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CHAPTER 1 

INTRODUCTION 

1.1 Background to the Study 

Malaria contributes substantially to the poor health situation in Africa. It is on record that, sub-

Saharan Africa (SSA) accounts for 90% of the world‟s 300 to 500 million cases of malaria and 

1.5 to 2.7 million deaths annually. About 90% of these deaths in Africa are of young children, 

suggesting some serious demographic consequences for the continent. Malaria is a great burden 

on the health system in Africa, as it is responsible for 20 to 40% of outpatient visits and 10 

to15% of hospital admissions, according to the World Health Organisation (WHO, 1999). In sub-

Saharan Africa (SSA), 10.8% of all disability-adjusted life years (DALYs) were lost to malaria 

in 1990. Again, among the 10 leading factors in DALYs in the world in 1998, malaria ranked 

eighth with a share of 2.8% of the global disease burden. In SSA however, malaria ranks second 

after HIV/AIDS, accounting for 10.6% of the disease burden. According to the World Bank, 

malaria accounted for an estimated 35 million DALYs lost in Africa in 1990 due to ill health and 

premature death (World Bank, 1993). The estimate was 39 million DALYs in 1998 and 36 

million DALYs in 1999 (WHO, 1998, 1999, 2000). Furthermore, while malaria contributed 

2.05% to total global deaths in 2000, it was responsible for 9.0% of all deaths in Africa (WHO, 

2002). 

 The WHO also estimated that the total cost of malaria to Africa was US$1.8 billion in 1995 and 

US$2 billion in 1997 (WHO, 1997). Malaria is therefore a massive problem that affects all 

segments of society. While its effect on people of all ages is quite immense, the most serious 

impact of malaria is on pregnant women and children because they have less immunity. When a 

malaria infection is not properly treated in pregnant women, it can cause anaemia and also lead 
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to miscarriages, stillbirths, underweight babies and maternal deaths. Also, frequent cerebral 

malaria can lead to disabling neurological consequences. With regard to school children, malaria 

is a major cause of absenteeism in endemic countries. It is estimated that about 2% of children 

who recover from cerebral malaria suffer brain damage including epilepsy (WHO/UNICEF, 

2003). Hence, among young children, frequent episodes of severe malaria may harm their 

learning abilities and educational attainment. This is a threat to human capital formation, which 

constitutes a key factor in economic development. The debilitating effects of malaria on adult 

victims are very disturbing. In addition to the time and money spent on preventing and treating 

malaria, it causes considerable pain and weakness among its victims, thereby affecting their 

ability to work. The adverse impact of the disease on household production and gross domestic 

product can be substantial. Malaria therefore is not only a public health problem but also a 

developmental problem. 

At the national level, apart from the negative effect of lost productivity on the major sectors of 

the economy, malaria has negative effects on the growth of tourism, investment and trade, 

especially in endemic regions. 

 It constitutes a major socio-economic challenge to African countries since they are the region 

most affected by the disease. This challenge must be faced with resolve since good health is not 

only a basic human need but also a fundamental human right and a prerequisite for economic 

growth (Streeten, 1981). 

The malaria burden is a challenge to human development. It is both a cause and consequence of 

under-development. As has been observed elsewhere, the disease is not homogeneous and 

uniform in Ghana. It is a localized problem with great differences from place to place. 

Prevalence shows diversities and variations to the extent that neighbouring communities can 
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display complete difference in transmission patterns. This is due to a combination of factors: 

meteorological and ecology of both human host and the vectors and proximity between human 

habitat and the breeding places. The peak period of malaria transmission occurs during the rainy 

season and often coincides with the peak period of agricultural activities such as planting and 

harvesting. Parasite strains appear to be including an increasing human tool with services on 

productivity. There is some reduction during the dry season. 

1.2 Problem Statement 

The malaria burden is a challenge to human development. It is both a cause and consequence of 

under-development. In Ghana, malaria is the number one cause of morbidity, accounting for 40 

to 60% of outpatient visits. It is also the leading cause of mortality in children under 5 years of 

age, a significant cause of adult morbidity, and the leading cause of workdays lost to illness. 

Despite the devastating effects of the disease, the importance of a malaria-free environment in 

promoting economic development and poverty reduction has not been fully appreciated in 

Ghana. Perhaps the impact of malaria has not been demonstrated in quantitative terms that might 

convince politicians, policy makers, programme managers and development partners to devote 

the needed attention and resources to combating this dreadful disease. This study is an attempt to 

fill this gap with appropriate information. 

1.3 Objectives of the Study 

The objectives of the study are to:                                                                                                                                               

 (i) provide us clues about the behaviour of the time series data 

(ii)  develop a statistical model that will aid in forecasting the incidence of the disease in the 

district. 
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1.3.1 Methodology 

In the study district, the Government Hospital was contacted for data on morbidity of malaria. 

The data for monthly reported cases of malaria fever between the years 2001 to 2010 was 

obtained from the statistical Department of Effiduase Government Hospital. The KNUST library 

and the internet were other sources of vital information to this project. Data from January 2001 

to December 2010 would be used for comparing the mean monthly reported cases. The malaria 

data from 2001 is taken as the based year and its mean reported cases would be compared with 

the mean reported cases of the other years (2002 to 2010) to see the trend of occurrence of the 

disease over the years under consideration. The two-sample t-test would be used for comparing 

the means of the reported cases. Minitab 16 is used to compare average monthly reported cases.  

Data from January 2001 to December 2010 would be used for developing a time series ARIMA 

model for predicting the number of reported cases in the district. Values for the months May and 

June 2010 would be reserved for post time series forecast. An SPSS version 16.0 is used in the 

formulation of the ARIMA model. Minitab is used to plot the graphs. Minitab software is used to 

determine the trend equation. 

 By the application of Box-Jenkins method, the data was analyzed and used to identify and select 

the best ARIMA model.  

1.3.2 Scope 

The study is confined to the morbidity of malaria cases reported at the Effiduase Government 

Hospital in the Sekyere-East District. The project is seeking information on monthly outpatient 

morbidity returns for ten (10) consecutive years (2001-2010) of the disease. 
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1.3.3 Justification of the Research 

Several programmes have been initiated in this country to combat this disease of the poor people 

but its prevalent rate is still high and accounts for 40% out of the 70% communicable disease in 

Ghana in 2008. The National Malaria Control Programme (NMCP) is the mother agent for 

controlling the disease in this country. Other companies like Zoomlion Company Limited and 

AngloGold Ashanti have also joined in the fight against the disease.  

Considering the concomitant loss of lives, cost in the medication and loss of productive hours, it 

requires renewed commitment from the government, non-governmental organizations and all and 

sundry to fight for complete eradication of the disease. Since the cost of treatment of the disease 

is directly proportional to the size of the potential benefits to be derived for the country, for a 

successful malaria control programme, this study will try to identify areas of high prevalence of 

malaria in the district.    Indeed, very few research studies have been carried out on the incidence 

of malaria in the Ghanaian context to date. In particular, very little is known in the district 

concerning this very important subject. Based on available empirical evidence, it is necessary to 

furnish decision makers and other stakeholders with vital information regarding the incidence of 

malaria in the district for possible policy interventions. Additionally, it is important to contribute 

to knowledge on the incidence of malaria with a view to, among other things, stimulate further 

research. 

1.3.4 Limitation of the Study 

This project has successfully been accomplished not withstanding constraints encountered. 

Inadequate logistical arrangement to facilitate collection and storing information constituted a 

major drawback. Officers of the statistical department of the hospital had to search through bulk 

documents for the needed information. This made it a hard task for me in obtaining the required 
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data. Time allotted to carry out the study wasn‟t sufficient enough to cover a broader scope like 

the whole of Ashanti Region or country wide. The high cost of gathering and collection of data 

also prevented me form covering a wider scope to achieve a desirable and representative result. 

1.3.5 Thesis Organization 

Chapter 1 is the introduction which comprises the background to the problem, statement of the 

problem, objectives of the study, justification of the research, methodology and limitation. 

 

Chapter 2 basically deals with the review of literature on malaria and   time series modelling.  

 

Chapter 3 deals with the methods used in the analysis. It comprises of the introduction, 

describing basic statistics, method and concept of time series and Box-Jenkins methodology.  

 

The data used in the study and characteristics of the study area, data analysis and results are 

considered in Chapter 4.  

 

The summary and conclusions including a discussion of the policy implications of the study are 

presented in Chapter 5.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 MALARIA  

A lot of people have done research on malaria. This chapter deals with the review of some 

literature works on malaria.  

In humans, malaria is caused by four species of the plasmodium protozoa (single celled 

parasites) – plasmodium falciparum, plasmodium vivax, plasmodium ovale and plasmodium 

malariae. Of these species plasmodium falciparum accounts for the majority of infections and is 

the most lethal. 

Several studies have been done on different aspects of the disease, from parasitology to finding a 

cure with drugs (chemotherapy) and to eradication of the disease by the use of insecticide treated 

net and insecticides.  

   Rashed, S. et al. (2000), conducted a study which was aimed at determining the effect of 

Permethrin insecticide treated nets (PITN) use on the incidence of febrile episodes and non 

household malaria expenses in Benin.  

The study found out that, the use of PITNs decreased the risk of developing malaria by 34% in 

children in the rural areas; meanwhile, PITN use did not reduce prevention and treatment 

expenses. In a parasitology laboratory, malaria was found to be the major killer of paediatric 

illness and death in Kinshasa (Coene, 1991). In view of this, the treatment of fevers as malaria 

with chloroquine is no longer acceptable because the plasmodium falciparum had a resistance to 

chloroquine. According to the study, the differences in endemicity of malaria that existed 

between the various parts of town had to be taken into consideration alongside the ecological and 

socio-economic factors that underlie when planning for estimation of potential control methods. 
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The behavioural risk for malaria in the Machodinho resettlement area in the Amazonian forests 

of Brazil was examined (Castilla and Sawyer, 1993).  Analysis of the study suggested that 

economic status and knowledge of the importance and behaviour of the mosquito in transmitting 

malaria are significant factors in determining prevalence risk irrespective of whether preventive 

precautions, for example, dichlorodiphenyl trichloroethane (DDT) spraying of houses and 

cleaning of vector breeding sites are to be undertaken in the endemic areas. However, the 

researchers found out that a higher economic status combined with better knowledge of the 

vector and DDT spraying of houses decreased the risk of infection. They suggested that a more 

positive implication is that control programmes must work harder and more intensively on behalf 

of poorer people especially migrants in order to diminish the disease burden for them. Sharma 

and colleagues (2001) carried out a study on the socioeconomic factors as well as on the human 

behaviour towards malaria on cross section of the Sundargarh district in India. They argued that 

poor socioeconomic status and socio-cultural factors play an important role in maintaining high 

degree of malaria transmission. They found that human behaviours such as location of hamlets, 

type of malaria transmitted, sleeping habits, and outdoor activities after dusk, poor knowledge 

about the disease and treatment seeking behaviour are of great significance as determinants of 

malaria transmission. 

Malaria is also a major problem in Papua New Guinea as it accounts for a high proportion of 

sickness and death. This is because in addition to human suffering, it also put severe stress on the 

health facilities and directly hinders economic growth. It has been suggested that a malaria 

vaccine would be best, most cost effective and safe public health measure to reduce the burden 

of malaria (Reeder, 2001). 
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Whitty and Allan (2004) contend that the serious threat posed by the spread of drug-resistant 

malaria in Africa has been widely acknowledged. Chloroquine resistant malaria is now almost 

universal and resistant to successor drug, sulfadoxine-pyrimethamine (SP) is growing rapidly. If 

the question of cost of treatment is not successfully addressed this could lead to adverse result 

from the deployment of combination therapy as a first-line treatment. Adverse effect of costly 

treatment ranges from increase in delays in infected individuals presenting themselves to the 

health care facilities for treatment to exclusion of the poorest malaria sufferers from receiving 

treatment altogether. 

Malaria has been one of the most prominent and ancient diseases which has been profiled and 

studied. It has been one of the greatest burdens to mankind, with a mortality rate that is 

unmatched by any other modern disease other than tuberculosis (Sudhakar et at., 2007). It 

remains the leading cause of death in children under five years in Africa (Houeto et al., 2007).  

Malaria is one of the leading killer diseases in the tropical and subtropical countries. It therefore 

poses a serious health problem to these countries including Ghana. This disease is frequently 

called disease of the poor because its prevalent rate is very high in the poorest continent and in 

the poorest countries (Worral et al., 2003).  

According to Nchinda, (2005) sub-Sahara Africa was never part of the global malaria eradication 

programme because the period coincided with colonial and immediate postcolonial period and so 

the indigenous had little or no power to initiate and sustain an eradication programme.  

This review looks at the factors affecting the prevalent rate of this dreadful disease and some of 

the control measures which have already been initiated to control the disease. There are 

combination of factors which contribute to the resurgence of this disease in Ghana and Africa as 

a whole.  
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Poverty contributes to the prevalence of malaria in Africa. According to Pattanayak et al., (2003) 

many of the world‟s poorest people live in areas of high rates of malaria. These people do not 

have access to effective health care due to financial constraint. Worral et al,( 2003) called 

malaria as a disease of poverty. The economic status of a vulnerable country plays another role 

in determining the equippedness and control measures in case of epidemics (Sudhakar et al., 

2007).  

A survey in Zambia found a substantially higher prevalence of malaria infections among the 

poorest population group. Poverty compels people to move from non-endemic areas to endemic 

areas in their quest to search for jobs. As with other diseases, malaria has unequal effect on 

different members of the population; pregnant women and children are most susceptible. Given 

that the intensity of malaria transmission and therefore the likelihood of control depends on the 

relative abundance of and contact patterns among susceptible, infected, infectious and immune 

individuals, it is essential to target mothers and children in treatment (Guerin et al., 2002). The 

immediate economic burden on households from losing mothers is devastating, whereas 

childhood malaria imposes future burdens (Pattanayak et al., 2003).  

Another contributing factor to the high morbidity of malaria is altitude. Research shows that 

there is high prevalent rate of malaria in low altitude areas and the prevalent rate is low in high 

altitude areas. According to Wiwanitkit (2006), a previous research on altitude and malaria 

mosquito prevalence in Thailand indicated high prevalence of the disease in low altitude. 

