14 A Case of Many Exposure Variables With

No Interaction

Besides a scenario of having a single exposure variable with several categories, we

discuss the Odd Ratio for a situation of many different exposure variables in our

model. In this particular instance, the variables which don’t have to be dummy

may be represented by X1, X2, ..., Xq. Thus the different exposure variable can

be any one binary, interval or ordinal. Consequently, we model the case of many

Exposure Variables with no interaction as

Logit π(X) = β0 + β1X1 + β2X2 + ...+ βqXq + ΣγiVi (3.22)

Again here, we need to specify the exposure variables for two separate but com-

parable groups to be able to obtain the Odd Ratio for many variables. These

variables shall be denoted by emboldened X∗ and X∗∗. The X∗ category is de-

fined by X∗1 , X
∗
2 , ....X

∗
q and X∗ category is defined by X∗∗1 , X

∗∗
2 , ....X

∗∗
q .
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Thus for X∗ vrs X∗∗

X∗ = (X∗1 , X
∗
2 , ....X

∗
q )

X∗∗ = (X∗∗1 , X
∗∗
2 , ....X

∗∗
q )

The Odd Ratio expression which compares X∗ and X∗∗ is

ORX∗,X∗∗ = exp[(x∗1 − x∗∗1 )β1 + (x∗2 − x∗∗2 )β2 + ...+ (x∗q − x∗∗q )βq] (3.23)

3.15 A Case of Several Exposure Variables With

Confounders And Interaction

Ultimately, we look at a scenario of many exposure variables with confounders

defined by the V’s and interaction variables defined by W’s. Here the W’s are

absorbed by the model as a coefficient of one of the X’s (.i.e. both form a product

term). Once again for the Odd Ratio, we need to identify two exposure variables

and compare and are still denoted by X∗ and X∗∗. We further define X∗ as

SMK∗, PAL∗ and SBP ∗ and X∗∗ as SMK∗∗, PAL∗∗, and SBP ∗∗.

Illustration:

From the previous scenario suppose for X∗ as SMK∗ = 0, PAL∗ = 25 and

SBP ∗ = 160 and X∗∗ as SMK∗∗ = 1, PAL∗∗ = 10, and SBP ∗∗ = 120.

ÔR = exp[−β̂1 + 15β̂2 + 40β̂3 − 35δ̂11 + 525δ̂21 + 1400δ̂31−

δ̂12 + 150δ̂22 + 40δ̂32]

(3.24)

We now state the model in a more general form to suit a generalized Odd Ratio

expression:

Logit π(X) = β0 + β1x1 + β2x2 + ...+ βqxq +

π1∑
Y Vi + x1

π2∑
δ1iWi

+ x2

π2∑
δ2iWi + ...+ xq

π2∑
δqiWi, where i = 1

(3.25)
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Our illustration so far highlights on Odd Ratio formula that models many ex-

posure variables and which controls for both confounders and effect modifiers.

The discussion on Odd Ratios could have been extended to capture situation

for varied modifiers that corresponds to different exposure variables. None the

less, this will be restricted to a model which has each exposure variable sharing

common modifiers. Consequently we revert to usual notation by identifying the

embolden expressions X* and X** as two comparable terms of the exposure and

as it were shall form the basis of determining the Odd Ratio of variables for a

case for several exposure variables with Confounders and Interaction.

Let setX∗ be defined byX∗1 , X
∗
2 , ....X

∗
q and setX∗∗ be defined byX∗∗1 , X

∗∗
2 , ....X

∗∗
q .

We thus present the general Odds Ratio expression for two groups as:

ORx∗x∗∗ = (x∗1 − x∗∗1 )β1 + (x∗2 − x∗∗2 )β2 + ...+ (x∗q − x∗∗q )βq + (x∗1 − x∗∗1 )

π2∑
δ1iWi

+ (x∗2 − x∗∗2 )

π2∑
δ2iWi + ...+ (x∗q − x∗∗q )

π2∑
δqiWi, where i = 1

(3.26)

3.16 Maximum Likelihood Estimation Methods

Parameters in statistical model are usually estimated by researchers by the use of

maximum likelihood (ML) estimation. This is one of many alternative procedures

that have been formulated by statisticians. Besides, maximum likelihood (ML)

estimation is a popular method known as least square (LS) estimation used in lin-

ear and multiple regression models. Though ML and LS differ by their approach,

they invariably produce same results on condition that the outcome variable is

normally distributed. In the estimation of complicated non-linear models MLE

is more desirable as far as logistic regression is concerned, most especially when

the logistic model is a non-linear model.

