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Abstract 

The aim of this study was to determine the best mixture model for the claims 

amount and use the model to determine the expected claim amount per risk 

for the coming year. The claims data were obtained from the motor 

insurance department of one of the top three insurance companies in 

Ghana. The data consists of one thousand and three (1,003) claim amounts 

from 2012 to 2014. The average claim amount was GHS878.54 with standard 

deviation GHS339.03. Principles of Maximum likelihood estimation was used 

to determine the parameters of Heterogeneous Normal-Normal, 

Homogeneous NormalNormal and Pareto-Gamma mixture models. The Q-Q 

plot and measures of goodness-of-fit (AIC and BIC) were used to determine 

the best mixture model. The Heterogeneous Normal-Normal mixture 

distribution was the model that best fit the motor insurance claims data with 

an expected claims amount of GHS868.40 per risk. 
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Chapter 1 

INTRODUCTION 

1.1 Background of the Study 

Insurance has developed in response to request for the protection of risk. 

The request has given rise to the creation of liabilities by statute like 

Employers Liabilities Act (1880) and the Workman’s Compensation Act (1897 

as amended in 1906). Claims model or compensation for a loss dates as far 

back as the history of insurance. Man’s first experience with insurance was 

in the field of marine. History shows that modern marine insurance was 

practiced in 1347. 

Employers Liability Insurance is a type of insurance that takes into 

consideration bodily injury sustained by an employee in the course of his 

employment. The policy fundamentally caters for those under contract of 

service or apprenticeship with the insured. The injury must have arisen out 

of or in the course of the employment of the insured and in the business of 

the insured. 

The mode of its operation is when certain cargo is jettisoned (thrown 

overboard) during a journey in an attempt to save the voyage. If the journey 

proves successful; the owners of the cargo that was not jettisoned and was 

saved will contribute proportionately towards a fund out of which the 

unfortunate ones who lost their cargo would be paid a claim, (Fisher et al, 

2004). However, due to developments and modernization, this state of 

affairs is no longer ideal and adequate hence the need for more acceptable 

form of compensation. 
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As early as the 1920’s, the British, representing agencies for insurance 

companies then operating in Great Britain, introduced conventional 

insurance to the West Africa sub region. 

These agencies later were transformed into insurance companies whiles for 

example in the case of Ghana, the government formed their own indigenous 

insurance company to take care of their growing insurance needs after 

independence. Based on this principle above, the various classes of 

insurance then developed due to occurrence of unforeseen losses hence the 

need for financial protection against losses, (Irukwu, 1977). Today, Ghana 

has quite a bit of vibrancy in the insurance industry serving the needs of both 

local and foreign stakeholders, thus the need to uphold the customer in high 

esteem and attend to their requirements with speed and efficiency. The 

customer in this age of globalization is hailed as The New Insurance Act 2006 

forms the basis for insurance regulation in Ghana, which is enforced by the 

National Insurance Commission (NIC). Besides establishing a minimum paid 

up capital level of US$1m (including reserves), insurers are also required to 

maintain an adequate total assets to total liabilities ratio, which is currently 

set at 150%. Further guidelines are stipulated with regards to the quality of 

assets, with investments required to equate to a minimum 55% of total 

assets by December 2010, whilst investments inequities and properties are 

limited to 30% and 20% of total investments respectively. 

The non-life insurance market remains relatively small, with industry Gross 

Written Premium (GWP) totalling GHS226.8m (or US$156m) in 2009. Given 

that 23 registered insurers compete in this market (with further entrants 

expected in the medium term), competition is intense, with market share 

predominantly contested via premium reductions. Owing to low disposable 

income levels and a relatively underdeveloped insurance culture amongst 
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individuals, scope in the personal segment remains limited. This implies a 

considerable dependence on representation which accounts for an 

estimated 50% of gross premiums in 2009. 

The insurance company’s delivery cost ratio compares favourably to that of 

most of its peers. This, however, is in stark contrast to its earned loss ratio, 

which is substantially higher than the peer group average. Given the length 

of claims (particularly in motor), the insurance company was the only insurer 

in the peer group to post a loss for the year, of GHS1.8m. Cognisance is, 

however, taken of insurance company’s strong solvency which remains 

above that of its peers, although significantly supported by cumulative fair 

value gains. 

The insurance industry does not produce a tangible, physical product but it 

rather renders services. The services of the insurance in Ghana’s economy 

today are less understood and complicated. The main factor, which 

constitutes this misunderstanding, is the highly complexity nature of the 

insurance policy itself. Individual policyholders remain confused by the small 

prints and its legality hence poor response in lowly educated areas like 

Ghana. 

The contribution of the insurance industry to economic growth and 

development can be viewed from two perspectives namely: 

1. The services that are produced add directly to national income; and 

2. The industry makes an indirect contribution by supporting the 

agricultural, manufacturing and other service sectors with risk 

protection and helping to increase their output and employment. 

There is a general agreement even amongst insurance practitioners 

throughout West African countries, that the insurance industry today does 
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not enjoy a favourable public image unlike in other parts of the world. 

Insurance men and women are considered in some areas as mere parasites 

who exploit society without giving much in return except for the occasional 

claims which they are compelled to pay either out of fear of being taken to 

court and discredited or exposed, or out of fear of losing their customers to 

another company, (Irukwu, 1977). 

Recent years have seen a significant increase in the awareness level of 

insurance in the economy of Ghana, and West Africa as a whole. Even though 

not encouraging, the latest observations indicate that insurance awareness 

is increasing but rather at a slow pace, (NIC, 2009). The rising intricacy of the 

world economic system in today’s industrial age has increased the 

importance of insurance in the process of manufacturing and profit-making 

dealings. Without the insurance, the organization or individuals will be 

subjected to the fear of financial loss in the event of tragedies and so will 

affect their decision in diverse ways.. It is therefore obvious that a feasible 

economy is dependent on insurance companies being swift in compensating 

victims of an insurance claim. It used to be said that insurers would do 

anything possible to squirm out of paying claims. Insurers have been 

criticized for their marketing methods, based on cloudiness, twisting and 

mis-selling. The image of an insurance company’s image will be tarnished if 

it does not handles its claim service effectively and hence may affect the 

sales and marketing of their insurance products. Insurance company’s 

attitude to claims model has in the past provoked a lot of public criticism and 

even attracted the attention of governments. 

In the past majority of insurers have persistently failed to recognize the need 

for qualified staff or claims specialists to enhance their claims service. 
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The typical claims department always seemed to be an afterthought, the last 

to get new equipment or staff. The focus was on sales, winning new business 

and retaining accounts. As the years passed there have been very few 

changes in the perception of claims, (Burley, 2008). 

It is in this light that most insurance regulatory bodies now seek to recognize 

the need for a thorough review of the role of the claims professionals in the 

insurance industry, (Nicholson, 2008). Recently, however, in developed 

countries, the true value of the claims professional has come to the fore and 

now the claims operation is recognized as being the point where "Treating 

Customers Fairly" is tested and where the customer experience is moulded. 

This increased focus on claims operation has brought its own benefits to 

claims professionals. Not only has their individual value enhanced but claim 

operation is now valued: it is the shop window of the insurance industry and 

has never been more tested, (Burley, 2008). 

In spite of these prevailing changes, the same cannot be said for the 

insurance industry in Ghana. The insurance industry in Ghana has been in a 

state of evolution for several years and is now in the process of reaching a 

new maturity. 

In West Africa, especially Ghana, the response to these changes has rather 

been slow and this should be a source of great concern since the world is fast 

becoming a global village and in order for the insurance business in Ghana 

to thrive it needs to embrace these practices and philosophies. 