However people living in high altitude areas may experience high prevalent rate of malaria if 

they create the enabling environment for the breeding of the vector. Environmental factors hinder 

efforts to control the disease. Inhabitants of houses surrounded by bushes or garbage heaps and 

swamps or stagnant water showed higher malaria prevalence and densities as compared with 
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those from cleaner surroundings (Nkuo-Akenji et al, 2006). Irrigation and deforestation have 

affected the transmission of the disease. Irrigation requires the construction of dams which serve 

as fertile breeding grounds for the parasite. In Sri Lanka, the construction of hydropower dams 

on Mahaweli River created pools with sandy and rocky nature, which are suitable for the 

breeding of anopheles culicifacies, the primary malaria vector for the country (Nkuo-Akenji et 

al., 2006). Deforestation changes the ecology of the vector and its option for the host (Pattanayak 

et al., 2003). Whereas the forest floor in primary growth tends to be heavily shaded and littered 

with a thick layer of organic matter that absorbs water and renders acidic, clear lands are 

generally more sunlit and prone to the formation of puddles with more neutral pH, which can 

favour specific anopheline larvae development (Patz et al., 2000).  

According Lindsay et al., (2004), deforestation is one of the most potent factors at work in 

emerging and re-emerging of infectious diseases. Mining causes deforestation and environmental 

degradation. Mining pits dug during land dredging mining creates stagnant water pools serving 

as breeding ground for mosquitoes and other water-borne diseases (Wiwanitkit, 2009). In 

Kanchanaburi, Thailand the primary forest malaria vector, An. dirus increased mainly because 

breeding places were created by excavation work (Wiwanitkit, 2006). In sub-Sahara Africa, 

climate change has several features that could influence the prevalent rate of malaria. Rising 

temperature can extend the habitat of mosquitoes, shifting the boundaries of latitude and altitude 

for malaria transmission. Highland areas in Burundi, Kenya and Uganda which initially were 

malaria-free are now experiencing epidemics (Sulaiman, 2007). Floods and drought also have 

impact on the incidence of malaria. Drought leads to the formation of pool of stagnant water 

which creates a favourable habitat for the parasite. Relative humidity affects the transmission of 

malaria. It affects the survival of the vector.  
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The resistance of the parasite to anti-malaria drugs especially chloroquine is a major cause in the 

re-emerging of the disease. Resistance evolves through fundamental principles of natural 

selection and evolution, including diverse factors such as extent of treatment, nature and site of 

antibiotic action or genomic complexity of the parasite (Wilson, 2001). Perhaps the biggest 

threat to malaria control- be it prevention or treatment- is the increasing resistance to pesticides 

and drugs. Optimal control and treatment maximize the useful life span of insecticides and drugs. 

Resistance is more likely to emerge when background immunity is weak, parasite numbers in 

individuals are high, transmission is low, and insecticides and drug pressure is intense. 

Plasmodium falciparum has become variably resistant to all drug classes except the artemisinin 

derivatives. Multiple economic factors influence the inappropriate use of drugs and insecticides 

(Reed et al., 2002).   

Since the discovery of the disease about 4,000 years ago, several control measures have been put 

in place to curb it but the incidence of the disease is still high in sub-Sahara Africa. The United 

States and some Europeans countries have been able to eradicate it through the use of insecticide 

and manipulation of the environment (Nkuo-Akenji et al., 2006). United States launched the 

National Malaria Eradication Program on 1st July 1947. Over 4,650,000 houses were sprayed by 

the end of 1949. In 1947, the malaria cases reported were 15,000 and reduced to 2,000 in 1950. 

The disease was considered eradicated in 1951.  

The World Health Organization launched the global eradication of malaria in 1955. 

Unfortunately, this coincided with the struggle for independence in sub-Sahara Africa. Countries 

with temperate climates succeeded in eradicating the disease. Countries like India and Sri Lanka 

had sharp reduction in morbidity. However countries like Indonesia, Afghanistan, Haiti and 

Nicaragua made negligible progress (CDC, 2004).  
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The Roll Back Malaria (RBM) initiative launched in 1998 has the ambitious target of decreasing 

malaria mortality by 50% by the year 2010. Although several control and preventive measures 

will contribute to the achievement of this target, an essential contribution needs to come from a 

substantial reduction of the case-fatality rate for the disease (WHO, 2002). African leaders met in 

Abuja in 2000 to reaffirm their commitment to the RBM. The goals of the Abuja Declaration 

include ensuring that 60% of those with malaria have access to treatment within 24 hours of the 

onset of the symptoms; at least 60% of the at-risk pregnant women receive preventive drugs and 

at 18 least 60% of the at-risk sleep under bed nets (The African Summit on Roll Back Malaria, 

2005). After nine years of implementing the Abuja Declaration, it appears Ghana is making a 

negligible success since the morbidity rate is still high and in Effiduase malaria is still the most 

common disease recorded daily at the health centres. The ability to prevent and treat the disease 

is a function of one‟s income so the issue of affordability in terms of treatment and the 

acquisition of the nets should not be downplayed if modest gain is to be achieved different from 

the others.  

2.2 TIME SERIES AND MALARIA STUDIES  

A mathematical model can help respond to the increasing threat of malaria in the district. The 

man who first discovered that malaria is transmitted though mosquitoes, Sir Roland Ross, 

developed the first mathematical model for malaria transmission in 1911. In presenting his 

model, Ross pointed out that “the mathematical method of treatment is really nothing but the 

application of careful reasoning to the problem at issue”.  

Autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA) models are some of the fundamental models 

for forecasting time series data. The MA model assumes that the series depends linearly on its 
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previous values and normally distributed error term. The autoregressive, model attempts to 

forecast the time series values based on historical data. The moving average component models 

the error terms which are correlated. Non-stationarity can be decreased by differencing the series 

with specific time lag. The main objective of a time series is to develop statistical model 

explaining the behaviour of a random variable changing over time which allows making future 

estimations of the said random variable (Suarez et al., 2009). Analysis of time series may serve a 

number of purposes. Often the main interest lies in the regressive model, for example relating 

infection incidence to staffing levels or antibiotic usage data. Other applications include 

forecasting and the development of the alert systems to detect periods or places where 

transmission exceeds some threshold (Brown et al., 2002).  

Regarding planning in future needs in any system, traffic prediction accuracy is really important 

when defining required future capacity and planning any changes. A fairly accurate time series 

model could predict several years in the future, this being an advantageous skill when planning 

future requirements (Fillatre et al., 2003).  

Lin et al., (2009) used time series analysis to investigate the relationship between the falciparum 

malaria in the endemic provinces and the imported malaria in the non-endemic provinces of 

China. An autoregressive integrated moving average model was first fit to the predictor variable. 

Of all the models tested, the seasonal ARIMA (1, 1, 1) and (0, 1, 1) model for malaria incidence 

fit the data best according to the according to AIC and goodness-of -fit criteria.  

Briet et al., (2008) formulated a model for short term malaria prediction Sri Lanka. 

Exponentially moving average models, autoregressive integrated moving average models with 

seasonal components and seasonal multiplicative autoregressive integrated moving average 

(ARIMA) models were compared on monthly time series of district malaria cases for their ability 
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to predict the number of malaria cases one to four months ahead. The best model for forecasting 

and forecasting error varied strongly among the districts for instance, for the district of Ampara, 

for a one month forecasting horizon, the best model was an ARIMA (2, 1, 1) with seasonality 

through a harmonic with a period of one year and a harmonic with period of six months. For 

further forecasting horizons, the ARIMA (0, 1, 2) model with seasonality through a first order 

seasonal autoregressive and a first order seasonal moving average component was best for the 

district of Ampara. Contreras et al., (2003) developed a model for predicting the next-day 

electricity prices in mainland Spain and California markets using an ARIMA model. Their 

developed model was able to forecast the 24 market clearing prices of tomorrow. The ARIMA 

model is an effective tool for forecasting time series.  

A good model is to be developed for forecasting the malaria cases. A model fitting quality is 

defined as the sum of the residuals‟ squares divided by the sample size. Its objective is to 

measure the model‟s capacity to produce the sample data (i.e. to verify how similar the modelled 

series and the actual series really are) (Guerrero, 2003). 
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CHAPTER 3 

3.0 METHODOLOGY 

Statistical forecasting methods fall under two major categories: Qualitative forecasting and 

Quantitative forecasting methods. The Qualitative methods are generally subjective in nature; 

they rely on opinions of experts for formulating the relationship. The Quantitative methods, on 

the other hand, involve statistical analysis of the historical data in an attempt to identify either 

the true mathematical relationship between the historical data or that relationship which is 

reasonably close to the true relationship. These methods can be further classified into two sub-

types: Explanatory or Causal methods and Time series methods. Explanatory methods 

investigate the presence of other variables which affect the variable of interest. These other 

variables, called inputs, are then analyzed and a suitable relationship between the inputs and the 

variable of interest is formulated. The Time Series Methods are „stand alone‟ methods. Time 

Series Methods investigate the historical pattern present in the variable of interest and, assuming 

that it will continue in future, use this association to predict the future values. The choice of the 

method depends on specific cases and the availability of data. 

This chapter deals with the concept of time series, an overview of the Box-Jenkins ARIMA 

methodology, a sophisticated time series analysis technique, and time series methodologies. 

ARIMA methodology is the main tool used in identifying the forecasting models of chapter four. 

Software packages Minitab and SPSS are used as the platform to identify these models. 

Section 3.1 deals with the concept of time series, 3.2.  Introduces the basic terminology of Box-

Jenkins methodology and the various classes of ARIMA models, followed by a discussion on the 

concept of „Stationarity‟ of time series in section 3.3. In Section 3.4, the three-stage iterative 

method of fitting Box-Jenkins ARIMA models to a time series is explained, along with a 

discussion on the various statistical tests to measure the goodness of fit of such models. Section 
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3.5 looks at the procedure of forecasting using general ARIMA models. Seasonal ARIMA 

models and ARIMA transfer function models are covered in sections 3.6 and 3.7 respectively. 

3.1 Concept of Time Series 

Time series is the set of observations on a variable of interest that has been collected in time 

order that is, daily, weekly, monthly, etc. In other words it is a time dependent sequence. If the 

time series can be predicted exactly, it is said to be deterministic for example a person‟s salary 

may be determined according to the number of years worked but most time series are stochastic 

in nature in that the future values are determined based on the past values. 

3.1.1 Components Of Time Series 

Traditional time series are mainly concerned with decomposition. All time series contain at least 

one of the following four components: trend, cyclical, seasonal and irregular variations. 

3.1.2 Trend 

This refers to the general direction in which the graph of time series appears to be going over a 

long interval of time. In other words, it is a long-term growth or decay. 

A deterministic trend model with a seasonal effect can take either an additive form, 

(1.1) 

or a multiplicative form, such as 

 

or a mixed form, 

 

where  is a (usually slowly changing) function of time, so called „trend 
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component‟,  is a periodical function of time and  is a random noise component. 

Model (1.2) can be easily transformed to the additive form by taking a logarithm of both sides. 

Model (1.3) is often referred to as a multiplicative one. 

3.1.3 Cyclic 

This is the long-term oscillations or swing, about a trend line curves which may be periodic and 

may not be equal intervals of time. It is a wave-like fluctuation about trend. The length and the 

amplitude of the cycle are not constant as in the seasonal component but may vary from one to 

the next. 

3.1.4 Seasonality 

This refers to the identical or almost identical patterns which a time series appear to follow. It is 

a periodic change usually in year cycles. In other words, a regular recurring variation or 

fluctuation. 

3.1.5 Irregular variations 

The irregular component of a time series is the residual factor that accounts for the deviations of 

the actual time series value from what we would expect if the trend, cyclical and seasonal 

components completely explain the time series . It is caused by a short term unanticipated and 

non-recurring factors such as wars, earthquakes, floods and so that affect the time series. Since 

this component accounts for the random variability in the time series, it is unpredictable that is 

we cannot predict its impact on the time series in advance. 

3. 2 Box-Jenkins ARIMA models: Definition and Terminology 

Box-Jenkins ARIMA models use historical values of a single variable to forecast its future 

values; hence they are classified as univariate methods. The variable of interest must be 
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separated by equally spaced time intervals to apply Box-Jenkins methodology. Let‟s consider a 

discrete time series of equally spaced observations in time: 

 

The basic essence of Box-Jenkins methodology is that it considers the observed time series, , 

to be the outputs of an unobservable „black box‟ process. The inputs to this black box are a series 

of independent random shocks  , as illustrated in Figure 3.1. 

                               

                        

                             Figure 3-1: Box-Jenkins Black-Box Process 

For statistical purposes, these random shocks are assumed to be normally distributed with zero 

mean and a constant variance. This sequence is typically referred to as „white noise‟. Thus, the 

Box-Jenkins approach views a time series as the result of transformation of a white noise process 

using a black box, which is nothing more than a linear filter. 

In essence, the ARIMA model assumes that the outputs (observed time series values) may 

depend on: 

1)   The previous and current inputs (white noise or random shocks). 

2)   The previous output values of the time series under study,  in varying proportion. 

How much each of these will determine the future output will depend on their associated 

coefficients. 

Specifically, the Box-Jenkins approach proposes a simple linear form for the observed time 

series values: 

                          (3.1)                                        

or,                                                                                                  (3.2) 

Linear Filter 
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where - , 

  

 , B is the Backward shift operator (  etc) 

d = order of differencing 

Equation 3.1 shows the current output as a linear weighted sum of previous outputs and inputs. 

Note that only “p” nonzero output terms and “q” nonzero input terms are required to produce the 

current output. Thus only a finite number of recent inputs and outputs will have a statistically 

significant effect on the current output. 

The general notation of ARIMA models is ARIMA ( p,d,q ), where “ p ” is the order of 

Autoregressive component, “ d ” is the order of differencing used and “ q ” is the order of 

Moving Average component in the model. The Autoregressive and Moving Average components 

are described below and the concept of differencing is described in the next section. 

Depending on the above definition, the ARIMA models can be classified into: 

1) Autoregressive (AR) models: 

When the value of the current output  depends solely on p prior outputs and the current input 

(random shock)  , the Box-Jenkins model takes the form of 

                                                                              (3.3) 

or                                                                                                                            (3.4) 

and is called an Autoregressive model of order p, denoted by AR (p) or ARIMA (p, 0, 0). 

2) Moving Average (MA) models: 

When the current output  depends solely on the current input and q prior inputs, the Box-

Jenkins model takes the form of 
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                                                                                 (3.5) 

or                                                                                                                            (3.6) 

and is called a Moving Average model of order q, denoted by MA (q) or ARIMA (0, 0, q). 

3) Mixed Autoregressive and Moving Average (ARMA) models: 

When the current output  depends on both the AR and MA processes, the Box-Jenkins model 

takes the form of equation (3.1) and is called an Autoregressive and Moving Average model, 

denoted by ARMA ( p,q) or ARIMA ( p,0,q). 

3.3 Stationary Time Series 

ARIMA time series models are designed for stationary time series. The Box-Jenkins 

methodology requires that the time series under analysis be “stationary” in both mean and 

variance. 