In using MLE, two fundamental approaches are considered namely conditional

and unconditional methods. The choice of either by the researcher largely depends
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on the parameter available in the model in relation to the number of subjects un-

der study. Generally, if the number of parameters in the model is large in relation

to the number of subjects conditional MLE is desirable while unconditional MLE

is suited for a situation of small parameters in the model relative to the number

of subjects.

The criteria for determining small or large parameter s has not been explicitly

prescribed by researchers. However, some guiding principles have been made

available in the choice of the estimation approach. Once matching is done, the

model naturally becomes large as a result of the quantum of dummy variables

needed to satisfy the matching stratification. This condition permits the conve-

nient use of conditional MLE.

Unconditional MLE is employed when matching is not been carried out which

invariably presupposes that the amount of variables in the model is small with

respect to the number of subjects.

From the forgoing conditions and assumptions, it is clear that once the total

number of Confounders and Interaction terms in our model are large the number

of parameters becomes too large for the adequate use of Unconditional method.

Consequently, the Conditional (MLE) is recommended to address the above set-

backs. The method has also been proven by researchers to have been producing

unbiased and reliable estimates. Again while the Unconditional approach, if not

used suitably can produce biased results in the particular instance of Odd Ratio

estimation, the Conditional approach has proven otherwise.

3.17 The Use of Likelihood Function

Supposing the parameters X1, X2, ..., Xq are unknown parameters of a given

model. The likelihood function L, is a function defined as L(X) where X repre-

sents the set of unknown parameters. In an analogous presentation using X, V,W

logistic model, we write
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logit π(X) = β0 + βX +X

π1∑
γiVi +X

π2∑
δiWi

= β0 + β1x1 + β2x2 + ...+ βkxk

where

X(β0, β, γ1, γ2, ..., δ1, δ2) = β0, β1, β2, ..., βk

The likelihood function L(x) essentially combines the inputs or contributions of

all the subjects under study. It is therefore the combined likelihood (probability)

of observing the data collected.

3.18 Application To The Binomial Based Model

Suppose in a research which involves 200 trials of a vaccine, the probability of

a successful trial is presented by π which happens to be the parameter of inter-

est. Again, of the n = 200 trials being observed there are x = 150 successes

and n − x(200 − 150) = 50 failures. We seek to express the joint probability of

observing 150 successes out of 200 trials as a binomial based model (a binomial

distribution) which is a departure from and quite simpler than the logistic model.

n = 200 trials

π = probability of success

x = 150 successes

n− x = 50 failures

The probability of 150 successes, given 200 trials and written as

P (X = 150|n = 200) =

(
200

150

)
α150(1− α)200−150 = L(α)

Generally, we present the likelihood function of this illustration as

L(α,X) =

(
n

x

)
αx(1− α)n−x
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which defines the probability of observing the outcome of the study as a function

of the single parameter α and X is the number of successful trials. Now with the

likelihood function L(α) determined, we need an estimator α̂ which maximizes

L(α) and this is chosen by means of maximum likelihood method. The method

equates the partial derivative of L, with respect to α, and equates it to zero.

Thus L(α)max =
δL

δα
= 0. Thus the estimator α̂ which is the solution to the

above equation maximizes the function L(α) = (α1, α2, ..., αq).

3.19 Statistical Inferences For Logistic Regres-

sion

Ideally, MLE is used in making statistical inferences once it is obtained. Some of

these inferences borders on test of hypothesis and confidence interval estimation,

for a given set of parameters in our model.

