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ABSTRACT
The Northern Savanna Zone of Ghana is mostly semiarid. The irregular onset and
distribution of the rains in this part of Ghana makes interpretation of agmnnmif.lz_
experiments difficult. This work seeks to determine the optimum time of planting of
maize in relationship with the length of the growing season in the Northern Savanna zone

of Ghana. |

Several statistical methods have been proposed for the analysis of rainfall data. In recent
years one of the most popular methodologies are the use of Markov chains and Gamma
distribution.

Markov chains are fitted to the occurrence of rain, and gamma distribution with

parameters which vary with-the time of year, used to fit the rainfall amounts.

By relating climatic data analysis which incorporate soil factors for over 51 years (1953-
2003) daily rainfall data to a maize cropping system, the planting time for maize in this
area were determined. Results indicated that the growing season varied between 122 to
223 days. The best planting time for maize was found to be during the Iast two weeks of
May in order to meet the moisture re—quiren'-sents during flowering and growing period

lengths.
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CHAPTER ONE

AN INTRODUCTION TO THE GENERAL CLIMATIC AND AGRICULTURAL

CHARACTERISTICS OF GHANA

1.1 INTRODUCTION

Ghana being an agricultural cconomy, crop yields play a vital role in its national income, A
major determinant for better yields is timel y ramfall as the growth responses of plants are often a
compromise between photosynthesis and transpiration with an optimization of water use
efficiency being the prime aim. The dry periods at the early stage of a crop can damage the crop
and on the other hand are usually useful at the ripening stage. The lack of rainfall in a certain
area is the factor for declaring it a desert, Rainfall data is generally available for most areas on
daily basis, There is a need to know the probability of having a dry period or having a
consecutive dry period of 7 or 10 days during the growing season of a crop. This information

would improve decisions about crops or varieties and the timings of the plantings of crops,

According to Gangopadhya and Sarkar (1965), the rainfall has a direct relationship with the yield
of crops. Robertson (1970) discussed the rainfall and water variability and again Robertson
(1976) and Gabriel and Neumann (1962) used the method of Markov chains to calculate dry and

wet spells. e
R ; ,_,--"""--_._._



Stern and Coe (1982) gave a way to analyse and simulate the daily rainfall data: Stern et al,
(1984) combine the Fourier analysis, Markov chains and distribution function of daily rainfall
amount, Salimi et al. (1988) and Muhammad et al. (I 988) have calculated the rainfall

probabilities and the probabilities of the number of rainy days.

Rainfall in Ghana is characterised by a high degree of variability and it is the element of climate
most influential in determining the variety and abundance of land use, economic development
and practically all aspects of human activity. Hence a comprehensive analysis of rainfall data is a
crucial component in agricultural production. From analysis of the daily rainfall datg it is

possible to get some insight into problems related to the plant water requirement.

This chapter is designed to highlight on the introduction to the general climatic and
agricultural characteristics of Ghana, Section 1.2 gives the boundary and the population of

Ghana whilst section 1.3 gives a brief discussion of the vegetation, soils and climate of Ghana.

Section 1.4 discusses temperature after which sections 1.5 and 1.6 presents a brief discussion of
the Agricultural ecconomy and the role of agriculture in Ghana. The methods of the analysis of
the daily rainfall data are considered in section 1.7 whilst section 1.8 gives the organisation of

study.
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1.2 THE BOUNDARY AND THE POPULATION OF GHANA,

Ghana lies between latitudes 4° 44'N and 11°15'N and longitudes 3°15'W and 1° 12'F with a land
area of 238,539 km®. It is bordered on the east by the Republic of Togo, in the west by Céte
d'Ivoire and in the north by Burkina Faso, Administratively, the country is divided into ten

regions and one hundred and thirty districts with Accra as the capital.

Most of the country’s surface is flat and the altitude varies between 500m and 200m above seg
level. The Volta River basin dominales the county's river system, including the 8 480 km?
covered by Lake Volta. The south has an extensive rain forest while the north is mostly

savannah.

The population as at March 2007 was estimated to be approximatel ¥ 22.93 million, of which
more than 45 percent is below 15 years, Ghana's population growth is estimated at about 2.6
percent per year (CIA World F actbook, 2007), The average population density is around 52
persons per km”. Most of the population is concentrated in the southern part of the country, with

the highest densities in the urban and cocoa-producing areas,

Ghana ranks 119" in the Human Development Index of UNDP (1991). It is a low-income food-
deficit country with a per capita income of less than US $340 per Year. The World Bank has
estimated that 31 percent of the population lives below the poverty line. Northern, Upper East
and Upper West Regions are the poorest areas of the country, with levels of malnutrition

‘- - -"""|--_.—_
estimated at more than double the national average.
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Figurel.1 The map of Ghana.



1.3 VEGETATION, SOILS AND CLIMATE

Climate is the dominant factor in Ghana's physical environment. The natural vegetation of the
study area is typical of Guinea savannah woodland, which is composed of trees of varying size
and densely dispersed in a ground cover of tall perennial bunch-grasses and associated herbs.
Shea butter tree (Butyrospernum paradoxum), dawadawa (Parkia clapertiniana), mahogany
(Khaya senegalensis) and neem (Azadirachra indica) trees are now the dominant tree species,
Dawadawa and shea butter tree are protected for their economic value (Runge-Metzger and
Diehl, 1993). Soils are predominantly lateritic. and the texture 1s mainly silt or sandy loam,
Their main characteristic is the presence of generally shallow depths below the surface of a more
cemented layer of iron pan, through which rainwater does not penetrate ecasily. It therefore
becomes waler-logged in the rainy season but dries out completely during the dry season. Soil

fertility is a major constraint for agricultural production (Runge-Metzger and Diehl, 1993).

The public interest on climatic change has risen sharply in recent years. Changes in weather have
been also related to a worldwide increase of extreme events. A recent analysis by Diehl (1993)

shows increases in the overall areus of the world affected by cither drought or excessive wetness.

Climate is defined as the average weather conditions experienced in a given area over a

considerable or long period of time usually not less than thirty-five years.

The annual distribution of rainfall is bi-modal in the south of Ghana and other high rainfall areas,

and uni-modal in northern Ghana. Annual variability is quite high resulting in considerable

drought risks.



The study area is characterised by distinet climate conditions such as one rainy season per year.
Mean annual rainfall is approximately 1100 mm and oceurs over 95 rainy days. It builds up
gradually from small rains in March/April to a maximum in August in the north, and then
declines sharply, coming to a complete Stop in mid-November when the dry Saharan winds usher
in the harmattan season. From December till February, the Northern Region is characterised by
very distinct climate with relative humidity dropping to 15-26%, which enables the farmers to

dry harvested cassava roots naturally. (Runge-Meizger and Diehl, 1993),

1.4 TEMPERATURE

Temperature refers to the degree of hotness or coldness of a place. Temperatures are uniformly
high all the year, except for few places where temperatures are low due to high altitudes. Typical
values are around 37°C maximum and 26°C minimum. The pattern of temperature during the
year is represented graphically in figures 1.2 and 1.3 demonstrating the extreme conditions found

in the region as represented by Kumasi and Tamale.

For most part of the country, the highest daily or monthly mean maximum occurs in February or
March (suitable for land preparation for farmers) while the least oceurs in August, The annual

mean maximum temperatures oceur in January or along the Coast in August,



—fSeries]
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Figure 1. 2 Temperature distribution in Tamale

The study area is
variations between _d.ﬂ.}' and night, Between November and February,
can reach 33° C to

greatest amount of
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Figure 1.3 Temperature distribution in Kumasi

characterised by high temperatures throughout the year but exhibit wide

maximum day temperatures

37° C and minimum night temperatures vary between 20° C and 22° C. The
sunshine occurs in the period from November to February for about 8.5 hours
7
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a day, while the lowest is in July and reaches only about four hours a day. The relative humidity
of the area varies from 78% to 83% during the months of June to September and then gradually
decreases to a low relative humidity of about 15 - 26% in January and in the dry season.

L5 AGRICULTURE ECONOMY OF GHANA

Ghana is mainly an agricultural country since agricultural activities constitute the main use o
which Ghana's land resources are put and agriculture is the major occupation of about 47 percent
of the economically active age group (15 to 64). The country covers an area of approximately
239 million kilometers of which agricultural land forms about 57 percent of the total land area.

Only about 20 percent of this agricultural land is, however under cultivation.

Agricultural activity in Ghana is being influenced by agro-ecological conditions which divide the
country into six distinct zones, namely (i) the high rain forest, (ii) the semi-deciduous rain forest
(iii) the forest-savannah transition, (iv) the Guinea Savannah, (v) the Sudan savannah and (vi) the
coastal savannah. The conditions of these ecological zones limit the types of crops that can be
successfully cultivated in them. In general tree crops do well in the forest zones while food crops

do well in the transitional and Savannah zones,

Crop production in Ghana is for three main purposes; namely, food production for consumption,
raw materials for industry and production for export. The major staple food crop includes cereals
mainly rice and maize and starchy-smples which include yams, cassava and plantain. Industrial

raw materials include cotton, oil palm, and tobacco and bast fiber. The main export crop of
Szl



Ghana is cocoa for which Ghana was for a long time the leading world producer. Ghana however
lost its place as the highest producer of cocoa, with it recorded share of world cocoa exports

declining from 35 percent in 1961-1965 to only 15 percent in 1981,

The traditional crop farming system still prevails in Ghana, particularly in food production
where small-scale farming predominates. Under this system, land preparation is accomplished by
slashing and burning the vegetation. The seed is obtained from the previous harvest. Usually
several crops are intercropped in a haphazard fashion, perhaps to avoid risk of total crop failure,
particularly on small-scale subsistence farms. The field is cultivated for a few seasons and
abandoned for several years when yields are observed to betoo low. The cultivation is shifted to
a “new” land or previously abandoned field thus earning the name “shifting cultivation”. The

abandoned land regenerates the fertility through natural means.

Thus, the traditional farming system depends mainly on natural soil fertility and very little on
chemical fertilizers. The system works better in regenerating soil fertility in the forest zones
which have higher vegetative cover than in the savannah zones with lower vegetative cover. The
longer the land is allowed to rest, the higher the level of fertilily generated. However, due to
increasing population pressure, the fallow period 1s being progressively shortened, resulting in

lower crop yields where fertilizers are not used.

6 OLE OF AGI LTURE -
1 ROLE F AGRICU ,l;t#'—

The importance of agriculture in the economy of Ghana cannot be overemphasized. Agriculture
-y

contributes immensely to the Gross Domestic Product.
9



During the first half of the 1980s, the sector’s contribution averaged about 55 percent and
declined to about 42 percent during the first half of the 1990s. The main reason for the decline in
agriculture’s contribution to GDP is increasing influence of the services sector in Ghana’s
economy. In fact, the services sector has, since 1992, taken over from the agriculture sector as
the highest contributor to GDP with its contribution averaging about 44 percent in the first half

of the 1990s.

The agricultural sector is a major source of government revenue, mainly through duties paid on
exports of agricultural commodities, particularl ¥ cocoa. The contribution of agriculture to
government revenue has, however, declined steadily from about 26 percent in 1987 to an average
of about 20 percent in the first half of the 1990s. The decline has been a deliberate government
strategy in order to boost cocoa production in the country through exchange rate devaluations

which have the effect of raising prices in the domestic CUITENCY.

Agriculture’s contribution to foreign exchange earnings averaged about 30 percent during the
second half of the 1980s and declined to about 26 percent during the first half of the 1990s, The
contribution has traditionally come mainly from the export of cocoa and timber. And, until gold
took over in 1994, cocoa accounted for the highest proportion of the foreign exchange earned by
the country each year. Since 1986, the government has been promoting the export of non-
traditional commodities of which agricultural commodities such as raw food crops, seafood and

processed commodities feature prominently.

s : S

10



From 1986 to 1989, the agricultural commodities in the non-traditional exports fetched the
country an average of about 67 percent of the foreign exchange from this source. During the first

half of the 1990s, however, the average proportion declined to about 34.3 percent,

The agricultural sector has continued to offer Job avenues to highest proportion of the
economically active population in the country as farmers, farm labourers and other workers in
agriculture related activities such as processing and marketing. However, as consistent with
economic development everywhere in the world, the proportion of the economically active
population in agriculture has been declining gradually over the years from over 60 percent in the
1970s to an estimated 47 percent in 1994. Economic transformation is often accompanied by
structural changes in subsistence agriculture, which ofien leads to agricultural diversification and
specialization. The structural transformation manifests itself in changes in labour force
participation in agriculture as shown in figure 1.4, As economic development proceeds, the
agricultural sector plays an important role of supplying the labour force needed by the other

emerging sectors.

