
1 | P a g e

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

RECONFIGURABLE VIRTUAL INSTRUMENTATION MIDDLEWARE

SUBMITTED FOR FULFILMENT OF THE DEGREE OF MPhil

COMPUTER ENGINEERING

BY

BOAKYE-BOATENG, KWASI

(PG2654508)

SUPERVISOR:

DR. KWAME OSEI BOATENG

MAY 2012

2 | P a g e

ABSTRACT

Instruments are integral in our daily lives. From the trader to the engineer, everyone uses

instruments to quantify objects or events. Engineering instruments have seen rapid improvement

from cathode ray tubes and mechanical inventions to state-of-the-art electronic gizmos. Now there

is a new instrument on the block – the Reconfigurable Virtual Instrument (RVI). RVIs make it

possible for traditional instruments to be emulated. One moment it can be configured to read

voltage and then, within a matter of minutes, it can be reconfigured to read current or even

temperature. However, RVIs, in the market so far, are expensive to acquire and maintain especially

with the licenses that have to be paid for them periodically. Already, an existing research on

creating RVIs using an FPGA has already been achieved. This goes a long way to help developing

countries like Ghana with regards to operational expenses on instruments particularly in secondary

and tertiary institutions.

The aim of this research is to build upon what has already been done by letting RVIs be accessible

by the use of a simple web browser on a PC without the need of special installation. Not only

accessible by one PC at a time but by multiple PCs at a go via a distributed system. With the

emergence of smart phones that have advanced browsing capabilities, RVIs can also be accessed

provided they are connected via a wireless network. This is achieved by using free open-source

tools. This research uses an existing RVI research with emphasis on the instruments that were

configured on the RVI – the digital frequency meter and the function generator. Tests show

promising results with a considerable error margin with regards to the function generator which

requires real-time display.

Keywords: middleware, interface, distributed systems, application

3 | P a g e

DECLARATION

I hereby declare that, this submission is my own work except for specific references which have

been duly acknowledged, this work is the result of my own research and it has not been submitted

either in part or whole for any other degree in Kwame Nkrumah University of Science and

Technology or any other educational institution elsewhere.

Signature……………………………… Date..

Boakye-Boateng, Kwasi

(Candidate)

Signature………………………………... Date..

Dr. Kwame Osei Boateng

(Supervisor)

Signature……………………………….. Date ………………………….

Dr. Kwame Osei Boateng

(Head, Department of Computer Engineering)

4 | P a g e

DEDICATION

This thesis is dedicated to my father, the late Kwasi Boakye-Boateng. He taught me to never give up

in anything I do. He instilled in me the principles of research from the age of 11. His legacy lives on.

5 | P a g e

ACKNOWLEDGEMENT

I am grateful to God for all that he has done for me. Without him, I would not be who I am.My

deepest gratitude to my supervisor, Dr. Kwame Osei Boateng for his unending support and

guidance. He sacrificed a lot for me to achieve this feat. I am grateful to Gilbert Osei-Dadzie whose

research mine was built upon. He gave me his time, patience and contributions were

immeasurable. I am also very grateful to all administrative and academic staffs of faculty of

Electrical and Computer Engineering for their support. This work has benefited from valuable

discussions with friends and colleagues including Gabriel Agbagba, Kofi Asamoah, Kwaku Aboagye

Asare among others. A big ‘Thank you’ to Peter Amoako, Dominic Owusu Boateng and Kwasi

Opoku Mensah for their prayers, support and counselling. Finally, my most heartfelt gratitude to

the ‘special three’ in my life. My mother, Victoria Boakye-Boateng and my brother Kofi Boakye-

Boateng for their love and care. My fiancé, Priscilla Pokuaa Hayford for always waking me up late in

the night and spurring me during the times when I was tired and worn out.

6 | P a g e

TABLE OF CONTENTS

 Page

ABSTRACT 2

DECLARATION 3

DEDICATION 4

ACKNOWLEDGEMENT 5

LIST OF FIGURES 9

CHAPTER ONE – INTRODUCTION 10

1.1 Background to study 10

1.2 Problem definition 11

1.3 Statement of Objectives 12

1.4 Scope of research 13

1.5 Justification of research 13

1.6 Research design/Methodology 14

1.7 Organization 14

CHAPTER TWO – LITERATURE REVIEW 16

2.1 Reconfigurable Virtual Instruments (RVI) 16

2.2 Purpose of Virtual Instruments 18

2.3 Components of Reconfigurable Virtual Instrument 19

 2.3.1 Hardware Subsystem 19

 2.3.2 Software Subsystem 19

2.4 Challenges Involved in RVI 20

2.5 Existing RVI 20

2.6 What is a distributed system? 21

2.7 What is middleware? 22

7 | P a g e

CHAPTER THREE: METHODOLOGY AND DESIGN 24

3.1 Methodology 24

3.2 Requirement Specifications 24

3.3 Design 24

3.3.1 Use cases 25

3.3.1.1 User use-case 25

3.3.1.2 Administrator use-case 25

3.3.1.3 System use-case 27

3.3.2 Design structure 28

3.3.2.1 Database Module 28

3.3.2.2 Business Logic (Middleware) 29

3.3.2.3 Web-Based Portal GUI) 29

3.3.3 Sequence diagram 29

3.3.3.1 User sequence diagram 29

3.3.3.2 Administrator sequence diagram 30

CHAPTER FOUR – IMPLEMENTATION AND TESTING 34

4.1 Selected Instruments 34

4.1.1 Digital Frequency Meter 34

4.1.2 Function Generator 34

4.1.3 Instrument Classification 35

4.2 Software Development Tools 35

4.2.1 MySQL 35

4.2.2 Python 37

4.2.3 Django 39

4.2.3.1 Django components 39

4.2.3.2 Features in Django 40

4.2.4 jQuery 41

4.2.4.1 jQuery Features 42

4.2.5 FusionChartsFree (jQuery plugin) 42

4.3 Implementation 43

4.3.1 RVI Architecture 43

8 | P a g e

4.3.2 Setting Up 44

4.2.3 Database 46

4.2.4 Middleware 47

4.2.5 Graphical User Interface 49

4.4 Debugging and Testing 50

4.5 Results 51

CHAPTER FIVE – CONCLUSION 54

5.1 Conclusion 54

5.2 Future work 54

REFERENCES 56

GLOSSARY 59

APPENDIX 60

9 | P a g e

LIST OF FIGURES

Figure 1.1: Vendor-defined instruments 11

Figure 2.1: Traditional instruments versus software based virtual instruments 16

Figure 2.2: Reusable hardware and software 18

Figure 2.3: Many applications, one device 18

Figure 2.4: Upgradable hardware system 20

Figure 2.5: Internet 21

Figure 2.6: Distributed system with middleware 22

Figure 3.1 User use-cases 26

Figure 3.2: Administrator use-case 27

Figure 3.3: System use-case 28

Figure 3.4: Structure of software subsystem 28

Figure 3.4: User reading instrument (Sequence diagram) 30

Figure 3.5: Administrator modifying instrument (Sequence diagram) 31

Figure 3.7: Administrator adding instrument (Sequence diagram) 32

Figure 3.8: Administrator deleting instrument (Sequence diagram) 33

Figure 4.1: Example of a python code 38

Figure 4.2: Django powered page 41

Figure 4.3: GUI of Function generator 52

Figure 4.5: GUI of Frequency Meter 53

10 | P a g e

CHAPTER ONE: INTRODUCTION

1.1 Background of Study

From the creation of time, up till now, measuring instruments have been an important figment in

our lives. Everyone benefits when correct measurement is applied in many situations. For example:

• Customers benefit by receiving the exact amount of goods they ordered and paid.

• Traders benefit through accurate stock control

• Ghana (but not limited to) benefits through consumer confidence in a system which

delivers consistency and reliability.

Engineers use a vast range of measuring instruments to perform their measurements. These range

from simple objects such as rulers and stopwatches to electron microscopes and particle

accelerators.

The transformation of instrumentation from mechanical pneumatic transmitters, [3] controllers,

and valves to electronic instruments reduced maintenance costs as electronic instruments were

more dependable than mechanical instruments. This also increases efficiency and production due

to their increase in accuracy [1] [2]. In this modern era, the introduction of Reconfigurable Virtual

Instrument has helped reduce the costs significantly due to its versatility. An instrument that can

be configured into any instrument helps greatly for those with low purchasing power.

Unfortunately, RVIs that have been created so far are expensive and hard to acquire in a country

like Ghana for our institutions.

However, research involving RVIs using existing technology such as FPGAs, DACs, ADCs, etc has

been carried out [9] [11]. However the interface to take readings is not user-friendly. This research

11 | P a g e

is to create a middleware to provide services, via a distributed system, that link RVIs to human-

machine interfaces (accessed via web browser) designed for them by using free open-source tools.

This work was pursued using an RVI system having the design of the digital frequency meter and

the function generator [11].

1.2 Problem definition

Even though costs involving instruments may have been reduced, further reduction is still

necessary. This is because these instruments are vendor-defined. A vendor-defined or traditional

instrument (Figure 1.1) is used for a particular type of measurement but cannot be used as a

replacement for another type of measurement involving different instrument. For example, a

watch (used to measure time) cannot be used to measure current (which is measured by the

ammeter).

Figure 1.1 Vendor-defined instruments

A vendor-defined instrument provides an engineer with all software and measurement circuitry

packaged into a product with a finite list of fixed-functionality using the instrument front panel.

12 | P a g e

Thus there is no flexibility. Hence the term vendor-defined is used to describe these instruments

[4]. In short, if the instrument acquired cannot measure the object or event in question, buy the

instrument that can.

For a country like Ghana, being a third-world country, it is very difficult for institutions to acquire

various instruments of different ranges and sizes. As time goes on, new technologies come into

play with different instruments measuring even the minutest of objects. These require a lot of

money from institutions to acquire them so as to be abreast with science. This is where RVIs come

into play.

These devices can be reconfigured into different instruments as per the requirements of the

engineer. At one moment it can be configured to be an ammeter, in another moment, it can be

reconfigured into a voltmeter.

