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ABSTRACT 

This research focuses on finding solution to the problem of inspection tour of the 

administrative centres of National Health Insurance Scheme (NHIS) in the Brong Ahafo 

region of Ghana. The problem of inspection tour is formulated using Travelling Salesman 

Problem (TSP). Given a number of administrative centres of NHIS and the distance of 

travelling among them, what is the minimum fitness value and round trip route that visits 

each centre exactly once and return to the initial starting scheme? 

The research applied the omicron genetic algorithm method of finding the optimum route. 

Matlab codes are written to solve the problem of inspection tour of the administrative centres 

of NHIS in the Brong Ahafo region of Ghana. 

The results obtained from the study show a valid inspection tour of optimal value 1042 km 

which represents a preferred route; 

Sunyani Municipal (starting node)          Techiman Municipal        Nkoranza District        

Sene     Pru        Atebubu         Kintampo South         Kintampo North         Wenchi District        

Tain District        Jaman North         Jaman South         Berekum Municipal        Dormaa 

District Asutifi District         Asunafo North        Asunafo South        Tano South        Tano 

North                                                 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical background 

The health insurance is a social intervention that sought to replace the “cash and carry 

system” of health care financing and to increase access to basic quality health care through 

the establishment of district-wide insurance schemes in Ghana (International Labour 

Organization, 2005). 

According to Act 650 (2003) of the national health insurance law, the National Health 

Insurance Authority (NHIA) is authorized to establish the following schemes: District Mutual 

Health Insurance Scheme, Private Commercial Health Insurance Schemes, and Private 

Mutual Health Insurance Scheme. Currently, there are 145 district-wide health insurance 

schemes operating in Ghana of which Brong Ahafo region has 19 administrative centres of 

NHIS. 

According to Act 650 (2003), the role of the National Health Insurance Authority (NHIA) is 

to register, license, and regulate health insurance schemes and to accredit and monitor health 

care providers operating under the schemes. It plays a key role in guiding implementation 

efforts and management of the national health insurance fund. 

In order to mobilize funds to support implementation of the district and municipal mutual 

health insurance schemes, the government of Ghana instituted a health Levy of 2.5 percent on 

specific goods and services made in or imported to Ghana. In addition, 2.5 percent of the 17.5 

percent social security (known as SSNIT) contributions paid by formal sector employees are 

automatically diverted to support the NHIS. Accordingly, formal sector employees, their 

dependents, and SSNIT pensioners are automatically enrolled in their district scheme and are 



exempted from premiums. Additionally, grants and any other voluntary contribution made to 

the Fund (Act 650, 2003). 

1.2 Background of the study 

The National Health Insurance Authority (NHIA) is located in Accra. They have regional 

offices considered as an extension of the operational division of NHIA and are to monitor and 

evaluate the performance of the administrative centres of NHIS in each region. Brong Ahafo 

region has nineteen (19) administrative centres of NHIS to monitor and evaluate, and report 

on performance of each scheme to the head office in Accra.  

Despite the fact that electronic means of communication exist among schemes and the 

regional office in sunyani, an optimal vehicular movement for inspection tour is a problem 

for the regional authority. 

1.3 Statement of the problem 

The regional office of NHIA is faced with a problem of how to carry out a physical 

inspection tour of district schemes known as administrative centres of NHIS to obtain 

information about their operational challenges particularly in the entry of health claims unto 

the nationwide information and communication technology platform of NHIA. Lack of 

inspection and supervision at these administrative centres to ensure that there was limited 

number of backlog of claims has necessitated the regional authority to carry out this physical 

inspection tour of district schemes.  

The monitoring and evaluation officers were tasked to embark upon an inspection tour of the 

administrative centres to check on this operational difficulty and report to the regional 

manager. They were required to maintain a desirable level of movement so as to minimize 

vehicular fuel consumption.  



In this research, we attempt to minimize the vehicular fuel consumption which will reduce 

cost of travel by finding the optimum distance. The preferred route is illustrated below: 

Sunyani Municipal (Initial scheme) →Techiman Municipal → Nkoranza District→ 

Atebubu→ Sene scheme→ Pru scheme→ Kintampo North → Tano South → Wenchi 

District→ Jaman South→ Tain District→ Jaman South→ Berekum Municipal → Dormaa 

District→ Asutifi district →Asunafo South →Asunafo North →Kintampo South →Tano 

North → Sunyani Municipal. 

This preferred route for the inspection tour is without any mathematical model. The study 

aims at using a mathematical model to determine whether the preferred route is optimum or 

not.  

1.4 Objective of the study  

• To model the tour of the Brong Ahafo NHIS administrative centres as Traveling 

Salesman Problem, 

• To determine the optimal distance using the Omicron Genetic Algorithm. 

1.5 Significance of the study 

The timely inspection tour to district schemes will address concerns on backlog of claims and 

relatively increase the number of claims entered unto the nationwide information and 

communication technology platform of NHIA. When this is achieved it becomes easy for the 

operations division of NHIA to quickly know the amount to be paid to each health service 

provider by the end of each month. This will ensure that NHIA pay genuine health claims to 

health service providers and reduce fraud in payment of claims. Economically, the nation will 

save enough money to improve upon the quality of health delivery in the country and 

minimize the rate of maternal and child mortality in the country. It will serve as a point of 



reference for health researchers about diseases that were recorded and treated under the health 

insurance system in the country.   

This study will create the optimal inspection tour road map for the regional authority and 

contribute to the reduction in atmospheric pollution. This will reduce the rate at which 

humans inhale toxic wastes from the vehicle and depletion of the ozone layer.  

1.6 Methodology and source of data 

The inspection tour will be modeled as Traveling Salesman Problem (TSP). Omicron Genetic 

Algorithm (OGA) will be applied to solve the TSP model to achieve the objective of the 

research.  

The sunyani Roads and Highways Authority will be contacted for the data on physical road 

networks linking the district where scheme offices are located. Resources available on the 

internet and the library will be used to obtain the needed literature for this research. 

After the relevant data on road distance is obtained, a program code will be written in 

MATLAB to solve the propose problem. The minimum system requirement for this program 

to run is Microsoft window XP, with 1 GHz processing speed and hard disk capacity of 20 

gigabyte.  

1.7 Organization of the study 

The thesis is organized into five chapters. 

Chapter 1 consists the historical background of the study, the statement of the problem, the 

objective of the study, significance of the study, methodology and source of data, and 

organization of the study 

Chapter 2 consists the literature review 



Chapter 3 covers the methodology which consists of models and methods of solution 

Chapter 4 covers the collection of data, analysis and discussion 

Chapter 5 consists the conclusion and recommendation 

  



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter presents a brief overview of publications and related works on the application of 

Traveling Salesman Problem (TSP) to problems facing industries. The traveling salesman 

problem finds application in a variety of situations such as location-routing problem, material 

flow system design, post- box collection and vehicle routing. 

The traveling salesman first gained fame in a book written by German salesman Voigt in 

1832 on how to be a successful traveling salesman. He mentioned the TSP, although not by 

that name, by suggesting that to cover as many locations as possible without visiting any 

location twice is the most important aspect of the scheduling of a tour. 

 

According to Applegate et al. (2007), the origin of the name “traveling salesman problem” is 

a bit of a mystery. This suggests that there is no written documentation pointing to the 

originator of the name “traveling salesman problem”. 

 

Sur-Kolay et al. (2003) defined TSP as a permutation problem with the objective of finding 

the shortest path (or the minimum cost) on an undirected graph that represents cities to be 

visited. The TSP starts at one city, visits all other cities successively only once and finally 

returns to the starting city. That is, given n cities and their permutations, the objective is to 

choose pi such that the sum of all Euclidean distances between each city and its successor is 

minimized. This Euclidean distance between any two cities with coordinate (x1, y1) and (x2, 

y2) is calculated by, 

 

 

 



The TSP is a classic problem in optimization which has attracted much attention of 

researchers and mathematicians for several reasons. First, a large number of real-world 

problems can be modeled through TSP. Secondly, it was proved to be NP-Complete (non-

deterministic polynomial-time) problem (Papadimitriou et al., 1997). Thirdly, NP-Complete 

problems are intractable in the sense that no one has found any really efficient way of solving 

them for large problem size.  

The TSP is known to be NP-hard (Garey and Johnson, 1979). That is, when the problem size 

is large it takes exponential time to compute and obtain an optimal solution. Over the past 

decade, the largest TSP was solved involving 7,397 cities (Applegate et al., 1994) and this 

took 3 to 4 years of computational time. To address this, approximation algorithms or 

heuristics and metaheuristics (Glover, 1986) have been developed to reduce the 

computational time. 

Karp and Held (1971) improved upon an initial 49 cities TSP solved through the cutting-

plane method by Dantzig et al. (1954) and they set a vital precedence by not only solving two 

larger TSP involving 57-city and 64-city instances but also resolving the Dantzig et al. (1954) 

49-city instances.  

Crowder and Padberg (1980) presented a remarkable solution that solved 318-city problems. 

The 318-city instance remained as an impressive solution until further development in 1987 

where Padberg and Rinaldi (1987) solved 532-city problems. Grotschel and Holland (1991) 

extended Dantzig et al. (1954) ideas which gave solutions to 666-city instances.  

Applegate et al. (1990) developed computer program called Concorde, written in C 

programming language, which has been used to solve many instances of TSP. Gerhard 

Reinelt (1994) published the Traveling Salesman Problem Library (TSPLIB), a collection of 

benchmark instances of varying difficulty, which had been used by many research groups for 

http://en.wikipedia.org/wiki/NP_%28complexity%29
http://en.wikipedia.org/wiki/NP_%28complexity%29


comparing results from instances of TSP. Cook et al. (2005) computed an optimal tour 

through a 33,810-city instance and 85,900-city instance given by a microchip layout problem, 

currently the largest solved TSPLIB instance. For many other instances with millions of 

cities, solutions can be found that are guaranteed to be within 1% of an optimal tour. 

The Table 2.0 below indicates the year, the computer program used to obtain solutions for 

TSP instances and the number of cities that were solved with the Concorde computer 

program. 

Table 2.0 TSP instances and number of cities 

Year Computer program Number of cities 

 1992 Concorde 3038 cities pcb3038 

1993 Concorde 4,461 cities fnl4461 

1994 Concorde 7,397 cities pla7397 

1998 Concorde 13,509 cities usa13509 

2001 Concorde 15,112 cities d15112 

2004 Concorde 24,978 cities sw24978 

2004 Concorde with Domino-Parity 33,810 cities pla33810 

2006 Concorde with Domino-Parity 85,900 cities pla85900 

 

Since the original aim of TSP formulation is to find the cheapest and shortest tour, it could be 

applied in transportation processes, logistics, manufacturing, telecommunication, genetics, 

and neuroscience. A classical TSP application is automatic drilling of printed circuit boards 

and threading of cells in a testable VLSI (Very Large Scale Integration) circuit (Ravikumar, 

1992), and x-ray crystallography (Bland and Shallcross, 1989). 



There are many different variations of the traveling salesman problem. First we have the 

bottleneck traveling salesman problem (Reinelt, 1994) is where we want to minimize the 

largest edge cost in the tour instead of the total cost. That is, we want to minimize the 

maximum distance the salesman travels between any two adjacent cities. 

 

The time dependent traveling salesman problem (Lawler et. al., 1986) is the same as the 

standard traveling salesman problem except we now have time periods. The cost cijt is the 

cost of traveling from node i to node j in time period t. 

 

  



CHAPTER 3 

 METHODOLOGY 

3.1 INTRODUCTION 

This chapter presents the models and methods of solution to the Traveling Salesman Problem 

through Omicron Genetic Algorithm (OGA). We will consider other methods such as tabu 

search, simulated annealing, genetic algorithm and omicron genetic algorithm that can be 

applied to solve TSPs. Some work examples would be solved. 

3.2 Formulation of the TSP model 

The initial approach to solving a TSP is to formulate a mathematical model of the problem. 

The nature of the formulation looks at administrative centres of NHIS on a map as nodes and 

draws a line to link each node. These lines are the arc toured by the salesman. The length of a 

tour is computed as the sum of lengths of the arcs.  

The problem is defined as follows; 

Let: 

i. The total number of nodes on the map is represented as n. 

ii. The length between each node i and node j is represented as d(i, j). 

iii. For each link x(i, j) is 1, if link x(i, j) is part of the tour else is 0. 

iv. The edges v(i,j) =  0, indicates no distance between same node. 

v. The set of arcs of the graph is A. 

Model for the problem P is: 
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Equation (1) is the objective function which will minimize the total length. 

Equation (2) ensures that each node is visited from only one other node. 

Equation (3) ensures that each node departs to only one other node. 

Equation (4) ensures that each tour has not more that n-1 arcs in the set of n. 