When agriculture is in the subsistence stage, where production is mainly for home consumption,
available capital and skills are insufficient to generate non-agricultural employment at a rate that
is concomitant with the increase in the number of job seekers. The percentage of agricultural
workers in the total labour force is decreasing. but their absolute number is still increasing,

Planned generation of employment in agriculture is an absolule necessity and economically

beneficial (Weitz, 1979). ~ —

11
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Agriculture S
Subsistence Agricultural Agricultural
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Gross Domestic Product = AL

Figure 1.4 Labour Force participation in Agriculture in the process of Economic transformation.

Agricultural diversification represents a transitions period where the increase in demand for
employment is almost of the same order of magnitude as the increase in non-agricultural job
opportunities, The percentage of those engaged in agriculture is decreasing, but their absolute
number remains more or less constant. Agricﬁitural specialization is the desired stage in

economic transformation.

It represents a period in which both the percentage and absolute number employed in agriculture

are decreasing thus releasing labour to other sectors of the economy.,
_,.-r"'"--_-_-_'_

——
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The agricultural sector is also the main source of food for the large non-agricultural and mainly
urban population. This segment of the population is not only expanding very fast, at a rate of
about 6 percent per annum, it is also acquiring new tastes and demanding diversified food
products. The country has been self-sufficient, or nearly so, in the production of several food
commadities particularly, some cereals, roots and tubers, fruits and vegetables, eggs, etc. For
some other commodities such as wheat (not produced in the country at all), rice, beef, fish, dairy
products, edible oil, sugar, etc. imports have regular and increasing in volume in order to meet
the demand of the rapidly increasing population. The sector’s inability to produce adequate
quantities and variety of food for which the country may have some comparative advantage,
costs the country several millions of scarce foreign exchange used annually to import the

shortfal].

Agriculture also supplies the bulk of the raw matenials needed for processing by the agro-based
industries. The sector’s failure to play this role effectively is partly the cause of the low capacity
utilization of many of the agro-based industries (jebuni, etal, 1990, Seini, 1987, Ministry of
Agriculture, 1990, 1991), The large agricultural population in the country is capable of providing

a substantial market for the output of the industrial and service sectors.

However, as many of the predominantly small scale farmers are compelled to produce mainly

for subsistence due to limited access to markets and therefore low income generation, the actual
_— i _..—"'"---__'_

contribution of the agricultural sector to the size of market for the output of the other sectors has

been relatively low and therefore a constraint to the development of those sectors and economy

13



as a whole. Despite the decline in some areas of the agricultural sector’s contribution, the rate of

the country’s economic development is still heavily dependent on the performance of the sector.

To be able to play it role effect] vely in the medium-term, the agricultural sector is envisaged to

grow area rate of about 4 percent per annum (Ministry of Agriculture, 1986).

Long sequences of daily rainfall are required increasingly, not only for hydrological purposes
but also to provide inputs for models of crop growth, landfills, tailing dams, Jand disposal of
liquid waste and other environmentally-sensitive projects. Rainfall is generally measured at the
daily time scale and this forms the basis for monthly and annual ramnfall series. Because daily
data form this basic data set, modelling of the daily rainfall process has attracted a lot of interest

in the past,

This work is therefore concerned with analysing daily rainfall data to look at its | mplications on

agriculture and the techniques used for analysing such a data.

1.7 METHODS OF THE ANALYSIS

In this section, we discussed the various methods that were employed in the analysis of the
rainfall data, Exploratory data analysis would be conducted in order to gel nsight of the data.
Descriptive statistics for the mean, mode, and standard deviation in the start, end and the length
of the rains of the daily__rainﬁﬂI data would be investigated by the use of INSTA T CLIMATIC

SOFTWARE and MICROSOFT EXCEL

14



Non-stationary Markov chains would be used to model the occurrence of rain, and gamma
distributions, with parameters which vary with the time of year, would be fitted to the rainfall
amounts. Fourier series would be used to model the mean amount of rainfall. The process of
fitting and using these models provides a straight-forward and flexible analysis for rainfall
records. All the models mentioned are examples of a Generalised Linear Models (GLMs). This
thesis is therefore concerned with the analysis and interpretation of daily rainfall data. The

contents of each chapter in the thesis are described in the rest of this chapter.

1.8 ORGANIZATION OF STUDY

In chapter 1, introduction to the general climatic and agricultural characteristics of Ghana have
been briefly discussed whist in chapter 2, a review of the literature on some of the major methods
for analysing the daily rainfall data is presented. The Generalized Linear Models, in this context
of analysing daily rainfall data involves fitting Non-stationary Markov chains to model the
occurrence of rain, and gamma distributions, with parameters which vary with the time of year,
to the rainfall amounts. Fourier series would be use to model the mean amount of rainfall.

Chapter 3 considers the theoretical and conceptual framework of the Generalized Linear Models.

In chapter 4, simple methods for analysing rainfall data were conducted using the data set
collected from Nyankpala. We look at dry spells, the various starts. end and the length of the

growing season. Descriptive smﬁtﬁﬁh as the mean, standard deviation of the start, end and
m—
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the length of the season were also looked at. Rainfall data summarised over seven days was also

considered.

In chapter 3, Statistical analysis using the Generalized Linear Models was conducted. This
includes, fitting a non-stationery Markov chains to the occurrence of ranfall and gamma
distribution to the rainfall amount on a rainy days. The fitting of Markov chains would help us to
know the probability of rain or dry on any particular day whilst the fitting of gamma distribution
will help us to know the amount of rainfall on any rainy day. A brief discussion of the results

obtained in the data analysis also given in chapter 5,

Finally, concluding remarks of this research and possibility for further study are presented in
Chapter 6. Appendix A gives additional results which were not given in the main chapters, These
includes, how the daily rainfall data was arranged in Instat for the analysis, the results of the
start, length, and the end of the growing season and the calculated risk from planting using the
definition of the start of the growing season. In appendix B references of literature used are

provided.

16



CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter we present a literature review on some of the most important statistical models
which have been used for the analysis of the daily rainfall data. Section 2.2 discusses Markov
chains models after which section 2.3 presents a brief discussion of Gamma distribution. Fourier
series and periodic functions are also considered in sections 2.4 and 2.5 respectively, Section 2.6
presents other methods used in modelling rainfall data. The chapter ends with a conclusion on

the methods discussed and this is presented in section 2.7.

2.2 MARKOV CHAINS

Most stochastic models of daily rainfall consist of two parts: a model for the occurrence of dry
and wet days and a model for the generation of rainfall amount on wet days. Modelling of daily
rainfall occurrences are usually done by Markov chains introduced by Andrei Markov (1856-
1922). Markov chains specify the state of each day as ‘wet’ or *dry’ and develop a relation
between the state of the current day and the ﬂtatIEs of the preceding days. A Markov chain is a
process that consists of a finite number of states and some known probabilities py, where p, is

the probability of moving from state i to state J. We may have more than two states. For

example, political affiliation: Democrat, Republican, and Independent, For example, p,

represents the probability of a son belonging to party i if his father belonged to party j .

—
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The order of the Markov chain is the number of preceding days taken into account. Most Markov
chain models referred in the literature are first order (lag one). Gabriel and Neumann (1962) used
a first-order stationary Markov chain to model the daily rainfall occurrences. The models have
since been extended to allow for non-stationarity, both by fitting separate chains to different
periods of the year (Caskey, 1963: Dumont and Boyce, 1974; Heerman et al,, 1968: Jackson,
1981) and by fitting continuous curves to the transition probabilities (Feyerherm and Bark, 1965

Woolhiser and Pegram, 1979),

The order of Markov chain required has been discussed extensively (Lowry and Guthrie, 1968;
Gates and Tong, 1976; Chin, 1977), the obvious conclusion being that different sites require

different orders.

It is this flexibility of the Markov chain models, as well as the ease with which parameters are
estimated, that leads us to use them. Another advantage which Markov chains have over other
models of rainfall occurrence is the ease, with which results can be obtained from the fitted
model without resorting to simulation (Caskey, 1963; Weiss, 1964; Hopkins and Robillard,
1964; Feyerherm and Bark, 1965, 1967; Lowry and Guthrie, 1968: Selvalingam and Miura,

1978; Stern, Richardson, 1981: Stern and Coe, 1984).

Models of second or higher orders have been studied by Chin (1977), Gates and Tong (1976),
Eidsvik (1980), Pegram (1980) and Singh ef al (1981). The results varied with the climate
characteristics of -Lhe:-rai:i}'"étll statiers investigated, with the statistical tests used and with the

length of record. The Akaike information criterion, introduced by Akaike (1974), was widely

e
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used to determine the order of the Markov chains. Katz (1981) derived the asymptotic
distribution of the Akaike informatiop criterion (AIC) estimator but found that the estimator is
inconsistent. The Bayesian information criterion (BIC) proposed by Schwarz (1978) was shown
to be consistent and asymptotically optimal, However, Hurvich and Tsaj (1989) provided a
correction for AIC for model selection in small samples and the corrected AIC does not over fit

the models as thc AIC tends to do.

Jimoh and Webster (1996) determined the optimum order of a Markov chain model for daily
rainfall occurrences at five locations in Nigeria using AIC and BIC. The AIC consistently gave a

higher order for the Markov chain than the BIC,

The optimum order was also investigated by the generation of synthetic sequences of wet and
dry days using zero-, first- and second-order Markov chains. They found that the first-order
model was superior to the zero-order madel in representing the frequency distribution of wet and
stochastic generation of annual, monthly and daily rainfall data. Tt was concluded that caution is
needed with the use of AIC and BIC for determining the optimum order of the Markov model
and the use of frequency duration curves can provide a robust alternative method of model

identification.

Jimoh and Webster (1999) investigated the intra-annual variation of the Markov chain
. _—

parameters for seven sites in Nigeria. They found that there was a systematic variation in P,

(probabitity 6f a wet day following a dry day) as one moves northwards and a limited regional

15




variation in £, . A general conclusion is that a first-order model is adequate for many locations

but a second- or higher order model may be required at other locations or during some times of

the year.

23 GAMMA DISTRIBUTION

Some authors have attempted to describe rainfall amounts by fitting Markov chains with many
states each representing a range of amounis (Khanal and Hamrick, 1974; Haan ef al, 1976). One
unsatisfactory element of these models has been the large number of parameters to be estimated.
One form of analysis which has received much attention in the modelling of the daily rainfall

amount is the gamma distribution model.

A random variable is said to have a gamma distribution with parameters (e, A), A, =0, if its

density function is given by

lﬁ,—&r(ix:’m—l
J(x)= [a)
9 s x<0

where T(«), called the gamma function, is defined as
Ma)= [e”y=dy.
The integration by _Egﬁs of I'(er) yields-that

L@)===7y"" |+ fe'* (e —1)y*dy
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=(a —ljfe‘fy“'zdy =(er — DM (ex — 1)

[(n) =(n-1)T(n—-1)
=(n-1)n-2)(n-2
=(n-1)(n-2)...3.2I°(1)

= (n=1)(n-2)....(HG)2)(D).
Since T'(1)= ["e~dx=1.

It follows that for integral values of ", I'(r)=(n-1)!

When a is a positive integer, say a = n, the gamma distribution with parameters (a, A) often
arises, in practice, as the distribution of the amount of time one has to wait until a total of #

event has occurred, The gamma distribution with A=1/2and 1n/2 (nbeing positive integer) is

called the y, (read *‘Chi-squared”*) distribution with 1 degrees of freedom.

Models used for modelling daily rainfall amounts include the two parameter Gamma distribution
(Jones er al, 1972; Goodspeed and Pierrehumbert, 1975: Stern and Coe, 1982; Richardson,
1981; Woolhiser and Roldan, 1982), mixed Exponential distribution (Woolhiser and Pegram,
1979; Woolhiser and Roldan, 1982, 1986), a skewed Normal distribution (Nicks and Lane, 1989)

and a truncated power of Normal distribution (Bardossy and Plate, 1992: Hutchinson ef al.,

1993),

Wang and Nathan (2600) developed a daily and monthly mixed (DMM) algorithm for the
= —— ; = el

generation of daily rainfall. Daily rainfall data are generated month by month using the usual

two-partmodel with two sets of parameters for the Gamma distribution, one estimated from the

21



daily rainfall data and the other from monthly rainfall data. The monthly total is obtained by
summing the daily values generated from the monthly Gamma parameters and adjusted for serial
correlation. The generated daily rainfalls from the daily Gamma parameters are linearly scaled
to match the serially correlated monthly rainfalls. Results for the Lake Eppalock catchment
rainfall and for six other sites around Australia showed that the DMM algorithm reproduced the

mean, coefficient of variation and skewness of daily, monthly and annual rainfall,

The results were examined in detail for the Lake Eppalock catchment (in southern Australia); the
algorithm worked well in reproducing the mean, coefficient of variation and skewness of

monthly maximum daily rainfall, but not as well for the annual maximum rainfall.