Interferences are made by the use of MAXIMIZED LIKELIHOOD VALUE L(α̂)

and ESTIMATED VARIANCE-COVARIANCE MATRIX. The latter contains

information used in the required calculations for hypothesis testing and the es-

timation of confidence interval. This makes Variance-Covariance matrix unique.

The two quantities described besides other information are part of the output

which standard ML estimation programs provide. The other information that

the programs output besides maximized likelihood value and Variance-Covariance

matrix, include listing of each variable, its corresponding ML estimate and stan-

dard error in that particular order. This is displayed by

Table 3.4: Listing of Variance, ML coefficients and Standard error.
Variance X1.........Xk

ML coefficient β̂0.........β̂k
S.E Ŝβ0 .........Ŝβk
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3.20 Presenting Models For Inference Making

We discuss the use of ML Techniques in making statistical interferences. To

demonstrate this three models are presented using Table 3 in their logit state.

Logit π1(X) = β0 + β1X1 + β2X2

Logit π2(X) = β0 + β1X1 + β2X2 + β3X3

Logit π2(X) = β0 + β1X1 + β2X2 + β3X3 + β4X4

Let’s denote the maximized likelihood values for 1, 2 and 3 by L1, L2 and L3

respectively. We further state that a model fits a data better with more param-

eters.

Then L1 ≤ L2 ≤ L3 and again lnL1 ≤ lnL2 ≤ lnL3

Multiplying through by -2

−2 lnL3 ≤ −2 lnL2 ≤ −2 lnL3

The log likelihood for a given model is defined by −2 lnL. Similarly the individ-

ual statistics in the least inequality are the respective log likelihood for models

1-3. Their usefulness cannot be over emphasized because they serve as a means

testing hypothesis about parameters in our model using LIKELIHOOD RATIO

TEST.

3.21 Likelihood Ratio Test

In linear regression, the significance of a regression coefficient is assessed by com-

puting a t-test. In logistic regression there are several different test designed

to assess the significance of an individual explanatory variable most notably the

likelihood ratio test and the Wald statistic. The likelihood ratio test is the recom-

mended procedure to assess the contribution of individual ”predictors” to a given

model. In the case of a single predictor model, one simply compares the deviance

of the predictor model with that of the null model on a Chi-square distribution
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with a single degree of freedom. Using the difference in degrees of freedom of

the two models one can conclude that there is a significant association between

the explanatory and the outcome given that the predictor model has a signif-

icantly smaller deviance. Ideally a likelihood ratio statistic (LR) seeks to find

the difference in the likelihood statistic for two given models, one of which has a

unique extraction from the other, with an approximate Chi-square distribution

in copious samples. The disparity in the number of parameters between the two

models reflects the degrees of freedom (df) for this Chi-square test.

Again, we illustrate with our foregoing 3 models:

Model 1: logit π1(X) = β0 + β1X1 + β2X2

Model 2: logit π2(X) = β0 + β1X1 + β2X2 + β3X3

Model 3: logit π3(X) = β0 + β1X1 + β2X2 + β3X3 + β4X5 + β5X5

Model 1 is a unique extraction from Model 2 and similarly Model 2 a special case

of Model 3.

Ideally, in the likelihood ratio test two models need to be identified with a special

extraction for the other. The bigger is referred to as full model and the smaller

which is obtained by reducing certain parameters of the bigger model to zero

(0) is often called the reduced model. The set of parameters put to zero in the

full model form the basis of testing the null hypothesis. Again, the number of

parameters in the model set to zero in order to obtain the reduced model equal

the degree of freedom associated with the likelihood ratio.

Example : We compare Model 2 with Model 3

Model 2: logit π2(X) = β0 + β1X1 + β2X2 + β3X3

Model 3: logit π3(X) = β0 + β1X1 + β2X2 + β3X3 + β4X5 + β5X5

Model 3 is larger than Model 2 and therefore are full model is Model 3 and our

reduced model shall be Model 2. We realize that two parameters β4 and β5 from

the full model are not contained in the reduced Model. These are coefficient of

the variables X4 and X5 respectively and fsorms the basis of the null hypothesis

which compares the two models. We emphasize here that:
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1. There are no product terms in our full model.

