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Abstract: In this paper, we numerically study the scattering of kinks in the noncanonical sine-Gordon model

using Fourier spectral methods. The model depends on two free parameters, which control the localized inner

structure in the energy density and the characteristics of the scattering potential. It has been conjectured that

the kink solutions in the noncanonical model possess inner structures in their energy density, and the presence

of these yields bound states and resonance structures for some relative velocities between the kink and the

antikink. In the numerical study, we observed that the classical kink mass decreases monotonically as the free

parameters vary, and yields bion-formations and long-lived oscillations in the scattering of the kink-antikink
system.

Keywords: Kinks, scattering theory, bound states, lower-dimensional field theory

1. Introduction

Kink solitons in 1+1-dimensional space are an example of topological defects in classical field theory.

These kinks are localized with nondispersive energy density [1] and behave like classical pointlike

particles when subjected to an external force. They are used in many branches of physics because

of their stable nature against dispersive effects. For example; they are applied in cosmology for

studying the fractal structure of the cosmic domain walls [2, 3], in condensed matter physics, they are

used to study Bose–Einstein condensates [4] and for studying domain walls in ferromagnets [5] and

ferroelectrics [6], in particle physics, they are used as a model of hadrons [7–9].

The scattering of kink and antikink in canonical field models has been of interest to the scientific

community, especially mathematical physicists, because of their physical significance, as mentioned

earlier. It was observed numerically by the authors in Refs. [10–17] structural patterns of the scattering

of kink and antikink in the canonical models. These structures occur by choosing specific initial

conditions such that the kink and antikink are well separated. Once boosted with a prescribed

velocity, the kink and antikink approach each other and interact. The prescribed velocity is referred to

as the relative velocity between the kink and antikink. For example, in the canonical ϕ4 model, it was

discovered that the formation of large-amplitude bound states occurs for initial relative velocities (vin )

less than a critical velocity (vcr ) (which separates two distinct classes of solutions). This occurrence is

a result of the annihilation of the kink and antikink. Also, for vin less than vcr an interesting pattern is
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observed, the so-called resonance windows, which occur when there is an exchange of energy between

the shape and translational modes of the kinks, while for vin greater than vcr the kink and antikink

after collision reflect from each other. These phenomena have also been observed in higher polynomial

canonical models such as the ϕ6 , ϕ8 and ϕ10 models [18–29] with power-law tails; where power-law

tails of kinks result in their long-range interaction. Recently, these structural patterns have also been

reported in nonpolynomial canonical models [30–32] with their interesting physical properties.

There are two ways of studying these structural patterns. One of these ways is by solving the

equation of motion, a system of second-order partial differential equations, using a numerical scheme.

The other method is by making use of analytical approximations. Examples of these approximations

are the collective coordinate method [18, 29, 33, 34] and the Manton method [35–38]. These analytical

approximations allow one to estimate the force between the kink and antikink.

In the canonical sine-Gordon model, the bion-formation and resonance phenomena arise by

studying the scattering of kink and antikink from defects or impurities. These impurities are added

to the equation of motion as perturbative terms [39–43]. In this case, the resonance structures occur

when the kink is reflected by the defect. Also, when the kink remains at the defect for a long time, a

bound state occurs and the kinks are reflected when they pass by the defect. Apart from the canonical

sine-Gordon model, the resonance structures have also been reported in the study of the collision of

several kinks of the double sine-Gordon model at one point [44–48].

In this work, we consider the scattering of kinks in the noncanonical sine-Gordon model. It has

been observed generally that, in a noncanonical model, as the parameters vary, the energy density

of the kink splits from one peak to multipeaks [49–52]. This observed feature is the so-called “inner

structure” of the kink. We investigate whether the kinks in the noncanonical sine-Gordon model

possess inner structures in their energy density. An interesting phenomenon is the production of

long-lived static and moving oscillations in the scattering of the kink-antikink system.

This paper is organized as follows: in Section 1 we introduce the model and discuss the properties

of the corresponding kink solutions. The numerical results of the scattering of the kink and antikink

will be presented in Section 2. We conclude and summarize in Section 3.

