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Abstract 

This thesis concerns the study of traces in complex hyperbolic geometry. In this thesis 

we review a paper by Parker. We begin by looking at basic notions of complex 

hyperbolic geometry, speci cally for the complex hyperbolic space. The main results 

of the thesis fall into three broad chapters. In the third chapter we reconstruct the 

proof of proposition 2. Suppose that A ∈ SU(2,1) has distinct eigenvalues eiθ,eiφ and 

eiψ. We prove that A has a unique xed point in H2
C corresponding to one of the 

eigenspaces. We also amplify calculations given by Parker. In chapter four we prove 

corollary 3 and 4, and we also prove that tr[A,B]tr[B,A] may be expressed as a 

polynomial function of traces of A,B,AB,A−1B and their inverses. Furthermore, we use 

equation 18 of Lawton to prove the identity for |tr[A,B]|2. Finally we discuss the 

merits on the two ways to parametrise pair of pants groups. As an application, we 

compute traces of matrices generated by complex re ections in the sides of complex 

hyperbolic triangle groups in the fth chapter. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

This thesis consists of the study of complex hyperbolic geometry by means of traces 

on the complex hyperbolic space. A lot of studies have been done on complex 

hyperbolic geometry by various mathematicians in the eld of geometry over the 

years. Among them is Goldman (1999) in his book titled 

Complex Hyperbolic Geometry. 

Hyperbolic (also called non-Euclidean) geometry is the study of geometry on 

spaces of constant negative curvature. In dimension 2, surfaces of constant curvature 

are distinguished by whether their curvature K is positive, zero or negative. 

Hyperbolic geometry is closely connected to many other parts of mathematics like di 

erential geometry, complex analysis, topology, dynamical systems including complex 

dynamics and ergodic theory, relativity, number 

theory, Riemann surfaces etc. 

In particular, our area of interest in the hyperbolic geometry is the complex 

case. Questions that can be asked in the real case could also be asked in the complex 

case. Complex hyperbolic geometry is a particularly rich area of study, enhanced by 

the con uence of several areas of research including Riemannian geometry, complex 

analysis, symplectic and contact geometry, lie group theory and harmonic analysis 

(Goldman, 1999). It has several applications 

both in the eld of mathematics and real life. 

Pratoussevitch (2005) in her paper traces in complex hyperbolic triangle 

groups presented several formulas for the traces of elements in complex hyperbolic 

triangle groups generated by complex re ections and applied these formulas to prove 

some discreteness and non-discreteness for complex hyperbolic triangle groups. In 
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his survey paper published as Parker (2012), Parker studied the connection between 

the geometry of M and traces of Γ, where M is a complex hyperbolic orbifold written 

as HC
2/Γ and Γ is a discrete, faithful representation 

of π1(M) to Isom( ). He did that by rst considering the case where Γ is a free group 

on two generators and secondly, he discussed formulae of Pratoussevitch (2005) in 

the case where Γ is a triangle group generated by complex re ections in three complex 

lines. Several geometrical information connecting traces and complex hyperbolic 

space could be seen in Parker (2012). 

1.2 Problem statement 

Parker in attempting to discuss traces in complex hyperbolic geometry, gave 

theorems, propositions and corollaries which all talked about trace identities. After 

reading his paper carefully, we realised some of the propositions and corollaries were 

left unproven. So the unanswered question was how do we get 

explicit constructions of the proof of these established propositions and corollaries. 

However, we followed road maps suggested by Parker. 

1.3 Objective 

The main objective of the study was to review a paper by Parker (2012) on traces in 

complex hyperbolic geometry. In order to do this, we made valuable use of equation 

18 of Lawton (2007), trace formula which is due to Pratoussevitch (2005) and trace 

identities by Will (2009). 

1.4 Speci c objectives 

In order to achieve the main objective of the study, the following speci c 

objectives were set: 
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1. To prove that the tr[A,B]tr[B,A] may be expressed as a polynomial function of 

the traces of A,B,AB,A−1B and their inverses. 

2. To give two di erent representations for equation 18 of Lawton (2007). 

3. To prove the identity for |tr[A,B]|2. 

4. To discuss the application of a trace formula which is due to Pratoussevitch 

(2005). 

5. To state the merits on the two ways to parametrise pair of pants groups. 

1.5 Plan of thesis 

This thesis is therefore organised as follows. The main results will fall into three broad 

chapters (3, 4, and 5), each of which is conceived to be self-contained, with 

its own introduction. 

Chapter one looks at the general introduction of the thesis. In Chapter 2 we 

recall the basic notions of complex hyperbolic geometry, speci cally for complex 

hyperbolic space. We study the geometry of complex hyperbolic space 

through complex linear algebra. 

In the third chapter we discuss the geometry of isometries; speci cally, classi 

cation of elements of SU(2, 1) by their trace, traces and eigenvalues for loxodromic 

maps and eigenvalues and complex displacement for loxodromic maps. Our 

contributions in this chapter are: ampli cation of the calculations in Parker (2012), 

proving and reconstructing proofs of propositions. 

Chapter 4 looks at two generator groups and Fenchel-Nielsen coordinate. In 

this chapter we amplify calculations and proofs of Parker (2012). One other result of 

the chapter is the explicit polynomial for tr[A,B]tr[B,A]. Also, in an attempt to proof 

the imaginary part of tr[A,B] (which was not considered by Parker, 2012) we express 

equation 18 of Lawton (2007) in terms of tr(A),tr(B),tr(AB) etc. Base on this, we give 
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a proposition and remark on the two di erent representations. Finally we remark on 

how to parametrise pair of 

pants via traces and cross-ratio. 

Chapter 5 explains traces for triangle groups. In the last section of this 

chapter, we give application of a trace formula which is due to Pratoussevitch 

(2005). We devote chapter 6 for conclusion and recommendation.  
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Chapter 2 

COMPLEX HYPERBOLIC SPACE 

2.1 Introduction 

In this chapter we review basic features of complex hyperbolic geometry which may 

be needed later on, speci cally for complex hyperbolic space. We begin with some key 

de nitions that will be useful in this work and also basic results that will appear 

through out this thesis in the chapter. Further de nitions nd themselves in the 

appendix. Let PU(2,1) denote the projective unitary group of signature (2, 1). Let H2
C 

denotes complex hyperbolic space of dimension 2. 

De nition 1 (Matrix) A matrix is a rectangular array of numbers. For 

example, 

 

1 
  
 5 
 

 

6 

2 

2 

−9 

3 

8 

1 

 

4 

 

 

7 . 

 

 

2 

This matrix is 3 × 4 matrix because there are three rows and 4 columns. The 

rst row is (1 2 3 4), the second row is (5 2 8 7). The 

   

1 

   

rst column is  5 . See 

   

   

6 

for example (Kuttler, 2008). 

Operations on matrices 

1. A + B = [aij] + [bij] = [aij + bij](addition) 
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2. tA = t[aij] = [taij] (scalar multiplication) 

3. −A = −[aij] = [−aij] (additive inverse) 

4. A − B = [aij] − [bij] = [aij − bij] (subtraction) 

The matrix operations of addition, scalar multiplication, additive inverse and 

subtraction satisfy the following properties: 

1. A + B = B + A 

2. (A + B) + C = A + (B + C) 

3. A + 0 = A 

4. A + (−A) = 0 

5. (s + t)A = sA + tA,(s − t)A = sA − tA 

6. t(A + B) = tA + tB,t(A − B) = tA − tB 

7. s(tA) = (st)A 

8. 1A = A,0A = 0,−1(A) = −A 

9. tA = 0 ⇒ t = 0orA = 0 

where A,B and C are m × n matrices and s and t are scalars.(Matthews, 1998) 

De nition 2 (Invertible matrix) An n × n (square) matrix A is called invertible/non-

singular, if there exists an n×n matrix B such that AB = BA = In where In denotes the n 

× n identity matrix and the multiplication used is the ordinary matrix multiplication. 

If this is the case, then matrix B is uniquely determined by A and is called the inverse 

of A, denoted by A−1. (Gyam , 2012) 

De nition 3 (Row/column vector) Matrices which are n × 1 or 1 × n are 

specially called vectors and are often denoted by a bold letter. Thus 

  x1 
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  x = 

 ... . 

   

  xn 

is a n × 1 matrix also called a column vector while a 1 × n matrix of the form 

(x1 ···xn) is referred to as a row vector. (Kuttler, 2008) 

De nition 4 (Trace of a matrix) The trace of an n × n square matrix A is 

de ned to be the sum of the elements of the main diagonal (the diagonal from the 

upper left to lower right) of A = [aij] ie. 

n 

tr(A) = a11 + a22 + ··· + ann = Xaii. 
i=1 

De nition 5 (Determinant of a matrix) The determinant of a square matrix A = [aij] is 

a number denoted by |A| or det(A). This number is de ned 

as the following function of the matrix elements: 

|A| = det(A) = ±Xa1j1a2j2 ···anjn, 

where the column indices j1,j2,··· ,jn are taken from the set {1,2,··· ,n} with no 

repetition allowed. The plus (minus) sign is taken if the permutation (j1,j2,··· ,jn) is 

even (odd). 

Theorem 2.1.1 Let A be an n × n matrix. Then tr(A) equals the sum of the 

eigenvalues of A and det(A) equals to the product of the eigenvalues of A (Kuttler, 

2008). 

De nition 6 (Eigenvalue and eigenvector) If there exists (possibly complex) scalar λ and 

vector x such that 

Ax = λx or equivalently, (λI − A)x = 0,x 6= 0 
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then x is the eigenvector corresponding to the eigenvalue λ. Recall that n × n matrix 

has n eigenvalues (the roots of the polynomial det(λI − A)). 

2.2 Hermitian matrices 

Let A = (aij) be a k × l complex matrix. The Hermitian transpose of A is the l × k complex 

matrix A∗ = (aji) formed by complex conjugating each entry of A and then taking the 

transpose. The Hermitian transpose of a matrix AB is (AB)∗ = B∗A∗. Thus, the 

Hermitian transpose of a product is the product of the Hermitian transposes in the 

reverse order. Clearly (A∗)∗ = A. 

A k × k complex matrix H is said to be Hermitian if it equals its own 

Hermitian transpose i.e. H = H∗. A typical example is 

   

 3 2 − i −3i 

   

 H =  2 + i 0 1 − i  = H∗ 

   

   

 3i 1 + i −2 

Notice that the diagonal entries must be real, they have to be unchanged by 

the process of conjugation. Each o diagonal entry is matched with its mirror image 

across the main diagonal, and 2 + i,3i and 1 + i are the conjugates of 2 − i,−3i,1 − i 

respectively (Strang, 1988). 

Let H be a Hermitian matrix and λ an eigenvalue of H with eigenvector 

z 6= 0. We claim that λ is real. 

 
λz∗z = z∗(λz) = z∗Hz = z∗H∗z = (Hz)∗z = (λz)∗z = λz∗z. 
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Since z∗z is length squared, real and positive, we see that λ is real for λ to be 

 
equal to λ. Suppose that H is a non-singular Hermitian matrix (that is, all its 

eigenvalues are non-zero) with p positive eigenvalues and q negative ones. Then we 

say that H has signature (p,q). 

2.3 Hermitian forms on Cp,q 

For each k × k Hermitian matrix H we can associate a Hermitian form 

h·,·i : Ck × Ck → C given by hz,wi = w∗Hz 

(notice the change in the order) where w and z are vectors in Ck. Note that the h·,·i is 

the Hermitian form and is always with respect to a particular Hermitian matrix H. 

Hermitian forms are sesquilinear, that is they are linear in the rst factor and conjugate 

linear in the second factor. In other words, Hermitian forms 

with the following properties are called sesquilinear: 

hz1 + z2,wi = w∗H(z1 + z2) = w∗Hz1 + w∗Hz2 = hz1,wi + hz2,wi; 

hλz,wi = w∗H(λz) = λw∗Hz = λhz,wi; 

hz,λwi = (λw)∗Hz = λw∗Hz = λhz,wi; 

 
hw,zi = z∗Hw = z∗H∗w = (w∗Hz)∗ = hz,wi. 

where z,z1,z2,w are column vectors in Ck and λ a complex scalar (Parker, 2010). Let h·,·i 

be a Hermitian form associated with the Hermitian matrix H. 

We know that the eigenvalues of H are real. We say that 

1. h·,·i is non-degenerate if all the eigenvalues of H are non-zero; 

2. h·,·i is positive de nite if all the eigenvalues of H are positive; 
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3. h·,·i is negative de nite if all the eigenvalues of H are negative; 

4. h·,·i is de nite if some eigenvalues of H are positive and some are negative. 

Suppose that h·,·i is a non-degenerate Hermitian form associated to the k × k 

Hermitian matrix H. We say that h·,·i has signature (p,q) where p + q = k if 

H has p positive eigenvalues and q negative eigenvalues. Thus positive de nite 

Hermitian forms have signature (k, 0) and negative de nite forms have signature (0, 

k). We often write Cp,q for Cp+q equipped with a non-degenerate Hermitian form of 

signature (p,q). This generalises the idea of Cp with the implied Hermitian form of 

signature (p, 0). 

For real matrices the Hermitian transpose coincides with the ordinary 

transpose. A real matrix that equals its own transpose is called symmetric. 

Symmetric matrices de ne bilinear forms on real vector spaces, usually called 

quadratic forms. 

Example 2.3.1 Consider 

 

It can be seen that H0 and H00 are both Hermitian. Moreover, since H0 is a 

diagonalised matrix, it is easier to see that it has signature (1, 1). H00 also has 

signature of (1, 1). 

Let h·,·i be a Hermitian form associated to the k × k Hermitian matrix H. A k 

× k matrix A is called unitary with respect to H if for all z and w in Ck 

we have 

w∗A∗HAz = hAz,Awi = hz,wi = w∗Hz. 

If the Hermitian form is non-degenerate then unitary matrices form a group. The 

group of matrices preserving this Hermitian form will be denoted U(H). Sometimes it 

is only necessary to determine the signature. If h·,·i has signature 
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(p,q) then we write U(p,q). Since A preserves that form we have 

w∗A∗HAz = (Aw)∗H(Az) = hz,wi = w∗Hz. 

Therefore letting z and w run through a basis for Ck we have A∗HA = H. If H 

is non-degenerate then it is invertible and this translates to an easy formula for the 

inverse A: 

A−1 = H−1A∗H. 

Most of the Hermitian forms we consider will have eigenvalues ±1 and so will be 

their own inverse. One consequence of this formula is that 

det(H) = det(A∗HA) = det(A∗)det(H)det(A). 

If det(H) 6= 0 (so the form is non-degenerate) then 

 
1 = det(A∗)det(A) = det(A)det(A) = |det(A)|2. 

Thus unitary matrices have unit modulus determinant. The group of those unitary 

matrices whose determinant is +1 is denoted by SU(H). 

Example 2.3.2 Consider the Hermitian forms H0 and H00 in (example 2.3.1). 

Suppose that A ∈ SU(H0). Then 

 . 

Therefore b = c and d = a. Hence 1 = ad − bc = |a|2 − |c|2. Hence 

SU( . 

Similarly, suppose A0 ∈ SU(H00). Then 

H 0 )= 

 
  

  

 

 
 

a c 

c a 

 

 
 

: a,c ∈  , | a | 2 − | c | 2 =1 
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 . 

Therefore a,b,c,d are all real. Hence 

   

  a
 b  

SU(. 

That is, SU(H . 

2.4 Cayley transform 

Given two Hermitian forms H and H0 of the same signature we can pass between 

them using a Cayley transform C. That is, we can write 

H0 = C∗HC. 

The Cayley transform C is not unique for we may pre-compose and post-compose by 

any unitary matrix preserving the relevant Hermitian form. The following Cayley 

transform interchanges the rst and second Hermitian forms 

 . 

In order to see that C is a Cayley transform, we calculate 
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Also, C−1 = C and so C∗H2C = H1. It is clear that if A is unitary with respect to H then A0 

= C−1AC is unitary with respect to H0. In order to see this, observe that, using (C−1AC)∗ 

= C∗A∗C∗−1, we have 

A0∗H0A0 = (C−1AC)∗(CHC)(C−1AC) = C∗A∗HAC = C∗HC = H0. 

Example 2.4.1 Consider H0 and  given by (example 2.3.1) and 

 . 

One can verify that . Furthermore suppose 

. 

Then 

AC . 

2.5 Three models of complex hyperbolic space 

There are three standard models of complex hyperbolic space, namely: 

1. the projective model in Pn
C; 
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2. the unit ball model in Cn and 

3. the Siegel domain model in Cn. 