1.3 Statement of Objectives

The main objective of this research is to develop a distributed system for a network of RVIs and

their human-machine interfaces. To achieve this objective, specific objectives have been set. These

are:

1. Study a selected set of RVIs

2. To design a middleware to provide services via a distributed system that link RVIs to human-

machine interfaces designed for them.

3. To study free open source tools (programming languages and other software)

4. To implement the middleware for the selected set of RVIs

13 | P a g e

1.4 Scope of Research

The scope of the research will be focused on creating the interface of the RVI via distributed

system with the use of open source tools. With a myriad of open source tools out there, a few will

be shortlisted that will fit the objective and a final selection of the instruments made. This research

also focuses on institutions that use or are beneficiaries of distributed systems and also use

engineering measuring instruments, such as Kwame Nkrumah University of Science and

Technology (KNUST).

1.5 Justification for Research

RVIs have been developed and perfected by multinational corporations such as National

Instruments Inc (NI) [5]. RVIs of NI are strictly manufactured by their engineers and are provided

with the software required to provide the human-machine interfacing over a distributed system.

These tools are commercially available but expensive to institutions in Developing countries.

Payments must be made for licenses of such products. This situation does not sit well with the goal

of provision of affordable instruments.

For institutions like universities, senior and junior high schools, the amount of money to be paid

for such licenses will not be that feasible. The aim of the existing research made in Ghana was to

build an RVI system using existing hardware components such as Field Programmable Gate Arrays

(FPGA), sensors, analog-to-digital convertors, etc [11]. As much as this objective has been

achieved, interfacing it over the distributed network remains an open issue. One can argue that

using LabView can be used but then again an issue of licensing appears again. The questions

remains as to how interfacing RVIs, that have been created using existing hardware components,

over a distributed system using FREE open-source software. The aim of this research is to answer

that question and such that the RVIs can be viewed on a PC via a web browser.

14 | P a g e

1.6 Research Methodology

The research will be done in three phases.

Phase 1 involves a review of literature relevant to this study. It will also involve identifying the initial

set of which will be used in this research. The next step in the phase will be to design a middleware for

distributed RVI system. The last part is to select tools and learn how to use them for the project

Phase 2 involves implementing the middleware for the identified set of RVIs and creating graphical

user interface for the identified RVIs.

Phase 3 will be to test and evaluate the results with existing instruments.

1.7 Organisation

Chapter 1: This chapter provides an introduction to the write up. A background study is given on

measuring instruments, its emerging technologies and RVI. Problem definition, research

motivation, methodology, scope of research, organization, and thesis objectives are highlighted.

Chapter 2: This chapter presents all the necessary background information. The introduction of

RVI, its advantages and challenges, and its components will be looked at. Distributed systems and

middleware will also be discussed also.

Chapter 3: This chapter involves the methodology and design to achieve the objectives of this

research. The uses-case, collaborative diagrams and so on are all discussed within this chapter.

Chapter 4: In this chapter, the implementation and testing of the RVI will be delved into. The tools

15 | P a g e

that were used and how they were used will be discussed.

Chapter 5: In the concluding part of the thesis, a summary of results and its analysis is given.

Challenges encountered with appropriate recommendations will also be presented.

16 | P a g e

CHAPTER TWO: LITERATURE REVIEW

2.1 Reconfigurable Virtual Instruments (RVI)

To understand what reconfigurable virtual instruments are, two definitions are given for

reconfigurable device and virtual instrumentation.

A reconfigurable device is described as a versatile hardware device that can be configured into

different electronic devices using a software tool.

Virtual instrumentation is described as a software and hardware combination that allows the

emulation of an instrument through a custom console or Graphical User Interface (GUI) [4].

Thus a reconfigurable virtual instrument is a versatile hardware instrument combined with

software to emulate real-life instruments through a custom console. The primary difference

between hardware (traditional) instrumentation and virtual instrumentation is that software is

used to replace a large amount of hardware (See Figure 2.1).

Figure 2.1: Traditional instruments (left) versus software based virtual instruments (right)(Image courtesy of National Instruments)

The software enables complex and expensive hardware to be replaced by already purchased

17 | P a g e

computer hardware; e.g. analog-to-digital converter can act as a hardware complement of a virtual

oscilloscope, a potentiostat enables frequency response acquisition and analysis in electrochemical

impedance spectroscopy with virtual instrumentation.

One must not confuse synthetic instruments with virtual instruments. A synthetic instrument is a

kind of virtual instrument that is purely software defined. A synthetic instrument performs a

specific synthesis, analysis, or measurement function on completely generic, measurement

agnostic hardware [4]. Virtual instruments can still have measurement specific hardware, and tend

to emphasize modular hardware approaches that facilitate this specificity. Hardware supporting

synthetic instruments is by definition not specific to the measurement, nor is it necessarily (or

usually) modular.

Leveraging commercially available technologies, such as the PC and the analog-to-digital converter,

virtual instrumentation has grown significantly since its inception in the late 1970s. Additionally,

software packages like National Instruments' LabVIEW and other graphical programming languages

helped grow adoption by making it easier for non-programmers to develop systems.

RVIs typically have a sticker price comparable to and many times less than a similar traditional

instrument for the current measurement task. However, the savings compound over time, because

RVIs are much more flexible when changing measurement tasks. By not using vendor-defined, pre-

packaged software and hardware, engineers get maximum user-defined flexibility. An RVI provides

all the software and hardware needed to accomplish the measurement or control task. In addition,

with an RVI, engineers can customize the acquisition, analysis, storage, sharing, and presentation

functionality using productive, powerful software [5].

18 | P a g e

2.2 Purpose of Virtual Instruments

1. Low-cost reusable common hardware/software platform for the emulation and evaluation of

multiple electronic and scientific instrumentation systems (Figure 2.2).

Figure 2.2: Reusable hardware and software

2. Imagine that an engineer uses an RVI to measure the temperature of a certain room and later

wants to measure the voltage of a certain device. All that the engineer has to do is to

reconfigure the device to measure voltage. Many measurement tasks, one device (Figure 2.3).

Figure 2.3: Many applications, one device

19 | P a g e

2.3 Components of Reconfigurable Virtual Instrument

RVI system comprises two parts - Hardware Subsystem and Software Subsystem. The RVI can be

considered as a “magic box” connected to a PC through a standard port. A virtual instrument is

chosen from a library of instruments on the PC and the RVI system is configured to convert it to the

selected instrument with its associated console or GUI [6].

2.3.1 Hardware Subsystem

• RVI main board

It comprises an FPGA device, extended memory, a block of communication ports, board-to-board

connectors and debugging facilities.

• Daughter boards

They are used to assist the main board to connect to the outside world. They can be high

performance or low performance.

2.3.2 Software Subsystem

• The Computer Software

This software is related to the PC. This contains the GUI, port management programs and data

elaboration programs, library of virtual instruments and their custom interfaces, data storage

facilities and physical control communication (drivers).

• Synthesizable Hardware Description Code (SHDC)

This is the code corresponding to the FPGA of the RVI. It is responsible for the management of the

physical connection with the PC, ADCs and DACs operations, data generation and acquisition, real-

20 | P a g e

time on-line data processing, and on-board real-time data handling.

2.4 Challenges Involved in RVI

Suitable platform must be chosen for the system to work. The right FPGA must be chosen to be the

“magic box”. Not just any FPGA device can be chosen.

Figure 2.4: Upgradable hardware system

The hardware subsystem must be flexible and must adapt to a wide variety of requirements. The

hardware subsystem must also be upgradable to take advantage of new electronics devices and

facilities (Figure 2.4). The software subsystem must be portable and adaptable. It must be portable

in the sense that it must work on different kinds of operating systems. Adaptable in the sense that

it must be able to work on different FPGA vendors and families and use different forms of

connectivity be it parallel port, USB, serial port, etc. The software subsystem must also be able to

allow the expansion of users or developers base. Like the hardware subsystem, it must also be

upgradable, that is, be able to migrate to a new version.

2.5 Existing RVI

National instruments already have RVIs created [5]. Their hardware and software that is already in

use are proprietary. Existing research made to RVI involved the use of FPGAs to achieve this goal

21 | P a g e

[6] [9] [11]. The research focuses more on the hardware subsystem and the SHDC of the software

system. The computer software portion to interface the RVI was not included in the research. The

primary focus of this research is to look at that computer software portion of the RVI on a

distributed system.

2.6 What is a distributed system?

A distributed system consists of a collection of autonomous computers, connected through a

network and distribution middleware, which enables computers to coordinate their activities and

to share the resources of the system, so that users perceive the system as a single, integrated

computing facility. An easier-to-understand definition is a quote by Leslie Lamport: “A distributed

system is one in which the failure of a machine I’ve never heard of can prevent me from doing my

work” [7]. Examples of distributed systems are the internet (Figure 2.5), LAN and mobile phone

networks.

Figure 2.5: Internet

22 | P a g e

2.7 What is middleware?

There are so many definitions for middleware. Popularly, a middleware is described as “the '/'

(slash) in client/server”. ObjectWeb® defines middleware as: "The software layer that lies between

the operating system and applications on each side of a distributed computing system in a

network." Middleware connects software components or applications. Middleware is sometimes

informally called “plumbing” because it connects parts of a distributed application with data pipes

and then passes data between them[7][8].

Figure 2.6: Distributed system with middleware

It consists of a set of enabling services that allow multiple processes running on one or more

machines to interact across a network. Middleware can also consist of a library of functions, and

enables a number of applications to page these functions from the common library rather than re-

create them for each application. This technology evolved to provide for interoperability in support

of the move to coherent distributed architectures, which are used most often to support and

simplify complex, distributed applications. It includes web servers, application servers, and similar

tools that support application development and delivery. Middleware is especially integral to

modern information technology based on XML, SOAP, Web services, and service-oriented

architecture.

23 | P a g e

It sits "in the middle" (Figure 2.6) between application software working on different operating

systems. It is similar to the middle layer of three-tier single system architecture, except that it is

stretched across multiple systems or applications. Examples include database systems,

telecommunications software, transaction monitors, and messaging-and-queuing software. The

distinction between operating system and middleware functionality is, to some extent, arbitrary.

