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ABSTRACT
Euler’s phi — function ¢ n isdefined for every positive integer n asfollows: ¢¢ 1 =
1 and whenn > 2then ¢ n is the number of distinct integers k € {1,2,...,n -

1}suchthat k and n arerelatively prime.

This thesis seeks to examine the application of Euler’s phi-function in the study of

cyclic groups, field extensions and cyclotomic polynomias of afinite field.
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CHAPTER 1

INRODUCTION

A fundamental difficulty for beginning students is often the axiomatic nature of
abstract algebra and the exacting need to follow the axioms precisely. To this end
particular and extensive attention is paid to the integers, which are familiar objects of
knowledge, and which, together with some simple properties of polynomials, are used
to give motivation for the introduction of more abstract algebraic concepts. The aim
here is to provide an appropriate, interesting and entertaining text for those who
require a rounded knowledge in application of Euler’s phi-function in Abstract

Algebraas well as for those who wish to continue with further studiesin algebra.

1.1 BACKGROUND OF STUDY

Leonhard Euler's father was Paul Euler. Paul Euler had studied theology at the
University of Basel and had attended Jacob Bernoulli's lectures there. Leonhard was
sent to school in Basel. Euler's father wanted his son to follow him into the church

and sent him to the University of Basel to prepare for the ministry.

He entered the University in 1720, at the age of 14, where, Johann Bernoulli soon
discovered Euler's great potential for mathematics in private tuition that Euler himself
engineered. Euler obtained his father's consent to change to mathematics after Johann
Bernoulli had used his persuasion. Euler completed his studies at the University of

Basdl in 1726.



In 1726, Euler now had to find himself an academic appointment when Nicolaus (1)
Bernoulli died in St Petersburg; Euler was offered the post which would involve him

in teaching applications of mathematics and mechanics to physiology.

He had studied many mathematica works during his time in Basel. They include
works by Varignon, Descartes, Newton, Galileo, van Schooten, Jacob Bernoulli,
Hermann, Taylor and Wallis. By 1726 Euler had aready a paper in print, a short
article on isochronous curves in a resisting medium. In 1727 he published another
article on reciprocal trgjectories and submitted an entry for the 1727 Grand Prize of
the Paris Academy on the best arrangement of masts on a ship. The Prize of 1727
went to Bouguer, an expert on mathematics relating to ships, but Euler's essay won
him second place which was a fine achievement for the young graduate. By 1740
Euler had a very high reputation, having won the Grand Prize of the Paris Academy in

1738 and 1740. On both occasions he shared the first prize with others.

Euler's reputation was to bring an offer to go to Berlin. Accepting an offer, Euler, at
the invitation of Frederick the Great, went to Berlin’s Academy of Science. He left St
Petersburg on 19 June 1741, arriving in Berlin on 25 July. Even while in Berlin Euler
continued to receive part of his salary from Russia. For this remuneration he bought
books and instruments for the St Petersburg Academy, he continued to write scientific

reports for them, and he educated young Russians.

Maupertuis was the president of the Berlin Academy when it was founded in 1744
with Euler as director of mathematics. He deputised for Maupertuisin his absence and
the two became great friends. Euler undertook an unbelievable amount of work for the
Academy. During the twenty-five years spent in Berlin, Euler wrote around 380

articles.



He wrote books on the calculus of variations; on the calculation of planetary orbits; on
artillery and ballistics (extending the book by Robins); on analysis; on shipbuilding
and navigation; on the motion of the moon; lectures on the differential calculus, and

many more.

In 1766 Euler returned to St Petersburg and Frederick was greatly angered at his
departure. Soon after his return to Russia, Euler became aimost entirely blind after an
illness. Shortly, he became totally blind. Because of his remarkable memory he was
able to continue with his work on optics, algebra, and lunar motion. Amazingly after
his return to St Petersburg (when Euler was 59) he produced almost half his total
works despite the total blindness. Euler died on 18 September 1783, after his death in
1783 the St Petersburg Academy continued to publish Euler's unpublished work for

nearly 50 more years.

He made large bounds forward in the study of modern analytic geometry and
trigonometry where he was the first to consider sin, cos, etc. as functions rather than

as chords as Ptolemy had done.

He made decisive and formative contributions to geometry, calculus and number
theory. He integrated Leibniz's differential calculus and Newton's method of fluxions
into mathematical analysis. He introduced beta and gamma functions, and integrating
factors for differentia equations. He studied continuum mechanics, lunar theory with
Clairaut, the three body problem, easticity, acoustics, and the wave theory of light,
hydraulics, and music. He laid the foundation of analytical mechanics, especially in
his Theory of the Motions of Rigid Bodies (1765). We owe to Euler the

notation f(x) for a function (1734), e for the base of natural logs (1727), i for the



square root of -1 (1777), m for pi, > for summation (1755), the notation for finite

differences Ay and A*y and many others.

1.2STATEMENT OF PROBLEM

Euler’s phi — function ¢ n is defined for every positive integer n as follows:
1 =1 and whenn > 2then ¢¢ n is the number of distinct integers k €
{1,2,...,n - 1}such that k and n are relatively prime. The ¢ function has many
interesting properties which among other things greatly ssmplify the problem of

computing ¢ n . The one obvious property isthat if pisaprime ¢ p = p- 1.

The problem of the thesis is to establish some useful application of Euler’s phi —

function ¢ n in Abstract Algebra

Let n be any positive integer. Then by definition there are ¢ n numbersin £,,that are
relatively primeto n. If @ and b are two of these numbers, then sois ab. Thisfollows
from Euclid’s lemma by contradiction. Suppose ah was not relatively prime to n.Then

there is some Prime p that divides ab and divides n.

By Euclid’s lemma, p must divide a or b.Suppose for example that p divides a, then
a and n both have p as a factor and are not relatively prime. This contradicts our

assumptions. Hence ab is relatively prime to n.

This thesis also seeks to examine the study of field extensions and cyclotomic

polynomials of afinite field.



1.3 OBJECTIVE OF STUDY

The aim of the project is to identify some properties and uses of Euler’s phi function
in abstract algebra. In particular in the determination of Automorphisms of Cyclic

group as well as cyclotomic polynomials and related field extensions.

1.4METHODOLOGY

To present an overview of the application of Euler’s phi function in group and field
theory with particular attention to the following subjects: homomorphism,
isomorphism, automorphism of cyclic groups, fields, field extensions and cyclotomic

polynomials.

1.5JUSTIFICATION OF THE OBJECTIVES

The thesis deals extensively with the use of ¢¢ n  to describe the group of
automorphisms of €, where &, is a cyclic group of order n . It also makes it easy to
write the cyclotomic polynomial & n and show that it’s splitting field over the field
of al rational numbers is an extension of degree ¢ n . It will aso help you learn
about some properties of Euler’s phi — function ¢ n , as well as Group and Field

automorphisms.

1.6 ORGANIZATION OF THESIS

The Chapter one of the thesis comprises the statement of problem. The Chapter two
looks at the preliminary concepts of integers, some properties of Euler’s phi-function.
The application of Euler’s phi-function in the determination of the order and structure

of the Automorphisms of Cyclic Groups with the properties of Groups, Rings and



Fields is outlined in the Chapter three. The Chapter four outlines Ring of

Polynomials, Galois group and Cyclotomic polynomials.



CHAPTER 2

BASIC CNCEPTS

In Mathematics, it is always possible to regard any object as a set with some
additional structure-preserving bijective function from the set to itself. Composition
of functions provides an operation on this set and it is not hard to show that the group

axioms are satisfied.

The theory of Euler’s phi function is concerned with group theory and number theory
with probably more of the latter than the former. This chapter looks at some

properties and theorems of Euler’s phi-function.

2.1 Principle of Well-ordering
Let @ be the set of natural numbers. Every non-empty subset § of [ has a least
element integer in §. It frequently happens that we have some assertion, proposition

or statement P n which depends on the particular integer .
The proposition may itself be true or false.
Examples

L

1.1+2+ -+ n:E n+ 1 wheren € @

2.2n+ 1< 2" wlleren €
3. nf< 2" where n €

In each of these examples we have a statement that depends on n. We are not

asserting the truth or falsity of the statement. Naturally, however, we wish to know



whether the particular statement is true for al n € @ or, possibly, for al n €

greater than some fixed integer.

We are led to the Principle of Induction and to an obvious and convenient variant of
this principle. We may derive the Principle of Induction from the Principle of Well-
ordering but both, for present purposes, may be regarded as smply axiomatic or,

indeed, as 'obvious.

2.1.1 Principle of Induction

Let P n beaproposition depending on the integer n. Suppose that

1.F1 istrueand

2.1f P k istruethen P k+ 1 istrue (induction assumption).

Then F i istrueforal n € Q.

Proof

Let § be the subset of @ of those integersn for which F n istrue.

Then certainly 1e5 and so § isanonempty set. Let X = @/5.

We wish to show that X isan empty set and then 5 = 0.

For the sake of argument suppose & is a nonempty.

We apply the Principle of Well-orderingto X. Let N be the least integer in X.

Now W # 1sincel e Sandso N > 1.

Since Nistheleast integer in X, N - 1lisanintegernotinX andsoN - 1€ 5.