Let H be a 3 × 3, non-singular Hermitian form of signature (2, 1). For z ∈ C2,1 we have 

hz,zi ∈ R. Let V−,V0,V+ be the subsets of C2,1 de ned by 

 V− = {z ∈ C2,1|hz,zi < 0} (2.1) 

 V0 = {z ∈ C2,1 − {0}|hz,zi = 0}, (2.2) 

 V+ = {z ∈ C2,1|hz,zi > 0}, (2.3) 

Vectors in V−,V0,V+ are called negative, null or isotropic, positive respectively. 

Example 2.5.1 Consider C1,1 with the Hermitian form given by H0 in (example 

2.3.1). Then 

    

  z1 2 2  

 V− =   : |z1| < |z2| , 

   

  z2  

      

  z1 0 2 2  

 V0 =   6=   : |z1| = |z2| , 

     

  z2 0  

    

  z1 2 2  

 V+ =   : |z1| > |z2| . 

   

  z2  

Likewise C1,1 with the Hermitian form given by H00, 
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 , 

De ne an equivalence relation on C2,1−{0} by z ∼ w if and only if there is a non-zero 

complex scalar λ so that w = λz. We de ne the standard projection 

map 

P : C2,1 − {0} 7−→ CP2 by P(z) = [z] 

where [z] is the equivalence class of z. We therefore de ne a projection map P on 

these points of C2,1 with z3 6= 0 as 

. 

Because hλz,λzi = |λ|2hz,zi we see that for any non-zero complex scalar λ the 

point λz is negative, null or positive if and only if z is negative, null or positive. The 

projective model of complex hyperbolic space is de ned to be the collection of 

negative lines in C2,1, that is, H2
C = PV−. The boundary is de ned as the collection of 

null lines, that is, ∂H2
C = PV0. 

In what follows, we de ne the other two standard models of complex 

hyperbolic space by considering two standard Hermitian forms on C2,1. We call these 

the rst and second Hermitian forms. If the vectors z = (z1,z2,z3)t and w = (w1,w2,w3)t 

are in C2,1. The rst Hermitian form is de ned to be : 
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hz,wi1 = z1w1 + z2w2 − z3w3 from hz, wi1 = w∗H1z where 

 

1 

 H1 

=  0 

 

 

0 

0 

1 

0 

 

0 

 
 

0  
 

 

−1 

the Hermitian matrix. The second Hermitian form is de ned to be: 

hz,wi2 = z1w3 + z2w2 + z3w1 from hz, wi2 = w∗H2z where 

 

0 

 H2 

=  0 

 

 

1 

0 

1 

0 

 

1 
  

0  
 
 

0 

the Hermitian matrix. 

Both of these forms have the property that each vector in V− has nonzero 

third entry. Therefore, we can take the section de ned by z3 = 1. This gives a unique 

point on each complex line in V−. In other words, given z = (z1,z2) ∈ C2, we de ne its 

standard lift to C2,1 to be column vector 

  z1 

  z = 

 z2  

   

   

1 

in C2,1. Clearly P(z) = z. We consider what it means for hz,zi to be negative for the rst 

and second Hermitian forms respectively. For the rst Hermitian form we obtain z ∈ 

H2
C provided: 

hz,zi1 = z1z1 + z2z2 − 1 < 0 ⇒ |z1|2 + |z2|2 < 1. 
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Thus z = (z1,z2) is in the unit ball in C2 forming the unit ball model of complex 

hyperbolic space. The boundary of the unit ball model is the sphere S3 given by 

|z1|2 + |z2|2 = 1. For the 

second Hermitian form we obtain z ∈ H2
C provided: 

hz,zi2 = z1 + z2z2 + z1 < 0 ⇒ 2<(z1) + |z2|2 < 0. 

Thus z = (z1,z2) is in a domain in C2 whose boundary is the paraboloid de ned 

by 

2<(z1) + |z2|2 = 0. 

This domain is called the Siegel domain and forms the Siegel domain model of H2
C. 

However, not all the points in P(V0) lie in C2 ⊂ CP2. We have to add an extra point, 

denoted ∞, on the boundary of the Siegel domain. The standard lift of ∞ is 

   

1 

   

   

 0 . 

   

  0 
Of course ∞ is not the only point in CP2 − C, that is it not the only point " at in nity". 

In this respect it is di erent from the point ∞ on the boundary of the upper half plane 

model of the hyperbolic plane, which is the only point of CP1 that is not in C. 

Example 2.5.2 For z ∈ C the standard lift of z to C1,1 is 

  z z =  

 ∈ C1,1. 

1 
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If C1,1 has the Hermitian form given by H0 from (2.1), then we see that z ∈ PV0 

if and only if |z| = 1. Thus PV− is the unit disc and PV0 is the unit circle in C. Similarly 

for , the point z ∈ PV− if and only if =(z) > 0 and z ∈ PV0∩C 

if and only if z is real. We must add an extra point ∞ whose standard lift is 

   

1 

  . 

   

0 

Remark 1: According to Parker (2012) there are other Hermitian forms which are 

widely used in the literature. In particular, Chen and Greenberg give a close relative 

of the second Hermitian form. We will refer to this as the third Hermitian 

form. It is given by 

hz,wi3 = −z1w2 − z2w1 + z3w3. 

It is given by the Hermitian matrix H3:   

 

0 

 H3 

=  −1 

 

 

0 

−1 

0 

0 

 

0 

 

 

0 . 

 

 

1 

So far we have de ned complex hyperbolic space as set points. In order to 

understand its geometry we must give it a metric. 

For the projective model, the metric on H2
C known as

 the Bergman metric is given by 

  . (2.4) 
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The choice of the constant 4 in the above formula means that the holomorphic 

sectional curvature of H2
C is −1. The distance between points z,w ∈ H2

C is given 

by the formula 

 . (2.5) 

For the ball model and Siegel domain model one can nd the distance between points 

z and w and by plugging their standard lifts z and w into the above 

formula. 

Example 2.5.3 Consider z ∈ C with |z| < 1. We have seen that for the Hermitian form 

H0 this point is in z ∈ PV−. Moreover, the standard lift of z 

and its derivative are 

  z 

z =  , 

   

1 

  dz dz 

=  . 

   

0 

Plugging this vector and the Hermitian form given by H0 into (2.4) gives 

. 

This is just the Poincare´ metric on the unit disc. Similarly, consider z ∈ C with 

=(z) > 0. This is in PV− for the Hermitian form . Plugging its standard lift into (2.4) 

gives 

. 

This is the Poincare´ metric on the upper half plane. Note that in both of these 

examples we have the constant 4 and constant curvature −1. 
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Unitary matrices in U(2,1) acts on C2,1 preserving V+,V0 and V−. They also 

preserve the Bergman metric since it is given solely in terms of the Hermitian form. 

Therefore unitary matrices act as isometries on complex hyperbolic space. Let us see 

this action explicitly. Let z = (z1,z2) be a point in C2 and let z be its standard lift to C2,1. 

Then A ∈ U(2,1) acts as follows: 

A(z) = P(Az). 

In other words, if 

  a b c 

   

 A =  d e f  

   

  g h j 

then 

A(z1,z2) = PA(z1,z2) 

   a b c z1 

    

 =  d e f  z2  

    

   g h j 1 

  az1 + bz2 + c 

   

=  dz1 + ez2 + f  

   

  gz1 + hz2 + j 

   

(az1 + bz2 + c)/(gz1 + hz2 + j) 

 =  . 
  (dz1 + ez2 + f)/(gz1 + hz2 + j) 

This is just a linear fractional transformation in two variables. 

Example 2.5.4 Consider A ∈ SU(H0): 
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 . 

 Similarly, we see that A acts on the unit disc as the Mo¨bius 

transformation in PSU(H0) 

 

Also, for , the matrix  acts on the upper half plane as 

a Mo¨bius transformation in PSL(2,R). 

2.6 PU(2, 1) and its action on complex hyperbolic space 

Let U(2,1) be a group of unitary matrices for the Hermitian form h·,·i. Each such 

matrix A satis es the relation A−1 = H−1A∗H where A∗ is the Hermitian 

transpose of A. 

The full group of holomorphic isometries of complex hyperbolic space is the 

projective unitary group PU(2,1) = U(2,1)/U(1), where U(1) = {eiθI,θ ∈ [0,2π)} and I 

is the 3 × 3 identity matrix. 

Sometimes it will be useful to consider SU(2,1), the group of matrices with 

determinant 1 which are unitary with respect to h·,·i. The group SU(2,1) is a 3-fold 

covering of PU(2,1). Therefore PU(2,1) = SU(2,1)/{I,ωI,ω2I} where 

√ ω = (−1 + i 3)/2 is a cube root of unity. This is direct analogous to 

the fact that SL(2,C) is a double cover of PSL(2,C) = SL(2,C)/{I,−I} (Platis, 2006).  
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Chapter 3 

THE GEOMETRY OF ISOMETRIES 

3.1 Introduction 

The dynamical behaviour of hyperbolic isometries in PSL(2,C) may be classi ed as 

elliptic, parabolic or loxodromic (hyperbolic) and the trace of the corresponding 

matrix in SL(2,C) distinguishes between these classes. Moreover, for nonparabolic 

isometries, the geometry of the action in terms of rotation angle or hyperbolic 

translation length may be read o directly from the trace. Likewise, one may use the 

trace of an element of SU(2,1) to decide whether the corresponding complex 

hyperbolic isometry in PU(2,1) is elliptic, parabolic 

or loxodromic (Parker, 2012). 

Furthermore, one may deduce information about the geometry of the action 

of the isometry from this trace. We will discuss elliptic and parabolic isometries which 

have some subtlety involved, the case of loxodromic isometries is trivial. (Parker, 

2012) 

3.2 Classi cation of elements of SU(2, 1) by their 

trace 

This section looks at classi cation of elements of SU(2,1) by their trace. Elements of 

SU(2,1) are holomorphic complex hyperbolic isometries and the familiar trichotomy 

from real hyperbolic geometry applies in the complex hyperbolic setting as well. A 

holomorphic complex hyperbolic isometry A is said to be: 

1. loxodromic if it xes exactly two points of ∂HC
2; 

2. parabolic if it xes exactly one point of ∂H2
C; 
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3. elliptic if it xes at least one point of H2
C. 

We now show that we can use the trace of A ∈ SU(2,1) to decide the class 

of A. First observe that, if λ1,λ2 and λ3 are the eigenvalues of A, then  and  

form some permutation of λ1,λ2 and λ3 (Parker, 2010). Let chA(x) be the characteristic 

polynomial of A. Suppose that 

chA(x) = x3 − a2x2 + a1x − a0. 

Then a2 = λ1 + λ2 + λ3 = tr(A) and a0 = λ1λ2λ3 = det(A) = 1. The other 

coe cient is 

a1 = λ1λ2 + λ2λ3 + λ3λ1 

 

 

= λ1 

 

+ λ2 

 

+ λ3 

Hence, if we denote the trace of A by tr(A) = τ, then tr(A−1) = τ. Putting this in the 

characteristic polynomial of A ∈ SU(2,1) gives 

chA(x) = x3 − τx2 + τx − 1. 

We want to nd out when A ∈ SU(2,1) has repeated eigenvalues. In other 

words, we want to nd conditions on τ for which chA(x) = 0 has repeated solutions. 

This is true if and only if chA(x) and its derivative ch0A(x) have a 

common root. Clearly 

ch0A(x) = 3x2 − 2τx + τ. 

According to (Kirwan, 1992) cited by Parker (2012), two polynomials have a common 

root if and only if their resultant vanishes. 

The resultant R(p(x),q(x)) of two polynomials p(x) and q(x) of degree m and 

n, respectively, is the determinant of (m + n) × (m + n) matrix de ned as follows. Write 
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the coe cient of p(x) in the rst row followed by n − 1 zeros. In the next row the coe 

cients are displaced one row to the right, with one zero to the left and n − 2 to the 

right. continue in this fashion until the nth row is n − 1 zeros followed by the coe 

cients of p(x). For the last m rows we do the same thing with p(x) and q(x) 

interchanged (Parker, 2012). 

Since chA(x) and ch0A(x) have degrees 3 and 2 respectively, the resultant is a 

5 × 5 determinant. Applying the above procedure, we see that 

 

 
Therefore 

. 

One has the following well-known theorem: 
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Theorem 3.2.1 Let f(τ) = |τ|4 − 8<(τ3) + 18|τ|2 − 27. Let A ∈ SU(2,1) then: 

1. A has an eigenvalue λ with |λ| 6= 1 if and only if f(tr(A)) > 0, 

2. A has a repeated eigenvalue if and only if f(tr(A)) = 0, 

3. A has distinct eigenvalue if and only if f(tr(A)) < 0. 

 

Figure 3.1: The deltoid given by f(τ) = 0. The region with f(τ) < 0 is inside and that with 

f(τ) > 0 is outside 

The curve f(τ) = 0 is a classical curve called a deltoid. The points outside 

correspond to case (i) in the theorem. This may be seen by considering A with 

eigenvalue r,r−1 and 1 where r > 1, which implies tr(A) lies in the interval 

(3, ∞) and considering A with eigenvalue eiθ,e−iθ and 1 whose trace lies in (-1, 3). The 

rest follows by continuity (Parker, 2012). 

From the construction of the deltoid f(τ) = 0 it is clear that part (2) of 

theorem 3.2.1 follows directly. We now discuss the other cases separately. 

−1 
Lemma 3.2.2 Let A ∈ SU(2,1) and let λ be an eigenvalue of A. Then λ is 

an eigenvalue of A. 
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Proof. We know that A preserves the Hermitian form de ned by H. Hence, A∗HA = H 

and so A = H−1(A∗)−1H. Thus A has the same set of eigenvalues 

as (A∗)−1 (they are conjugate). Since the characteristic polynomial of A∗ is the complex 

conjugate of the characteristic polynomial of A, so if λ is an eigenvalue 

 
of A then λ is an eigenvalue of A∗. Therefore λ−1 is an eigenvalue of (A∗)−1 and hence 

A. 

−1 

Corollary 1 Suppose A ∈ SU(2,1) has an eigenvalue λ with |λ| 6= 1. Then λ 

 
is a distinct eigenvalue and the third eigenvalue is λλ−1 of absolute value of 1. 

Moreover, A is loxodromic. 

−1 
Proof. Using lemma 3.2.2, we see that λ is an eigenvalue. Since |λ| 6= 1 it is not 

equal to λ. As the product of the eigenvalues is 1 we obtain the third eigenvalue. 

If v 6= 0 is an eigenvector corresponding to λ then 

hv,vi = hAv,Avi = hλv,λvi = |λ|2hv,vi. 

As |λ| 6= 1 we see that v ∈ V0 and Pv is a xed point of A on ∂H2
C. Similarly, a 

 −1 2. Finally, a 

non-zero λ eigenvector corresponds to a second xed point on ∂HC 

 
non-zero λλ−1 eigenvector lies in V+ and is a normal vector for the complex line 

through the two xed points on ∂H2
C. Hence A has precisely two xed points 

on ∂H2
C and is loxodromic. 

Lemma 3.2.3 Suppose that A ∈ SU(2,1) has an eigenvalue λ with |λ| 6= 1. Then f(tr(A)) 

> 0. 

Proof. Suppose that reiθ is an eigenvalue of A where r is positive and r 6= 1. 
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By corollary 1 the other eigenvalues are (reiθ)−1 = r−1eiθ and e−2iθ. Therefore τ = reiθ + 

r−1eiθ + e−2iθ and τ = r−1e−iθ + re−iθ + e2iθ. Hence 

|τ|2 = ττ = (reiθ + r−1eiθ + e−2iθ)(r−1e−iθ + re−iθ + e2iθ) 

= 2 + r2 + r−2 + (r + r−1)e3iθ + (r + r−1)e−3iθ + 1 

= (r + r−1)2 + (r + r−1)cos(3θ) + (r + r−1)isin(3θ) 

+ (r + r−1)cos(3θ) − (r + r−1)isin(3θ) + 1 

= (r + r−1)2 + 2(r + r−1)cos(3θ) + 1 

<(τ3) = (reiθ + r−1eiθ + e−2iθ)3 

= (r2e2iθ + 2e2iθ + 2re−iθ + 2r−1e−iθ + r−2e2iθ + e−4iθ) 

· (reiθ + r−1eiθ + e−2iθ) 

= (r3 + 3r + 3r−1 + r−3)e3iθ + 3(r + r−1)e−3iθ 

+ 3r2 + 3r−2 + e−6iθ + 6 

= (r + r−1)3 cos(3θ) + 3(r + r−1)2 + 3(r + r−1)cos(3θ) + cos(6θ). 