While core kernel functionality can only be provided by the operating system itself, some

functionality previously provided by separately sold middleware is now integrated in operating

systems. A typical example is the TCP/IP stack for telecommunications, nowadays included in

virtually every operating system. There are many types of middleware. The following classifications

listed below are the common ones [7] [8]:

• Remote Procedure Call (RPC) – Client makes calls to procedures running on remote

systems. Can be asynchronous or synchronous.

• Message Oriented Middleware – Messages sent to the client are collected and stored until

they are acted upon, while the client continues with other processing.

• Distributed Object Middleware – This middleware makes it possible for applications to send

objects and request services in an object oriented system.

• Distributed Tuples – This is a middleware that sits between applications and database

servers.

24 | P a g e

CHAPTER THREE: METHODOLOGY AND DESIGN

3.1 Methodology

The methodology used in this research was based on the waterfall model. This is because the steps

involved in the methodology are straight-forward and simple. The following steps were

implemented - Requirements specification, Design, Coding (programming), Testing and Validation,

and Installation. Requirements specification and Design will be handled in this chapter. The rest

will be handled in the following chapter.

3.2 Requirement Specifications

These requirement specifications describe the system’s functions, interface, performance, data,

security, etc as expected by the user. From these requirements, will the use-cases, design and

sequence diagrams be structured. Below are the requirements:

• The middleware should be accessible across all OS platforms.

• The GUI should be accessible via any web browser.

• The RVI should be accessed via a distributed system.

• The middleware should allow selection of selected instances of instruments loaded on the

RVI.

• The middleware should have a library of functions for the RVI.

• The middleware should allow the entry of a new instrument.

• Instrument entry should be allowed only by the administrator.

3.3 Design

This section gives the architecture of the application/middleware. This is achieved by first

identifying the use cases. From the use cases will the design be structured and from there the

25 | P a g e

sequence of operations (sequence diagram) that will happen with the middleware be also

identified.

3.3.1 Use cases

Use cases are used to design how the application would be used by the user. Use cases are usually

structured with the assumption that the ideal application has been created and ready for use and

from this assumption we identify how it will be used by the user. From that other users as well

might be structured from this as they might also have needs that might be mutually exclusive from

each other. From this, the list of actions to be undertaken by this user will be used to structure how

the whole middleware/application will be designed. Three use cases have been identified - User,

Administrator and System (middleware).

3.3.1.1 User use-case

Below are the diagram (Figure 3.2) and the list of actions performed by the user.

1. User opens application via web browser

2. User selects instrument to use.

3. User takes readings from GUI.

4. User closes application.

26 | P a g e

User

Open Page

Close application

Take readings

Select Instrument*

*

* *
*

*

*

*

Figure 3.1 User use-cases

3.3.1.2 Administrator use-case

Below are the diagram (Figure 3.3) and the list of actions performed by the administrator. It is

important that the administrator can perform the same actions as the user with additional actions

as well. The additional actions are what are shown.

1. Administrator logs into the system via web browser

2. Administrator adds new instrument function(s) and/or GUI(s)

3. Administrator modifies existing instrument function(s) and/or GUI(s)

4. Administrator logs out.

5. Administrator closes application

27 | P a g e

Administrator

Logs in

Adds Instrument
Function/GUI

Modify instrument
functions/GUI

Log out

Close application
*

*

*

*

*

**
*

*

*

Figure 3.2: Administrator use-case

3.3.1.3 System use-case

Even though the System may not be considered as a ‘human’, it is considered as a user as well since

there are certain actions that have to be taken when it is interacted with by the Administrator and

the User. Below are the list of actions and the diagram for the System.

1. System checks database to verify if user exists and grants access.

2. System searches the database to find the instrument and loads functions.

3. System retrieves values from RVI and passes it to functions for appropriate decoding.

4. System loads GUI and passes decoded values from function to it.

28 | P a g e

System

Check database to
confirm user

Search database for
instrument & load appropriate

functions

Retrieve values from
RVI and pass to function

Load GUI and pass
decode values to it *

*

*

*

*

*

*

*

Figure 3.3: System use-case

3.3.2 Design structure

From the Use Cases, the application has been classified into the following three modules –

Database, Business Logic and Web-based Portal (GUI).

Figure 3.4: Structure of software subsystem

3.3.2.1 Database Module

This module is to hold information about virtual instrument (VI). The database will be used to store

records of all virtual instruments configured or added to the RVI subsystem. Information stored

about the VI includes Name, Description of VI, and Address Locations/Registers.

29 | P a g e

3.3.2.2 Business Logic (Middleware)

The middleware for this project is to house all the functions for accessing the database and

connection to the FPGA device. It is, also, to serve requests sent to and from the GUI (Figure 3.1).

3.3.2.3 Web-Based Portal GUI)

This is the frontend of the software. It is here that the user will perform visual interactions with the

VIs implemented on the FPGA. It is from here that the appropriate interface to mimic “real”

instrument is displayed.

3.3.3 Sequence diagrams

This section shows the sequence of events that occur when the application is in use. The

sequences are generated by combining the Use Cases with the Design. The sequence diagrams

were put into two groups namely User and Administrator sequence diagrams. Under each group,

there may be one or more diagrams.

3.3.3.1 User sequence diagram

This group has only one sequence which involves the User taking an RVI reading. This sequence

involves four elements. These are the User, Middleware, Database and RVI (See Figure 3.4). The

sequence begins with the User opening the web page and the home page is displayed by the GUI.

The User then selects an instrument which then triggers an interface request to the Middleware by

the GUI. The Middleware queries the Database for the instrument details and upon retrieving the

details, the Middleware loads the RVI with the required instrument. The Middleware then

retrieves the raw values from the RVI and loads functions responsible for translating the raw values

to meaningful information. Upon generating the right information, the Middleware returns the

interface for the GUI to display to the User. The User then takes the readings from the GUI.

30 | P a g e

User Middleware Database

Select instrument

Query for instrument

Return instrument details

Load functions

Retrieve raw values

return values

Take readings

GUI

Open Page

Show home page

Request Interface

RVI

Set RVI to required instrument

Return Interface

Instrument Readings Displayed

Figure 3.5: User reading instrument (Sequence diagram)

3.3.3.2 Administrator sequence diagram

Though it will not be included, a scenario with the administrator taking a reading is similar to that

of a User sequence. The Administrator sequence has three diagrams. The first diagram is the

administrator modifying an instrument (Figure 3.6), second diagram has the administrator adding a

new instrument (Figure 3.7) and the last has the instrument being deleted (Figure 3.8). All three

diagrams have four elements in common namely the Administrator, GUI, Middleware and

Database. Also all three diagrams have the login sequence in common. The sequence begins with

the Administrator opening the web page and the home page is displayed by the GUI. The

Administrator then enters log-in credentials which are sent to the Middleware for verification. The

31 | P a g e

Middleware then queries the Database for credentials and upon verification grants access to the

Administrator by informing the GUI to display the admin page. All three diagrams have the stated

sequence in common but have different sequence after that.

For modifying an instrument (Figure 3.6), after logging in, the Administrator modifies details of an

instrument and the GUI sends the modification request to the Middleware. The Middleware

commits the changes to the Database and upon receiving confirmation from the database, the

Middleware informs the GUI to give confirmation to the Administrator. The Administrator modifies

the instrument’s functions directly on the middleware via coding and saves it. The Administrator

does likewise to the GUI.

Administrator Middleware Database

Log in

Query database

Return user credentials

Send request

Changes saved

GUI

Open Page

Show home page

Forward credentials

Grant access

Confirm request

Show admin page

Modify instrument details

Commit changes

Confirm modification

Modify GUI

Save GUI

Modify functions

Save functions

Figure 3.6: Administrator modifying instrument (Sequence diagram)

32 | P a g e

For adding an instrument (Figure 3.7), after logging in, the Administrator adds new details of an

instrument and the GUI sends the addition request to the Middleware. The Middleware commits

the addition to the Database and upon receiving confirmation from the database, the Middleware

informs the GUI to give confirmation to the Administrator. The Administrator adds the instrument’s

functions directly on the middleware via coding and saves it. The Administrator does the same

thing as well to the GUI.

Administrator Middleware Database

Log in

Query database

Return user credentials

Send request

Changes saved

GUI

Open Page

Show home page

Forward credentials

Grant access

Confirm request

Show admin page

Add new instrument details

Commit addition

Confirm addition

Add new GUI

Save GUI

Add new functions

Save functions

Figure 3.7: Administrator adding instrument (Sequence diagram)

For deleting an instrument (Figure 3.8), after logging in, the Administrator deletes an instrument

and the GUI sends the deletion request to the Middleware. The Middleware commits the deletion

33 | P a g e

to the Database and upon receiving confirmation from the database, the Middleware informs the

GUI to give confirmation to the Administrator. The Administrator deletes the instrument’s

functions directly on the middleware via coding. The Administrator does likewise to the GUI.

Administrator Middleware Database

Log in

Query database

Return user credentials

Send request

Deletion saved

GUI

Open Page

Show home page

Forward credentials

Grant access

Confirm request

Show admin page

Delete instrument details

Commit deletion

Confirm deletion

Delete GUI

Delete GUI

Delete functions

Delete functions

Figure 3.8: Administrator deleting instrument (Sequence diagram)

34 | P a g e

CHAPTER FOUR: IMPLEMENTATION AND TESTING

This chapter talks about how the middleware is implemented. Before implementation, the

instruments based on which the middleware is being designed will be discussed. The software

development tools that were used will be discussed next before the implementation itself.

4.1 Selected Instruments

Implementation of the middleware will be created based on a selected RVI configured for Digital

Frequency Meter and Function Generator. How these instruments work must be understood

before their behaviour and interfaces can be mimicked.