Equation (5) is the integrality constraint which ensures that the decision variable x is either 0 

or 1. 

In solving the TSP model, factors such as the condition of some roads in the region will not 

be considered. 

3.3 TABU SEARCH (TS) 

The Tabu Search is a heuristic method proposed by Glover (1986) to various combinatorial 

problems. It is one of the best methods used at finding solutions close to optimality in large 

combinatorial problems encountered in many practical settings. 

The principle of TS is to find Local Search whenever it encounters a local optimum by 

allowing non-improving moves such that cycling back to previously visited solutions is 

)3(,..,2,11
1

),( equationniallforx
n

j
ji ==∑

=



prevented by the use of memories, called Tabu Lists also referred as Tabu moves (Hillier and 

Lieberman, 2005), that records the recent history of the search, and this is a key idea that can 

be linked to Artificial Intelligence concepts. 

Pham and Karaboga (2000) outlined three main approaches when performing TS. These are 

as following: Forbidding approach this strategy control what must be allowed to enter the 

Tabu list, Freeing approach this strategy determines what exits in the Tabu list and when it 

exists, and Short-term approach this strategy manages the interplay between the forbidding 

strategy and freeing strategy to select trial solutions that exist in the tabu list. 

Tabu (taboo) search has two basic elements that define its search heuristics, that is, search 

space and its neighborhood structure. The search space of a TS heuristic is simply the space 

of all possible solutions that can be considered (visited) during the search. A close link with 

the definition of search space is the neighborhood structure. Each  iteration that is performed 

on the TSP, the local transformation that can be applied to the current solution, defines a set 

of neighboring solutions in the search spaces. This search space can be defined as; 

N(S) = {solutions obtained by applying a single local transformation to S} 

Where S denotes current solution and N(S) denotes the neighborhood of S. 

The tabu search algorithm can be summarized into the following steps: 

Step 1: Choose an initial solution, i in S.  Set i* = i and k=0. 

Step 2: Set k=k+1 and generate a subset G* of solution in N (i, k) such that either one of the 

Tabu conditions is violated or at least one of the aspiration conditions holds. 

Step 3: Choose a best j in G* and set i=j. 

Step 4: If f(i) < f(i*) then set i* = i. 



Step 5: Update Tabu and aspiration conditions. 

Step 6: If a stopping condition is met then stop.  Else go to Step 2. 

There are some immediate stopping conditions that could be considered. This includes: 

1. N (i, k+1) = 0.  (that is when there are no feasible solution in the neighborhood of 

solution i) 

2. When k is larger than the maximum number of iterations allowed. 

3. The number of iterations since the last improvement of i* is larger than a specified 

number. 

4. When enough evidence can be given that an optimum solution has been obtained. 

Hillier and Lieberman (2005) outlined the stopping criterion for Tabu search by, using a fixed 

number of iterations, a fixed amount of CPU time, or a fixed number of consecutive iterations 

without an improvement in the best objective function value.  Also, stop at any iteration 

where there are no feasible moves into the local neighborhood of the current trial solution. 

Restrictions perform in Tabu search are subject to an important exception. When a taboo 

(Tabu) move results in a better solution than any previous solution visited, the previous 

solution is discarded and its Tabu classification may be overridden. A condition that allows 

such an override to occur is called an aspiration criterion (Glover et al. 1995). 

3.3.1Work example 

We consider figure 3.0 and apply the Tabu search algorithm to determine the optimal route. 

First iteration: k=0 

Step 1: 



Tabu list = [9, 9, 9] 

Tabu position= [0, 0, 0, 0, 0, 0, 0, 0, 0] 

Tabu state= [0, 0, 0, 0, 0, 0, 0, 0, 3] 

Pick at random an initial solution x0 as order in which the cities were visited.  

Thus, x0= [1, 2, 3, 4, 5, 6, 7, 8, 1] 

We compute the objective value as the distance d(i, j) between the cities x0 with reference to 

equation (1) in section 3.2.   

Thus, d(x0)= d(1,2)+ d(2,3)+ d(3,4)+ d(4,5)+ d(5,6)+ d(6,7)+ d(7,8)+ d(8,1) =56 

Save x0 as the best move so far. 

Step 2: 

The necessary move for x0 are; 

move(2, 3)=[1,3,2,4,5,6,7,8,1] 

move(3, 4)=[1,2,4,3,5,6,7,8,1] 

move(4, 5)=[1,2,3,5,4,6,7,8,1] 

move(5, 6)=[1,2,3,4,6,5,7,8,1] 

move(6, 7)=[1,2,3,4,5,7,6,8,1] 

move(7, 8)=[1,2,3,4,5,6,8,7,1] 

We will apply formula (i) to calculate the move value for all the moves move(i, j) and choose 

the best (one with minimum value). Where i and j represents the move value. 



Move(i, j)= [d(i-1, j)+d(j, i)+d(i, j+1)] - [d(i-1, i)+d(i, j)+d(j, j+1)] equation (1) 

Move(2, 3) i=2 , j= 3 

 =[d(2-1, 3)+d(3, 2)+d(2, 3+1)] –[d(2-1, 2)+d(2, 3)+d(3, 3+1)] = 8 

Move(3, 4) i=3, j= 4 

 =[d(3-1,4)+d(4, 3)+d(3, 4+1)] –[d(3-1, 3)+d(3, 4)+d(4, 4+1)] = 1 

Move(4, 5) i=4, j= 5 

 =[d(4-1,5)+d(5, 4)+d(4, 5+1)] –[d(4-1, 4)+d(4, 5)+d(5, 5+1)] = -7 

Move(5, 6) i=5, j= 6 

 =[d(5-1,6)+d(6, 5)+d(5, 6+1)] –[d(5-1, 5)+d(5, 6)+d(6, 6+1)] = -4 

Move(6, 7) i=6, j= 7 

 =[d(6-1,7)+d(7, 6)+d(6, 7+1)] –[d(6-1, 6)+d(6, 7)+d(7, 7+1)] = 11 

Move(7, 8) i=7, j= 8 

 =[d(7-1,8)+d(8, 7)+d(7, 8+1)] –[d(7-1, 7)+d(7, 8)+d(8, 8+1)] = 7 

since we are looking for minimum solution the best move value is move(4,5)=-7 

the new solution is obtained by swapping [4, 5] 

Step 3: 

The new solution is x1 = [1, 2, 3, 5, 4, 6, 7, 8, 1] 

Objective value x1 =objective x0 +move value (4, 5) 

         = 56 -7  



         = 49 

(i) We do tabu check on the solution x1 by representing the solution by an attribute of 

the move operation [4, 5] 

Since city 4 is not in the tabu list there is no restriction. We update the Tabu list and its 

attribute. 

Tabu list = [4, 9, 9] 

Tabu position = [0, 0, 0, 1, 0, 0, 0, 0, 0] 

Tabu state = [0, 0, 0, 1, 0, 0, 0, 0, 2] 

(ii) Aspiration check is not necessary since the solution was not Tabu listed 

(iii) Check (i) and (ii) are successful hence we keep the new solution  

x1 = [1, 2 ,3 , 5, 4, 6, 7, 8, 1] = 49 

Step 4 

Since objective x1< objective x0, the best solution is 49 with move (4, 5). Assign x0← x1.  

x1 has the best current solution and has the best move value that it is being Tabu listed. 

Step 5 

The loop condition is the stated number of iterations that do not bring any improved solution. 

After such number of iteration we go to step 6 to restart the Tabu search with a new solution. 

Step 6 

This step may not be necessary since the improved solution has been obtained. 

Second iteration: k=1 

Step 2: 



The new solution x0 = [1, 2, 3, 5, 4, 6, 7, 8, 1] 

The necessary move for x0 are; 

move(2, 3)= [1, 3 ,2 , 4, 5, 6, 7, 8, 1] 

move(3, 5)= [1, 2 ,5 , 3, 4, 6, 7, 8, 1] 

move(5, 4)= [1, 2 ,3 , 4, 5, 6, 7, 8, 1] 

move(4, 6)= [1, 2 ,3 , 5, 6, 4, 7, 8, 1] 

move(6, 7)= [1, 2 ,3 , 5, 4, 7, 6, 8, 1] 

move(7, 8)= [1, 2 ,3 , 5, 4, 6, 8, 7, 1] 

we will calculate the move value and choose the best move 

Move(2, 3) i=2 , j= 3 

 =[d(2-1, 3)+d(3, 2)+d(2, 3+1)] –[d(2-1, 2)+d(2, 3)+d(3, 3+1)] = 8 

Move(3, 5) i=3, j= 5 

 =[d(3-1,5)+d(5, 3)+d(3, 5+1)] –[d(3-1, 3)+d(3, 5)+d(5, 4+1)] = 7 

Move(5, 4) i=5, j= 4 

 =[d(5-1,4)+d(4, 5)+d(5, 4+1)] –[d(5-1, 5)+d(5, 4)+d(4, 4+1)] = -12  

Move(4, 6) i=4, j= 6 

 =[d(4-1,6)+d(6, 4)+d(4, 6+1)] –[d(4-1, 4)+d(4, 6)+d(6, 6+1)] = -5 

Move(6, 7) i=6, j= 7 

 =[d(6-1,7)+d(7, 6)+d(6, 7+1)] –[d(6-1, 6)+d(6, 7)+d(7, 7+1)] = 11 



Move(7, 8) i=7, j= 8 

 =[d(7-1,8)+d(8, 7)+d(7, 8+1)] –[d(7-1, 7)+d(7, 8)+d(8, 8+1)] = 7 

since we are looking for minimum solution the best move value is move (5,4)=-12 

the new solution is obtained by swapping [5, 4] 

Step 3: 

The new solution is x1 = [1, 2, 3, 5, 4, 6, 7, 8, 1] 

Objective value x1 =objective x0 +move value (5, 4) 

         = 49 -12  

         = 37 

(i) Tabu check shows that city 5 is not in the Tabu list. We update the tabu 

restrictions. 

 

Tabu list = [5, 4, 9] 

Tabu position = [0, 0, 0, 1, 1, 0, 0, 0, 0] 

Tabu state = [0, 0, 0, 1, 1, 0, 0, 0, 1] 

(ii) Aspiration check is not necessary 

(iii) Check (i) and(ii) are successful hence we keep the new solution  

x1 = [1, 2, 3, 5, 4, 6, 7, 8, 1] 

Step 4: 

Since objective x1< objective x0, the best solution is 37 with move (5, 4). Assign x0← x1.  

x1 has the best current solution and has the best move value that it is being Tabu listed. 



Step 5 

The loop condition is the stated number of iterations that do not bring any improved solution. 

After such number of iteration we go to step 6 to restart the Tabu search with a new solution. 

Step 6 

This step may not be necessary since the improved solution has been obtained. 

The Tabu search continues until the optimal solution is obtained. 

 

3.4 SIMULATED ANNEALING (SA) 

Simulated Annealing (SA) is a probabilistic metaheuristics method proposed by Kirkpatrick, 

Gelett and Vecchi (1983) and Cerny (1985) for locating a good approximation to a global 

optimum of a given cost function in a discrete search space.   

Simulated annealing algorithm according to Mahmoud (2007) is a general purpose 

optimization technique. It has been derived from the concept of metallurgy in which we have 

to crystallize the liquid to required temperature. In this process the liquids will be initially at 

high temperature and the molecules are free to move. As the temperature goes down, there 

shall be restriction in the movement of the molecules and the liquid begins to solidify. If the 

liquid is cooled slowly enough, then it forms a crystallize structure. This structure will be in 

minimum energy state. If the liquid is cooled down rapidly then it forms a solid which will 

not be in minimum energy state. Thus the main idea in simulated annealing is to cool the 

liquid in a control matter and then to rearrange the molecules if the desired output is not 

obtained. This rearrangement of molecules will take place based on the objective function 

which evaluates the energy of the molecules in the corresponding iterative algorithm. SA 



aims to achieve global optimum by slowly converging to a final solution, making downwards 

move hoping to reach global optimum solution.  

The application of simulated annealing to TSP usually starts with a random generation and 

performs a series of moves to change the generation gradually. Temperature is gradually 

decreased from a high value to a value at which it is so small that the system is frozen. For 

TSP, the energy decreases is given by the difference between the lengths of the current 

configuration and the new configuration.  

The simulated annealing algorithm can be summarized into the following steps: 

Step 1: Generate a starting solution x and set the initial solution as x(0) = x. 

Step 2: set an initial counter as k=0, and determine an appropriate starting temperature T. 

Step 3: as long as the temperature is larger than some set value, do the following 

Step 4: choose a new solution x(1) in the neighborhood of x(0)  

Step 5: compute δ = distance (x1) – distance (x0) 

Step 6: if δ >0, accept the new solution x(1) and assign x(0) ←x(1) and keep x(0) as the new  

solution 

Step 7: else generate random number θ in (0, 1) 

Step 8: if the random number θ ≤  

 

 

 



city. We consider that the reverse distance is the same in each direction. The objective is to 

determine the route that will minimize the total distance that the salesman should travel. 