 In simplest non-statistical terms, the concept of stationarity can be explained as follows: 

1) If the mean of the plotted series varies over time, the series is considered nonstationary 

in mean. If there is no evidence of a change in mean level over time, then the series is considered 

mean-stationary. 

2) If the plotted series shows no obvious change in the variance over time, then the series is 

considered to be stationary in variance, otherwise it is considered to be non-stationary in 

variance. One of the other advantages of Box-Jenkins model is that it can be applied to 

nonstationary series after making them stationary using some sort of transformation. In order to 

induce mean stationarity in the (mean non-stationary) data, typically, a concept called 

„differencing‟ is used. A difference of order one (or second or higher orders) is all that is 

required to achieve mean stationarity in the majority of cases. A difference of order one means 

that each value of the time series is subtracted from the immediate previous value: 
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                                                                                                               (3.7) 

It can be shown that  

Therefore, , the difference operator. The result is a new time series  , having one 

less observation than the original  series. A difference of order two implies that the first order 

differenced series is differenced again resulting in: 

                                   (3.8) 

The result again is a new time series  , having two less observations than the original series  . 

This can be generalized to  order differencing, where d is the order of differencing required to 

achieve mean stationarity. After modelling the dth order differenced series with an appropriate 

ARMA model, to reclaim the modelled values corresponding to the original undifferenced series, 

it is necessary to reverse the differencing transformation and “integrate” d times. This is 

represented by “I” in the acronym ARIMA and the order of integration is same as the order of 

differencing („d‟ in this case). Next, in order to make the series stationary in variance, if required, 

a different class of transformations can be carried out like the logarithmic transformation (taking 

log of the original data), square root, cubic root etc. 

  (Natural logarithmic transformation) 

 (Square root transformation), etc. 

If the series is not positive throughout, it can be made positive by adding a suitable constant c to 

each observation of the series before the transformation is carried out. One of the best methods 

available to detect the proper transformation required to reduce heteroscadicity in data is using 

the Box-Cox transformation methodology, a general class of transformation which includes all 
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other transformations mentioned earlier as special cases. The Box-Cox transformation also 

makes the data more normal distribution-like. 

Once the series of interest has achieved stationarity in both mean and variance using 

transformations, appropriate AR( p), MA( q), ARMA( p,q) or ARIMA( p,d,q) models can be fit 

to the series. 

3.4 Box-Jenkins Methodology 

The Box-Jenkins methodology is used in modelling the time series. The pioneers who 

popularized an approach which combines the moving average and autoregressive models were 

Box and Jenkins. Although both autoregressive and moving average approaches were known 

(and were originally investigated by Yule), the contribution of Box and Jenkins was in 

developing a systematic methodology for identifying and estimating models that could 

incorporate both approaches and this makes Box-Jenkins models a powerful class of models 

(Dobre et al., 2008). 

There are four primary stages in building a Box-Jenkins time series model. These are model 

identification, estimation of the model parameters, diagnostic check of the residuals and model 

adequacy and forecasting. 

 3.4.1 Steps in Analyzing Data and Identifying ARIMA Models 

Box and Jenkins recommend a three-stage iterative modelling strategy to fit ARIMA models to a 

time series of interest. 

Step 1- Identification of the order of the ARIMA model: 

At the identification stage, the historical data of the time series of interest is statistically analyzed 

and an appropriate subclass of models from the general ARIMA (p, d, q) family is selected.  

The approach can be summarized as follows: 
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a) Suitably transform the time series  to remove the non-stationarity in variance (if present). 

b) Difference the time series  as many times as is needed to produce mean stationarity (if 

required), hopefully reducing the process under study to the mixed Autoregressive Moving 

Average ARMA ( p,q) process. 

c) Identify the order of the ARMA model. That is, identify the autoregressive order „ p‟ and 

moving average order „ q‟ present in the transformed and differenced data. 

The basic tools for model identification (steps (b) and (c)) are the graphs of estimated Sample 

Autocorrelation Function (ACF) and the estimated Sample Partial Autocorrelation Function 

(PACF) obtained from the series.  

These graphs are used not only to help guess the form of the model, but also to obtain 

approximate estimates of the parameters (using Yule-Walker equations), which are useful at the 

estimation stage to provide starting values for iterative procedures employed during the 

estimation of final parameters. 

For a time series  the autocorrelation coefficient at lag k is: 

                                                                                                                         (3.9) 

The sample k  order autocorrelation is, 

                                                                                                              (3.10) 

The theoretical partial autocorrelation at lag k,  , may be thought of as the autocorrelation 

between  and , separated by a lag of k time intervals, with the effects of the intervening 

variables eliminated. 

The sample partial autocorrelation coefficients can be computed as: 
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                                                                   (3.11) 

Theoretically, it can be shown that an Autoregressive (AR) process of order p has an 

autocorrelation function of infinite extent, dominated by damped exponentials and sine waves, 

and a partial autocorrelation function that is zero after lag p. Conversely, the partial 

autocorrelation function of a Moving Average (MA) process of any order q is infinite in extent 

and its autocorrelation function is zero beyond lag q. For ARMA processes, the identification of 

the process order gets somewhat complicated by the fact that both the autocorrelation function 

and partial autocorrelation function are infinite in extent. 

Table 3-1: Distinguishing characteristics of theoretical ACF and PACF 

 Process ACF PACF 

AR(  
Trails off towards zero (exponential 

decay or damped sine wave) 

Cuts off zero after lag  

MA(  Cuts off to zero after lag  
Trails off towards zero (exponential 

decay or damped sine wave) 

ARMA(  
Trails off towards zero (exponential 

decay or damped sine wave) 

Tails off towards zero (exponential 

decay or damped sine wave) 

 

These opposite characteristics are used to identify the type and order of AR, MA or ARMA 

processes in the data. In addition, other patterns may also be present in the ACF and PACF plots 

which can help to identify the true orders of AR and MA coefficients. In practice the idealized 

procedure of significant spikes is confounded by sampling error in the estimated ACF and PACF 

and proper identification can become quite difficult depending on specific cases. Thus it requires 

some experience and judgment to identify a proper tentative form of the model. 
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Step 2- Estimation of the model parameters: 

After a tentative form of the model is identified, the AR and MA parameters need to be estimated 

in the best possible manner.  

There are fundamentally two ways of getting final estimates: 

a) Trial and error – examine many different values of parameters and choose that value (or 

values, if more than one parameter is to be estimated) that minimizes the sum of squared 

residuals of fitting the model. The residual at each time step is the difference between the actual 

time series observation and the model output value at the same time step. 

b) Iterative improvement – choose a preliminary estimate obtained from the identification 

procedure (Yule-Walker equations) and use an efficient nonlinear least-squares algorithm, called 

Marquardt algorithm, to refine the estimate iteratively. 

Several methods exist to solve for the AR and MA coefficients using nonlinear square 

estimation. These methods are: the Maximum Likelihood Method, Unconditional Least Squares 

Method and the Conditional Least Squares Method. 

 In the present work, Conditional least squares method was employed since its computationally 

faster and under the assumption of normally distributed random shocks in the model, the Least 

squares parameter estimates are either exactly equal to or very nearly Maximum Likelihood 

estimates.  In this work, the estimation of parameters was performed on Minitab and SPSS 

software package. 
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Step 3- Diagnostic Check of the residuals and model adequacy: 

It is a common practice in ARIMA modelling to tentatively fit more than one model form to the 

data, estimate the parameters for each model and then perform a diagnostic check to test the 

validity of each model. The model which fits the best according to various statistical tests of fit is 

then selected for forecasting. 

In particular, the following has to be performed: 

1) A study of the residual series obtained after fitting the model to the data to see if any pattern 

remains accounted for. The ACF and PACF plots of the residual series help in detecting any 

unaccounted pattern. 

2) A study of the sampling statistics of the current optimum solution to check if any further 

simplification of the model is possible. The residuals left over after fitting an ARIMA model 

should ideally be just random noise (white noise) with zero mean and constant variance. The 

following statistical tests for lack of fit were used in the present work to check for the 

randomness of the residuals: 

1) ACF and PACF plots of the residuals: The ACF of the residuals obtained after fitting a 

proper model to the data must show no significant autocorrelations at any lag order. Similarly, 

the PACF plot of the residuals must show no significant spikes at any lag order. Absence of any 

significant spikes in the residual ACF and PACF plots demonstrate proper fitting. However, in 

practice, there maybe a few spikes which are close to significance. One might expect 

approximately 1 lag in every 20 lags to be statistically significant by chance alone for a 95% 

confidence limit test. Such spikes may not be a big concern; though their position of lag order 

also matters in deciding their importance and proper judgment should be used. 
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2) Ljung-Box Chi-Square test: Another measure of check for the randomness of residuals is 

using the Ljung-Box Chi-Square test. The null hypothesis is that the set of autocorrelations for 

residuals is white noise. This statistic measures the significance of residual autocorrelations as a 

set and points out if they are collectively significant: 

 : The data is random 

 : The data is not random 

It is computed as: 

                                                                                                        (3.12) 

where n is the size of sample,  is the sample autocorrelation at lag k, and the  is the number 

of lags being tested. Each chi-square statistic is computed for all lags up to the indicated value 

and is not independent of the preceding chi-square values. If  is the significance level, the null 

hypothesis is rejected if: 

, the  -quantile of the Chi-square distribution with  degrees of freedom. Apart from 

these tests to check residual randomness, more tests need to be carried out on the model itself to 

check its adequacy and best fit. 

 Two of the most important of such criteria are the Akaike‟s Information Criteria (AIC) and 

Schwarz‟s Bayesian Criteria (SBC). The AIC and SBC are used to compare competing models 

fit to the same series. The model with smaller AIC and SBC values is a statistically better fit. 

1) Akaike’s Information Criteria (AIC): It is a statistical tool for model selection and is 

grounded in the concept of entropy. It can be non-statistically described as a measure of trade-off 

between the precision and complexity of the model. The absolute value of AIC is not useful; the 

relative comparison of AIC values of different competing models can be used to infer the best 

model. The model with lowest AIC value is the best fit. 
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It is computed as: 

                                                                                                (3.13) 

where k = number for parameters in the model, 

Loglikelihood = maximized value of log likelihood function for the estimated model. 

Assuming the residuals to be normally and independently distributed, if the residual sum of 

squares is denoted by R, the AIC criterion becomes: 

,                                                                                (3.14) 

The AIC criterion attempts to find the model that best explains the data with a minimum of free 

parameters. It imposes a penalty that is an increasing function of the number of estimated 

parameters. This penalty discourages over fitting in estimation and thus leads to selection of a 

parsimonious model. 

2) Schwarz’s Bayesian Criteria (SBC): It is also called Bayesian Information Criteria (BIC). 

SBC is also a statistical tool for model selection, which penalizes over fitting of estimation. The 

model with lower SBC is generally the best fit. 

 It is computed as: 

                                                                                  (3.15) 

For normally and independently distributed residuals, 

                                                                                                         (3.16) 

The SBC criterion penalizes free parameters more heavily than the AIC criterion. It must be 

noted that both AIC and SBC tests may not generally point to a common model as the best fit. In 

such cases, proper judgment is required in choosing the best fit for the model. 

If, after performing the above checks of residual randomness and model adequacy, the model is 

found inadequate or if some significant autocorrelations are detected in the residual ACF plots, 
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the identification stage should be revisited and a new model reformulated by examining the ACF 

and PACF plots of the original series again and making a new interpretation. The knowledge of 

the left-over pattern in the residuals, as evidenced from the residual ACF and PACF series, may 

also be used in making a judgment to help identify a different form of tentative model. Thus, the 

three stages of the iterative process, viz. identification, estimation and diagnostic checking may 

have to be repeated multiple times until a satisfactory model is generated. Another aspect to keep 

in mind while fitting models is the „principle of parsimony‟, which states that the best model for 

a given series is the very simplest model with least number of parameters which can account for 

the observed properties of the data. Thus, if two candidate models are finalized for the series 

under interest depending on the various tests outlined in this section and if they are comparable 

with respect to fitting adequacy and yielding white noise residuals, the model with minimum 

number of parameters must be preferred.  

3.5 Forecasting Using ARIMA Models 

Once an adequate and satisfactory model is fitted to the series of interest, forecasts can be 

generated using the model. Consider the general ARIMA model of 

equation (3.1). 

                         (3.17) 

The one-step ahead forecast for time  is given by,  

             (3.18) 

Except   , the random shock at time t + 1, all other parameters are known. 

Thus, setting   = 0, its true expected value, the one-step ahead forecasts can be 
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generated. Similarly, future forecasts can be „bootstrapped‟ using these obtained forecasts and 

setting the unrealized random shocks to 0 for each case. Also, the 95% confidence interval for 

the forecasts can be calculated. 

If future inputs are available, they are used in the forecasting model; if they are not available, the 

inputs can be forecasted using their corresponding prewhitening ARIMA filters prior to 

forecasting the outputs. As in the case of univariate ARIMA models, the goal is to fit a 

parsimonious model with minimum of parameters which satisfy the various goodness of fit 

criteria. The autocorrelation and partial autocorrelation plots are studied along with the Ljung 

Box Chi-square test results to test the hypothesis for randomness of the residual series  . AIC 

and SBC criteria are used to select the best fit out of a set of competing models. 

3.6 Seasonal ARIMA Models 

Time series data may often display periodic (also called „seasonal‟ in ARIMA context) 

behaviour. A periodic series has a pattern which repeats every„s‟ time periods (s>1), where„s‟ is 

also called the length of periodicity. ARIMA models for seasonal time series, popularly called 

SARIMA („S‟ stands for seasonal), are built using the same three-stage iterative modelling 

procedure used for non-seasonal ARIMA models: 

identification, estimation, and diagnostic checking. However, with seasonal data, attention must 

also be focused on the autocorrelation coefficients in the ACF and PACF plots occurring at the 

seasonal lags ,… etc. If seasonal non-stationarity is present in the data, as evidenced 

from the fact that the autocorrelation coefficients at the seasonal lags of ACF plot will not die out 

rapidly, proper order of seasonal differencing (denoted by „D ‟) may be required to make the data 

seasonal stationary. Secondly, the presence of seasonal autoregressive and moving average 

coefficients in the data needs to be determined on similar lines as was discussed for the non-
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seasonal ARIMA model identification, but with using the autocorrelation coefficients of ACF 

and PACF plots at the seasonal lags. The general notation for seasonal ARIMA model is ARIMA 

(P, D, Q), where „P‟ is the order of seasonal autoregressive component, „Q‟ is the order of 

seasonal moving average coefficient and „D‟ is the order of seasonal differencing used. In 

general, a time series often may contain both non-seasonal and seasonal components. Though the 

time series may be deseasonalized and a non-seasonal ARIMA model maybe fitted to the 

remainder, experience suggests that Box-Jenkins methodology provides good forecasts of 

periodic data series. Thus, it may be advisable to leave the seasonal component in the data and fit 

a general class of ARIMA model which accounts for both seasonality and non-seasonality. Such 

a general ARIMA model can be represented by the form ARIMA (p, d, q) . This is 

commonly referred to as a seasonal ARIMA multiplicative model and it is represented by: 

  

The forecasts from seasonal ARIMA multiplicative models are generated in the similar fashion 

as with non-seasonal ARIMA models. 
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CHAPTER 4 

 4.0 DATA ANALYSIS AND RESULTS 

Forecasting the future events has captivated the human imagination for centuries. Throughout 

history, predicting the future has been the major motivation behind the evolution of the science 

of astrology to astronomy to palmistry to tarot cards. With the advent of technology and 

statistical sciences, the realm of forecasting expanded rapidly to the scientific and technological 

fields. Today, the need for predicting the future events and the drivers of these events is 

overwhelming in many aspects of our daily life. Forecasting is finding its way into many 

different fields of applications than ever before. 