4.1.1 Digital Frequency Meter

DFMs are widely used items of test equipment within the electronics industry for measuring the

frequency of repetitive signals and measuring the elapsed time between events. In particular,

DFMs are used for radio frequency (RF) measurements where it is important to test or measure the

precise frequency of a particular signal. DFMs are more commonly found as general purpose

laboratory test instruments. DFMs operate by counting events within a set period or discovering

what a period is by counting a number of precisely timed events. The time periods within which

events are counted, or the precisely timed events can be generated using a highly stable quartz

crystal oscillator.

4.1.2 Function Generator

A function generator is a piece of electronic test equipment used to generate different types of

electrical waveforms over a wide range of frequencies. Some of the most common waveforms

produced by the function generator are the sine, square, triangular and sawtooth shapes. These

35 | P a g e

waveforms can be either repetitive or single-shot (which requires an internal or external trigger

source). Integrated circuits used to generate waveforms may also be described as function

generator ICs.

4.1.3 Instrument Classification

These two instruments can be classified into two types of instruments namely instruments that

give discrete values (discrete-value-generating instruments) and instruments that generate graphs

(graph-generating instruments). More examples of discrete value generating instruments examples

are thermometers, ammeters and voltmeters. Oscilloscope and seismographs are also more

examples of graph-generating instruments.

4.2 Software Development Tools

The software tools to be used for interfacing the RVI system are open-source tools. A selection of

tools was considered are based on the design of the application and were scrutinised before a final

selection was made. For the database module, PostgreSQL and MySQL because access their

databases are available in all major programming languages with language-specific APIs. For the

GUI model, FusionChartsFree, FusionChartsFree JQuery plugin, Open Flash Chart and Flot were

chosen due to their interactive visual effects. For the middleware module, Django, Apache AXIS for

C++ and Apache Axis for Java were chosen for their robustness.

It is based on the middleware module that the programming language was determined. Django

uses Python as the others are self-explanatory based on their names. Django was chosen based on

its ease of installation and also how easy it was to study Python with a short frame of time. From

Django, MySQL was chosen because it could interface easily with Django due to a third party

36 | P a g e

module created allows Python code to interface with MySQL. FusionCharts Free was chosen

because of its ease of installation and usage. The chosen tools are MySQL, Python, Django, jQuery

and Fusion Charts with a brief description about them given.

4.2.1 MySQL

MySQL [12] [17] [18] is a relational database management system (RDBMS) which has more than

11 million installations. The program runs as a server providing multi-user access to a number of

databases. The project's source code is available under terms of the GNU General Public License,

as well as under a variety of proprietary agreements.

MySQL is popular for web applications and acts as the database component of the LAMP, BAMP,

MAMP, and WAMP platforms (Linux/BSD/Mac/Windows-Apache-MySQL-PHP/Perl/Python), and

for open-source bug tracking tools like Bugzilla. Its popularity for use with web applications is

closely tied to the popularity of PHP and Ruby on Rails, which are often combined with MySQL.

Wikipedia runs on MediaWiki software, which is written in PHP and uses a MySQL database.

Several high-traffic web sites use MySQL for its data storage and logging of user data, including

Flickr, Facebook, Wikipedia, Google, [8] Nokia and YouTube.

Libraries for accessing MySQL databases are available in all major programming languages with

language-specific APIs. In addition, an ODBC interface called MyODBC allows additional

programming languages that support the ODBC interface to communicate with a MySQL database,

such as ASP or ColdFusion. The MySQL server and official libraries are mostly implemented in ANSI

C/ANSI C++. MySQL will be used to create the database module.

37 | P a g e

4.2.2 Python

Python [13] [14] is a general-purpose high level programming language. It is sometimes referred to

as a scripting language as it is often applied in scripting roles. It is commonly defined as an object-

oriented scripting language—a definition that blends support for OOP with an overall orientation

toward scripting roles. In fact, people often use the word “script” instead of “program” to describe

a Python code file. The terms “script” and “program” are used interchangeably, with a slight

preference for “script” to describe a simpler top-level file, and “program” to refer to a more

sophisticated multi-file application.

The term “scripting language” has so many different meanings to different observers, though in all,

three very different associations have been made to it. These are:

• Python is used as a tool for coding operating-system-oriented scripts. Such programs are often

launched from console command lines (shell scripting) and perform tasks such as processing

text files and launching other programs.

• Another association to scripting refers to a “glue” layer used to control and direct (i.e., script)

other application components. Python programs are indeed often deployed in the context of

larger applications. For instance, to test hardware devices, Python programs may call out to

components that give low-level access to a device. Similarly, programs may run bits of Python

code at strategic points to support end-user product customization without having to ship and

recompile the entire system’s source code. Python’s simplicity makes it a naturally flexible

control tool. Technically, though, this is also just a common Python role; many Python

programmers code standalone scripts without ever using or knowing about any integrated

components.

38 | P a g e

• Probably the best way to think of the term “scripting language” is that it refers to a simple

language used for quickly coding tasks. This is especially true when the term is applied to

Python, which allows much faster program development than compiled languages like C++. Its

rapid development cycle fosters an exploratory, incremental mode of programming that has to

be experienced to be appreciated. Do not be misconstrued that Python is not just for simple

tasks but rather, it makes tasks simple by its ease of use and flexibility. Python has a simple

feature set, but it allows programs to scale up in sophistication as needed. Because of that, it is

commonly used for quick tactical tasks and longer-term strategic development.

Python files created are in .py extension (Figure 4.1) and they are known as modules. Modules can

be called in another file and be used by using the 'import' keyword. Python can be extended to

C/C++ and vice versa.

Figure 4.1: Example of a python code

39 | P a g e

4.2.3 Django

Django [15] [16] is an open source web application framework, written in Python, which follows

the model-view-controller [20] [21] [22] (MVC) architectural pattern. It was originally developed to

manage several news-oriented sites for The World Company of Lawrence, Kansas, and was

released publicly under a BSD license in July 2005.

Django's primary goal is to ease the creation of complex, database-driven websites. Django

emphasizes reusability and "pluggability" of components, rapid development, and the principle of

DRY (Don't Repeat Yourself). Python is used throughout, even for settings, files, and data models.

Django also provides an optional administrative CRUD (create, read, update and delete) interface

that is generated dynamically through introspection and configured via admin models.

4.2.3.1 Django components

The core Django framework consists of an object-relational mapper which mediates between data

models (defined as Python classes) and a relational database; a regular-expression-based URL

dispatcher; a view system for processing requests; and a templating system.

Also included in the core framework are:

• A lightweight, standalone web server for development and testing.

• A form serialization and validation system which can translate between HTML forms and values

suitable for storage in the database.

• A caching framework which can use any of several cache methods.

• Support for middleware classes which can intervene at various stages of request processing

and carry out custom functions.

• An internal dispatcher system which allows components of an application to communicate

40 | P a g e

events to each other via pre-defined signals.

• An internationalization system, including translations of Django's own components into a

variety of languages.

• A serialization system which can produce and read XML and/or JSON representations of Django

model instances.

• A system for extending the capabilities of the template engine.

• An interface to Python's built-in unit test framework.

4.2.3.2 Features in Django

The main Django distribution also bundles a number of applications in its contrib package,

including:

• An extensible authentication system.

• The dynamic administrative interface.

• Tools for generating RSS and Atom syndication feeds.

• A flexible commenting system.

• A sites framework that allows one Django installation to run multiple websites, each with their

own content and applications

• Tools for generating Google Sitemaps.

• Tools for preventing cross-site request forgery.

• Template libraries which enable the use of lightweight markup languages such as Textile and

Markdown.

• A framework for creating GIS applications.

Figure 4.2 is a screenshot of a Django powered page after creating a project.

41 | P a g e

Figure 4.2: Django powered page

4.2.4 jQuery

jQuery is a cross-browser JavaScript library designed to simplify the client-side scripting of HTML

[23]. It was released in January 2006. Used by over 43% of the 10,000 most visited websites, jQuery

is the most popular JavaScript library in use today [24] [25]. jQuery is a free, open source

software, dual-licensed under the MIT License and the GNU General Public License, Version

2. jQuery's syntax is designed to make it easier to navigate a document, select DOM elements,

create animations, handle events, and develop Ajax applications.

 jQuery also provides capabilities for developers to create plugins on top of the JavaScript library.

Using these facilities, developers are able to create abstractions for low-level interaction and

animation, advanced effects and high-level, theme-able widgets. This contributes to the creation of

powerful and dynamic web pages.

Microsoft and Nokia have announced plans to bundle jQuery on their platforms [26], Microsoft

42 | P a g e

adopting it initially within Visual Studio [27] for use within Microsoft's ASP.NET AJAX framework

and ASP.NET MVC Framework while Nokia has integrated it into their Web Run-Time widget

development platform [28]. jQuery has also been used in MediaWiki since version 1.16[29].

The version of jQuery that will be used for this research is 1.4.2.

4.2.4.1 jQuery Features

jQuery contains the following features:

• DOM element selections using the cross-browser open source selector engine Sizzle, a spin-off

out of the jQuery project

• DOM traversal and modification (including support for CSS 1-3)

• Events

• CSS manipulation

• Effects and animations

• Ajax

• Extensibility through plug-ins

• Utilities - such as browser version and the each function.

• Cross-browser support

4.2.5 FusionChartsFree (jQuery plugin)

FusionCharts Free is an open-source free flash charting component that can be used to render

data-driven animated charts. Developed in Macromedia Flash MX, FusionCharts can be used with

any web scripting language like PHP, ASP, .NET, JSP, ColdFusion, JavaScript, Ruby on Rails, Python

etc., to deliver interactive and powerful charts. Using XML as its data interface, FusionCharts makes

43 | P a g e

full use of Flash to create compact, interactive charts.

FusionCharts Free for jQuery [30] is a jQuery plugin that allows integration FusionCharts Free in a

web application using jQuery syntax. FusionCharts Free can be inserted anywhere within a web

page, manipulate the chart data and chart cosmetics and even provide data to the chart from

simple HTML tables. With the jQuery Plugin for FusionCharts Free, the code becomes concise but

coherent.

4.3 Implementation

This section will talk about the implementation of the three modules discussed in chapter three.

Before that the architecture of the RVI and how it works must be explained after which the

implementation will be discussed.