Therefore 

f(reiθ + r−1eiθ + e−2iθ) = [(r + r−1)2 + 2(r + r−1)cos(3θ) + 1]2 

− 8[(r + r−1)3 cos(3θ) 

+ 3(r + r−1)2 + 3(r + r−1)cos(3θ) + cos(6θ)] 

+ 18[(r + r−1)2 + 2(r + r−1)cos(3θ) + 1] − 27 

= (r + r−1)4 + 4(r + r−1)3 cos(3θ) + 4(r + r−1)2 cos2(3θ) 

− 8(r + r−1)2 cos(3θ) + 16(r + r−1)cos(3θ) 
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− 4(r + r−1)2 − 8cos(6θ) − 9 

= (r − r−1)2(r + r−1 − 2cos(3θ))2 > 0. 

Lemma 3.2.4 Suppose that A ∈ SU(2,1) has three distinct eigenvalues, all of unit 

modulus. Then f(tr(A)) < 0. 

Proof. We write the eigenvalues as eiθ,eiφ,eiψ where θ,φ and ψ are distinct and eiθ+iφ+iψ 

= 1. Then τ = eiθ + eiφ + eiψ and 

|τ|2 = (eiθ + eiφ + eiψ)(e−iθ + e−iφ + e−iψ) 

= eiθ−iφ + eiθ−iψ + eiφ−iθ + eiφ−iψ + eiψ−iθ + eiψ−iφ + 3 

= cos(θ − φ) + isin(θ − φ) + cos(θ − ψ) + isin(θ − ψ) 

+ cos(φ − θ) + isin(φ − θ) + cos(φ − ψ) + isin(φ − ψ) 

+ cos(ψ − θ) + isin(ψ − θ) + cos(ψ − φ) + isin(ψ − φ) + 3 

= 3 + 2cos(θ − φ) + 2cos(φ − ψ) + 2cos(ψ − θ) 

τ3 = (eiθ + eiψ + eiφ)3 

= e3iθ + e3iφ + e3iψ + 3e2iθ+iφ + 3eiθ+2iφ + 3e2iθ+iψ 

+ 3eiθ+2iψ + 3e2iψ+iφ + 3e2iφ+iψ + 6eiθ+iφ+iψ 

= cos(3θ) + isin(3θ) + cos(3φ) + isin(3φ) + cos(3ψ) + isin(3ψ) 

= cos(3θ) + 3isin(3θ) + cos(3φ) + isin(3φ) + cos(3ψ) + isin(3ψ) 

+ 3cos(2θ + φ) + 3isin(2θ + φ) + 3cos(θ + 2φ) + 3isin(θ + 2φ) 

+ 3cos(2θ + ψ) + 3isin(2θ + ψ) + 3cos(θ + 2ψ) + 3isin(θ + 2ψ) 

+ 3cos(2ψ + θ) + 3isin(2ψ + θ) + 3cos(2φ + ψ) + 3isin(2φ + ψ) + 6 

∴ <(τ3) = cos(3θ)+cos(3φ)+cos(3ψ)+6cos(θ−φ)+6cos(φ−ψ)+6cos(ψ−θ)+6. 
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But, 

cos(3θ) = cos(2θ + θ) = cos(2θ − φ − ψ) 

= cos[(θ − ψ) − (φ − θ)] 

= cos(θ − ψ)cos(φ − θ) + sin(θ − ψ)sin(φ − θ). 

Hence 

<(τ3) = cos(θ − ψ)cos(φ − θ) + sin(θ − ψ)sin(φ − θ) 

+ cos(φ − ψ)cos(θ − φ) + sin(φ − ψ)sin(θ − φ) + 

cos(ψ − θ)cos(φ − ψ) + sin(ψ − θ)sin(φ − ψ) 

+ 6cos(θ − φ) + 6cos(φ − ψ) + 6cos(ψ − θ) + 6. 

Using this we now calculate 

f(eiθ + eiφ + eiψ) = [3 + 2cos(θ − φ) + 2cos(φ − ψ) + 2cos(ψ − θ)]2 

− 8[cos(θ − ψ)cos(φ − θ) + sin(θ − ψ)sin(φ − θ) 

+ cos(φ − ψ)cos(θ − φ) + sin(φ − ψ)sin(θ − φ) 

+ cos(ψ − θ)cos(φ − ψ) + sin(ψ − θ)sin(φ − ψ) 

+ 6cos(θ − φ) + 6cos(φ − ψ) + 6cos(ψ − θ) + 6] 

+ 18[3 + 2cos(θ − φ) + 2cos(φ − ψ) + 2cos(ψ − θ)] − 27 

= −12 + 4cos2(θ − φ) + 4cos2(φ − ψ) + 4cos2(ψ − θ) 

− 8sin(θ − ψ)sin(φ − θ) − 8sin(φ − ψ)sin(θ − φ) 

− 8sin(ψ − θ)sin(φ − ψ) 

= −4sin2(θ − φ) − 4sin2(φ − ψ) − 4sin2(ψ − θ) 

− 8sin(θ − ψ)sin(φ − θ) − 8sin(φ − ψ)sin(θ − φ) 

− 8sin(ψ − θ)sin(φ − ψ) 
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= −4(sin(θ − φ) + sin(φ − ψ) + sin(ψ − θ))2 < 0. 

As these two lemmas exhaust all the possibilities when A has distinct 

eigenvalues, we have proved theorem 3.2.1. 

 We now brie y discuss elliptic maps. Suppose rst that A has three 

distinct eigenvalues of unit modulus. 

Proposition 1 Suppose that A ∈ SU(2,1) has distinct eigenvalues eiθ,eiφ and eiψ.

 Then A has a unique xed point in H2
C corresponding to one of the 

eigenspaces. There are then three distinct conjugacy classes of elliptic maps with 

this trace. 

 If the xed point corresponds to the eiθ eigenspace then A acts on the 

tangent space at this point by a unitary matrix with eigenvalues eiφ−iθ and eiψ−iθ. 

Proof. Since A has distinct eigenvalues, A is diagonalisable. Then there exists a basis 

of eigenvectors for SU(2,1). Since eigenvectors with distinct eigenvalues are 

Hermitian orthogonal, an eigenvector v of A in V− corresponds to a xed point v = Pv ∈ 

H2
C. As A has three distinct eigenvalues there are three conjugacy 

classes depending on which eigenvector lies in V−. Finally, A is elliptic. 

For the second part, we consider the action of e−iθA on C2,1 and restrict 

this to the tangent space. The result follows. 

We now consider what happens if A has a repeated eigenvalue and so tr(A) 

lies on the deltoid. When all three eigenvalues are the same they must be a cube root 

of unity. These traces are the three vertices of the deltoid. Such maps are parabolic 

or act as the identity on H2
C. We now consider the case where A 

has exactly two distinct eigenvalues(Parker, 2012). 
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Proposition 2 Suppose that A ∈ SU(2,1) has two distinct eigenvalues, one of them 

repeated. Then the eigenvalues of A are eiψ,eiψ,e−2ψ for some ψ with 3ψ 6= 0 mod 2π. 

Moreover, one of the following three possibilities arises: 

1. A xes a complex line L in H2
C and rotates a normal vector to L by −3ψ; 

2. A xes a point in H2
C and acts as e3iψI on the tangent space at this point; 

3. A xes a point on ∂H2
C and there is a complex line L with point on its boundary so 

that A acts as a parabolic map on L rotates a normal vector to L by −3ψ. 

Proof. Suppose that A has repeated eigenvalue λ. Since det(A) = 1, it is clear that the 

third eigenvalue is λ−2. Using lemma 3.2.2 we see that {λ,λ,λ−2} = 

}. This is a contradiction if |λ| 6= 1. Thus |λ| = 1 and the eigenvalues 

are eiψ,eiψ,e−2iψ as claimed. 

Now we discuss the possible conjugacy classes of A. Let u and w be the 

eigenvectors corresponding to eigenvalues eiψ and e−2iψ respectively. We know that 

hu,wi = 0 by lemma 6.4 (ii) of Parker (2010) as e3iψ 6= 1 and e−3iψ 6= 1 since 3ψ 6= 

0(mod2π). Therefore the e−2iψ-eigenspace of A is Hermitian orthogonal to eiψ-

eigenspace. Since A ∈ SU(2,1) it means that two of hu,ui,hu,ui,hw,wi are positive 

while the other is negative, but eiψ is repeated eigenvalue and so hu,ui = 0. Hence 

e−2iψ cannot be contained in V0. 

Suppose that A is diagonalisable . First suppose that the e−2iψ is in V+. As 

hw,wi > 0, at least one of hu,ui or hu,ui is negative. Since the Hermitian form is non-

degenerate and has signature (2, 1) one of them is positive and the other negative. 

Then eiψ-eigenspace is inde nite and e−2iψ contains vectors in V−,V0 and V+. Its image 

under P is a complex line in H2
C xed by A. Secondly, suppose that the e−2iψ-eigenspace 

is in V− and corresponds to an isolated xed points of A in H2
C. Using similar argument, 

eiψ-eigenspcae is in V+ and so 

corresponds to an isolated xed point of A in H2
C. 
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Now suppose that A is not diagonalisable. Since eiψ is a repeated eigenvalue, 

there exists a vector v that is not a multiple of u and which satis es 

Av = eiψv + u. (To see this, put A into Jordan normal form). Then 

hv,ui = hAv,Aui = heiψv + u,eiψui = hv,ui + e−iψhu,ui. 

This implies hu,ui = 0 and u ∈ V0. This corresponds to a xed point of A on 

∂H2
C. The hyperplane spanned by u and v corresponds to a complex line L in H2

C and 

acts on this line as a parabolic map with xed point Pu. The e−2iψeigenspace of A is 

spanned by a polar vector of A and so A acts on a normal vector to L as multiplication 

by e−3iψ. 

An elliptic map is called regular if all its eigenvalues are distinct. Such maps 

were described in Proposition 1 (chapter 3). Elliptic maps of the type given in 

Proposition 2 (i) (chapter 3) are called complex re ections in a line and will be 

discussed in section 5.2. Elliptic maps of the type given in Proposition 2 (ii) and (iii) 

(chapter 3) are called complex re ections in a point and screw parabolic 

or elliptic-parabolic respectively. 

Again, using the discriminant function 

f(τ) = |τ|4 − 8<(τ3) + 18|τ|2 − 27 

we can classify isometries of complex hyperbolic plane by the traces of the 

corresponding matrices. An isometry A ∈ SU(2,1) is regular elliptic i f(tr(A)) < 

0 and hyperbolic i f(tr(A)) > 0. If f(tr(A)) = 0 there are three cases. If (tr(A))3 = 27 

then A is unipotent. Otherwise, A is either a complex re ection in a complex geodesic 

or a complex re ection about a point, or A is elliptoparabolic. Note that for real τ the 

function f factors into f(τ) = (τ +1)(τ −3)3. This means for A ∈ SU(2,1) whose trace is 

real, that A is regular elliptic if and only if tr(A) ∈ (−1,3) and hyperbolic i tr(A) ∈/ 

[−1,3] (Pratoussevitch, 2005). 
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3.3 Traces and eigenvalues for loxodromic maps 

A loxodromic matrix A in SL(2,C) has eigenvalues λ and λ−1 where |λ| > 1. Furthermore 

writing tr(A) = τ then τ = λ + λ−1. The map sending λ to τ is a 

conformal map from the exterior of the unit disc to the complex plane slit along the 

real axis from −2 to 2 (inclusive). 

In this section we want to generalise this result to loxodromic maps in 

SU(2,1). The map from eigenvalues to trace is no longer holomorphic but, we are able 

to show that it is a di eomorphism from the exterior of the unit disc onto the set of 

points in C with f(τ) > 0, that is the exterior of the deltoid, compare theorem 3.2.1. If 

τ = tr(A) then recall the discriminant function f(τ) of theorem 

3.2.1 

f(τ) = |τ|4 − 8<(τ) + 18|τ|2 − 27. 

The main result is: 

Proposition 3 Let A be a loxodromic map in SU(2,1) with eigenvalue λ with 

|λ| > 1. Then the function Φ gives the trace in terms of the eigenvalue 

Φ : {λ ∈ C : |λ| > 1} 7→ {τ ∈ C : f(τ) > 0} 

given by 

 
Φ(λ) = τ = λ + λλ−1 + λ−1 

is a di eomorphism. Moreover, Φ(ωλ) = ωΦ(λ), where ω is a cube root of unity and 

so this di eomorphism is well de ned for elements of PSU(2,1). 

 We prove this result by rst showing that the map Φ is surjective. 

Lemma 3.3.1 Suppose that τ ∈ C satis es f(τ) > 0 then there exists λ ∈ C 

 
with |λ| > 1 so that τ = λ + λλ−1 + λ−1. 
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Proof. If we can nd such a λ = reiθ then, as in lemma 3.2.3, we must nd r and 

θ solving 

|τ|2 = (r + r−1)2 + 2(r + r−1)cos(3θ) + 1, 

<(τ3) = (r + r−1)3 cos(3θ) + 3(r + r−1)2 + 3(r + r−1)cos(3θ) + cos(6θ). 

Eliminating cos(3θ) from these equations, we must nd x = (r+r−1)2 > 4 solving g(x) = 

0 where 

g(x) = x3 − (3|τ|2)x2 + (3 + 2<(τ3) − |τ|2)x − (|τ|2 − 1)2. 

Moreover, since 

((r + r−1) − 1)2 ≤ |τ|2 ≤ ((r + r−1) + 1)2 

such that a solution must satisfy 

(|τ| − 1)2 ≤ x = (r + r−1)2 ≤ (|τ| + 1)2. 

Note that since f(τ) > 0 we must have |τ| > 1 and so (|τ| + 1)2 > 4. We now evaluate 

g(x) at x = 4,x = (|τ| − 1)2 and x = (|τ| + 1)2 : 

g(4) = 64 − (3 + |τ|2)16 + (3 + 2<(τ3) − |τ|2)4 − (|τ|2 − 1)2 

= 27 − 18|τ|2 + 8<(τ3) − |τ|4 = −f(τ) < 0; 

g((|τ| − 1)2) = [(|τ| − 1)2]3 − (3 + |τ|2)(|τ| − 1)4 

+ [3 + 2<(τ3) − |τ|2](|τ| − 1)2 − (|τ|2 − 1)2 

= (|τ| − 1)2[(|τ| − 1)4 − (3 + |τ|2)(|τ| − 1)2 

+ 3 + 2<(τ3) − |τ|2] − (|τ|2 − 1)2 
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= (|τ| − 1)2[−2|τ3| + 2<(τ3) + |τ|2 + 2|τ| + 1] − (|τ|2 − 1)2 

= (|τ| − 1)2[−2|τ3| + 2<(τ3)] 

+ (|τ| − 1)2(|τ|2 + 2|τ| + 1) − (|τ|2 − 1)2 

= −2(|τ| − 1)2(|τ3| − <(τ3)) ≤ 0, 

Following the same procedure we see that 

g((|τ| + 1)2) = 2(|τ| + 1)2(|τ3| + <(τ3)) ≥ 0. 

Thus g((|τ|−1)2) ≤ 0 ≤ g((|τ|+1)2); that is 0 is a number between g((|τ|−1)2) and 

g((|τ|+1)2). Now g is continuous so by intermediate value theorem, there is a 

number x = x0 between (|τ| − 1)2 and (|τ| + 1)2 with g(x0) = 0 so that 

x0 > 4, x0 ≥ (|τ| − 1)2, x0 ≤ (|τ| + 1)2. 

From this we can solve (r + r−1)2 = x0 to obtain 

. 

Substituting into the rst of our equations, we obtain 

. 

The right hand side lies in [-1, 1] by construction. So we can solve to nd 3θ. Finally, by 

considering arg(τ) we can solve for θ. Writing λ = reiθ gives the result. 

Proof. Proposition 3: 

Write 

 X = {λ ∈ C : |λ| > 1}, Y = {τ ∈ C : f(τ) > 0}. 
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From lemma 3.2.3, we see that the image of X under Φ maps onto Y . We calculate 

the Jacobian of τ(λ): 

. 

This is clearly di erent from 0 whenever |λ| > 1. 

Therefore Φ is a local di eomorphism from X onto Y . It is clear that, when λ 

∈ X then λ tends to in nity if and only if τ tends to in nity. Likewise, from the proof of 

lemma 3.2.3, it is clear that Φ extends continuously to a map from the unit circle {λ 

∈ C : |λ| = 1} to the set {τ ∈ C : f(τ) = 0}. Hence Φ 

 
extends continuously to a map from X to Y and is therefore proper. Thus, by 

Ehresmann’s bration theorem we see that Φ is a locally trivial bration (that is, when 

thought of as a map from an annulus to itself, it is a covering map). Because Φ is a 

bounded distance from the identity for large values of |λ| we see that it has winding 

number 1 and so Φ is a global di eomorphism (Parker, 2012). 