For the other six sites, the algorithm worked well in reproducing the mean and coefficient of
variation but not as well as in reproducing the skewness of the annual maximum daily rainfall.
Chapman (1998) investigated the impact of adjoining wet days on the distribution of rainfall
amounts and found that the models which take this into account resulted generally in a better fit
than the models which lump the data together. Chin and Miller (1980) examined the possible
conditional dependence of the using 25 years of daily rainfall data at 30 stations in the
continental United States. They concluded that, except for the winter season in the Pacific

Northwest, the distribution of daily rainfall did not depend on whether the preceding day was wet

or dry.

Menabde and Si\rap;ﬂan (2000)-used Levystable distributions to fit the storm duration and

rainfall totals. They showed that this distribution having a fat tail fits the storm duration and
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amounts better than the Exponential or Gamma in the tail. Chapman (1994, 1998) compared the
following five models for rainfall amounts, the Exponential (one parameter), the mixed

Exponential (three parameters), the Gamma (two parameters), a skewed Normal (three

parameters) and the Kappa distribution (two parameters).

Based on the AIC, the ranking of the models was consistent, the best being the Gamma followed
by skewed Normal distribution, followed by the mixed Exponential, the Kappa, and last the
Exponential. There was also consistency in the model selected for different groups of data
(solitary wet days, first day of a wet spell ete.). He observed litile variation in the coefficient of

variation between different groups and relatively little between months.

Yevjevich and Dyer (1983) suggested that the latter feature may be a general characteristic of
daily rainfall series and this could lead to a significant parsimony in the number of parameters to

mode] seasonal variations.

24  FOURIER SERIES AND PERIODIC FUNCTIONS

Fourier series is an expansion of periodic functions in terms of infinite sum of sines and cosines.
The computational and study of Fourier series is called harmonic analysis. Fourier series is a
mathematical tool used for analysing periodic functions by decomposing such a function into
weighted sum of much simpler sinusoidal component function called Normal Fourier Modes.

The weights or coefficieats of the modes are a one-to-one mapping of the original function.
i —_—
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Fourier series serve many useful purposes, as manipulation and conceptualization of the modal
coefficients are often easier than with the original function. Suppose that £ is a periodic, with

period 2L , and is such that the integrals

1 g L :
W=7 L_ S(x)cos (EEE]‘& .and b, :“E Lf{.r)sin[%—)dx » =123 are defined,

Then the Fourier series of £ is the series: ¢ -lrz{aﬂ WS[_T_] +h sin[i?]} .

fi=]

The coefficients a, and b, are called the Fourier cocfficients of f. We write

f(x)= % + i{”" Bﬂs(-%} +b sin(-?:—nj} :

n=l

The transition probabilities are likely to change smoothly through the vear and can thus be
modelled by continuous functions of time, Fourier series is considered because rainfall
distribution function is periodic function, These have the desirable properties of modelling
complex bimodal, rainfall patterns with few parameters and, where the whole year is modelled

(T=366). of being continuous from day 366 to day 1.

2.5 OTHER METHODS OF ANALYSIS.

2.5.1 Alternating Renewal Process

In the alternating ..;e;iewa] process; The daily rainfall data is considered as a sequence of

alternating wet and dry spells of varying length.
i S
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The wet and dry spells are assumed to be independent and the distributions may be different for

wet and dry spells.

Distributions investigated include the logarithmic series (Williams, 1947), a maodified
logarithmic series (Green, 1964), truncated negative binomial distribution (Buishand, 1977), and

the truncated geomelric distribution (Roldan and Woolhiser, 1982).

Roldan and Wﬁnliﬁser (1982) compared the alternating renewal process with truncated
geometric distribution of wet sequences and truncated negative binomial distribution of dry
sequences with a first-order Markov chain. For five US stations with 20-25 years of record
lengths, the first-order Markov chain was superior to the alternating renewal process according to
the Akaike information criterion (Akaike, 1974). The parameters of the distributions were

assumed to be either constant within seasons or to vary according to Fourier series.

One of the disadvantages of the alternating renewal process is that the seasonality is difficult to
handle. The starting day of the sequence is usually used to determine the season to which the

sequence belongs.

Small and Morgan (1986) derived a relationship between a continuous wet-dry renewal model
with Gamma distributed dry intervals and a Markov chain model for daily rainfall occurrence.
The Markov process model was shown to provide a good representation in certain parts of the

United States while inother areas, where the Markov model is inappropriate due to event

] _.__,_.--""--_ . "
clustering or other phenomena, the Gamma model provides an improved characterization of the

relationship-between continuous and discrete rainfall occurrence.
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Foufoula-Georgiou and Lettenmaier (1987) developed a Markov renewal model for rainfall
occurrences in which the time between rainfalls occurrences were sampled from two different
geometric distributions. The transition from one distribution to the other was governed by a

Markov chain.

Smith (1987) introduced a family of models termed Markov-Bernoulli processes that might be
used for rainfall occurrences. The process consists of a sequence of Bernoulli trials with
randomised success probabilities described by a first-order, two-state Markov chain. At one

extreme the model is a Bernoulli process, at the other a Markov chain.

A binary discrete autoregressive moving average (DARMA) process was first used by Buishand
(1977). He found that an alternating renewal process was superior to the DARMA model for the
data from The Netherlands but the DARMA model looked more promising in tropical and
monsoonal areas. Chang ef al. (1984) and Delleur et al (1989) used four seasons for two stations
in Indiana (USA) and found that either the first-order autoregressive or the second-order moving

average model was appropriate for different seasons.

Chapman (1994) compared five models, namely; Markov chains of orders 1. 2 and 3 (MC1,
MC2 and MC3), truncated negative Binomial distribution (TNBD) and the truncated Geometric
distribution (TGD) with separate parameter values for each month using data from 17 Australian

rainfall stations.

L

et S e
Three of the above models (MC1, TNBD and TGD) were also compared with parameters

varying smoothly throughout the year according to a Fourier series having 0, |1 and 2 harmonics.
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The Fourier series representation with one harmonic for parameter variation throughout the vear
using the MC1 or TGD model was successful for five stations with high rainfall in southemn
Australia. The monthly MC2 model or monthly TNBD model fitted the remaining stations best.
Different record lengths appear to affect the selection of the best model, particularly when wet
and dry spells are considered separately. For combined results, different models were selected
for the 20-50 years records in four out of ten cases, for the 20-100 years records in two out of
five cases, and for the 50-100 years records in one case out of five. He concluded that the
prospects for regionalisation of parameters are poor unless there is a good sample of long

records.

In a later study, Chapman (1997) compared the above distributions and Markov chain for the
rainfall stations from 22 islands in the Western Pacific. He concluded that a first-order Markov
chain or truncated geometric distribution with a Fourier series representation for parameter
variation over months. R. Srikanthan and T.A. McMahon (1985) were successful for stations

with latitude greater than 14°,

For the stations close to the Equator, the seasonal regularity was less important and the models

with individual monthly values or constant value throughout the year performed well.

2.52 Resampling Models

_-'_.'.--_-_

Lall et al. (1996) developed a non-parametric, wet-dry spell model for re-sampling daily rainfall

e

at a site. All marginal, joint and conditional probability densities of interest (dry spell length,
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wet spell length, precipitation amount and wet spell length given prior to dry spell length) are

estimated non-parametrically using at-site data and kernel probability density estimators.

The model was applied to daily rainfall data from Silver Lake station in Utah (USA) and the
performance of the model was evaluated using a number of performance measures. The model

reproduced satisfactorily the wet day precipitation, wet spell length and dry spell length.

Rajagopalan et al. (1996) presented a non-homogeneous Markov model for generating daily
rainfall at a site. The first-order transition probability matrix was assumed to vary smoothly day
by day over the year. A kernel estimator was used to estimate the transition probabilities through
a weighted average of transition counts over a symmetric time interval centered at the day of
interest. The rainfall amounts on each wet day were simulated from the kernel probability
density estimated from all wet days that fall within a time interval centred on the calendar day of
interest over all the years of available data. Application of the model {0 daily rainfall data from
Salt Lake City, Utah, showed that the wet and dry-spell attributes and the rainfall statistics were
reproduced well at the seasonal and annual time scales. Sharma and Lall (1997, 1999) used a
nearest-neighbour conditional bootstrap for re-sampling daily rainfall for Sydney. The dry spell
lengths were conditioned on the number of days in the previous wet spell and the wet spell
lengths were conditioned on the number of days in the previous dry spell. The rainfall amounts
were conditioned on two variables, the rainfall amount on the previous day and the number of
days from the start of the current spell. Results from the model showed its ability to simulate
sequences that are representative of the historical record. A limitation of the non-parametric
density estimation 'aﬁ]iméch is the’r’a—til-v:-r_l_in:i_ted extrapolation of daily rainfall values beyond the

largest value recorded.
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The simulations from the k-nearest-neighbour method do not produce values that have not been
observed in the historical data and this is a major limitation if extreme values outside the
available record are of interest (Raj agopalan and Lall, 1999). Sample sizes needed for estimating

the probability density function of interest are likely to be larger than for parametric estimation.

The non-parametric methods have been tested on a limited range of sites and testing over a

greater range of climates is needed for broader applicability.

2.5.3 Time Series Models of the ARMA Type

In this approach, time series models similar to stream flow data generation are used to generate

daily rainfall data.

Adamowski and Smith (1972) used a first-order Markov model to generate standardised daily
rainfall data. The major problem with this procedure is the eyclical standardization which occurs

if there are numerous zero daily values,

A truncated power of Normal distribution has been suggested to model daily rainfall (Hutchinson
ef al, 1993; Hutchinson, 1995). The underlying Normal distribution can be put into a simple
first-order autoregressive scheme to account for the day-to-day persistence of wet and dry days.
The correlations in the amounts of rainfall on successive wet days from this model were found to

be much larger than-the observed-coffelations in the rainfall and, to a first approximation, could

be i@ﬁtﬂd_____ﬂ_ﬂ-hl_t;hinsnn, 1995).
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Such systematic differences between correlations based on occurrence and intensity have not

been recognised in the applications of such models as described in Bardossy and Plate (] 992).

26 CONCLUSION

Recent advances in statistical methods have dramatically improved the range of techniques
available for analysing data that are not from normal distribution. These new techniques, which
are used in this study, parallel those used in the analysis of variance and regression for normally
distributed data. This development is of considerable importance, since daily rainfalls are clearly
not normally distributed (Stem er /., 1982). This chapter has reviewed the literature of a large
range of statistical methods applicable to the analysis of daily rainfall data. The big question is

that which model or method is preferable and for which data and which objective,

More often than not it is necessary to perform several analyses and compare the results. A large
number of these statistical methods including the Generalized Linear Models (Markovs chains,
Gamma distribution and Fourier scries) are very useful in daily rainfall data analysis. We
proceed to the next chapter where the conceptual and the theoretical framework of the

Generalised Linear Models are been discussed.
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CHAPTER THREE

THEORY AND CONCEPT

31 INTRODUCTION

In the advent of Modem Powerful Computers, one can easily analyse daily rainfall data without
knowing the mathematical concepts behind it. However, to be able to effectively analyse a data
by a statistical tool (model) it is very important (o understand the theoretical and conceptual

framework of the model.

In chapter two we presented a review literature on some of the most important statistical models
that is the Generalized Linear Models (Markov chains, Gamma distribution and Fourier series)

which have been used in this work.