4.1 Data Sources 

The location and severity of malaria is mostly determined by climate and ecology (Gallup and 

Sachs, 2001). The area of potential transmission is influenced by climatic factors such as 

temperature, humidity and rainfall as well as the socio-economic condition of the population. 

These factors influence the development of both the vector and the parasite. Thus, based on the 

agro-ecological zones in Ghana, the Sekyere-East district was selected for this study. The study 

was conducted at the Effiduase Government Hospital. 

 4.2 Data Collection  

In the study district, data for monthly reported cases of malaria fever between the years 2001 to 

2010 was obtained from the statistical Department of Effiduase Government Hospital. 
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4.3 Characteristics of the Sekyere East District 

The Sekyere East district lies in the north-eastern part of the Ashanti Region, in the forest zone. 

Almost 70% of the land area of the district is in the Greater Afram Plains to the north and is 

covered with Guinea savannah woodland while the vegetation of the southern portion is moist, 

Semi-deciduous forest. The district experiences two peak rainfall periods in a year but the rains 

are heavier in the southern parts. As in the rest of the forest zone, mean annual rainfall ranges 

between 125 cm and 200 cm. The mean monthly temperature is 260  C, with mean monthly 

humidity of 70 to 80%. Sekyere East has a total population of 157,396, representing 4.4% of the 

total population of the Ashanti Region (2000 Population and Housing Census, 2002). The urban 

population of the district is 33.7% of the total, with a high overall concentration of people in the 

southern portion, where population density is 72.8 people per square kilometre while that of the 

northern parts is 7.8 people per square kilometre. The principal economic activities are 

agriculture and commerce and the major crops include cocoa, kola nuts, plantain, cassava and 

cocoyam. The favourable climate and soil conditions enable crop production throughout the year. 

The district has one public hospital, one private hospital and one mission hospital as well as 

more than eight clinics and health posts. Malaria is the leading cause of morbidity, accounting 

for over 60% of outpatient consultations. It is also the first among the major causes of inpatient 

admissions in the district, with an annual average of 1,666 cases (58% of the total) between 2000 

and 2003. Cerebral malaria and malaria with severe anaemia were the second most frequent 

causes of recorded deaths during the same period. 

In this chapter, a suitable model is identified to forecast the incidence of malaria in Effiduase in 

the Sekyere East District. 
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4.3.1 Data Analysis and Results 

 The inputs used in the model are the historical data for each month‟s morbidity from Jan 1, 2001 

through December 31, 2010. 

In section 4.4.1, the various inputs to the model are identified. In section 4.5, the actual model is 

identified to forecast these incidences. The model is statistical in nature and its functioning is 

validated in section 4.6 with various tests of significance. Sections 4.7 and 4.8 present the results 

of fitting and forecasting, respectively. Section 4.8 also presents the conclusions of the chapter.  

4.3.2 Identifying the Forecasting Model 

Box-Jenkins ARIMA methodology was employed to fit the final models. A detailed discussion 

on Box-Jenkins ARIMA methodology can be found in Chapter 3. The identification of the 

ARIMA model will be carried out according to the following steps: 

4.3.3 Transformation of the Inputs and Output Series 

For illustration purpose, plots of the two input series to the model are shown in Figures 4.1 and 

4.2 for the months of Jan 1, 2001- Dec 31, 2010. Also shown in Figure 4.3 is the plot of actual 

morbidity for the same period. The preliminary requirement of ARIMA methodology is that the 

series should be stationary in both mean and variance (Section 3.2, chapter 3). 

Analysis of the autocorrelation plots revealed that each of the series is mean non-stationary 

in non-seasonal orders (Section 3.2, Chapter 3). Thus, suitable differencing was required for each 

of the series to render mean-stationarity. First order non-seasonal differencing was found to be 

sufficient for the series (Table 4.5). 

Figures 4.8-4.10 present the autocorrelation and partial autocorrelation plots of the series 

obtained after differencing with the optimal non-seasonal orders. From the figures, it can be 

deduced that each of the differenced series is mean-stationary. 
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4.3.4 Descriptive Statistics of Monthly Reported Cases 

The monthly reported cases from January 2001 to December 2010 were fed into a SPSS 

Spreadsheet and analysed to obtain the descriptive statistics.  

Table 4.1 Reported cases of malaria (2001-2010) 

Month/Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2001 655 640 637 741 860 897 475 561 572 700 709 1161 

2002 966 451 743 864 1001 1182 1202 1185 1192 1247 1281 1391 

2003 992 1037 1059 998 1011 1037 1019 1201 1224 1249 1359 1377 

2004 927 967 997 976 379 574 624 655 917 842 1187 1402 

2005 1392 1455 1721 1929 1876 2023 2032 2038 1993 2009 2014 2029 

2006 2047 2020 2063 2069 1997 2079 2097 3009 3017 2929 2957 2987 

2007 2524 2493 2176 2105 2100 2577 2859 1641 1594 2158 1861 1288 

2008 1558 2080 2045 2634 4628 2553 2059 1895 1812 2427 2416 1940 

2009 2070 2086 2563 2517 2461 2482 3602 3820 2988 3232 3191 2712 

2010 2956 2529 2627 2675 2459 2606 2835 2747 2427 2263 2748 2886 

Source: Effiduase Government Hospital-Ashanti Region 

The table below shows the descriptive statistics of the reported cases. 

4.3.5 DESCRIPTIVE STATISTICS OF MONTHLY REPORTED CASES 

The monthly reported cases from January 2001 to January 2010 were fed into a Minitab spread 

sheet and analysed to obtain the descriptive statistics. Let   denote the monthly 

reported cases in 2001, 2002,...,2010 respectively. 

 The table below shows the descriptive statistics of the reported cases. 
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Table 4.2 Descriptive Statistics of Reported Cases  

Descriptives 

Morbidity        

 

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Minimum Maximum  Lower Bound Upper Bound 

2001 12 717.33 183.653 53.016 600.65 834.02 475 1161 

2002 12 1058.75 266.893 77.045 889.17 1228.33 451 1391 

2003 12 1130.25 143.583 41.449 1039.02 1221.48 992 1377 

2004 12 870.58 279.929 80.809 692.72 1048.44 379 1402 

2005 12 1875.92 230.484 66.535 1729.47 2022.36 1392 2038 

2006 12 2439.25 478.363 138.091 2135.31 2743.19 1997 3017 

2007 12 2114.67 460.000 132.791 1822.40 2406.94 1288 2859 

2008 12 2337.25 789.817 228.001 1835.42 2839.08 1558 4628 

2009 12 2810.33 560.837 161.900 2453.99 3166.67 2070 3820 

2010 12 2646.50 203.634 58.784 2517.12 2775.88 2263 2956 

Total 120 1800.08 846.799 77.302 1647.02 1953.15 379 4628 

 

In 2001, the average monthly reported case was 717.3; the least number was recorded as 475 in 

July and the highest number was recorded in December as 1161. In 2002, the average monthly 

reported case was 1058; the least number was recorded in February as 451. In 2003, 2004,2005, 

2006, 2007, 2008, 2009 and 2010, the average monthly reported cases were 1130, 870, 1875.9, 

2439, 2115, 2337, 2810 and 2646.5  respectively. Their respective highest reported cases were 

1377 (in December), 1402 (in December), 2038(in August), 3017(in September), 2859(in July), 

4628(in May), 3820(in August) and 2956 (in January). 

4.3.6 TWO-SAMPLE T-TEST AND CONFIDENCE INTERVAL  

The two-sample t-test was used to compare the sample means of reported cases of malaria 

between the year 2001 (the base year of the corrected data) to the tenth year, 2010. Minitab 

package was used in this analysis and the results are displayed in appendix C.  
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4.3.7 Two-Sample T-Test and Confidence Interval for Monthly Reported Cases in 2001 and 

2002  

Assuming equal variances, the null hypothesis and the alternative hypotheses stated are as 

follows;  

  

 

From the Minitab output in appendix C, the difference between the average number of reported 

cases in 2001 and 2002 was -341.5. The difference was then tested to find out whether it was 

significant or not. The T-value (calculated value) was found to be -3.65 and the p-value=0.002. 

Since the p-value was less than 0.05 level of significance, the null hypothesis was then rejected 

and concluded that the difference in the average monthly reported cases between 2001 and 2002 

was statistically not the same at 5% level of significance. This indicated an increase in the 

number of reported cases. Also from the output, the 95% confidence interval of the difference 

between the average monthly reported cases in 2001 and 2002 was between -537.3 and -145.7.  

4.3.8 Two-Sample T-Test and Confidence Interval for Monthly Reported Cases in 2001 and 

2003  

The null and alternative hypotheses for comparing the annual reported cases have been stated 

below.  

  

 

From the Minitab output in appendix C, the difference between the average number of reported 

cases in 2001 and 2003 is -413. The difference was then tested to find out whether it was 

significant or not. The T-value (calculated value) was found to be -6.14 and the p-value=0.000. 
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For smaller p-value, the null hypothesis is rejected. So the null hypothesis was rejected at 5% 

and this indicated that there was significant increase in the number of malaria reported cases. The 

95% confidence interval for the means was between -553.4 and -272.6.  

4.3.9 Two-Sample T-Test and Confidence Interval for Monthly Reported Cases in 2001 and 

2004  

The null and alternative hypotheses for comparing the annual reported cases have been stated 

below.  

  

 

From the Minitab output in appendix C, the difference between the average number of reported 

cases in 2001 and 2004 is -153.3. The difference was then tested to determine whether it was 

significant or not. The T-value (calculated value) was found to be -6.14 and the p-value=0.000 at 

20 degrees of freedom. For smaller p-value, the null hypothesis is rejected. So the null 

hypothesis was rejected at 5% and this indicated that there was significant increase in the number 

of malaria reported cases in 2001 and 2004. The 95% confidence interval of the means was 

between -356.3 and 49.7.  

4.3.10 Two-Sample T-Test and Confidence Interval for Monthly Reported Cases in 2001 

and 2005  

The null and alternative hypotheses for comparing the annual reported cases have been stated 

below.  
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From the Minitab output in appendix C, the difference between the means was -1158.6 indicating 

an increase in the number of reported cases. The difference was then tested to determine whether 

it was significant or not. The T-value (calculated value) was found to be -13.62 and the p-

value=0.000 at 20 degrees of freedom. For smaller p-value, the null hypothesis is rejected. So the 

null hypothesis was rejected at 5% and this indicated that there was significant decrease in the 

malaria reported cases comparing the number in 2001 with that of 2005. The 95% confidence 

interval of the difference between the monthly reported cases in 2005 and 2008 was between -

1336.1 and -981.1.  

4.3.11 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2002 and 2003  

The monthly reported cases of the disease in 2002 and 2003 were compared. The null and 

alternative hypotheses were  

  

 

The Minitab output in appendix C indicated that difference between the means is –71.5. This 

implied that the reported cases increased between 2002 and 2003. The test statistic value, T-

value calculated is -0.82 and the p-value=0.426. Since the p-value is greater than 0.05 level of 

significance, the null hypothesis is accepted and concluded that the difference in the increase in 

the monthly reported cases of malaria between 2002 and 2003. The 95% confidence interval of 

the difference between the average monthly reported cases in 2003 and 2003 was between -257 

to 114.  
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4.3.12 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2002 and 2004  

The mean monthly reported cases of the disease in 2002 and 2004 were compared. The null and 

alternative hypotheses were  

 

 

The Minitab output indicated there was a drop in the number by 188. It was the tested to find 

whether is significant or not. The T-value (calculated value) was 1.69 and the p-value at 21 

degrees of freedom was found to be 0.107. Since the p-value was greater than the 0.05 level of 

significance, the null hypothesis was accepted and concluded that there was no significant 

decrease in the monthly reported cases of malaria between 2002 and 2004. The 95% confidence 

interval of the difference between the average monthly reported cases in 2002 and 2004 was 

between -44 and 420.  

4.3.13 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2002 and 2005  

The monthly reported cases of the disease in 2002 and 2005 were compared. The null and 

alternative hypotheses were  

 

 

The Minitab output indicated an increase in the number of the reported cases between 2002 and 

2005 by -817. The T-value was found (calculated value) to be -8.03 and the p-value at 21 

degrees of freedom was found to be 0.000. Since the p-value was less than the 0.05 level of 

significance, the null hypothesis was rejected and concluded that there was significant decrease 
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in the monthly reported cases of malaria between 2002 and 2005. The 95% confidence interval 

of the difference between the average monthly reported cases in 2002 and 2005 was between -

1029 and -605.  

4.3.14 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2003 and 2004  

The monthly reported cases of the disease in 2003 and 2004 were compared. The null and 

alternative hypotheses were  

 

 

The Minitab output indicated a drop in the number of reported cases between 2003 and 2004 by 

259.7. The T-value was found (calculated value) to be 2.86 and the p-value at 16 degrees of 

freedom was found to be 0.011. Since the p-value was less than the 0.05 level of significance, the 

null hypothesis was rejected and concluded that there was significant decrease in the monthly 

reported cases of malaria between 2003 and 2004. The 95% confidence interval of the difference 

between the average monthly reported cases in 2003 and 2004 was between 67.2 to 452.2.  

4.3.15 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2003 and 2005  

The monthly reported cases of the disease in 2003 and 2005 were compared. The null and 

alternative hypotheses were  
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The Minitab output indicated an increase in the number of reported cases by -745.6. The T-value 

calculated was -9.51 and the p-value at 18 degrees of freedom was found to be 0.000. Since the 

p-value was less than the 0.05 level of significance, the null hypothesis was rejected and 

concluded that there was significant decrease in the monthly reported cases of malaria between 

2003 and 2005. The 95% confidence interval of the difference between the average monthly 

reported cases in 2003 and 2005 was between -910.3 and -580.9.   