2. For that matter there are no Confounder variables such as X1 and X1 which

multiplies X4 and X5 respectively to give product terms.

3. Hence there are no interactive terms such as X1X4 and X2X5.

Consequently, we state our

Null hypothesis as: H0 : β4 = β5 = 0

Alternatively hypothesis: H1 : β4 ± β5 ± 0.

The likelihood ratio associated with and comparing Model 2 and 3 is

The likelihood ratio associated with and comparing Model 2 and 3 is

LR = −2 lnL2 − (−2 lnL3) = −2[lnL2 − lnL3]

LR = −2 ln

(
L2

L3

)
This expression is approximately Chi-square with two degrees of freedom.

3.22 The Wald Statistic

Alternatively, when assessing the contribution of individual predictor in a given

model, one may examine the significance of the Wald Statistic. The Wald Statistic

analogous to the t-test in linear regression is used to assess the significant of the

coefficients. It is the ratio of the square of regression coefficient to the square

of the standard error of the coefficient and is asymptotically distributed as a

Chi-square distribution. The Wald Statistics is given by

Wi =
β2
i

SE2(βi)
∼ χ2 approximately Chi-square with one degree of freedom

Z =
βi

SE(βi)
∼ N(0, 1) approximately normally distributed

The wild test is usually applicable when only one parameter is being tested. Typi-

cal is the comparison between Model 1 and Model 2 where the former is a special

case of or extraction from the latter. Large samples are indifferent to the use
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of either Likelihood Ratio (LR) or Wald Statistic unlike what obtains in small

samples where the two tests differ in results. Thus LR = Wi (for large samples)

but LR 6= Wi (for small samples).

EXAMPLE : In this illustration we consider models 1 and 2 already discussed.

Model 1: logit π(X) = β0 + β1X1 + β2X2

Model 2: logit π(X) = β0 + β1X1 + β2X2 + β3X3

H0 : β3 = 0

H1 : β3 6= 0

Wi =
β2
3

SE2(β3)
(3.27)

Z =
β3

SE(β3)
(3.28)

It is also possible to have a scenario where the Null hypothesis H0 involves more

than one parameter. In the particular instance of Model 2 and 3 we realize that

we the parameters β4 and β5 are not part of Model 2 and so from the basis of the

Null hypothesis.

3.23 Interval Estimation(Single Coefficient)

We now discuss confidence interval estimation. Firstly, a situation where just

single coefficient is our interest is being considered. To obtain a large sample

confidence interval for a given parameter, we require the following:

1. An estimation of the parameter βi

2. A percentage point of the normal distribution defined by (1−α)100% where

α is a critical value determined by a percentage confidence level.

3. The estimated standard error Consequently a (1− α)100% C.I for βi is

C.I = β̂i ± Z(1−α
2
)Se(β̂i)
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For 95% confidence Interval

C.I = β̂i ± Z(1−α
2
)Se(β̂i)

= β̂i ± Z(1− 0.05
2

)Se(β̂i)

= β̂i ± Z0.975Se(β̂i)

= β̂i ± 1.96Se(β̂i)

3.24 Application to Odd Ratio

It is also possible to estimate confidence intervals for Odd Ratios. For an illus-

tration let us consider an exposure variable X2 which is binary (0, 1) from Model

1. Then

logit(X) = β0 + β1X1 + β2X2

Given X2 is binary (0,1), then X1 = X3 = 0 =⇒ OR(X2) = e−β2

Now since X2 represents our binary (0,1) exposure variable of interest, it presumes

that X1 and X3 are confounders. Consequently at 95% significant level

C.I. = eC.I for β2

C.I = eC.I for βi

= eβ̂i±1.96Se(β̂i)

3.25 Interval Estimation (Interaction Effects)

Once again we assume that our exposure variable of interest is binary (0, 1).

Here is an interaction effect as far as our Model is concerned. The expression for

Odd Ratio is accordingly adjusted to reflect the effect of our variable of interest

controlling for (interacting with) other variables.