4.3.1 RVI Architecture

The RVI is an Actel FPGA that has two types of instruments loaded on it namely the DFM and

Function Generator. The FPGA is accessible via a parallel port. The parallel port was used because

that was how the FPGA was configured to be accessed. The FPGA is logically designed to have a

table that contains 16 registers numbered from 0 to 15 with each register having a size of 1 byte.

After the RVI has been loaded with the instruments, selection and reading of these instruments are

done by manipulation and/or reading of these registers in the table. The first 8 registers (0 to 7)

can only be written whilst the second 8 registers (8 to 15) are read only. To select an instrument

that is loaded on the RVI, register 0 must be set to a value.

To access the DFM, the register 0 is set to 2 and the other registers (1 to 7) are set to 0. After it is

set, readings are taken on registers (8 to 15) with most significant bit starting from 15. To access

the Function Generator, register 0 is set to 1. Register 1 can be manipulated only if register 0 is set

44 | P a g e

to Function Generator. Register 1 is used to select the waveform type and the values that can be

set to it range from 4 to 7. The other registers (2 to 7) are set to 0. After the Function Generator is

set, its values are read from register 9. The values change every second because it has been set to a

1Hertz frequency. The values are y-axis plotted against x-axis sequential range of values chosen at

will.

4.3.2 Setting Up [20] [21]

A project is first started in Django. A project is a collection of settings for an instance of Django,

including database configuration, Django-specific options and application-specific settings. A

project named ‘RVI’, (which is usually a folder) is created, containing the following Python files:

RVI/

 __init__.py

 manage.py

 settings.py

 urls.py

Despite their small size, these files already constitute a working Django application. The files do the

following:

• __init__.py is required for Python to treat the ‘RVI’ directory as a package (i.e., a group of

Python modules). It’s an empty file, and generally nothing is added to it.

• manage.py is command-line utility that enables interaction with the ‘RVI’ Django project in

various ways. There should never be the need to edit this file; it is created in this directory

purely for convenience.

45 | P a g e

• urls.py contains the URLs for this Django project. Think of this as the “table of contents” of the

Django-powered site.

• settings.py is the settings or configuration for this Django project. It contains the database

information; path of ‘urls.py’, templates and template loaders; and the web applications that

will be on the server.

After creating a project, the next thing is to create an application (in our case, the middleware). To

create a database driven website, an application will have to be created because the ‘models’ (i.e.,

models in MVC architecture) must reside within the application. Like a project, an application,

given the name ‘rvi_middleware’ is created containing the following Python files:

rvi_middleware/

 __init__.py

 models.py

 views.py

The files do the following:

• __init__.py, like that for projects, treats ‘rvi_middleware’ directory as a package.

• model.py holds representations to the database.

• views.py contains functions, known as view functions, which are responsible for producing the

contents of a web page.

It should be noted that files or codes that will be used to access data from the RVI hardware will be

stored in the ‘rvi_middleware’ folder as well.

46 | P a g e

4.3.3 Database

The tools to be used for this module is MySQL and to some extent Python and Django. The

database will hold RVI table.

The RVI table holds the following information about the instrument:

• Name (type: string)

Holds the name of instrument

• Instrument_type (type: string)

Type of the instrument

• register_load1 (type: integer)

Register on the RVI that data will be sent to load the instrument.

• load_value1 (type: integer)

Value passed to register in register_load1.

• Register_load2 (type: integer)

Register on the RVI that data will be sent to load the instrument (this is used for graph-

generating) instruments.

• load_value2(type: integer)

Value passed to register in register_load2.

The queries on these tables will not be done directly on MySQL but through Django (middleware).

The access to the tables and its creation will be done directly from the models.py file in the Django

application folder rvi_middleware. Each table is represented in the models.py file as a class and the

columns are represented as variables. The tables are created in MySQL using the syncdb command

on the manage.py terminal. All database queries will be done via the views.py table. The code for

47 | P a g e

models.py is shown in Appendix A.

4.3.4 Middleware

The tools to be used for this section are Python and Django. The core functions of the middleware

are divided into two. The first is retrieving the values from the RVI and the second is passing the

values to the GUI. The modules with Django which are responsible and the functions within the

modules will be discussed. The modules (code in Appendix A) are:

• spp_fpga_protocol.py [6]

• fpga_read.py

• views.py

spp_fpga_protocol.py

This module is responsible for access the RVI via a parallel port and retrieving raw data for

processing. The functions responsible for this are:

• set_ECP_ByteMode

The most common parallel port is the ECP printer port. This function sets the parallel port

to byte mode to allow data to be accessed via the port byte-wise.

• byte_to_data_register

This function writes one-byte of data from the RVI to the parallel port’s data register.

• write_command_register

This function prepares the RVI 16 one-byte registers to be accessed. After the RVI is

prepared, the function calls byte_to_data_register.

• byte_from_data_register

This function reads one byte of data from the data register.

48 | P a g e

• read_parameters_reg

By calling byte_from_data_register, this function retrieves data from the 16 registers and

puts it in a register table (reg_table).

fpga_read.py

This module modifies the data received before it is passed to the GUI. The modification depends

on the type of instrument that is being dealt with. The functions responsible for this are as follows:

• set_instrument

This function sets the RVI to the type of instrument to read.

• read_fpga_for_graph

This function retrieves values from the registers in the register table needed to draw the

intended graph for the instrument being mimicked. It calls the read_parameters_reg

function. There is a thread in the read_fpga_for_graph function that calls it every second

later after it has finished executed. This is done to allow periodic retrieval to allow mimic

real-time graph plotting.

• read_fpga_for_discrete

This function retrieves values from the registers in the register table needed to display the

intended discrete value for the instrument being mimicked. It calls the

read_parameters_reg function.

• xml_file_write

This function uses the register values received from read_fpga_for_graph and uses it to

create an xml file, data.xml, which will be used in FusionChartsFree to draw a graph.

• discrete_value_for_gui

This function uses the register values received from read_fpga_for_discrete and

49 | P a g e

manipulates it, and returns one readable value.

views.py

This module is responsible for producing contents of a webpage. The functions in this module and

their details are below:

• load_xml

This function calls the xml_file_write function to execute. It has a thread that calls the

function every ten seconds. This allows mimicking of real-time graph plotting.

• load_chart

This function is responsible for loading the web page for graph-generating instruments. It

calls the load_xml function.

• load_discrete

This function is responsible for loading the web page for discrete-value-generating

instruments. It calls the discrete_value_for_gui function.

4.3.5 Graphical User Interface

Html files needed to load the GUI for the web browser are also located within the middleware.

They are stored in the templates folder located in RVI project folder. When each instruments URL is

keyed in the browser, the urls.py file is then accessed by the server for which function in views.py

to call. The function in turn passes data to the html file assigned to it. The html files for the GUI

are:

• base.html

This file contains the main design or the look-and-feel of the web-page. Other pages will

inherit features from this page.

50 | P a g e

• chart.html

This file generates GUI for graph-generating instruments. It uses FusionChartsFree JQuery

plugin to implement this. It inherits the base.html file.

• value_read.html

This file generates GUI for discrete-value-generating instruments. It uses JQuery for visual

effects and AJAX to implement this. It inherits the base.html file.

These files are not the only requirements to let the GUI load successfully. There are other files as

well that are required and these are found in the static folder which is located in the RVI project

folder. The static folder contains JQuery scripts, JavaScript files. Shockwave files and images to let

the GUI load as it should be.

4.4 Debugging and Testing

Debugging was done for every function within each module to ensure that it was syntactically

correct. All runtime errors encountered were rectified. After that the functions were unit tested to

ensure that they did the right thing and they do the thing right. This was done with the help of the

Python module unittest which is also known as PyUnit. The module created is tests.py which can

also be found in the application folder.

Functions created in this module are used to test functions that were created in modules

fpga_read.py and views.py. Hence the test function names are the names of the functions with the

word test pre-pended to them. The functions are:

• test_read_fpga_for_graph

• test_read_fpga_for_discrete

51 | P a g e

• test_xml_file_write

• test_discrete_value_for_gui

• test_load_xml

• test_load_chart

• test_load_discrete

• test_set_instrument

All those tests, tests were done periodically to make sure that the interfaces were displayed

correctly. It was observed that switching between Function Generator to DFM throws an exception

page during the change. This was due to the fact that the reset switch on the RVI had to be pressed

for the DFM to take effect. Thus the time taken for switching from Function Generator to DFM

takes about 5 seconds to be effected. The reverse switching is however immediate. Also switching

between waveforms for the DFM is also immediate.

4.5 Results

After debugging and testing to ensure that the code is free of errors, accessing the RVI via a web

browser was successful for the two categories of instruments. The Function Generator was loaded

on the RVI and accessed via the web browser. See screenshot of the result below:

52 | P a g e

Figure 4.3: GUI of Function generator

All PCs connected via network were able to access the RVI via a URL that was assigned to the

server that had the RVI connected. From the graph above, it is evident the waveform is not entirely

smooth. This is due to the attempt to ensure real-time processing of RVI data but this cannot be

achieved due to the factors such as the servers processing speed. In order to attain this close level

of smoothness for the graph, the value change was set to a 1Hertz, the RVI was accessed by the

server every second and the x-axis (time) values was given a step-wise increment value of 0.3.

After that the DFM was loaded on the RVI and access via the web browser. The screenshot of the

result is also shown below:

53 | P a g e

Figure 4.5: GUI of Frequency Meter

The data that is pulled from the RVI for DFM is unlike that of the Function Generator such that the

data does not change but remains the same until queried again. So for that, there is no margin of

errors for that. What is displayed is for each digit in the screen above is what is pulled from

registers 8 to 15 with 15 being the most significant digit.

54 | P a g e

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Reconfigurable Virtual Instruments (RVIs) make the emulation of traditional instruments possible.