Butthen P N - 1 istrueand so, by hypothesis2, F N isadsotrueand N € §.Z
But thisisacontradictionas X N § = @ (isan empty set).
Hence X isempty and § = @. (Wallace, D. A. R., 1998)

The Principle of Induction is often used in a modified version which we may aso

deem to be axiomatic.

2.1.2.Principle of Induction (Modified Version)

Let F n beaproposition depending on the integer n.

Suppose that

1. P1 istrueand

2. If foreach m< k, P m istrue then P k+ 1 istrue(induction assumption).
Then P n istrueforal n € @.(Wallace, D. A. R., 1998)

Examples

1 Pn isthestatement1+ 2+ -+ n==2n+1 forneon.

Certainly P 1 istruesince 1 = % 1+1.

If we now make the induction assumption that P k is true, then we suppose

that

1+2+---+k=§k+1.



But thisimplies that

k
1+2+ -+ k+ k+1 =§k+1+ k+1

k+ 1
= k+ 2
5 +
k+1
= > k+1 +1

and so we may assert that F k& implies P k+ 1 . Hencewehavefordl n €

1+2+ -+ n==n+1

2. P n isthestatementthat 2n+ 1< 2" wleren €
Now P 1 and P 2 are in fact, fAsesince2 1 + 1> 2'and2 2 + 1>
2%, However, P 3 istruesince 2 3 + 1= 7 < 2%
Let ussupposethat P k istruefor all k > 3. Then we suppose 2k + 1 < 2¥.
But thisimplies
2k+1 +1=2k+3=2k+1+2<2%+2=2""Yforkz>3
andso P k+ 1 istrue.

Henceweconcludethatforalne @, n> 3:2n+ 1 < 2™

2.1.3 Euclidean Algorithm

The Euclidean Algorithm is a very important and non-obvious systematic procedure
to find the greatest common divisor d of two integersm, 1, and aso to find integers
XYy

sothat xm+ yn = d

10



Each step in the Euclidean Algorithm is an instance of the Division agorithm. One
important aspect of the Euclidean Algorithm is that it avoids factorization of integers
into primes, and at the same time is a reasonably fast algorithm to accomplish its
purpose. This is true at the level of hand calculations and for machine calculations,

too.

2.1.4 TheDivision Algorithm

For a non-zero positive integer m, there is the process of reduction modulo m, which
can be applied to arbitrary integersiV.
This is exactly the division-with remainder process of elementary arithemetic, with
the quotient discarded: the reduction modulo m of N is the remainder when N is
divided by n. This procedureis also caled the Division Algorithm, for that reason.
More precisaly, the reduction modulo m of ¥ is the unique integer r such that IV can
be written as

N=gm+r

with an integer g and with 0 < r < m.

22FACTORS

An integer d isacommon divisor of afamily of integers n,, ..., n,, if d divides each
one of the integers n,.
Aninteger N isacommon multiple of afamily of integers n,, ..., n,, if Nisamultiple

of each of the integers n,.

11



Theorem 2.1

Let m, n be integers, both not zero. Among all common divisors of m, n there is a
unigque one, cal it d, so that for every other common divisor e of m, n we have e|d,
andaso d > 0.

This divisor d is the greatest common divisor (gcd) of m,n. The greatest common
divisor of two integers m, n (both not zero) isthe least positive integer of the form
dxm + yn with x,y € 0.

Remark: The greatest common divisor of m, n isdenoted gecd m,n .

LemmaZ2.1

If @ and b are integers, not both zero then, the greatest common divisor exist is
unique. Moreover, we can find integers m and n such that the greatest common

divisor c of aand bisc = ma + nb.

Proof

Let f§ be the set of all integers of the form ma + nb,wherem,n e Z anda # 0,b #
0. If d/aandd/bthend/ ma+ nb henced/c. Givenx = mya+ n,b infi, then

by the Euclidean algorithm, x = tc¢ + r where 0 < 7 < ¢.

Now mya+ nm,b=t ma+nb +r=>r= my-tma+ n,-tnbsnce 0<r
and r < ¢ by the choice of ¢,r = 0. Thusx = tc. Hence ¢ /x for any x € [5. Hence

c/aandc/b.

12



2.2.1 Relatively Prime
Two integers are relatively prime or coprime if their greatest common divisor is 1.
Also we may say that m isprimeto n if they are relatively prime.

For example 24 and 35 are relatively prime.

Corollary 2.1

If @and b arerelatively prime, we can find integers m and n such that ma + nb = 1.

Lemma?2.2

If aisrelatively primeto b but a/bc, thena/c

Proof

Since a and b are relatively prime, by the corollary, we find integers m and n such

that ma + nb = 1.

Thus mac + nhc = ¢. Now a/mac and by assumption a/nbc.

Consequently, a/ mac + nbc sincemac + nbc = ¢. We conclude that a/c.

Hence, if aisrelatively primeto b but a/be then a/c.

2.2.2 Associates
A nonzero element @ of a commutative ring R is said to divide an element b € R if
there exist x € R such that ax = b, where a,b € R are said to be associates if

a/b and b/a.

Invertiblee Anelementissaidtobeinvertibleif ae Randbe Rthena-b=1

13



2.2.3 Prime element

A non-zero element p of an integral domain D with unity is called prime element if

1. pisanonzero and non-unit

2. if p/abthenp/aor p/bwherea, b € D.

2.3INTEGERSMODULO m
If two integers x, v € B differ by a multiple of a non-zero integer m € £ we say that

X iscongruent to ¥ to modulo m written x = ¥ maod m.

Any relation such as this is called a congruence modulo m and m is the modulus.

Equivalently, x = ¥ mod m if andonly if m| x - vy .

Example3 = 18 mod 5 because 5| 18- 3 .

Theorem 2.2

For afixed integer m, congruence modulo m isan equivalence relation. That is;

1. Reflexivity: dwaysx = x mod m for any integer x
2. Symmetry: if x =¥ mod m theny = x mod m.

3. Transitivity: if x =y mod m andy =z mod m then x = z mod m.

Proof

1. Sincex - x = 0 and aways m|0, we have reflexivity.

2.1fm| x-y thenm| y- x since y- x=- x- ¥ thuswehavesymmetry

3. Suppose that m| x- ¥ and m| ¥y- z . Then there exists integers k, ! €

such that

14



mk=x-y and ml=y-2z . Then, x- 2= x-¥v + ¥y-2 =mk+ ml=

m k+ | . Thisprovesthe transitivity.

2.3.1 EULER’S PHI-FUNCTION

Definition

For n > 1. Thenumber ¢¢ n denotesisthe number of distinct integers
ke@Qn = 1,2,..,n-1 suchthat kand n arerelatively prime, that is
¢gn = | n| theorderof ((n).

Examples

01=1, 0Q2=1, 03=12, 04=13,
Q7 = 123456, Q10 = 1379,

Q(30) = {1,7,11,13,17,19,23,29}

Therefore

¢1=1Q1|=1,¢2=1[Q2|=1,¢3 =[0Q3]|=240¢4 =

104 ]=26¢7 =1Q7|=6¢10 = |[Q10]|=4, ¢ 30 = |Q30]|=8

Definition

Forn > 1,¢ n can be characterized as the number of positive integers less than n
and relatively prime to n. The function ¢b n is usually called the Euler phi-function
after its originator. The functional notation ¢ n however is credited to Gauss,

thatis ¢ n = |¢gn |,

15



where g n = m,|0 < m; < n,wBere m; are relatively prime ton}

Remark: We know ¢ 1 = 1, for n> 1. Since the greatest common divisor,

ged 1,1 =1, ged n,n = n# 1= n isnot reatively primeto n.

If n is prime then every number less than n is relatively primetoit, that is ¢ n =

n- 1.
Theorem 2.3

If pis a prime number and k> 1, then ¢ p* =p*-p*t=p"“1-1/p ,

integers relatively primeto p*.
Proof

The ged n,p* = 1if and only if p does not divide n. There are p*~ ! integers
between 1 and p*which are divisible by p namelyp, 2p, 3p, ..., p* ' p. Thus the set
1,2,..,p% contains exactly p* - p* ! integers which are relatively prime to p* so

by the definition of ¢h, ¢ p* = p* - p* ! integersrelatively primeto p*.
Example

i. @9 =¢ 3% =3°-3=6elements = Q 9 = {1,2,45,7,8}

i. ¢ 16 = ¢ 4% = 2%- 2% = gelements = ( 16 = {1,3,5,7,9,11,13,15}

Theorem 2.4

The function ¢ is a multiplicative function, ¢¢ mn = ¢ m ¢¢ n when ever

m and n arerelatively primei.e. gcd m,n = 1.

16



Theorem 2.5

If aninteger n > 1 hasthe primefactorizationn = P, B2 . p*

Is

Then, ¢ n = B9 - P97 pe- pit | pf - pSTY and hence

1 1 T T

dn=nl-— 1-= .. 1-> eements
Py P Py

Proof

By induction on r, the number of distinct prime factorsof n. Itistruefor r = 1.

Pk] 1

1

Then ¢ £ = B -

1

Letithold for r = i sincethe ged PR .. BUP = 1.
Now by the definition of multiplicative function;

SRR .BNE) = ¢ BB ..E" ¢ B}

+1

= ¢ Pkipzkr F;k! prEL _ ptHa=l
1

i+1 i+1

Invoking the induction assumption, the first factor on the right hand side becomes

{fl ijpzk:::- FEKEH - ij_
A

ki=1 kz _ phka=1 Ki+1 _ pRi+1—1
=2 A P F, F B’ P

1 2 i+1 i+1

This serves to complete the induction step as well as the proof.