4.3.16 Two-Sample T-Test and Confidence Interval for the Monthly Reported Cases in 

2004 and 2005  

The monthly reported cases of the disease in 2004 and 2005 were compared. The null and 

alternative hypotheses were  

 

 

The Minitab output indicated an increased number of reported cases by -1005. The T-value 

calculated was -9.60 and the p-value at 21 degrees of freedom was found to be 0.000. Since the 

p-value was less than the 0.05 level of significance, the null hypothesis was rejected and 

concluded that there was significant difference in the monthly reported cases of malaria between 

2004 and 2005. The 95% confidence interval of the difference between the average monthly 

reported cases in 2004 and 2005 was between -1223 and -788. 

For the rest of the analysis, refer to appendix C 

4.4 Trend Analysis  

The series by inspection exhibits some upward trend with no hint of seasonal variations. There 

might be individual series with seasonality, but it appears that seasonality is not a prominent 

feature of the data in general. 
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From table 4.1 and figure, the time series has a linear trend model given 

by,  where  is the number of monthly reported cases and  is the given 

month. 
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Figure 4.1: Linear Trend 

model
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Figure 4.2: Time Series Plot of Malaria cases 
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4.4.1 Preliminary Test for Stationarity  

A stationary series has constant mean, constant variance and constant autocorrelation structure. 

The time series plot of the monthly reported cases from January 2001 to December 2010 is 

shown in figure 4.3. The plot shows that the time series is non-stationary. The values had 

irregular swings and hence had irregular variability. But the fact the there were irregular 

fluctuations in the plot was not a clear indication that the series was non-stationary. This called 

for verification to confirm the non-stationarity as indicated by the plotted graph below.  The ACF 

and PACF were used to verify the non-stationarity of the series. Tables 4.3 and 4.4 below show 

the results of the test. 
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Figure 4.3 Monthly reported cases of Malaria 

Table 4.3 Autocorrelation Function: Morbidity  
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Lag       ACF     T      LBQ 

  1  0.874254  9.58    94.03 

  2  0.781047  5.38   169.72 

  3  0.755431  4.27   241.12 

  4  0.710198  3.52   304.78 

  5  0.672070  3.03   362.28 

  6  0.647370  2.72   416.10 

  7  0.611573  2.42   464.56 

  8  0.576170  2.18   507.95 

  9  0.555532  2.02   548.66 

 10  0.566931  2.00   591.43 

 11  0.536145  1.83   630.04 

 12  0.502304  1.67   664.24 

 13  0.480706  1.56   695.86 

 14  0.482265  1.53   727.98 

 15  0.485007  1.51   760.78 

 16  0.460606  1.41   790.64 

 17  0.444800  1.34   818.77 

 18  0.404501  1.20   842.25 

 19  0.356913  1.05   860.72 

 20  0.352891  1.03   878.95 

 21  0.325739  0.94   894.64 

 22  0.267419  0.77   905.32 

 23  0.243937  0.69   914.30 

 24  0.241948  0.69   923.23 

 25  0.250018  0.71   932.86 

 26  0.238542  0.67   941.72 

 27  0.219290  0.61   949.29 

 28  0.203503  0.57   955.88 

 29  0.199395  0.56   962.28 

 30  0.222026  0.62   970.30 

 31  0.225546  0.62   978.67 

 32  0.204697  0.57   985.64 

 33  0.208506  0.57   992.95 

 34  0.214844  0.59  1000.81 

 35  0.210893  0.58  1008.47 

 36  0.200623  0.55  1015.49 
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Figure 4.4 Autocorrelation coefficient for the times: incidence of malaria in Effiduase 

Table 4.4 Partial Autocorrelation function: Morbidity 

 

Lag       PACF      T 

  1   0.874254   9.58 

  2   0.070970   0.78 

  3   0.251658   2.76 

  4  -0.025845  -0.28 

  5   0.076137   0.83 

  6   0.034372   0.38 

  7  -0.012940  -0.14 

  8   0.000136   0.00 

  9   0.036673   0.40 

 10   0.162414   1.78 

 11  -0.114332  -1.25 

 12   0.017385   0.19 

 13  -0.044947  -0.49 

 14   0.134953   1.48 

 15   0.035271   0.39 

 16  -0.067693  -0.74 

 17   0.031921   0.35 

 18  -0.155214  -1.70 

 19  -0.033346  -0.37 

 20   0.035399   0.39 

 21  -0.066586  -0.73 

 22  -0.113662  -1.25 

 23   0.054724   0.60 

 24   0.046952   0.51 
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 25   0.098134   1.08 

 26  -0.037346  -0.41 

 27  -0.044055  -0.48 

 28   0.020913   0.23 

 29   0.054520   0.60 

 30   0.106803   1.17 

 31  -0.051703  -0.57 

 32  -0.025280  -0.28 

 33   0.100582   1.10 

 34   0.032179   0.35 

 35  -0.049724  -0.54 

 36  -0.016779  -0.18 
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Figure 4.5 Partial autocorrelation coefficients for the time series: incidence of malaria 

Effiduase 

 

4.5 Model Identification  

In this section, we implement the Box-Jenkins approach to the identification and modelling of 

time series. This was done using Minitab and SPSS software.  

Stage 1: Identification 

The first step in identifying a preliminary model was to examine the autocorrelations and partial 

autocorrelations for the raw data.  These values are shown in figures 4.3 and 4.4 respectively. 

The autocorrelations, which were very large at first, did not trail off towards zero quickly. They 
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appeared to be forming a sine wave pattern, but because the damping process was so slow, it was 

concluded that the process was non-stationary. It was also noted that the first 36 coefficients 

were outside the  limits. Since there are 120 observations the  confidence limits were found 

to be   

 

Figure 4.5 contains the plot of partial autocorrelations. The coefficient of order 1 was very large. 

This indicates that the time series often occurs when the autocorrelations do not rapidly die 

down. Differencing was necessary at this point to identify the ARIMA model property. 

Upon differencing the ARIMA process to achieve a stationary ARMA process for forecasting, 

new diagrams of autocorrelation coefficients and partial autocorrelation coefficients were drawn. 

Figure 4.6 contains the autocorrelation of the first differences. These autocorrelations rapidly 

trail off towards zero after lag 2. The partial autocorrelations in figure 4.7 cut off after lag 2. 

Both these patterns indicate an ARIMA (2, 1, 0) model. However, this is only a tentative choice.  

Table 4.5: Autocorrelation coefficients for first-differenced time series (computer-

generated SPSS output) 

Autocorrelations 

Series:Morbidity     

Lag Autocorrelation Std. Errora 

Box-Ljung Statistic 

Value Df Sig.b 

1 -.142 .091 2.453 1 .117 

2 -.279 .090 12.014 2 .002 

3 .084 .090 12.881 3 .005 

4 -.045 .089 13.136 4 .011 

5 -.065 .089 13.676 5 .018 
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 6 .035 .089 13.836 6 .032 

7 .010 .088 13.848 7 .054 

8 -.081 .088 14.689 8 .065 

9 -.136 .087 17.111 9 .047 

10 .194 .087 22.101 10 .015 

11 .015 .087 22.129 11 .023 

12 -.055 .086 22.536 12 .032 

13 -.166 .086 26.278 13 .016 

14 .007 .085 26.286 14 .024 

15 .141 .085 29.050 15 .016 

16 -.081 .085 29.973 16 .018 

17 .131 .084 32.402 17 .013 

18 .097 .084 33.736 18 .014 

19 -.198 .083 39.372 19 .004 

20 .100 .083 40.821 20 .004 

21 .140 .082 43.681 21 .003 

22 -.129 .082 46.145 22 .002 

23 -.090 .082 47.371 23 .002 

24 -.063 .081 47.981 24 .003 

25 .062 .081 48.564 25 .003 

26 .034 .080 48.742 26 .004 

27 .015 .080 48.776 27 .006 

28 -.058 .079 49.308 28 .008 

29 -.130 .079 52.009 29 .005 

30 .055 .079 52.493 30 .007 

31 -.002 .078 52.493 31 .009 

32 .003 .078 52.494 32 .013 

33 .023 .077 52.579 33 .017 

34 .050 .077 52.997 34 .020 

35 .059 .076 53.588 35 .023 

36 -.001 .076 53.588 36 .030 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation.  
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Figure 4.6 Autocorrelation coefficients for first-differenced time series (Note: computer – 

generated SPSS output) 

Table 4.6: Partial autocorrelation coefficients of first-differenced series (computer 

generated SPSS output) 

Partial Autocorrelations 

Series:Morbidity  

Lag Partial Autocorrelation Std. Error 

1 -.142 .092 

2 -.305 .092 

3 -.013 .092 

4 -.131 .092 

5 -.085 .092 
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 6 -.047 .092 

7 -.033 .092 

8 -.103 .092 

9 -.217 .092 

10 .079 .092 

11 -.049 .092 

12 .015 .092 

13 -.274 .092 

14 -.105 .092 

15 -.004 .092 

16 -.132 .092 

17 .103 .092 

18 .042 .092 

19 -.050 .092 

20 .061 .092 

21 .105 .092 

22 -.055 .092 

23 -.011 .092 

24 -.139 .092 

25 -.009 .092 

26 .015 .092 

27 -.023 .092 

28 -.088 .092 

29 -.166 .092 

30 -.021 .092 

31 -.147 .092 

32 -.124 .092 

33 -.128 .092 

34 .082 .092 

35 -.058 .092 

36 -.043 .092 
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Figure 4.7 Partial autocorrelation coefficients of first-differenced series (computer-

generated SPSS output) 

 

 

Table 4.7 

Model Statistics 

Model 

Number of 

Predictors 

Model Fit statistics Ljung-Box Q(18) 

Number 

of Outliers 

Stationary 

R-squared MAPE 

Normalized 

BIC Statistics DF Sig. 

Morbidity-

Model_1 
0 .053 14.358 11.929 11.198 17 .846 0 
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Table 4.8 

ARIMA Model Parameters 

     Estimate SE t Sig. 

Morbidity-Model_1 Morbidity Natural Log AR Lag 2 -.233 .090 -2.593 .011 

Difference 1    

 

 

From the statistics of the model, we have it that using Expert modeller of SPSS, the number of 

predictors to compete with the model identified is zero and outliers to show that there is any 

element of trend of seasonality is also zero. We therefore conclude that the data does not exhibit 

any seasonality. 

4.6 Stage 2: Estimation 

Once the preliminary model is chosen, the estimation stage begins. The estimate is of the model: 

                                                                                              (4.1) 

where the  are the first differences of the original values of Table 4.1 expressed in 

terms of deviations. The purpose of estimation is to find the parameter estimates that minimize 

the mean square error (MSE). The process is iterative, and the final value of the parameter 

estimates may be significantly different from the initialized values of the estimation procedure. 

However, the estimates will usually converge on an optimal value for the parameters with a 

small number of iterations. If the algorithm fails to converge after some specified number of 

iterations, an examination of the trail values will indicate the direction of changes needed and 

new initial estimates can be made. An AR (2) model is tentatively chosen for the sample data on 

the morbidity. The program converges after five iterations, producing the tentative model AR (2)   

where . The final estimate of the model is shown in figure 
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4.11. The estimate from this model is -0.233, the standard deviation is 0.0884 and 0.0890 and 

the  ratio (equal to the estimate divided by the standard deviation) is -2.593. The MSE is 

381.540. Finally, the computer output produces forecasts with 95 confidence limits for 

periods121-125 using the Minitab software. 

Estimates at each iteration 

 

Iteration       SSE    Parameters 

        0  19653622   0.100  16.963 

        1  18706667  -0.050  19.579 

        2  18547333  -0.137  21.195 

        3  18546932  -0.142  21.300 

        4  18546931  -0.142  21.306 

        5  18546931  -0.142  21.306 

 

Relative change in each estimate less than 0.0010 

 

 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1    -0.1419   0.0915  -1.55  0.124 

Constant    21.31    36.50   0.58  0.561 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 120, after differencing 119 

Residuals:    SS =  18546908 (backforecasts excluded) 

                    MS =  158521  DF = 117 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag                 12     24     36     48 

Chi-Square   21.3   46.6   53.3   56.7 

DF                 10     22     34     46 

P-Value      0.019  0.002  0.019  0.135 

 

 

Forecasts from period 120 
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                     95% Limits 

Period  Forecast    Lower    Upper  Actual 

   121   2887.72  2107.20  3668.25 

   122   2908.79  1880.29  3937.28 

   123   2927.10  1691.10  4163.10 

   124   2945.81  1533.53  4358.09 

   125   2964.46  1395.45  4533.47 

Figure 4.8 Box-Jenkins estimation of ARIMA (1, 1, 0) model (Note: computer-generated 

Minitab output) 

4.7 Stage 3: Diagnostic Testing 

To check the adequacy of the model, we estimated and plotted the autocorrelations of the 

residuals to determine whether they are significantly different from zero (Table 4.9). The limits 

of  confidence intervals are 

                                                                                                                 (4.2) 

 

Table 4.9 Autocorrelation coefficients for the residuals of the fitted ARIMA (2, 1, 0) model 

Autocorrelations 

Series:Morbidity     

Lag Autocorrelation Std. Error
a
 

Box-Ljung Statistic 

Value Df Sig.
b
 

1 -.142 .091 2.453 1 .117 

2 -.279 .090 12.014 2 .002 

3 .084 .090 12.881 3 .005 

4 -.045 .089 13.136 4 .011 

5 -.065 .089 13.676 5 .018 

6 .035 .089 13.836 6 .032 

7 .010 .088 13.848 7 .054 

8 -.081 .088 14.689 8 .065 
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9 -.136 .087 17.111 9 .047 

10 .194 .087 22.101 10 .015 

11 .015 .087 22.129 11 .023 

12 -.055 .086 22.536 12 .032 

13 -.166 .086 26.278 13 .016 

14 .007 .085 26.286 14 .024 

15 .141 .085 29.050 15 .016 

16 -.081 .085 29.973 16 .018 

17 .131 .084 32.402 17 .013 

18 .097 .084 33.736 18 .014 

19 -.198 .083 39.372 19 .004 

20 .100 .083 40.821 20 .004 

21 .140 .082 43.681 21 .003 

22 -.129 .082 46.145 22 .002 

23 -.090 .082 47.371 23 .002 

24 -.063 .081 47.981 24 .003 

25 .062 .081 48.564 25 .003 

26 .034 .080 48.742 26 .004 

27 .015 .080 48.776 27 .006 

28 -.058 .079 49.308 28 .008 

29 -.130 .079 52.009 29 .005 

30 .055 .079 52.493 30 .007 

31 -.002 .078 52.493 31 .009 

32 .003 .078 52.494 32 .013 

33 .023 .077 52.579 33 .017 

34 .050 .077 52.997 34 .020 

35 .059 .076 53.588 35 .023 

36 -.001 .076 53.588 36 .030 

a. The underlying process assumed is independence (white noise). 

b. Based on the asymptotic chi-square approximation. 