Using Model 3 as an illustration

Logit π3(X) = β0 + β1X1 + β2X2 + β3X3 + β4X1X3 + β5X2X3

ˆORx3 = eβ̂3+β̂4X1+β̂5X1
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putting β̂3 + β̂4X1 + β̂5X1 = L,

a (1− α)100%,C.I for el shall be of the form exp
(
l̂ ± Z(1−α

2
)

√
ˆV arl̂
)
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Chapter 4

DATA COLLECTION, ORGANIZATION AND

ANALYSIS

4.1 Introduction

The chapter explains the mode of data collection and its organization for the

application of multiple logistic regression model and summary of results.

A review of major statistical tools and procedures employed in this analysis is

also discussed.

4.2 Data Collection

The data obtained for this study was mainly from a primary source due to the

group and scanty nature of existing secondary data at the various health posts

and malaria control outfit. The data collection involved a 3 week household cross

sectional survey across 22 clusters within The Malaria Control Programme (MCP)

Coverage area in the Obuasi Municipality (from 2nd to 23rd April 2014). The

target group was children under 5 years and the respondents were mostly mothers

aged between 15 and 55 years old. Of the 508 respondents (in this case mothers

of the under-five) sampled for the study, 307 had complete information with 201

incomplete cases. These were observations which could satisfy the requirement of

research information and without missingness. Thus because we seek to compare

two time points to assess risk of reduction in malaria reporting, our complete

observation are without;

i Children under 1 year
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ii Neutral (zero) outcomes i.e. neither reduction nor increase in malaria report-

ing.

The instrument used for the data collection (the questionnaire) went through

some validation and scrutiny through discussion. It was also pre-tested before the

main data collection. The study was meant to capture information on whether

children between 1-5 years in the Obuasi Municipality benefited from the two

major malaria interventions strategies namely Indoor Residual Spraying (IRS)

and Insecticide Treated Nets (ITNs) distribution and to use this data to model the

risk of reduction in clinical visits by means of logistic regression. Some important

predictors were factored into the outcomes. The predictors were age of child and

type of treatment, with four levels namely, IRS only, ITN only, both IRS and

ITN and Neither.

4.3 Data Analysis

Table 4.1: Paired Samples Statistics
Clinical Visits Mean N Std. deviation Std Error mean

Pair Past number of time 2.3909 307 1.2355 0.0705
Current number of time 1.0358 307 1.0519 0.0600

Having established that there is a significant difference, we are equally interested

in finding which set of scores is higher (time 1 or time 2). To do this the paired

sample statistics table is implored. From table 4.1, the mean number of clinical

visits to hospitals because of malaria during past year of child (time 1) was about

3 visits and the mean number of visits in the current year (time 2) was about 1

visit. Consequently we observe that there was a significant reduction in malaria

reporting for the under 5 given the vis-à-vis the interventions. It is nonetheless

crucial to indicate that obtaining a significant difference in the scores for the two

time points does not necessarily guarantee that the interventions used in this

study namely, IRS and ITN caused the reduction. Other factors such as the

use of insecticide spray, mosquito coils, repellents and attitudinal change towards
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sanitation, could have contributed to this result.

Table 4.2: Paired Samples Statistics
Paired Differences t df Sig.(2-tailed)

Mean Std. Std. 95% Confidence
Deviation Error Mean Interval of the Difference

Lower Upper
Past time number of

Pair 1 clinical visits-Current time
number of clinical visits 1.35505 1.53212 0.08744 1.18298 1.52711 15.496 306 0.000

The paired sample t-test is shown in 4.2. Here we ascertain whether there is a

significant change in malaria reporting between the first year and last year of the

under five following the interventions (IRS and ITN) designed to reduce malaria

cases. One set of matched pair of frequency of visits served as input variables

for this test. The expected outcome of this test is whether there is statistically

significant difference in the mean number of clinical visits for the past 1 year (time

1) and the current year (time 2). The probability value (p-value) of 0.000 in the

last column of table 4.2 is less than 0.05 which explains the significant difference

between the two sets of score. Since our p-value of 0.000 is substantially smaller

than our specified α value of 0.05, we conclude that there is a significant difference

in clinical visits to report malaria. The test further gives a t-value of 15.50 with