This chapter is to highlight on the theoretical and conceptual framework of the Generalized
Lincar Models (GLMs) used in this work in a systematic fashion coupled with the mathematical
theory behind the model. In section 3.2 of this chapter, a brief description of the Generalized
Linear model is also presented whilst section 3.3 considers the extension of Markov chain

models. In section 3.4 first order Markov chains is also discussed.
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32 GENERALISED LINEAR MODEL

3.2.1 Definition
The unity in many statistical methods involving linear combinations of parameters was

demonstrated by Nelder and Wedderburn (1972) using the idea of generalized linear model. This

is defined in terms of a set of independent random variables Y'Y,.....¥, each with a distribution

from the exponential family with the followin g properties:

(i) The distribution for each ¥ is of the canonical form and depends on a single parameter ,

(thed, °s do not all have to be the same), thus

f(i30) = explyb,(8)+¢,(6)+d,(y))]

(ii) The distribution of all ¥ *s are of the same form (e.g. all normal or all binomial) so that the

subseripts b, ¢ and d are not needed. Thus the joint probability density function of KX, X 13

f{ypyz.---y,;ﬂ,ﬂz,u-,%)=ea‘-m[z yh(@)+) ﬂ;(ﬁ,)+z d,(y.)}
=1 i=1 1=1

For model specification the parameter &, are usually not of direct interest (since there may be

one for each observation).

For a peneralised linear models we conmsider a smaller set of patameters,

BisBos-s B, (Wherer< N ) such thaT a linear combinations of the B.'s is equal to some function

of the expeeted value u of ¥, i.e. glu)=x"2,
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~ where £ is a monotone, differentiable function called the link function;

X is a pxlvector of explanatory variables ( covariates and dummy variables for levels of

factors); g is the pxl vector of parameters.

3.2.2 Estimation of Model Parameters.

Two of the most commonly used approaches to the statistical estimation of parameters are the
method of maximum likelihood and the method of least squares. The method of maximum
likelihood is usually used for generalized linear models. The estimates have to be obtained
numerically by an iterative procedure which turns out to be closely related to weighted least

squares estimation.

3.2.3 Mcthod of Maximum Likelihood

The method of maximum likelihood would be used to estimate the shape parameter (k) of the

Gamma distribution function in modelling the rainfall amounts of Nyankpala.

Let XY,..Y, be N random variables with the joint probability density function

TP %500 ¥,16,6,,...0, which depends on parameters 0.0,,..8, .

We let y=[y, _}J{.:,..._,_};‘:]'_ : .andéi ﬂf_ﬁh@'ﬂmﬂu]', So that the probability density function is

denoted by f(y:8) .

___-_-—-_'_
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The likelihood function L (8:y) is algebraically the same as J(¥;6) but the change in notation

reflects a shift of emphasis from the random variable ¥, with @ fixed, to the parameter of @ with

y fixed (where y represents the observations).
Let © denote the set of all possible values of the parameter vector 8 (Q is called the parameter

space). The maximum likelihood estimator of g is the value which maximizes the likelihood

function, that is L(6:y) > L(6: ) forall 8 inQ.

Equivalently, 8 is the value which maximizes the log-likelihood function .-'(E'? ) =log L(8; y)
(since the logarithmic function is monotonic). Thus I(ﬁ;y) 2 {(6;y)forall # inQ.

Often it is easier to work with the log-likelihood function than with the likelihood function itself.
Usually the estimator # is obtained by differentiating the log-likelihood function with respect to
each element &, of @ and solving the simultancous equations,

al(&; y)

=0 forall j=1,2,...p.
2, orall j P

It is necessary to check that the solution do correspond (o maxima of  /(6; y) by verifying that

a*1(6; y)

! k

the matrix of second derivatives , evaluated at =6 is negative definite, Also, it is

e _'_,_._,--""'-__-_ .
necessary to check if there are any values of @ at the edges of the parameter space Q which

gives local-maxima of /(6 y).
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When all local maxima have been identified, the value of 0 corresponding to the largest one is

the maximum likelihood estimaior.

3.2.4 Method of Least Squares

This method would be used to estimate the parameters @5 8y;...d;,and b, b,,....b in the harmonic
analysis in the modelling of rainfall occurrences and rainfall amounts. Let K¥...,.}; be N
random variables with expected values E(Y))=p, for i=1,2,3...N and let the M's be

functions of parameters £, 4,,4,,..., B, (where p < N ) which are to be estimated.

Let B=[5,4,..5,]

Consider the formulation ¥, =y +e, for i= 1,2,3,...N in which for g represents the ‘signal’

component of ¥, and e, represent the ‘noise’ component.

The method of least squares consist of finding estimators 3, also denoted by &, which minimize

the sum of squares of the error term e, ; that is , it involves minimizing the function

S=Del =Yl -ul.

In matrix notation this is

gt

S=(-p ) (y—#)Where —

=TT ] and p=[p,p,]
a5



Usually, the estimator /# is obtained by differentiating S by each element B, of B and solving

the simultaneous equation?— =0.i=123,... p

i

It is necessary to phcck that the solutions corresponds to minima (i.e. the matrix of second order
derivatives is positive definite) and to identify the global minimum from among these solutions
and any local minima at the boundaries of the parameler space. An important distinction between
the methods of least squares and maximum likelihood is that the least squares can be used
without making assumptions about the distributions of the response variables ¥ beyond
specifying their expeciations and possibly their variance-covariance structure. In contrast, to

obtain maximum likelihood estimators we need to specify the joint probability distribution ¥’

However, to obtain the sampling distribution of the least squares estimatorsh, additional

assumptions about the Vs arc generally required. Thus in practice there is a little advantage in

using the method of least squares unless the estimation equations arc computationally simpler.
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33 EXTENSION OF MARKOV CHAINS MODELS

3.3.1 Introduction

Consider a sequence of random variables X, X, 1» X3+ X, and suppose that the set of possible
values of these random variables is{ﬂ,l,l,j,.,,,M} - It will be helpful to interpret X, as being the

state of some system at time #, and, in accordance with this interpretation, we say that the

system is in state iat time n if X =i The sequence of random variables is said to form a
Markov chain if each time the system is in state i there is some fixed probability P, that it will

next be in state j .That is, for all the i),i.i,....,7,.1. /,
PriXoa=ilX, =0.X, =i ... X, =i, X, =igj =P,

The values £, 0</<M,0< j<N,are called the transition probability of the Markov chain

and have the following features,

Ad
l. P,20,> P, =1,forall i=0,1,2,.,M.
J=0

2. Itisa square matrix, since all possible states must be used both as rows and as columns.
3. All entries are between 0 and 1, inclusive; this is becausc all entries represent
probabilities.

Knowledge of the transition probability matrix and the distribution of X, enable us in

theory, to compute all probabilities of interest.
e —

37



A tfransition matrix is a constant square matrix P of order #such that the entry in the ith row

and jth column indicates the probability of the system moving from the ith state to the Jth

state on the next observation or trial. An example of a transition matrix is

0.8 0.2
P=lo3s 065
For a first order Markov chain, the transition probability matrix used to calculate the occurrence

of rain is given by

Pz[ﬁm pm:I
1 Pn

where

Py = piwet day/ previous day wet)
Po = piwet day/ previous day dry}
Poo = pidry day/ previous day dry)
Py = pidry day ! previous day wet)

A Markov chain of order m (or a Markoy chain with memory m ) where m is finite, is

Whﬂl'ﬂ PI'{XM = &y Xn—] = Iﬂr—l’xar—: 53 Ir.-—'.! ?‘“J

Pr(X, =x,| X, = Xpps X g =X, g0 X ym =%,,) . for all n. This would be used to

determine whether the rainfall occurrences depend on the event of the previous day (first order)
R = ,.o--"'.-r--_-_ i

or two previous day’s event (second order).
L.
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3.3.2 Properties of Markov Chains

Define the probability of going from state j to state 7 in n time steps as

=
I
4
>
[

}1)(0 = 1) and the single-step transition as o= Pr(X, = f|Xn = ).

3.3.2.1 Reducibility

A state § is said to be accessible from state (written iP— ) if, given that we are in state i, there is

a non-zero probability that at some time in the future. we will be in state j. That is, that there

exists an n such that Pr(X, = j|_}fu =i)>0

A state i is said to communicate with state J (written i < j) if it is true that both i is accessible
from j and that ; is accessible from i. A set of states C is a communicating class if every pair of
states in C communicates with each other. (It can be shown that communication in this sense is
an equivalence relation). A communicating class is closed if the probability of leaving the class
is zero, namely that if / is in C but j is not, then J is not accessible from i. Finally, a Markov chain
is said to be irreducible if its state space is a communicating class; this means that, in an

irreducible Markov chain, it is possible to get to any state from any state.

3.3.2.2 Periodicity

= e . ; . 1
A state i has period k if any return to state i must occur in some multiple of & time steps and k is

the largest-rumber with this property. For example, if it is only possible to return to state § in an
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* even number of steps, then 7 is periodic with period 2, Formally, the period of a state is defined

as
k=gedin: Pr(X, =ilX, =i }>0

(where "ged" is the greatest common divisor). Note that even though a state has period &, it may
not be possible to reach the state in & steps. For example, suppose it is possible to return to the

state in {6, 8, 10, 12...} time steps; then & would be 2, even though 2 does not appear in this list.

If k= 1. then the state is said to be aperiodic; otherwise (k=1), the state is said to be periodic with
period . It can be shown that every state in a communicating class must have the same period. A

finite state irreducible Markov chain is said to be ergodic if its states are aperiodic.
3.3.2.3 Recurrence

A state 7 is said to be transient if, given that we start in state i, there is a non-zero probability that
we will never return to i. Formally, let the tandom variable T} be the next return time to state |

(the "hitting time"):
T =111jn{n:.ljt'rr =il =1 |
Then, state i is transient if and only if there exists a finite T; such that:

Pl'{Tr <oo }=l
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If a state 7 is not transient (it has finite hitting time with probability1), then it is said to be
recurrent or persistent. Although the hitting time is finite, it need not have a finite average. Let

M, be the expected (average) return time,

Then, state i is positive recurrent if M, is finite; otherwise, state i is null recurrent (the terms non-

null persistent and null persistent are also used, respectively).

A state i is called absorbing if it is impossible to leave this state. Therefore, the state i is

absorbing if and only if
Pii= 1 &nd Pi— 0 fur i _,i"

3.3.2.4 Ergodicity

A state i is said to be ergodic if it is aperiodic and positive recurrent. If all states in a Markov
chain are ergodic, then the chain is said to be ergodic.

3.3.2.5 Steady-state Analysis and Limiting Distributions
If the Markov chain is a time-homogencous Markov chain, so that the process is described by a

single, ﬁme—ind:zp;git_é_:t_lt matrix %:M_s;n_the vector 7 is a stationary distribution (also called an

equilibrium distribution or invariant measure) if its entries z; sum to 1 and satisfy

——
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An irreducible chain has a stationary distribution if and only if all of its states are positive-
recurrent. In that case, r is unique and is related to the expected return time:

e
-‘T_I.--—F.
b

Further, if the chain is both irreducible and aperiodic, then for any i and j,

. n |
imP™ =—.
R M |
Note that there is no assumption on the starting distribution; the chain converges to the stationary
distribution regardless of where it begins, If a chain is not irreducible, its stationary distributions
will not be unique (consider any closed communicating class in the chain: each one will have its

OWn unique stationary distribution). Any of these will extend to a stationary distribution for the

overall chain, where the probability outside the class is set to zero).

However, if a state / is aperiodic, then

and for any other state 7, let 7 be the probability that the chain ever visits state  if'it starls al 7,

lim Fﬂ‘iij%_.
!
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3.3.2.6 Markov Chains with a Finite State Space

If Pis the transition matrix and §, is an initial-state matrix for a Markov chain, then the Kth -

state matrix is given by
8§, =8P

The entries in the ith row and j th column of P* indicates the probability of the system moving
from the ith state to the jth state in K observations or trails. The sum of the entries in each

rowof Ptis 1.

The state matrix S=[s, s, . . . 5] is a stationary matrix for a Markov chain with

transition matrix P if

§=8,P where §, 20, i=1,23....n and 5 +5,+..+5, =1.

34  FIRST ORDER MARKOYV CHAIN

If we are interested in the rainfall between day ¢ and 1, of the year and we have N years
record of daily rainfall data for a station , then this forms an N xT matrix , where
I'=t,~f +1, the entries being the amount of rain falling each day in each year. If the whole

year 1s to be analysed then T = 366. Day 60 (29 February) only contains data in leap years.
=t o m——

To fit a two state Markov chain, each day is first classified into one of the two states, wet or dry.

e
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It will be sometimes appropriate to define threshold value for rain and define only the days

with amount above this as rain days. If a first- order, two- state Markov chain is to be fitted then

the data matrix may be condensed into a 4xT matrix. The four entries for each day are the

number of rain days following rain days, the number of rain days following dry days, the number
of dry days following rain days, and the number of the number of dry days following dry days.