1.2 Statement of the Problem 

Insurance companies receive premiums as well as pay motor claims. In 

practice, most automobile motor claims which occurs with losses have 

unimodal distributions, until recently where some factors have contributed 

to increase in insurance claims. 
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Motor claims with bimodal distribution are more advance to apply common 

statistical methods. We therefore extend our knowledge on mixture 

distributions. 

1.3 Objectives of the Study 

The purpose of this study are to: 

1. determine an appropriate mixture model for the claims amount of the 

insurance company. 

2. use the appropriate mixture model to calculate the expected claim 

amount per risk in the coming year. 

1.4 Scope of the Study 

The study is based on the Ghanaian insurance market using an insurance 

company in Ghana as a scenario for the study. The research specifically 

investigated the company’s claims models of the company. It examined the 

effects of efficient and prudent claim model procedures on the sales and 

marketing of insurance products in the company 

1.5 Significance of the Study 

This project is significant to the insurance companies and individuals in the 

following ways: 

a. Reserve: 

Reserves are very important in insurance industry as these help them 

to meet future liabilities when they become due. There is therefore 

the need for insurance to set aside minimum capital requirement so 
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as to cater for future loss arising from claims payment. This study will 

assist the insurance company to provide the required reserve for 

future loss so that the company will not be understated or overstated. 

b. Likelihood: 

Insurance companies pay risk of high claims on which they crush their 

reserve. The likelihood of such claims needs to be known and 

calculated so as to prevent the occurrence of such losses. Estimating 

the likelihood of claims will not only aid insurance companies but will 

also help individuals in the form of insurance provision for them. 

c. Claims Frequency: 

The claim frequency is how often the claim is made. If insurance 

companies are able to pay such losses emanating from persistent 

claim number, they will be able to plan accordingly to meet these 

claims. It is also observed that claim frequencies are estimated 

inaccurately, and this results in high losses. The project seeks to model 

claim frequency and come out with a good model that will provide the 

accurate claim frequency for motor insurance at any given period so 

that insurance companies can plan accordingly. 

1.6 Limitation of the Study 

One constraint of this study was the insufficient amount of data received. 

This was due to the reluctance of the insurance company to give out the 

data. Out of the total number of data requested, the insurance company only 

issued out one thousand and three (1,003) data points for the study. Also, 
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owing to the limited time within which the study had to be done, the 

researcher restricted the study to a branch office in the Western region of 

Ghana. 

1.7 Structure of Thesis 

The first chapter briefly gives a brief background study of the insurance 

market in Ghana specifically the current state of the claim administration in 

developed and developing countries. It goes further to state the problem, 

aims and objective of the study. Chapter two provides the theoretical basis 

for this research by reviewing the distinguishing characteristics of claim 

models. Chapter three describes the methodology used in the research 

study. Chapter four details the primary data collected for the research as the 

findings and the analysis of these data. Finally, the fifth chapter presents the 

summary, conclusion and recommendation from the researcher. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

A finite mixture model is a convex combination of two or more probability 

density functions. Losses depend on two random variables, that is, the 

number of losses and the amount of loss which will occur in a specified 

period. According to the data on claims that was collected from the 

insurance company, the number of losses (claim number) is referred to as 

the frequency of loss (claim frequency) and the probability distribution is 

called the frequency distribution. The amount of loss (claim size) is referred 

to as the severity of loss (claim severity) and its probability distribution is 

called the severity distribution. Loss distribution and its modeling are 

described in detail in the book of Hogg and Klugman, 2008 and paper of 

Janczuraa and Weron, 2010. 

The mixture of distributions is sometimes called compounding, which is 

extremely important as it can provide a superior fit. In the 1960’s and 1970’s, 

finite mixture models appeared in the statistical literature and they proved 

to be useful for modeling discrete unobserved heterogeneity in the 

population. Since there are many different modes for claim possibilities, a 

finite mixture model should work well, (Hewitt and Leftkowitz, 1979). 

The bootstrap process is a tool for model fitting and it is not complicated to 

implement. Usually, the bootstrap process involves resampling with 

replacements from the residual more than the data themselves. We apply 

the bootstrap technique to recalculate the estimated parameters for model 

fitting, (Efron and Tibshirani, 1993). 



 

10 

The purpose of this study is to use appropriate finite mixture to fit the claim 

data. 

We consider the data from a set of motor insurance claims from the top 

three non-life insurance public companies in Ghana. A mixture model is 

fitted to the data and the estimated parameters for the model are calculated 

by the maximum likelihood estimates. 

2.1.1 Parameter Estimation For Mixture 

Distribution 

Comparing (numerically) two approaches to the estimation of the 

parameters of the component densities in a univariate mixture of normal 

distributions; one approach is based on a constrained maximumlikelihood 

(ML) algorithm; the other, on the fuzzy c-means (FCM) clustering algorithm, 

(Davenport et al., 1988). This study indicates that: 

i. the ML method produces superior estimates when the component 

densities are "well-mixed", while either algorithm provides good 

estimates for well-separated distributions 

ii. the FCM approach is almost always faster than the ML method; and 

iii. initialization of the ML method with the output of FCM almost always 

improves both the run time and accuracy of the statistical estimates. 

Maximum Likelihood Estimation 
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(2.1) 

(2.2) 

(2.3) 

  (2.4) 

Solve equations 2.3 and 2.4 simultaneously to obtian the parameters θ1 and 

θ2. 

2.1.2 An Introduction to Finite Mixture 

Distributions 

A popular way to account for unobserved heterogeneity is to assume that 

the data are drawn from a finite mixture distribution. A set back to using 

finite mixture models is that parameters that could previously be estimated 

in stages must now be estimated jointly: in the case of using mixture 

distributions, it destroys any additive separability of the log-likelihood 

function. This shows, however, that an extension of the EM algorithm 

reintroduces additive separability, thus allowing one to estimate parameters 

sequentially during each maximization step. In establishing this result, we 

develop a broad class of estimators for mixture models. Returning to the 

likelihood problem, we show that, relative to full information (filtation) 

maximum likelihood, our sequential estimator can generate large 

computational savings with little loss of efficiency, (Everitt, 2014). 
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2.1.3 Finite Mixture Models 

The problem of estimating the parameters which determine a mixture 

density has been the subject of a large, diverse body of literature spanning 

nearly ninety years. During the last two decades, the method of maximum 

likelihood has become the most widely followed approach to this problem, 

thanks primarily to the advent of high speed electronic computers. The 

maximum likelihood approach helps to determine the best selection of finite 

mixture models for a particular data. Here, we first offer a brief survey of the 

literature directed toward this problem and review maximum-likelihood 

estimation for it. We then turn to the subject of ultimate interest, which is a 

particular iterative procedure for numerically approximating maximum-

likelihood estimates for mixture density problems. For the maximum 

likelihood procedure, the estimation of the parameters can easily be 

determined which can also help to determine the best mixture model. This 

procedure according to McLachlan and Peel, 2008, known as the EM 

algorithm, is a specialization to the mixture density context of a general 

algorithm of the same name used to approximate maximum-likelihood 

estimates for incomplete data problems. We discuss the formulation and 

theoretical and practical properties of the EM algorithm for mixture 

densities, focusing in particular on mixtures of densities from exponential 

families. 

2.1.4 Recent Developments in Mixture Models 

Bohning and Seidel, 2002, introduced, reviewed and discussed the recent 

developments in the area of mixture models. The paper introduces this 

special issue on mixture models, which touches upon a diversity of 

developments which were the topic of a recent conference on mixture 
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models, taken place in Hamburg, July 2001. These developments include 

issues in non-parametric maximum likelihood theory, the number of 

components problem, the non-standard distribution of the likelihood ratio 

for mixture models, computational issues connected with the EM algorithm, 

several special mixture models and application studies. 