1.1. The model structure and kink solution

We consider the noncanonical scalar field in one-space and one-time dimensional space, whose La-

grangian density is given by

L = F (φ)X − U(φ), (1)

where X = −1

2
ηµν∂µφ∂νφ (with ηµν = diag(−1, 1)) is the kinetic term of the scalar field, U is the

scalar potential and F (φ) = α (sinφ)2n+1. Here the parameter n ≥ 0 accounts for the local maxima

of the energy density of the kink, where α > 0 differentiates the model from the canonical case. The

Euler equation of motion for this model is given by

∂F

∂φ

[(
∂φ

∂x

)2

−
(
∂φ

∂t

)2
]
+ 2F

[
∂2φ

∂x2
− ∂2φ

∂t2

]
− 2

∂U

∂φ
= 0. (2)

For static field, φ = φ(x), the field equation simplifies to the nonlinear static wave equation

∂F

∂φ

(
∂φ

∂x

)2

+ 2F
∂2φ

∂x2
− 2

∂U

∂φ
= 0. (3)
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(a) Scalar potential U(φ) cf. Equation (8). (b) Energy density of the noncanonical model cf. Equa-
tion(10).

Figure 1. The field potential U(φ) and the energy density ξ(x).

In what follows, we construct the static kink solutions via the superpotential [49, 53, 54]

W (φ) =
∂φ

∂x
, (4)

which is related to the scalar field potential by integrating Eq. (3) and assuming the constant of

integration to be zero, this yield

U =
1

2
FW 2. (5)

Taking the superpotential as

W =
√
2kv0

√(
1− cos

(
φ

v0

))
(6)

one obtains the sine-Gordon kink

φK(x) = 4v0 arctan [exp(kx)] , (7)

where v0 represents the vacuum expectation value of φ(x) and
1

k
is the thickness of the kink. The

antikink with φ(−∞) = 2π and φ(∞) = 0 is related to the kink by the spatial reflection x ↔ −x . In

this paper, we set v0 = 1 = k . The scalar potential becomes

U(φ) = (1− cosφ)
[
α (sinφ)2n + 1

]
. (8)

Taking α = 0 gives the standard sine-Gordon potential, while for α, n > 0 yields potential with

vacuum solutions φvac = 2mπ , where m ∈ Z . The kink and antikink solutions interpolate between

neighbouring vacua. Thus, there are two discrete symmetries for the above Lagrangian for the potential
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Table 1. Classical energy for some values of n .
n Ecl

0 8α+ 8

1
64

15
α+ 8

2
1024

315
α+ 8

3
8192

3003
α+ 8

4
262144

109395
α+ 8

in this regime. These symmetries are φ → −φ and φ → φ + 2πm , m ∈ Z . The total energy of the

field is given by

E [φ] =

∫ ∞

−∞
dx

[
1

2
F (φ)

(
∂φ

∂t

)2

+
1

2
F (φ)

(
∂φ

∂x

)2

+ U(φ)

]
. (9)

We obtain an expression for the energy density of the static kink as

ξ(x) =
1

2
F (φ)

(
∂φ

∂x

)2

+ U(φ)

= 4 sech2 x
[
4nα sech2n x tanh2n x+ 1

]
, (10)

which vanishes at the absolute minima of the potential.

Figure 2. The scattering potential u(x).

The scalar potentials are depicted in Figure 1(a), while the corresponding energy densities are

depicted in Figure 1(b) for n = 1, 2, 3, 4 and α = 1. We observe that the energy density splits as
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n increases. For n = 1, 2 and α = 1 the energy density has two peaks. Three peaks of the energy

density are observed for n = 3, 4 and α = 1. The first five values of n for α ̸= 0 for the classical

energy (mass) cf. Eq. (9) are shown in Table 1 which decrease monotonically as n increases.