Hence ¢ n = B -

ky=1 kz _ phka=1 Kiv1 _ pkit1—1
ki_ pki=t pka_ pke=1 - pkia_ p

1 i+1 i+1

Therefore

dn =n 1-+ 1-2 . 1-2 dements
M Pz Py

17



Example

Tofind ¢ 360 . We know that the prime factorsof 360 = 23325,

O ¢ 360 =360 1- 1-: 1-- =096

3

Thus (}(360) has 96 elements, each relatively prime 360.

Theorem 2.6

For n> 2,¢ n isaneveninteger.

Proof

Consider two caseswhen 1 isapower of 2 and when n isnot a power of 2.

1. Letn beapowerof 2 thatisn = 2%, k> 2.
Hence ¢ n = ch 2% = 2% 1- 1/2 = 2%°! thereforeh n iseven.

2. Whennisnot apower of 2. Then it isdivisible by an odd prime number p,
thenn = p*m where k> 1and ged p*,m = 1.
By the multiplicative nature of phi-function,

gn=¢p'm=0¢p" ¢gm=p~'p-1¢m

Hence ¢¢ n iseven, because2 isdivisbleby p- 1.

2.3.2Fermat'sLittle Theorem
Let p beaprime number. Then for any integer x

xP=x mod p

18



Proof

We will first prove that prime p divides the binomia coefficients ‘? with

1< i< p-1, keeping in mind that the ‘“’extreme™ cases i = 0 and i = p cannot

possibly aso have this property, since ‘g =1 i =1
Indeed, fromits definition, ¥ = T

Certainly p divides the numerator. Since 0 < i < p, the prime p divides none of the
factors in the factorials in the denominator. By unique factorization into primes, this
meansthat p does not divide the denominator at all.

From the Binomial Theorem,

P

—_—
(=i=n

_T+}"D= _‘,{"'_}_.'FJ"

In particular, since the coefficients of the left-hand side are integers the same must be

true of the right-hand side. Thus, all the binomial coefficients are integers.

Thus, the binomial coefficients with 0 < i < p are integers expressed as fractions

whose numerators are divisible by p and whose denominators are not divisible by p.

Thus, when all cancellation is done in the fraction, there must remain a factor of pin

the numerator. This proves the desired fact about binomia coefficients.

Now we prove Fermat's Little Theorem (for peositive x) by inductionon x.

Firg, certainly, 17 =1 mod p.

For the induction step, suppose that we aready know for some particular x that
xP=x mod p

Then
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All the coefficients in the sum in the middle of the last expression are divisible by p.
Therefore,
x+17P=x"+0+1=x+1 mod p

since our induction hypothesisisthat x” = x mod p.
This proves the theorem for positive x.
To prove the theorem for x < 0 we use the fact that - x is then positive. For p = 2,
we can just treat the two cases, x =0 mod 2 and x =1 mod 2 separately and
directly.
For p > 2 we usethe fact that such a primeis odd.
Thus,

X=--xP=- -x modp=x mod p

by using the result for positive integers.

Definition

Let n be a positive integer. An integer g is a primitive root modulo 1 if the smallest

positiveinteger | sothat g' = 1mod n is ¢ n .

Theorem 2.7
The only integersn for which there is a primitive root modulo n are those of the
forms

1. n=p“withanoddprimep,ande > 1

2. n=2p° withanoddprimep,ande > 1

3 n=2:;4

It is useful to make clear one important property of primitive roots.
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Corollary 2.2
Let g be aprimitive root modulo n. Let | be aninteger so that
g'=1 mod n

Then ¢ n divides |.
Proof
Using the Division Algorithm, we may write = qg. ¢ n +r with 0< r<
¢ n . Then

1=g'=gitn+r= gbn Y g - 19 g" = g" mod n
Since g is a primitive root, ¢» n is the least positive exponent so that g raised to
that power is1 mod n.

Thus, since 1 = g" mod n,itmustbethat r = 0. Thatis, ¢ n |L.

2.3.3 Euler’s Theorem

Let n be apositiveinteger. For x € @ relatively primeto n,

x®" =1 mod n

Proof:
The set B/n* of integers mod n which are relatively prime ton has ¢ n elements.
By Lagrange's theorem, this implies that the order k of ge@/n*|¢gn .
Therefore,
¢ n /k isaninteger, and

gom = gk dn/k- gbn/k- g

Applied to x mod n thisisthe desired result.
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Theorem 2.8
Let n be a positive integer. For x € @ relatively prime to n, the smallest exponent
| sothat
=1 mod n
is adivisor of ¢¢ n . That is, the order of x in the multiplicative group B/n*is a
divisorof ¢ n .
Proof:
The order x is equal to the order of the subgroup < x > ,which by Lagrange's theorem

isadivisor of the order of the whole group &/n*.

22



CHAPTER THREE

GROUPS, RINGSAND FIELDS
This chapter looks at Groups, Rings and Field and also Polynomias. Also looks at
the use of Euler’s phi-function, in the determination of the order and structure of

automorphisms of cyclic groups under multiplication.

The evolution of the concept of an abstract group owes much to the labours of many
mathematicians of whom only a few will be mentioned here. The origins of the
concept may be traced from the work of P. Ruffini (1765-1822) and E. Galois (1811-
32) through to that of L. Kronecker who developed ideas for what we now call an
Abelian group (‘Abelian’ after N.H. Abel, 1802-29). The abstract concept of a finite
group was first formulated in 1854 by A. Cayley (1821-95) but its significance was
not properly appreciated until 1878. W. von Dyck (1856-1934) and H. Weber (1842-
1913) were influential in the development of group theory, the latter giving the first

definition of an infinite group in 1893.

3.1 GROUP
A group ((,*) is an ordered pair such that (v is nonempty set, a binary operation (*

) defined on G and it satisfies the axioms of a group.

3.1.1 Axioms of a group

Axiom 1: The binary operation (*) is closed, if for every pair a,b € G thena x b €

#

Axiom 2: The binary operation (*) satisfies the associative law.
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Ifa bceGthenax bxc = axb *c

Axiom 3: There exists an identity element e under the binary operation.

If3ee i suchthataxe=exa=a foral aef.

Axiom 4: The existence of inverse in G. For every a € (; there exist an element a'le

G suchthat a * ala'la = e

Terminology: If (G,*) isagroup, will from hence forth denoted as (i is a group or

agroup under (*).

Some Useful Properties of a Group

Suppose (i isagroup under abinary operation * and without any ambiguity

ab = ax* bfor every pair @, b € ;. Then the following results:

1. Left cancellation

2. Right cancellation

3. A left identity isaso aright identity

4. Uniqueness of an identity

5. Aleftinverse of an element g € G isaso aright inverse of g
6. Uniqueness of the inverse of an element

7. Theinverse of theinverse of an e ement

®©

For every pair of lementsa, b e G, ab ~' = b 'a™!
Examples
1. Group of numbers B, Q, @ and B under multiplication
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2. Group of matrices, let R be a ring with an identity element and let
GL n, R denote the set of all n x n matrices with coefficients in Rwhich have
inverses, taking matrix multiplication, L n, £ is a group with identity
1,, 1 x nidentity matrix.

3. Groups of linear transformation; if V is ann - dimensional vector space
over a field F, let GLV denote the set of all bijective linear transformations,
then GLV isagroup under composition

4. Group of Permutations

3.1.2 Commutative Group

A group  under abinary operation (*) is called a commutative or Abelian group if

* iscommutative that isfor every @, b € (G then axb= bx*a.

3.1.3 Subgroup
Let H be a nonempty subset of a group . A nonempty subset I is defined as a
subgroup of & under a binary operation (*) defined in G, if it satisfies these

conditions.

abeH=axbeH
aeH=aleH

theidentity e € H
Examples

1. Q= {E:p and g are nonzero integers} isasubgroup of @*

2. H={1,-1, i,-1i} isasubgroup of @
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3.1.3.1 Left Cosets and Right Cosets of a Subgroup

Given agroup &, asubgroup H of G andanelement a € (. Let

alf = aB|@e H} and Ha= [Ba|l e H}

then al{ iscaled aleft coset of H in G and Ha iscalled aright coset of Hin (.

In the case where i isanormal subgroup of . Then alf = Ha.

3.1.4 Normal Subgroup
A subgroup H of agroup G isanormal subgroup of G if g'tlg € H forevery g € G

andevery @ e H.

Proof

If aeA and@ € Hthen a'Ba= Ba'la= Bl = Be H

Therefore I isanormal subgroup of A.

Example

If Aisan Abelian group and H is a subgroup of A then i isanormal subgroup of A.

Theorem 3.1

These two statements about agroup & and asubgroup I of i are equivalent.

1. H isanormal subgroup of (.

2. Ha= alforeverya € (.

Proof
Suppose H isanormal subgroup of ( istrue. If @ € G thenv B € H, aBa'e H
and a'la € H

Let a'Ba = y € H, then Ba= ay € aH ~ Ha c aH
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Let aBa'n € H then aB=na€e Ha~aHc Ha~ Ha=all V a€G

Thus H isanormal subgroup of G implies Ha = al{ for every a € G.