The figure below shows the network of a traveling salesman problem with eight cities. City 1 

is the starting point of the salesman. 

Figure 3.0 Traveling Salesman Problem 

 

 

 

 

 

 

Table 3.0 Distance matrix 

Node 1 2 3 4 5 6 7 8 
1 0 4 10 19 13 15 12 5 
2 4 0 11 15 14 16 16 9 
3 10 11 0 9 3 5 8 6 
4 19 15 9 0 6 5 11 15 
5 13 14 3 6 0 2 5 9 
6 15 16 5 5 2 0 7 11 
7 12 16 8 11 5 7 0 7 
8 5 9 15 18 12 14 7 0 

 

Considering figure 3.0, we will take the initial solution for the tour as; 

x=1-2-3-4-5-6-7-8-1 
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We compute the objective value as the distance d(i, j) between the cities x0 with reference to 

equation (1) in section 3.2. 

The parameters to use are; 

Initial temperature T0=20,  

Updating of temperature (Tk) , Tk+1 = αTk  and α=0.85 

Stopping criteria T < 5 (final temperature) 

Starting Iteration: k=0 

x0=1-2-3-4-5-6-7-8-1 

d (x0)=d(1,2)+ d(2,3)+ d(3,4)+ d(4,5)+ d(5,6)+ d(6,7)+ d(7,8)+ d(8,1) 

  d (x0)=56 

Generate a new solution x1 in the neighborhood of x0 such as x1 =1-3-2-4-5-6-7-8-1 

d (x1)=d(1,3)+ d(3,2)+ d(2,4)+ d(4,5)+ d(5,6)+d(6,7)+ d(7,8)+ d(8,1) 

d (x1)=64 

 δ=d(x1) - d(x0)  

   = 64 – 56 = 8 

Form minimization problem we expected that d(x1) will be less than d(x0) then we would 

have chosen  x1= 1-3-2-4-5-6-7-8-1 as the new solution.  

Since δ = 8 > 0, we would normally discard x1 as non-improving solution. Simulated 

annealing procedure requires that we perform further test before discarding x1.  



We would apply the Boltzmann’s condition m =  
 

 

 



x1=1-2-3-5-4-6-7-8-1 

d (x1)=d(1,2)+ d(2,3)+ d(3,5)+ d(5,4)+ d(4,6)+d(6,7)+ d(7,8)+ d(8,1) 

d (x1)= 49 

δ=d(x1) - d(x0)  

   = 49 – 57 = -8 

Since the computed δ < 0 we then set x0 ←x1 

 Since the stopping criterion (T < 5) is not met 

We update the temperature T3= αT2 = 0.85(14) =11.9, and increase k by 1 

We continue with the iteration until the stopping condition is met. 

 

3.5 ANT COLONY OPTIMIZATION (ACO) TECHNIQUE 

Ant colony optimization (Marco Dorigo, 1992) is a technique use for solving computational 

problems, based on various aspects of the behavior of real ants seeking a shorter path 

between their colony and a source of food without using visual cues (Hölldobler and Wilson, 

1990). Real ants are capable of adapting to changes in the environment, for example finding a 

new shortest path once the old one is no longer feasible due to a new obstacle (Beckers et al. 

1992). Once the obstacle has appeared those ants can find the shortest path that reconnects a 

broken initial path. Ants which are just in front of the obstacle cannot continue on the path 

and therefore they have to choose between turning right or left. In this situation we can 

expect half the ants to choose to turn right and the other half to turn left.  

 

http://en.wikipedia.org/wiki/Marco_Dorigo


The idea of this algorithm involves movement of ants in a colony through different states of a 

problem influence by trails and attractiveness. Each ant gradually constructs a solution to a 

problem, evaluates the solution and modifies the trail values on the components used in its 

solution. The algorithm has a mechanism to reduce the possibility of getting stuck in local 

optima (called trail evaporation) and biasing the search process from a non-local perspective 

(called daemon actions). Ants exchange information indirectly by depositing pheromones 

detailing the status of their work which only ants located where near can have a notion of 

them. The following are some variations of the algorithm: 

(i) Elitist ant system. The global best solution deposits pheromone, detailing the status of 

their work, on every iteration along with all the other ants. 

(ii)  Max-Min ant system (MMAS). Added Maximum and Minimum pheromone amounts 

[τmax,τmin] Only global best or iteration best tour deposited pheromone and all edges are 

initialized to τmax and reinitialized to τmax when nearing stagnation (Hoos and Stützle, 1996). 

(iii) Rank-based ant system (ASrank).This system ranks all solutions according to their 

fitness. The amount of pheromone deposited is then weighted for each solution, such that the 

solutions with better fitness deposit more pheromone than the solutions with worse fitness. 

(iv) Continuous orthogonal ant colony (COAC). The pheromone deposit mechanism is to 

enable ants to search for solutions collaboratively and effectively by using an orthogonal 

design method, ants in the feasible domain can explore their chosen regions rapidly and 

efficiently, with enhanced global search capability and accuracy. The orthogonal design 

method and the adaptive radius adjustment method can also be extended to other optimization 

algorithms for delivering wider advantages in solving practical problems.  

Ant colony optimization algorithms have been applied to many combinatorial optimization 

problems, ranging from assignment problem to routing vehicles, network routing and urban 

transportation systems, Scheduling problem, knapsack problem, Connection-oriented network 

routing (Caro and Dorigo, 1998), Connectionless network routing, Discounted cash flows in 

http://en.wikipedia.org/wiki/Vehicle_routing_problem
http://en.wikipedia.org/wiki/Network_routing


project scheduling (Chen et al., 2010), and a lot of derived methods have been adapted to 

dynamic problems in real variables, stochastic problems, multi-targets and parallel 

implementations. Ant colony optimization algorithms have been used to produce near-

optimal solutions to the travelling salesman problem. Even though there exist several ACO 

variants, the one that may be considered a standard approach is presented next. 

3.5.1 Standard Approach 

ACO uses a pheromone matrix τ = {τij} for the construction of potential good solutions. The 

initial values of τ are set τij = τinit ∀(i, j), where τinit > 0. It also takes advantage of heuristic 

information using ηij = 1/d(i, j). Parameter α and β defines the relative influence between the 

heuristic information and then pheromone levels. While visiting city i, Ni represents the set of 

cities not yet visited and the probability of choosing a city j at city i is defined by equation 

(i); 

Pi,j

 

 

 

http://en.wikipedia.org/wiki/Travelling_salesman_problem


values of τ are set τij = τinit ∀ (i, j), where τinit > 0. The P-ACO approach updates in a different 

way the pheromone information than the standard approach. P-ACO derives the pheromone 

matrix through a population Q = {Qx} of q good solutions or individuals as follows. First, at 

every iteration each of the m ants constructs a solution using probabilities given in equation 

(1), the best solution enters the population Q. Whenever a solution Qin enters the population, 

then τij is updated according to τij = τij + ∆τ, where ∆τ = ∆ if (i, j) ∈ Qin and ∆τ = 0 if (i, j) /∈ 

Qin. After the first q solutions enter Q, i.e. the initialization of the population is finished, one 

solution Qout must leave the population at every iteration. The solution that must leave the 

population is decided by an update strategy. Whenever a solution Qout leaves the population, 

then  

τij = τij − ∆τ, where ∆τ =∆ if (i, j) ∈ Qout and ∆τ =0 if (i, j) /∈ Qout. P-ACO replaces the 

pheromone evaporation used by the standard approach in this way. The value ∆ is a constant 

determined by the following input parameters, size of the population q, minimum or initial 

pheromone level τinit and maximum pheromone level τmax. Thus, ∆=(τmax − τinit)/q (Guntsch 

and Middendorf, 2006). 

 
3.5.2.1 FIFO-Queue Update Strategy 

The FIFO-Queue update strategy was the first P-ACO strategy designed by Guntsch and 

Middendorf (2006), trying to simulate the behavior of the standard approach of ACO. In the 

FIFO-Queue update strategy, Qout is the oldest individual of Q.  

 

3.5.2.2 Quality Update Strategy 

A variety of strategies were studied by Guntsch and Middendorf (2002) and one of them is 

the Quality update strategy. The worst solution (considering quality) of the set {Q, Qin} 

leaves the population in this strategy. This ensures that the best solutions found so far make 

up the population. 



 

3.5.3 Omicron ACO 

In the search for a new ACO analytical tool, Omicron ACO (OA) was developed by Gómez 

and Barán (2004). OA was inspired by MMAS, an elitist ACO currently considered among 

the best performing algorithms for the TSP Stützle and Hoos (2000). It is based on the 

hypothesis that it is convenient to search nearby good solutions by Stützle and Hoos (2000).  

The main difference between MMAS and OA is the way the algorithms update the pheromone 

matrix. In OA, a constant pheromone matrix τ0 with τ0 i, j = 1, ∀i, j is defined. OA maintains a 

population Q = {Qx} of q individuals or solutions, the best unique ones found so far. The best 

individual of Q at any moment is called Q∗, while the worst individual Qworst. 

 

In OA the first population is chosen using τ0. At every iteration a new individual Qnew is 

generated, replacing Qworst ∈ Q, if Qnew is better than Qworst and different from any other Qx ∈ 

Q. After K iterations, τ is recalculated using the input parameter Omicron (O). First, τ = τ0; 

then, O/q is added to each element τij for each time an arc (i, j) appears in any of the q 

individuals present in Q. The above process is repeated on every k iteration until the end 

condition is reached. Note that 1 ≤ τij ≤ (1 + O), where τij = 1 if arc (i, j) is not present in any 

Qx, while τij = (1 + O) if arc (i, j) is in every Qx.  

Even considering their different origins, OA results are similar to the Population-based ACO 

algorithms described by Guntsch and Martin Middendorf (2002). The main difference 

between the OA and the Quality Strategy of P-ACO is that OA does not allow identical 

individuals in its population. Also, OA updates τ on every k iterations, while P-ACO updates 

τ every iteration. 

The ACO algorithm can be summarized into the following steps: 



Step 1: Generate random individuals from initial population derived from a pheromone 

matrix 

Step 2: initialize an iteration counter k=0 

Step 3: update the pheromone matrix 

Step 4: generate new individual using the updated pheromone matrix 

Step 5: the new individual replaces the worst individual solution in the initial population. 

Step 6: increment of the iteration counter k=k+1 

Step 7: stop, if the termination condition is met. 

 

3.6 GENETIC ALGORITHM (GA) 

GA is a class of evolutionary algorithms inspired by Darwin (1859) a theory of “survival of 

the fittest” (Herbert Spencer, 1864) and further discussed by Dawkins (1986). Genetic 

algorithm has the biological principle that species live in a competitive environment and their 

continuous survival depends on the mechanics of “natural selection” (Darwin, 1868).  This 

algorithm uses a technique such as inheritance, mutation, selection and crossover (also 

referred as recombination). Holland (1975) invented genetic algorithm as an adaptive search 

procedure.  

 GA is also an efficient search method that has been used for path selection in networks. GA 

is a stochastic search algorithm which is based on the principle of natural selection and 

recombination. A GA is composed with a set of solutions, which represents the 

chromosomes. This composed set is referred to as population. Population consists of set of 

chromosome which is assumed to give solutions. From this population, we randomly choose 

the first generation from which solutions are obtained. These solutions become a part of the 

next generation. Within the population, the chromosomes are tested to see whether they give 

a valid solution. This testing operation is nothing but the fitness functions which are applied 



on the chromosome. Operations like selection, crossover and mutation are applied on the 

selected chromosome to obtain the progeny. Again fitness function is applied to these 

progeny to test for its fitness. Most fit progeny chromosome will be the participants in the 

next generation. The best sets of solution are obtained using heuristic search techniques.  

 

The performance of GA is based on efficient representation, evaluation of fitness function 

and other parameters like size of population, rate of crossover, mutation and the strength of 

selection. Genetic algorithms are able to find out optimal or near optimal solution depending 

on the selection function Goldberg and Miller (1995); Ray et. al (2004). 

According to Dr. Amponsah and Darkwah (2007), the genetic algorithm introduced by 

Holland had the following similarity of the evolutionary principles.  

Table 3.1 below compares evolution to genetic algorithm. 