306 degree of freedom. Again the mean reduction in malaria reporting was 1.36

within 1.53 standard deviation. Our 95% Confidence Interval stretches from a

lower bound of 1.18 to an upper bound 1.53.
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Table 4.3: Summary Analysis by Cluster
Cluster n Mean(years) Std Dev(years) Minimum (yrs) Maximum (yrs)

1 13 2.762 0.982 1.580 5.000
2 28 3.340 1.148 1.170 5.000
3 32 2.906 1.122 1.170 5.000
4 22 3.076 1.124 1.250 5.000
5 10 3.133 1.045 1.500 4.830
6 21 2.584 1.111 1.170 4.750
7 17 3.108 1.217 1.080 5.000
8 11 3.462 1.377 1.250 5.000
9 7 3.203 1.060 2.000 5.000
10 11 3.182 1.036 1.500 5.000
11 13 3.442 1.096 1.500 5.000
12 8 4.188 1.068 2.170 5.000
13 3 4.307 0.636 3.750 5.000
14 7 3.821 1.081 2.500 5.000
15 5 3.350 1.829 1.170 5.000
16 12 2.945 1.204 1.170 5.000
17 7 3.071 1.238 1.750 4.920
18 7 3.107 1.122 1.500 4.500
19 10 3.250 1.267 1.500 5.420
20 5 2.882 1.280 1.080 4.000
21 23 3.025 1.253 1.080 5.420
22 35 3.324 1.260 1.250 5.000

The average age of the 307 children was about 3 years two months ± 1.18

years standard deviation. The minimum age was about 1 year and a month, and

a maximum of about 5years and 5 months. Table 4.3 presents cluster 22 (Kunka

junction) as the cluster with the highest respondents and cluster 13 (Wawase)

shows the lowest respondents. Cluster 2, 8, 9,10,11,12,13,14,15 and 19 recorded

average age exceeding the overall average age.
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Table 4.4: Test For Independence (Treatment by response)
treatment resp Total

0 1
Both (IRS and ITN) 21 158 179

6.84 51.47 58.31
IRS only 13 64 77

4.23 20.85 25.08
ITN only 2 16 18

0.65 5.21 5.86
Neither 11 22 33

3.58 7.17 10.75
Total 47 260 307

15.31 84.69 100.00

From table 4.4, 58.31% (179 children) experience both Indoor Residual

Spraying (IRS) and Insecticide Treated Nets (ITN) intervention. Of these, we ob-

served that 51.47% (158 children) showed reduction in malaria reporting as with

6.84% (21 children) showed an increase in malaria reporting during their last

one(1) year. From the table 4.3, 2.08% (77 children) who experienced IRS inter-

vention only, 28.85% of our sample (64 children) showed a reduction in malaria

related clinical attendance with the remaining 13 children (4.23 percent) a drop in

clinical attendance for malaria treatment. Again only 5.86 percent (18 children)

of the 307 children received only ITN treatment with about 5% (16) showed a re-

duction in malaria related cases and 13 children (4.23 percent) report an increase

in malaria cases within the last 1 year. Finally 11% of our sample (33) received

neither IRS nor ITN interventions with approximately 7 percent reporting a drop

in malaria related clinical visits in the last one (1) year while the remaining close

to 4 percent had their visits to a health facility for malaria treatment increased.

The chi-square test for independence (chi-square value 5.68, p-value = 0.0218)

showed that treatment is associate with the reduction in malaria reporting.
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Table 4.5: Omnibus Tests of Model Coefficients (Chi-square Test)
Chi-Square df Sig.

Step 1 step 10.003 3 .019
Block 10.003 3 .019
Model 10.003 3 .019

The Omnibus Test of model co efficient in table 4.5 gives us an overall

indication of how well the model performs. Thus, we seek to conduct a good-

ness of Fit test for our model, where we want for this results a highly significant

value (p-value < 0.05). In this particular instance our p-value of 0.019 which is

less than 0.05 suggests that each child reported a reduction in clinical visits in

his or her last 1 year. The chi-square value of 10.003 with 5 degrees of freedom

measures the contribution of individual predictor in the model and the results

presupposes that our model which contains all the predictors was statistically

significant. Consequently the model was able to distinguish between children

who showed or did not show a reduction in malaria cases.