3.4 Eigenvalues and complex displacement for loxodromic 

maps 

A loxodromic element A of SL(2,R) or SU(1,1) with eigenvalues λ and λ−1 where |λ| > 

1 corresponds to a hyperbolic isometry, which we also denote by A, in PSL(2,R) or 

PU(1,1) respectively. Since A is loxodromic, it has two xed points on the boundary of 

the hyperbolic plane and these are the projections of the eigenspaces. The geodesic 

joining these two xed points is called the axis of A, and is denoted α˜. The H1
C/hAi is 
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a hyperbolic cylinder (geometrically a catenoid) and α = α/˜ hAi is the hyperbolic 

geodesic around its waist with 

hyperbolic length ` where 

 |λ| = e`/2, |tr(A)| = 2cosh(`/2). 

In other words A translates along its axis by a hyperbolic transform length of `. 

The ambiguity in the sign of tr(A) exactly corresponds to the choice of lift from 

PSL(2,R) to SL(2,R) or from PSU(1,1) to SU(1,1) respectively. 

Similarly, when A is in SL(2,C) its trace corresponds to a complex length. 

More precisely, suppose tr(A) = λ+λ−1 where |λ| > 1. Then once again |λ| = e`/2. To nd 

the argument of λ, for any z ∈ α˜, consider a tangent vector ξ in Tz(H3) orthogonal to 

α˜, the axis of A. Then A sends ξ in Tz(H3) to a tangent vector along α˜ by a hyperbolic 

distance ` and rotates the tangent space by an angle φ. 

Then 

 λ = e`/2iφ/2, tr(A) = 2cosh(`/2 + iφ/2). 

Since φ is de ned mod 2π we see that the imaginary part of `/2+iφ/2 is de ned by 

mod π. This introduces an ambiguity of ±1 in the trace and this corresponds exactly 

to the ambiguity introduced when lifting A from PSL(2,C) to SL(2,C). 

In this section, we illustrate how the geometric action of A ∈ SU(2,1) is 

recorded by trace tr(A). In principle, the relationship is very similar to the case of 

SL(2,R) and SL(2,C) but the function involved are more complicated. The 

main result of this section is: 

Proposition 4 Let A ∈ SU(2,1) be a loxodromic map with axis α˜. Let λ ∈ C be the 

eigenvalue of A with |λ| > 1. Suppose that A has a Bergman translation length ` along 

α˜ and rotates complex line normal to α˜ by an angle φ. Then 
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 λ = e`/2−iφ/3 (3.1) 

and 

 tr(A) = 2cosh(`/2)e−iφ/3 + e2iφ/3 (3.2) 

Furthermore, since φ is de ned mod 2π, the argument of λ and τ are only given mod 

2 π/3 and so these formulae are only well de ned on PU(2,1). 

Proof. It will be convenient to use the Hermitian form H2 and to conjugate within 

SU(H2) so that A is diagonal: 

. 

The action of A on H2
C is given by 

 

The axis α˜ of A is given by 

α˜ = {(−x,0) ∈ C2 : x > 0}. 



 

39 

Let x be the standard lift of (−x,0) in α˜. Let ` the Bergman translation length of A 

along its axis then 

 

Therefore, once again we have |λ| = e`/2. 

We now consider the argument of λ. The axis α˜ is contained in a unique 

complex line, the complex axis α˜C. With our normalisation, 

α˜C = {(z,0) ∈ C2 : <(z) < 0}. 

For any point (−x,0) ∈ α, let ξ be a tangent vector in T(−x,0)(H2
C) orthogonal to α˜C. 

Since 

A(z1,z2) = (|λ|2z1,λ2λ−1z2), 

we see that ξ ∈ T(−x,0)(H2
C) is sent to ξeiφ then 

−2 −1 

 φ = arg(λ λ ) = −3arg(λ). 

 
Hence arg(λ) = −φ/3. Thus we obtain (3.1). Finally, since tr(A) = λ + λλ−1 + 

−1 
λ , we obtain (3.2). 

Corollary 2 Let A be as in Proposition 4. The function (3.2) relating ` and φ to tr(A) is 

local di eomorphism. 

Proof. Since it is clear that λ = e`/2−iφ/3 is a local di eomorphism the result follows by 

composing this map with the function relating λ and tr(A), and then 
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using proposition 8. 

In fact it is just as simple to calculate to the Jacobian directly. Using 

(3.2), the real and imaginary parts of tr(A) are: 

<(tr(A)) = 2cosh(`/2)cos(φ/3) + cos(2φ/3), 

=(tr(A)) = −2cosh(`/2)sin(φ/3) + sin(2φ/3). 

Therefore 

 

This is clearly non-zero when ` > 0. 

Chapter 4 

TWO GENERATOR GROUPS AND 

FENCHEL-NIELSEN COORDINATES 

4.1 Introduction 

There is a long tradition of studying subgroups of SL(2,C) by relating the traces of 

groups elements to their geometry. Vogt and Fricke showed that a non-elementary 

two generator subgroup of SL(2,C) is determined up to conjugation by the traces of 

the generators and their production. One aim of this section is to extend this result 

to two generator subgroups of SU(2,1). We begin by discussing trace relations in 

M(3,C), then specialising to SL(3,C) before nally giving the results for SU(2,1) (Parker, 

2012). 
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We are also interested in the geometry of two generator subgroups of 

SU(2,1). In this section, we pay much attention to the case where the generators and 

their products are all loxodromic. The fundamental group of a three- holed sphere is 

a free group on two generators. The generators and their product correspond to the 

these three boundary components. Since we require that these three elements are 

loxodromic, we can use the results of section 3.4 to give geometric information about 

the corresponding three-holed sphere. As an application, we discuss how to 

generalise Fenchel-Nielsen coordinates to complex hyperbolic representations of 

surface groups (Parker, 2012). 

4.2 Trace identities in M(3,C) 

In this section we derive some trace identities for 3 × 3 matrices. The rst lemma 

follows by writing tr(A), tr(A2) and tr(A3) as homogeneous polynomials in the 

eigenvalues of A and then solving for the coe cients of the characteristic 

polynomial. 

Lemma 4.2.1 Let A ∈ M(3,C). Then the characteristic polynomial of A ie. chA(x) is 

3 2 tr(A)2 − tr(A2) tr(A)3 − 3tr(A)tr(A2) + 

2tr(A3) x − tr(A)x + 

. 

6 

For any A ∈ M(3,C) de ne ch(A) to be the following matrix (here I is the 3 × 

3 identity matrix): 

ch(  
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Then by the Cayley-Hamilton theorem, ch(A) = 0, the 3 × 3 zero matrix. Parker (2012) 

used a process known as trilinearisation on this identity to obtain the 

following: 

Proposition 5 Let A,B,C ∈ M(3,C). Then 

O = ABC + ACB + BAC + BCA + CAB + CBA 

− tr(A)(BC + CB) − tr(B)(AC + CA) − tr(C)(AB + BA) 

+ (tr(B)tr(C) − tr(BC))A + (tr(A)tr(C) − tr(AC))B + 

(tr(A)tr(B) − tr(AB))C − (tr(A)tr(B)tr(C) + tr(ABC) 

+ tr(CBA))I + (tr(A)tr(BC) + tr(B)tr(AC) + tr(C)tr(AB))I. 

Proof. Using the Cayley-Hamilton theorem, as indicated above, for any A,B,C ∈ M(3,C) 

we have 

O = ch(A+B+C)−ch(A+B)−ch(A+C)−ch(B+C)+ch(A)+ch(B)+ch(C). 

To obtain the result, we expand this expression and simplify, using the fact that tr(A 

+ B) = tr(A) + tr(B) and tr(AB) = tr(BA). 

Corollary 3 For any A,B,∈ M(3,C) we have: 

O = ABA−1 + B + A−1BA 

− tr(A)(BA−1 + A−1B) − tr(A−1)(AB + BA) + tr(A)tr(A−1)B 

+ (tr(B)tr(A−1) − tr(BA−1))A + (tr(A)tr(B) − tr(AB))A−1 − 

(tr(A)tr(B)tr(A−1) + tr(B) − tr(A)tr(BA−1) − tr(A−1)tr(AB))I. 
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+ (tr(A)tr(AB) − tr(A2B))I. 

Proof. For the rst identity, we put C = A−1 in the expression from Proposition 

5 (chapter 4). This gives 

O = ABA−1 + B + B + B + B + A−1BA 

− tr(A)(BA−1 + A−1B) − 2tr(B)(I) − tr(A−1)(AB + BA) 

+ (tr(B)tr(A−1) − tr(BA−1))A + (tr(A)tr(A−1) − tr(I))B + (tr(A)tr(B) 

− tr(AB))A−1 − (tr(A)tr(B)tr(A−1) + tr(ABA−1) 

+ tr(A−1BA))I + (tr(A)tr(BA−1) + tr(B)tr(I) + tr(A−1)tr(AB))I. 

By simplifying and using tr(I) = 3, we have 

O = ABA−1 + B + A−1BA 

− tr(A)(BA−1 + A−1B) − tr(A−1)(AB + BA) 

+ [tr(B)tr(A−1) − tr(BA−1)]A + tr(A)tr(A−1)B 

+ [tr(A)tr(B) − tr(AB)]A−1 − [tr(A)tr(B)tr(A−1) 

+ tr(B) − tr(A)tr(BA−1) − tr(A−1)tr(AB)]I, 

For the second identity put C = A into Proposition 5 (chapter 4), so that 

O = ABA + A2B + BA2 + BA2 + A2B + ABA 

− tr(A)(BA + AB) − tr(B)(A2) − tr(A)(AB + BA) 



 

44 

+ (tr(B)tr(A) − tr(BA))A + (tr(A)tr(A) − tr(A2))B + 

(tr(A)tr(B) − tr(AB))A − (tr(A)tr(B)tr(A) + tr(ABA) 

+ tr(ABA))I + (tr(A)tr(BA) + tr(B)tr(A2) + tr(A)tr(AB))I. 

Dividing both sides by 2, we have 

O = ABA + A2B + BA2 − tr(A)(AB + BA) 

 

+ (tr(A)tr(AB) − tr(A2B))I. 

Corollary 4 For any A,B ∈ M(3,C) we have 

tr[A,B]+tr[A−1,B] = tr(A)tr(A−1) + tr(B)tr(B−1) + 

tr(A)tr(A−1)tr(B)tr(B−1) 

− 3 + tr(AB)tr(A−1B−1) − tr(A)tr(B)tr(A−1B−1) 

− tr(A−1)tr(B−1)tr(AB) + tr(A−1B)tr(AB−1) 

− tr(A−1)tr(B)tr(AB−1) − tr(A)tr(B−1)tr(A−1B). 

Proof. Multiplying the rst identity from Corollary 3 (chapter 4) on the right by B−1 gives 

O =ABA−1B−1 + I + A−1BAB−1 

− tr(A)(BA−1B−1) − tr(A)A−1 − tr(A−1)A 

− tr(A)(BAB−1) + tr(A)tr(A−1)I + tr(B)tr(A−1)AB−1 

− tr(BA−1)AB−1 + tr(A)tr(B)(A−1B−1) − tr(AB)(A−1B−1) 

− tr(A)tr(B)tr(A−1)B−1 − tr(B)B−1 + tr(A)tr(BA−1)B−1 + 

tr(A−1)tr(AB)B−1. 
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Taking traces gives 

O =tr(ABA−1B−1) + 3 + tr(A−1BAB−1) − tr(A)tr(A−1) 

− tr(A)tr(A−1) − tr(A−1)tr(A) − tr(A)tr(A−1) 

+ 3tr(A)tr(A−1) + tr(B)tr(A−1)tr(AB−1) 

− tr(BA−1)tr(AB−1) + tr(A)tr(B)tr(A−1B−1) 

− tr(AB)tr(A−1B−1) − tr(A)tr(B)tr(A−1)tr(B−1) 

− tr(B)tr(B−1) + tr(A)tr(BA−1)tr(B−1) 

+ tr(A−1)tr(AB)tr(B−1). 

Hence, multiplying through by −1 yields the desired result. 

4.3 Traces identities in SL(3,C) 

Suppose A is in SL(3,C), then the characteristic polynomial of A may be de ned by 

lemma 4.3.1. 

Lemma 4.3.1 Let A ∈ SL(3,C). The characteristic polynomial of A is 

chA(x) = x3 − tr(A)x2 + tr(A−1)x − 1. 

Proof. Let λ1,λ2,λ3 be the eigenvalues of A. Then λ1λ2λ3 = det(A) = 1. This gives the 

constant term in chA(x). We see that  are eigenvalues of A−1. Thus, using 

both of these facts, we see that the linear term in chA(x) is 

. 

By Cayley-Hamilton theorem, we see that for A ∈ SL(3,C) we have 
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 O = A3 − tr(A)A2 + tr(A−1)A − I. (4.1) 

Lemma 4.3.2 Let A ∈ SU(2,1). Then 

1. tr(A2) = (tr(A))2 − 2tr(A−1); 

2. tr(A3) = (tr(A))3 − 3tr(A)tr(A−1) + 3. 

Proof. 

i) Multiplying equation (4.1) by A−1 gives; 

A2 = tr(A)A − tr(A−1)I + A−1. 

Taking traces we see that 

tr(A2) = tr(A)tr(A) − tr(A−1)tr(I) + tr(A−1) 

= tr(A)2 − 3tr(A−1) + tr(A−1) 

= (tr(A))2 − 2tr(A−1); 

ii) Taking traces in equation (4.1) and then substituting for tr(A2) gives 

tr(A3) = tr(A)tr(A2) − tr(A−1)tr(A) + 3 

= tr(A)((tr(A))2 − 2tr(A−1)) − tr(A−1)tr(A) + 3 

= (tr(A))3 − 2tr(A)tr(A−1) − tr(A)tr(A−1) + 3 = 

(tr(A))3 − 3tr(A)tr(A−1) + 3. 

Proposition 6 Let A,B ∈ SL(3,C). Then tr[A,B]tr[B,A] may be expressed as a 

polynomial function of the traces of A,B,AB,A−1B and their inverses. 

Proof. Write A = MN and B = NM in the expression for corollary 4 (chapter 

4). This gives 
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tr[MN, NM] + tr[N−1M−1,NM] 

= tr(MN)tr(M−1N−1) + tr(NM)tr(N−1M−1) 

+ tr(MN)tr(M−1N−1)tr(NM)tr(N−1M−1) 

− 3 + tr(MNNM)tr(M−1N−1N−1M−1) 

− tr(MN)tr(MN)tr(M−1N−1N−1M−1) 

− tr(M−1N−1)tr(N−1M−1)tr(MNNM) 

+ tr(M−1N−1NM)tr(MNN−1M−1) 

− tr(M−1N−1)tr(NM)tr(MNN−1M−1) 

− tr(MN)tr(N−1M−1)tr(M−1N−1NM) 

= 2tr(MN)tr(M−1N−1) + tr(MN)2tr(M−1N−1)2 

− 3 + tr(M2N2)tr(M−2N−2) − tr(MN)2tr(M−2N−2) 

− tr(M−1N−1)2tr(M2N2) + tr[M,N]tr[N,M] 

− tr(MN)tr(M−1N−1)(tr[M,N] + tr[M−1,N]) − − − − − (1) 

Using corollary 4 (chapter 4), tr[M,N] + tr[M−1,N] can be expressed in terms of the 

traces of M,N,MN,M−1N and their inverses. That is 

tr[M,N] + tr[M−1,N] = tr(M)tr(M−1) + tr(N)tr(N−1) + 

tr(M)tr(M−1)tr(N)tr(N−1) 

− 3 + tr(MN)tr(M−1N−1) − tr(M)tr(N)tr(M−1N−1) 

− tr(M−1)tr(M−1)tr(MN) + tr(M−1N)tr(MN−1) 

− tr(M−1)tr(N)tr(MN−1) − tr(M)tr(N−1)tr(M−1N). − − − − − (2) 

If M and N are in SL(3,C) we can use their characteristic polynomials 

to write 
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 M2 = tr(M)M − tr(M−1)I + M−1, N2 = tr(N)N − tr(N−1)I + N−1 

M−2 = M − tr(M)I + tr(M−1)M−1, N−2 = N − tr(N)I + tr(N−1)N−1 

Hence 

M2N2 = (tr(M)M − tr(M−1)I + M−1)(tr(N)N − tr(N−1)I + N−1) 

= tr(M)tr(N)MN − tr(M)tr(N−1)M + tr(M)MN−1 

− tr(M−1)tr(N)N + tr(M−1)tr(N−1)I − tr(M−1)N−1 

− tr(N−1)M−1 + M−1N−1 

Taking traces gives 

tr(M2N2) = tr(M)tr(N)tr(MN) − tr(M)2tr(N−1) 