The new matrix then becomes a 2x2xT table with entries on day t[n,(f)] giving the number of

years when day ¢ is in state j(1 = rain, 0 = dry) and day 11 is in state 7. If the full year is to
be analysed then day 366 (31 December) for previous year is used to give 77.(1). Otherwise

day -1 gives. In non-leap years, when day 60 (29 February) does not exist, the state / of day

59 is used to calculate n, (61).

In a first-order Markov chain, the probability of rain falling on any day depends only on the
state (wet or dry) of the previous day. The parameters to be estimated are therefore the transition
probabilities p,(f), that is, the probability of rain on day t conditional on day 7 —1 being in state

i fori= 0, 1.The obvious estimates of p(¢), which are also the maximum likelihood

estimates (Anderson and Good-man, 1957), are the observed proportions of years with day ¢ —1

in state 7 that had rain on day ¢, that is

() =0, () +17,, ()]

e e ! s
The next step in the analysis is to fit a function to model the time dependence of the probabilities

of rain £y through the year.
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This involves fitting a regression-type equation to the r(t), using the correct form of the

distribution for the data. The 7, (/) may be considered as observation from independent binomial

- distribution with number of trials [1,,(1)+2,(1)] and the probability of success p,(¢).If the *

 equations for the time dependence of probabilities are given by p(t) = h(g,(®)), i= 0,1,

Where # is a known function and g, (1)is any function linear in unknown parameters, then the
model is a Generalised Linear model. Therefore the unknown parameters in g,(f)can be found

using the maximum likelihood estimation. The link function £ used here is the logistic
pt) = explg, (N1 +explg (]}, i= 0, 1.

Where the link function makes the values of g.(f) lies between 0 and 1. There are many types ol
functions of g,(¢) that may be used for modelling the time dependence throughout the year.

Which of these is appropriate depends on the use that is to be made of the fitted model. The

simplest model assumes a constant probability of rain, that is

gli=a i=0,1.
This method was used by Gabriel and Neumann (1 962} in modelling a daily data from Tel Aviv.,

An alternative way is also by making the function g.(f) to be a step function which makes the

probability of rain to vary.

— . s
The function g,(¢) then becomes:

e
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0= a, for 1, <1<s,
= @, fors stss,

='H..r'l _ﬂ?!' Sm—l = Er!

Which takes a different value for each of the m periods (s,_,,5, ). This model was used by

Heermann et al. (1968) and Jackson (1981),

Probabilities that vary continuously with time are more attractive. The simplest are polynomials

g.()=Y a,*.

k=l

Fourier series may also be used in which case

g0 =a,+) [a,sin(k')+b, (kt')], where {'= (i ~183)/183.
k=]

3.5 THE DEVIANCE

The fitting of any of the functions of g,(r) is analogous to fitting regression equations for

normally distributed data. For normal data a residual sum of squares is calculated for each
model. Different models are then compared by considering the magnitude of the difference
between the residual sums of squares. With non-normal data, the analogous statistic is the

deviance, which is given for a binomial data as
e o o E
G: = ZZ{H{I}ID[}': {f)i’fﬁl {f} "l"[l —.il'" I:I:I]Iﬂ[{l = .!"r{f]}fﬂ = f’l (!})]}r
i
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where p, (1) is the fitted value of p, (1) , and £,(r) is the fitted value of g (¢) with the unknown
parameters replaced by their estimates. If m parameters have been estimated and the model is the

correct one then G has approximately a 7 distribution with (7 — m ) degrees of freedom.



CHAPTER FOUR

SIMPLE ANALYSIS OF DAILY RAINFALL DATA

4.1 INTRODUCTION

Throughout the world considerable effort is devoted to the collection of rainfall data. Many long
records exist and most countries now have g reasonably dense network of rainfall stations, The
work on data collection is not, at present, matched by a corresponding effort on analysis. This
chapter of the thesis introduces the “direct” methods of analysing daily rainfall data. Nyankpala, a
suburb of Tamale notable for its maize production is used as a case study. The need for rainfall
analysis has already been emphasized in chapter two and in this chapter simple methods are used
to describe the analysis. The methods used are applied to agronomic questions on dry spells and

on the start of the growing season for maize.

Section 4.2 discusses the data availability and software for the analysis, whilst section 4.3
considers how daily rainfall data is captured in Instat Climatic Software and graphical display of
average rainfall. Section 4.4 discusses dry spells in the daily rainfall data, The starl of the
growing season and the definition of the growing season are also considered in section 4.5, In
section 4.6 the end of the growing season has also been looked at whilst section 4.7 also
considers the lengﬂ: _::_ﬂ‘"i,he .gmwi“r},g—w_ “The chapter ends with a conclusion on the results

obtained and this is presented in section 4.8,

_—-'-._'_
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4.2 DATA AVAILABILITY

The dala for Nyankpala covering 51 years records (1953-2003) was made available by the Ghana
Meteorological Department in Accra. Unlike the advanced countries where climatic data are in
computerised form, in Ghana the data extracted from the archives at the Meteorological
Department were on pieces of paper. One of the major problems faced in the initial analysis was
the time spent for entering all the daily data for the 51 years. The data was first entered into
Excel and then transferred to the Instat software. This was arranged to forms a data matrix of
366x 51 and a section is presented in Table A 1 in Appendix A, To ensure that any analysis
performed draw valid conclusions, the quality of the data was investigated at the initial stage of
the analysis. Monthly totals were calculated and compared to monthly totals supplied by the
Meteological Department and where there was any disagreement, the necessary corrections were

made, The data for 1965 was incomplete and was not used for the analysis.

Instat Software provides a climatic data base structure together with tailored programs within the
software. These programs are partly to provide data entry, quality control and dense number of

programs for climatic analysis.

4.3 DAILY RAINFALL DATA (1953-2003)

Table 4.1 shows a display of the daily rainfall data (mm) Nyankpala for the year 2002. This

shows how daily rainfall data is disptayed by day and month in Instat.
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The codes *--™" shows days of no rainfall in the data. Tt is clear from Table 4.1 that the first rainy
day in 2002 occurred in March 9 with 6.4mm of rain while October 19™ was the last rainy day

in 2002 with 8.9mm of rain.

Table 4.1 DAILY RAINFALL DATA FOR 2002 AT NYANKPALA

HMon Jan Feb Mar Apr May Jun Jul Aug Sap Oot Moy e

L= Sl o o ol PN S e ————

13 e il R A B.48 0.7 o N e —= 7.8 — =0

o = = == = s =T == B0 1Bl SSFLE ==  an

Tha e = -— == — — = - -

I = = - — 0T = = L =a =

17 — - - 0.2 — 2.3 28 - == - -- ==
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22

24

24

25

From Table 4.1 we noticed that, there were 62 days of rainfall in 2002 with a maximum daily

rainfall of 85.6mm which occurred in August 25", August has the highest monthly rainfall in

2002 with an average of 97.7mm while the annual rainfall was below 1000mm of rain.

4.3.1 AVERAGE RAIN FALL

Rainfall variability constitutes the dominant character of the climate of Ghana. Figure 4.1 shows

a graph of the average monthly rainfall in Nyankpala in 2002. It is clear from figure 4.1 that

Nyankpala has a single rainy season with monthly totals increasing slowly from March and

reaching its peak in August. Although monthly average rainfall or monthly rainfall totals are

useful in defining the pattern of rainfall, it does not reveal the periods without rain which are
- L i =5 _,_4-"'-'-'_.----_

useful for agricultural planning.

_--'-._._
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In section 4.4, we shall look in detailed the distribution of dry spells for different periods within

the 51 years of daily rainfall data from Nyankpala.

AVERAGE RAINFALL

—4—AVERAGE RAINFALL

Figure 4.1 Average monthly rainfalls in Nyankpala in 2002

44 DRY SPELLS

Maize is known to be particularly sensitive to waler shortage immediately after germination and
flowering, Maize stomata do not recover after a severe drought of 7 or more days although
leaves may recover turgidity. The knowledge of the relationship between the numbers of dry
days in the periggi_gf_i;fr';aizﬁ growth could be-of great cconomic and agronomic value especially in
West Africa where lack of adequate and assured water from rains is a major setback in the yield

_-—-'--._
of a crop.
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Crops should therefore not be sown during periods of high risks of long dry spells as this will
affect germination. A dry spell isdeﬁnudasaseqmofcmu&vcd:ydnysmmnﬁnh
zero or less than a threshold value, A threshold value is used for the purpose of the accuracy of
the data source. The quality of data records sometimes vary from station to station and possibly
between periods at same station. A threshold can therefore overcome this problem while only
lost information on very small rainfalls which are of little or no value to crops. The threshold
value used in this project is that days on which less than 0.85mm of rain were recorded were
considered dry. In analyzing rainfall data, Stern et al (1982) emphasizes that, daily rainfall data
should be used, particularly because the risks of dry spells and the probability of heavy erosive
rainfalls may be estimated. Too often, data are aggregated over periods of seven days, ten days
or month which loses vital information related to many important events. With computer

facilities as advanced as day are now, excuses relating to size of data set are no longer valid.

In this study, daily observations were used and cach day was coded as dry or wet based on the
threshold value. The sequence of wet and dry days in 2002 at Nyankpala is presented at Table
4.2. In the year 2002 it was clear that there was no dry spell of more than 8 days from May to
September. During the whole year the longest dry spell was 73 days which began after October
19 and ended on December 31. There were no rains in the months of January and February. The
carly part of the year is coded as missing (m). In the absence of information at the end of 2001 it
1s not possible to give the spell lengths for 2002 until the first wet day. As shown in Table 4.2 the

first rainfall was on 9™ March. Table 4.1 earlier showed that the rainfall on 9* March was just
over bmm,



This is not enough for sowing a cereal crop and the results in Figure 4.2 show that there was a

dry spell of 26 days ending on April 5™ 5o sowing early would be unlikely to be a success. Table

4.3 gives the maximum dry spell for each month,

Table 4.2 DRY SPELLS AND WET DAYS FOR 2002 AT NYANKPALA

Hon Jan Fehk Mar RApr May Jun Jul Bug Sep Dt Nov Dec
Day.
L il = m 23 I 1 = 3 1 = 13 FE
i C i S kT 1 1 2 1 14 44
3 m ¥ m 25 3 1 = 2 -- 2 15 45
4 m - m ZE 4 e 1 -~ 3 16 16
5 W = = e = 1 == = = 4 17 47
E m - m 1 ) - 1 1 1 5 18 4B
7 m - m ) z 1 2 - - 6 19 19
8 m - m 3 -- 2 3 1 1 7 20 50
g m - —- 4 1 - 1 2 2 8 21 57
10 m - i 5 2 1 5 3 -— - 22 52
11 m - z B 3 ? -- 4 1 1 z3 53
12 n - 3 7 q 3 1 5 2 -- 24 54
13 m - 4 - - [ 2 — 3 - 25 535
14 m - 5 I 2]l 5 3 -- - -- 28 56
15 & - 3 2 Z 3 4 1 5 1 27 57
16 m - 7 3 3 7 -- 2 2 2 28 =8
1T & = 8 1 1 = = 3 3 3 29 59
18 m = 9 5 - - - 4 -- 4 a0 60
ST s o 5 T e S i
20 m = 11 7 1 —= Z - 2 1 32 a2
R
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71 = - i2 8 2 1 =~ = 3 2 1 O
77 = - 13 g ~- 2 1 1 : 3 T 64
L - 14 10 1 3 — 3 3 1 T < 1
24 = - 15 11 2 = 1 3 -- 5 36 b
25 n = 16 12 3 1 2 4 1 3 37 5]
26 n = 17 13 [ - 3 5 2 T 38 £d
21 m = 18 14 5 1 d -- 3 ] s &9
28 = - 19 15 6 2 5 -- 4 9 @0 70
29 m e 20 16 T -- © -- 5 10 [T mn
30 m = 21 -— ] 1 -— 1 6 11 i T2
I 0m - 22 -- - -- 12 73
Max imum - {Overall: 73)

31 29 22 26 8 7 3 5 6 12 42 7

In discussing dry spells care should be taken to differentiate between the ways by which spells
lengths are calculated, since their interpretation can be misleading. Archer (1981) emphasizes
that to show the change in probabilities more clearly, analysis of dry spells should be done on
overlapping periods. Figure 4.2 presents the probabilities of a dry spell length of 7, 10, and 15
days in overlapping 30 day period from January 1™ to December 31*
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The results show that the graphs of the chance of 5 dry spell of more than 5, 7 10, and 15 days, in

overlapping 30 days period from January 1% to December 31" shows similar pattern.