Table 4.6: Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr>ChiSq
Intercept 1 0.0323 0.5336 0.0037 0.9517

age 1 0.2392 0.1411 2.8734 0.0901
treatment Both 1 1.2330 0.4414 7.8016 0.0052
treatment IRS only 1 0.8570 0.4821 3.1600 0.0755
treatment ITN only 1 1.3281 0.8398 2.5011 0.1138

Table 4.6 displays parameter estimates, obtained by the maximum likelihood

method, for the model. The parameters being tested for using Wald statistics

are The Intercept, age, Both IRS and ITN only with 1 degree of freedom. Here

the group of children that benefited from neither IRS nor ITN treatment is being

used as a reference point and therefore forms the basis of comparism with other

treatments. A cursory look at the respective p-value estimates shows that the

parameter estimate of 1.2330 for the use of both IRS and ITN treatments or inter-

ventions has the least P-value of 0.0052 (compared to the rest) which is less than

a P-value of less than 0.005 and therefore significant, contributing significantly
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in estimating the model. Consequently our study is modelled by the equation

logit

(
π̂

1− π̂

)
= 0.0323 + 1.2330(Both) + 0.85790(IRS)

+ 1.3281(ITN)

Table 4.7: Odds Ratio Estimates
Effect Point Estimate 95% Wald Confidence Limits

Lower Upper
age 1.270 0.963 1.675

Both vs Neither 3.432 1.445 8.152
IRS only vs Neither 2.356 0.916 6.062
ITN only vs Neither 3.774 0.728 19.570

Our results for contrast test shows that the contrast or variations among our ex-

planatory variables controlling for ”Neither” is statistically not significant from

table 4.7. Individual corresponding P-values are less than 0.05. It means there is

not much significant difference among the explanatory variables in contributing

to the predictability of the model. Here the group of children that benefited from

neither IRS nor ITN treatments is being used as a reference point and there-

fore forms the basis of comparism with other treatments for the estimation of

Odds Ratio. This is the change in the Odds of experiencing either a reduction

or increase in malaria reporting with a unit increase in one of the variables (pre-

dictors). In this analysis the Odds of a child experiencing a reduction in malaria

reporting is 3.432 higher for a child benefiting from both IRS and ITN interven-

tions than for a child benefiting from neither treatment. For all the Odds Ratios

shown in table 4.7 there is 95% confidence interval with a range of values for

which we can be 95% certain contains the actual value of our Odds Ratio. Since

the Confidence Interval for our variable ”both vears neither” interventions spans

between 1.445 and 8.152, we can as 95 percent confident that the actual value

of OR in the population is within that range. Judging from the individual Odd

Ratio estimates we conclude that children reporting both IRS and ITN treat-

ment risk reduction in malaria reporting than the other variables with respect to
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children who reports neither treatment. Again the possibility of a split between

the outcome variables ”reduction” or ”increase” in malaria reporting is shelved

in this analysis since our confidence interval of 1.445 to 8.152 does not contain 1.

This would have connoted equal odds.

Table 4.8: Hosmer and Lemeshow Goodness-of-fit
χ2 df p− value

7.9162 8 0.4417

The results shown in this table 4.8 is the Hosmer and Lemeshow Test which

supports the model as being adequate. This test apparently one of the most re-

liable of model fit available is interpreted differently from some other tests being

discussed. Given that the threshold measure for the Hosmer- Lemeshow Good-

ness of Fit test is 0.05, we want to obtain a significant value greater than this.

The results of our output in this model show a chi-square value for this test is

7.9162 with a significant level of 0.4417. This value is larger than 0.05, therefore

indicating support for the model.

4.4 Predictability of Variables

(See appendix table 5.1) The first ten observations from table 5.1 in appendix,

being children aged between 1.58 and 5.00 years show high predictability for

children who reports both IRS and ITN treatments. Our study models ”risk of

reduction” and 8 of the 10 observations risk a reduction in reporting for malaria

in the last 1 year.
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Chapter 5

SUMMARY OF RESULTS, CONCLUSIONS

AND RECOMMENDATIONS.