1.2. Linear spectrum

In what follows, we analyze the excitation spectrum of the static kink by considering the fluctuation

modes around the kink, η(x, t) = eiωtη(x), such that φ(x, t) = φK(x) + η(x, t). Substituting this into

Eq. (2) and collecting terms linear in η with U = FUSG , where USG = 1− cosφ , gives

∂2F

∂φ2
K

φ′2
Kη + 2

∂F

∂φK
φ′
Kη′ + 2F

(
η′′ − η̈

)
+ 2

∂F

∂φK
φ′′
Kη − 2

(
∂2U

∂φ2
K

+ 2
∂F

∂φK

∂USG

∂φK

)
η = 0, (11)

where the primes and dots denote derivatives with respect to the space and time variables respectively.

(a) The translational zero modes. (b) The internal shape modes.

Figure 3. The eigenvalues (modes) of Equation (13) for α ∈ (0 : 2 : 200) and n = 1, 2.

Using the separation ansatz η(x, t) = eiωtη(x), the above equation simplifies to

η′′ = −ω2η − 1

F

∂F

∂φK
φ′
Kη′ +

[
∂2USG

∂φ2
K

+
1

F

∂F

∂φK
φ′′
K

]
(12)

which is not the standard form for the potential scattering because of the η′ term. Parametrizing

η = Gξ , where G =
1√
F

yields the standard form of the potential scattering as

[
− d2

dx2
+ u(x)

]
ξ(x) = ω2ξ(x), (13)

where

u(x) =
1

F

∂2U

∂φ2
K

+
3

2

1

F

∂F

∂φK
φ′′
K − 1

4

(
1

F

∂F

∂φK
φ′
K

)2

(14)
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(a) vin = 0.501 for n = 1 and α = 1. (b) vin = 0.4 for n = 2 and α = 1.

(c) vin = 0.601 for n = 2 and α = 5.

Figure 4. Annihilation of the kink and antikink pair to a long-lived oscillating state.

is the scattering potential, whose explicit expression is obtained by substituting the kink profile φK ,

the scalar potential U(φK) and F (φK). Figure 2 shows the scattering potential for n = 1, 2, 3 and

α = 1. The special case for α = 0 when n = 1 with a global minimum at x = 0 is also shown.

The figure shows that for α > 0 for all n there is the possibility of occurrence of bound states. For

α = 1 and n = 1 the point x = 0 turns to be a local maximum with two minima in the potential,

while for n = 2, 3 and α = 1 the point x = 0 turns to be a local minimum with three minima in

the potential. The scattering potential is symmetric and the fluctuation masses around the vacua as

x → ±∞ remains the same and is equal to 1.

We solve the eigenvalue problem by making use of the shooting method. This is done by

integrating Eq. (13) using the asymptotic behavior of its solutions at x = ±∞ . Starting at a large

negative x value, we obtain the ‘left’ solution and obtain a ‘right’ solution at a large positive x value.

The two solutions are then matched at some arbitrary matching point xm . We chose xm close to the

spatial origin to avoid technical issues when u(x) is an even function of x . The eigenvalues of ω2 are

those values at which the Wronskian of the ‘left’ solution and ‘right’ solution at the matching point

xm turns to zero. The results are shown in Figure 3 for α ∈ [0 : 2 : 200] and n = 1, 2. We record an

internal shape mode only at α ≥ 4 cf. Figure 3(b), below this value only translational zero modes

(see Figure 3(a)) are observed.

2. Numerical results

The presence of the excitation modes in the kink means that, at a certain instant, there is a transfer

of the kinetic energy of the moving kink and antikink to the excitation modes such that the kink and

antikink are unable to overcome their attractive potential, resulting in a trapped state; but for some

initial relative velocities, the internal shape mode is destroyed and its energy is transferred into the
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(a) vin = 0.361 for n = 1 and α = 1. (b) vin = 0.3621 for n = 1 and α = 1.

(c) vin = 0.3961 for n = 2 and α = 1.

Figure 5. An annihilation of a kink and antikink pair to a centrally-located bion.

(a) vin = 0.101 for n = 1 and α = 1. (b) vin = 0.201 for n = 1 and α = 1.

(c) vin = 0.301 for n = 2 and α = 1.