Evolution Genetic Algorithm 

An individual is a genotype of the species An individual is a solution of the optimization problem 

Chromosomes define the structure of an 

individual 

Chromosomes are used to represent the data structure 

of the solution 

Chromosomes consists of sequence of cells 

called genes which contain the structural 

information 

Chromosome consists of a sequence of gene species 

which are placeholder boxes containing string of data 

whose unique combination give the solution value 

The genetic information or trait in each gene is 

called an allele 

An allele is an element of the data structure stored in a 

gene placeholder 

Fitness of an individual is an interpretation of 

how the chromosomes have adapted to the 

competitive environment 

Fitness of a solution consists in evaluation of measures 

of the objective function for the solution and comparing 

it to the evaluations for other solutions 



A population is a collection of the species 

found in a given location 

A population is a set of solutions that form the domain 

search space. 

A generation is a given number of individuals 

of the population indentified over a period of 

time. 

A generation is a set of solutions taken from the 

population (domain) and generated at an instant of time 

or in an iteration 

Selection is pairing of individuals as parents 

for reproduction 

Selection is the operation of selecting parents from the 

generation to produce offspring. 

Crossover is mating and breeding of offspring 

by pairs of parents whereby chromosomes 

characteristics are exchanged to form new 

individuals. 

Crossover is the operation whereby pairs of parents 

exchange characteristics of their data structure to 

produce two new individuals as offspring. 

Mutation is a random chromosomal process of 

modification whereby the inherited genes of the 

offspring from their parents are distorted. 

Mutation is random operation whereby the allele of a 

gene in a chromosome of the offspring is changed by a 

probability pm. 

Recombination is a process of nature's 

survival of the fittest. 

Recombination is the operation whereby elements of 

the generation and elements of the offspring form an 

intermediate generation and less fit chromosomes are 

taken from the generation. 

 

The two distinct elements in the GA are individuals and populations. An individual is a single 

solution while the population is the set of individuals currently involved in the search 

process. 

 

Given a population at time t, genetic operators are applied to produce a new population at 

time t+1. A step- wise evolution of the population from time t to t+1 is called a generation. 



The Genetic Algorithm for a single generation is based on the general GA framework of 

Selection, Crossover, Mutation and Recombination. 

3.6.1 Representation of individuals 

A gene is a bit string of arbitrary lengths. The bit string is a binary representation of number 

of intervals from a lower bound. A gene is the GA’s representation of a single factor value for 

a control factor, where control factor must have an upper bound and lower bound. This range 

can be divided into the number of intervals that can be expressed by the gene’s bit string. A 

bit string of length ‘n’ can represent (2n-1) intervals. The size of the interval would be 

(range)/(2n-1). The structure of each gene is defined in a record of phenotyping parameters. 

The phenotype parameters are instructions for mapping between genotype and phenotype. 

It can also be said as encoding a solution set into a chromosome and decoding a chromosome 

to a solution set. The mapping between genotype and phenotype is necessary to convert 

solution sets from the model into a form that the GA can work with, and for converting new 

individuals from the GA into a form that the model can evaluate. In a chromosome, the genes 

are represented as in Figure 3.1 

Figure 3.1 Representation of a gene 

1010 1110 1111 0101 

gene 1 gene 2 gene 3 gene 4 

3.6.2 Fitness function 

According to Sivanandam and Deepa (2008), the fitness of an individual in a genetic 

algorithm is the value of an objective function for its phenotype. For calculating fitness, the 

chromosome has to be first decoded and the objective function has to be evaluated. The 

fitness not only indicates how good the solution is, but also corresponds to how close the 



chromosome is to the optimal one. In TSP formulation the fitness function is the sum of the 

paths between the cities. 
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3.6.3 Population 

A population is a collection of individuals. A population consists of a number of individuals 

being tested, the phenotype parameters defining the individuals and some information about 

search space. The two important aspects of population used in Genetic Algorithms are; the 

initial population generation and the population size (Sivanandam and Deepa, 2008). 

For each and every problem, the population size will depend on the complexity of the 

problem. It is often a random initialization of population is carried. In the case of a binary 

coded chromosome this means, that each bit is initialized to a random zero or one. But there 

may be instances where the initialization of population is carried out with some known good 

solutions. 

 

Ideally, the first population should have a gene pool as large as possible in order to be able to 

explore the whole search space. All the different possible alleles of each should be present in 

the population. To achieve this, the initial population is, in most of the cases, chosen 

randomly. Nevertheless, sometimes a kind of heuristic can be used to seed the initial 

population. Thus, the mean fitness of the population is already high and it may help the 

genetic algorithm to find good solutions faster. But for doing this one should be sure that the 

gene pool is still large enough. Otherwise, if the population badly lacks diversity, the 

algorithm will just explore a small part of the search space and never find global optimal 

solutions.  

The size of the population raises few problems too. The larger the population 

is, the easier it is to explore the search space. But it has established that the time required by a 

GA to converge is O (nlogn) function evaluations where n is the population size. We say that 

the population has converged when all the individuals are very much alike and further 

improvement may only be possibly by mutation. Goldberg has also shown that GA efficiency 



to reach global optimum instead of local ones is largely determined by the size of the 

population. To sum up, a large population is quite useful. But it requires much more 

computational cost, memory and time. Practically, a population size of around 100 

individuals 

is quite frequent, but anyway this size can be changed according to the time and the memory 

disposed on the machine compared to the quality of the result to be reached. 

 

Population being combination of various chromosomes is represented as in figure 3.2.  This 

population consists of four chromosomes. 

 
 
Figure 3.2 Population of chromosomes 
 

Population 

Chromosome 1 1 1 1 0 0 0 1 0 
Chromosome 2 0 1 1 1 1 0 1 1 
Chromosome 3 1 0 1 0 1 0 1 0 
Chromosome 4 1 1 0 0 1 1 0 0 

 
 

3.6.4 Search strategies 

The search process consists of initializing the population and then breeding new individuals 

until the termination condition is met. There can be several goals for the search process, one 

of which is to find the global optima. This can never be assured with the types of models that 

GAs work with. There is always a possibility that the next iteration in the search would 

produce a better solution. In some cases, the search process could run for years and does not 

produce any better solution than it did in the first little iteration. 

Another goal is faster convergence. When the objective function is expensive to run, faster 

convergence is desirable, however, the chance of converging on local and possibly quite 

substandard optima is increased. 



 

Apart from these, yet another goal is to produce a range of diverse, but still good solutions. 

When the solution space contains several distinct optima, which are similar in fitness, it is 

useful to be able to select between them, since some combinations of factor values in the 

model may be more feasible than others. Also, some solutions may be more robust than 

others. 

 

3.6.5 Encoding 

Encoding is a process of representing individual genes. The process can be performed using 

bits, numbers, trees, arrays, lists or any other objects. The encoding depends mainly on 

solving the problem. For example, one can encode directly real or integer numbers. 

 

3.6.6 Breeding 

The breeding process is the core of the genetic algorithm. It is in this process, that the search 

process creates new and hopefully fitter individuals. The breeding cycle consists of three 

steps: 

a. Selecting parents. 

b. Crossing the parents to create new individuals (offspring or children). 

c. Replacing old individuals in the population with the new ones. 

 

3.6.6.1 Selection process 

Selection is the process of choosing two parents from the population for crossing. After 

deciding on an encoding, the next step is to decide how to perform selection i.e., how to 

choose individuals in the population that will create offspring for the next generation and how 

many offspring each will create. The purpose of selection is to emphasize fitter individuals in 



the population in hopes that their offsprings have higher fitness. Chromosomes are selected 

from the initial population to be parents for reproduction. The problem is how to select these 

chromosomes. According to Darwin’s theory of evolution the best ones survive to create new 

offspring. 

 

Selection is a method that randomly picks chromosomes out of the population according to 

their evaluation function. The higher the fitness function, the more chance an individual has 

to be selected. The selection pressure is defined as the degree to which the better individuals 

are favored. The higher the selection pressured, the more the better individuals are favored. 

This selection pressure drives the GA to improve the population fitness over the successive 

generations. 

 

Genetic Algorithms should be able to identify optimal or nearly optimal solutions under a 

wise range of selection scheme pressure. However, if the selection pressure is too low, the 

convergence rate will be slow, and the GA will take unnecessarily longer time to find the 

optimal solution. If the selection pressure is too high, there is an increased change of the GA 

prematurely converging to an incorrect (sub-optimal) solution. In addition to providing 

selection pressure, selection schemes should also preserve population diversity, as this helps 

to avoid premature convergence. 

 
 

Typically we can distinguish two types of selection scheme, proportionate selection and 

ordinal-based selection. Proportionate-based selection picks out individuals based upon their 

fitness values relative to the fitness of the other individuals in the population. Ordinal-based 

selection schemes selects individuals not upon their raw fitness, but upon their rank within 

the population. This requires that the selection pressure is independent of the fitness 



distribution of the population, and is solely based upon the relative ordering (ranking) of the 

population. 

Selection has to be balanced with variation form crossover and mutation. Too strong selection 

means sub optimal highly fit individuals will take over the population, reducing the diversity 

needed for change and progress; too weak selection will result in too slow evolution. The 

various selection methods are discussed as follows: 

 

3.6.6.1.1 Roulette selection 

Roulette selection is one of the traditional GA selection techniques. The commonly used 

reproduction operator is the proportionate reproductive operator where a string is selected 

from the mating pool with a probability proportional to the fitness. The principle of roulette 

selection is a linear search through a roulette wheel with the slots in the wheel weighted in 

proportion to the individual’s fitness values. A target value is set, which is a random 

proportion of the sum of the fit nesses in the population. The population is stepped through 

until the target value is reached. This is only a moderately strong selection technique, since fit 

individuals are not guaranteed to be selected for, but somewhat have a greater chance. A fit 

individual will contribute more to the target value, but if it does not exceed it, the next 

chromosome in line has a chance, and it may be weak. It is essential that the population not 

be sorted by fitness, since this would dramatically bias the selection. 

 

3.6.6.1.2 Random Selection 

This technique randomly selects a parent from the population. In terms of disruption of 

genetic codes, random selection is a little more disruptive, on average, than roulette wheel 

selection 

3.6.6.1.3 Rank Selection 



The Roulette wheel will have a problem when the fitness values differ very much. 

If the best chromosome fitness is 90%, its circumference occupies 90% of Roulette wheel, 

and then other chromosomes have too few chances to be selected. Rank Selection ranks the 

population and every chromosome receives fitness from the ranking. The worst has fitness 1 

and the best has fitness N. It results in slow convergence but prevents too quick convergence. 

It also keeps up selection pressure when the fitness variance is low. It preserves diversity and 

hence leads to a successful search. In effect, potential parents are selected and a tournament is 

held to decide which of the individuals will be the parent. There are many ways this can be 

achieved and two suggestions are, 

1. Select a pair of individuals at random. Generate a random number, R, between 0 and 1.  If 

R < r use the first individual as a parent. If the R>=r then use the second individual as the 

parent. This is repeated to select the second parent. The value of r is a parameter to this 

method. 

2. Select two individuals at random. The individual with the highest evaluation becomes the 

parent. Repeat to find a second parent. 

 

3.6.6.1.4 Tournament Selection 

Unlike, the Roulette wheel selection, the tournament selection strategy provides selective 

pressure by holding a tournament competition among Ni individuals. 

The best individual from the tournament is the one with the highest fitness, which is the 

winner of Ni. Tournament competitions and the winner are then inserted into the mating pool. 

The tournament competition is repeated until the mating pool for generating new offspring is 

filled. The mating pool comprising of the tournament winner has higher average population 

fitness. The fitness difference provides the selection pressure, which drives GA to improve 



the fitness of the succeeding genes. This method is more efficient and leads to an optimal 

solution. 

  



3.6.6.1.5 Boltzmann Selection 

In Boltzmann selection a continuously varying temperature controls the rate of selection 

according to a preset schedule. The temperature starts out high, which means the selection 

pressure is low. The temperature is gradually lowered, which gradually increases the 

selection pressure, thereby allowing the GA to narrow in more closely to the best part of the 

search space while maintaining the appropriate degree of diversity. 

 

3.6.6.2 Crossover process 

After the required selection process the crossover operation is used to divide a pair of 

selected chromosomes into two or more parts. Parts of one of the pair are joined to parts of 

the other pair with the requirement that the length should be preserved. 

The point between two alleles of a chromosome where it is cut is called crossover point. 

There can be more than one crossover point in a chromosome. The crossover point i is the 

space between the allele in the ith position and the one in (i + 1)th position. For two 

chromosomes the crossover points are the same and the crossover operation is the swapping 

of similar parts between the two chromosomes. The crossover operation may produce new 

chromosomes which are less fit. In that sense the crossover operation results in non-

improving solution. The following are crossover operations that can be applied on 

chromosomes: 

3.6.6.2.1 Single point crossover 

The traditional genetic algorithm uses single point crossover, where the two mating 

chromosomes are cut once at corresponding points and the sections after the cuts exchanged. 