2.1.5 Finite Mixture Distributions 

Finite mixture distributions arise in a variety of applications ranging from the 

length distribution of various data sets. The literature surrounding them is 

large and goes back to the end of the last century when Karl Pearson 

published his well-known paper on estimating the five parameters in a 

mixture of two normal distributions. In this text we attempt to review this 

literature and in addition indicate the practical details of fitting such 

distributions to sample data. Researchers hoped that the monograph will be 

useful to statisticians interested in mixture distributions and to research 

workers in other areas applying such distributions to their data. This 

monograph is concerned with statistical distributions which can be 

expressed as super positions of (usually simpler) component distributions. 

Such super positions are termed mixture distributions or compound 

distributions, (Everitt and Hand, 1981). 

2.1.6 Identifiability of Finite Mixture Distributions 

In general, Teicher, 1963, showed that the class of mixtures of the family of 

normal distributions or of Gamma distributions or binomial distributions is 

not easily identifiable. 

In the analysis of the data, it was shown that the class of all mixtures of a 

one-parameter additively closed family of distributions is identifiable. 
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Here, attention will be confined to finite mixtures and a theorem will be 

proved yielding the identifiability of all finite mixtures of Gamma (or of 

normal) distributions. Thus, estimation of the mixing distribution on the 

basis of observations from the mixture is feasible in these cases. Some 

separate results on identifiability of finite mixtures of binomial distributions 

also appear. It could be observed that, the identification of a finite 

distribution is based on mixture distributions. 

2.1.7 A New Condition for Identifiability of Finite Mixture 

Distributions 

In this paper a sufficient condition for the identifiability of finite mixtures is 

given. This condition is less restrictive than Teicher’s condition, and 

therefore it can be applied to a wider range of families of mixtures. In 

particular, it applies to the classes of all finite mixtures of Log-gamma and of 

reversed Log-gamma distributions. To illustrate this an application to the 

class of all finite mixtures generated by the union of Log-normal, Gamma and 

Weibull distributions is given, where Teicher’s and Henna’s conditions are 

not applicable, (Atienza et al., 2006). 

2.1.8 A Finite Mixture of Two Weibull Distributions 

The rotated-sigmoid form is a characteristic of old-growth, uneven-aged 

forest stands caused by past disturbances such as cutting, fire, disease, and 

insect attacks. The diameter frequency distribution of the rotatedsigmoid 

form is bimodal with the second rounded peak in the mid-sized classes, 

rather than a smooth, steeply descending, monotonic curve. For a Weibull 

distribution, the two mixed Weibull distributions may fit for a bimodal data 

as specified in the rotated-sigmoid form. 
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In this study a finite mixture of two Weibull distributions is used to describe 

the diameter distributions of the rotated-sigmoid, uneven-aged forest 

stands. Four example stands are selected to demonstrate model fitting and 

comparison. Compared with a single Weibull or negative exponential 

function, the finite mixture model is the only one that fits the diameter 

distributions well and produces root mean square error at least four times 

smaller than the other two. The results show that the finite mixture 

distribution is a better alternative method for modelling the diameter 

distribution of the rotated-sigmoid, uneven-aged forest stands, (Zhang et al., 

2001). 

2.1.9 Finite Mixture Models and their Applications 

Zhang and Huang, 2015, stated in their paper that, Finite Mixture (FM) 

models have received increasing attention in recent years and have proven 

to be useful in modeling heterogeneous data with a finite number of 

unobserved sub-population. It has been not only widely applied to 

classification, clustering, and pattern identification problems for 

independent data, but could also be used for longitudinal data to describe 

differences in trajectory among these subgroups. However, due to the 

computational convenience, the most types of FM models are based on the 

normality assumption which may be violated in certain real situations. 

Recently, FM models with non-normal distributions, such as skew normal 

and skew t-distribution, have received increasing attention and showed the 

advantages in modeling data with non-normality and heavy tails. One of the 

advantages of FM models is that both maximum likelihood method and 

Bayesian approach can be applied to not only estimate model parameters, 

but also evaluate probabilities of subgroup membership simultaneously. We 
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present a brief review of FM models for these two types of data with 

different scenario. 

2.1.10 Fitting of Finite Mixture Distribution to Motor Claims 

Researchers develop a problem in modeling the actual motor insurance 

claim data set. Their aim is to choose a finite mixture model that can fit the 

actual motor insurance claim. They analyse the data and choose finite 

mixture log-normal distributions to fit the data set. They used .finite mixture 

log-normal distribution to fit the data set of the claim. The parameters of the 

model were estimated from the EM algorithm parameters. They use the K-S 

and A-D test for showing how well the finite mixture Log-normal 

distributions fit the actual data set. However, log-normal distribution cannot 

fit the mixture model. Results: From the tests, we found that the finite 

mixture log-normal distributions fit the actual data set with significant level 

0.10. Conclusion: The finite mixture Log-normal distributions can be fitted to 

motor insurance claims and this fitting is better when the number of 

components (k) are increase, (Sattayatham and Talangtam, 2012). 

2.1.11 Gaussian Mixture Models 

Mixture Models are a type of density model which comprise a number of 

component functions, usually Gaussian. These component functions are 

combined to provide a multi-modal density. They can be employed to model 

the colours of an object in order to perform tasks such as realtime colour-

based tracking and segmentation. These tasks may be made more robust by 

generating a mixture model corresponding to background colours in addition 

to a foreground model, and employing Bayes’ theorem to perform pixel 
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classification. Mixture models are also amenable to effective methods for 

on-line adaptation of models to cope with slowlyvarying lighting conditions. 

Mixture models are a semi-parametric alternative to non-parametric 

histograms (which can also be used as densities) and provide greater 

flexibility and precision in modelling the underlying statistics of sample data. 

They are able to smooth over gaps resulting from sparse sample data and 

provide tighter constraints in assigning object membership to colour-space 

regions. Such precision is necessary to obtain the best results possible from 

colour-based pixel classification for qualitative segmentation requirements, 

(Gong, 1999). 

2.1.12 Loss Distributions Modeling for Motor TPL 

Insurance class using Gaussian Mixture Method and EM 

Algorithm 

According to Teodorescu, 2009, the motor insurance is an important branch 

of non-life insurance in many countries; in some of them, coming first in total 

premium income category. In this thesis we present the Gaussian mixture 

method to model the loss distribution of data from motor compulsory third 

part liability insurance. The parameters of the mixture are estimated using 

the Expectation Maximization (EM) algorithm. 

2.1.13 Maximum Likelihood in a Generalized Linear 

Finite Mixture Model 

A generalized linear finite mixture model fit the model to data are described. 

By this approach the finite mixture model is embedded within the general 

framework of generalized linear models (GLMs). Implementation of the 

proposed EM algorithm can be readily done in statistical packages with 
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facilities for GLMs. A practical example is presented where a generalized 

linear finite mixture model of ten Weibull distributions is adopted. The 

example is concerned with the flow cytometric measurement of the DNA 

content of spermatids in a mutant mouse, which shows non-disjunction of 

specific chromosomes during meiosis, (Jansen, 1993). 

Generalized linear models (GLMs) have been proved very useful in many 

agricultural and biological applications (McLachlan and Basford, 1988). 

Surprisingly little attention has been paid to the use of GLMs in finite mixture 

models. In the past decades much literature on finite mixture models 

appeared, including important monographs by Everitt and Hand, 1981, 

Titterington et al., 1985, and McLachlan and Basford, 1988. The more 

straight forward situation is commonly dealt with, where the components 

have separate parameters for mixing proportions and separate parameters 

for mixing distributions and this paper it is shown that, by adopting a simple 

EM algorithm, the mixture problem can be split into two solvable non-

mixture problems. This makes it possible to transfer all GLM facilities to the 

corresponding finite mixture equivalent. Moreover standard statistical 

packages can be readily used to do the computational work, (Dempster et 

al., 1977). 