On the other hand, suppose Ha = all foreverya € G istrue. If ge Gand@ € H
then Age Hg= gH = Bg= gfwhere feH theng'Bg=feH
Therefore Ha = alf for every a € &G implies H isanormal subgroup of .

Hence, the two statements are equival ent.

3.1.5 Center of a Group
Let G beagroupand £ G betheset of all lementsa € G suchthat ga = ag,vge

G.

ThenZ i iscaledthecentreof agroup ¢, £ G = a€ G |ag= gaVvgeG}

Theorem 3.2

Thecentreof agroup £ ¢ isanormal subgroup of .

Proof

Let / betheidentityinG. Thenlg= gl = gvVgetG ~1e€Z G .

If aeZ G then ag = ga,vVg € G Henceaga'gvge G -~ a'e Z G

If aandb areelementsof Z G then abg = agh = gab,vge G ~.abeZ G ,
That show that Z ¢ isasubgroup of (.

Finaly forevery, ge G andevery e Z G g'Bg= glgd= I0=B€Z G -

Z G isanormal subgroup of G.
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3.2FINITE GROUP

A group whose underlying set i has finite number of elements is known as finite
group. The order of a group is the number of elements in the group. A group
consisting of an infinite number of elements is said to be an infinite group, for

example the set @ of al integersis an infinite group under the addition composition.

The number of elementsin  is caled the order of the group & and is denoted by
|&;]. The infinite group is said to be of an infinite order. Example; the set {1, - 1} under

multiplication composition is a group of order 2.

Examples

1. For every integer n > 2 there is adihedral group of order 2n, let Dn denote
a dihedral group of order 2n . Then Dn =
LA, .., A" B AB, ..., A" 'B® where [ is the identity, 4, B are elements
suchthat A™ = [ for, A% # I for 1 < k < n,
B?=land BA= A" 'B.

2. For every positive integer n there exists a group £,, comprising of exactly n
glements: a',a® ...,a™ ', I where a™ = I, the identity. Such a group is

called acyclic group of order n.

3.2.1The Order of an Element
A group element x has finite order if the cyclic subgroup < x > has order n. If <
x > isinfinite then x has infinite order. Let |x| denote the order of x. Elements of

order 2 are often called involutions.

A periodic group (or torsion group) isagroup al of whose elements have finite order.

If the orders of the elements of a group are finite and bounded, the group is said to
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have finite exponent (or index). The exponent of the group is then the least common

multiple of all the orders.

However, agroup is said to be aperiodic (torsion-free) if apart from the identity 7, all

its elements have infinite order.

Theorem 3.3
Let x be an element of agroup . Then the following statements are equivalent.

1. If x hasinfinite order if and only if all powers of x are distinct.
2. If x has finite order n, then x™ = 1 if and only if n|m. Moreover < x >
consists of the distinct elements 1, x, x%, ..., x™ ',

3. If x hasfiniteorder n,theorder of x* equals n/ n,k .
Proof

If all powersof x aredistinct, < x > isinfinite. Conversely suppose that two powers
of x are equd, say x' = x™ whlere | < m:tBen x™' = 1. Thus we can choose
the least positive integer n such that x™ = 1. Using the division algorithm we may
write an arbitrary integer m in the formm = gn + r wiere q, rare integers and0 <
r<n

Then x™ = x™ 9x" = x7, whichshowsthat < x >= {1,x,..,x" '}.

Hence x has finite order. Alsox™ = 1 if and only if r = 0, that is, if n|m: thisis

by minimality of m.
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Next suppose that x' = x/ wBere0 < i< j< n. Then x/* = 1,50 tRat n|j- i:
but this can only mean that i = j. Hence the elements 1, x, ..., x" ' are al distinct

and |x| = n.
Thus 1 and 2 areestablished.
Toprove 3,observethat x* ™/ ™k = xn K/ nk - 1

which implies that m = |x*| divides n/ n,k . Also since x* ™= 1, one has

that n|km and hencethat n/ n, k divides k/ n, k m.

By Euclid’slemma n/ n,k divides m,so0 m=n/ nk .

3.2.2 Lagrange Theorem
If G is afinite group and H is a finite subgroup of G then the order of H divides the

order of (.
Proof
Let n betheorder of &G and g bethe order of H.

Choose finitely many elements gy, ..., g, in such that G = Uf!{w and H. N H, =
® where every r # jthenn = v, + -+ v, = gk for each j€ 1,..,k whereV,is

the number of elementsin H,
Since each right coset of H contains exactly g elements. Hence g divides n.

Therefore, if G is afinite group and H is a finite subgroup of G then the order of H

dividesthe order of (&
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3.2.3 Cauchy Theorem
If G isafinite group and p is a prime number such that p divides the order of & then

there exists a € (7 such that the order of a isp.
Proof

First suppose (i is Abdlian. Choose an element b €  such that b is not the identity.

If order of bispr wherer ispositive. Inthiscaselet @ = b" thenthe order of ais®
On the other hand if p does not divide the order of b.

Let H be the subgroup generated by the G /H is a group whose order is indivisible by

p and whose order isless than the order of 6.

If the hypothesis is true for al group whose orders are less than that of & and are

divisible by p then there exist ¢ € G /H such that the order of tisp.
Let i: G — G /H bethe projection of G onto H.

Choose @ € (7 such that i u = t. Then the order of u is pa where & is a positive

integer.
Inthiscaselet a = u” thentheorder of ais p.

On the other hand if p does not divide the order of b. This proves Cauchy’s theorem if

{7 isAbdian.

If is not Abdian, then let k be the order of the centre £ ¢ and the order of

be pA, where A is a positive integer. Then we can choose elements a, ...a, € G -

Z G suchthat the classequation of G ispd = k+ Y., G:Z,; G

31



If thereexist a € £ (¢ such that the order of a isp then the result isdone. If k and p
arerelatively primethen thereexist j € 1,..r suchthat theindex G:Z,; G isnot

divisible by p.

That implies the order of Z,; G is divisible by p and the order of Z,; GG isless
than the order of (- using induction hypothesis we choose @ € Z,; ¢ such that the

order of a isp. Thenthetheorem isprovedinall cases.

3.3CYCLIC GROUP

Definition 1

The group  is said to be cyclic if every element of (; is a power of some given
element of G. This given element is said to generate, or to be a generator of, the

group .

Thus if G is cyclic we may writeG = a™:n= 0,1,2... for some a€ G. A cyclic

group is necessarily Abelian.
Definition 2

If ¢ isafinite group and there exists an element a €  such that  is the same as the

subgroup of ; generated by < a > then (7 iscalled acyclic group.

It is denoted by C,,, wheren is a positive integer. For every positive integer n there
exist a group €, comprising exactly n elements a,..a™,/ where a™ = I, the

identity. Such agroup £, iscaled acyclic group of order n.

Examples
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1. When n= 1, let [ = {1}. Then! is a cyclic group of order 1 and [ is also
called thetrivial group.

2. When n= 2,thenf;= -1,1 then(, isacyclicgroup of order 2
Zn . . In 3, .
3. When n=3, let w= €os— + isin—. Then C; = {I,w, w*} is a cyclic
group of order 3.
4. When n= 4, let €, = i,-i,-1,1 or €, = {a,a* a’ I} wherea® = i, is
cyclic group of order 4.
5. For dl n=1, let w= cn5%+isin%. Then w" =1 and €, =

{1, w, ..., w™ '} isacyclic group of order n.

3.3.1 Subgroup of Cyclic Groups

Theorem 3.4
Let G =< x> andlet i beasubgroup of .

1. If Gisinfinite, H iseither infinite cyclic or trivial.

2. If G hasfinite order n, then I iscyclic of order dividing n.

Conversdly, to each positive divisor d of n there corresponds exactly one

subgroup of order d, namely < x™/4 >
Proof

We prove first that H iscyclic. If H= 1,let H# 1:then H contains some positive
power x* # 1 such that s isthe smallest positive integer. Clearly < x* > < H. Choose
a positive integer t, if x* € H, write t= sg+ r wlere 0< r< 5. Then x” =

x¥ ~4x* € H, sotheminimality of s showsthat r = 0 and s|t.
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Hence x* €< x¥> and H =< x° >. IfGis infinite, x has infinite order, as does x*.

Hence H isan infinite cyclic subgroup.

Now let |x| = n < oo. Then |H| divides n, as we see at once from Lagrange’s
theorem. Conversely suppose thatd|n: then x™™“ = d by theorem 3.3 and< x™™% >=
d

Finally supposethat < x* > isanother subgroup of order d.

Thenx* = 1 and n|kd: consequently n~d divides k and < x*> < < x™% >,

But these subgroups both have order d, so they coincide.

3.4HOMOMORPHISM
Let G and B be groups under binary operations (°) and ( ) respectively. A mapping
G — Bis cdled a homomorphism if @ a°h = B a b for every pair a, b

6.
Example

1. LetBx =e¢forall e G,then® x isatriva homomorphism.

2. Let@ x

x, for every x (G isahomomorphism.

3. Letl@ a

2¢ for all @ Ghence@ ab = 2¢*" =22 =R a@b .

Therefore @ a isahomomorphism.