Figure 6. Bion-formation.
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(a) vin = 0.591 for n = 1 and α = 5. (b) vin = 0.599 for n = 1 and α = 5.

(c) vin = 0.553 for n = 2 and α = 5. (d) vin = 0.554 for n = 2 and α = 5.

(e) vin = 0.585 for n = 1 and α = 20 (f) vin = 0.651 for n = 2 and α = 20

Figure 7. Formation of pairs of bions at the origin of the kink.

translational zero modes and the kink and antikink propagate almost separately. These are the so-

called resonance windows. We investigate the interaction of the kink and antikink systems by solving

the dynamical system equation numerically. This is done by taking the kink and antikink solutions as

the initial condition, wherein initially the kink and antikink are widely separated whilst propagating

towards each other. We make use of the superposition ansatz

φ(x, 0) = φK

 x+ x0√
1− v2in

+ φK

 x− x0√
1− v2in

− 2π (15)

φ̇(x, 0) = − vin√
1− v2in

φ′
K

 x+ x0√
1− v2in

− vin√
1− v2in

φ′
K

 x− x0√
1− v2in

 , (16)

where the primes denote the derivatives with respect to the argument, vin is twice the relative velocity

between the kink and antikink, and x0 is half the separation of the kink and antikink, which we set

equal to 10 in our numerical computations.
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(a) The case for n = 1 and α = 5. (b) The case for n = 2 and α = 5.

Figure 8. The time between the two collisions in the two bounce windows verses the number of oscillations.

We solve the dynamical equation as an initial value problem using the Fourier spectral method

on a grid with N = 1800 nodes with periodic boundary conditions for x ∈ [−50, 50]. Discretization

in x yields a system of second-order ordinary differential equations in time, which are solved by

integrating with t using the ode45 routine of MATLAB. We set the tolerance option for the ode45

routine as RelTol = 10−10 and AbsTol = 10−12 to ensure that the total energy is conserved. The

observed critical velocities for various values of n and α are indicated in Table 2.

In the absence of the internal shape mode, thus for α < 4, we observe, in one case, a long-

lived oscillating state after the annihilation of the kink and antikink pair. This is shown in Figure

4. This occurs when the initial velocities vin are greater than the critical velocities, vcr ; as indicated

in Figure 4(a) where vin = 0.501 > vcr = 0.3626 and Figure 4(b) where vin = 0.400 > vcr = 0.3998.

Also, for some initial velocities less than the critical velocity, an annihilation of kink and antikink to

a centrally-located bion occurs. These observed features are shown in Figure 5, where in Figure

5(a) vin = 0.361 < vcr = 0.3626, Figure 5(b) vin = 0.3621 < vcr = 0.3626 and Figure 5(c)

vin = 0.3961 < vcr = 0.3998. Furthermore, for initial velocities less than the critical velocities, an

annihilation of the kink and antikink pair to a long-living bound state occurs with radiation of energy in

the form of small amplitude waves. This is indicated in Figure 6(a) where vin = 0.101 < vcr = 0.3626,

Figure 6(a) where vin = 0.201 < vcr = 0.3626 and Figure 6(c) where vin = 0.301 < vcr = 0.3998.

In the presence of the internal shape mode, thus for α ≥ 4, we observe that, for vin < vcr
after one-two bounces, the exchange energy of the kink and antikink is not enough to overcome the

attractive potential as a result the exchange energy is converted to radiation leading to a bion state

(see Figures 7(a)–7(f), respectively). The bion remains at the origin of the kink in this case after the

collision. Thus, the kink and antikink do not escape after the collision. The results show that there

is a transfer of energy into the internal shape mode but once the shape modes are destroyed they

are unable to overcome their initial interaction resulting in a bounce state after the first and second

interaction. Also, for vin > vcr in this regime, we observe a long-lived oscillating state as reported in

Figure 4(c) where vin = 0.601 > vcr = 0.555.