The chance of a dry spell of 10 and 15 days have drop below 0.2 from March 20 to June 14"

(day 90 to 126). This type of result can help to determine planting strategy.

The dry spells length for Nyankpala for the month of May, June and July was calculated for all

the 50 years daily rainfall data and the results obtained are shown in Table 4.3.

The results indicates that, there are a maximum of 166 and 36 dry spells in April and May

respectively with June having a maximum dry spell of about § days.

Table 4.3 DRY SPELLS LENGTH FOR APRIL MAY AND JUNE AT NYANKPALA.

(1953-2003)

YRMON | April May June YR/MON | April May June
1953 20 7 s 1979 23 12 8
1954 8 14 6 1980 36 8 7
1955 6 12 7 1981 19 ) 5
1956 19 6 B 1982 7 ] 4
1857 12 8 g 1983 29 36 5
1956 11 14 B 1984 16 9 6
1959 1 10 5 1985 13 18 7
1860 10 ) 7 1986 13 12 7
1961 12 12 8 1987 |23 34 7
1962 16 7 7 1988 15 7 B
1883 26 0 7 [ | ess 12 11 3
1964 16 = P 1980 |42 10 9
1966 8 ) 6 1601 0 0 0

S =

57



(1987 8 6 5 —|—1@ i 8 5
1968 ) 10 6 1993 13 11 5
1968 7 5 12 1994 19 14 5
1870 30 6 9 1995 21 6 6
1971 9 9 ) 1996 13 1 3
1972 15 3 7 1997 16 3 7
1973 8 9 & 1998 158 10 7
1974 18 i 9 10 1989 G T 8
1975 7 15 & 2000 14 6 6 i)
1976 166 7 4 2001 10 7 8
1977 30 8 19 | 2002 25 8 7
1978 22 B 10 | 2003 14 9 B

45 START OF THE GROWING SEASON
4.5.1 Introduction

In Ghana where rainfall is highly variable, there is a risk of crops failure due to water shortage
whenever they are planted. This means that the planting date is crucial and by choosing it
correetly the risk of crop failure due to water shortage may be mimimised. In defining an event to
mark the start of the growing season, Stern et al (1982), emphasized that daily rainfall values
should be used as opposed to studies which have used rainfall amounts summarized over years

making it difficult to interpret the resulting average dates.

e = _'_,_,.--'_'_---_
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4.5.2 Definition for the start of the growing season

Many possible criteria exist to define the start of the growing season because the start of the
growing scason for a particular crop may require more or less rain than other crops. Any
definition used m rainfall analysis in West Africa due to the peculiar nature of the distribution of
rainfall pattern should reflect on the farmers experience and the benefit of early harvest. Most
authors have used rainfall amounts summarized over years in their studies of the start of the
rains. Woodhead et al., (1970), Panabokke, (1974) considered percentage points of the total
rainfall in successive 7 or 10-day periods in the analysis of daily rainfall data. While these can be
a useful guide to which crops are viable, there are many other aspects of the rainfall pattern that

are also important.

For example, in many areas of the seasonally arid tropics, crops must be planted early and the
date of the start of the growing season may coincide with the first heavy rainfall. Davy (1976)
observed that millet was often planted in Nigeria after occurrence of at least 20mm of rain over a
2-day period, The distribution of the date of this event is therefore of interest. Crops will be at
risk from dry spells occurring during the growing season. The level of the risk can sometimes be
assessed by evaluating the probability that a long dry spell oceurs when plant is particularly
sensitive, such as just after germination, or at flowering. A calculation of the chance of long dry

spells through the season is therefore often useful. The criteria used by Stern et al (1982) for the

start of the rains CDII'S_iETﬁ:d of tbrexﬂn_gg@ntsi

1, The start of the season is considered until after a stated date, D.
L
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2. An event, E, then indicates a potential start date, defined as the first occurrence of at least (x)

mm {otaled over * 1~ consecutive days.

3. The potential start could be false start if an event, F, oceurs afterwards, when F is defined as a

dry spell of * n* or more days in the next * i * days.

This definition as stated has not been restricted to any particular crop neither is it based on any

particular soil water capacity. The * x ‘mm,*{’ days, ‘n’ dry spell and ‘m* should be chosen for

different crops on different soils.

4.5.3 Rainfall amount summarized over days

The dangers in using rainfall amounts summarized over days as mentioned above is discussed in

detail in this section. An example is used to illustrate the problem.

In this example rainfall amounts have been grouped over a period of seven days to determine

when there is sufficient rainfall amount to mark the start of the growing season,

The example has been chosen with no reference to any particular place and the rainfall amounts
are carefully chosen so that the real problem is revealed. The start of the rains is assumed to

coincide with the first occurrence of 20mm of rain totalled over seven- day’s period.
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Table 44 RAINFALL AMOUNTS (MM) SUMMARISED OVER SEVEN-DAY TOTALS.

?ﬂ‘l’ Rainfall Amount (mm) | Totals
0

2 10

3 0

4 5

3 2

6 2

4 0 19

8 10

9 2

10 1

11 2

12 2

13 1

14 0 18

15 17

16 4

17 2

18 0

19 3

20 2

21 5 33

Table 4.5 SEVEN-DAY RUNNING TOTALS OF RAINFALL AMOUNTS (MM)

Day Rainfall Amount (mm) | Totals
1 0 :
2 10 ..
3 0 |
4 5
5 2
6 2
7 0 19
i 10 - 29
9 — 21
10 1 22
—11 2 19
12 2 19
Bl



15 1 (18
14 0 18
15 17 75
16 4 27
17 2 78
18 0 76
19 3 29
20 2 28
| 21 5 33

The calculations in Table 4.4 and Table 4.5 indicate two different methods in choosing a suitable
planting date. Table 4.4 indicates when seven-day totals (no overlapping) are used and Table 4.5
when seven —day running totals are used. It is clear from Table 4.4 that week three (day 21) 1s
the first occurrence of at least 20mm of rain totalled over seven consecutive days. A suitable
planting time using this method is from 15™ -21%, In table 4.5, the groupings of the running
seven-day totals arc as follows ; 1-7, 2-8,3-9, 4-10, 5-11,.... The first occurrence of at least 20mm
is on day 8. By using the running totals we make efficient and detailed use of the daily data
which leads to suitable time for the start of the growing season. In Table 4.4 the choice of the
suitable time was limited to only three numbers while in Table 4.5 the choice came from 15
aumbers. It should be noted that for most part of the years the start of the growing season will
oceur earlier if running totals are used instead of data summarised over days. In the proceeding

sections we shall restrict ourselves to the use of running totals of rainfall amounts in the growing

SEason.
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ll 454 Application of Definition to Nyankpala Data

]

. The definition used in this project is stated as follows; the carliest date, D, when rainfall is

qfficient to provide water equivalent to or greater than one half of reference crop
thaﬁun ( ET, ) and remain greater when ET, for the remainder of the growing season
pr_m.ridcd that a l:h'jf_r spell of five days or more did not begin in the week after this date. The
carliest date, D, defined here is chosen to be 1 May beyond which farmers would normally not
do any planting. Studies that have used this definition ( rainfall = 1/2ET,) include Benoit (1977)
in the studies for the start of the growing season in Northern Nigeria. The reference crop
evapotranspiration which is the effect of climate on crop water requirement is defined as  rate of
evaporation plus transpiration from plants on extensive surface of § to 15 em tall, green grass
cover of uniform height, actively growing, completely shade the ground and not short ™

(Doorenbos and Pruitt, 1977). There are different methods used for calculating ET; values. The

Priestly Taylor method is used in this project. The minimum requirements for the Priestly Taylor
equation are the daily net radiation and the mean daily air temperatures. The Priestly Taylor

equation predicts potential evaporation from a horizontally uniform surface as

A
Aty

Potential Evaporation = & (R, —=G)

where @ = Priestly-Taylor coefficient (taken 1.26)

A= rate of change of saturated water vapour pressure with temperature

s L —

.= psychometric constant (here taken as 0.0006mbar/ ")

63



R, = net radiation(mm water /day)

G = Soil heat flux (here considered to be zero over 24 hour period)

i order 10 calculate the rate of change of saturated water vapour with temperature (A), an

pquation was used in which saturated water vapour ( e, ) was related to temperature (T) (°C) as

EI[TJ -_: ﬁllﬂg_lﬂﬁ.ﬁ'ﬂ{ﬂll‘u—r]} {mb). aﬂd

s
(de, 4082 (D) (e

dr  (237.3+7)

[n this thesis the method of seven day running totals was used to get the rainfall amounts for each
day and the definition for the start of the growing season defined above was used. The suitable
planting date for each year was determined and the results of the analysis are presented in Table

46 and figure 4.3. Reference to table 4.6 indicates that for a sample of 50 years, eatly planting

had occurred in 7 years.

The earliest date, D, is day 122 (May 1%) and the latest date is day 223 (August 10™) beyond

which farmers would normally not do any planting. The mean starting date is day 142 (May 21%)

and the standard deviation is 19 days.

Figure 4.3, shows a time series plot of the results of the start of the rains for the definition used.

. rd
We noticed that there is great variability in the start days, ranging from 122™ day to 2237 day.

el = H'_FH_______-—-—
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START

OF THE RAINS

Tabled.6 THE START OF THE GROWING SEASON

YEAR | DAY | DATE YEAR | DAYS | DATE
1953 129 May 8™ | 1979 147 | May 26™
1954 154 | June2™| 1980 | 147 | May 26"
1955 147 | May26™ | 1981 145 | May 24™ |
1956 122 May 1" | 1982 137 | May16”
1957 139 | May18™ | 1983 129 | May8"
1958 149 May 28" | 1984 131 | May 10"
— 1959 135 | May14™ | 1985 160 | June 8"
1960 122 May 1% | 1986 144 | May 23"
1961 154 June2™ | 1987 133 | May 12"
1962 133 May 12" | 1988 122 | May1®
1963 139-/‘%&“ 1989 150 | May 29"
1964 141 | May20" | 1990 189 |  July 7"
| 1956 147 |  May zsj 1991 122 | May 1:
1967 124 May 3 1992 154 | June 2
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1968 136 May24 | 1993 142 | May 21"
1969 122 May1® | 1904 146 | May25”
1970 130 May 9™ [ 1995 125 | Mayd™
1971 163 | June11™| 199s 135 | May 14"
1972 122 May 1" | 1997 122 | May 1"
1973 128 May 7" | 1998 126 | May 5™
1974 154 June2™ | 1999 130 | May9"

1975 150 | May29™ | 2000| 124| May3”®
1976 124 May3° | 2001 175 | June 237

1977 223 | August10™ | 2002 154 | Jjune 2™
. 1978 176 | June24™ | 2003 132 | May 11"

46 THE END OF THE GROWING SEASON.

Another agriculturally important feature of the rainfall pattern is the timing of the end of the wet
season. If this occurs too soon the crop may not have sufficient water to reach maturity,
However, excessive wet weather may prevent ripening or harvesting. In general, crops will use
stored soil moisture for growth beyond the end of the rains, and so the end of the growing season

isthe date when the soil profile is too dry for growth to continue.

This date can be evaluated by considering a water balance model with rainfall as input to the soil
and evaporation (plus possibly runoft and drainage) as output.

Determination of the number of rainfall days yielding specific amounts of rain, start of rainy
season and the study of the events in general are some of the necessary steps towards an
understanding of daily rainfall behaviour. It is of some importance in adapting a farming system
to supplementary water resources to know how long a wet spell is likely to persist, and what
probabilities are ﬁf_éﬁpéﬁenchzgﬂ;ll_s of various duration at critical times during the
Browing-season.
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je 4.7 WATER BALANCE OF NYANKPALA

1 ',nﬁnyhyhmdudulhyﬁﬁmmig.h,yﬂhﬂ.ﬁ-
. 'Aﬁum:-hmammm-nmmhuw-m
es a cut-off to distinguish wet and dry days. The end of the scason was defined as the first
_;ﬁilmﬁhismwm 1" September. This was defined by Raman (1974), which is |
"uulmdiﬁnd by the " (INSTAT"Climatic software, 2001). Considering Table 4.7 below,
balance table of Nyankpala.