Some result of homomorphism

1. f@ 6G— B g4 g G suchthat B(g,)A(g:) = gigzthenBis injective

and @ is said to be a monomor phism.



2. If G—B b B g G suchtha @ g = b then, @ is surjective
and 2 is said to an epimor phism.
3. If G — B is a homomorphism and @ is bijective then @ is called an

isomorphism. When B is bijective, it means @ is both injective and surjective.

Theorem 3.5

Let G and B Dbe groups with identities I,e respectively and B:G — B a

homomorphism.
Then these results are important.

1. Bl =e¢
2. Bg ' ={@g}'foreveryg G

3. @5 isasubgroup of B for every subgroup § of (.

3.4.1 Kernel of a Group
Let G andH be groups and let f: G - H be a homomorphism. Then the subgroup
K= x G|fx =1I; isanorma subgroup of G which is called the kernel of f,

denoted Ker f.

Lemma 3.1
Let G and H begroupsand let f: G - H beahomomorphism with kernel K.
Let @aand b bedementsof G.Then, f a = f b ifandonlyif Ka= Kb.

Proof
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Suppose f a = f b .Then

fab* =fafbt*=fafb ‘=fb fb =1,
Henceab™! K andso Ka = Kb.

Conversdly if Ka = Kbthen b= kaforsome® K and

sofb=fka= fkfa=Ia=Ffa.

Theorem 3.6
Let G and I begroupsand let f: G — H be ahomomorphism.
Then the following statements hold.

1. If I; and{; aretheidentitiesof G and H respectively, then f I. = I,

2. Fordlx G, fx “'=fx' whee fx ~' isthe inverse of f x
in H and x 'istheinverseof x inG.

3. f G isasubgroup of H.

4. LetK ={x G|f x = I4}. Then K isanormal subgroup of (.
Proof
We note the necessity of distinguishing the identities in the two groups G and H.
1.Since f i fl. =f 1.l = f I.,weconcludethat f [. = I.

2.8nce f x ' fx = fx'x =fI. =1, wBere x G,wehave

3. f G isclosed under multiplicationin H.Let & [ G .
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Thena= f x forsomex G ada'= fx “'=fx' fG.

Thus f G isasubgroup of H.

4.Sincef I = Iy, Kisnon-empty. Letx, ¥ K,thenf x = f vy = I,.

Hence

fxy =fxfy=1Ii,=1,

and

Consequently K isasubgroup of G.

To prove that Kisanormal subgroup let

g Kx G Thenf e =2 N ns-=f wald"a [ x

fz Uyfxs My —LFadS0 Y *arai.

Hence K isanormal subgroup of (.

SOME APPLICATIONS OF EULER’S PHI-FUNCTION IN GROUP THEORY

3.5AUTOMORPHISM S OF A GROUP

Let (G be a group. If G — ( is an isomorphism then @ is called an automorphism
of G.Forevery parf,g AutG,let f°g bethe composite map. Then Aut; the set
of all automorphisms of ; is also a group under the binary operation (°) and the

identity in Aut G is 1.
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The composite of two automorphisms is again an automorphism; composition of
maps is aways associative; an automorphism is a bijection and therefore has an

inverse, which is again an automorphism.

Example

1. Letf:G - G be amapping of G such that every element of G maps to itself,
thatis!/ x = xforal x .Wesay/isatrivia automorphism of G.

2. Givenanelement, @ G agroup. Define f a :G - G by [ a x = axa™ .
Then f a is an automorphism of G called then inner automorphism of G
determined by a. The remaining automorphisms are sad to be outer

automor phism.

Notation

Denote by (G the set of al inner automorphisms of . Then G is aso a group under

the binary operation (°).

3.5.1 Automor phism of Cyclic Group

Theorem 3.7
Let G beacyclic group

1. If G is infinite, Aut(: consists of the identity automorphism and the
automorphism a: g — g~ *. Thus Aut iscyclic of order 2.

2. If G hasfiniteorder n then Autl consists of al automorphisms
Q. gr— g% wlerel< k< nand ged kn = 1.AutGis Abelian and has

order ¢ n whlere ¢ is Euler's function.
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Proof

letG=<x>and let a:g- g ' g GsucBtBat @ AutG. Since x™ ¢ =

x“ ™ the automorphism @ is completely determined by x“. If & is infinite,

1 1

x and x~*' are the only generators, so x“ = x orx~* which implies that x“

generates ( . Both possibilities clearly give rise to automorphisms. Hence Autt is

cyclic of order 2

Next, let G =< x>= {1, x,..,x" "}where 1, x,..,x" ' aredistinct elements of <

x > whichimplies |G| = n < oo,
From1, G =< x“>.Since x“ must have order n, by theorem 3.3, x* has order
m = n/(n,k).

We conclude that x“ = x* wBerel< k< nand gcd kn = 1. Let a,:g - g*

for apositiveinteger k, suchthat0 < k< n, ged (k,n) = 1where a;, Aut(.

Observe that (x*)™/ (k) = (x™)* (k) = 1 if the order of |G| = n than thisimplies

the order of Aut G = n/(n, k) = ¢ n by definition.
Example 1:

Let Cs = {a, a? a* a* I}. Find AutCg

Solution:

Theorder of Aut €5 = ¢(5) = 4.

Choose 1 (s - £z where T € Aut(s.

SupposeT a = a®
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Thent?a =tta =tata =a*a*= a* Thust®# [.

Therefore the order 1 of is4 hence the same order as Aut €5 by Lagrange’s theorem

Hence AutC = {r,7% 1% 1%

Example 2:

Let Gy = {b, bZ b3, b b5, b, b7 1}. Find Aut G,

Solution:

Theorder of AutCy, = ¢ 8 = 4.

Choose ¥y €y - Cywhere ¥ Autly

Suppose ¥ b = b*

Theny? b =y y b =y b =y by by b =bPbrPbP=0=1b=0b

It implies y has order 2.

Choosedd €y - Cywhere & AutlCy

Suppose & b = b°

Thend* b =6 &b =68 b° =8 bd bbb bbb = b°b°b°b7b°

=b*=1b=bh

Hence & has order 2. Therefore AutCy = {y, &, yd,1}.

Because the generators ¥, & are both of order 2, AutCy, isKlein four group.
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3.6 RING
A nonempty set R is said to be a Ring if there are two defined binary operation
namely addition (+) and multiplication - such that the following conditions are
satisfied.

1. Foreverypara b Ra-b R

2. Multiplicationisassociative a-b -c=a- b-c ab,c R

3. Digtributive law a- b+ ¢ =a-b+a-c and b+c -a=b-a+c-

a abc R

4. Foreverypara,b R a+b R

5. Additioniscommutative a+ b= b+ a ab R

6. ThereisanelementOinR suchthat a+ 0=a a R

7. Thereexistandement—ainRsuchthat @+ -a =0

8. Additionisassociative a+ b +c=a+ b+ ¢ abc R

3.6.1 Commutative Ring / A Ring with unity 1
A ring R is said to be a commutative ring, if the multiplication on aring R is such that

a-b=b-aforeverya b R thenRis.

A Ring with unity 1: A ring Ris said to be aring with unity 1 if R contains at least

two distinct elementsand thereexist 1 R such that

l-a=a-1=a forall a R

Example

1. Let 2 bethe set of all integers. Then [ is commutative ring with unity 1 under

the usual binary operation of addition and multiplication.
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2. Let Q bethe set of al rational numbers then Q is a commutative ring under
the usual binary operation of addition and multiplication
3. Let @ bethe set of al complex numbers. Then & is a commutative ring under

the usual binary operation of addition and multiplication.

3.6.2 Subring
Let R be aring and § a nonempty subset of K. Then § is a subring of £ if and only if
the following conditions are satisfied.

1. rs § forall r,s §

2. r-5 S forallrs §

3.6.3 Integral Domain
A commuitative ring is an integral domain if it has no zero divisors. That is, if for
every pair a,b Kk such that @a- b= 0 either @a= 0 or b= 0 then k is called an

integral domain.

An integra domain with identity is a commutative domain with identity. An
irreducible element is an element which cannot be written as a product of two non

units.

Example: Thering &1 of al integersis an integral domain. Examples of finite integral

domain are ;.

3.6.7 Zero Divisor
A nonzero element ainaring R is called a zero divisor if thereis anonzero element b

in Rsuchthat ab = O.
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Example

Let the product of two elementsa and b in Z,, be defined by a. b(mod n).

For instance, inthering Z,; ,theproductof 5.7 = 11 (mod 12).

This product makes the Abelian group £, into acommutative ring.

If weconsider 3,4 Z,, tBen 3.4 = 0 (mod 12).

It is easy to see that a product of two nonzero elements in the ring can be equal to
zero.

Hence Z,, isnot anintegral domain.

Theorem 3.7

Let D beanintegral domainand a,b D. Then these two statements are equivalent

1. aand b are associates

2. Thereexistsaninvertibledementu D suchthat @ = ub

Proof
Suppose @ and b are associates is true. Let @ = ub where u D or b = va where

v Dthen a=uva auv-1 =0,if a=0then b=0andso a=1-b.

Lee wu=1ifa# Othenfrom a uv—-1 =0 thenwegetuv-1=0 wuv=1

Thus u isinvertible.

Therefore a and b are associates implies there exist an invertible elementw D such

that

a= ub.