A general approach, which requires specification of the GLM for the mixing 

proportions and specification of the GLM for the mixing distributions can be 

easily written in, for instance, GENSTAT. The distribution of the component 

counts may be either multinomial or Poisson. The mixing distribution can be, 

for example, univariate normal, Weibull, binomial, or Poisson, but also, for 

example, multivariate normal or grouped normal. An illustration using data 

on non-disjunction in the mouse will also be given. A Generalized Linear 

Finite Mixture Model considered the mixture problem as one of many 
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examples in which the data can be viewed as incomplete. They interpreted 

the mixture data as incomplete data by regarding an observation on the 

mixture as missing its component (or category) of origin. 

2.1.14 Maximum Likelihood in Finite Mixture Models 

with censored data 

Miyata, 2011, stated in his book that, the consistency of estimators in finite 

mixture models has been discussed under the topology of the quotient space 

obtained by collapsing the true parameter set into a single point. In this 

thesis, he extended the results of Cheng and Liu, 2001, to give conditions 

under which the maximum likelihood estimator (MLE) is strongly consistent 

in such a sense in finite mixture models with censored data. We also show 

that the fitted model tends to the true model under a weak condition as the 

sample size tends to infinity. 

2.1.15 On Numerical evaluation of Maximum- 

Likelihod Estimates for Finite Mixtures of Distributions 

Grim, 1982, dealt with estimation of finite distribution mixtures which are 

practically important in cluster analysis, pattern recognition and other fields. 

After a brief survey of existing methods attention is confined to maximum-

likelihood estimates, especially to an iterative procedure frequently 

discussed in the recent literature. It is shown that this procedure in a general 

form converges monotonically to a possibly local maximum of likelihood 

function. 



 

20 

2.1.16 On Maximum Likelihood Estimation of a pareto Mixture 

Researchers were dealing with maximum likelihood estimation (MLE) of the 

parameters of a Pareto mixture. It is difficult to apply the Standard MLE on 

the parameters of a Pareto mixture, because the distributions of the 

observations do not have common support. They study the properties of the 

estimators under different hypotheses; in particular, we show that, when all 

the parameters are unknown, the estimators can be found maximizing the 

profile likelihood function. The work is motivated by an application in the 

operational risk measurement field: we fit a Pareto mixture to operational 

losses recorded by a bank in two different business lines. Under the 

assumption that each population follows a Pareto distribution, the 

appropriate model is a mixture of Pareto distributions where all the 

parameters have to be estimated, (Bee et al., 2011). 

2.1.17 The Consistency of estimators in Finite 

Mixture Models 

The parameters of a finite mixture model cannot be consistently estimated 

when the data come from an embedded distribution with fewer components 

than that being fitted, because the distribution is represented by a subset in 

the parameter space, and not by a single point, (Cheng and Liu, 2001). 

Feng and McCulloch, 1996, also discussed that, given conditions, not easily 

verified, under which the maximum likelihood (ML) estimator will converge 

to an arbitrary point in this subset. We show that the conditions can be 

considerably weakened. Even though embedded distributions may not be 

uniquely represented in the parameters pace, estimators of quantities of 

interest, like the mean or variance of the distribution, may never the less 
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actually be consistent in the convention as lense. We give an example of 

some practical interest where the ML estimators are v/ i-consistent. 

2.1.18 Mixture of exponentiated Pareto and 

Exponential Distributions 

Abu-Zinadah, 2010, considered the mixture model of exponentiated Pareto 

and exponential distributions (MEPED). First, some properties of the model 

with some graphs of the density and hazard function are discussed. Next, the 

maximum likelihood and Bayes methods of estimation are used for 

estimating the parameters, reliability and hazard functions of the model 

under complete and type II censored samples. An approximation form due 

to Lindley is used for obtaining the Bayes estimates under the squared error 

loss and LINEX (linear-exponential) loss functions. The performance of 

findings in the article is showed by demonstrating some numerical 

illustrations through Monte Carlo simulation study. Also, applications of 

mixed models are included. 

2.1.19 Topic Analysis using a Finite Mixture 

Distribution 

Topic analysis was used to determine a text’s topic structure, a 

representation indicating what topics are included in a text and how those 

topics change within the text. Topic analysis consists of two main tasks: topic 

identification and text segmentation. While topic analysis would be 

extremely useful in a variety of text processing applications, no previous 

study has so far sufficiently addressed it. 
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A statistical learning approach to the issue is proposed by Li and Yamanishi, 

2003. More specifically, topics here are represented by means of word 

clusters, and a finite mixture model, referred to as a stochastic topic model 

(STM), is employed to represent a word distribution within a text. In topic 

analysis, a given text is segmented by detecting significant differences 

between STM’s, and topics are identified by means of estimation of STMs. 

Experimental results indicate that the proposed method significantly 

outperforms methods that combine existing techniques. A finite mixture 

model is based on stochastic topic model for the fact that they are not 

deterministic. 

2.1.20 An R Package for Analysing Finite Mixture Models 

The mixtools package for the R statistical software provides a set of functions 

for analysing a variety of finite mixture models. These functions include both 

traditional methods, such as EM algorithms for univariate and multivariate 

normal mixtures, and newer methods that reflect some recent research in 

finite mixture models. In the latter category, mix-tools provides algorithms 

for estimating parameters in a wide range of different mixture-of-regression 

contexts, in multinomial mixtures such as those arising from discretizing 

continuous multivariate data, in non-parametric situations where the 

multivariate component densities are completely unspecified, and in semi-

parametric situations such as a univariate location mixture of symmetric but 

otherwise unspecified densities. Many of the algorithms of the mix-tools 

package are EM algorithms or are based on EM-like ideas, so this article 

includes an overview of EM algorithms for finite mixture models, (Benaglia 

et al., 2009).  
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Chapter 3 

METHODOLOGY 

3.1 Introduction 

This chapter explains the data and the analysis of the data used. It also 

presents into details the description of Finite Mixture Models including 

Normal-Normal and Pareto-Gamma distributions to fit the claim data. 

3.2 Data Collection 

The data obtained is a secondary data with 1003 data points. The data used 

for this study is a claim amount collected from the Motor Insurance 

Department of Insurance Company in Ghana. These data points were 

collected from the year 2012 to 2014. This insurance company is one of the 

largest motor insurance companies in Ghana that insures more vehicles 

when it comes to general insurance policy. 

3.3 Analysis of Data 

The summary statistics of the claim data will be calculated using R Software. 

The R Software will again be used to obtain the various graphs. • Data will 

be analyzed using R software 

• Maximum Likelihood Estimate (MLE) will be used to estimate the 

various parameters; for the various mixture models 
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• The Q-Q plot will be employed to determine the fitness of the various 

mixture models 

The Goodness-of-fit test will also be used to determine the AIC and BIC for 

the various mixture models. 

3.4 Actuarial Modeling Process 

This section will describe the steps that were followed in fitting a statistical 

distribution to the claim amount, that is, the steps that were taken in the 

actuarial modeling process, (Kaishev, 2001). 