Here, a cross-site or crossover point is selected randomly along the length of the mated 



strings and bits next to the cross-sites are exchanged. If appropriate site is chosen, better 

children can be obtained by combining good parents else it hampers string quality. 

The figure 3.3 illustrates single point crossover and it can be observed that the bits next to the 

crossover points are exchanged to produce children. This crossover points can be chosen 

randomly. 

Figure 3.3 single point crossover 

Parent 1 10110 |010 
Parent 2 10101|111 

 
                                    | 

Child 1 10110|111 
Child 2 10101|010 

 

To solve a traveling salesman problem, a simple crossover reproduction scheme does not 

work as it makes the chromosomes inconsistent. That is, some cities may be repeated while 

others are missing out. This drawback of the simple crossover mechanism is illustrated 

below; 

Parent 1 1   2   3   4   |   5   6   7 

Parent 2 3   7   6   1   |   5   2   4 

Offspring 1 1   2   3   4   |   5   2   4 

Offspring 2 3   7   6   1   |   5   6   7 

From the illustration, cities 6 and 7 are missing in offspring1 whiles cities 2 and 4 are visited 

more than once. Offspring 2 too suffers from similar drawbacks. This drawback is avoided in 

partially matched crossover mechanism which is discussed in (iv). 

3.6.6.2.2 Double point crossover 



Apart from single point crossover, many different crossover algorithms have been devised, 

often involving more than one cut point. Adding more crossover points has the tendency to 

reduce the performance of the genetic algorithm. The problem with adding additional 

crossover points is that building blocks are more likely to be disrupted. However, an 

advantage of having more crossover points is that the problem space may be searched more 

thoroughly.  

In double point crossover, two crossover points are chosen and the contents between these 

points are exchanged between two mated parents. 

In figure 3.4 the dotted lines indicate the crossover points. Thus the contents between these 

points are exchanged between the parents to produce new children for mating in the next 

generation. 

Figure 3.4 Double point crossover 

Parent 1 11011010 
Parent 2 01101100 

 
                                    

Child 1 11001110 
Child 2 01111000   

 

 Originally, genetic algorithms were using single point crossover which cuts two 

chromosomes in one point and splices the two halves to create new ones. But with this single 

point crossover, the head and the tail of one chromosome cannot be passes together to the 

offspring. If both the head and the tail of a chromosome contain good genetic information, 

none of the offspring obtained directly with single point crossover will share the two good 

features. Using double point crossover avoids this drawback and then, is largely considered 

better than single point crossover. In genetic representation, genes that are close on a 

chromosome have more chance to be passed together to the offspring than those that are not. 



To avoid all the problem of gene positioning, a good crossover technique is to use a uniform 

crossover as recombination operator. 

3.6.6.2.3 Multi-point crossover (N-Point crossover) 

There are two ways in this crossover. One is even number of cross-sites and the other odd 

number of cross-sites. In the case of even number of cross-sites, cross-sites are selected 

randomly around a circle and information is exchanged. In the case of odd number of cross-

sites, a different cross-point is always assumed at the string beginning. 

3.6.6.2.4 Uniform crossover 

In uniform crossover each gene in the offspring is created by copying the corresponding gene 

from one or the other parent chosen according to a random generated binary crossover mask 

of the same length as the chromosomes. Where there is a 1 in the crossover mask, the gene is 

copied from the first parent, and where there is a 0 in the mask the gene is copied from the 

second parent. A new crossover mask is randomly generated from each pair parents. 

Offsprings, therefore contain a mixture of genes from each parent. The number of effective 

crossing point is not fixed, but will average L/2, where L is the chromosome length. 

In figure 3.5, new children are produced using uniform crossover approach. It can be noticed, 

that while producing child 1, when there is a 1 in the mask, the gene is copied from the parent 

1 else from the parent 2. On producing child 2, when there is a 1 in the mask, the gene is 

copied from parent 2, when there is a 0 in the mask; the gene is copied from the parent 1.   

Figure 3.5 uniform crossover 

Parent 1 1 0 1 1 0 0 1 1 
Parent 2 0 0 0 1 1 0 1 0 
Mask 1 1 0 1 0 1 1 0 
Child 1 1 0 0 1 1 0 1 0 



Child 2 0 0 1 1 0 0 1 1 
 

  



3.6.6.2.5 Partially matched crossover (PMX) 

This aligns two chromosomes or strings and two crossover points are selected uniformly at 

random along the length of the chromosomes. The two crossover points give a matching 

selection, which is used to affect a cross through position-by-position exchange operations. 

Consider two strings:  

Parent A 4   8   7   |   3   6   5   |   1   10   9   2 

Parent B 3   1   4   |   2   7   9   |   10   8   6   5 

Two crossover points were selected at random, and PMX proceeds by position wise 

exchanges. In-between the crossover points the genes get exchanged. That is, the 3 and the 2, 

the 6 and the 7, the 5 and the 9 exchange places. This is by mapping parent B to parent A. 

now mapping parent A to parent, the 7 and the 6, the 9 and the 5, the 2 and the 3 exchange 

places. Thus after PMX, the offspring produces as follows: 

Child A 4   8   6   |   2   7   9   |   1   10   5   3 

Child B 2   1   4   |   3   6   5   |   10   8   7   9 

Where each offspring contains ordering information which are partially determined by each 

of its parents.  

Sometimes it may be possible that by crossover operation, a new population never gets 

generated. To overcome this limitation, we do mutation operation. Here we use insertion 

method, as a node along the optimal path may be eliminated through crossover. 

3.6.6.3 Mutation process 

After crossover, the strings are subjected to mutation. Mutation prevents the algorithm from 

been trapped in a local minimum. Mutation plays the role of recovering the lost genetic 

materials as well as for randomly disturbing genetic information. If crossover is supposed to 



exploit the current solution to find better ones, mutation is supposed to help for the 

exploration of the whole search space. Mutation introduces new genetic structures in the 

population by randomly modifying some of its building blocks. The building block being 

highly fit, low order, short defining length schemes, and encoding schemes. Mutation helps 

escape from local minima’s trap and maintains diversity in the population.  

There are many different forms of mutation for different kinds of representation. For binary 

representation, a simple mutation can consist in inverting the value of each gene with a small 

probability. The probability is usually taken about 1/L, where L is the length of the 

chromosome. Mutation of a bit involves flipping a bit, changing 0 to 1 and vice-versa. The 

following are some mutation carried on chromosomes: 

i. Random swap mutation is when two loci (positions) are chosen at random and their 

values swapped. 

ii. Move-and –insert gene mutation is when a locus is chosen at random and its value is 

inserted before or after the value at another randomly chosen locus. 

iii. Move-and –insert sequence mutation is very similar to the gene move-and –insert but 

instead of a single locus a sequence loci is moved and inserted before or after the 

value at another randomly chosen locus. 

iv. Uniform mutation probability sets a probability parameter and for all the loci an allele 

with greater or same probability as the parameter is mutated by reversing its allele 

For the TSP problem, mutation refers to a randomized exchange of cities in the 

chromosomes. For instance, consider the example shown in figure 3.6. Here cities 2 and 5 are 

interchanged because of an inversion operation. 

  



Figure 3.6 Mutation 

4 2 6 1 5 3 7 
 

4 5 6 1 2 3 7 
 

3.6.6.4 Replacement 

Replacement is the last stage of any breeding cycle. Two parents are drawn from a fixed size 

population, they breed two children, but not all four can return to the population, so two must 

be replaced. That is, once offsprings are produced, a method must determine which of the 

current members of the population, if any, should be replaced by new solution. The technique 

used to decide which individual stay in a population and which are replaced in on a par with 

the selection in influencing convergence. Basically, there are two kinds of methods for 

maintaining the population; generational updates and steady state updates.  

In a steady state update, new individuals are inserted in the population as soon as they are 

created, as opposed to the generational update where an entire new generation is produced at 

each time step. The insertion of a new individual usually necessitates the replacement of 

another population member. 

3.6.6.5 Search Termination (Convergence criteria) 

The algorithm terminates when a conditions is satisfied. At that point the solution with best 

fitness among the current generation of the population is taken as the global solution or the 

algorithm may terminate if one or more of the following are satisfied:  

i. a specified number of total iterations are completed;  

ii.  a specified number of iterations are completed within which the solution of best 

fitness has not change;  



iii. Specified number of iterations are completed in which worst individual terminates the 

search when the least fit individuals in the population have fitness less than the 

convergence criteria. This guarantees the entire population to be of minimum 

standard.  

iv. When the sum of fitness in the entire population is less than or equal to the 

convergence value in the population recorded. 

v. Using a median fitness criteria. Here at least half of the individuals will be better than 

or equal to the convergence value, which should have a good range of solution to 

choose from. 

3.7 Simple Genetic Algorithm (SGA) 

An algorithm is a series of steps for solving a problem. A genetic algorithm is a problem 

solving method that uses genetics as its model of problem solving. It’s a search technique to 

find approximate solutions to optimization and search problems. 

 

Simple Genetic Algorithm (SGA) presented by Goldberg (1989) is an algorithm that captures 

most essential components of every genetic algorithm. The structure of genetic algorithm 

usually starts with guesses and attempts to improve the guesses by evolution. A GA typically 

has the following aspects:  

i) a representation of a guess called a chromosome can be a binary sting or a more elaborate 

data structure,  

ii) an initial pool of chromosomes can be randomly produced or manually created,  

iii) a fitness function measures the suitability of a chromosome to meet a specified objective,  



iv) a selection function decides which chromosomes will participate in the evolution stage of 

the genetic algorithm make up by the crossover and mutation operators, and 

v) a crossover operator and a mutation operator. The crossover operator exchange genes from 

two chromosomes and creates two new chromosomes. The mutation operator changes a gene 

in a chromosome and creates one new chromosome.  

The simple Genetic Algorithm may be summarized into the following steps: 

Step 1: Code the individual of the search space 

Step 2: Initialize the generation counter (g=1) 

Step 3: Choose initial generation of population (solution) 

Step 4: Evaluate the fitness of each individual in the population 

Step 5: Select individuals of best fitness ranking by fitness proportionate probability 

Step 6: Apply crossover operation on selected parents 

Step 7: Apply mutation operation on offspring 

Step 8: Evaluate fitness of offspring 

Step 9: Obtain a new generation of population by combining elements of the offspring and 

the   old generation by keeping the generation size unchanged 

Step 10: Stop, if termination condition is satisfied 

Step 11: Else g =g+1 

The parameters that govern the GA search process are: 



a. Population size: - It determines how many chromosomes and thereafter, how much 

genetic material is available for use during the search. If there is too little, the search 

has no chance to adequately cover the space. If there is too much, the GA wastes time 

evaluating chromosomes. 

b. Crossover probability: - It specifies the probability of crossover occurring between 

two chromosomes. 

c. Mutation probability: - It specifies the probability of doing bit-wise mutation. 

d. Termination criteria: - It specifies when to terminate the genetic search. 

The SGAs are useful and efficient when the search space is large, complex or poorly 

understood; when the domain knowledge is scarce or expert knowledge is difficult to encode 

to narrow the search space; when no mathematical analysis is available; and when the 

traditional search methods fail. 

 

3.7.1 Work example application of GA to TSP 

We consider a TSP with eight cities in figure 3.0 and its distance matrix in Table 3.0. 

Initial population P= {Px}, where Px is an array index that defines the order in which the cities 

are traversed to make up a tour. Each chromosome must contain each and every city exactly 

once as in figure 3.6 

Figure 3.6 Chromosomes representing the tour. 

1 2 3 4 5 6 7 8 
 

This chromosome represents the tour starting from city 1 to city 8 and back to city 1. 

The tour is defined by the arc d (1, 2), d (2, 3), d (3, 4), d (4, 5), d (5, 6), d (6, 7), d (7, 8) and   

d (8, 1). Stop when the optimal solution is obtained. 

  



Iteration 1: g=0 

Step 1: 

We generate some random individual solutions and pick two of these solutions. We then 

evaluate their fitness. The shorter a route the higher its fitness value. These random solutions 

are; 

P1= {1-3-8-7-6-5-4-2}, with f1=59 

P2= {1-2-3-5-4-6-7-8}, with f2=43 

Step 3: 

This random individual solution represents the parents on which we apply a partially matched 

crossover (PMX) operation.  

P1= {1 3 8  7 6   5 4 2} 

P2= {1 2 3  5 4   6 7 8} 

Crossover is performed in the centre region to yield the following offspring:  

P1~ = 1 3 8 5 4 HH2 

P2~ = 1 2 3 7 6 HH8  

The 'H' positions are holes in the offspring left by the deliberate removal of alleles which 

would otherwise be replicated in the crossing region. These holes are filled by cross-

referencing with the parent of the alternate chromosome. This can best be explained with this 

step:  

1. Take the sixth hole in P1~ at index 6, the missing allele value at this position in P1 is 5.  

2. Search along P2 (the alternate parent of P1~) and match the sixth allele encountered 

with a value of 5. This occurs in P2 at index 4.  