 

  

 



 
 

58 
 

 
Figure 4.9 Autocorrelation coefficients for the residuals of the fitted ARIMA (2, 1, 0) model 

(Note: computer- generated SPSS output) 

4.8 Stage 4: Forecasting 

 Figures4.1- 4.3 show that the time series data is not stationary in mean value, we then corrected 

through appropriate differencing of the data. In this case, we applied ARIMA (2, 1, 0) model. 

Model parameters are shown as following Table 4.10 

Table 4.10 Final Estimates of parameters  

                              Final Estimates of Parameters 

 

Type              Coef              SE Coef                T                  P 

AR   1          -0.1868             0.0884               -2.11           0.037 

AR   2          -0.3096             0.0890               -3.48           0.001 

Constant        26.53               34.88                  0.76           0.449 

 Estimated model parameters of malaria case model 

We obtained the model in the form 

 =  (  −                                                         (4.3) 
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with the MAPE = 14.358%. 

 Figure 4. 6, proof that the selected ARIMA (2, 1, 0) is an appropriate model. 

We forecast for five steps ahead using the above ARIMA (2, 1, 0) model with observation 

number 121 as the starting value. See Appendix A for details. 

The computer output shown in figure 4.10 indicates that the nonseasonal parameter estimates are 

significantly different from zero at low significance level. Their t ratios are -2.11 and -3.48 

respectively. Three iterations were necessary to achieve the results. To indicate whether this 

model is adequate for forecasting, two test for randomness of the residuals were performed. 

 First, the ACFs for the residuals from the model ARIMA (2, 1, 0) are presented in figure 4.9. 

Note that all the autocorrelation coefficients of the residuals lie within  limits of  0.183. 

Hence, ACF is white noise or random. Hence none of the autocorrelations are significantly 

different from zero (at  limits), indicating that the model is adequate. Finally, the range of 

these autocorrelations is from-0.142 to+0.082 and shows no pattern. 

The second test of the adequacy of the model is the Ljung-Box test. When the first  

autocorrelations are used for the test, the null and alternative hypotheses are as follows: 

 the model is adequate 

 the model is not adequate 

The number of degrees of freedom . ) is  
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From the tabulated value of  we find  at a significance level of  for 

.  

The test statistic is the Q - statistic 

                                                                                          (4.4) 

where  = the residual autocorrelation at lag k 

 = the number of residuals 

 = the number of time lags included in the test 

The calculated value is  

x122                                                                             (4.5) 

x12 x0.000889  

Since the calculated value is less than the tabulated value, we can accept the null hypothesis at 

the 0.05 level and conclude that the model is adequate. 

The selection of the appropriate model depended on the values of Normalized BIC and the ACF 

together with the PACF. The graphs of the ACF and PACF are shown above in figures 4.6 and 

4.7 respectively. Two tentative models were entertained and the model with the minimum 

Normalized BIC was chosen. The models and their corresponding Normalized BIC values have 

been illustrated below in table 4.11. 
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Table 4.11: Tentative ARIMA Models and their corresponding normalized BIC. 

Model  Normalized BIC  
ARIMA(2, 1,0)  0.713  

ARIMA(1, 1, 0)  1.045  
 

  

 =  (  −                                                         (4.6)                                            

4.1 

ARIMA Model: Morbidity  

Estimates at each iteration 

 

Iteration       SSE        Parameters 

        0  20840874   0.100   0.100  15.078 

        1  18419264  -0.005  -0.050  18.926 

        2  17083045  -0.110  -0.200  23.162 

        3  16793854  -0.183  -0.304  26.309 

        4  16793124  -0.187  -0.309  26.514 

        5  16793122  -0.187  -0.310  26.526 

 

Relative change in each estimate less than 0.0010 

 

 

Final Estimates of Parameters 

 

Type         Coef  SE Coef      T      P 

AR   1    -0.1868   0.0884  -2.11  0.037 

AR   2    -0.3096   0.0890  -3.48  0.001 

Constant    26.53    34.88   0.76  0.449 

 

 

Differencing: 1 regular difference 

Number of observations:  Original series 120, after differencing 

119 

Residuals:    SS =  16792900 (backforecasts excluded) 

              MS =  144766  DF = 116 

 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 

Lag            12     24     36     48 

Chi-Square   10.7   32.7   41.5   44.8 
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DF              9     21     33     45 

P-Value     0.299  0.050  0.148  0.480 

 

 

Forecasts from period 120 

 

                     95% Limits 

Period  Forecast    Lower    Upper  Actual 

   121   2736.60  1990.70  3482.49 

   122   2748.30  1786.89  3709.71 

   123   2818.90  1776.95  3860.85 

   124   2828.61  1680.13  3977.10 

   125   2831.47  1566.04  4096.90 

Figure 4.10 Forecast from period 120 using the tentative model (2, 1, 0) 

The result of these forecasts for the first period is a function of the last period‟s actual 

observation and the last period‟s error. All future forecast (periods121-125) are based only on 

predicted values of  since the future values of  are unknown. We can now calculate the 

forecast error and its variance for the ARIMA (1, 1, 0) model to obtain a forecast confidence 

interval. As we shall see, the forecast confidence interval  is related to the forecast confidence 

interval for the differenced series . 

Estimate of the forecasts and forecast errors by extrapolation using ARIMA (1, 1, 0) 

                                                                                      (4.7) 

To begin, we restate the fitted forecast model: 

                                                                                                          (4.8) 

Note the use of the backshift operator to describe the first difference  and the AR portion 

of the model . The terms can be multiplied out and rearranged as follows: 
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                                                                                            (4.9) 

For details see Appendix A 

Table 4.12 Comparison of two AR (1) and AR (2) models 

                ARIMA(1,1,0)                                 ARIMA(2,1,0) 

                                                                      1 degree of differencing                                              1 degree of differencing 

Ljung-Box(Q)                   46.6                         32.7 

d.f                      23                          23 

Forecast errors: 

Period            Period   

                         Ahead 

121                           1                                                                                                            

122                  2                                                                                                                 

123                  3                                                                                                               

124                  4                                                                                                               

125                5                                                  351.3234                                                                          

Variance of residuals (MSE)                                             0.0984                                                                                0.0882 

AR parameter                                                                    -0.1395                                                                              -0.3068 

t value                                                                                -1.53                                                                                  -3.46 

 

We also compared the ARIMA (2, 1, 0) model estimated above with an ARIMA (1, 1, 0) model 

(figure 4.9). The purpose is to determine which model is most adequate. 

The results of the AR (1) and AR (2) models are compared in table 4.12. The value of  is 

smaller for the (2, 1, 0) differenced model than for the model (1, 1, 0) with differencing. The 

model (2, 1, 0) with differencing appears more suitable as judged by this measure. If the forecast 
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errors for 1-5 periods into the future are checked, the ARIMA (1, 1, 0) model has slightly closer 

estimates. However, the variance in the residuals (MSE) is smaller for the AR (2, 1, 0) model 

which is 0.0882. Most important is the coefficient for the ARIMA (1, 1, 0) model, which is 

0.0984 and hence the model AR (1, 1, 0) with differencing is not acceptable for forecasting. 

Finally, the autocorrelation function (ACF) for the residuals from the (1, 1, 0) model indicates 

the and  are outside the  limits. Thus the model does not yield evidence of stability in the 

forecasts. 

To begin, consider the forecast error for the one-period-ahead forecast : 

                                                                                                               (4.10) 

where the circumflex indicates the estimated value. In turn, if we assign , then 

                                                                                  (4.11) 

which has a variance . The two-period ahead forecast is given by  

                                                                                                               (4.12) 

  

  

                                                                                                            (4.13) 

This has a variance  

                                                                                               (4.14) 
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The forecast error is equal to the two-period error for  in addition to the one-period error 

for . Thus the error in  is an accumulation of the forecast errors in  and  

                                                                                                      (4.15) 

And this has a variance  

                                                                                             (4.16) 

 The above forecast values show that malaria cases in five years ahead will be in the range given 

in the above table and if care is not taken, escalating cases will be witnessed in the coming years. 

In conclusion, although we examined properties of only a simple ARIMA model, some of our 

conclusions apply to more complicated (higher-order) ARIMA models. In particular, an MA 

model of order  has a memory of only  periods, since there are only  error terms. 

Finally, practicing forecasters find it very useful to compare forecasts of several competing fitted 

time series models as we did in table 4.11. This is particularly helpful if the forecaster is having 

difficulty in choosing among a variety of possible models. 

At least 50 observations are usually required for Box-Jenkins estimation. Even more 

observations are recommended of a seasonal model.  
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CHAPTER 5 

5.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Discussion of Results 

The study shows that in the first quarter of 2001, the month January recorded the highest 

prevalence of malaria cases (655). In the second quarter of that same year, the highest reported 

case was in June with a total number of 897. The highest number of reported cases in third 

quarter was in September with a total number of 572. In the last quarter of that same year, the 

highest number of reported cases was in December. In all, the highest number of reported cases 

in the whole year was in December (1161) and the least number was in the month of July with a 

total number of 475. The number of reported cases per month was 717.3. 

In the year 2002, the highest number of reported cases in the first quarter was in the month of 

January with a number of 966. June had the highest number of cases in the second quarter with a 

total number of 1182. In the third quarter, the highest number was 1202 and it is recorded in 

July. In the fourth quarter, the highest number was 1391 in December. In all, the highest number 

of reported cases in 2002 was in the month of December. The least number of reported cases was 

451 and it was recorded in February. The average monthly number of reported cases in the year 

was 1058.8. In the year 2003, the study indicates that the highest number of reported cases in the 

first quarter was in the month of March with a total of 1059 cases. The highest number in the 

second quarter was 1037 cases in the month of June. The third quarter recorded the highest 

number in September with a total of 1224 cases. The highest number of cases in the fourth 

quarter was in December with a total of 1377. The highest number of reported cases in the whole 
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year was in December and the least number of reported cases was 992 which occurred in 

January. The average reported a case per month of the year was 1130.3. 

The study also shows that the highest number of reported cases in 2004 for the first quarter was 

in the month of March with a total of 997 cases. The second quarter had the highest value in 

April with a total of 976 cases. In the third quarter, the highest number of reported cases was 917 

in September. The fourth quarter had a total of 1402 cases in December. The highest number of 

reported cases for the whole year was in January with a total of 1402 cases. The least number of 

reported cases in the whole year was 379 in the month of May. The average monthly reported 

cases were 870.6. 

In 2005, the highest value in the first quarter was in the month of March with a total of 1721 

cases. The second quarter had its highest value in the month of June with a total of 2023 cases. 

The highest number of reported cases for the third quarter was in the month of June with a total 

of 2023 cases. The fourth quarter had a record of 2029 cases in the month of December as the 

highest number of reported cases. The highest number of reported cases for the whole year of 

2005 was 2038 in the month of August. The number of reported cases per month in that year was 

1875.9. The rest of the analysis can be referenced from Tables 4.1 and 4.2 respectively. 

Comparatively, the number of reported cases per month (717) in 2001 indicates the lowest 

among all the years. This figure indicates that on the average, 717 people had malaria in each 

month in 2001. The average monthly reported case in 2002 is 1059.This implies that 1059 had 

malaria every month in 2002. This indicates an increase in 342 the average reported cases. This 

probably could be attributed to the increase in the population of the people in that area. In 2003, 

the reported cases per month further increased to 1130. In 2004 the number of reported cases per 

month was 871. This figure however indicates a drop in the number of reported cases. In 2005, 
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an average of 1876 cases was recorded. Comparing the number of reported cases per month in 

2005 with 2004, there is a further increase in the number of reported cases. The least number of 

reported cases per month is in 2001. Observing the trend of the reported cases from 2001 to 

2004, it is most likely that the number of reported cases of the disease will increase in 2010 with 

the implementation of the National Health Insurance scheme. 

Comparing the number of reported cases per month in 2001 with that of 2002, the result 

indicates that there is a significant difference in the number of reported cases. The number of 

reported cases in 2001 is lower than that of 2002. One is 95% confident that the difference in the 

means of 2001 and 2002 is between -672.76 and -10.07. The interval does not contain zero and 

this confirms the fact that the number of reported cases per month between these years are 

significantly different from zero. Comparing the number of reported cases in 2001 with that of 

2003 indicates that the number of reported cases in 2001 is significantly different from that of 

2003. One can say there is 95% confidence that the difference in the number of reported cases 

per month in 2001 and 2003 is between-744.26 and -81.57. Also comparing the number of 

reported cases in 2005 with 2008 and 2009 indicate the average number of monthly reported 

cases in 2005 is significantly different from those of 2008 and 2009. The number of reported 

cases per month in 2005 is lower than those of 2008 and 2009. There is 95% confidence that the 

difference in the number of reported cases per month in 2005 and 2008 is between -792.66 and -

129.99. There is 95% confidence that the difference in the number of reported cases per month in 

2005 and 2009 is between -1265.76 and 603.07. 

 Comparing the number of monthly reported cases per month in 2006 and 2001 to 2004 it is 

realized that there is no significant difference in their means. There is 95% confidence that the 

average number of reported cases per month is between 1390.57and 2053.26, 1049.15 and 
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1711.85, 977.65 and 1640.35, 1237.32 and 1900.35 respectively. However, considering the 

number of reported cases per month in 2006 and 2007, there is statistical evidence that the 

average number of reported cases in 2006 is different from that of 2007. The average number of 

reported cases in 2006 is 2439 and that of 2007 is 2114.67. So in 2006, the average number of 

reported cases is higher than that of 2007. There is 95% confidence that the difference in means 

is between -6.76 and 655.93. Considering the number of reported cases per month in 2006 and 

2008, there is statistical evidence that the average number of reported cases in 2006 is different 

from that of 2008. The average number of reported cases in 2006 is 2439 and that of 2008 is 

2337.25. So in 2006, the average number of reported cases are higher than that of 2008. There is 

95% confidence that the difference in means is between -229.35 and 433.35.  There is evidence 

that the difference in the average number of reported cases in 2006 and 2009 is significantly 

different from zero. The average number of reported cases in 2009 is 2810. There is 95% 

confidence that the difference in the average number of cases in 2006 and 2009 is between-

702.43 and -39.74. There is the evidence that the difference in the number of reported cases per 

month in 2007 and 2008 is different from zero. There is 95% confidence that the difference in 

the number of reported cases per month is between -553.93 to 108.76. In 2007 and 2009, there is 

evidence that the difference in the number of reported cases per month is significantly different 

from zero. There is 95% confidence that the difference in the number of reported cases in the 

years 2007 and 2009 is between -1027.01 and -364.32. There is statistical evidence that the 

number of reported cases per month in 2008 and 2009 is significantly different from zero. There 

is 95% confidence that the difference in the number of reported cases per month in 2008 and 

2009 is between -804.43 and -141.74.  
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The time series model developed for predicting the number of reported cases of malaria in the 

Sekyere-East District is ARIMA (2, 1, 0). This model can be used by researchers for forecasting 

malaria reported cases in the district. However, it should be updated from time to time with the 

incorporation of current data. 