Feb

Mar

. Apr May Jun Jul Aug Sep Oct Nov Dec
| .
lt - - - 2 37 N ¢ 4@ 2 -
[ i’ - e e - - 32 26 N 36 T3 -— -
F B = - g s ol A =
'i B == = - - A8 o A0 i, st - n
r' - -- - - - -+ 22 20 47 £ - --
F B e B R 1L I W - =
I LN N = . S S T R
: Pes == -- 25 --_ .55 10 5 <3d o8 - =
B == -- 20 -- 55 SFUNE TCNT 23 e -~
' i - -- - 15 -- 53 - 24 . 18 - -
| | B 30 24 48 . — S 4 3 == oNee
. = — -__:-"" T ﬁ;—-—:‘L"_ e 75 rey ] e ==
B == i3 12 & I B B B g ==
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T = i = 13 2 57 - 24 49 54 == ===
R - e = 8 13 52 13 19 14 49 — =
"fli_ — == eh 3 ] 47 ++ 15 35 53 = —
- - - - ¥ a2 86 35
[ - e B -- 42 51 31 o T = =
o g = 3 28 37 51 26 ++ 44 =
21 n e == = 23 3z 1B 21 - ET) = o
¥ i Fr 23 == 18 27 41 16 5% 34 -- -
PR = R 18 3 13 22 36 13 50 29 —— —
L o G 13 i 8 17 31 kT 54 24 —- -—
3 - iz 8 1 3 12 26 33 15 19 -- --
2b - =t 3 =iz e 7 21 2B 44 14 -- -
o - - = = 6 2 43 23 45 10 -- --
28 - e e -~ 4 16 ET:) 18 40 5 -- --
28 = FoE == 1 == 41 33 26 ++ = = =
a0 - -- - - 36 33 32 55 -- -- -
TR -- == Z8 46, | - = = -

The earliest date for the end of the season is day 245 (September 1) and the latest date is day 324
(November 20). The mean end of season date is day 285 (Octoberl 1), and the standard deviation

i§ about 22 days.

47 THE LENGTH OF THE SEASON_

The legﬂh..af-tlie growing season refers to the time between the start of the rains and the end of

the growing season (the end of the rains).
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',éippmldix A shows the values of the various s
la from 1953 to 2003.

and the length of the growing season

at the table, the mean length of the season is about 144 days and the maximum length of *
is 192 days.

’-‘1 q-‘r.n 13 15 17 19 21 23 25 37 20 WM 33 B 37 30 41 43 46 4T 48

4.4 The start, end and the length of the growing scason.

CONCLUSION

the exploratory ’_gnalysis discussed in this chapter, there was no significant change in
so far as the rai-nfall pamm_ The start days appear to be randomly

d gver-the years, showing no particular increase or decrease over the years, taking dry
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spells into account. In terms of change, this would imply that there docs not seem to be much

-idence of increased risks for farmers over the years.

Wﬂ'_pwmd to the next chapter where the analysis went further to quantify the probability of
in, the amount of rain on any particular day and the probability of long dry spells of different
lengths at different times in the growing season particularly round the sensitive period of
flowering to consider how these findings might relate to the farmers’ needs. In this work,
however, we confined ourselves to consider changes in climate as it influenced the start of the

rainy Season.
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CHAPTER FIVE

- MODELING THE DAILY RAINFALL SEQUENCE BY MARKOV CHAIN

51 INTRODUCTION

Agricultural scientists and statisticians have shown considerable interest in the modelling and

simulation of daily rainfall data. Many methods for anaylsing rainfall data has been used but
among the proposed methods, a combination of Markov Chain model for analyzing the
probability of rainfall occurrence and the gamma distribution function for the amount of rain are

particular popular,

52 MODELING THE OCCURRENCE OF RAIN

To use a Markov chain model for the probability for the occurrence of rain each day is classified
a5 a wet day (w) if the amount of rain is greater than or equal to a threshold value & mm or a dry
day (D) if the amount of rainfall is less than § mm. & mm is consider to be of doubtful value
both to the crop and in terms of the reliability with which the data are recorded. The

dassification of a sequence W's and D’s can be regarded as a two - state Markov Chain with wet

and dry day as the two states.

It is assumed that thé"ﬁmhability of rainfall on any day depends only on whether the previous
L e Arsdia bl

day was wet or dry, i.e. whether rainfall did or did not occur. Given the event on a previous day,

e —

the probability of rainfall is assumed independent of events of further preceding days. Such a
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B
ﬁﬁ]j'ability-madel is referred to as a first order Markov chain model whose parameters are the
mwo conditional probabilities:

p=pr fwet day | previous day wet)
p=pr {wet day! previous day dry}

The model is fitted to the T days of the year from day ¢, to dayt, .

Let R()=1 if x(t) = dmm imply wet day
=0 if x(t) < Smm imply dry day’

Where x(s.) is the amount of rain on day ¢ and f =11.f,...4,
The first order Markov chain is

PR =1/R(t —1),R(t=2)....] =1/ R(t 1) =i] i=0,]

Similarly in a second order Markoy chain it is assumed that the probability of rainfall occurrence

onday ¢ depends on the state of the two previous days. Thus

PIR() =1/ R(t 1), R(r = 2),.....]
=1/R(t-D=i,R(t-2)=h]
= p, (1), where h=0,1, fell 13

The usual analysis of Markoy chains assumes stationarity that is

B s
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In general p, (1) are estimated from observed values of 7 (1), the number of times day ¢ is in
@fﬂ;) = Jl(j =1, wet and j=0 dry)] with x(/ ~1) =i, x(t-2)= h, over the years.

The conditional probabilities are thus estimated by the appropriate relative frequencies. These |

e the maximun likelihood estimates 7 (1) = — 7@
NakE) + 17,4 (£)

where F(1) is the proportion of rain days wet for day¢. For a second order model

e My ()
H= /
) Ry (1) + 1735 (1)

Higher order chains (i.e. greater than second order) have been used in few studies, The strength
of the Markov chain model lies in its simplicity. All the propertics of rainfall occurrences are

derived from the model and require only the calculation of the transition probabilities.

53 MODELING THE TRANSITION PROBABILITIES

Modelling the transitional probabilities of the first order chain is indicated here. Higher order
models can be applied accordingly. The individual number of rainy days #,(f) are binomially
disributed with probability of rain  p,(f) and the number of trials n,(f)+n,(¢). In the fitting

process ordinary regression cannot be applied since the F(1),the estimates of p,(f), are

roportions. = 1
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ﬂh p(D=f(g,) i=0, 1 where f is known function and g, (1) is any function linear in
gknown parameters. The logit transformation is applied hence g (r) gives a value of

le as [ﬂ, 1].
The function g, () can thus be modelled in a number of ways:

I, g()=a, i=0,1. The model assumes constant probability of rain.
ar i -

Lgn= Za,-_.,r . Polynomials with time of the year as the independent variable.
=0

. 2rmht SRR e ‘ 2
1 g(t)=a,+ Zﬂm sin—— 3 +b, ms% which is a Fourier series where m is the number of

harmonics fitted. The Fourier series have the advantage that the function is continuous at the
ends of the year. However, the sclection of harmonics can be quite challenging. This major

question in fitting data to the function using Fourier series is which harmonics (terms of the form

[a,, sm( }+ b, cos( 23;::;:

]] should be retained in estimatingg,(t)? If a,,a@ and bare the

only constants considered to be different from zero, then the fitted function is unimodal and

symmetrical. Retention of any further harmonics may indicate bimodality in the fitted curves.

54 APPLICATION OF MARKOV CHAIN MODEL TO NYANKPALA DATA

541 Structurc of the Data __———
The Nyankpala data are analysed in this section. Stern et al. (1980) used first order Markov
e —

chains in a comparison of the climate of eleven places in West Africa.
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the motivation then is to see how adequately Markov chains fit the Nyankpala data and to find

fos sumber of harmonics that also fits the data. In cach year, each day is classified as wet day if

X(#)20.85mm , and dry day if otherwise. X(r) is defined as the amount of rain recorded on

day t. Four vectors are thus required summarised over the years as follows:
* number of dry days with previous day dry
s number of dry days with previous day wet
* number of wet days with previous day dry
» number of wet days with previous day wet

After summarizing the daily data into these categories the data were put into groups of 5 days to
produce shorter vectors. The advantage is that the analysis with Instat is quicker and requires less
storage. The assumption here is that there is not much variability within each group. Instat was

‘used to fit the model using Fourier series.

54.2 The Order of the Markov chain

The simplest model is zero order Markov chain, Here the probability of rain on any given day is
estimated by the proportion of rain days on that day. The first order model has been found to be
‘adequate for many practical purposes in most countries. A second order model has also been

found necessary [‘[ii:;_@tng data Egﬂg_giﬂﬂy_iﬂ stations in the Indian sub-continent. Zero, first and

second order Markov chain models were therefore fitted to the data. The results of the
e —

75



comparison of the models are presented in Table

alternative models to the daily rainfall data,

Table 5.1

Results from fitting Markov chains of various o
Ghana with time dependence mode]

5.1. These results follow the fitting of seven

rders to the data from N}fankpala,.
led by Fourier series to the data in S-day group

Deviances of Models fitted
Harmonics(m) E;EEE of\ ) | prlr) | Perld) | perlrn) P(r|dd)
1 70 917 95244 | 77185 |1207.87 |6276.29
12 68 4.02  |379.14 | 267538 | 761.88 | 282067
13 66 222 25405 |2513.1 |644.16 | 266226
4 64 0.93  |24743 | 1672.76 | 624.92 | 1862.04
5 62 087  |240.844 |1543.44 [56932 | 171475

From Table 5.1, the largest deviances oceurred by fitting a second order Markov chain models.
This makes it obvious that the second order Markov chain curves gives a poor fit.
The largest deviance for fitting the more complex model of the second erder models indicates
that they are not required. It can then be conclude that a first order Markov chain is adequate for
modelling the data.

'f'hc model fitted is presented in figure 5.1 whiles the parameter estimates and the results of
fitting the first order Markov chain with the time dependence modelled by Fourier series to 5-day

il gl

group data from Nyankpalan is also presented in table 5.2 and 5.3 respectively.

—

76



0.7

* yve N
06 fit 1

s o
s th
I T

L ]

Probability of rain
a
Ll
-i

02+ a?

01 F b

1 1
10 20 30 40 £0 80 70
Daye of the year

Figure 5.1 Fitted Fourier curve for first order probability of rain with five harmonic.

The notable features of the graph are as follows:

o The first order probability of rain curve has a unimodal pattern. The diagram in figure 5.1

shows clearly that the probability of rain increase gradually from January to July where

it falls slightly till the end of July.
e The curve increase till second week in September where it attains its peak.

o The curve falls drastically from second week in September for the rest of the year,
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‘Table 5.2 Parameter estimate for the first order Markov chain used to model the occurrence

‘of rain in Nyankpala

Parameter Estimate SE 658 T

Const 0.37535 0.038 0.3 0.4519
al 0.05377 0.0431 -0.0423 0,.14399
dcl ~1.1814 0.0538 ~1.299 -1.064
az 0.27443 0.055 0.1646A 0.3643
b2 0.60787 0, 0524 0.583 0.7127
a3 —0. 1208 0.0541 =0 224 -0.0128
b3 —-0,18365 ~ BDag -0 2858 ~0.0775
ad =0.030945 _ 0. 0518 —-0.1432 0.0643
b4 0.07873 0.0526 —-0.134 0.0Z65
as 0.01357 D.0463 ~-0.0742 0.1134
b3 0.05788 0. 0471 —0.0361 0.1521

Table 5.3 Results of fitting the first order Markov chain with the time dependence modelled
by Fourier series to 5-day group data from Nyankpala

Harmonic(s) Degrees of freedom Deviance
1 70 952.44
2 68 379.14
3 oo 254.05
L4 64 24743
i N 62 240.84
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54.3 Conclusion

The probability of rainfall occurrence presented with the first order Markov chain mo i

gnabled us to use the rainfall data sufﬁcienrl;-,r. The first order Markov chain model is found to be

fitting well and the results obtained is presented in figure 5.1. The results obtained from fitting
the first order Markov chain model are very useful for agricultural planning which indicates the

potential of the Markov chain models for modelling the occurrence of rain. The ways such

models can be used are discussed in Chapter Six.

55 MODELING RAINFALL AMOUNTS
5.5.1 Introduction

The daily rainfall amounts have a J-shaped distribution with a large proportion of small values
and a few large values. The distribution is therefore skewed to the left. The Gamma distribution
has been widely used to model the distribution of the daily amounts of rain falling on days when

rain occurs and for rainfall amounts for longer periods.