3. Fill H [6] in P1~ with the allele found at P1 [4], a value of 7.  

Applying this process to the remaining holes, we obtain the following PMX offspring:  



P1' = 13854762 

P2' = 12376458  

Step 4: 

Apply mutation on the two offsprings. Allele index 3 is selected for inversion. The value is 

simply exchanged with the allele at an additional randomly selected index, let's say index 6, 

as follows:  

iP1' = 13754862 

iP2' = 12476358 

Hence, allele positions 3 and 6 have been exchanged.  

Evaluate the objective function: 

iP1' = (1-3-7-5-4-8-6-2), with f1= 74 km 

iP2' = (1-2-4-7-6-3-5-8), with f2= 54 km 

We choose offspring iP2' as new individual since it has a shorter tour length.  

Step 5: 

The new individual replaces the old individual to obtain a new population. Since the end 

condition is not met we continue the next iteration and set the counter g=g+1 

 

3.8 Omicron Genetic Algorithm (OGA) 

Using SGA as a reference point, another version called Omicron Genetic Algorithm (OGA) is 

a genetic algorithm designed specifically for the TSP.  The following are steps used in OGA; 

 

3.8.1 Codification 

Every population of individual Px of P is a valid TSP tour and is determined by the arcs (i, j) 

that compose the tour. The OGA uses n-ary codification unlike binary codification used in 



SGA. Considering a TSP with 6 cities c1,c2,c3,c4,c5 and c6, the tour defined by the arcs 

(c1,c5), (c5,c3), (c3,c4), (c4,c2), (c2,c6) and (c6,c1) will be codified with a string containing 

the visited cities in order, that is {c1,c5,c3,c4,c2,c6}. 

 

3.8.2 Reproduction 

In the OGA, two parents (F1 and F2) are randomly selected from the population P, as does an 

SGA reproduction. The selection of a parent is done based on a probability proportional to 

the fitness of each individual Px, fitness (Px) α 1/l (Px).  In OGA both parents randomly 

selected for reproduction generate only one offspring unlike the SGA where two parents 

generate two offspring. Once an offspring is generated in OGA, it replaces the oldest element 

of P unlike in SGA p offspring are obtained first to completely replace the old generation. In 

OGA population exchange are made in a progressive way to obtain a totally new generation. 

 

3.8.3 Crossover and Mutation 

To obtain an offspring who represents valid tour, the crossover and mutation operators are 

done in a single operation called Crossover-Mutation in OGA unlike the SGA where 

crossover and mutation are done separately. To perform the Crossover-Mutation, arcs of the 

problem are put in the roulette, where every arc has a weight w or a probability to be chosen.  

Crossover-Mutation gives a weight w of 1 to each arc (i, j) belonging to set A, that is  

w(i, j) =1  ∀(i, j) ∈ A, then a weight of O/2 is added to each arc(i,j) of F1, that is  

w(i,j)=w(i,j)+ O/2  ∀i, j ∈ F1, where Omicron (O) is an input parameter of the OGA. Iteratively, 

arcs are randomly chosen using the roulette in other to generate a new offspring.  

To generate an offspring S1, an arc of a parent with a high probability is selected and new 

information may be added to allow for the creation of a valid tour to participate in the roulette 

with probability greater than 0, which is similar to mutation. The value O/2 is used because 



there are two parents and then, wmax =O+1may be interpreted as the maximum weight an arc 

can have in the roulette (when the arc belongs to both parents). When the arc does not belong 

to any parent, it obtains the minimum weight wmin in the roulette, that is wmin=1. Then, O 

determines the relative weight between crossover and mutation. 

Formally, while visiting city i, the probability of choosing an arc (i, j) to generate the 

offspring S1 is defined by equation (ii), 

P (i, j)

 

 

 



  



Step 2: Reproduction 

We assume an initial population is composed of 5 randomly selected individual with their 

respective fitness fx. Nci is the set of cities not yet visited. This initial population is presented 

as; 

First: P1 ={c1, c2, c3, c4, c5, c6, c7, c8}, with f1=46 

Second: P2 = {c1, c3, c4, c6, c7, c8, c2, c5}, with f2=61 

Third: P3 = {c3, c5, c1, c6, c2, c4, c8, c7}, with f3=84 

Forth: P4 = {c2, c7, c8, c4, c3, c6, c1, c2}, with f4=74 

Fifth: P5 = {c7, c3, c8, c4, c3, c2, c5, c1}, with f5=79 

Two parents are randomly selected through the roulette where the weights of solutions in the 

roulette are their fitness. We assume the solutions P2 and P3 as the parents selected. 

F1 = {c1, c3, c4, c6, c7, c8, c2, c5} = 

{(c1,c3),(c3,c4),(c4,c6),(c6,c7),(c7,c8),(c8,c2),(c2,c5),(c5,c1)} 

F2 = {c3, c5, c1, c6, c2, c4, c8, c7} 

={(c3,c5),(c5,c1),(c1,c6),(c6,c2),(c2,c4),(c4,c8),(c8,c7),(c7,c3)} 

Step 3: Crossover and mutation 

Iteration 1 

We assume c7 as the random initial city.  

Then, Nc7 is composed by {c1, c2, c3, c4, c5, c6, c8} 

The arcs {(c7, c1), (c7, c2),(c7, c4),(c7,c5)} have weights of 1 in the roulette  because they 

did not belong to any parent. 

The arc (c7, c8) has weight of 1+ O = 5 in the roulette because it belongs to both parents. 

The arcs {(c7, c3), (c7, c6)} have weights of 1+ O/2 =3 in the roulette because they belongs 

to one parents. 

We assume arc (c7, c6) as randomly chosen through the roulette. 



  



Iteration 2 

We pick c6 as the random initial city.  

Then, Nc6 is composed by {c1, c2, c3, c4, c5, c8} 

The arcs {(c6,c3), (c6,c5),(c6,c8)} have weights of 1 in the roulette  because they did not 

belong to any parent. 

The arcs {(c6, c1), (c6,c2),(c6,c4)} have weights of 1+ O/2 = 3 in the roulette because it 

belongs to one parent.  

We assume arc (c6, c3) as randomly chosen through the roulette. 

Iteration 3 

We pick c3 as the random initial city.  

Then, Nc3 is composed by {c1, c2, c4, c5, c8} 

The arcs {(c3,c2), (c3,c8)} have weights of 1 in the roulette  because they does not belong to 

any parent. 

The arcs {(c3, c1), (c3,c4),(c3,c5)} have weights of 1+ O/2 = 3 in the roulette because they 

belong to one parent.  

We assume arc (c3, c4) as randomly chosen through the roulette. 

Iteration 4 

We pick c4 as the random initial city.  

Then, Nc4 is composed by {c1, c2, c5, c8} 

The arc {(c4,c1),(c4,c5)} have minimum weight of 1 in the roulette  because it does not 

belong to any parent. 

The arcs {(c4,c8),(c4, c2)} have weights of 1+ O/2 = 3 in the roulette because it belongs to 

one parent.  

We assume arc (c4, c1) as randomly chosen through the roulette. 

Iteration 5 



We assume c1 as the random initial city.  

Then, Nc5 is composed by {c2, c5, c8} 

The arc {(c1,c2),(c1,c8)} have weights of 1 in the roulette  because it does not belong to any 

parent. 

The arc (c1,c5) has weights of 1+ O = 5 in the roulette because it belongs to both parent.  

We pick arc (c1, c5) as randomly chosen through the roulette. 

Iteration 6 

We pick c5 as the random initial city.  

Then, Nc5 is composed by {c2, c8} 

The arc (c5, c8) has weight of 1 in the roulette because it does not belong to any parent. 

The arc (c5, c2) has weight of 1+ O/2 = 3 in the roulette because it belongs to one parent.  

We assume arc (c5, c2) as randomly chosen through the roulette. 

Iteration 7 

We pick c2 as the random initial city.  

Then, Nc2 is composed by {c8} 

The arc (c2, c8) has weight of 1+O/2 in the roulette because it belongs to one parent. 

We assume (c2, c8) as the final arc. 

The new offspring is S1 

={c7,c6,c3,c4,c1,c5,c2,c8}={(c7,c6),(c6,c3),(c3,c4),(c4,c1),(c1,c5),(c5,c2),(c2,c8)}. 

S1has 5 arcs in F1 {(c7,c6),(c3,c4),(c1,c5),(c5,c2),(c2,c8)} and no arc in F2. Additionally, S1 

has these arcs {(c6, c3), (c4, c1)} which does not belong to any parent. 

 

Step 4: Population update 

The new offspring S1 replaces the oldest solution P3 

P1 ={c1, c2, c3, c4, c5, c6, c7, c8}, with f1=56 



P2 = {c1, c3, c4, c6, c7, c8, c2, c5}, with f2=61 

P3 = {c7, c6, c5, c4, c3, c2, c1, c8}, with f3=61 

P4 = {c2, c7, c8, c4, c3, c6, c1, c2}, with f4=74 

P5 = {c7, c3, c8, c4, c3, c2, c5, c1}, with f5=79 

We continue with the next iteration until the end condition is satisfied. 

 

3.9 New Strategies for OGA 

New strategies referred to crossover, population update and heuristic information are 

proposed for OGA. Considering that the most relevant aspect mentioned in OGA is the 

crossover of multiple parents, this new version is called Multi-Parent OGA (MOGA). 

 

3.9.1 Crossover 

We consider the generation of offspring through the crossover of multiple parents. This idea 

is not new and it was proposed before Mühlenbein and Voigt (1995). More specifically, this 

strategy proposes that the p individuals of P are parents without any roulette intervention. 

Obviously, this crossover of p parents eliminates competition among individuals during 

reproduction. Nevertheless, the new population update strategy proposed in the next section 

will solve this completion problem. Considering that there are p parents instead of 2, a weight 

of O/p is added to each arc (i, j) belonging to every Fx, i.e. w(i, j) = w(i, j) + O/p ∀(i, j) ∈ Fx. 

This way, when an arc belongs to the p parents, the weight of the arc will be wmax = O + 1. 

When an arc does not belong to any parent, the weight of the arc will be wmin = 1. This is 

done to maintain the weight limits (wmax and wmin). 

 

3.9.2 Population Update 



To reduce the possibilities that a bad individual enters the population, a competition strategy 

among offspring is considered. This new strategy replaces the most traditional parent 

competition strategy. This strategy consists on the generation of t offspring {S1, ..., St} in one 

iteration. Only the offspring with the best fitness (Sbest ∈ {S1... St}) is chosen to enter P. As in 

the OGA population update strategy, Sbest replaces the oldest individual of the population. 

Notice that the same effect is obtained (competition among individuals) with a different 

strategy. 

 

3.9.3 Heuristic Information 

Good TSP tours are composed with high probability by arcs with short length. Thus, it seems 

a good idea to give them better weights in the roulette. Then, considering the heuristic 

information η (i, j) = 1/ d(i, j), the probability of choosing an arc (i, j) to generate the offspring 

S1 is now defined by equation (iii).  

P(i,j)

 

 

 



We choose β =2, α =0.1 because these values are widely acclaimed to produces good 

solution. 

Step 2: Reproduction 

We assume an initial population is composed of 5 randomly selected solutions with their 

respective fitnesses fx. Nci is the set of cities not yet visited. This initial population is 

presented as; 

First: P1 = {c1, c2, c3, c4, c5, c6, c7, c8}, with f1=56 

Second: P2 = {c1, c3, c4, c6, c7, c8, c2, c5}, with f2=61 

Third: P3 = {c3, c5, c1, c6, c2, c4, c8, c7}, with f3=84 

Forth: P4 = {c2, c7, c8, c4, c3, c6, c1, c2}, with f4=74 

Fifth: P5 = {c7, c3, c8, c4, c3, c2, c5, c1}, with f5=79 

Consider there are p parents randomly selected as P1, P2 and P3. 

F1 = {c1, c2, c3, c4, c5, c6, c7, c8} = 

{(c1,c2),(c2,c3),(c3,c4),(c4,c5),(c5,c6),(c6,c7),(c7,c8),(c8,c1)} 

F2 = {c1, c3, c4, c6, c7, c8, c2, c5} = 

{(c1,c3),(c3,c4),(c4,c6),(c6,c7),(c7,c8),(c8,c2),(c2,c5),(c5,c1)} 

F3 = {c3, c5, c1, c6, c2, c4, c8, c7} 

={(c3,c5),(c5,c1),(c1,c6),(c6,c2),(c2,c4),(c4,c8),(c8,c7),(c7,c3)} 

Step 3: Crossover and mutation 

Iteration 1 

We assume c7 as the random initial city.  