• Selecting a mixture distribution 

• Estimating model parameters using method of estimates 

• Specification of the criteria to choose one model from the mixture 

distributions 

• Check model fit 

• Revise model fit if necessary 

3.4.1 Selecting a Mixture Distribution 

This is the first step in the modeling process. Here considerations were made 

of a number of parametric probability distributions as potential candidates 

for the data generating mechanism of the claim amounts. However, the list 

of potential probability distributions is enormous and it is worth emphasizing 

that the choice of distributions is to some extend subjective. For this study 

the choice of the sample distributions was with regard to prior knowledge 

and experience in curve fitting, time constraint, availability of computer soft-
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ware to facilitate the study and the volume and quality of data. Therefore 

three statistical mixture distributions were used, these included: Normal - 

Normal, ParetoGamma and Heterogeneous Normal - Normal mixture 

distributions. Still in this step, it was necessary to do some descriptive 

analysis of the data to obtain its salient features. This involved finding the 

mean and variance. This was done using R Software. Histograms were 

plotted using R Software to show the graphical representation of the data. 

3.4.2 Mixture Distributions 

Two mixture densities with probabilities g1 and g2 of the various densities 

were considered: 

  (3.1) 

where g1 + g2 = 1 

The following mixture distributions were used to model the data: 

1. Normal-Normal (Heterogeneous) 

Consider a random variable, X, with random samples x1,x2,x3,...,xn 

X1 ∼ N(µ1,σ1),X2 ∼ N(µ2,σ2) 

where g1 = p and g2 = 1 − p from equation (3.1) 

Probability density function of Normal-Normal is 

 , 

 , 
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The log-likelihood function for normal-normal with probability, p of claim 

amount is 

 

Setting partial derivatives; 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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Setting partial derivatives; 

(3.7) 

(3.8) 

Again the log-likelihood function of the normal-normal with probability, p, of 

claim amount is 

 

! 

! 

 
Setting partial derivatives; 

(3.9) 

(3.10) 

(3.11) 
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2. Normal-Normal Mixture Distribution 

The probability density function of normal-normal (with same variance) with 

probability, p, is: 

 

The log-likelihood function then becomes 

 

Setting partial derivatives; 

(3.13) 

(3.14) 

(3.15) 

 

Hence 

 

Setting partial derivatives; 
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(3.16) 

(3.17) 

The log-likelihood function of the normal-normal (with same variance) with 

probability, p is 

 

Hence 

 
Setting partial derivatives; 

(3.18) 

(3.19) 

(3.20) 

3. Pareto-Gamma 

Consider a random variable, X with random samples x1,x2,x3,...,xn 

X ∼ Ga(α,λ),X ∼ Pa(θ,γ) 

Probability density function of Pareto-Gamma is 
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 X1 ∼ Ga(α,λ), X2 ∼ Pa(θ,γ) 

 

The likelihood function for gamma density function with probability, p, of 

claim amount is 

 
Setting partial derivatives, 

(3.22) 

(3.23) 

(3.24) 

 

Setting partial derivatives, 
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  (3.25) 

  (3.26) 

Again, the log-likelihood function of Pareto density function with probability, 

p, of claim amount is 

 

Setting partial derivatives, 

(3.27) 

(3.28) 

(3.29) 

3.4.3 Empirical Distribution Function 

Suppose X ∼ F, where F(x) = P(X ≤ x) is a distribution function. the empirical 

distribution function Fˆ, is the CDF that puts mass 1/n at each data point 

 where I is the indicator function. 

The fitted distribution function, Fˆ(x;θ) and the fitted Quantile function is 

Fˆ1(x;θ). 
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3.4.4 Estimation of Model Parameters 

It involved estimation of the parameter(s) for each of the above sampled 

probability distributions using the claims data. Once the parameter(s) of a 

given distribution were estimated, then a fitted distribution was available for 

further analysis. The maximum likelihood estimation method was used to 

estimate the parameters. 

Maximum Likelihood Estimator 

The Maximum Likelihood estimates were used because they have several 

desirable properties which include: consistency, efficiency, asymptotic 

normality and invariance. The advantage of using Maximum Likelihood 

Estimation is that it fully uses all the information about the parameters 

contained in the data and that it is highly flexible. 

Let Xi be the ith claim amount, where 1 ≤ i ≤ n. n is the 

number of claims in the data set. 

L is the likelihood function. 

θ is the parameter. f(x) is the probability distribution function of a specific 

distribution. 

The log-likelihood function of claims data is given by: 

  (3.30) 

  (3.31) 

To get the maximum likelihood, we differentiate equation 3.31 with respect 

to θ1 and θ2 and equate both equations to zero. 
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  (3.32) 

  (3.33) 

Specification of the Criteria for choosing one Mixture Distribution for the Claim 

Data 

The three distributions were used to fit the data. Since the parameters were 

obtained using maximum likelihood, the criteria for choosing one 

distribution out of the two was also based on the values of the estimated 

maximum likelihood estimates, the larger the likelihood, the better the 

model. 

Checking Model Fit 

It was assumed that no model in the set of models considered was true; 

hence, selection of a best approximating model was the main goal. Just 

because a distribution got the highest log-likelihood out of the two 

distributions, this was not sufficient evidence to show that it is the right 

distribution for the claims data set. Therefore an assessment was made on 

how good this distribution fitted the claims data, using the Q-Q Plots and the 

A.I.C. 

A. The Quantile-Quantile (Q-Q) Plots 

The Quantile-Quantile (Q-Q) plots are graphical techniques used to 

check whether or not a sampled data set could have come from some 

specific target distribution i.e. to determine how well a theoretical 

distribution models the set of sampled data provided. This study used 
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the Q-Q plots to check for goodness of fit of the chosen distribution to 

the sampled claim amount. 

The Q-Q plots were chosen because of their multiple functions while 

analyzing data sets and also because of their advantages as sited 

below. 

B. The Q-Q Distribution Function 

Suppose that X is a real-valued random variable. The (cumulative) 

distribution function of X is the function F given by F(x) = P(X ≤ x), x 

∈R. This function is important because it makes sense for any type of 

random variable, regardless of whether the distribution is discrete, 

continuous, or even mixed, and because it completely determines the 

distribution of X. 

Advantages of Q-Q Plots 

1. The sample sizes do not need to be equal 

2. Many distributional aspects can be simultaneously tested 

forexample shifts in locations, shifts from scale, changes in 

symmetry and the presence of outliers. 

C. The Akaike Information Criteria (A.I.C) 

The A.I.C is a type of criteria used in selecting the best model for 

making inference from a sampled group of models. It is an estimation 

of kullback-leibler information or distance and attempts to select a 

good approximating model for inference based on the principle of 

parsimony. Therefore in A.I.C, the model with the smallest value of 

A.I.C is selected because this model is estimated to be closest to the 

unknown truth among the candidate models considered. 

The AIC criterion is defined by: 
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 AIC = −2 × ln(likelihood) + 2 × k (3.34) 

For this research, the A.I.C was used when testing for the goodness of 

fit after computing the likelihood function. 

D. The Bayesian Information Criteria(B.I.C) 

In statistics, the Bayesian information criterion (BIC) or Schwarz 

criterion (also SBC, SBIC) is a criterion for model selection among a 

finite set of models. It is based, in part, on the likelihood function, and 

it is closely related to Akaike information criterion (AIC). When fitting 

models, it is possible to increase the likelihood by adding parameters, 

but doing so may result in over fitting. The BIC resolves this problem 

by introducing a penalty term for the number of parameters in the 

model. The penalty term is larger in BIC than in AIC. The BIC was 

developed by Gideon E. Schwarz, who gave a Bayesian argument for 

adopting it. It is closely related to the Akaike information criterion 

(AIC). In fact, Akaike was so impressed with Schwarz’s Bayesian 

formalism that he developed his own Bayesian formalism, now often 

referred to as the ABIC for "a Bayesian Information Criterion" or more 

casually "Akaike’s Bayesian Information Criterion". 