5.2 Findings  

The study reveals that the introduction of the National Health Insurance Scheme is having 

positive impact on the malaria reported cases in the District. Since its inception in 2002, the 

reported cases per month in subsequent years from 2001 to 2010 have increased significantly. 

Despite the fact that people have been complaining about the low-cost drugs administer at the 

health centre under health insurance scheme, they still breathe a sigh of relief for the fact that 

many people are able to access health care  with a minimum cost.  

In general, Malaria is not only a health problem but also a developmental problem in Ghana. It 

imposes significant financial hardships on households and the national economy. The burden of 

malaria is, therefore, a challenge to human development manifesting itself as a cause and 

consequence of under-development. Malaria‟s impact on households and society can be assessed 

in at least three important dimensions namely, health, social and economic. The impact of 

malaria in all the dimensions is to a large extent little appreciated, especially with the emergence 

of the HIV/AIDS pandemic. 

5.3 Summary of Results  

Comparing the average monthly reported cases of 2001 with each year‟s reported cases, it is 

realized that the number of reported cases has been increasing significantly over the years. The 

number of reported cases from 2007 to 2010 is higher than that of preceding years, the factor 

attributable to increase in population over the years and also for the fact that the community has 
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seen the usefulness of the National Health Insurance scheme and now access the health facilities 

more than ever before. For details check from Appendix B 

The ARIMA model developed for predicting the monthly reported malaria cases is           

ARIMA (2, 1, 0):  

  

                                           (5.1) 

The model was used to predict a five-month lead period of the reported cases.  

See Appendix A for details. 

5.4 Conclusion  

The model was essentially a stand-alone model since no relevant inputs for the model were 

available. Nevertheless, reasonable fitting accuracy (R square = 0.053, MAPE =14.358) was 

achieved for 120 months of historical data and the generated forecasts were adequately accurate. 

Based on the accuracy of forecasts obtained from the various models built in this thesis, it was 

demonstrated that Box and Jenkins ARIMA model can be successfully employed for the purpose 

of forecasting time dependent series.  

The results of this work demonstrates the usefulness and motivates the need of employing the 

statistical technique of ARIMA methodology in forecasting time series applications, either 

independently or in conjunction with the traditional methods, to result in a less computationally 

and data intensive method. Nevertheless, some work still needs to be done to validate further the 

use of such techniques in various other scenarios faced by time series forecasting. 

It can be concluded that the Sekyere-East District has conditions that favour the breeding of 

mosquitoes, the vector that causes malaria. The prevalence of malaria is more pronounced 

among certain population subgroups. Malaria presents significant costs to the affected 
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households since it is possible to experience multiple and repeated attacks in a year. The district, 

which has the two rainy seasons, is the hardest hit by these vectors because of the weather. In 

this case, the district must be given priority attention in annual budgets to enable it combat the 

disease. In particular, there is the need for a strong collaboration among major stakeholders 

including the Government, District Assemblies, Non-Governmental Organisations and the 

community to devise holistic, effective, and cost-saving methods for prevention, control and 

treatment of the disease. Though the use of insecticides for example coils, sprays are identified 

as the major method of protection due to their availability and affordability for many households, 

the efficacy of some of these numerous brands on the market may be questionable. In the short-

term, the efficacy of these products needs to be assessed by concerned authorities in order not to 

endanger the health of the people. 

5.5 RECOMMENDATIONS 

While advocating continuation of education on the use of the ITNs, it is recommended that 

efforts must be seriously made by the major players in the health sector to make the net readily 

available in the communities at low prices to enable the ordinary Ghanaian to purchase it. 

The decision to seek medical care from a health provider is influenced by several factors but the 

perceived quality of the provider and the proximity of the health facility are major determinants 

of health seeking behaviours. The proximity of the facility affects the cost of transportation and 

 more importantly the cost of time.  In order to improve timeliness of treatment, the service 

consequently would have to be closer to patients especially those in the remote and malarious 

endemic areas like the Asukorkor, Apemso, Naama, Ahensan etc in the district. The mobile 

outreach programme of the Ghana Health Service must be well equipped so that difficulty could 

be minimised at the service. Malaria reduction strategies should be incorporated into Ghana‟s 
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Poverty Reduction Strategy. It is anticipated that with a considerable reduction in poverty levels, 

households and communities would become increasingly responsible for the improvement of 

their health status and quality of life. 
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5.8 APPENDICES  

Appendix A 

Estimate of the forecast by extrapolation using ARIMA (1, 1, 0) 

Forecast of period 121, 

We can now substitute in the equation  and and . To forecast for period 

121,  

  

with  set equal to zero. By substitution we have, 

  

 

Forecast error of period 121 

  

 

 

Forecast of period 122, 

 

 

 

 

Forecast error of period 122, 

 

 

 

Forecast of period 123, 
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Forecast error of period 123 

 

 

 

Forecast of period 124, 

 

 

 

Forecast error of period 124 

 

 

 

Forecast of period 125, 

 

 

 

Forecast error of period 125, 

 

 

 

 

 

In a similar manner, we can forecast for more periods ahead. 
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Estimate of the forecast by extrapolation using ARIMA (2, 1, 0) 

 =  (  −                                                         (4.4) 

To use this equation to forecast one period ahead, = the subscripts are increased by 1 

throughout, as in the following equation: 

 

Forecast of the period 121 

 

 

 

Forecast error of the period 121 

 

 

 

Forecast of the period 122, 

 

 

 

Forecast error of the period 122 

 

 

 

Forecast of the period 123 
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Forecast error of the period 123 

 

 

 

Forecast of the period 124 

 

 

 

Forecast error of the period 124 

 

 

 

Forecast of the period 125 

 

 

 

Forecast error of the period 125 

 

 

 

Appendix B 

ANOVA 

Morbidity        

   Sum of Squares df Mean Square F Sig. 

Between Groups (Combined) 6.688E7 9 7431188.370 44.304 .000 
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Linear term Contrast 5.805E7 1 5.805E7 346.082 .000 

Deviation 8832134.096 8 1104016.762 6.582 .000 

Within Groups 1.845E7 110 167730.580   

Total 8.533E7 119    

 

Post Hoc Tests 

Multiple Comparisons 

Morbidity 

LSD 

     

(I) YEAR, not periodic (J) YEAR, not periodic Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

 2002 -341.417
*
 167.198 .044 -672.76 -10.07 

2003 -412.917
*
 167.198 .015 -744.26 -81.57 

2004 -153.250 167.198 .361 -484.60 178.10 

2005 -1158.583
*
 167.198 .000 -1489.93 -827.24 

2006 -1721.917
*
 167.198 .000 -2053.26 -1390.57 

2007 -1397.333
*
 167.198 .000 -1728.68 -1065.99 

2008 -1619.917
*
 167.198 .000 -1951.26 -1288.57 

2009 -2093.000
*
 167.198 .000 -2424.35 -1761.65 

2010 -1929.167
*
 167.198 .000 -2260.51 -1597.82 

2002 2001 341.417
*
 167.198 .044 10.07 672.76 

2003 -71.500 167.198 .670 -402.85 259.85 

2004 188.167 167.198 .263 -143.18 519.51 

2005 -817.167
*
 167.198 .000 -1148.51 -485.82 

2006 -1380.500
*
 167.198 .000 -1711.85 -1049.15 

2007 -1055.917
*
 167.198 .000 -1387.26 -724.57 

2008 -1278.500
*
 167.198 .000 -1609.85 -947.15 

2009 -1751.583
*
 167.198 .000 -2082.93 -1420.24 

2010 -1587.750
*
 167.198 .000 -1919.10 -1256.40 

2003 2001 412.917
*
 167.198 .015 81.57 744.26 

2002 71.500 167.198 .670 -259.85 402.85 

2004 259.667 167.198 .123 -71.68 591.01 
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2005 -745.667
*
 167.198 .000 -1077.01 -414.32 

2006 -1309.000
*
 167.198 .000 -1640.35 -977.65 

2007 -984.417
*
 167.198 .000 -1315.76 -653.07 

2008 -1207.000
*
 167.198 .000 -1538.35 -875.65 

2009 -1680.083
*
 167.198 .000 -2011.43 -1348.74 

2010 -1516.250
*
 167.198 .000 -1847.60 -1184.90 

2004 2001 153.250 167.198 .361 -178.10 484.60 

2002 -188.167 167.198 .263 -519.51 143.18 

2003 -259.667 167.198 .123 -591.01 71.68 

2005 -1005.333
*
 167.198 .000 -1336.68 -673.99 

2006 -1568.667
*
 167.198 .000 -1900.01 -1237.32 

2007 -1244.083
*
 167.198 .000 -1575.43 -912.74 

2008 -1466.667
*
 167.198 .000 -1798.01 -1135.32 

2009 -1939.750
*
 167.198 .000 -2271.10 -1608.40 

2010 -1775.917
*
 167.198 .000 -2107.26 -1444.57 

2005 2001 1158.583
*
 167.198 .000 827.24 1489.93 

2002 817.167
*
 167.198 .000 485.82 1148.51 

2003 745.667
*
 167.198 .000 414.32 1077.01 

2004 1005.333
*
 167.198 .000 673.99 1336.68 

2006 -563.333
*
 167.198 .001 -894.68 -231.99 

2007 -238.750 167.198 .156 -570.10 92.60 

2008 -461.333
*
 167.198 .007 -792.68 -129.99 

2009 -934.417
*
 167.198 .000 -1265.76 -603.07 

2010 -770.583
*
 167.198 .000 -1101.93 -439.24 

2006 2001 1721.917
*
 167.198 .000 1390.57 2053.26 

2002 1380.500
*
 167.198 .000 1049.15 1711.85 

2003 1309.000
*
 167.198 .000 977.65 1640.35 

2004 1568.667
*
 167.198 .000 1237.32 1900.01 

2005 563.333
*
 167.198 .001 231.99 894.68 

2007 324.583 167.198 .055 -6.76 655.93 

2008 102.000 167.198 .543 -229.35 433.35 

2009 -371.083
*
 167.198 .029 -702.43 -39.74 
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2010 -207.250 167.198 .218 -538.60 124.10 

2007 2001 1397.333
*
 167.198 .000 1065.99 1728.68 

2002 1055.917
*
 167.198 .000 724.57 1387.26 

2003 984.417
*
 167.198 .000 653.07 1315.76 

2004 1244.083
*
 167.198 .000 912.74 1575.43 

2005 238.750 167.198 .156 -92.60 570.10 

2006 -324.583 167.198 .055 -655.93 6.76 

2008 -222.583 167.198 .186 -553.93 108.76 

2009 -695.667
*
 167.198 .000 -1027.01 -364.32 

2010 -531.833
*
 167.198 .002 -863.18 -200.49 

2008 2001 1619.917
*
 167.198 .000 1288.57 1951.26 

2002 1278.500
*
 167.198 .000 947.15 1609.85 

2003 1207.000
*
 167.198 .000 875.65 1538.35 

2004 1466.667
*
 167.198 .000 1135.32 1798.01 

2005 461.333
*
 167.198 .007 129.99 792.68 

2006 -102.000 167.198 .543 -433.35 229.35 

2007 222.583 167.198 .186 -108.76 553.93 

2009 -473.083
*
 167.198 .006 -804.43 -141.74 

2010 -309.250 167.198 .067 -640.60 22.10 

2009 2001 2093.000
*
 167.198 .000 1761.65 2424.35 

2002 1751.583
*
 167.198 .000 1420.24 2082.93 

2003 1680.083
*
 167.198 .000 1348.74 2011.43 

2004 1939.750
*
 167.198 .000 1608.40 2271.10 

2005 934.417
*
 167.198 .000 603.07 1265.76 

2006 371.083
*
 167.198 .029 39.74 702.43 

2007 695.667
*
 167.198 .000 364.32 1027.01 

2008 473.083
*
 167.198 .006 141.74 804.43 

2010 163.833 167.198 .329 -167.51 495.18 

2010 2001 1929.167
*
 167.198 .000 1597.82 2260.51 

2002 1587.750
*
 167.198 .000 1256.40 1919.10 

2003 1516.250
*
 167.198 .000 1184.90 1847.60 

2004 1775.917
*
 167.198 .000 1444.57 2107.26 
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2005 770.583
*
 167.198 .000 439.24 1101.93 

2006 207.250 167.198 .218 -124.10 538.60 

2007 531.833
*
 167.198 .002 200.49 863.18 

2008 309.250 167.198 .067 -22.10 640.60 

2009 -163.833 167.198 .329 -495.18 167.51 

*. The mean difference is significant at the 0.05 level.  

 

APPENDIX C 

Minitab output of the comparison of the average monthly reported cases. 