+ tr(M)tr(MN−1) − tr(M−1)tr(N)2 

+ tr(M−1)tr(N−1) + tr(M−1N−1) − − − − − − − −(3) 

Using similar argument gives the following: 

tr(M2N−2) = tr(M)tr(MN) − tr(M)2tr(N) 

+ tr(M)tr(N−1)tr(MN−1) 

+ tr(M−1)tr(N−1) − tr(M−1)tr(N−1)2 

+ tr(M−1N) + tr(N−1)tr(M−1N−1) − − − − − −(4) 

tr(M−2N2) = tr(N)tr(MN) + tr(MN−1) − tr(M)tr(N)2 

+ tr(M)tr(N−1) + tr(M−1)tr(N)tr(M−1N) 

− tr(M−1)2tr(N−1) + tr(M−1)tr(M−1N−1) − − − −(5) 
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tr(M−2N−2) = tr(MN) + tr(M)tr(N) + tr(N−1)tr(MN−1) 

− tr(M)tr(N−1)2 + tr(M−1)tr(M−1N) 

− tr(M−1)2tr(N) + tr(M−1)tr(N−1)tr(M−1N−1) − − − − − (6) 

Thus it su ces to express the trace of [MN,NM] and [N−1M−1,NM] in terms 

of these other traces. To do this, rst write 

[MN,NM] = MN2MN−1M−2N−1 

[NM,MN] = NM2NM−1N−2M−1 

and substitute for N2,N−2,M2 and M−2 as above to have 

[MN,NM] 

 

= tr(N)MNMN−1MN−1 − tr(N)tr(M)MNMN−1N−1 

+ tr(N)tr(M−1)MNMN−1M−1N−1 − tr(N−1)MMN−1MN−1 

+ tr(N−1)tr(M)MMN−1N−1 − tr(N−1)tr(M−1)MMN−1M−1N−1 

+ MN−1MN−1MN−1 − tr(M)MN−1MN−1N−1 

+ tr(M−1)MN−1MN−1M−1N−1 − − − − − − − − − − − − − (7) 

and 

[NM,MN] 

= N(tr(M)M − tr(M−1)I + M−1)NM−1(N − tr(N)I + tr(N−1)N−1)M−1 

= tr(M)NMNMNM−1 − tr(M)tr(N)NMNM−2 

+ tr(M)tr(N−1)NMNM−1N−1M−1 − tr(M−1)N2M−1NM−1 

+ tr(M−1)tr(N)N2M−2 − tr(M−1)tr(N−1)N2M−1N−1M−1 
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+ NM−1NM−1NM−1 − tr(N)NM−1NM−2 

+ tr(N−1)NM−1NM−1N−1M−1. − − − − − − − − − − − −(8) 

Then using corollary 3 (chapter 4) to substitute for expressions as MNM,MNM−1. 

Putting equations 2, 3, 4, 5, 6, 7 and 8 into equation 1, 

eventually yields the polynomial: 

|tr[M,N]|2 = −5tr(MN)tr(M−1N−1) + 3 − tr(M)2tr(N)2tr(MN) 

− tr(M)tr(N)tr(MN)tr(N−1)tr(MN−1) + tr(M)2tr(N)tr(N−1)2tr(MN) 

− tr(M)tr(N)tr(MN)tr(M−1)tr(M−1N) + tr(M)2tr(N)2tr(MN)tr(M−1)2 

− tr(M)tr(N)tr(MN)tr(M−1)tr(N−1)tr(M−1N−1) − tr(M)3tr(N)3 

+ tr(M)2tr(N−1)tr(MN) + tr(M)3tr(N−1)tr(N) + tr(M)2tr(N−1)2tr(MN−1) 

+ tr(M)2tr(N−1)tr(M−1)tr(M−1N) − tr(M)2tr(N−1)tr(M−1)2tr(N) 

+ tr(M)2tr(N−1)2tr(M−1N−1) − tr(M)tr(MN−1)tr(MN) 

− tr(M)3tr(MN−1)tr(N) + tr(MN)tr(M−1N−1)tr(N)tr(N−1) 

− tr(M)tr(N−1)tr(MN−1)2 + tr(M)2tr(N−1)2tr(MN−1) 

− tr(M)tr(M−1)tr(MN−1)tr(M−1N) + tr(M)tr(M−1)2tr(N)tr(MN−1) 

− tr(M)tr(MN−1)tr(M−1)tr(N−1)tr(M−1N−1) + tr(M−1)tr(N)2tr(MN) 

+ tr(M−1)tr(M)tr(N)3 + tr(M−1)tr(N)2tr(N−1)tr(MN−1) 

− tr(M−1)tr(N)2tr(M)tr(N−1)2 + tr(M−1)2tr(N)2tr(M−1N) 

− tr(M−1)3tr(N)3 + tr(M−1)2tr(N)2tr(N−1)tr(M−1N−1) 

− tr(M−1)tr(N−1)tr(MN) − tr(M−1)tr(N−1)tr(M)tr(N) 

− tr(M−1)tr(N−1)2tr(MN−1) + tr(M−1)tr(M)tr(N−1)3 

− tr(M−1)2tr(N−1)tr(M−1N) + tr(M−1)2tr(N−1)tr(N) 
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− tr(M−1)2tr(N−1)2tr(M−1N−1) − tr(M−1N−1)tr(MN) 

− tr(M−1N−1)tr(M)tr(N) − tr(M−1N−1)tr(N−1)tr(MN−1) 

+ tr(M−1N−1)tr(M)tr(N−1)2 − tr(M−1N−1)tr(M−1)tr(M−1N) 

+ tr(M−1N−1)tr(M−1)2tr(N) − tr(M−1)tr(N−1)tr(M−1N−1)2 

+ tr(MN)3 + tr(MN)2tr(N−1)tr(MN−1) − tr(MN)2tr(M)tr(N−1)2 

+ tr(MN)2tr(M−1)tr(M−1N) − tr(MN)2tr(M−1)2tr(N) 

+ tr(M−1)tr(N−1)tr(MN)2tr(M−1N−1) + tr(M−1N−1)2tr(M)tr(N)tr(MN) 

− tr(M−1N−1)2tr(M)2tr(N−1) + tr(M−1N−1)2tr(M)tr(MN−1) 

− tr(M−1N−1)2tr(M−1)tr(N)2 + tr(M−1N−1)2tr(M−1)tr(N−1) 

+ tr(M−1N−1)3 + tr(MN)tr(M−1N−1)tr(M)tr(M−1) 

+ tr(MN)tr(M−1N−1)tr(M)tr(M−1)tr(N)tr(N−1) 

− tr(MN)tr(M)tr(N)tr(M−1N−1)2 − tr(M−1)2tr(MN)2tr(M−1N−1) 

+ tr(MN)tr(M−1N−1)tr(M−1N)tr(MN−1) 

− tr(MN)tr(M−1N−1)tr(M−1)tr(N)tr(MN−1) 

− tr(MN)tr(M−1N−1)tr(M)tr(N−1)tr(M−1N) 

+ tr[M,N]tr[N−1,M−1] + tr[N,M]tr[M−1,N−1]. 

Note that the last two terms could be expanded by applying corollary 3 on equations 

7 and 8. 

4.4 Trace parameters for two generator groups of 

SU(2,1) 

Let Y be a three holed sphere (sometimes called pair of pants). If the boundary curves 

are denoted by α,β,γ, then the fundamental group of Y is 
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π1(Y ) = h[α],[β],[γ] : [αβγ] = idi. 

In fact, π1 is a free group generated by any two of [α],[β],[γ] where[α],[β] and [γ] are 

the homotopy classes in π1 representing the boundary curves. 

 

Figure 4.1: Pair of pants 

We want to study representations (conjugacy class of homomorphism) ρ : 

π1(Y ) −→ ΓY < SU(2,1). Let A = ρ([α]),B = ρ([β]),C = ρ([γ]), then ρ(π1(Y )) = ΓY is a 

subgroup of SU(2,1) generated by A,B,C with ABC = I. In other words, C = (AB)−1 = 

B−1A−1. 

According to Parker (2012), it is well known that for SL(2,R) or SU(1,1) (the 

holomorphic hyperbolic isometry groups of the upper plane and Poincare´disc 

respectively) then the group generated by A and B is completely determined up to 

conjugation by tr(A), tr(B) and tr(AB). Geometrically, under mild hypotheses, hA,Bi 

corresponds to a representation ρ0 of π which gives Y a hyperbolic metric. The mild 

hypotheses are that hA,Bi should be discrete, faithful (or free), totally 

loxodromic and that the axes of A,B and AB should bound a common region in the 

hyperbolic plane. We suppose that A = ρ([α]),B = ρ([β]),C = ρ([γ]) are all loxodromic. 

Let α,β,γ be the axes of A,B,C (geodesic joining xed points). 

Then lengths of A = ρ([α]),B = ρ([β]),C = ρ([γ]) are given by 
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|tr(A)| = 2cosh(`(α)/2), 

|tr(B)| = 2cosh(`(β)/2), |tr(C)| 

= 2cosh(`(γ)/2). 

In fact, our mild hypotheses about the axes of A,B and C imply that 

tr(A)tr(B)tr(C) < 0 

and so we may choose a lift from PSL(2,R) to SL(2,R) where all three traces are 

negative. Conversely, given `(α),`(β),`(γ) in R+ we can construct a hyperbolic metric 

on Y whose boundary geodesics have these lengths. This in turn gives rise to a group 

hA,Bi satisfying |tr(A)| = 2cosh(`(α)/2) etc (Parker, 2012). 

Similarly, if hA,Bi is a discrete, free, geometrically nite and totally loxodromic 

subgroup of SL(2,C) then we have a similar picture, but the lengths of the boundary 

curves are now complex, as discussed in the introductory part of section 3.4. The main 

di erence is that, not all triples of complex lengths give rise to discrete, free, totally 

loxodromic, geometrically nite group (Parker, 2012). 

We now want to play a similar game using complex hyperbolic 

representations of π1(Y ). Again the representations we will be interested in will 

be discrete, free, totally loxodromic and geometrically nite. We will also add the 

hypothesis that hA,Bi is Zariski dense. A subgroup of PSU(2,1) is Zariski dense 

if and only if its action on CP2 does not have a global xed point. 2 2. 

Equivalently, it does not x a point on HC or preserve a complex line in HC Consider ρ : 

π1(Y ) → SU(2,1). Then ρ is irreducible if and only if its image is Zariski dense (Parker, 

2012). 
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The main question is what are the data we need to completely determine 

hA,Bi up to conjugation. Our rst observation is that SU(2,1) has complex dimension 

four and so we do not expect to be able to determine hA,Bi using 

only three complex numbers (Parker, 2012). 

Theorem 4.4.1 (Wen’s theorem): Suppose that A,B ∈ SU(2,1) and that hA,Bi is Zariski 

dense. Then hA,Bi is determined up to conjugation within SU(2,1) by 

tr(A), tr(B), tr(AB), tr(A−1B), tr[A,B]. 

Remark 2: According to Parker (2012) Wen’s theorem refers to A and B in SL(3,C) and 

also requires the traces of A−1,B−1,A−1B−1 and AB−1. Namely, one would expect to only 

need to use four traces to describe hA,Bi. In fact, one needs an extra one, tr[A,B] and 

this satis es relations with the other traces. 

In what follows, we want to consider A,B,C ∈ SU(2,1) with ABC = 

 
I. It is clear that tr(AB) = tr(C−1) = tr(C). We want to express the other parameters in 

a way that is symmetrical with respect to cyclic permutations of 

A,B and C. First we consider the trace of A−1B. 

Lemma 4.4.2 let A,B,C be element of SU(2,1) so that ABC = I. Then 

tr(A−1B) − tr(A−1)tr(B) = tr(B−1C) − tr(B−1)tr(C) 

= tr(C−1A) − tr(C−1)tr(A). 

Proof. We already know that 

A3 − tr(A)A2 + tr(A−1)A − I = 0. 

Multiplying on the right by A−1B gives 
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A2B − tr(A)AB + tr(A−1)B − A−1B = 0 

A2B − tr(A)AB = A−1B − tr(A−1B). 

Taking traces and using AB = C−1 gives 

tr(C−1A) − tr(C−1)tr(A) = tr(A−1B) − tr(A−1)tr(B). 

This shows equality between the rst and third expressions. Cyclically permuting A,B 

and C gives the second as well. 

Therefore by using tr(A−1B)− tr(A−1)tr(B) instead of tr(A−1B) we give 

symmetric parameters. Furthermore, trivially we have 

 
tr[A,B] = tr[B,C] = tr[C,A] = tr[B,A] = tr[C,B] = tr[A,C]. 

We saw in corollary 4 and proposition 6 (chapter 4) that, the real and absolute value 

of tr[A,B] were determined by the other parameters. We now illustrate 

this explicitly. 

 We now express equation 18 of Lawton (2007) in terms of 

tr(A),tr(B),tr(AB) etc. 

Lemma 4.4.3 There exists a polynomial Q ∈ R so Q−t(5)t(−5) ∈ ker(Π), where t(5) and 

t(−5) are generators of R,t(5) = tr[A,B],t(−5) = tr[B,A],Π is a surjective algebra morphism 

and in particular 

Q =9 − 6tr(A)tr(A−1) − 6tr(B)tr(B−1) − 6tr(B−1A−1)tr(AB) 

− 6tr(A−1B)tr(AB−1) + tr(A)3 + tr(B)3 + tr(AB)3 + tr(A−1B)3 

+ tr(A−1)3 + tr(B−1)3 + tr(B−1A−1)3 + tr(AB−1)3 

− 3tr(A−1B)tr(B−1A−1)tr(A−1) − 3tr(A−1B)tr(AB)tr(A) 
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− 3tr(AB−1)tr(B)tr(AB) − 3tr(A−1B)tr(B−1)tr(B−1A−1) 

+ 3tr(AB−1)tr(B−1)tr(A) + 3tr(A−1B)tr(B)tr(A−1) 

+ 3tr(A)tr(B)tr(AB) + 3tr(A−1)tr(B−1)tr(B−1A−1) 

+ tr(B−1)tr(A−1)tr(B)tr(A) + tr(AB)tr(B−1)tr(B−1A−1)tr(B) 

+ tr(AB−1)tr(A−1)tr(A−1B)tr(A) + tr(AB−1)tr(B−1)tr(A−1B)tr(B) 

+ tr(B−1A−1)tr(A−1)tr(AB)tr(A) + tr(B−1A−1)tr(AB−1) 

+ tr(AB)tr(A−1B) + tr(AB−1)2tr(B−1A−1)tr(B−1) 

+ tr(A−1B)2tr(AB)tr(B) + tr(A−1)2tr(B−1)tr(AB−1) 

+ tr(A)2tr(B)tr(A−1B) + tr(A)tr(B−1)2tr(B−1A−1) 

+ tr(A−1)2tr(B−1A−1)tr(B) + tr(A)2tr(AB)tr(B−1) 

+ tr(AB−1)tr(A)tr(B)2 + tr(AB−1)tr(B)tr(B−1A−1)2 

+ tr(A−1B)tr(B−1)tr(AB−1)2 + tr(A−1)2tr(B−1A−1)tr(B) 

+ tr(A)2tr(AB)tr(B−1) + tr(AB−1)tr(A)tr(B)2 

+ tr(A−1B)tr(A−1)tr(B−1)2 + tr(A−1B)tr(B−1A−1)tr(B)2 

+ tr(A)tr(AB)tr(AB−1)2 + tr(A−1)tr(AB)tr(A−1B)2 

+ tr(A−1)tr(AB−1)tr(AB)2 + tr(A)tr(A−1B)tr(B−1A−1)2 

− 2tr(B−1A−1)2tr(B−1)tr(A−1) − 2tr(AB)2tr(B)tr(A) 

− 2tr(AB−1)2tr(A−1)tr(B) − 2tr(A−1B)2tr(A)tr(B−1) 

+ tr(A−1)2tr(B−1)2tr(B−1A−1) + tr(A)2tr(B)2tr(AB) 

+ tr(AB−1)tr(A−1)2tr(B)2 + tr(A−1B)tr(A)2tr(B−1)2 

− tr(AB−1)tr(B−1)2tr(B)tr(A) − tr(A−1B)tr(B)2tr(B−1)tr(A−1) 

− tr(B−1A−1)tr(A)2tr(A−1)tr(B) − tr(AB)tr(A−1)2tr(A)tr(B−1) 

− tr(B−1A−1tr(B)2tr(B−1)tr(A) − tr(AB)tr(B−1)2tr(B)tr(A−1) 
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− tr(AB−1)tr(B−1)tr(A−1)tr(A)2 − tr(A−1B)tr(B)tr(A)tr(A−1)2 

− tr(A−1)tr(B−1)3tr(A) − tr(A−1)tr(B)3tr(A) − tr(A−1)3tr(B−1)tr(B) 

− tr(A)3tr(B−1)tr(B) − tr(AB−1)tr(B−1A−1)tr(B)tr(A−1)tr(B) 

− tr(A−1B)tr(AB)tr(B)tr(A)tr(B−1) − tr(A−1)tr(A)tr(B)tr(AB−1)tr(AB) 

− tr(A−1)tr(A)tr(B−1)tr(A−1B)tr(B−1A−1) + tr(B−1)tr(A−1)2tr(A)2tr(B) + 

tr(A−1)tr(B−1)2tr(B)2tr(A). 