However, the commercially available RVIs are created based on proprietary hardware and software

making acquisition and maintenance quite costly. Research to make cost-effective RVIs with the

use of existing hardware components, such as the FPGA, has been achieved in Ghana[11]. However

the interface of the RVI is not user friendly and trying to get special hardware to display readings

might also prove costly. The aim of this thesis is to interface the RVI using open source tools that

are downloadable from the internet. Not only that but it should be accessible via distributed

network too as well.

RVI architecture was discussed in chapter 4 to provide a deeper understanding of the how

instruments were loaded on the RVI. The registers were discussed and also the classification of the

DFM and Function Generator as discrete-value and graph-generating instruments respectively. This

served as a firm foundation for the development of the application enabling users to load

instruments and take readings. Apart from the DFM and Function Generator discussed in this

thesis, this application can accommodate new instruments should they be available in the future.

All that needs to be known for their readings to take effect is the register to activate the

instrument and the registers to take the readings from.

Finally this project has made interfacing of the RVI via a web browser easy without the need for

any special installation. With other web services that use Java for example, if the user is using a PC

devoid of Java, it will have to install the software first. Assuming that the user is connected to a

network that has no internet, making use of the web service will be impossible. For this Django-

55 | P a g e

powered web service, anyone with a web-browser can have access to the RVI.

5.2 Future Work

Though an exception is thrown during an instrument switch from Function Generator to DFM

causes some delay and uncomfortable situations, it is not a major problem because what can be is

to add a button on a web page to just load the instrument and another button to load the

readings. Thus right after the button to load the instrument is clicked; the user resets the RVI and

then loads the reading. Another alternative is to make configurations on the RVI such that there is

no need to make a reset on the RVI when a switch is made.

The communication between the RVI and the PC was done via a parallel port because that was

how the RVI was done to communicate with the PC. Had there been more time given for this

research, more could have been done. Interaction with the RVI via Ethernet, serial or even USB can

be looked at because the parallel port is being phased out. The future at the moment is with

Ethernet and USB. Also more research can be done to ensure that the application can work for all

sorts of RVI hardware not only Actel FPGA. This will also be dependent on how the hardware is

configured as well.

56 | P a g e

REFERENCES

1. World Wide Web URL http://en.wikipedia.org/w/index.php?title=Measuring_instrument, last

accessed February 3rd, 2009

2. World Wide Web URL http://en.wikipedia.org/w/index.php?title=Instrumentation, last

accessed February 3rd, 2009

3. World Wide Web URL http://en.wikipedia.org/w/index.php?title=Integrated Instrumentation

system, last accessed February 3rd, 2009

4. World Wide Web URL http://en.wikipedia.org/w/index.php?title=Virtual Instrumentation, last

accessed February 3rd, 2009

5. World Wide Web URL http://www.ni.com/virtualinstrumentation, last accessed February 3rd,

2009

6. Andres Cicuttin, Maria Liz Crespo, Alexander Shapiro and Nizar Abdallah, “Reconfigurable

Virtual Instrumentation”, ICTP-INFN Advanced Training Course on FPGA Design and VHDL for

Hardware Simulation and Synthesis, Trieste, Italy, Nov. 27-Dec. 22, 2006

7. Andrew S. Tanenbaum, Martin van Steen: Distributed Systems, Principles Distributed Systems

and Paradigms; Prentice Hall 2002

8. David E. Bakken, “Middleware”, Washington State University, Encyclopedia of Distributed

Computing, Kluwer Academic Press, 2003.

9. Gerd Van den Branden, Geert Braeckman, Abdellah Touhafi, Erik Dirkx, “A Dynamically

Reconfigurable Virtual Instrument” Erasmushogeschool Brussel, Departement IWT,

Nijverheidskaai 170, 1070 Brussel, Belgium

10. World Wide Web URL http://en.wikipedia.org/w/index.php?title=Middleware, last accessed

February 3rd, 2009

11. Gilbert Osei-Dadzie, Kwame Osei Boateng, “Application of a Block-based Approach in Design of

http://en.wikipedia.org/w/index.php?title=Measuring_instrument
http://en.wikipedia.org/w/index.php?title=Instrumentation
http://www.ni.com/virtualinstrumentation
http://en.wikipedia.org/w/index.php?title=Middleware

57 | P a g e

a Reconfigurable Virtual Instrumentation Platform”, (a) Proceedings of The 2008 IAJC-IJME

International Conference, ISBN 978-1-60643-379-9 (b) International Journal of Agile

Manufacturing (IJAM), Vol. 11, Issue 1, pp. 39-43, 2009

12. World Wide Web URL http://en.wikipedia.org/wiki/MySQL, last accessed July 10th, 2010

13. World Wide Web URL http://en.wikipedia.org/wiki/Python_(programming_language), last

accessed April 15th, 2009

14. World Wide Web URL http://www.python .org, last accessed April 15th, 2009

15. World Wide Web URL http://en.wikipedia.org/wiki/Django_(Web_framework), last accessed

April 15th, 2009

16. World Wide Web URL http://www.djangoproject.com/, last accessed January 25th, 2011

17. World Wide Web URL http://www.mysql.com/, last accessed January 28th, 2011

18. World Wide Web URL http://dev.mysql.com/, last accessed January 28th, 2011

19. World Wide Web URL http://en.wikipedia.org/wiki/Python_syntax_and_semantics, last

accessed April 16th, 2009

20. Adrian Holovaty, Jacob Kaplan-Moss, “The Definitive Guide to Django”, Apress 2008

21. World Wide Web URL http://www.djangobook.com, last accessed August 13th, 2011

22. World Wide Web URL http://en.wikipedia.org/wiki/Model-view-controller, last accessed June

12th, 2011

23. World Wide Web URL http://jquery.com/, last accessed May 19th, 2011

24. World Wide Web URL http://trends.builtwith.com/javascript/JQuery, last accessed May 19th,

2011

25. World Wide Web URL http://w3techs.com/technologies/overview/javascript_library/all, last

accessed May 19th, 2011

26. World Wide Web URL http://jquery.com/blog/2008/09/28/jquery-microsoft-nokia/, last

accessed May 19th, 2011

http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Django_(Web_framework)
http://www.djangoproject.com/
http://www.mysql.com/
http://dev.mysql.com/
http://en.wikipedia.org/wiki/Python_syntax_and_semantics
http://www.djangobook.com/
http://en.wikipedia.org/wiki/Model-view-controller
http://jquery.com/
http://w3techs.com/technologies/overview/javascript_library/all
http://jquery.com/blog/2008/09/28/jquery-microsoft-nokia/

58 | P a g e

27. World Wide Web URL http://weblogs.asp.net/scottgu/archive/2008/09/28/jquery-and-

microsoft.aspx, last accessed May 19th, 2011

28. World Wide Web URL http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-

Based_UI_Library_for_Nokia_WRT, last accessed May 19th, 2011

29. World Wide Web URL http://www.mediawiki.org/wiki/JQuery, last accessed May 19th, 2011

30. World Wide Web URL http://www.fusioncharts.com/jquery/, last accessed May 19th, 2011

http://weblogs.asp.net/scottgu/archive/2008/09/28/jquery-and-microsoft.aspx
http://weblogs.asp.net/scottgu/archive/2008/09/28/jquery-and-microsoft.aspx
http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-Based_UI_Library_for_Nokia_WRT
http://wiki.forum.nokia.com/index.php/Guarana_UI:_a_jQuery-Based_UI_Library_for_Nokia_WRT
http://www.mediawiki.org/wiki/JQuery
http://www.fusioncharts.com/jquery/

59 | P a g e

GLOSSARY

PC - Personal Computer

RVI - Reconfigurable Virtual Instruments

FPGA - Field Programmable Gate Arrays

ADC - Analog to Digital Converter

DAC - Digital to Analog Converter

VI - Virtual Instrument

GUI - Graphical User Interface

SHDC - Synthesizable Hardware Description Code

LAN - Local Area Network

XML - eXtended Markup Language

SOAP - Simple Object Access Protocol

TCP - Transmission Control Protocol

IP - Internet Protocol

OS - Operating System

DFM - Digital Frequency Meter

RF - Radio Frequency

60 | P a g e

APPENDIX A (Source Codes)

61 | P a g e

spp_fpga_protocol.py

#===

==

Source: SPP-FPGA_Protocol.c

Author: Maria Liz Crespo, ICTP-INFN Mlab, ICTP, Trieste (Italy)

Description:

Parallel Port for Virtex FPGA Communication

compatibility mode (SPP) for forward data transfer (host to FPGA)

byte mode for backward data transfer (FPGA to host)

===

#===

#===

===

Parallel Port Registers

===

#===

from ctypes import windll

p_port = windll.inpout32

data_register = 0x378

status_register = 0x379

control_register = 0x37a

#===

===

Bit Position in Control Register (0x37a)

62 | P a g e

HostClk(nStrobe) bit0 SPP:active low (inverted)

HostBusy(nAutoLinefeed) bit1 SPP:low(command)&high(data) (inverted)

Byte:active low

nInit(nInit) bit2 Byte:active low

Active1284(nSelect) bit3 SPP:active low (inverted)

Enable bi-dir port bit5 Byte:active high

===

#===

HostClk_low = 0xfe # bit0=0

HostClk_high = 0x01 # bit0=1

HostBusy_low = 0xfd # bit1=0

HostBusy_high = 0x02 # bit1=1

nInit_low = 0xfb # bit2=0

nInit_high = 0x04 # bit2=1

Active1284_low = 0xf7 # bit3=0

Active1284_high = 0x08 # bit3=1

EnableBidir_low = 0xdf # bit5=0

EnableBidir_high = 0x20 # bit5=1

#===

===

Bit Position in Status Register (0x379)

nDataAvail(nError) bit3 Byte: active low

Xflag(Select) bit4 SPP: active high

63 | P a g e

PtrClk(nAck) bit6 SPP: active low

Byte: active low

===

#===

nDataAvail = 3

Xflag = 4

PtrClk = 6

#===

===

Bit Position in ECP Control Register (0x77a)

Operation Mode: bits 7:5 (Standard Mode= 000 (def:0x15))

(Byte Mode= 001 (0x35))

(ECP FIFO Mode= 011 (0x75))