The BIC criterion is defined by: 

 BIC = −2 × ln(likelihood) + ln(N) × k (3.35) 

Revising the model if necessary 

This was the final step in the modeling process. If the Q-Q plot between the 

quantiles of the claim amounts (y) against the respective sample quantile 

(x) of the chosen distribution had not lied close to where it was expected 
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such that the points on the plot were not along the line y = x then another 

probability distribution would have been chosen. This would have meant the 

claim amounts, this process would have been repeated until an appropriate 

statistical distribution was fitted to the claims amount. 

3.4.5 Expectation of Model Parameters 

The expectation of the model parameters is defined by: 

 E(X) = p(θˆ1) + (1 − p)(θˆ2) (3.36) 

Where; 

X is the random variable p is the weight or support 

point θ1 & θ2 are the estimated parameters from the 

model 
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Chapter 4 

RESULTS AND ANALYSIS 

4.1 Introduction 

Chapter four offers a descriptive analysis of the behavior of the daily claim 

data. It takes into consideration the claim amount of the data. The finite 

mixture model that best fit the data will also be determined. All 

computations required in the modeling of claim amount will be shown both 

numerically and graphically. 

4.2 Descriptive Statistics 

Figure 4.1 displays a histogram that describes the distribution of the daily 

claim amount. We observed that there exist two peaks which suggest a 

bimodal distribution. The information inferred from this distribution is that 

there exist two subpopulations of the claims amount data. The data has two 

parts: a population that consists of smaller claims amount and a population 

of larger claims. It is assumed that the underlying process generating this 

behavior is consistent with the claims data. Though the likelihood of larger 

claims amount is small relative to the likelihood of the smaller claims 

amount, we do not ignore such likelihood or larger claims amount which may 

lead to liabilities. The thousand and three (1,003) total claims considered in 

this study has an average amount of GHS878.54 from Table 4.1. The 

minimum and maximum claim amounts over the said three year period are 

GHS369.84 and GHS2,116.11 respectively. From 
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Figure 4.1: A Histogram of claim amounts 

Table 4.1, we observe that there is some high variations in the claim size 

considering the standard deviation value of GHS339.03. The coefficient of 

skewness, 1.31, indicates that the distribution of claims size is positively 

skewed. The median value of GHS753.17 which is less than the mean value 

of GHS878.54 indicates asymmetric distribution of claim amounts. 

In order to be convinced that a univariate distribution may not fit the 

Table 4.1: Descriptive claims data analysis 

STATISTICS VALUE 

Maximum amount (GHS) 2,113.11 

Minimum amount (GHS) 369.84 

Mean(GHS) 878.54 

Variance 114,940.40 

Standard Deviation (GHS) 339.03 

Skewness 1.31 

Kurtosis 0.620 

1st Quartile (GHS) 655.18 

Median (GHS) 753.17 

3rd Quartile (GHS) 923.38 

claim data adequately, we can visualize from Figure 4.2 that the loss model 

(gamma) suitably chosen cannot fit the data very well. In most actuarial 

work, a gamma distribution is frequently used to fit claims data, but from 
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Figure 4.2, gamma distribution does not mimic the behavior of the claims 

data. The Kernel density estimator which is a non-parametric 

 

Figure 4.2: Histogram with kernel density estimate 

estimator smooth the claims amount data and mimics the true behaviour of 

the claims amount also displayed in Figure 4.2. From the Table 4.2, 

Table 4.2: Maximum Likelihood estimates of the Pareto-Gamma mixture 
model 

PARETO-GAMMA 

p 0.012 

aˆ 17.86 

λˆ 0.40 

θˆ 0.43 

γˆ 939.09 

(p = 0.012) defined as the weight means that more weights are given to the 

Gamma distribution than the Pareto distribution. From the Table 

4.2, the estimated (α,ˆ λ,ˆ θ,ˆ γˆ) values of which αˆ and λˆ comes from 

Pareto and θˆ and γˆ comes from Gamma. From the Table 4.3, (p = 0.854) 

that more weights are given to the first Normal distribution than the second 

Normal distribution. 

The estimated (µˆ1,µˆ2,σˆ2) values of which µˆ1 comes from the first Normal 

and µˆ2 comes from the second normal. The estimated common variance was 
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338.43. From Table 4.4, the estimate (p = 0.488) indicates that Table 4.3: 

The Maximum Likelihood estimates of Normal-Normal (with common 

variance) mixture model 

Normal-Normal 

p 0.854 

µˆ1 879.9 

µˆ2 870.333 

σˆ2 338.43 

Table 4.4: The Maximum Likelihood estimates of Normal-Normal 

(different means with different variance) mixture model Heterogeneous 

Normal-Normal 

p 0.488 

µˆ1 876.03 

µˆ2 861.12 

σˆ12 345.76 

σˆ22 216.30 

the first normal has almost the same weight as the second Normal. The 

estimated values  of which µˆ1 and σˆ12 are from the 

first Normal and µˆ2 and σˆ22 from the second Normal. The estimated 

different variances were 345.76 and 216.30. 

4.3 Distribution Function Plot 

Another typical graph is to plot the fitted distribution Fˆ(x) and the empirical 

cumulative distribution function Fˆ
n(x). Another typical graph is to plot the 

fitted distribution Fˆ(x) and the empirical cumulative distribution function 

Fˆ
n(x). The essence of this plot is to visualize how close the fitted mixture 

models are to empirical data. Figure 4.3 displays the cumulative distribution 

of the three fitted mixture models and the empirical cumulative distribution 

function. We observe that the NormalNormal and Heterogeneous Normal-

Normal mixtures approximate the empirical CDF than the Pareto-Gamma 
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mixture models. This means that, the estimated CDF of the Pareto-Gamma 

model may 

 

Figure 4.3: A graph showing the fitted CDF’s and the empirical CDF 

not fit the bimodal claim data well. The estimated CDF of the NormalNormal 

and the estimated CDF of the Heterogeneous Normal-Normal mixture 

distributions are very close to the empirical Normal-Normal and 

Heterogeneous Normal-Normal mixture distributions that may fit the data 

better. Another typical graph to assess how good a model is to use the Q-Q 

plot. The Q-Q plot compares the empirical Quantile function Qn against the 

theoretical quantile function. Figure 4.4 displays the Q-Q plot, for the three 

mixtures. 

From Figure 4.4, the estimated quantiles from Pareto-Gamma mixture 

distribution is far away from the theoretical straight line. This justifies the 

reason why Pareto-Gamma may not fit the claims data well. 

However, the estimated quantiles of the Normal-Normal mixture 

distribution is somehow close to the theoretical line on the Q-Q Plot. Hence 

the Normal-Normal mixture distribution may fit the data. 
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The estimated quantiles of the Heterogeneous Normal-Normal is also close 

to the theoretical line on the Q-Q plot. Therefore the Heterogeneous 

 

Figure 4.4: A graph showing the Q-Q plot on claim data 

Normal-Normal may also fit the data well. 

4.4 Goodness-of-Fit Statistics 

Over here, we access how good the fitted mixtures best fit the data using AIC 

and BIC. From the Table 4.5, the AIC for Pareto-Gamma 

Table 4.5: Goodness-of-fit criteria 

MIXTURE DISTRIBUTION AIC BIC 

PARETO-GAMMA 20422.78 20447.32 

NORMAL-NORMAL 14497.05 14516.68 

HET. NORMAL-NORMAL 14480.03 14504.57 

mixture distribution is 20422.78 and the BIC is 20447.32. The AIC for the 

Normal-Normal mixture distribution is 14497.05 and the BIC is 14516.68. The 

AIC for the Heterogeneous Normal-Normal mixture distribution is 14480.03 

and the BIC is 14504.57. 