Suppose there exists an invertible element u D such that @ = ubistrue. Let a=
ub where u aninvertibleelementin D).
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Choose ¥ Dsuchthat uv=1 then

va= vub= bthen a= uband b= va aand b areassociate.

Hence, there exist, an invertible element u D such that @ = ub implies a and b

are associates

3.7FIELD
A commutative ring with an identity in which every non-zero element is invertible is
caled a field. Also a non-empty set # with two binary operation; addition and

multiplication is said to be afield if the following conditions hold,;

1. F isanadditive Abelian group. Thatisa+ b= b+ awherea,b F
2. F without zero isamultiplicative Abelian group.
3. The distributive laws hold. That is a- b+¢c =a-b+a-c

and b+c-a=b-a+c-a abc F

Examples

1 Q,@and @ arefieds.
2. Z- isafidd.

3. isnot afield.

3.7.1 Subfield
Let F be a field. A subring § of F is caled a subfield if 5§ is adso a field under the

same binary operation of multiplication and addition.

Example @ isasubfield of thefield & of al complex numbers



Theorem 3.8

Every field isan integral domain

Proof

Let ¥ beafield. Then F isacommutative ring with an identity 1.

Supposethereexista,b F suchthata- b= 0.

Now a a# 0 thee exist a ' such that a'-a=1 and so write

b=1-b=(a'a)b =>b=a'a-b=a'"0=0 b=0

Similarly if b# 0 there exit b™' such that b~'-b=1 so write
a=la=(b"'"b-a=bt'bha=b1'0=0 a=0
Hence we show that ¥ is an integra domain. Thus every finite field is an integra

domain.

Theorem 3.9

Every finite integral domainisafield.

Proof

Let F beafiniteintegral domain. Suppose F contains exactly n distinct elements.

Then F={012 ..x,}If a F axd a# 0 then a..a™ cannot be al distinct

el ements.

Chooseqg {1,..,n}andr 1,..,n suchthatg< r and a“= a".

Thena¥ 1- a9 =0and a’# O therefore 1- @ 9= 0 and 1= a " %9=a™*.

a=a 9 If r— g= 2then
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a -t F where g<r . If r=g=1 then, a= 1.

Let a~t-a=1at'=1 a'= a 9" Thusinall casesa hasaninverse.
Hence every finiteintegral domainisafield.

Example
Let @ be the set of al integers. Also Blis an integral domain. If pis a prime number

thenZ,,Z, = 01,..,p—- 1 isanintegral domain.

Since Z, isfiniteintegral domain thenis afield.

3.7.2 Polynomials

When we talk about polynomials, we think of algebraic expressions such as 2x +
lor

X%+ 5x + 6or 2x? + x*—2x—1 etc. We say these are 'polynomials in x' and say
that 2x + 1 has 'degree’ 1, x* + 5x + 6 has 'degree’ 2 and 2x* + x*—2x—1 has

'degree’ 3.

We know how to add, subtract and multiply such polynomials:

3x+ 5 + 4x*-2x-1 = 4x*+ x+ 4,

2x? -6 - x*-5x-1 = x*+ 5x- 5,

¥+ 2x+2 3x+1 = x?*3x+1 +2x3x+1 +23x+1

= 3x*+x% + 6x*+2x + 6x+4

= 3x¥+ 7x%+ 8x + 4.
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Asin the case of the integers we may perform long division, for example 3x + 1 does
not divide 9x* — 3x% + 6x + 4 but leaves aremainder when we employ long division

as follows:

3x%- 2:1':+§
3

3x+ 1 9x%-3x?+ 6x+ 4
9x*+ 3x*
-6x% + 6x
gt Py
8x+ 4

8x+§
4
3

Thus we write

W |

9;!{3—3:vr:2+6:c+4_32 i
3x+ 1 NS Gx - 1

or, more usefully,

9x? - 3x?+ 6x+ 4= 3x+1 3x%-2%+7 +:

- |
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CHAPTER 4
RING OF POLYNOMIALS

4.1 Ring of Polynomials

Let R beacommutative ring with unity 1. Then the ring of polynomialsin
indeterminate x with coefficientsin i isthe collection of all polynomialsin

indeterminate x denotedby R x .

When a polynomial in indeterminate x iswritten as

PX = Cpt+ X+ CX5+ 4 0, X"+ £,x™, the coefficients ¢, €4, ..., €, A€ IN

thering K.

The constant coefficient is ¢;. If €, # 0O, then ¢,x™ is said to be the highest-order
term or leading term and ¢, is the highest-order coefficient or leading coefficient.
The order of the highest non-zero coefficient is the degree of the polynomial. A

polynomial is said to be monic if itsleading or highest-order coefficient is 1

We have looked at polynomial rings in indeterminate x in which the polynomias
have coefficients from B, Qor @, yielding B x ,Q x or @ x respectively. But
similarly we may have a polynomial ring inx in which the coefficients belong to an

integral domain D yielding D[x]. We have the following result.

Theorem 4.1

Let D beanintegral domain. Then the polynomial ring D x isan integral domain.

Proof

Certainly D) x is a commutative ring with the identity of D as the identity of D x ,
Thuswe haveto show that D x hasno proper divisors of zero.
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Let

fx =a5+ ax+.. . +a,x" a,#0,

gx =by+ byx+.  +b,x" bh,20,

be two non-zero polynomiasin D x , Then f x g x isapolynomia of highest term
b, x™*™. But since D is an integra domain a,,b, # 0. Thusf x g x # Oand

D x isanintegral domain.

Corollary 4.1

Let f x and g x benon-zero polynomiasin L) x . Then

degf(gx)=deg fx +degg x .

Definition 4.1

Let F be a field and let f x be a polynomial in F x . Then the greatest common
divisor of the coefficients of f x is called the content of f x . A polynomia of

content 1 issaid to be primitive.

Letf x Qx,f x # 0. Thenwe may write

where ¢, d areintegers, @ x  F x and B x¥ hascontent 1.
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Lemma4.l

Letf x andg x be primitive polynomials in¥ x . Suppose there exist cy,c5 F,

c; # 0,c;# 0,suchthat ¢,f x = c,gx . Then¢c; = *c,andf x = +g x

Proof

Letf x = ayz+ a;x+...+a,x™ a, # 0 . Then the gcd of ay, a4,...,a, isl and so

thereexist iy, ty,...,t, F suchthat

tplg + tyay + -+ La, = 1

Since ¢;f x = c39 x , £ divides ¢y, €144, .., C,@, and so ¢, divides

loffp + L0+ .+ 6Q, = 6 gl + LAy + -+ L,a, = €

Similarly ¢, divides ¢;. Thusecy = tcz;andso f x = +g x

4.1.1 Gauss theorem

Let f x and g x beprimitive polynomiasin @ x . Then f x g x isprimitive.

Proof

Letf x = a;+ ayx+.. . +a,,x" a,z0,

gx =by+ byx+.. +bx* b, #20,

Jxgx =0x =cgt X+ ..+ CmgnX™? Coenz 0.

If X is not primitive there exists a prime p such that p divides each
of ¢g, €4, ..., Cen. NOW p cannot divide all of the coefficients of f x or al of the

coefficientsof g x sincef x and g x areprimitive.
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Suppose therefore that p divides ay, ay, ..., a,_4 but p doesnot divide a, where 0 <

r < mandthat pdivides b, by, ..., b._,but p doesnot divide b. where0 < s < n.

Considering ¢, we have

Cras = anbrrw"- atbrrw gt ot tbwrt + arbﬁ"l- arrtbw gt ot Iﬂ:"r'\."fal.'.l

Now p divides c,,.;dan ay,..., a4, by, by,..., 5.y and hence it follows that p

divides a, b, and sodivides a, or b..

But thisisacontradictionandso f x g x isprimitive.

4.1.2 Gausslemma
If f Bx and f has a factorization f= gl whee g @ Qx, degg>
land deg B> 1. Then f has a factorization f = g& where g, & x,degg>1

and deg 1> 1.

Proof
Let f Dbe a primitive polynomia in @ x . Let f = g@ choose integers m,n such

that mg is primitive and nf is primitive. Hence mnf is primitive.

That impliesmn isan invertible integer that ismn = 1.

Thereforeg B x and@ @ x .

4.1.3 Eisenstein'sIrreducibility Criterion

Letf x Bx andletf x = ag+ a;x+... +a,x" a,%z0.

Suppose there exists aprime p such that:
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1. pdividesag, ay,..., @y 1,
2. pdoesnot dividea,, and

3. p* does not divide a,.

Then f x isanirreducible polynomia in Q x .

Proof

We prove by contradiction.

If f x isnotirreduciblein@Q x thenf x isnotprimein Q x and so f x may be

factorizedin Q x into two polynomials of degrees r and s where0 < r < n,

O< s<mnr+s5s=mn. There is necessarily a corresponding factorization of f x

in@x.

Hence we may supposethat f x = g x @ x whereg x and@ x are polynomials

in@ x of degrees r and s respectively.

Let

R + S + R 7 Qe

BMx = g+ X+, . +€.x° %7 0.

Now a, = b,c, and since p divides a, but p* does not divide a;, either b, or ¢, but

not both b, and ¢, isdivisible by p.