ECP Interrupt Bit: bit 4

DMA Enable Bit: bit 3

ECP Service Bit: bit 2 (only read)

FIFO Full: bit 1 (only read)

FIFO Empty: bit 0 (only read)

===

#===

ECP_register = 0x77A

#===

===

FPGA command register ("only wr"):

bit0 reset (active high),

bit1 registers (0) or memory (1),

64 | P a g e

===

#===

command_reset = 0x01 # bit0=1

command_reg = 0x00 # bit1=0

command_mem = 0x02 # bit1=1

#===

===

Number of registers to write from the PC

===

#===

reg_num_wr = 8

#===

===

Number of registers to read from the FPGA

===

#===

reg_num_rd = 16

#===

===

Memory size in bytes words

===

#===

mem_size = 256

#===

===

Number of cycles for time-out

65 | P a g e

===

#===

TIME_OUT = 100

#===

===

FPGA parameters registers:

===

#===

MEM_ADDRESS_INI = 0 #Initial FPGA memory address

MEM_LENGTH = 1 #Number of words to read

#===

===

Global Variables

===

#===

reg_table = [None]*16

mem_table = []

#===

==

Function: byte_to_data_register

Parameter: byte to write in the parallel port data register

Return: void

Description: Write a byte in the parallel port data register by

following the SPP forward data transfer protocol

==

#===

def byte_to_data_register(byte_value):

66 | P a g e

 p_port.Out32 (data_register, byte_value)

 p_port.Out32 (control_register, p_port.Inp32(control_register) | HostClk_high)

 for i in range(TIME_OUT):

 end_timeout = 1

 bit = p_port.Inp32(status_register) & (1 << PtrClk)

 if ((bit >> PtrClk) == 0):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for PtrClk(nAck) low\n")

 exit(1)

 #===

 # ==

 # 4- Give the host clock raising edge

 # control_register[HostClk(nStrobe)] = 0 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,p_port.Inp32(control_register) & HostClk_low)

 #===

 # ==

 # 5- Wait for "PtrClk(nAck) high" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout=1

 bit = p_port.Inp32(status_register) & (1 << PtrClk)

67 | P a g e

 if ((bit >> PtrClk) == 1):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for PtrClk(nAck) high\n")

 exit(1)

#===

==

Function: write_command_register

Parameter: byte to write in the FPGA command_register

Return: void

Description: Write a command byte in the FPGA command_register

==

#===

def write_command_register (byte_value):

 #===

 # ==

 # 1- Init control register

 # control_register = xx0x 0100 = 0x04

 # ==

 #===

 p_port.Out32 (control_register,0x04)

 #===

 # ==

 # 2- Start forward data transfer

68 | P a g e

 # control_register[Active1284(nSelect)] = 1 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,p_port.Inp32(control_register) | Active1284_high)

 #===

 # ==

 # 3- Wait for "Xflag(Select) high" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout=1

 bit = p_port.Inp32(status_register) & (1 << Xflag)

 if ((bit >> Xflag) == 1):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for Xflag(Select) high\n")

 exit(1)

 #===

 # ==

 # 4- Indicate that the byte to write is a command

 # control_register[HostBusy(nAutoLinefeed)] = 1 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,p_port.Inp32(control_register) | HostBusy_high)

 #===

69 | P a g e

 # ==

 # 5- Write command byte to data register

 # ==

 #===

 byte_to_data_register (byte_value)

 #===

 # ==

 # 6- End forward data transfer

 # control_register[Active1284(nSelect)] = 0 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,p_port.Inp32(control_register) & Active1284_low)

 #===

 # ==

 # 7- Wait for "Xflag(Select) low" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout=1

 bit = p_port.Inp32(status_register) & (1 << Xflag)

 if ((bit >> Xflag) == 0):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for Xflag(Select) low\n")

 exit(1)

70 | P a g e

#===

==

Function: byte_from_data_register

Parameter: none

Return: byte from the parallel port data register

Description: Read a byte from the parallel port data register by

following the byte mode backward data transfer protocol

==

#===

def byte_from_data_register():

 #===

 # ==

 # 1- Indicate that it can accept data from the peripheral

 # control_register[HostBusy(nAutoLinefeed)] = 1 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,p_port.Inp32(control_register) | HostBusy_high)

 #===

 # ==

 # 2- Wait for "PtrClk(nAck) low" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout=1

 bit = p_port.Inp32(status_register) & (1 << PtrClk)

 if ((bit >> PtrClk) == 0):

 end_timeout = 0

71 | P a g e

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for PtrClk(nAck) low\n")

 return 0

 #===

 # ==

 # 3- Read byte from data register

 # ==

 #===

 byte_value = p_port.Inp32 (data_register)

 #===

 # ==

 # 4- Indicate that it is processing the byte

 # control_register[HostBusy(nAutoLinefeed)] = 0 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) & HostBusy_low))

 #===

 # ==

 # 5- Wait for "PtrClk(nAck) high" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout = 1

 bit = p_port.Inp32(status_register) & (1 << PtrClk)

72 | P a g e

 if ((bit >> PtrClk) == 1):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for PtrClk(nAck) high\n")

 return 0

 #===

 # ==

 # 6- Return byte from data register

 # ==

 #===

 return byte_value

#===

==

Function: read_parameters_reg

Parameter: none

Return: void

Description: Saves the current parameters registers values in

reg_table

Read FPGA Parameters Registers

1- Indicate in the FPGA command register the access operation on registers

73 | P a g e

(bit 1 of FPGA command register = 0)

1.1- Init control register

control_register = xx0x 0100 = 0x04

1.2- Start forward data transfer

control_register[Active1284(nSelect)] = 0

1.3- Wait for "Xflag(Select) high" in status register

1.4- Indicate that the byte to write is a command

control_register[HostBusy(nAutoLinefeed)] = 1

1.5- Write the command byte to data register by following the

SPP forward transfer protocol

2- Init control register

control_register = xx0x 0100 = 0x04

3- Request backward data transfer

control_register[nInit(nInit)] = 0

4- Wait for "nDataAvail(nError) low" in status register

5- Read block of registers values (16 registers) from data register

5.1- Place the data bus in a high impedance state

control_register[Enable bi-dir port] = 1

5.2- For each register value repeat:

a- Indicate that it can accept data from the peripheral

control_register[HostBusy(nAutoLinefeed)] = 1 (inverted)

b- Wait for "PtrClk(nAck) low" in status register

c- Read byte from data register

d- Indicate that it is processing the byte

74 | P a g e

control_register[HostBusy(nAutoLinefeed)] = 0 (inverted)

e- Wait for "PtrClk(nAck) high" in status register

6- Wait for "nDataAvail(nError) high" in status register

7- End of request backward data transfer

control_register[nInit(nInit)] = 1

==

#===

def read_parameters_reg():

 #===

 # ==

 # 1- Indicate in the FPGA command register the access operation on registers

 # (bit 1 of FPGA command register = 0)

 # ==

 #===

 write_command_register(command_reg)

 #===

 # ==

 # 2- Init control register

 # control_register = xx0x 0100 = 0x04

 # ==

 #===

 p_port.Out32 (control_register,0x04)

 #===

75 | P a g e

 # ==

 # 3- Request backward data transfer

 # control_register[nInit(nInit)] = 0

 # ==

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) & nInit_low))

 #===

 # ==

 # 4- Wait for "nDataAvail(nError) low" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout = 1

 bit = p_port.Inp32(status_register) & (1 << nDataAvail)

 if ((bit >> nDataAvail) == 0):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for nDataAvail(nError) low\n")

 exit(1)

#===

==

5- Read block of registers values

==

76 | P a g e

==

5.1- Place the data bus in a high impedance state

control_register[Enable bi-dir port] = 1

==

#===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) | EnableBidir_high))

 #===

 # ===

 # 5.2- For each register value: read data byte from data register

 # ===

 #===

 global reg_table

 for j in range(reg_num_rd):

 reg_table[j] = byte_from_data_register()

 if (end_timeout):

 exit(1)

 #===

 # ===

 # 6- Wait for "nDataAvail(nError) high" in status register

 # ===

 #===

 for i in range(TIME_OUT):

 bit = p_port.Inp32(status_register) & (1 << nDataAvail)

 if ((bit >> nDataAvail) == 1):

 end_timeout = 0

 break

77 | P a g e

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for nDataAvail(nError) high\n")

 exit(1)

 #===

 # ===

 # 7- End of request backward data transfer

 # control_register[nInit(nInit)] = 1

 # ===

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) | nInit_high))

#===

==

Function: write_parameters_reg

Parameter: none

Return: void

Description: Copy from reg_table to parameters registers

Write FPGA Parameters Registers

1- Indicate in the FPGA command register the access operation on registers

(bit 1 of FPGA command register = 0)

1.1- Init control register

control_register = xx0x 0100 = 0x04

78 | P a g e

1.2- Start forward data transfer

control_register[Active1284(nSelect)] = 0

1.3- Wait for "Xflag(Select) high" in status register

1.4- Indicate that the byte to write is a command

control_register[HostBusy(nAutoLinefeed)] = 1

1.5- Write the command byte to data register by following the

SPP forward transfer protocol

2- Write block of registers values to data register

2.1- Indicate that the byte to write is a data

control_register[HostBusy(nAutoLinefeed)] = 0 (inverted)

2.2- For each register value repeat:

Write the data byte to data register by following the

SPP forward transfer protocol

3- End forward data transfer

control_register[Active1284(nSelect)] = 0 (inverted)

4- Wait for "Xflag(Select) low" in status register

==

#===

def write_parameters_reg():

#===

==

1- Indicate in the FPGA command register the access operation on registers

(bit 1 of FPGA command register = 0)

==

79 | P a g e

==

1.1- Init control register

control_register = xx0x 0100 = 0x04

==

#===

 p_port.Out32 (control_register,0x04)

 #===

 # ==

 # 1.2- Start forward data transfer

 # control_register[Active1284(nSelect)] = 1 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) | Active1284_high))

 #===

 # ==

 # 1.3- Wait for "Xflag(Select) high" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout = 1

 bit = p_port.Inp32(status_register) & (1 << Xflag)

 if ((bit >> Xflag) == 1):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for Xflag(Select) high\n")

 exit(1)