 

43 

The model with the least values of AIC and BIC indicates the best fits models 

to the claims data. From table 4.5, the Heterogeneous NormalNormal 

Mixture model is the best finite mixture distribution for the observed 

bimodal data, since the AIC and BIC values are both the least. 

4.5 Expectation of claims amount 

From the Heterogeneous Normal-Normal mixture model with parameters p 

= 0.488, µˆ1 = 876.03 and µˆ2 = 861.12, the expected claims amount per risk 

for the coming year is: 

E(Claims amount per risk) = 0.488(876.03)+(1−0.488)(861.12) = 868.39608 

Therefore, the expected claims amount per risk for the coming year is 

approximately GHS868.40.  
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Chapter 5 

CONCLUSION AND 

RECOMMENDATION 

5.1 Introduction 

The main aim of this study is to determine the mixture distribution to fit the 

claim amount data from the insurance company and to determine the 

parameters of the claim amount using mix-type distributions. 

The analysis of the data was well discussed in the case of ParetoGamma 

Mixture Distributions, Normal-Normal Mixture Distributions and 

Heterogeneous Normal-Normal Mixture Distributions. 

5.2 Discussions and Summary of results 

The discussions present the analysis of the data. The observed number of 

data points was one thousand and three (1003). From Figure 4.1, the left 

part of it indicates the lower claim size. The right part of the histogram 

indicates the higher claim size. Table 4.1 which indicates the summary 

statistics of the claim amount, the maximum and minimum values are 

GHS2116.11 and GHS369.84 respectively. The mean value of GHS878.54 

which is greater than the median value of GHS753.17 indicates the 

asymmetric distribution of claims amount. The skewness coefficient value of 

1.31 shows that the distribution of the claims amount is positively skewed. 
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Also the Kernel Density Estimate that was observed indicates that since the 

data is a bi-modal and hence using a univariate distribution like Gamma to 

fit the data, the results may be misleading. 

The loss model of the univariate distribution (Gamma) could not fit the 

claims amount since the data is bimodal. The non-parametric Kernel Density 

estimation was used to mimic the behaviour of the claims amount data. 

Furthermore, the maximum likelihood estimate was used to model the three 

mixtures; Pareto-Gamma, Normal-Normal and Heterogeneous Normal-

Normal. It was observed that, the estimate γˆ of the ParetoGamma 

distribution has the highest value. For the Normal-Normal mixture model, 

the first mean, µˆ1 = 879.97 is greater than the second mean, µˆ2 = 870.33 

with the common variance of σ = 338.42. For the Heterogeneous Normal-

Normal mixture model, the first mean, µˆ1 = 

876.03 is greater than the second mean, µˆ2 = 861.12. The first variance, 

 and the second variance, . 

Again the fitted CDF in Figure 4.3, shows that, the estimated CDF of the 

Pareto-Gamma could not fit the bimodal claims data well however, the 

estimated CDF of the Normal-Normal and Heterogeneous NormalNormal fit 

the bimodal claims amount data. 

The Q-Q plot was used to compare empirical quantile function and the 

theoretical quantile function. 

In addition the Goodness-of-Fit test was used to determine the model that 

best fit the data. The AIC and the BIC values of the various models were 

estimated. The AIC values of the Pareto-Gamma, NormalNormal and 

Heterogeneous Normal-Normal were 20422.78, 14497.05 and 14480.03 

respectively. The BIC values of the Pareto-Gamma, NormalNormal and 

Heterogeneous Normal-Normal were 20447.32, 14516.68 and 14504.57 
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respectively. The distribution with the least values of AIC and BIC normally 

best fits the data. Therefore, from the analysis, it was found that the 

Heterogeneous Normal-Normal Mixture Distribution is the best finite 

mixture distribution for the bimodal data with the least AIC and BIC values 

of 14480.03 and 14504.57 respectively. 

5.3 Conclusion 

We therefore conclude that the heterogeneous Normal - Normal fits the 

claims data. And the expected claim amount per risk for the coming year is 

approximately GHS868.40 

5.4 Recommendations 

Model that fits data 

From the analysis, it was observed that the nature of the claims issued by the 

insurance company to the researcher was a bimodal distribution. The 

heterogeneous normal-normal different means and variances were used to 

fit the data accurately. Therefore there is a need to advice the insurance 

company to consider mixture models in estimating claims amount than the 

univariate models. The heterogeneous normal-normal models have to be 

used in modeling future claims payment so as to estimate error rates. 
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Appendix A 

Claims Data: 

819.85 924.23 714.27 452.82 756.46 647.73 760.74 537 908.12 

982.83 867.56 789.21 651.54 459.15 735.94 660.43 1618.57 

593.05 734.52 856.24 727.78 684.17 642.06 725.21 677.26 

843.77 689.05 903.9 756.69 557.47 409.64 578.49 629.99 
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1731.02 

963.35 798.82 625.84 891.73 577.03 836.54 706.88 714.84 

787.94 1076.29 843.9 823.2 579.47 466.56 626.54 685.8 

1472.49 

745.55 903.26 568.96 769.71 631.81 602.3 773.77 654.74 

708.88 848.03 1028.93 740.97 557.19 601.46 712.78 532.42 

1550.09 

666.54 887.65 613.94 854.78 684.49 751.73 553.44 722.33 821.02 854.93 

864.21 997.36 474.25 625.32 526.33 523.67 

1472.59 

594.49 1002.82 704.78 727.68 742.78 500.39 634.91 659.42 731.67 766.65 

1059.19 933.34 641.93 610.77 519.01 420.36 

1862.25 

650.4 739.57 697.27 924.62 793.39 993.37 744.36 655.67 

950.21 923.09 795.1 817.61 607.1 659.27 710.23 556.58 

1394.89 

665.76 565.75 845.18 800.28 640.56 527.94 706.94 896.59 

946.63 775.58 860.77 808.43 620.8 539.69 491.95 654.88 

1435.86 

752.95 854.77 868.04 643.43 718.57 593.34 564.81 708.88 708.65 697.66 

721.71 806.87 739.97 587.19 631.26 749 

1755.58 

676.74 768.68 595.67 706.05 528.27 625.72 690.6 701.87 930.35 795.9 

916.31 788.13 493.79 505.01 710.95 512.67 

1659.78 

688.73 769.09 733.79 712.62 739.42 632.24 580.4 561.28 

696.1 731.23 829.68 793.58 646.73 753.03 668.73 616.6 

1305.42 

1054.89 880.52 731.19 698.22 676.64 723.82 714.51 702.1 
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867.13 595.71 894.11 678.82 648.52 617.11 546.57 619.3 

2116.11 

795.09 832.21 586.01 835.87 696.9 564.81 653.14 783.73 

1044.69 942.12 825.18 851.94 549.79 676.88 607.24 489.1 

1236.33 

774.98 791.03 665.31 903.98 806.85 658.98 643.58 829.21 

865.89 998.5 838.88 856.35 514.74 710.37 718.35 485.5 

1321.81 

758.89 749.4 769.01 940.56 760.72 803.68 728.87 738.38 

723.5 911.16 844.44 603.72 624.08 677.42 499.5 596.56 

1266.75 

611.95 815.07 758.25 717.72 736.72 676.73 715 824.12 879.53 

827.84 748.41 734.53 594.6 729.32 526.59 534.44 1466.85 

976.04 619.62 673.12 648.57 786.34 694.87 598.56 767.88 

1094.04 1034.56 660.91 843.85 758.05 564.27 676.78 538.24 

1603.72 

866.19 610.91 722.93 664.29 746.87 611.04 786.08 686.43 821.33 686.25 

823.95 836.17 610.81 584.13 680.92 696.01 

1727.28 

605.62 861.71 641.78 867.58 720.6 761.75 690.94 660.38 

844.39 787.12 781.26 644.99 592.55 650.79 629.08 538.74 

1541.65 

728.24 836.03 577.37 629.39 825.63 728.69 618.4 723.36 

724.7 799.43 723.77 1035.72 613.05 649.76 539.03 602.95 

1392.54 

619.16 685.38 614.7 783.02 689.46 626.75 642.82 958.68 

772.06 861.24 1056.97 860.79 501.03 533.49 506.7 615.05 

1394.51 
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784.56 883.5 808.2 814.54 633.42 711.08 601.64 647.18 813.33 947.5 