Suppose p divides b, but p does not dividec,. If pwere to divide b, by, ..., B, then
all the coefficientsof f x would aso be divisible by p and that isfalse. We suppose
therefore that p divides by, &y,..., b,y but p does not divide b, for some k

where 0< k< r< n.
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S'nce ﬂk = bkcn"' bk 1{-'1 + et bnck, we ha\/e thaI}J leldeS {Ik;fﬁ._-_,, bll"'lbk 1

and so
p divides b,.c,. But p does not divide ¢, and so p divides b, whichisfase.
Hence our initial assumption was wrong and consequently f x isirreduciblein Q x .

Example

1. Let pbeaprime. Thenx™—p @ x isirreducible by the criterion.
2. 24+ 6x%+ 9x” + 4x*isirreducible in Q x on applying the criterion with

pP=3.

4.2 Characteristic of a Field
Let I be a field with unity 1. Let @ be the ring of al integers with unity 1. We
define a  homomorphism @@ — F as follows 1 =1,080 =

0.1, tRat is tPe zera F.

For every positiveinteger m, @ m = 1.+ 1+ ---+ 1. m terms and
B-m =-0m; foreveeyparmm Z Bm+n =Bm +82n
and@mn =Emi@n.

1. If the Ker @@= 0, then @ is a homomorphism and ¥ is isomorphic to .
in this case F is sad to be of characteristic oo (others say F is of

characteristic 0)
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2. If Ker @= 0, then w = 0 for some positive integers, let p be the
smallest positive integer suchthat 2 p = 0 where p= 0. Then pisaprime

number and F issaid to be of characteristic p.

Examples

=

p=2, £5,={01} and £, isof characteristic 2

2. p= 3, Z5={0,12}and Ziisof characteristic 3

3. for al p= 2 such that p is prime Z,= 012,..,p- 1 is a field with
characteristic p.

4, Q,a,R areall fieldswith characteristic co.

Theorem 4.2
Let ¥ beafield of positive characteristic p then for any polynomial
fx =ay,+ax+ -+ a, X" '+ ax" in Fx wehave

f Y E=agh 1 gEyP = o Gl aRSE 1 gf yP7

Theorem 4.3

For two polynomials f,g in the ring F x of polynomials in indeterminate x with

coefficientsin F,andfor r F,

]"',f ' — ]"'.}”
frg'=f+4g
fa'=f'g+ fg



Definition 4.2

Let F and K be fidds. If Fis a subfield of K, then K is caled an extension of the

field F.

Theorem 4.4

If Kisafieldand K isanextension of afield F, then K isavector space over F.

Definition 4.3

Let Kand F be fields, such that K is an extension of F. If K is a finite dimensional
vector space over F then K is caled a finite extension of F. We let K:F denote
the dimension of K over F, then K:F is caled the degree of extension of K

over F.

Definition 4.4

Suppose K and F arefieldsand K isan extension of F.

1. Anelement @ K issadtoalgebraicover F,if thereexistsg F x such
that g @ = 0.
2. Andement § K issad to be transcendental over F if [iis not algebraic

over F.
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Definition 4.5

Let K and F be fields, such that K is an extension of F. Suppose & K and @ is
algebraic over F. Let p be a polynomia in F x such that the degree of pis a

positive integer.

Wesay  isaroot of pif p @ = 0. Giventhat aisaroot of p, then pissaidto be

aminimum polynomial of degree e over F.

Theorem 4.4

Let Fbeafieldand p F x an irreducible polynomial of degree n > 1 over F.
Then there exists a finite extension K of F such that K:F =n and @ K such

that pa =0

Corollary 4.2

If Fisafidd, f F x and deg f > 1 then there exists a field K such that Kis a
finite extension of F, K:F < m! and f has m roots that is a4, s, ..., @&, hot

necessarily distinct (some may berepeated). Thatisf = 4 x - a; ... x - @,

4.3 Splitting Field

Let K be a field, and a polynomia f x K, we need to construct the smallest
possible extension field F of K that contains all of the rootsof f x . Thisiscalled a
splitting field for f x over K. Note that any two splitting fields are isomorphic.
Let F bean extensionfield of K andlet u F. If there exists a nonzero polynomial
fx Kx suchthat f u = 0O, then uissaid to be algebraic over K.

If not, then u is said to be transcendental over K.
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Corollary 4.3

If F is an extension field of K, and u F is algebraic over K, then there exists a
unique monic irreducible polynomial p x K x such that pu = 0. It is the
monic polynomial of minimal degree that hasu as aroot, and iff x isany polynomial
ink x with

fu=0thenpx|fx.

Proof

Assumethat u Fisagebraic over K, andlet I bethe set of all polynomials

fx K x suchthat f u = 0. Thedivision algorithm for polynomials can be used
to show that if p x is a nonzero monic polynomia in I of minima degree,
then p x isagenerator for I, and thus

px|fx whenever f u = 0.

Furthermore, p x must be an irreducible polynomial, since

fpx =gxBxforgx Bx Kx,thengu@u =pu =0,andso
ethergu = Oor@u = 0since Fisafidd.

From the choice of p x as a polynomia of minimal degree that has u as a root, we
see that either g x or@ x has the same degree asp x , and so p x must be

irreducible.

Corollary 4.4
Let ¥ beanextensionfieldof K andlet u F bean element algebraic over K.
a Ku K x<px > whee px is the mnimal polynomia of u
over K.
b) If the minima polynomial of u over K has degree n, then K u is ann-

dimensional vector space over K.
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Proof

Define a homomorphism &:K x»<px > Ku by 6 fx = fu, for dl
congruenceclasses f x of polynomias (modulo p x ).

This mapping makes sense because K u contains u, together with all of the elements
of K, and so it must contain any expression of the form a; + a,u+ -+ a,,u™,
where a; K,foreach i {0,1,2,..m}.

The function & is well-defined, since it is also independent of the choice of a
representative of [f(x)]. Infact,if g x K x and f x isequivalentto g x ,
then fx —gx =gxpx for some gx Kx ,ad so fu-gu =
g upu = 0,showingthat

d fx =46 gx

Since the function & simply substitutes u into the polynomial f x , and it is not
difficult to show that it preserves addition and multiplication. It follows from the
definition of p x that & isone-to-one.

Supposethat f x represents anonzero congruenceclassink x =< p x >.
Thenp x tf x,and sof x isrelatively prime to p x since it is irreducible.
Therefore there exist polynomials @ x and b x inK x suchthat ax f x +
bxpx =1

It followsthat @ x fx = 1 for the corresponding equivalence classes, and
this shows that K x~< p x > is a field. Thus the image E of 4 in F must be
subfield of F. On the one hand, £ containsu and K, and on the other hand, we have
adready shown that £ must contain any expression of the form a, + a;u+ -+
a,um : where a K ,
for each i {0,1,2,..m}. It follows that £ = K u , and we have the desired

isomorphism.

58



(b) 1t follows from the description of K u in part a that if p x has degree n,

thentheset HB= 1,uu? .. u*"!' isabasisfor K u over K.

Theorem 4.5
Let ¥ be an extension field of K. The dimension of F as a vector space over K is
called the degree of extension of F over K, denotedby F: K .
If the dimension of F over K is finite, then F is said to be a finite extension of K.
Let F be an extension field of K and let © F. The following conditions are
equivalent:

1. uisalgebraicover K;

2. K(u)isafinite extension of K;

3. u belongsto afinite extension of K.
Let K be a fidd and let fx = a,+ a,x+ -+ a,x™ be a polynomia
in K x of
degreen > 0. An extension field F of K iscalled asplitting field for f x over K if
there exist ements 1y, 15,..., %, F such that

OVfx=a,2-nr, x- 15 .. -1, ad (DF=Knr,n. . n

4.4 GALOISGROUP

We use the notation Aut F for the group of al automorphisms of F, that is, all one-
to-one functions from F onto F that preserve addition and multiplication.

The smallest subfield containing the identity element 1 is called the prime subfield of

F.If F has characteristic zero, then its prime subfield is isomorphic to Q and if ¥
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has characteristic p, for some prime number p, then its prime subfield is isomorphic
to Z,,.
In either case, for any automorphism « of F we must ¢ x = x for al elements in
the prime subfield of F.

To study solvability by radicals of a polynomial equation f x = 0, we let K be the
field generated by the coefficients of f x , and let F be a splitting field
for f x over K. Gaois considered permutations of the roots that leave the
coefficient field fixed. The modern approach is to consider the automorphisms
determined by these permutations. The first result is that if F is an extension field
of K, then the set of all automorphismsa: F - Fsuchthato @ = aforal a K

isagroup under composition of functions.

Thisjustifies the following definitions

Definition
Let F be an extension field of K. Theset # Aut F |8 a =a forall a K}

iscaled the Galois group of F over K, denoted by Gal F~K .

Definition
Let K beafield, let f x K x,and let F beasplitting field for f x over K. Then
Ga F~K is cdled the Galois group of f x over K, or the Gaois group of the

equation f x = Oover K.

Theorem 4.6
Let K beafield, let f x K x have positive degree, and let F be a splitting field

for f x over K.If noirreducible factor of f(x) has repeated roots, then
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|Gal F=K |= F.K.

Theorem 4.7
Let K be a finite field and let F be an extension of K with F:K = m. Then

Gal F~K isacyclic group of order m.