80 | P a g e

 #===

 # ==

 # 1.4- Indicate that the byte to write is a command

 # control_register[HostBusy(nAutoLinefeed)] = 1 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) | HostBusy_high))

 #===

 # ==

 # 1.5- Write command byte to data register

 # ==

 #===

 byte_to_data_register (command_reg)

#===

===

2- Write block of registers values to data register

===

===

2.1- Indicate that the byte to write is a data

control_register[HostBusy(nAutoLinefeed)] = 0 (inverted)

===

#===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) & HostBusy_low))

 #===

 # ===

81 | P a g e

 # 2.2- For each register value: write data byte to data register

 # ===

 #===

 for j in range(reg_num_wr):

 byte_to_data_register(reg_table[j])

 #===

 # ==

 # 3- End forward data transfer

 # control_register[Active1284(nSelect)] = 0 (inverted)

 # ==

 #===

 p_port.Out32 (control_register,(p_port.Inp32(control_register) & Active1284_low))

 #===

 # ==

 # 4- Wait for "Xflag(Select) low" in status register

 # ==

 #===

 for i in range(TIME_OUT):

 end_timeout = 1

 bit = p_port.Inp32(status_register) & (1 << Xflag)

 if ((bit >> Xflag) == 0):

 end_timeout = 0

 break

 if (end_timeout):

 print("\nTimeout Error: Host is waiting for Xflag(Select) low\n")

 exit(1)

views.py

82 | P a g e

from fpga_read import xml_file_write, discrete_value_for_gui, set_instrument

from RepeatTimer import RepeatTimer

from django.shortcuts import render_to_response

import os

#path of views file

file_path = os.path.dirname(__file__)

#path of FusionChartsFree data.xml file

xml_file_path = os.path.join(file_path,'..\\static\\data.xml')

#boolean variable to check whether load_xml has already been called

is_graph_Loaded = False

#load_xml thread

load_xml_thread = None

#boolean variable to check whether instrument is loaded

is_instrument_loaded =False

#title of page

title = None

def convert_to_int(str_value):

 float_value = float(''.join(map(str, str_value)))

 a_unit = 'Hz'

 if float_value >= 1000000:

 float_value = float_value / 1000000

 a_unit = 'MHz'

 elif float_value >= 1000:

83 | P a g e

 float_value = float_value / 1000

 a_unit = 'kHz'

 else:

 pass

 string_value = str(float_value)

 count = len(string_value)

 dummy_value = []

 for i in range(count):

 dummy_value.append(string_value[i])

 dummy_value.reverse()

 count = len(dummy_value)

 for i in range(count):

 if ((dummy_value[0]=='0') | (dummy_value[0]=='.')):

 del dummy_value[0]

 else:

 break

 dummy_value.reverse()

 count = len(dummy_value)

 final_value = []

 for i in range(count):

 if (dummy_value[i]=='.'):

 final_value.append(202)

 else:

 final_value.append(int(dummy_value[i]))

84 | P a g e

 return final_value, a_unit

def load_chart(request):

 global is_graph_Loaded, load_xml_thread, title, is_instrument_loaded

 #check to see if instrument has already been loaded

 if (is_graph_Loaded==False):

 register1 = 0

 value1 = 1

 register2 = 1

 value2 = 4

 is_instrument_loaded = False

 set_instrument(register1, value1, register2, value2)

 x_value = "X Axis"

 y_value = "Y Axis"

 title = "Amplitude over time curve"

 load_xml_thread = RepeatTimer(10,xml_file_write,args=[xml_file_path, title, x_value, y_value])

 load_xml_thread.start()

 is_graph_Loaded = True

 return render_to_response('chart.html',{'title': title})

def load_discrete(request):

 global is_graph_Loaded, is_instrument_loaded, load_xml_thread, title

 #check whether graph function has been called

 if (is_graph_Loaded==True):

 load_xml_thread.cancel()

85 | P a g e

 is_graph_Loaded = False

 #check whether instrument is already loaded

 if (is_instrument_loaded==False):

 register1 = 0

 value1 = 2

 register2 = 1

 value2 = 0

 set_instrument(register1, value1, register2, value2)

 is_instrument_loaded = True

 title = "Frequency meter"

 first_value = discrete_value_for_gui()

 final_tuple = convert_to_int(first_value)

 value = final_tuple[0]

 unit = final_tuple[1]

 return render_to_response('value_read.html',{'title':title,'value':value,'unit':unit})

fpga_read.py

86 | P a g e

#import os

from spp_fpga_protocol import set_ECP_ByteMode, read_parameters_reg, reg_table,
write_parameters_reg

from RepeatTimer import RepeatTimer

import numpy as np

import threading, time

#root_path = os.path.dirname(__file__)

#register table for graph values

graph_value_table = []

#register table for discrete values

discrete_value_table = []

#boolean variable to check if graph function has been loaded

isCalled = False

#thread for read_fpga_for_graph

graph_thread = None

#set RVI to particular instrument

def set_instrument(register1,value1,register2,value2):

 set_ECP_ByteMode()

 read_parameters_reg()

 reg_table[register1] = value1

 reg_table[register2] = value2

 write_parameters_reg()

#===

Configuration for graph-generating instrument

87 | P a g e

#===

#Reads registers carry values for drawing a graph

#loads values into graph_value_table

def read_fpga_for_graph():

 global graph_value_table

 x_variable = np.arange(0,5,0.33)

 for i in range(len(x_variable)):

 set_ECP_ByteMode()

 read_parameters_reg()

 graph_value_table.append(reg_table[9])

 time.sleep(1)

#Creates XML file data.xml to be accessed by FusionChartsFree

def xml_file_write(a_file_path,graph_title,x_axis_label,y_axis_label):

 global isCalled, graph_thread

 if (isCalled==False):

 graph_thread = RepeatTimer(1,read_fpga_for_graph)

 graph_thread.start()

 isCalled = True

 count = len(graph_value_table)

 x_variable = np.arange(0,count,0.33)

 filename = open(a_file_path,"w") #open data.xml file

88 | P a g e

 filename.write('\n<graph caption="{0}" xAxisName="{1}" yAxisName="{2}" showAnchors="1"
anchorRadius="1" showValues="0">'.format(graph_title,x_axis_label,y_axis_label))

 for x in range(count):

 filename.writelines('\n <set name="{0:.03f}" value="{1:.03f}"
showName="0"/>'.format(x_variable[x],graph_value_table[x]))

 filename.write("\n</graph>")

 filename.close() #close data.xml file

#===

End of graph instrument configuration

#===

#===

Configuration of discrete value-generating instrument

#===

#Read register values needed

def read_fpga_for_discrete():

 global discrete_value_table, graph_value_table

 if graph_value_table:

 graph_value_table =[]

 set_ECP_ByteMode()

 read_parameters_reg()

 discrete_value_table = reg_table[8:]

 discrete_value_table.reverse()

89 | P a g e

#process data retrieved into meaningful data

def discrete_value_for_gui():

 global discrete_value_table

 read_fpga_for_discrete()

 count = len(discrete_value_table)

 for i in range(count):

 if (discrete_value_table[0]!=0):

 break

 del discrete_value_table[0]

 discrete_value = discrete_value_table

 return discrete_value

#===

End of discrete value-generating instrument configuration

#===

models.py

90 | P a g e

from django.db import models

Create your models here.

class Instrument(models.Model):

 name = models.CharField(max_length=30)

 instrument_type = models.CharField(max_length=100)

 register_load1 = models.IntegerField()

 load_value1 = models.IntegerField()

 register_load2 = models.IntegerField()

 load_value2 = models.IntegerField()

 register_read = models.CharField(max_length=100)

 def __unicode__(self):

 return self.name

base.html

91 | P a g e

<!DOCTYPE html >

<html>

<head>

 <title>{%block title%}Home - Reconfigurable Virtual Instrument{%endblock%}</title>

 <link href="/static/css/style.css" rel="stylesheet" type="text/css" />

 {%block scripts%}{%endblock%}

</head>

<body {%block onload%}{%endblock%}>

 <div id="background">

 <div id="page">

 <div class="header">

 <div class="footer">

 <div class="body">

 <div id="sidebar">

 <img id="logo"
src="/static/images/logo.gif" width="154" height="74" alt="" title=""/>

 <ul class="navigation">

 HOME

 Waveform
Generator

 {%block add_list%}{%endblock%}

 Function
Generator

 </div>

92 | P a g e

 <div id="content" >

 {%block content%}{%endblock%}

 </div>

 </div>

 </div>

 <div class="shadow"> </div>

 </div>

 </div>

 </div>

</body>

</html>

chart.html

93 | P a g e

{% extends "base.html" %}

{%block title%}{{title}}{%endblock%}

{%block scripts%}

 <script type="text/javascript" src="/static/Javascripts/jquery-1.4.2.js"></script>

 <script type="text/javascript" src="/static/Javascripts/jquery.fusioncharts.js"></script>

{%endblock%}

{%block onload%}onload="loadGraph()"{%endblock%}

{%block add_list%}

RELOAD

{%endblock%}

{%block content%}

Loading Graph... ...

<script type="text/javascript">

 function loadGraph(){

 $('#content').insertFusionCharts({

 type: "Line2D", swfPath:"/static/FusionCharts/", width: "726", height: "546",

 data: "/static/data.xml",

 dataFormat: "URIData"

 });

 }

 </script>

{%endblock%}

value_read.html

94 | P a g e

{% extends "base.html" %}

{%block title%}{{title}}{%endblock%}

{%block scripts%}

 <script type="text/javascript" src="/static/Javascripts/jquery-1.4.2.js"></script>

 <script type = "text/javascript">

 var reading_array = {{value}}

 function load_images()

 {

 for (var i =reading_array.length-1; i > -1; i--)

 {

 $('#content').prepend('')

 }

 }

 </script>

{%endblock%}

{%block onload%}onload="load_images()"{%endblock%}

{%block content%}{{unit}}{%endblock%}