Two-Sample T-Test and CI: 2001, 2002 

Sample   N  Mean  StDev  SEMean 

1            12   717    184    53 

2            12  1059    267    77 

Difference = mu (1) - mu (2) 

Estimate for difference:  -341.5 

95% CI for difference:  (-537.3, -145.7) 

T-Test of difference = 0 (vs not =): T-Value = -3.65  P-Value = 0.002  DF = 19 

Two-Sample T-Test and CI: 2001, 2003 

Sample   N  Mean  StDev  SEMean 

1             12   717    184    53 

2             12  1130    144    41 

Difference = mu (1) - mu (2) 

Estimate for difference:  -413.0 

95% CI for difference:  (-553.4, -272.6) 

T-Test of difference = 0 (vs not =): T-Value = -6.14  P-Value = 0.000  DF = 20 

 

Two-Sample T-Test and CI: 2001, 2004 

Sample   N  Mean  StDev  SEMean 

1             12   717    184    53 

2             12   871    280    81 

Difference = mu (1) - mu (2) 

Estimate for difference:  -153.3 

95% CI for difference:  (-356.3, 49.7) 

T-Test of difference = 0 (vs not =): T-Value = -1.59  P-Value = 0.130  DF = 18 

 

Two-Sample T-Test and CI: 2001, 2005 

Sample   N  Mean  StDev SE Mean 

1             12   717    184    53 

2             12  1876    231    67 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1158.6 

95% CI for difference:  (-1336.1, -981.1) 
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T-Test of difference = 0 (vs not =): T-Value = -13.62  P-Value = 0.000  DF = 20 

 

Two-Sample T-Test and CI: 2001, 2006 

Sample   N  Mean  StDev  SE Mean 

1            12   717    184       53 

2            12  2439    478      138 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1722 

95% CI for difference:  (-2039, -1405) 

T-Test of difference = 0 (vs not =): T-Value = -11.65  P-Value = 0.000  DF = 14 

 

Two-Sample T-Test and CI: 2001, 2007 

Sample   N  Mean  StDev  SE Mean 

1            12   717    184       53 

2            12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1398 

95% CI for difference:  (-1704, -1091) 

T-Test of difference = 0 (vs not =): T-Value = -9.77  P-Value = 0.000  DF = 14 

 

Two-Sample T-Test and CI: 2001, 2008 

Sample   N  Mean  StDev  SE Mean 

1            12   717    184       53 

2            12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1620 

95% CI for difference:  (-2130, -1110) 

T-Test of difference = 0 (vs not =): T-Value = -6.92  P-Value = 0.000  DF = 12 

 

Two-Sample T-Test and CI: 2001, 2009 

Sample   N  Mean  StDev  SE Mean 

1            12   717    184       53 

2            12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -2093 

95% CI for difference:  (-2461, -1725) 

T-Test of difference = 0 (vs not =): T-Value = -12.28  P-Value = 0.000  DF = 13 

 

Two-Sample T-Test and CI 2001, 2010 

Sample   N  Mean  StDev  SEMean 

1             12   717    184    53 

2             12  2647    204    59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1929.2 

95% CI for difference:  (-2093.8, -1764.6) 

T-Test of difference = 0 (vs not =): T-Value = -24.37  P-Value = 0.000  DF = 21 
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Two-Sample T-Test and CI: 2002, 2003 

Sample   N  Mean  StDev  SEMean 

1             12  1059    267    77 

2             12  1130    144    41 

Difference = mu (1) - mu (2) 

Estimate for difference:  -71.5 

95% CI for difference:  (-257.0, 114.0) 

T-Test of difference = 0 (vs not =): T-Value = -0.82  P-Value = 0.426  DF = 16 

 

Two-Sample T-Test and CI: 2002, 2004 

 Sample   N  Mean  StDev  SEMean 

1             12  1059    267    77 

2             12   871    280    81 

Difference = mu (1) - mu (2) 

Estimate for difference:  188 

95% CI for difference:  (-44, 420) 

T-Test of difference = 0 (vs not =): T-Value = 1.69  P-Value = 0.107  DF = 21 

 

Two-Sample T-Test and CI :2002, 2005 

Sample   N  Mean  StDev  SEMean 

1            12  1059    267    77 

2            12  1876    231    67 

Difference = mu (1) - mu (2) 

Estimate for difference:  -817 

95% CI for difference:  (-1029, -605) 

T-Test of difference = 0 (vs not =): T-Value = -8.03  P-Value = 0.000  DF = 21 

 

Two-Sample T-Test and CI : 2002, 2006 

Sample   N  Mean  StDev  SE Mean 

1             12  1059    267       77 

2             12  2439    478      138 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1380 

95% CI for difference:  (-1714, -1047) 

T-Test of difference = 0 (vs not =): T-Value = -8.73  P-Value = 0.000  DF = 17 

 

Two-Sample T-Test and CI: 2002, 2007 

Sample   N  Mean  StDev  SE Mean 

1             12  1059    267       77 

2             12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1056 

95% CI for difference:  (-1380, -732) 

T-Test of difference = 0 (vs not =): T-Value = -6.88  P-Value = 0.000  DF = 17 
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Two-Sample T-Test and CI: 2002, 2008 

Sample   N  Mean  StDev  SE Mean 

1             12  1059    267       77 

2             12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1278 

95% CI for difference:  (-1798, -758) 

T-Test of difference = 0 (vs not =): T-Value = -5.31  P-Value = 0.000  DF = 13 

 

 

Two-Sample T-Test and CI: 2002, 2009 

Sample   N  Mean  StDev  SE Mean 

1             12  1059    267       77 

2             12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1751 

95% CI for difference:  (-2133, -1369) 

T-Test of difference = 0 (vs not =): T-Value = -9.76  P-Value = 0.000  DF = 15 

 

Two-Sample T-Test and CI: 2002, 2010 

Sample   N  Mean  StDev  SEMean 

1            12  1059    267    77 

2            12  2647    204    59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1587.7 

95% CI for difference:  (-1789.8, -1385.6) 

T-Test of difference = 0 (vs not =): T-Value = -16.38  P-Value = 0.000  DF = 20 

 

Two-Sample T-Test and CI: 2003, 2004 

Sample   N  Mean  StDev  SEMean 

1            12  1130    144    41 

2            12   871    280    81 

Difference = mu (1) - mu (2) 

Estimate for difference:  259.7 

95% CI for difference:  (67.2, 452.2) 

T-Test of difference = 0 (vs not =): T-Value = 2.86  P-Value = 0.011  DF = 16 

 

Two-Sample T-Test and CI: 2003, 2005 

Sample   N  Mean  StDev  SEMean 

1             12  1130    144    41 

2             12  1876    231    67 

Difference = mu (1) - mu (2) 

Estimate for difference:  -745.6 

95% CI for difference:  (-910.3, -580.9) 

T-Test of difference = 0 (vs not =): T-Value = -9.51  P-Value = 0.000  DF = 18 
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Two-Sample T-Test and CI: 2003, 2006 

Sample   N  Mean  StDev  SE Mean 

1            12  1130    144       41 

2            12  2439    478      138 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1309 

95% CI for difference:  (-1623, -995) 

T-Test of difference = 0 (vs not =): T-Value = -9.08  P-Value = 0.000  DF = 12 

 

 

Two-Sample T-Test and CI: 2003, 2007 

Sample   N  Mean  StDev  SE Mean 

1            12  1130    144       41 

2            12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  -985 

95% CI for difference:  (-1285, -684) 

T-Test of difference = 0 (vs not =): T-Value = -7.08  P-Value = 0.000  DF = 13 

 

Two-Sample T-Test and CI: 2003, 2008  

Sample   N  Mean  StDev  SE Mean 

1       12  1130    144       41 

2       12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1207 

95% CI for difference:  (-1717, -697) 

T-Test of difference = 0 (vs not =): T-Value = -5.21  P-Value = 0.000  DF = 11 

 

Two-Sample T-Test and CI: 2003, 2009 

Sample   N  Mean  StDev  SE Mean 

1            12  1130    144       41 

2            12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1680 

95% CI for difference:  (-2044, -1315) 

T-Test of difference = 0 (vs not =): T-Value = -10.05  P-Value = 0.000  DF = 12 

 

Two-Sample T-Test and CI: 2003, 2010 

Sample   N  Mean  StDev SE Mean 

1             12  1130    144    41 

2             12  2647    204    59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1516.2 

95% CI for difference:  (-1666.7, -1365.7) 

T-Test of difference = 0 (vs not =): T-Value = -21.08  P-Value = 0.000  DF = 19 
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Two-Sample T-Test and CI: 2004, 2005  

Sample   N  Mean  StDev SE  Mean 

1             12   871    280    81 

2             12  1876    231    67 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1005 

95% CI for difference:  (-1223, -788) 

T-Test of difference = 0 (vs not =): T-Value = -9.60  P-Value = 0.000  DF = 21 

 

 

Two-Sample T-Test and CI: 2004, 2006  

Sample   N  Mean  StDev  SE Mean 

1             12   871    280       81 

2             12  2439    478      138 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1568 

95% CI for difference:  (-1906, -1231) 

T-Test of difference = 0 (vs not =): T-Value = -9.81  P-Value = 0.000  DF = 17 

 

Two-Sample T-Test and CI: 2004, 2007  

Sample   N  Mean  StDev  SE Mean 

1             12   871    280       81 

2             12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1244 

95% CI for difference:  (-1571, -918) 

T-Test of difference = 0 (vs not =): T-Value = -8.01  P-Value = 0.000  DF = 18 

 

Two-Sample T-Test and CI: 2004, 2008 

Sample   N  Mean  StDev  SE Mean 

1            12   871    280       81 

2            12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1466 

95% CI for difference:  (-1989, -944) 

T-Test of difference = 0 (vs not =): T-Value = -6.06  P-Value = 0.000  DF = 13 

 

Two-Sample T-Test and CI: 2004, 2009 

Sample   N  Mean  StDev  SE Mean 

1            12   871    280       81 

2            12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1939 

95% CI for difference:  (-2323, -1556) 

T-Test of difference = 0 (vs not =): T-Value = -10.72  P-Value = 0.000  DF = 16 
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Two-Sample T-Test and CI: 2004, 2010  

Sample   N  Mean  StDev SE Mean 

1            12   871     280     81 

2            12  2647    204     59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -1775.9 

95% CI for difference:  (-1984.3, -1567.5) 

T-Test of difference = 0 (vs not =): T-Value = -17.77  P-Value = 0.000  DF = 20 

 

 

Two-Sample T-Test and CI: 2005, 2006 

Sample   N  Mean  StDev  SE Mean 

1            12  1876    231       67 

2            12  2439    478      138 

Difference = mu (1) - mu (2) 

Estimate for difference:  -563 

95% CI for difference:  (-890, -237) 

T-Test of difference = 0 (vs not =): T-Value = -3.68  P-Value = 0.002  DF = 15 

 

Two-Sample T-Test and CI : 2005, 2007 

Sample   N  Mean  StDev  SE Mean 

1            12  1876    231       67 

2            12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  -239 

95% CI for difference:  (-554, 76) 

T-Test of difference = 0 (vs not =): T-Value = -1.61  P-Value = 0.127  DF = 16 

 

Two-Sample T-Test and CI: 2005, 2008  

Sample   N  Mean  StDev  SE Mean 

1            12  1876    231       67 

2            12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -461 

95% CI for difference:  (-979, 57) 

T-Test of difference = 0 (vs not =): T-Value = -1.94  P-Value = 0.076  DF = 12 

 

Two-Sample T-Test and CI : 2005, 2009 

SampleN  Mean  StDev  SE Mean 

1        12    1876    231       67 

2        12    2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -934 

95% CI for difference:  (-1310, -559) 

T-Test of difference = 0 (vs not =): T-Value = -5.34  P-Value = 0.000  DF = 14 
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Two-Sample T-Test and CI: 2005, 2010 

Sample   N  Mean  StDev SE Mean 

1            12  1876    231    67 

2            12  2647    204    59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -770.6 

95% CI for difference:  (-955.2, -586.0) 

T-Test of difference = 0 (vs not =): T-Value = -8.68  P-Value = 0.000  DF = 21 

 

 

Two-Sample T-Test and CI: 2006, 2007  

Sample   N  Mean  StDev  SE Mean 

1             12  2439    478      138 

2             12  2115    460      133 

Difference = mu (1) - mu (2) 

Estimate for difference:  324 

95% CI for difference:  (-74, 722) 

T-Test of difference = 0 (vs not =): T-Value = 1.69  P-Value = 0.105  DF = 21 

 

Two-Sample T-Test and CI: 2006, 2008 

Sample   N  Mean  StDev  SE Mean 

1            12  2439    478      138 

2            12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  102 

95% CI for difference:  (-458, 662) 

T-Test of difference = 0 (vs not =): T-Value = 0.38  P-Value = 0.706  DF = 18 

 

Two-Sample T-Test and CI: 2006, 2009 

Sample   N  Mean  StDev  SE Mean 

1            12  2439    478      138 

2            12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -371 

95% CI for difference:  (-813, 71) 

T-Test of difference = 0 (vs not =): T-Value = -1.74  P-Value = 0.096  DF = 21 

 

Two-Sample T-Test and CI : 2006, 2010 

Sample   N  Mean  StDev  SE Mean 

1            12  2439    478      138 

2            12  2647    204       59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -208 

95% CI for difference:  (-529, 114) 

T-Test of difference = 0 (vs not =): T-Value = -1.38  P-Value = 0.188  DF = 14 
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Two-Sample T-Test and CI: 2007, 2008 

Sample   N  Mean  StDev  SE Mean 

1            12  2115    460      133 

2            12  2337    790      228 

Difference = mu (1) - mu (2) 

Estimate for difference:  -222 

95% CI for difference:  (-779, 335) 

T-Test of difference = 0 (vs not =): T-Value = -0.84  P-Value = 0.412  DF = 17 

 

 

Two-Sample T-Test and CI: 2007, 2009 

Sample   N  Mean  StDev  SE Mean 

1             12  2115    460      133 

2             12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -695 

95% CI for difference:  (-1131, -259) 

T-Test of difference = 0 (vs not =): T-Value = -3.32  P-Value = 0.003  DF = 21 

 

Two-Sample T-Test and CI : 2007, 2010 

Sample   N  Mean  StDev  SE Mean 

1            12  2115    460      133 

2            12  2647    204       59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -532 

95% CI for difference:  (-841, -222) 

T-Test of difference = 0 (vs not =): T-Value = -3.66  P-Value = 0.002  DF = 15 

 

Two-Sample T-Test and CI : 2008, 2009 

Sample   N  Mean  StDev  SE Mean 

1            12  2337    790      228 

2            12  2810    561      162 

Difference = mu (1) - mu (2) 

Estimate for difference:  -473 

95% CI for difference:  (-1058, 112) 

T-Test of difference = 0 (vs not =): T-Value = -1.69  P-Value = 0.107  DF = 19 

 

Two-Sample T-Test and CI: 2008, 2010 

Sample   N  Mean  StDev  SE Mean 

1            12  2337    790      228 

2            12  2647    204       59 

Difference = mu (1) - mu (2) 

Estimate for difference:  -310 

95% CI for difference:  (-823, 204) 

T-Test of difference = 0 (vs not =): T-Value = -1.31  P-Value = 0.213  DF = 12 
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Two-Sample T-Test and CI: 2009, 2010 

Sample   N  Mean  StDev  SE Mean 

1            12  2810    561      162 

2            12  2647    204       59 

Difference = mu (1) - mu (2) 

Estimate for difference:  164 

95% CI for difference:  (-209, 536) 

T-Test of difference = 0 (vs not =): T-Value = 0.95  P-Value = 0.360  DF = 13 

 

 