Definition 4.6

A polynomia f x over thefield K is called separable if its irreducible factors have
only simple roots.

An agebraic extension field F of K is caled separable over K if the minimal
polynomial of each element of F is separable.

Thefield F iscalled perfect if every polynomial over F isseparable.

Any field of characteristic zero is perfect, and afield of characteristic p > 0 is perfect
if and only if each of its elements has a pth root in the field. It follows immediately
that any finitefield is perfect.

The extension field F of K is called a smple extension if there exists an
eement u Fsuchthat F= K u .Inthiscase u iscaled aprimitive element.
Note that if F is a finite field, then the multiplicative group £ is cyclic. If the

generator of thisgroup isa, thenitiseasy toseethat F = K a for any subfield K.

Definition 4.7

An extension field F of Kis called a radical extension of K if there exist e ements

Uy, Uz, ..., Uy, F such that

0) F=K uy,us, .., Uy ,and
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i) ul' Koand u' Kuyug.. u_y for i=2,..,m

and ny, Mg, .. Ny Z.

For f x K x , the polynomia equation f x = 0 is said to be solvable by

radicals if there exists aradical extension F of K that containsall rootsof f x .

Corallary 4.5

If ¥ is the splitting field of x™ - 1 over a field K of characteristic zero, then
Gal F~K isan Abelian group.

The roots of the polynomial x™ - 1 are called the nth roots of unity. Any generator

of the group of all nth roots of unity is called a primitive nth root of unity.

Definition 4.8
The complex roots of the polynomial x™ — 1 are the nth roots of unity. If we let

8 be the complex
o .
number « = cosf + isinf, wlere 8 = —ﬁ,ten 1,aa% .. a™ ' ae each roots
i

of x™ - 1, and since they are distinct they must constitute the set of all nth roots of
unity. Thuswehave x™ - 1 = {2} x - a®

The set of nth roots of unity is a cyclic subgroup of £ of order n. Thus there are
¢ n primitive nth roots of unity, the generators of the group.

Choose a positive integer d. If d|n, then any element of order d generates a
subgroup of order d, whichhas ¢ d generators.

Thus there are precisely ¢ d complex numbers of order d, all living in the group of

nta@ roots of unity.
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If pisprime, then every nontrivial pth root of unity is primitive. And is aroot of the

irreducible polynomial xP~*+ xP~%+ ...+ x + 1, whichisafactor of x* - 1.

Theorem 4.8

If p is a prime number and n is a positive integer, then there exists a finite

field K containing exactly p™ distinct elements. K is the splitting field of the

. 47 -
polynomial x* - x over Z.
Proof

let K be the splitting field of x™" - x over Z,. The proof is done if we show that

thesetof all @ K suchthat @ isarootof xP - x isafield.let f= x?" - x and

I bethesetof dl @ K suchthat f @« = 0.

Then fO0 =0=0 Lf1=0=1 L.

If af Lthen a+fP =g+ +fF =a+f=a+f L.
And aff P = a?"'pP" = aff = afi L

Findly if n Land n#0. Then n* 7" = (*") *=n"' and s0o 75"
Lifn L.
The conclusionisthat L isasubfield of K and L containsall therootsof f.

Therefore L = F thisimplies K contains exactly p™ distinct element and they are the

rootsof x*" - x  Z, x
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45CYCLOTOMIC POLYNOMIALS

Let I/,= z C€]z"= 1}. Notethat [/, = < e**" > = < =™ > for &l k such
that gcd k,n = 1 where n, k and i {012,..,n- 1}.
Any cyclic generator of U/,,is called a primitive nth root of unity.

Thereare ¢ n primitive nth roots of unity.

Definition 4.9

The nth cyclotomic polynomial is

¢, x = x-af

'EE!En,g_,rr_'Li in =1

where @ isany primitive root of unity.

Definition by induction
1 Givenn=1then &, x = x-1

- (2"

> =
2. If n> 1then @&, x TEPEL

where in the product in the denominator d runs over al the divisors of n
except n itself.

3. When n = paprime number, then

o™ |
de(x):ﬁ: XPly 272+ + x4+ 1
Thisimpliesthat (x "'+ x7 %+  + x+ 1)(x-1)= xP-1
Examples
@, x =x-1
_o(2%e1) _ ome=1 (2e1) _
D, x = = —x+1

II'] (x '[)



A A
R e e N T
&y (x-1)

g x2E=1 (x%+1 , .
¢4x:(x ) = (XD - w24 1= x-i x+ i
Dy x=1 (x+1)

5 5
fI'j (.'-E t)

P x =x°-x+1
Gy x = x+ x4+ xt+ %+ xF x4 1
¢y x = x*+1

G, x = x"+x¥+ 1

Do x =x—x¥+xf-x+1

Remarks
— 1 !
1. I“ - 1 - :!._.[] X =ik
- . -~ i
2. »_1= I_I.-_gln,.;{::.n ¢'¢1 X Snce x%— 1= |_|:=|n I_Iu has order d X~ &

3. deg ¢, x = g n

Lemma4.3

The nt@ cyclotomic polynomial 4, x X

Proof
Inductionon n: when n=1thecaseistrivid.
Let n> landassume @, x B x foral d < n byremark 2,

X" = 1= Mynu=o Pg x = f x B, x where [ x x by induction.

Notethat f x ismonic, so by the Division Algorithm,

xX"-1=fxgx +rx wheegx ,rx @x
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Thusitisadsotruein B x ;whereweknow x"- 1= f x &, x

By the uniqueness of quotientsand remainders, r x = Oandd, x = g x X

Theorem 4.9

Thenth cyclotomic polynomia 4, x isirreducibleover Q.

Proof

Suppose the assumption is false. Then by Gauss's Lemma, since ¢, x x there
exists f, g x suchthat &, x = fg where f, g are monic and f isirreducible
over Q (if not, take an irreducible factor of f and group the other factorsinto g).
Let @ bearoot of f (and therefore of 4, x ) and p any prime such that p { n.

Since ged p,n = 1 weseea® isalso aprimitive nth root of unity and thusis a root

of b,

Clam: a” isaroot of f.

If theclam isfalse, then g @® = Owhichsays @ isarootof g x* .

Since f ,ismonic and irreducible, f = frred a, Q .

Thus f|g ¥ inQ x (and thus, in @ x as it is monic) and, so g x¥ = f@ for
some

Bx.In B,x wesee gx =g xP = fa. Let § be any root of f x

in F,,thenti? £ = O0asweareinan Integral Domain.

Then &, x has multiple roots, which says x™ - 1 = x™ - 1 has multiple roots in

B, x .Butged x™- 1, nx™ ' = 1, acontradiction. Thus a” isaroot of f.
Thus every primitive nth root of unity is a root of f which is enough to say f =
¢, and since f isirreducible, @, x isirreducible.

Corollary 4.6
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If « is a primitive nt@ root of unity, then Qa :Q = ¢n and
Irred a,Q = @,.

Note. The above extension is normal asit isthe splitting field for @, x .

Example.

Let @ beaprimitive Sthroot of unity. Then Q & :Q = ¢ 9 = 6.
To find the minimal polynomial, note that

X'-1=@,Pd Py = x3-1d,

Thus Irred aQ = d, x = x°+ x¥ + 1.

Definition 4.10

Anextension Q a&~Q where @ isaroot of unity is called a cyclotomic extension.

Theorem 4.10

If pis a prime number then the polynomia 1+ x+ ---+ x7 “+ x7~ ! is called

the pt" Cyclotomic polynomial.
The p'* Cyclotomic polynomial isirreducible over Q.

Proof

P—1
T+ X+ 4 xP 24 4071 x-1 = xP-1=>"—

x=1

We change the indeterminate x by writing x = y+ 1.
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Then

+1 -1
14 x4 oo xP-2 4 xP T:y—

By binomial expansion

},p t+p}.ﬂ 24 .4 py+ p if P> 2.

Therefore y#~ '+ py" ?+ ...+ py+ p is irreducible over Q by Eisenstein's

irreduciblity criterion.

Hencel+ x+ -+ xP7%+ xP~! isirreducible over Q.

Lemma4.4

Let n beapositiveinteger not divisible by the characteristic of the field F.

Then the polynomial x™ — 1 has no repeated roots.
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CHAPTER FIVE

CONCLUSION AND RECCOMMENDATION

5.1 CONCLUSION

The definition of Euler’s phi-function is clearly stated as well as some of its
important properties. There are so many uses of Euler’s phi-function in abstract
algebra, especially in the determination of the order and structure of automorphisms

of cyclic group, Galois groups and cyclotomic polynomials.

5.2RECOMMENDATION

I will recommend that other students take up research in other uses of the Euler phi-

function in al aspects of the study of mathematics for instance, Number Theory.
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6. (G, )G

7. §,HAB

8. (,<a> -
9. D Z,Z,

10. Rk -
11. F E K -
12. o n -
13. B(x), g(x), f(x) -
14. Gal (F/K) -
15, @, x -

16. Aut -

NOTATION

Set of Natural numbers
Set of Integers

Set of Rational numbers
Set of Real numbers

Set of Complex numbers
A Group

Subgroups

Cyclic group

Integral Domain

A Ring

A Field

Euler’s phi function
Functions and polynomials
Galoisgroup of F over K
Cyclotomic polynomial

Automorphism of a Group
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