Then, Nc7 is composed by {c1, c2, c3, c4, c5, c6, c8} 

The arcs {(c7, c3), (c7, c6), (c7, c8)} have weights wmax = O+1=5 because they belong to p 

parents. 



The arcs {(c7, c1), (c7, c2), (c7, c4), (c7, c5)} have weights wmin =1 because it does not 

belongs to any p parents. 

We assume arc (c7, c6) as randomly chosen through the roulette. 

Iteration 2 

We assume c6 as the random initial city.  

Then, Nc6 is composed by {c1, c2, c3, c4, c5, c8} 

The arcs {(c6, c1), (c6, c2), (c6, c4), (c6,c5)}have weights wmax = O+1=5 because they 

belong to p parents. 

The arc {(c6, c3), (c6, c8)} have weights wmin =1 because it does not belongs to any p 

parents. 

We assume arc (c6, c2) as randomly chosen through the roulette. 

Iteration 3 

We assume c5 as the random initial city.  

Then, Nc5 is composed by {c1, c2, c3, c4, c8} 

The arcs {(c2, c1), (c2, c3), (c2, c4), (c2, c5), (c2, c8)} have weights wmax = O+1=5 because 

they belong to p parents. 

No arc belongs to any p parents. 

We assume arc (c2, c4) as randomly chosen through the roulette. 

Iteration 4 

We assume c4 as the random initial city.  

Then, Nc4 is composed by {c1, c3, c5, c8} 

The arcs {(c4, c3), (c4, c5), (c4, c8)} have weights wmax = O+1=5 because they belong to p 

parents. 

The arc (c4, c1) has weight wmin =1 because it does not belongs to any p parents. 

We assume arc (c4, c3) as randomly chosen through the roulette. 



Iteration 5 

We assume c3 as the random initial city.  

Then, Nc3 is composed by {c1, c5, c8} 

The arcs {(c3, c1), (c3, c5)} have weights wmax = O+1=5 because they belong to p parents. 

The arc (c3, c8) has weight wmin =1 because it does not belongs to any p parents. 

We assume arc (c3, c5) as randomly chosen through the roulette. 

Iteration 6 

We assume c5 as the random initial city.  

Then, Nc5 is composed by {c1, c8} 

The arc {(c5, c1)} has weight wmax = O+1=5 because they belong to p parents. 

The arc {(c5, c8)} has weight wmin =1 because it does not belongs to any p parents. 

We assume arc (c5, c1) as randomly chosen through the roulette. 

Iteration 7 

We assume c1 as the random initial city.  

Then, Nc1 is composed by {c8} 

The arc {(c1, c8)} has weight wmax = O+1=5 because it belongs to p parent. 

The arc (c1, c8) is chosen because it is the unique representation of the roulette. 

The best offspring is S1 

={c7,c6,c2,c4,c3,c5,c1,c8}={(c7,c6),(c6,c2),(c2,c4),(c4,c3),(c3,c5),(c5,c1),(c1,c8)}. 

S1has 3 arcs in F1 {(c7,c6),(c4,c3),(c1,c8)}, 3 arcs in F2{(c6,c7),(c4,c3),(c5,c1)} and 4 arcs in 

F3{(c6,c2),(c2,c4),(c3,c5),(c5,c1)}. 

The new best offspring Sbest 

={c7,c6,c2,c4,c3,c5,c1,c8}={(c7,c6),(c6,c2),(c2,c4),(c4,c3),(c3,c5),(c5,c1),(c1,c8)}. 

 

Step 4: Population update 



The best offspring Sbest is chosen to enter P 

P1 = {c1, c2, c3, c4, c5, c6, c7, c8}, with f1=56 

P2 = {c1, c3, c4, c6, c7, c8, c2, c5}, with f2=61 

P3 = {c3, c5, c1, c6, c2, c4, c8, c7}, with f3=84 

P4 = {c2, c7, c8, c4, c3, c6, c1, c2}, with f4 =74 

P5 = {c7, c3, c8, c4, c3, c2, c5, c1}, with f5=79 

P6 = {c7, c6, c2, c4, c3, c5, c1, c8}, with f5= 68 

We continue with the next iteration until the end condition is satisfied. 

 



CHAPTER 4 

DATA COLLECTION, ANALYSIS AND RESULTS 

The network for the traveling salesman consists of nineteen (19) administrative centres of the 

National Health Insurance Scheme (NHIS) among which the total distance is to be 

minimized. These centres will be represented as nodes with their respective names as shown 

in Table 4.0.  

Table 4.0 Nodes and their respective administrative centres 

Nodes Name of Centre 
 

Nodes Name of Centre 

1 Sunyani Municipal 
 

11 Tain District 

2 Berekum Municipal 
 

12 Tano North 

3 Dormaa District 
 

13 Tano South 

4 Jaman North 
 

14 Techiman Municipal 

5 Jaman South 
 

15 Atebubu 

6 Kintampo North 
 

16 Asutifi District 

7 Kintampo South 
 

17 Asunafo North 

8 Nkoranza District 
 

18 Asunafo South 

9 Pru 
 

19 Wenchi District 

10 Sene 
    

Figure 4.1 shown below is the geographical positioning of administrative centres of NHIS in 

Ghana. The focus of our study is Brong Ahafo region of Ghana. 

  



Figure 4.1 Map of administrative centres of NHIS in Ghana.  

 

 

The Table 4.1 below displays the matrix of edge distances (in Km) of direct road link 

between the nineteen (19) administrative centres of NHIS in the Brong Ahafo region with 

sunyani as the starting node. The vertices v(i,i) = 0, indicates distance between a node and 

itself. Where there is infinity (inf) means no direct link between nodes. The matrix of edge 



distances of road links between nodes is displayed in Table 4.1. They were obtained from the 

Ghana Highways Authority in sunyani.   



Table 4.1 Display of matrix of edge distances of road link between nodes. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0 34 Inf Inf inf Inf Inf Inf Inf Inf Inf 41 54 66 Inf 70 Inf inf 65 

2 34 0 46 Inf 40 Inf Inf Inf Inf Inf 108 Inf Inf Inf Inf inf Inf Inf Inf 

3 inf 46 0 Inf 50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

4 Inf Inf Inf 0 32 142 Inf Inf Inf Inf 60 Inf Inf Inf Inf Inf Inf Inf Inf 

5 Inf 40 50 32 0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

6 Inf Inf Inf 142 Inf 0 32 Inf 78 Inf 88 Inf Inf 60 130 Inf Inf Inf Inf 

7 Inf Inf Inf Inf Inf 32 0 44 Inf Inf Inf Inf Inf 64 Inf Inf Inf Inf Inf 

8 Inf Inf Inf Inf Inf Inf 44 0 Inf Inf Inf Inf Inf 30 64 Inf Inf Inf Inf 

9 Inf Inf Inf Inf Inf 78 Inf Inf 0 Inf Inf Inf Inf Inf 69 Inf Inf Inf Inf 

10 Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf 68 Inf Inf Inf Inf 

11 Inf 108 Inf 60 Inf 88 Inf Inf Inf Inf 0 Inf Inf Inf Inf Inf Inf Inf 33 

12 41 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 36 Inf Inf Inf Inf Inf Inf 

13 54 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 36 0 Inf Inf 52 20 Inf Inf 

14 66 Inf Inf Inf Inf 60 64 30 Inf Inf Inf Inf Inf 0 Inf Inf Inf Inf 30 

15 Inf Inf Inf Inf Inf 130 Inf 64 69 68 Inf Inf Inf Inf 0 Inf inf Inf Inf 

16 70 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 52 Inf inf 0 30 Inf Inf 

17 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 20 Inf Inf 30 0 20 Inf 

18 inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 20 0 inf 

19 65 inf Inf Inf Inf Inf Inf Inf Inf inf 33 Inf Inf 30 Inf inf Inf Inf 0 

 

Program code based on the Floyd-Warshall algorithm is used to compute all pair shortest 

possible path on the data in Table 4.1 to obtain a complete all pairs shortest path distance 

matrix which will be used for our analysis. The shortest path complete distance matrix is a 

complete undirected graph with vertices v (i, j). The v (i, i) = v (j, j) = 0, indicates no distance 

between same node. The all pairs shortest path distance matrix is displayed in Table 4.2. 

  



Table 4.2 Display of all pairs shortest path distance matrix {di,j}  

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 0 34 80 106 74 126 130 96 204 228 98 41 54 66 160 70 74 94 65 
2 34 0 46 72 40 160 164 130 238 262 108 75 88 100 194 104 108 128 99 
3 80 46 0 82 50 206 210 176 284 308 142 121 134 146 240 150 154 174 145 
4 106 72 82 0 32 142 174 153 220 285 60 147 160 123 217 176 180 200 93 
5 74 40 50 32 0 174 204 170 252 302 92 115 128 140 234 144 148 168 125 
6 126 160 206 142 174 0 32 76 78 198 88 167 180 60 130 196 200 220 90 
7 130 164 210 174 204 32 0 44 110 176 120 171 184 64 108 200 204 224 94 
8 96 130 176 153 170 76 44 0 133 132 93 137 150 30 64 166 170 190 60 
9 204 238 284 220 252 78 110 133 0 137 166 245 258 138 69 274 278 298 168 

10 228 262 308 285 302 198 176 132 137 0 225 269 282 162 68 298 302 322 192 
11 98 108 142 60 92 88 120 93 166 225 0 139 152 63 157 168 172 192 33 
12 41 75 121 147 115 167 171 137 245 269 139 0 36 107 201 86 56 76 106 
13 54 88 134 160 128 180 184 150 258 282 152 36 0 120 214 50 20 40 119 
14 66 100 146 123 140 60 64 30 138 162 63 107 120 0 94 136 140 160 30 
15 160 194 240 217 234 130 108 64 69 68 157 201 214 94 0 230 234 254 124 
16 70 104 150 176 144 196 200 166 274 298 168 86 50 136 230 0 30 50 135 
17 74 108 154 180 148 200 204 170 278 302 172 56 20 140 234 30 0 20 139 
18 94 128 174 200 168 220 224 190 298 322 192 76 40 160 254 50 20 0 159 
19 65 99 145 93 125 90 94 60 168 192 33 106 119 30 124 135 139 159 0 

 

4.1 MODEL FORMULATION OF THE PROBLEM  

The following assumptions and notations are used in developing the model: 

Let: 

i. The total number of nodes is n 

ii. d (i, j) the distance between node i (i=1,2,..,n) and node  j(j=1,2,…,n) is obtained 

from Table 4.2 and n =19. 

iii. for each link (i, j), x(i, j)=1 if link (i, j) is part of the tour else x(i, j) = 0 

iv. The network is connected and therefore each city will be visited. 

v. A is the set of arcs of the network. 

Referring to model formulation in chapter 3 section 3.2. The tour length TL is defined as; 
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The constraint (2) indicates that the salesman enter exactly one node. The constraint (3) 

ensures that each node depart to only one other node. The constraint (4) is the sub-tour 

elimination constraints which ensure that each tour has not more than n-1 arcs in the set of A. 

The constraint (5) is the integrality constraints that ensure the decision variable x is either 0 or 

1. The d(i,j) elements in equation (1) is obtained from Table 4.2. 

In this problem, the constraint two, three and five are considered. However, the condition of 

roads is not considered. 

4.2 SOLUTION ALGORITHM (OMICRON GENETIC ALGORITHM) 

Referring to steps in solving omicron genetic algorithm in chapter 3 sections 3.8.3. The 

solution algorithm is summarized into the following steps: 

Step 1: coding the individuals in the search space 

Step 2: initializing a generation counter u =0 

Step 3: random generation of individuals Px from the initial population. 

Step 4: selection of multi parents through a roulette for reproduction 

Step 5: perform crossover and mutation operation at the same time on the parents to obtain  



 an offspring. 

Step 6: update the population by replacing the oldest individual of Px with the new generation  

 of the offspring. 

Step 7: stop, if the termination condition is met else increase the generation counter u=u+1 

 

4.3 COMPUTATION PROCEDURE AND RESULTS 

Matlab program code (Appendix A) was written to determine the optimal solution for the 

tour. This program was based on the omicron genetic algorithm. 

The program was run on Dell inspiron 6000 with a processor speed of 2.0 GHz and 1.96 GB 

of RAM. Twenty one (21) number of runs and 100 iterations in each run. The input data is 

taken from Table 4.2. 

 

4.3.1 THE COMPUTATIONAL PROCEDURES 

Procedure 1: The centres were 19. A solution consists of permutation of numbers 

         (n=1, 2, 3,…, 19). Nineteen (19) solutions formed a population. 

Procedure 2: 21 runs each of 100 iterations were performed. 

Procedure 3: generate nineteen random individuals as population. 

Procedure 4: ten individuals are randomly selected from the population as parents through a 

          roulette. 