The points marked “X” in Figures 8(a) and 8(b) represent the time T (v) between the first and
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Table 2. Prediction of the critical velocities.
n α vcr
1 1 0.3626
1 5 0.601
1 10 0.669
1 20 0.701
2 1 0.3998
2 5 0.555
2 10 0.617
2 20 0.698

second collisions as a function of the number of oscillations between these collisions for n = 1, α = 5

and n = 2, α = 5, respectively. The results fit the resonance mechanism relation proposed in [10, 11],

with ωTT (v) = 2πn(v) + δ to some extent. The only difference is that ωT ≈ 2ωs where ωs is chosen

close to the internal shape mode for the considered free parameters. In this case, δ = 4.832 falls

between 0 and 2π . Another inconsistency in this model is the relationship between T (v) and the

binding energy. The relationship is given by [10, 11] T (v) ∝ c
(
v2cr − v2in

)−β
, where vin denotes impact

velocities less than the critical velocity vcr , with c = 1 and β = 0.5. In this model, the fit to this

relation favors a smaller value of β , in the range of 0.2 − 0.357 and c = 2. The differences in this

model may be due to the nature of the resonance mechanism: in this model, the energy remains within

the kink and antikink for an extended period of time, resulting in a large amount of radiation after the

first and second collisions, whereas in the resonant ϕ4 scattering [11], the energy is rapidly localized

on the kink and antikink. There were, however, similarities between this model and the ϕ4 model.

Two bounce windows are missing for n(v) < 4, as seen in the resonant ϕ4 model for n(v) < 3. Figures

7(a) and 7(b) depict windows for n(v) = 8 and n(v) = 9 for n = 1 and α = 5, whereas Figures 7(c)

and 7(d) depict windows for n(v) = 7 and n(v) = 8 for n = 2 and α = 5.

3. Conclusion

We have presented the numerical simulation of the scattering of kinks in the noncanonical sine-Gordon

model. This model contains two free parameters, α and n . In the limit α = 0, we recover the sine-

Gordon model. Central to this analyzes has been the presence of (localized) inner structures in the

energy density of the kinks. These inner structures arise by varying the free parameters that make up

the model for α ≥ 1. We anticipated in our numerical analyzes that the presence of these localized

structures in the energy-density of this model will yield resonance structures and bion-formations in

the scattering of the kink and antikink.

In analyzing the linear spectrum of the static kinks for n = 1, 2 and α ≥ 0, we observe that both

the translational and internal shape modes contribute. The shape modes are only observed for α ≥ 4.

The energy-eigenvalues of the shape mode for n = 1, 2 decrease monotonically as α increases. From

analyzes of the study by the authors in Refs. [10, 11] it was found that the shape mode plays a crucial

role in the formation of resonance structures in the scattering of the kink and antikink. They argued

that the formation of the resonance structures is a result of the transfer of energy from the shape mode

to the translational zero mode. However, it was later discovered by the authors in Ref. [19] that in

the absence of shape mode resonance features occur. Thus, a robust explanation of the formation of
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the resonance structures is needed. Recent studies from Ref. [49] reveal that the presence of localized

inner structures also plays an important role in the formation of the resonance structures.

In our numerical analysis, we discovered that as n increases from one to four for α = 1, the

energy density of the static kink splits into two to three peaks. The separation between these peaks

becomes wider and shallower as α increases. We found that in the absence of the internal shape

mode, no resonance structures are observed in the scattering of the kink and antikink for various

values of α for n = 1 and n = 2. We only observed three bion features: a long-lived oscillating state

with small amplitudes; a large amplitude bion-formation; and annihilation of a kink and antikink to a

centrally-located bion. However, two-bounce bion-formation is observed in the presence of the shape

mode, thus α ≥ 4. The latter observation may be attributed to the broad and shallow nature of the

peaks of the kink and antikink energy density.

To conclude, our results show bion-formations (static and moving oscillations) in the kink-

antikink scattering for the free parameters α and n . It will also be interesting to look at the behavior of

the kink and antikink collision in other noncanonical sine-Gordon models that possess inner structures

in their energy density, like the one proposed by the authors in Ref. [54]. Other interesting avenues to

consider are the ϕ6 type superpotential and those that yield double kink solutions. We are currently

considering these for our future work.
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