Proposition 7 Suppose that A,B,C are elements of SU(2,1) such that ABC = 

I. Let a = tr(A),b = tr(B),c = tr(C) and d = tr(A−1B) − tr(A−1)tr(B). Then 

the equation in lemma 4.4.3 becomes 

 

 

 
+ a2b(d + ab) + ab2c + ab2c + (d + ab)a2c + (d + ab)a2c 

+ (d + ab)bc2 + (d + ab)bc2 + a2bc + a2b c + (d + ab)ab2 

+ (d + ab)b2c + ac(d + ab)2 + (d + ab)a b2 + (d + ab)b2c 

+ ac(d + ab)2 + a c2(d + ab) + ac2(d + ab) − 2a bc2 
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Proposition 8 Let A,B,C ∈ SU(2,1) with ABC = I. Let 

a = tr(A), b = tr(B), c = tr(C), d = tr(A−1B) − tr(A−1)tr(B). 

Then 

2<(tr[A,B]) = |a|2 + |b|2 + |c|2 + |d|2 − abc − abc − 3 

and 

|tr[A,B]|2 = 

 

 

Proof. Using tr(A−1) = tr(A) = a etc and also tr(A−1B) = d + ab in the expression of 

corollary 4 (chapter 4) gives 
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2<(tr[A,B]) = |a|2 + |b|2 + |a|2|b|2 − 3 + c(d + a b) − ab(d + ab) 

 

For the second part, we simplify the equation given in proposition 7 above to 

have 

|tr[A,B]|2 = 9 − 6|a|2 − 6|b|2 − 6|c|2 − 6(d + ab)(d + ab) + a3 + b3 

 
+ c3 + (d + ab)3 + a3 + b3 + c3 + (d + ab)3 − 3(d + ab)ac 

 

 
+ (d + ab)bc2 + (d + ab)bc2 + a2bc + a2b c + (d + ab)ab2 

+ (d + ab)b2c + ac(d + ab)2 + (d + ab)a b2 + (d + ab)b2c 

+ ac(d + ab)2 + a c2(d + ab) + ac2(d + ab) − 2a bc2 

 

 



 

60 

+ a3b3 + 3abd2 + 3a2b2d + a3b3 − 3acd − 3a2bc − 3ac d 

 

 

− 2a bc2 − 2abc2 + 3abc + 3a b c + ab2c + ab2c2 + ab2c2 + a2b2c 

. 

Remark 3: We remark that when we write the formula of the real and 

modulos of tr[A,B] in terms of traces of A,B,AB and A−1B (see lemma 
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4.4.3) then there is a set symmetries generated by (A,B) → (B,A) and 

(A,B) → (A−1,B) etc. Some of these send [A, B] to itself, others to its inverse. Thus 

there are two solutions to the quadratic. However, when we write in terms of a,b,c,d 

(as in proposition 7) there is a three fold cyclic symmetry a → b → c → a. 

Now when we put the real and modulos of tr[A,B] together we have 

Proposition 9 Let A,B,C elements of SU(2,1) with ABC = I. Then if 

hA,B,Ci is Zariski dense, it is determined up to conjugacy by 

tr(A), tr(B), tr(C), tr(A−1B) − tr(A−1)tr(B), tr[A,B]. 

Also, the last two of these expressions remain unchanged under cyclic permutations 

of A,B and C. 

Moreover, the group is determined by tr(A),tr(B),tr(C),tr(A−1B) − 

tr(A−1)tr(B) together with the sign of the imaginary part of tr[A,B]. 

Remark 4: In proposition 9 Parker (2012) attempts to parametrise pair of pants groups 

via traces. As seen in the discussion in Parker (2012), since SU(2,1) has dimension 

four one cannot determine hA,Bi up to conjugation. One would expect to only need 

to use four traces to describe hA,Bi. Ideally, one needs an extra one, tr[A,B] but the 

real part and absolute value of tr[A,B] are determined by other parameters. So Parker 

(2012) considered a group with three generators hA,B,Ci whose product is the 

identity instead of hA,Bi. The reason for doing so is to get a formulae with three fold 

symmetry. 

Example 4.4.1 We now consider an example that shows the traces of A,B,AB and A−1B 

do not determine the imaginary part of tr[A,B]. 

For θ ∈ (−π/2,π/2) let Q(θ) ∈ SU(2,1) be the matrix 
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 . 

Note that Q(θ)−1 = Q(−θ). For r > 1 and s > 1, de ne A,B ∈ SU(2,1) by 

tr(  

, 

 θ 

 

reiφ 

 A 

=  0 

 

 

0 

Then we have 

0 

e−2iφ 

0 

   

 0 seiψ 0 

   

 

 0 ,Bθ = Q(θ)  0 e−2iψ 

   

   

r−1eiφ 0 0 

tr(A) = (r + r−1)eiφ + e−2iφ, 

tr(Bθ) = (s + s−1)eiψ + e−2iψ 

 

0 

 
 0

 Q(−θ) 

 

 s−1eiψ 
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tr(  

 , 

tr[  

 

Then it is easy to see that 

tr(Bθ) = tr(B−θ), tr(AB) = tr(AB−θ), tr(A−1Bθ) = tr(A−1B−θ) 

but tr[A,Bθ] 6= tr[A,B−θ]. 

4.5 Cross-ratios 

Cross-ratios were generalised to complex hyperbolic space by Kora´nyi and Riemann. 

Following their notation, given that z1,z2,z3,z4 are quadruple of distinct points on 

∂H2
C. Let z1,z2,z3 and z4 be corresponding lifts in V0 ⊂ C2,1. 

Their Kora´nyi-Riemann cross-ratio is de ned to be 

hz3,z1ihz4,z2i 

X = [z1,z2,z3,z4] = h z4,z1ihz3,z2i. 

Since the zi are distinct we see that X is nite and non-zero. We note that X is invariant 

under SU(2,1) and independent of the chosen lifts. We will only use the absolute 

value |[z1,z2,z3,z4]| which we call the real cross-ratio. Observe that if two of the 
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entries are the same then the cross-ratio is still de ned and equals one of 0, 1 or ∞. If 

z1,z2,z3 and z4 all lie on ∂H2
C then we can express 

the cross-ratio in terms of the Cygan metric as follows: 

 
provided none of the four points is ∞. If z3 = ∞ then 

. 

(Parker, 2010). 

By choosing di erent orderings our four points we may de ne other 

crossratios. There are symmetries associated with certain permutations. Having said 

that, it remains that there are only three cross-ratios left. Given distinct points 

z1,z2,z3,z4 ∈ ∂H2
C, we de ne 

 X1 = [z1,z2,z3,z4], X2 = [z1,z3,z2,z4], X3 = [z2,z3,z1,z4] (4.2) 

Then three complex numbers X1,X2 and X3 satisfy the following identities 

 |X2| = |X1||X3|, (4.3) 

 2|X1|2<(X3) = |X1|2 + |X2|2 − 2<(X1 + X2) (4.4) 

Note that the norm and real part of X3 are determined by X1 and X2, but that the sign 

of =(X3) is not determined Parker (2012). 

Let A and B be loxodromic maps in SU(2,1) with attracting xed points A and 

B be aA,aB and repelling xed points be rA,rB respectively. Suppose these xed points 

correspond to attractive eigenvectors aA,aB and repulsive eigenvectors rA,rB 

respectively. Following (4.2), we de ne the rst, second and 

third cross-ratios of loxodromic maps A and B to be 
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  (4.5) 

  (4.6) 

  (4.7) 

Since the xed points were assumed to be distinct, none of these cross-ratios is either 

zero or in nity. These three numbers satisfy the identities of (4.3) and (4.4) Parker 

(2012). 

Theorem 4.5.1 Suppose that A and B are loxodromic elements of SU(2,1) with distinct 

xed points. Also, suppose that hA,Bi does not preserve a complex line. Then the group 

hA,Bi is determined up to conjugation in SU(2,1) by: tr(A),tr(B),X1(A,B),X2(A,B) and 

X3(A,B). 

It is obvious that, this result is asymmetrical in that it depends on the choice 

of two of the boundary curves. To get around the di culty, Parker (2012) used the 

method of Parker and Platis in their paper Complex hyperbolic FenchelNielsen 

coordinates to show that choosing a di erent pair of boundary coordinates amount to 

a real change of coordinates (Parker, 2012). 

Proposition 10 Let A,B and C be loxodromic elements of SU(2,1) with ABC = I. Then 

tr(C),X1(A,C),X2(A,C) and X3(A,C) may be expressed as real analytic functions of 

tr(A),tr(B),X1(A,B),X2(A,B) and X3(A,B). 

To conclude this section, we show how these mixed trace and cross-ratio 

coordinates are related to the trace coordinates we found in previous section. 

Proposition 11 Let A and B be loxodromic maps in SU(2,1) with tr(A) = λ + 

 
λλ−1 + λ−1 and tr(B) = µ + µµ−1 + µ−1. Let X1,X2,X3 be the cross-ratios of their xed points 

given by (4.5), (4.6) and (4.7). Then the traces of AB,A−1B and [A,B] are given by 
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 −1 −1  −1 −1 −1 −1 

 tr(AB) = (λ + λ )µµ + λλ (µ + µ ) − λλ µµ 

, 

tr(A−1B) = (λ−1 + λ)µµ−1 + λλ−1(µ + µ−1) − λλ−1µµ−1 

 

and 

tr[A,B] = 

 

3 − 2<(X1(λ − λλ−1)(λ−1 − λλ−1)(µ − µµ−1)(µ−1 − µµ−1)) 

 

Remark 5: In theorem 4.5.1 Parker (2012) again tries to parametrise pair of 

pants group by using traces of two elements and cross-ratios. Even with this, there is 

a problem of a sign. This time it is the sign of the imaginary part of X3. Furthermore, 

this ambiguity is the same as the ambiguity in the sign of the =(tr[A,B]) (found in 

remark 4). Now from proposition 4.15 in Parker (2012), we can express X1 and X2 in 

terms of λ,µ,tr(AB) and tr(A−1B) which give the trace coordinates found in the 

previous section. So combining trace and cross-ratio we can parametrise pair of pants 

by considering the group hA,Bi. The merit of this method is that, we can still 

determine conjugation in SU(2,1) with only two elements A,B ∈ SU(2,1). 
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4.6 Twist-bend parameters 

Let P be a surface of genus g ≥ 2. We may decompose P into Y -pieces 

(so called pair of pants) and use this decomposition to de ne complex Fenchel- 

Nielsen coordinates. The trace coordinates from proposition 8 (chapter 4) give 

 

Figure 4.2: Decomposing of a surface into pair of pants 

the Fenchel-Nielsen complex lengths via proposition 4 (chapter 3). The remainder 

of this section gives a brief sketch on how to de ne Fenchel-Nielsen twist-bends. 

For hyperbolic surfaces, a Fenchel-Nielsen twist about a simple, closed, 

oriented curve α involves cutting the surface along α and then re-attracting so that 

points on one side are moved a hyperbolic distance k relative to the other side. It is 

often useful to think about doing this with the lift α˜ of α to the hyperbolic plane. If α˜ 

is the geodesic in the upper half plane with endpoints 0 and ∞, then this process 

involves applying the dilation K : z 7→ ekz to the part of the hyperbolic plane on one 

side of α˜, say the part with <(z) > 0. We allow k to be negative and this corresponds 

to moving in the opposite direction relative to the orientation of α. If we twist by a 

hyperbolic distance k equal to the length of α then the Fenchel-Nielsen twist is the 

same as a Dehn twist (Parker, 2012). 
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We can generalise the de nition of Fenchel-Nielsen twist to twist-bends in 

hyperbolic 3-space H2
R. The easiest way to describe this is to suppose that the 

universal cover of the surface is a hyperbolic plane inside H3
R and that α˜ is again the 

geodesic with endpoints 0 and ∞. As well as applying a FenchelNielsen twist, we may 

also rotate through an angle θ in the plane normal to α˜. This is called a bend and 

corresponds to applying the rotation K : z 7→ eiθz. Doing a twist through distance k 

and a bend through angle θ gives twist -bend parameter k + iθ. It corresponds to 

applying the loxodromic surface results in a pleated surface where the bending locus 

is the geodesic α. There is a relationship 

between traces and bending for such surfaces (Parker, 2012). 

This description can be extended to the case of complex hyperbolic 

representations of surface groups even though there is no longer a hyperbolic 

surface. However, the local picture is the same. Namely, a twist will be a hyperbolic 

translation of distance k along a geodesic α(orα˜) and a bend through 

angle θ in the plane normal to be the complex line containing α˜ (Parker, 2012). 

We can describe twist-bends on the level of the fundamental groups. This 

works for all the cases described above, but we only give details in the case of SU(2,1). 

There are two cases, (a) when the parts of the surface on either side of α in di erent 

three-holed spheres and (b) when they are in the same three-holed sphere. From 

group theory point of view, (a) corresponds to a free product with amalgamation and 

(b) to an HNN extension. The de nition of twist-bends in 

each case are similar but not quite the same (Parker, 2012). 

Let Y be a three holed sphere with oriented boundary geodesics α,β,γ and let 

ρ0 : π1 7→ SU(2,1) be a corresponding representation with ρ0([α]) = A,ρ0([β]) = B and 

ρ0([γ]) = C where ABC = I. Suppose that Y 0 is another 

such surface. We have  all as above. We must decide when we 

can attach Y and Y 0 along α and α0. We can do so when α0 has the same 
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length as α but the opposite orientation. Hence we must have A0 being conjugate to 

A−1 (Parker, 2012). 

There are two cases to consider. First we must investigate what happens 

when we attach two distinct three holed spheres along a common boundary. For our 

initial con guration, we suppose A0 = A−1. Attaching Y and Y 0 is then the same as taking 

the free product of hA,Bi and hA0,B0i with amalgamation along the common 

subgroup hAi = hA0i. The resulting group is then 

hA,Bi ∗hAi hA0,B0i = hA,B,A0,B0 | A0 = A−1i = hA,B,B0i. 

In this case a twist-bend consists of xing the surface corresponding to hA,Bi and 

moving the surface corresponding to hA0,B0i by a hyperbolic translation along the 

axis of A(the twist) and a rotation around the complex axis of A(the bend). In other 

words, we take a map K that commutes with A0 = A−1 and we conjugate hA0,B0i by K. 

Thus the new group is 

hA,Bi ∗hAi KhA0,B0iK−1 = hA,Bi ∗hAi hKA0K−1,KB0K−1i = hA,B,KA0K−1,KB0K−1 | 

KA0K−1 = A−1i = hA,B,KB0K−1i. 

Note that if we swap the roles of Y and Y 0 then the same process yields a twistbend 

associated to the matrix K−1. That is, the new group is hA0,B0,K−1B0Ki which is 

conjugate to hA,B,KB0K−1i (Parker, 2012). 

Secondly, we must consider the case where we close a handle. In this case 

we consider Y and want to glue two of its boundary components. Suppose one of 

them is represented by A then the other must be conjugate to A−1, say it is BA−1B−1. 

Note that if A and BA−1B−1 correspond to boundary components of the same three 

holed sphere, this means the third boundary component is C = (BA−1B−1)−1A−1 = [B,A]. 

Then in order to chose the handle we take HNN extension associated to the 



 

70 

isomorphism φ : hAi −→ hBAB−1i given by φ(A) = BA−1B−1. It is clear that we may do 

this by adjoining the stable letter B to obtain 

hA,BA−1B−1i∗φ = hA,BA−1B−1,B | BA−1B−1 = φ(A)i = hA,Bi. Because we want to 

keep track of the stable letter, we will write extension as 

hA,BA−1B−1i ∗φ (B) 

If K is a map that commutes with A then we also have φ(A) = (BK)A−1(BK)−1. 

Therefore we can take an isomorphic HNN extension by adding the stable letter BK 

instead of B: 

hA,(BK)A−1(BK)−1i ∗ φ(BK) = hA,BKi. 