5.1 Introduction

We present summary of results, conclusions and some recommendations from this

study.

5.2 Summary Of Results

The study was designed to model the risk of reduction in clinical visits by the

under 5, given the types of malaria control interventions using Logistic regression.

Primary data from 22 clusters in the Obuasi Municipality was mainly utilized in

this study with children 5 years or less as target group.

The instrument (questionnaire) used had undergone some validation before ad-

ministering on the field. Simple random sampling by quota was used to select

the sample from various clusters. Direct logistic regression was performed to as-

sess the impact of a number of factors on the likelihood that respondents would

report they had a reduction in clinical visits to hospitals because of malaria. The

p-value of 0.000 from the 2-tailed sample t-test (table 4.2) connotes a significant

difference between the two sets of data on clinical visits (past 1 year and current

year). Also from the paired sample statistics table (4.1) the mean score on clini-

cal visits for the first year of child drops from about 3 to1 for same child in the

current year. This attests to the fact that there was a significant reduction in

malaria reporting for the under 5 given the interventions.

In analysis the results by cluster the average age of children across the entire 22
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clusters was three (3) years with the ages ranging between one (1) and six (6)

years. Cluster 22 (Kunka Junction) and cluster 13 (wawase) respectively present

the highest and the lowest number of children covered.

The test for independence (Treatment by response table) reveals that nearly 52%

of the 307 children used for the sample case analysis showed a reduction in malaria

reporting and these are children who experienced both IRS and ITNs interven-

tions, about the highest compared to the other children who experienced other

forms of malaria interventions.

The model contained four explanatory variables (Neither ITN nor IRS, ITN only,

Both ITN and IRS and only IRS). The full model containing all predictors was

statistically significant, X2(3, N = 307) = 10.003, P = 0.019(< 0.05), indicating

that the model was able to distinguish between respondents who reported and did

not report a reduction in clinical visits in their last one year. As shown in Table

4.6 (Odds ratio estimates) only one explanatory variable made a unique statis-

tically significant contribution to the model (Both ITN and IRS) and invariably

happens to be the strongest predictor of reporting risk of reduction recording an

Odds Ratio of 3.432. This indicated that children who benefited from both ITN

and IRS interventions were about three and a half times more likely to report

a reduction in clinical visits within their last one year than those children who

benefited from only one Intervention or neither, controlling for all other factors in

the model. Table 4.3 also shows that children who benefited from both IRS and

ITN interventions risk higher reduction rate (about 52% of the children) than the

others. The least number of children who reported a reduction in malaria cases

are those who benefited from neither of the interventions (about 7%).
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5.3 Conclusion

1. There is a significant difference in the frequency of clinical visits in the past

and in the present.

2. The reduction in malaria cases does not depend on age of child.

3. There was malaria intervention effect on the reduction of cases.

4. Both malaria intervention strategies (ITN and IRS) showed the significant

effect on the reduction of malaria cases.

5. ITNs only, IRS only and neither intervention showed no significant effect

on the reduction of malaria cases.

5.4 Recommendation

AngloGold Ashanti, Ghana Health Service, The Municipal Assembly, NGO’s and

other Stakeholders should consider intensifying the use of both interventions (IRS

and ITNs) than the use of individual IRS or ITN strategy.
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Appendix

Table 5.1: Predictability of variables
Obs age resp treatment Predicted residuals
1 2.33 1 Both 0.86087 0.54737
2 3.58 1 Both 0.89298 0.47580
3 2.25 1 Both 0.85857 0.55225
4 2.92 1 Both 0.87693 0.51250
5 5.00 1 Both 0.92137 0.40470
6 2.58 1 Both 0.86788 0.53235
7 3.92 1 Both 0.90050 0.45782
8 1.75 0 Both 0.84341 -1.92569
9 1.58 1 Both 0.83797 0.59460
10 2.25 0 Both 0.85857 -1.97784
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