756.16 877.87 560.58 706.8 605.18 571.82 

1330.27 

886.98 916.05 701.39 672.57 778.25 705.08 605.71 724.33 883.13 799.88 

749.66 582.78 631.17 574.26 534.89 746.65 

1443.51 

589.5 582.21 603.31 697.2 580.05 644.54 957.62 732.59 866.1 

740.59 831.46 872.4 715.75 495.92 608.12 690.7 1632.38 

791.3 560.46 634.46 915.32 671.39 687.22 647.88 722.07 

785.7 790.87 856.79 916.21 461.42 630.47 615.43 555 1576.48 

909.02 942.62 870.36 816.98 696.52 738.05 707.86 703.66 

884.7 751.84 823.58 831.54 558.77 589.93 602.91 543.98 

2013.4 

920.02 906.39 833.31 700.33 753.31 674.02 644.9 810.99 

864.57 886.93 886.89 662.92 474.37 748.93 656.42 590.82 

1165.38 

648.63 831.17 893.63 689.28 701.24 684.6 670.75 686.76 

1080.2 721.05 823.11 742.55 685.36 664.87 611 686.07 

1391.99 

729.63 791.86 833.38 739.22 766.67 693.65 754.1 711.28 

882.19 768.52 1001.53 846.49 666.81 576.39 679.55 523.15 

1535.46 

655.1 748.4 775.09 847.48 698.59 653.54 711.05 701.92 

894.07 945.14 1105.11 680.01 603.34 574.77 684.74 538.55 

1713.46 

732.24 686.83 944.29 765.41 623.25 614.57 675.34 608.23 

869.52 895.54 718.48 867.98 528.73 527.17 655.77 712.7 

1604.38 
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618.68 1019.4 785.68 545.15 706.2 650.85 703.08 665.31 

717.5 772.12 830.7 742.79 705.79 568.79 600.81 643.83 

1472.39 

854.48 515.26 772.53 901.87 817.5 662.89 706.8 922.81 

726.94 949.24 750.3 843.74 528.07 583.97 655.21 630.54 

1756.77 

850.92 660.96 891.6 728.74 798.73 800.7 747.62 934.98 

743.99 761.62 908.22 789.94 619.99 572.95 575.52 639.24 

1404.5 

715.7 877.28 835.52 643.81 678.6 683.63 653.18 690.91 

840.82 896.71 804.91 871.54 667.84 854.17 505.38 646.11 

1558.27 

641 590.92 749.8 724.54 709.49 701.91 709.25 720.44 773.13 

802.91 769.29 885.22 653.75 628.09 562.32 711.5 1777.47 

880.31 610.25 666.67 961.09 707.77 724.88 564.54 710.32 

875.95 764.69 740.27 825.96 541.88 595.8 813.58 433.14 

1528.98 

741.61 749.63 700.44 710.4 677.63 733.06 725.06 563.58 

786.67 869.65 953.52 822.04 567.4 561.97 575.76 555.35 1234.62 

733.43 701.39 712.48 898.33 746.66 797.04 601.12 640.38 716.76 799.38 

902.26 796.77 699.67 580.41 620.68 475.88 

1350.75 

1021.41 901.28 716.69 525.02 655.01 729.11 826.55 650.26 

961.95 907.96 761.05 941.51 581.53 696.66 600.12 613.8 

1437.33 

865.54 899.98 824.73 789.4 642.18 688.01 617.59 528.44 

836.12 913.5 627.27 1085.61 693.06 736.97 539.63 731.75 

1071.77 
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880.2 689.42 565.86 948.43 683.81 718.78 787.23 642.83 812.75 826.85 

739.99 687.72 369.84 554.05 664.2 598.46 

1347.42 

782.78 777.39 714.68 748.99 798.17 686.47 639.4 567.68 

647.52 865.64 918.9 895.61 597.9 497.55 668.88 646.44 

1580.46 

793.49 682.61 833.46 660.62 658.25 814.82 585.24 721.51 

739.97 798.2 814.88 680.99 682.83 599.01 567.78 706.01 

1234.83 

700.21 614.37 711.13 657.1 715.04 814.95 709.53 795.5 

1035.67 810.49 816.45 662.23 552.94 697.71 588.52 601.52 

1638.18 

962.26 775.29 760.72 857.52 778.85 706.99 723.93 618.75 778.75 935.78 

816.29 847.62 692.64 720.55 522.48 525.28 

1315.71 

566.46 956.79 758.15 647.98 753.62 769.89 866.41 650.73 

670.87 777.86 869.6 804.86 537.9 613.35 589.03 569.79 

1625.63 

817.7 763.88 650.13 738.73 745.62 832.64 762.72 613.16 

852.03 794.94 821.1 710.4 603.48 578.29 710.98 670.98 

1526.42 

895.14 799.93 937.12 754.56 720.89 754.92 635.17 666.93 799.91 885.14 

905.66 920.76 451.63 621.32 446.91 666.02 

1440.13 

731.03 792.24 662.07 747.68 680.31 750.21 754.98 655.32 

969.83 795.81 902.32 963.03 654.21 581.07 604.4 610.94 1842.14 

1309.28 1364.88 1711.17 1689.55 1699.1 1470.32 1531.63 

1599.6 1634.1 1566.58 1364.84 1630.37 1555.15 1610.03 
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1749.56 1552.82 1494.38 

1552.83 1432.87 1444.45 1640.88 1524.19 1312.56 1711.69 

1657.65 1666.17 1287.69 1540.6 1139.62 1671.52 1373.39 

1205.13 1271.97 1469.54 

1335.95 1344.56 1412.92 1704.59 1823.21 1373.36 1586.77 1180.62 

1354.32 1731.01 1513.36 1549.65 1493.51 1338.71 

1556.06 1503.61 1369.5 

1391.13 1564.9 1471.05 1510.33 1633.66 1036.32 1367.66 

1300.73 1624.39 1620.16 1380.6 1465.3 1184.79 1452.4 

1400.92 1659.17 1375.55 

1829.05 1556.33 1254.76 1181.01 1440.28 1535.88 1334.74 

1214.39 1561.94 1646.11 1757.33 1453.5 1261.13 1188.05 

1487.68 1379.92 1564.08 

1451.77 1209.14 1592.6 1297.47 1391.87 1714.66 1547.31 1715.62 

1530.59 1641.78 1314.66 1455.79 1483.43 1576.5 

1431.35 1360.09 1505.81 

1854.04 1457.78 1538.89 1611.17 1453.73 1159.66 1315.13 1401.69 

1507.9 1525.52 1588.86 1232.3 1630.69 1711.08 

1281.91 1204.55 

1367.54 1417.97 1535.11 1604.06 1235.59 1251.76 1760.04 

1799.01 1592.55 1205.07 1543.91 1642.19 1674.9 1545.55 

1327.12 1555.92 

1560.74 1571.95 1412.74 1673.91 1757.33 1408.72 1657.54 1258.17 

1865.91 1550.42 1481.54 1441.95 1728.77 1544.07 

1704.85 1408.33 