Thus, in the case of closing a handle performing a complex twist associated to a map 

K that commutes with A involves changing the stable letter of the HNN extension 

from B to BK (Parker, 2012). 

In both cases, the geometry of the complex twist is record by tr(K) in exactly 

the same way that tr(A) is related to `(a) + iφ(a) as described in proposition 4 

(chapter 2). Therefore if K corresponds to a twist through distance k ∈ R and bend 

through angle θ ∈ (−π,π] then we have 

tr(K) = 2cosh(k/2)e−iθ/3 + e2iθ/3. 

Note that there are subtleties about the direction of twist and the sign of <(k). 

Chapter 5 

TRACES FOR TRIANGLE GROUPS 



 

71 

5.1 Introduction 

This section discusses groups generated by three complex re ections. DeligneMostow 

came out with groups and their groups have connection with groups 

generated by three complex re ections (Parker, 2012). 

Suppose that ∆ is a group generated by three complex re ections in SU(2,1) 

all with the same angle. In this section Parker (2012) gives combinatorial formulae for 

the traces of elements of ∆. These formulae are due to Pratoussevitch (2005) 

generalising earlier work of Sandler (1995). We then apply these formulae to nd the 

traces of elements of ∆ as in proposition 12. 

5.2 Re ections 

Consider Rn+1 with the standard inner product. Let Π be a hyperplane through the 

origin and let n be a normal vector Π. Thus the orthogonal complement Π⊥ of Π is 

spanned by n. Every vector x ∈ Rn+1 can be written as the sum of two 

orthogonal vectors, that is 

x · n x · n 

x

 x − n

 n, n · n

 n · n 

where 

 x · n x · n ⊥ 

, n ∈ Π . n · n

 n · n 

Speci cally, re ection R in Π is obtained by multiplying the component in Π⊥ by 

−1 

x · n x · n x · n n = 

x − 2 n. 

 n · n n · n n · n 

Then 
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. 

This is represented by a matrix in O(n,1) with determinant −1. The hyperplane 

model of (real) hyperbolic n-space is given by 

{x ∈ Rn,1 : (x,x) = −1,xn+1 > 0}. 

Then R maps this hyperboloid to itself. 

One can generalise this whole idea from the real world to the complex world, 

by considering Cn+1 with a hermitian form H which we assume to be nondegenerate. 

But, at this point, no restrictions on its signature. The Hermitian form associated to H 

is given as: 

hz,wi = w∗Hz for z and w in Cn+1. 

Since we are interested in complex hyperbolic space Hn
C we mainly think of the case 

where the form H has signature (n,1) but this is not necessary for the 

de nition of complex re ections. 

Suppose that Π is a complex hyperplane in Cn+1. That is Π⊥ is spanned by n ∈ 

Cn+1 and so we have Π = {z ∈ Cn+1 : hz,ni = 0}. Any z ∈ Cn+1 may then be decomposed 

into component in Π and Π⊥ as 

hz · ni hz · ni z

 n, hn · ni hn · ni 

where 

. 

At this point we give a clear di erence between real and complex re ections. A complex 

re ection will preserve the decomposition of z into components in Π and Π⊥, will 
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pointwise x the component in Π and will preserve the norm of z. However, since Π⊥ 

is a complex line we have greater freedom than we did before: we may multiply the 

component in Π⊥ by any complex number with modulus 1 (Parker, 2012). Hence we 

de ne the re ection in Π with angle ψ to be the map 

R(z) given by 

 . (5.1) 

The map R is given by a matrix U(H) with n eigenvalues +1 and 1 eigenvalue eiψ. 

Hence its determinant is eiψ. In order to obtain a map in SU(H) we must 

multiply this matrix by e−iψ/(n+1). 

In what follows, we are interested in the case where n = 2,H has signature 

(2, 1) and n ∈ V+. This means that, in terms of its action of H2
C, the re ection R xes a 

complex line L = PΠ ∩ H2
C. However, it will be useful 

to consider the space of groups generated by three complex re ections (all with the 

same angle) for a Hermitian form H and then consider the subspace where H has the 

correct signature. 

We now use examples of signature (1, 1) to illustrate that complex 

re ections in this case are just rotations, that is elliptic matrices. 

Example 5.2.1 1. Consider C1,1 where the Hermitian form is given by H0, 

as in (2.3.1). Let Π be the complex line in C1,1 with polar vector n where 

   

1 

 n =  . 

  0 

Then using (5.1) the re ection in Π with angle ψ is given by 
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The matrix in the last line is in U(1,1). Since we are dealing with traces, we want 

to lift R to a matrix in SU(1,1). Hence we multiply the U(1,1) matrix by e−iψ/2 to 

get 

  eiψ/2 0 

 R =  . 

  0 e−iψ/2  

2. Consider C1,1 where the Hermitian form is given by . Let Π be the complex line 

in C1,1 with polar vector n where 

   

−i 

 n =  . 

   

1 

Then hn,ni = 2. Then using similar argument, the re ection in Π with angle ψ is 
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 . 

To obtain a matrix of determinant 1 we must multiply by e−iψ/2 to get 

 

cos(ψ/2) 
R =   

−sin(ψ/2) 

 

sin(ψ/2) 

 ∈ SL(2,R). 

 

cos(ψ/2) 

5.3 Complex re ections in SU(2,1) 

We now give more details for the case we are most interested in, namely where n = 

2 and H has signature (2, 1). Let Π be a complex hyperplane in C2,1 with normal vector 

n ∈ C2,1 with hn,ni > 0. The complex re ection with angle ψ xing Π is given by (5.1). 

Since R is represented by a matrix in SU(2,1), we multiply (5.1) by e−iψ/3 to obtain 

,ni 

n 

 hn,ni hn,ni 

(5.2) 

We now relate tr(RA) and tr(A) for any A ∈ SU(2,1). 

Lemma 5.3.1 Let R be complex re ection in the hyperplane orthogonal to n with angle 

ψ given by (5.2). Let A be any element of SU(2,1). Then 

 tr( . 



 

76 

n,n 

Proof. We have 

 

nn∗HAz. 

Therefore, the matrix of RA is 

 

Now if a matrix can be written in the form uv∗ for column vectors u and v, then 

its trace is just v∗u. Thus 

tr(nn∗HA) = tr(n(A∗Hn)∗) = (A∗Hn)∗n = n∗HAn = hA(n),ni. 

Hence 

tr(RA) = e−iψ/3tr(A) + tr(nn∗HA) 

. 

Setting A to be the identity matrix, we see the fact (which we already knew from 

our consideration of eigenvalues, proposition 2 in chapter 3) 

tr(R) = 3e−iψ/3 + (e2iψ/3 − e−iψ/3) = e2iψ/3 + 2e−iψ/3. 

5.4 Equilateral triangle groups 

We consider the complex triangle group generated by three complex re ections 

R1,R2,R3 of order p with the property that there is an element J of order 3 so 

that 

 J3 = I, R2 = JR1J−1, R3 = JR2J−1 = J−1R1J. (5.3) 
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We call hR1,R2,R3i an equilateral triangle group if it satis es the condition (5.3) (Zhao, 

2011). 

Suppose that we are given three complex lines L1,L2 and L3 in H2
C. These 

correspond to hyperplanes Π1,Π2 and Π3 in C2,1 with normal vectors n1,n2 and n3 with 

hnj,nji > 0. For j = 1,2,3, consider complex re ections Rj with angle 

about complex lines with polar vectors nj (Parker, 2012). Using (5.2) we have 

  (5.4) 

Note that this formula is preserved if nj is sent to λnj for any λ ∈ C − {0}. 

Suppose rst that the three complex lines L1,L2,L3 from an equilateral triangle. 

That is, there is a J map of order 3 cyclically permuting them. In other 

words J ∈ SU(2,1) satis es Π2 = JΠ1,Π3 = JΠ2 = J−1Π1 and n2 = Jn1,n3 = 

Jn2 = J−1n1. Thus 

hn1,n1i = hn2,n2i = hn3,n3i,hn2,n1i = hn3,n2i = hn1,n3i. 

Note that if ω is a cube root of unity, all these formulae remain valid if, for j = 1,2,3 

we send nj to ωjnj. 

The map J will have eigenvalues 1, ω and ω and so tr(J) = 0. Using this 

fact, the following result is an easy corollary of lemma 5.3.1. 

Lemma 5.4.1 Let R be a complex re ection with angle ψ xing a complex line 

L with polar vector n. Let J ∈ SU(2,1) be a regular elliptic map of order 3. Then 

 tr( . 

n,n 

From lemma 5.4.1, we de ne the variable τ to be this trace ( where indices 

are taken cyclically): 



 

78 

 
Sending nj to ωjnj means that τ is multiplied by ω. Therefore given R1,R2 and R3 the 

map τ is only de ned up to multiplication by a cube root of unity. 

Furthermore, if Lj and Lj+1 meet with angle θ (by symmetry this is the 

same for all three pairs of lines) then 

 |hnj+1,nji| |τ| 

 cos(θ) = = . (5.6) 

 hnj,nji 2sin(ψ/2) 

This shows that the traces lead to geometrical information about the group. 

All of this has been de ned without reference to any particular Hermitian 

form. We now make a choice of vectors n1,n2 and n3. This determines a 

Hermitian form. We choose   

   

1 

   

n1 =  0 , 

   

   

0 

   

0 

   

n2  1 , 

   

   

0 

   

0 
  n3 

 0  

   

   

1 (5.7) 

Together with (5.5), this means that with this choice the Hermitian form must be hz,wi 

= w∗Hz where 

  (5.8) 

This leads to the following matrices in SU(2,1) for J,R1,R2 and R3: 
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(5.9) 

 , (5.10) 

 

 0 0 

 

  (5.11) 

 τ  

 

 

 0 0 e−iψ/3 

  . (5.12) 

Sending nj to ωjnj means that J is multiplied by ω. Therefore given complex re ections 

R1,R2,R3 the symmetry map J is only de ned up to multiplication by a cube root of 

unity. From this it is clear that the groups hR1,Ji and hR1,R2,R3i are completely 

determined up to conjugacy by the parameter τ. Therefore, in principle, the trace of 

any element of hR1,R2,R3i may be given as function of τ. Moreover, (5.7) determines 

the Hermitian form H up to a real multiple. 

In order to avoid denominator , we choose 

hnj,nji = |e2iψ/3 − e−iψ/3|2 = 2 − eiψ − e−iψ. 

This means that 
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As we indicated in section 5.2 the construction of R1,R2 and R3 in terms 

of n1,n2 and n3 works whatever the signature of H. It is only when H has 

signature (2, 1) that these re ections act on complex hyperbolic space as complex re 

ections in complex lines L1,L2 and L3. We now discuss the geometry when H 

has other signatures. 

Since the trace of H is positive, we see that it must have at least positive 

eigenvalue. If H has signature (3, 0) then our triangle lies on CP2 and hR1,R2,R3i 

is a subgroup of SU(3). If H has signature (2, 1), which is the case we are interested 

in, then hR1,R2,R3i is generated by re ections in complex lines in complex hyperbolic 

space. If H has signature (1, 2) then hR1,R2,R3i is generated by re ections in points in 

complex hyperbolic space. We now give a criterion for determining when H has 

signature (2, 1) (Parker, 2012). 

Lemma 5.4.2 The signature of the matrix H given by (5.7) is (2, 1) if and only 

if 

0 < 3(2 − eiψ − e−iψ)|τ|2 − (1 − e−iψ)τ3 − (1 − eiψ)τ3 − (2 − eiψ − e−iψ)2. 

Proof. We must nd when H has two eigenvalues that are positive and one that 

is negative. Since the sum of the eigenvalues of H is 

tr(H) = 3(2 − eiψ − e−iψ) > 0, 

it is easy to see that all three eigenvalues cannot be negative simultaneously. This 

means we only need to check when H has negative determinant. Hence 

0 > det(H) 
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. 

The result follows since 2 − eiψ − e−iψ > 0. 

Corollary 5 Suppose that the matrix H given by (5.8) has signature (2, 1). For j = 1,2,3 

let nj be given by (5.7) and let Lj be complex line with polar vector nj. 

If Lj and Lj+1 intersect in H2
C then they meet at an angle less than π/3. 

Proof. Since H has signature (2, 1) lemma 5.4.2 implies 

 

This implies that |τ| > sin(ψ/2). Note that the converse of this inequality is not 

necessary true, since in the second line we used 2<(−(1 − e−iψ)τ4) ≤ 2|1 − e−iψ||τ3| = 

4sin(ψ/2)|τ|3. 

If Lj and Lj+1 intersect in H2
C then, from (5.6), the angle θ between Lj and Lj+1 

is given by 

. 

Therefore θ < π/3 as claimed. 

5.5 General triangle groups 

In this section, we consider three complex lines in general position and the group 

generated by complex re ections of angle ψ in their sides. Let L1,L2 and L3 be three 

complex lines in H2
C with normal vectors n1,n2 and n3. Suppose that hn1,n2i = hn2,n2i 

= hn3,n3i > 0. De ne 
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, 

, 

τ = (e2iψ/3 − e−iψ/3)h n1,n3i. 

hn3,n3i 

These formulae generalise (5.5) but now, since we no longer have the symmetry J, 

they are not the trace of any group elements. Using proposition 12 in chapter 

5 below, we will be able to relate them to other traces. 

From (Goldman, 1999), if Lj and Lk meet with angle θjk then 

 

We can use ρ,σ,τ to de ne a Hermitian form. Once again we normalise so that hnj,nji 

= 2 − eiψ − e−iψ > 0. Then 

  (5.14) 

We require that H should have signature (2, 1). Since its trace is positive, the same 

argument we used before shows that this is equivalent to det(H) < 0. Doing this and 

arguing in a similar way to the proof of lemma 5.4.2, we have: 

Lemma 5.5.1 The matrix H given by (5.14) has signature (2, 1) if and only if 

0 < (2−eiψ−e−iψ)(|ρ|2+|σ|2+|τ|2)−(1−e−iψ)ρστ−(1−eiψ)ρσ τ−(2−eiψ−e−iψ)2. 

This criterion is equivalent to the one given by Pratoussevitch (2005) in 

proposition 1. A simple geometric consequence of this inequality, generalising 

corollary 5 (chapter 5) is: 
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Corollary 6 The angles θjk from (5.12) satisfy θ12 + θ23 + θ31 < π. 

Proof. Using the inequality from lemma 5.5.1, we nd 

 

Since θjk ∈ (0,π/2) we see that cos(θ12−θ23) and cos(θ31) are both positive. Thus 

we must have 

cos(θ31) > −cos(θ12 + θ23) = cos(π − θ12 − θ23). 

Hence θ31 < π − θ12 − θ23 as required. 

Matrices for the re ections R1,R2,R3 can be obtained by using H in the 

formula (5.4): 

  , (5.15) 

(5.16) 

 .

 (5.17) 
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5.6 Traces in general triangle groups 

Let R1,R2 and R3 be as in (5.15), (5.16) and (5.17). We will be interested in nding a 

formula for the trace of each element of ∆ = hR1,R2,R3i, written as a word in R1,R2,R3 

and their inverses. Since cyclic permutation does not a ect the trace it will be easier 

for us to consider words. Consider an element  of hR1,R2,R3i where aj ∈ 

{1,2,3} and . For ease of rotation, we make 

the canonical identi cation between this word and the sequences a = (a1,a2...ar) 

and . We shall regard these indices as begin de ned cyclically, that 

is ar+1 = a1 and . 

We need to introduce some notation. For the sequence a = (a1...ar) as above 

and j = 1,2,3 taken cyclically (so when j = 3 we have j+1 = 1) we de ne 

zj(a) = #{k ∈ {1,...,r} : ak+1 = ak = j} (5.18) 

pj(a) = #{k ∈ {1,...,r} : ak+1 = j + 1,ak = j} (5.19) 

nj(a) = #{k ∈ {1,...,r} : ak+1 = j,ak = j + 1} (5.20) 

It is easy to see that 

#{k ∈ {1,...,r} : ak = j} = zj(a) + pj(a) + nj−1(a), 

#{k ∈ {1,...,r} : ak+1 = j} = zj(a) + pj−1(a) + nj(a). 

By relabelling the sequence a, it is clear that these numbers must be the same. 

That is zj(a) + pj(a) + nj−1(a) = zj(a) + pj−1(a) + nj(a). Therefore we have 

p1(a) − n1(a) = p2(a) − n2(a) = p3(a) − n3(a). 

We now de ne the winding number w(a) of the sequence a = (a1...ar) to be 

w(a) = pj(a) − nj(a). (5.21) 

Similarly, for  de ne 

 , (5.22) 
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 . (5.23) 

We now give the main result for computing traces which is due to Pratoussevitch 

(2005). 