The density function of the gamma distribution is given by

(k! p) x*" expl—kx | u]
Sk, 1) = I'(k) ik, x>0
0, elsewhere

Where I'(k) isthe gamma furction defined by

r(k)= fx*-' exp(—x)dx
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he Gamma distribution has tWo parameters, the mean amount of rain on arainy day ( i )and

k the shape parameter. 1/k is the square of the coefficient of variation. When k = 1, the

distribution of the amounts is exponential and is a special case of the Gamma distribution

Itis found that generally there is a seasonal variation in the mean rain per rainy day (u) but k

may be assumed to be constant through the year. Since 4 is related to time of the year, 1, by

‘ﬁleﬁmngnfunctmn log () = g(r), u(r) is always positive (u(r) > 0),

The function g(r) can modelled by any of the methods described in section 5.2. This study uses

the Fourier series approach and the reason is the same as discussed in section 5.2.

5.5.2 Fitting the model

ﬁwen that the amounts of rain recorded on day r are x,(1), i=l,.....n(t), t=1,.4,, the

distribution of x, (¢), depends on the time of the year, 7 , and the events of previous days.

The dependence of u(t) on R(f—1), R(t —2),.... then incorporates the Markov chain modeling in

the fitting process. The fitting of the first order Markov chain is discussed in this section.

‘The total number of rainy days on day ¢, n(t) calculated by n(r) = n,, (1) +n, (t) where ny,(r) is
ﬂiﬂ number of rainy days given that it rained on day t and dry on day /-1 and n,(r) is the

number of rainy days-given that it rained on day and day¢-1. In fitting the model, eight vectors
. . _'_,.r"-'-._--_'__
are required summarized over the years as:

m—

» Number of dry days with the previous day dry
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* Number of dry days with the Previous day wet

* Number of wet days with the previous day dry

* Number of wet days with the previous day wet

* Sum of the amounts on wet days with previous day dry

* Sum of the amounts on wet days with previous day wet

¢ Sum ofthe logs of the amounts on wet days with previous day dry

*  Sum of the logs of the amounts on wet days with previous day wet

The analysis proceeds by fitting separate gamma distribution to the mean amount of rain per rain

day for rainy days following rainy days ( (1)) and for rainy days following dry days (g,(1)).

553 Selection of harmonics

In fitting data to the function g(/) using Fourier series, the right number of harmonics should be

selected so that the model does not either over or under fit the data.

If we fail to choose the appropriate number of harmonics we may cnd up by presenting

misleading results.

For gamma model, the natural parameter is 1/ and the scale parameter is1/k. Thusk” the

‘deviance is approximately »°. k is unknown and by calculating the mean deviance from the

analysis of deviances; the ratio of the mean deviances where the denominator is the within — day
e et _'_'_,_,_,_--—"-_'__

deviance has an approximate F'  distribution (Baker and Nelder, 1978). The within — day

— i
deviance 1° is the deviance obtained when a separate mean is fitted to each value of .
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D* =2 n(t)[log x(¢) ~ log +(7}]

I-[l

where

n{iy

log x(1) = 3 log x, (1)/ n(r)

mir)

D* =23 [ty log ()~ S logx, 1)

t=1 =1

' 5.5.4. Estimating the shape parameter k

There are two methods of estimating k. These are the crude and the maximum likelihood

cestimates. The method of maximum likelihood was used in this project. The maximum

likelihood estimate of X is obtained by the solution of log & ~w(k)=D°/2n

I
(Shenton and Bowman, 1977) where 7 is the total number of rainy days, S:n(r) and w(K) isa

I=f;

digamma function defined by ; I'(k) .

2n n

S {:[n(r)lug x(1) n()log x{:}J
= h

- nli)
Using  log x(r) = [} log x,(N)/n(t)

J=l

- =" ——?-"':--_-_
D' & oa(nlogx(r) 4 logx (1)
..__=Z[ . - ]
2n

K = i
———— :
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. ) logx(n) 11
logK w(K}—gt—-—ﬂL_zﬂﬁ:E]

4=l

(1
log K —w(K)=logA-logG

There are solutions to equation (1) presented by Person and Hentley (1970) in the form of tables.

56 APPLICATION OF THE GAMMA DISTRIBUTION TO THE NYANKPALA
DATA

This section applies the methodology discussed above to the Nyankpala data. After data
organization, the first analysis was to find which model to fit the data, This involved model
selection which is simply a comparison of regression problem. The models were fitted using a
threshold value of 0.8 5mm. Table 5.4 shows the analysis of deviance produced by fitting Fourier

series to the data. These results follow the fitting two alternative models to the data.

Table 5.4 The analysis of deviance for selecting the order of the Markov chain using 5
harmonics on the data.

I
Source | Deviance (D) . Degrees of freedom Model
1 Curve 689.47 365 I
2 curves 566.35 364 11
e .,-'-""'_.---_-_ E

To select a suitable model, the deviances were compared. The reduction i deviance for fitting

——
the second model (two curves) indicates that model 1T was better than model [ and 11 was then
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chosen otherwise model. This shows tha two curves (first order) is adequate to model the

‘Nyankpala data, that is, the mean rain per rainy day depends mostly on the conditions of the

: _previous day,

5.6.1 SELECTION OF HARMONICS

The analysis of deviances for selecting the number of harmonics to be used in the Fourier series

15 presented in Tables 5.5 with the parameter estimates at Table 5.6,

The total variation is broken down into the within-day deviance and between-day deviance. The

contributions from the harmonics and residual terms constitute the hetween-day deviance,

Table 5.5 Analysis of deviance for selecting harmonics, 5 day groups used

Source Degrees of freedom | Deviance Mean Deviance | F
| Between day 72 1394.5
1 harmonic 2 364.90 182.45 156
2 harmonic 2 » 233.81 116.905 1.11
| 3 harmonic 2 211.69 105.845 1.02
| 4 harmonic 2 207.36 103.68 1.02
5 harmonic | 2 203.84 101.92 36
| Residual 62— |imo 2.79 93
| Within-day 18228 566.35 0.03
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_'Tmal 18300 1960.85

Significant at 5%

Table S:ﬁ The parameter estimates for the first order Markov chain used to model the
- mean ram per the mean rain per rain day Nyankpala.

Parameter, Estimate EE Probe |t | 958 OT

Congt 2.2213 0. 04E 25 0000 2,125 2. 317

al 0.01252 G. 0555 g5a221 —0.0984 0.123¢

nl 0.76854 g.074as 0. 0000 0.6116 0,.9254

al =0.02635 0.0691 0. e010 =0.1745% 0.1019

| b2 -0.44%286 0.068% 0.00048 =0.581 =0 FEEFD

ad 0.07366 0.0691 Q. 2207 =0.06545 0:2118

b3 0.17812 0.0654 R S 0.0454 03069

ad -0.0355 G063 0.3857 =0 1808 0.0708

bd =0 G982 0.0828 0,3459 =k lgsk 0.065%2

as O.01042 0.0519 0.8415 =0.05%33 0.1142

b5 C.052R85 0.052 0.3L36 =~ 0511 U 1obd

The results indicate that five harmonics are required and the plot of the observed and fitted

values of the mean rain per rain day is presented at Fig. 5.5.

The plot shows that the model_imphes-asteady rising amount of rain from early January and

reaches a constant level (15 mm) between May and early June and falls slightly in July until
—

August when reaches a constant level (15 mm).
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igure 5.5 Mean rain per rain day at Nyankpala. Fitted Fourier curve with five harmonies and

“observed values.

ESTIMATING THE SHAPE PARAMETER K

'The maximum likelihood estimate of X is calculated as K = 0.6760. By using tables which
gives solution to log(k)—y(k)=D’/2n.The analyses have assumed that K is constant
throughout the yc'a_r._ﬁs. a test nmmn the within day deviance for each (5-day group)

‘was plotted against ¢ in fig. 5.6. The plot indicates that X may be slightly smaller
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(1/ K slightly

greater) during August than at any time of the year, Thus

K is not constant. It is

not coincidence that X has a lo
wer value in August, The implication is that August tends to have
lower mean rainfall
amount  as  compared to the other months.
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- Figure 5.6 Gamma model for the amount of rain at Nyankpala, a plot of the deviance for each

‘5-day group by mean time.

5.7

CONCLUSION

-

‘The results of the analysis of the-modelting approach indicated that for the probability of rain a

first (Ed_ﬂ_l'__lt_f[ﬂ:rkﬁ}v Chain was adequatc to model data. From the Markov Chain analysis, the

tesults further indicated that Nyankpala, a site in the Savannah zone has a unimodal pattern of

87



rainfall distribution. The unimodality is less marked for probability of rain given dry than

probability of rain given rain.

The mean rainfall per rainy day varies throughout the whole year with a maximum rainfall of
15mm occurring in May and August. The mean amount of rainfall is lower during the dry
season. The power of this method of analysis is clear: a set of 18300 observations has been

summarized in terms of the probability of rain by ten parameters and ten parameters by the

gamma distribution for the amounts of rain.

e e



CHAPTER SIX
CONCLUSIONS AND RECDMMENDATIDNS FOR FUTURE STUDIES

This thesis shows how a class of models may be fitted to daily rainfall data and then used to

provide the type of information that agricultural planners commonly require from the data. The

main objective of the study is to anal yse daily rainfall data to solve the agricultural problems in

Nyankpala and provide an account of the need for rainfall data analysis which is crucial to crop

planners and agronomists in planning various crop operations, We have examined the most

efficient methods currently being used for anal ysing daily rainfall data. These methods for
analysing daily rainfall data have been reviewed in chapter two. The case for using these models
is made in two stages. The first is the claim that a comprehensive analysis of rainfall data should
use daily records and not based on 7-, 10-day or monthly totals. There is then a choice between

a direct method (preliminary) analysis of the characteristics of interest and an analysis viaa

‘model of the pattern of rainfall on daily basis. The preliminary analysis and the indirect methods

were both used in this work.

The conceptual and:t;eomtica] framework of the Generalised Linear Models and its examples

‘has been presented in chapter three. In chapter four, a preliminary data analysis was conducted to

e —

look at dry spells, start, end and the length of the rains using Instat Climatic Software. Chapter
B9




five deals with the statistical modelling of the daily rainfall data using Markov chains and

Gamma distribution. In conclusion, the analysis done with the use of Markov chain modelling

techniques enabled us to use the rainfall data sufficiently. The Markov chain models are found to

be fitting well and the results obtained from these techniques are also very useful for agricultural

planning. More importantly, the Markov chain modelling techniques were successfully used in
the study of the probability of long dry spells in the growing season of the study area. An
important feature of the preliminary analysis is its simplicity, making it attractive to non
statisticians. We have however found out that the types of models fitted are also quite easy for
non-statisticians to understand. The model is not difficult to explain in terms of “*chances of
rain™ and the “*amount of rain when it occurs™. Analysis of rainfall data between 1953 and 2003
indicated that the earliest date, D, for the start of the rains defined here is chosen to be day 122
(May 1) and the latest date is day 223 (August 10™) beyond which farmers would normally not
do any planting. The mean starting date is day 142(May 21*) and the standard deviation is 19
days. We noticed that there is great variability in the start days, ranging from day 126 to day 200.
The earliest date for the end of the season is day 245 (September 1) and the latest date is day 324
(November 20). The mean end of the season date is day 285 (Octoberl1), and the standard
deviation is about 22 days. We also noticed that, the mean length of the season is about 113 days
and the maximum length of the season is 189days. The minimum length of the season is 19 days
with a standard deviation of about 41 days. The aanalysis of the daily rainfall data between 1953
and 2003 also indicated that the best time for planting maize at Nyankpala is during the last two
weeks in May in order to meet the mnii;t_ure requirements during flowering and the growing

-~ -FF'-FF._._--_-_ L] - »
season length. The May planting favours the maize crop since a substantial portion of the rains

for the season will fall during the growing period until maturity.
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In the forecasting of the daily rainfall occurrences, the first order Markov model was accurate up

to 86% and no improvements were observed by developing higher order models. Hence,

considering the complexity involved, developing higher order Markov models to forecast rainfall
occurrence in the northern region of Ghanga cannot be justified. Markov chain modelling

indicated that the mean amount of rainfall is 15mm per day occurring in May.

The following future studies are recommended so that the results obtained from this work can be

used in the operational works of the National Meteorological Services Department of Ghana.

As it was mentioned in the previous section, daily rainfall data analysis is found to be very useful
for agricultural planning. Hence, this work should be extended to other drought prone areas and
to all over the country at large. Looking at the general characteristics of rainfall distribution in
every region of Ghana and identifying risks in time and space with respect to agricultural activity

which are very useful for agricultural planning.
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