Proposition 12 Let a = (a1...ar) be a cyclic word with ak ∈ {1,2,3}. Let 
n 

 with . The . Then 
=1 

tr(  

 

where the sum is taken overall non-empty subsets of S = {k1,...,km} of the set 

{1,...,r}. Such a subset determines a subset as = (ak1,...,akm) of a and  

. The numbers pj,nj,w = pj −nj,z = z1+z2+z3,n = n1+n2+n3 

are determined from as by (5.18), (5.19), (5.20) and (5.21). Finally, m− is determined 

from  

Proof. Let S = {k1,...,km} be a non-empty subset of {1,...,r} and denote the 

corresponding subsets of a and  by as = (ak1,...,akm) and . 

write akl = bl for l = 1,...,m. 

Using the expression for Rj given in equation (5.4), we have 

 , 

. 

Therefore 
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n  

 = I

. 

 b1, b1 bm, bm 
S6=∅ 

We can put together the powers of eiψ on the left hand side to be obtain (eiψ/3)E = 

(eiψ)E/3. Arguing as in the proof of lemma 5.4.1, we have tr hnb1,nbmi. 

Hence 

  |S|

 hnb1,nbmi 

nbm,nbmi 

nbmi 

. 

, 1 m, S6=∅ 1

 m 

From the de nitions of ρ,σ and τ we have Thus for each sum S 6= ∅ we have: 
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where in the last line, we have used w = p1−n1 = p2−n2 = p3−n3,z = z1+z2+z3 and n = 

n1 + n2 + n3. This means that if we consider 

 

then we must send E to −E and swap m+ and m−,pj and nj. Using the formula 

for proposition 11 (chapter 5) we can deduce 

tr(( . 

An immediate consequence of proposition 11 (chapter 5) is the following; 

which enables us to nd the trace eld of a triangle group. 

Corollary 7 The trace of any element of ∆ may be written as a power of eiψ/3 times as 

polynomial in |ρ|2,|σ|2,|τ|2,ρστ and ρ σ τ with coe cients in Z[eiψ,e−iψ]. In particular, 

when ψ is a rotational multiple of π then the coe cient may be written in Z[eiψ]. 

Proof. We examine the term coming from S 6= ∅ as in the proof of proposition 11. 

First we have pj −nj = w and so when w ≥ 0 we have pj ≥ nj. Thus writing pj = w + nj we 

have 

ρp1ρn1 = ρw+n1ρn1 = ρw(|ρ|2)n1(s), 

σp2σn1 = σw+n2σn2 = σ(|σ|2)n2(s), 
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τp3τn3 = τw+n3τn3 = τw(|τ|2)n3(s) 

and so 

ρp1ρn1σp2σn2τp3τn3 = (|ρ|2)n1(|σ|2)n2(|τ|2)n3(ρστ)|w|. 

Likewise, when w ≤ 0, writing nj = pj − wj we have 

ρp1ρn1σp2σn2τp3τn3 = (|ρ|2)p1(|σ|2)p2(|τ|2)p3(ρ σ τ)|w|. 

In each case this a monomial in |ρ|2,|σ|2,|τ|2,ρστ and ρ σ τ. 

We give an illustrative example of proposition 11, which is section 8 of 

Pratoussevitch (2005). 

Proposition 13 Let R1,R2 and R3 be as above. Then for any distinct j,k,l = 

{1,2,3} we have 

tr(R1R2) = eiψ/3(2 − |ρ|2) + e−2iψ/3, 

tr( , 

tr(R1R2R3) = 3 − |ρ|2 − |σ|2 − |τ|2 + ρστ, 

tr(R3R2R1) = 3 − |ρ|2 − |σ|2 − |τ|2 − eiψρ σ τ, 

 tr(  , 

tr(  

tr[R1,R2] = 3 + 2(cos(ψ) − 1)|ρ|2 + |ρ|4, 

tr(  . 

Proof. First consider R1R2. We now enumerate all non-empty subsets, their index and 

winding number, and the contribution they make to the trace. For 

R1R2 the terms are given by the following table: 
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Figure 5.1: tr(R1R2) 

From this we see that 

tr(R1R2) = e−2iψ/3(3 + eiψ − 1 + eiψ − 1 − eiψ|ρ|2) = eiψ/3(2 − |ρ|2) + e−2iψ/3. 

For  this table becomes: From this we see that 

 

Figure 5.2: tr(  

tr( . 

Likewise, the table for R1R2R3 is fg 5.3: 

Therefore 

tr(R1R2R3) = e−iψ(3 + eiψ − 1 + eiψ − 1 − eiψ|ρ|2 

− eiψ|σ|2 − eiψ|τ|2 + eiψρστ) 

= 3 − |ρ|2 − |σ|2 − |τ|2 + ρστ. 

For R3R2R1 we have g 5.4 below: 
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Figure 5.3: tr(R1R2R3) 

 

Figure 5.4: tr(R3R2R1) 

Thus 

tr(R3R2R1) = e−iψ(3 + eiψ − 1 + eiψ − 1 + eiψ − 1 

 

We do the same thing for . 
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Figure 5.5: tr(  

Hence 

tr(  

 

 

Likewise, the table for  is: 
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Figure 5.6: tr(  

From this we have 

tr(  

− e−iψ|ρ|2 − e−iψ|τ|2 − e−iψ|σ|2 − e−2iψρστ] 

= 3eiψ − 3(eiψ − 1) − (|ρ|2 + |τ|2 + |σ|2) − e−iψρστ 

= 3 − (|ρ|2 + |τ|2 + |σ|2) − e−iψρτσ 

Similarly, for  we have the table below: 

 

Figure 5.7: tr[R1,R2] 

Thus 

tr[R1,R2] = 3 + eiψ − 1 + eiψ − 1 − e−iψ(eiψ − 1) − e−ψ(eiψ − 1) − eiψ|ρ|2 

− e−iψ(eiψ − 1)2 + |ρ|2 + |ρ|2 − e−iψ(eiψ − 1)2 − eiψ|ρ|2 + (eiψ − 1)|ρ|2 
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+ (eiψ − 1)|ρ|2 − e−iψ(eiψ − 1)|ρ|2 − e−iψ(eiψ − 1)|ρ|2 + |ρ|4 

= 1 + 2eiψ − 2e−iψ(eiψ − 1)[1 + (eiψ − 1)] 

+ |ρ|2[−2eiψ + 2 + 2(eiψ − 1) − 2e−iψ(eiψ − 1)] + |ρ|4 

= 1 + 2eiψ − 2eiψ + 2 + |ρ|2(2eiψ − 2) + |ρ|4 

= 3 + 2(cos(ψ) − 1)|ρ|2 + |ρ|4 

Finally, we do the same thing for . 

 

Figure 5.8: tr(  

Thus 

tr(  
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Chapter 6 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusion 

This thesis was divided into six chapters. The main results were presented in 

three distinct chapters 3, 4 and 5. 

In chapter 3 we discussed the geometry of isometries; speci cally, classi 

cation of elements of SU(2, 1) by their trace, traces and eigenvalues for loxodromic 

maps and eigenvalues and complex displacement for loxodromic maps. Our 

contributions in this chapter were: ampli cation of the calculations in Parker (2012) 

(see for example lemma 3.2.3, lemma 3.2.4, proposition 4 etc), reconstructed existing 

proof of proposition (see proposition 2) and constructed 

non-existing proof of proposition (see proposition 1). 

 Chapter 4 looked at two generator groups and Fenchel-Nielsen 

coordinate. In this chapter we proved corollaries (see corollary 3 & 4). One other 

result of the chapter was the explicit polynomial for tr[A,B]tr[B,A] (proposition 6). 

Also, in an attempt to proof the imaginary part of tr[A,B] see part two of proposition 

8 (which was not considered by Parker, 2012) we expressed equation 18 of Lawton 

(2007) in terms of tr(A),tr(B),tr(AB) etc (see lemma 3.4.3). Based on this, we gave 

proposition 7 and remarked on the two di erent representations. Finally we discussed 

the merits on the two ways to parametrise pair of pants 

groups (see remark 3 and 4 ). 

Chapter 5 explains traces for triangle groups. In the last section of this 

chapter, we gave application of a trace formula which is due to Pratoussevitch 

(2005) (see proposition 13). 

6.2 Recommendation 

We shall consider the following for future work: 
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1. Try to explain how to eliminate tr(AB) and tr(A−1B) using X1 and X2 in 

lemma 4.4.3. 

2. In the last section of chapter 4 we use Pratoussevitch’s formulae to calculate 

tr[R1,R2] and you observe this is real. The question is, how does that interact 

with the ndings of the previous chapter about the ambiguity in the sign of the 

imaginary part of tr[A,B]? 

3. Get simpler formula for tr[R1,R2] in terms of traces of R1,R2,R1R2 and 

.  
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APPENDIX 

De nitions 

We brie y de ne concepts from algebra and hyperbolic geometry which are 

essential for understanding this work. 

De nition 7 (Group) Let ∗ be a binary operation on a non empty set G. We 

say that G is a group under ∗ if the following properties hold: 

1. ∀ a,b,c ∈ G,a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative). 

2. ∃ e ∈ G : ∀ a ∈ G,a ∗ e = a = e ∗ a (identity). 
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3. ∀ a ∈ G ∃ b ∈ G : a ∗ b = e = b ∗ a (inverse) 

Additionally we say G is abelian if a · b = b · a for all a,b ∈ G. Lets look at some 

examples. 

1. Z,Zm,Q,R,C are all abelian groups with respect to the addition operation. 

2. GL(2,R), the set of invertible 2 × 2 real matrices with matrix operation is a 

group, called the general linear group. 

3. SL(2,R) ⊂ GL(2,R) the set of 2 × 2 matrices with determinant 1 is a 

 group called special linear group. 

4. GL(n,C) the set of non-singular n × n complex matrices. Also called the general 

linear group of dimension n in complex domain. 

5. Orthogonal group is O(n) = {T ∈ GL(n,R) : T −1T = I}. 

6. Complex special linear group is SL(n,C) = {T ∈ GL(n,C) : det(T) = 1}. 

7. Unitary group is U(n) = {T ∈ GL(n,C) : T ∗T = I}. 

8. Special unitary group is SU(n) = U(n) ∩ SL(n,C). 

De nition 8 (Group action) Let G be a group and let X be a set. We can de ne an action 

of G on X. This is a rule for taking g ∈ G,x ∈ X and assigning them to an element of X. 

The map G × X 7−→ X must satisfy the following: 

1. ex = x where e is the identity element in G and x ∈ X. 

2. (g1g2) · x = g1(g2 · x) for all g1,g2 ∈ G,x ∈ X (associative). 

We say that G acts on X or G operates on X. The set X is sometimes referred 

as a G-set. 

For instance, suppose that G = S4, the group of permutations on the set S ={1,2,3,4}. 

We illustrate the actions of G on S as in the following examples: 
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1. (1 2)(3 4) · 3 = 4 

2. (1 2)(3 4) · 2 = 1 

3. (1 2 3 4) · 2 = 3 

4. (1 3 2)(1 2) · = 3 

5. (1 3 2)(1 2)· 4 = 4 

De nition 9 (Transitive action) The action of G on X is called transitive if X is nonempty 

and if for any x,y ∈ X∃g ∈ G such that g · x = y. 

De nition 10 (Metric space) A metric space (X,d) is a set X together with 

a distance function(or metric) d on the set X satisfying the following properties: 

1. d(x,y) ≥ 0 for all x,y ∈ X and d(x,y)= 0 if and only if x = y; 

2. d(x,y) = d(y,x) for all x,y ∈ X; 

3. d(x,y) ≤ d(x,z) + d(z,y) for all x,y,z ∈ X. 

In other words, the de nition states that 

1. distances are non-negative and the only point at zero distance from x is x 

itself. 

2. the distance is a symmetric function. 

3. travelling between two points via an arbitrary third point should not be shorter 

than the distance between the original two points. That is, distances satisfy the 

triangle inequality. For points in the Euclidean plane, the triangle inequality 

states that the lengths of one side of a triangle is less than the 

sum of the lengths of the other two sides. 

The set of real numbers R with the distance function d(x,y) = |x−y| is a metric space. 

The set of complex numbers C with the distance function d(z,w) = |z−w| is also a 

metric space. 
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De nition 11 (Isometry) Let M be a metric space with d as its metric. A map T : M −→ 

M is an isometry if it is invertible and preserves distances, so 

d(T(x),T(y)) = d(x,y)∀x,y ∈ M. 

The set of isometries of M form a group Isom(M) under composition. 

Some of the examples of isometries are translations, re ection, glide re ection and 

rotation. The above de nition is suitable for the space of R or C. In the space of 

complex hyperbolic, the de nition changes a little. We no more talk of distance-

preserving function but rather a metric preserving function. 

De nition 12 (Euclidean space) Euclidean n- space denoted Rn is the metric 

space with the metric 

d(x,y) = |x − y| 

where the right hand side is the Euclidean norm |x| = (x·x)1/2. The inner product 

is the usual dot product given by 

x · y = x1y1 + x2y2 + ··· + xnyn 

where x,y ∈ Rn. 

De nition 13 (Homomorphism) Given two groups (G,∗) and (H,•), a group 

homomorhpism from (G,∗) to (H,•) is a function h : G −→ H such that for all 

u and v in G it holds that 

h(u ∗ v) = h(u) • h(v) 

where the group operation on the left hand side of the equation is that of G and on 

the right hand side is that of H. 

De nition 14 (Kernel of a homomorphism) The kernel of a 

homomorphism, h is the set of elements in G which are mapped to the 
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identity in H; 

ker(h) = {u ∈ G : h(u) = eH}. 

Example, consider the groups (R,+) and ). The map h : R −→ C∗ de ned by h(x) = 

e2πix ∀x ∈ R is a group homomorphism. 

De nition 15 (Geodesic) The shortest path between two points in a space. 

De nition 16 (Generator of a group) Let Γ be a group. We say that a subset S = {γ1,···γn} 

⊂ Γ is a set of generators if every element of Γ can be written as a composition of 

elements from S and their inverses. We write Γ = hSi. 

De nition 17 (Free group) Let F be a group and X ⊆ F. Then F is a free on X if for any 

group G and any map θ : X 7→ G, there exists a unique homomorphism θ0 : F 7→ G 

with θ0(x) = θ(x)∀x ∈ X, ie. the diagram commutes. 

De nition 18 (A pair of pants) A pair of pants is a complete hyperbolic surface with 

geodesic boundary, whose interior is homeomorphic to the complement of the three 

points in the 2-sphere (Baik, 2010). Refer to gure 

4.1 (pg 51) for the diagram. 

 

De nition 19 (Mo¨bius transformation) A Mo¨bius transformation is a mapping T : C 

7→ C of the form 
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where a,b,c,d ∈ C and ad − bc 6= 0. 

De nition 20 (Di eomorphism) Given two manifolds M and N, a 

di erentiable map f : M → N is called a di eomorphism if it is a bijection and its inverse 

f−1 : N → M is di erentiable as well (Wikipedia.org). 

De nition 21 (Local di eomorphism) Let X and Y be di erentiable manifolds. A function 

f : X → Y is a local di eomorphism, if for each point x ∈ X, there exists an open set U 

containing x, such that f(U) is open in Y and f|U : U → f(U) is a di eomorphism 

(Wikipedia.org). 

De nition 22 (Discrete group) A discrete group is a group equipped with the 

discrete topology (Wikipedia.org). 

De nition 23 (Ehresmann’s bration theorem) Let f : M → N be a 

submersion. Then f is a locally trivial bration (Dundas, 2013). 

De nition 24 (Homotopy) In topology, two continuous functions from one topological 

space to another are called homotopic (= same, similar and place) if one can be 

"continuously deformed" into the other, such a deformation being called a homotopy 

between the two functions (Wikipedia.org). 

De nition 25 (HNN extension) Let G be a group with presentation G = hS|Ri and let α 

: H → K be an isomorphism between two subgroups of G. Let t 

be a new symbol not in S, and de ne 

G∗α = hS,t|R,tht−1 = α(h),∀h ∈ Hi. 

The group G∗α is called the HNN extension of G relative to α (Wikipedia.org). 
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De nition 26 (Fenchel-Nielsen coordinates) Suppose that S is a compact Riemann 

surface of genus g > 1. The Fenchel-Nielsen coordinates depend on the choice of 6g 

− 6 curves on S. In order to de ne these coordinates, one can decompose the surface 

to 2g−2 pairs of pants, by cutting the surface along 3g−3 geodesic loops. Two 

adjacent pairs of pants are glued together along a cutting geodesic loop with an angle, 

called twisting angle. The lengths of the cutting loops and the twisting angles give the 

coordinates of the surface, which are the so-called 

Fenchel-Nielsen coordinates (Jim et al, 2009). 