Procedure 5: perform crossover-mutation on two parents to generate an offspring. 

Procedure 6: out of the ten individual selected as parents five offspring are generated from 

the  

          first iteration and only the offsprings with better fitness are chosen to 

         replace the weaker parent. 

Procedure 7: continue from procedure 4 



 



4.3.2 THE RESULTS 

The Table 4.3 show the solution and fitness value obtained for each run. 

Table 4.3 Display of solution and fitness value for each run. 

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

The results from Table 4.3 show that the twenty-first run has the minimum fitness value of 

1042 km, which represents the order in which the nodes will be visited. The tour is 

represented as; 

Sunyani Municipal (starting node)          Techiman Municipal        Nkoranza District        

Sene     Pru        Atebubu         Kintampo South         Kintampo North         Wenchi District        

Tain District        Jaman North         Jaman South         Berekum Municipal        Dormaa 

District Asutifi District         Asunafo North        Asunafo South        Tano South        Tano 

North                                                 

Appendix B displays the steps and results in one iteration. 

4.3.3 DISCUSSION 

This work presented a study for finding optimal distance selection technique using omicron 

genetic algorithm. The results show a valid tour of optimal value 1042 km. Here the best tour 



was obtained based on the minimum fitness value. The order in which the nodes will be 

visited is; 

1 - 14 - 8 - 10 - 9 - 15 - 7 - 6 - 19 - 11- 4 -  5 -  2 -  3  - 16 - 17 - 18 - 13 - 12  

This represents the tour; 

Sunyani Municipal (starting node)          Techiman Municipal        Nkoranza District        

Sene     Pru        Atebubu         Kintampo South         Kintampo North         Wenchi District        

Tain District        Jaman North         Jaman South         Berekum Municipal        Dormaa 

District Asutifi District         Asunafo North        Asunafo South        Tano South        Tano 

North                                                 

  



CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

This research work used the TSP model taking into account physical road distances in order 

to determine the optimal route for inspection tour of the administrative centres of NHIS in the 

Brong Ahafo region. The study applied omicron genetic algorithm for finding the optimum 

route. The results show a valid tour of optimal value of 1042 km. Here the best inspection 

tour was obtained based on the minimum fitness value. The preferred route is; 

Sunyani Municipal (starting node)          Techiman Municipal        Nkoranza District        

Sene     Pru        Atebubu         Kintampo South         Kintampo North         Wenchi District        

Tain District        Jaman North         Jaman South         Berekum Municipal        Dormaa 

District Asutifi District         Asunafo North        Asunafo South        Tano South        Tano 

North                                                 

We conclude that the objective of the research was successfully achieved through the 

application of Omicron Genetic Algorithm.   

5.2 RECOMMENDATION 

Upon a study of application of Omicron Genetic Algorithm to Traveling Salesman Problem 

for inspection tour of the National Health Insurance Schemes, the following recommendation 

could be considered: 

1. The NHIA office in the Brong Ahafo region may use this program code to optimize 

the inspection tour of the administrative centres of the NHIS.  

2. Students may use this work for further research on omicron genetic algorithm.   
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Appendix A 

MatLab Programme 

function OmicronGeneticAlgorithm() 

clear all; 

clc; 

try 

%*******Load distance matrix from Table 4.2********* 

dmat = load('output.txt'); 

catch   

disp(sprintf('Error loading distance matrix from source:'));  

end 

pop_size=size(dmat,1); 

n = pop_size; 

numofparent=10; 

  

% Verify Inputs 

[nr,nc] = size(dmat); 

if n ~= nr || n ~= nc 

error('Invalid XY or DMAT inputs!') 

end 

  

% Initialize the Population 

pop = zeros(n,n); 

for k = 1:pop_size 

pop(k,:) = randperm(n); 

end 

  

%initialize the combine population  

combinepop=pop; 

  

stop_criteria=100; 

%*** Run the Omiron GA 

number_of_iteration=1;     

tic 

fprintf('Initial Population\n') 

disp(pop) 



while number_of_iteration <=stop_criteria  

fprintf('\nITERATION # = %d\n',number_of_iteration); 

disp('***************************') 

totalLenght = zeros(1,n); 

dist_history_min = zeros(1,n); 

dist_history_max = zeros(1,n); 

dist_history_arc = zeros(1,n); 

tempdist_inparent_history =zeros(1,n); 

tempdist_not_inparent_history =zeros(1,n); 

arc_distance =zeros(1,n); 

totalTempdist_inparent = zeros(1,n); 

totalTempdist_not_inparent = zeros(1,n); 

dist_history_off_min=zeros(1,n); 

parents=zeros(1,n); 

offspring=zeros(1,n); 

dist_promaxzero_p=zeros(1,n); 

dist_promaxzero_np=zeros(1,n); 

totalLenght = zeros(1,n); 

  

sumpselect = 0;  

for cv=1:n   

     rantour = pop(cv,:); 

     randtot=0; 

     incr=1; 

    for p=2:n 

        rcvalue = dmat(rantour(incr),rantour(p)); 

        randtot = randtot + rcvalue; 

        incr=incr+1; 

    end 

    totalLenght(cv)=randtot; 

    %This calls a function to sum individual 

    sumpselect = fcn_sum_individual(sumpselect,randtot);         

    fprintf('\nPopulation #%d\t, Fitness value is =%d\n',cv,randtot) 

end 

spselect=0; 

%Function for Roulette wheel selection, which returns results 

[Excount,totalLenght,fitness]= fcn_RWS(sumpselect,n,totalLenght);  



 % Find the Min Route in the Population 

[min_dist,index1] = min(totalLenght); 

dist_history_min(cv) = min_dist; 

  

% Find the Max Route in the Population  

[max_dist,index2] = max(totalLenght); 

dist_history_max(cv) = max_dist; 

  

fprintf('\nMinimum Fitness value = %d\n',min_dist) 

fprintf('\nMaximum Fitness value = %d\n',max_dist) 

  

cpcounter=0;  

zeroparent=zeros(1,n); 

fprintf('\nParents selected are:\n') 

disp('------------------------------------------------------') 

for cparent=1:n 

    if Excount(cparent) >= 1.0 

        cpcounter=cpcounter+1; 

        zeroparent(cparent) =cparent; 

        if cpcounter==numofparent 

            break 

        end 

    end 

end 

    %This is a function which returns parents selected 

    [parents]=fcn_selectparent(zeroparent,parents,pop,numofparent);        

  

    px=1;py=2; %for parent selection 

for counter=1:numofparent,       

    route_track = zeros(1,n);  

    arc_in_parent=[];  

    arc_not_in_parent=[]; 

    initNode = randperm(n); 

    route = initNode; %NODES 

  

    %begins. Generation of arcs 

    counterarc=2;store_arcs1=[]; store_arcs2=[]; 



if  (py==numofparent) || (px<numofparent)  

%This is a function which returns arc generated 

[store_arcs1,store_arcs2]= fcn_looparc(counterarc,store_arcs1,store_arcs2,n,parents,px,py); 

for iter=1:n, 

if iter == 1 

Node = initNode(iter); %pick a NODE 

route(iter) = [0]; 

else 

ind=find(route==Node); 

route(ind)=[0]; 

end 

%fprintf('\nNUMBER %d RANDOM INITIAL NODE = %d',iter,Node); 

route_track(iter)=Node; 

nonzeroindex=find(route~=0); 

unvisitedNodes=route(nonzeroindex); 

  

if (iter < n) & (~isempty(unvisitedNodes)) 

  

elseif (iter==n)  & (isempty(unvisitedNodes)) 

break; 

end 

  

%function to pick an arc generated 

[arc_considered,arc_distance,arc_with_distance]=fcn_Generatearc(unvisitedNodes,route_track,iter,d

mat);            

  

%Comparing and choosing of arcs 

next=1;     

distance_of_arc_in_parent=[];  

tempdist_inparent=[]; 

distance_of_arc_not_in_parent=[];  

tempmaxweigth=[];tempminweigth=[]; 

tempdist_not_inparent=[]; 

summaxweigth=0;summinweigth=0; 

O =3;  

for com1=1:length(unvisitedNodes) 

for com2=1:n 



   %comparing arc considered with first parent 

if  (arc_considered(next,:)==store_arcs1(com2,:) | 

fliplr(store_arcs1(com2,:))==arc_considered(next,:)) &  arc_considered(next,:)==store_arcs2(com2,:) 

| arc_considered(next,:)==fliplr(store_arcs2(com2,:)) 

  

   [weight]= fcn_CMArc_twoparent(O); 

end 

if  arc_considered(next,:)==store_arcs1(com2,:) | fliplr(store_arcs1(com2,:))==arc_considered(next,:)  

 

   %function to select arc in first parent 

[heu_info,tempdist_inparent,distance_of_arc_in_parent,arc_in_parent]=fcn_select_arcinfirstparent(ne

xt,arc_considered,arc_in_parent,arc_with_distance,arc_distance,tempdist_inparent,distance_of_arc_in

_parent);            

   [summaxweigth,maxweigth] = fcn_assume_max_arc(heu_info,summaxweigth); 

   tempmaxweigth=[tempmaxweigth;maxweigth]; 

   [weight]=fcn_CMArc_oneparent(O); 

else 

   %function to select arc not found in first parent 

   

[heu_info,tempdist_not_inparent,distance_of_arc_not_in_parent,arc_not_in_parent]=fcn_select_arcno

tinfirstparent(next,arc_considered,arc_not_in_parent,arc_with_distance,arc_distance,tempdist_not_in

parent,distance_of_arc_not_in_parent); 

   %Function for arc with Min weigth 

   [summinweigth,minweigth] = fcn_assume_min_arc(heu_info,summinweigth); 

   tempminweigth=[tempminweigth;minweigth]; 

   weigth=1; 

   [weigth]=fcn_CMArc_noparent(weigth); 

end 

%comparing arc considered with next parent 

if  arc_considered(next,:)==store_arcs2(com2,:) | arc_considered(next,:)==fliplr(store_arcs2(com2,:)) 

   %Function to select arc in next parent  

   

[heu_info,tempdist_inparent,distance_of_arc_in_parent,arc_in_parent]=fcn_select_arcinfirstparent(ne

xt,arc_considered,arc_in_parent,arc_with_distance,arc_distance,tempdist_inparent,distance_of_arc_in

_parent); 

   %Function for arc with Max weigth 

   [summaxweigth,maxweigth] = fcn_assume_max_arc(heu_info,summaxweigth); 



   tempmaxweigth=[tempmaxweigth;maxweigth]; 

   [weight]=fcn_CMArc_oneparent(O); 

else 

   %Function to select arc not found in next parent 

   

[heu_info,tempdist_not_inparent,distance_of_arc_not_in_parent,arc_not_in_parent]=fcn_select_arcno

tinfirstparent(next,arc_considered,arc_not_in_parent,arc_with_distance,arc_distance,tempdist_not_in

parent,distance_of_arc_not_in_parent);             

   %Function for arc with Min weigth 

   [summinweigth,minweigth] = fcn_assume_min_arc(heu_info,summinweigth); 

   tempminweigth=[tempminweigth;minweigth]; 

   weigth=1; 

   [weight]=fcn_CMArc_noparent(weigth); 

end 

   totalTempdist_inparent = tempdist_inparent; 

   totalTempdist_not_inparent = tempdist_not_inparent; 

end 

    next=next+1;        

end  

%prob_of_choosing_arc 

prob_of_choosing_arc_p_parent = tempmaxweigth/summaxweigth;  

prob_of_choosing_arc_n_parent = tempminweigth/summinweigth;  

  

% Finds the Min distance of p parents 

[tempdist_inparent_min_dist ,tempdist_inparent_index] = min(totalTempdist_inparent); 

tempdist_inparent_history = tempdist_inparent_min_dist; 

  

% Find the Min distance of arc not in p parents 

[tempdist_not_inparent_min_dist ,tempdist_not_inparent_index] = min(totalTempdist_not_inparent); 

tempdist_not_inparent_history = tempdist_inparent_min_dist; 

  

% Find the arc with higher probability in p parent 

[maxprob_inp,pidx] = max(prob_of_choosing_arc_p_parent); 

dist_promaxzero_p = maxprob_inp; 

  

% Find the arc with higher probability not in p parent 

[maxprob_np,pnidx] = max(prob_of_choosing_arc_n_parent); 



dist_promaxzero_np = maxprob_np; 

  

% Display arcs             

if ~isempty(tempdist_inparent) 

%SET ZEROS IN THE NEXT NODE 

next_Node=zeros(1); 

%PICKS THE NEXT NODE 

Node=fcn_selectnodeinparent(tempdist_inparent_index,arc_in_parent,pidx); 

elseif ~isempty(tempdist_not_inparent) & (isempty(tempdist_inparent)) 

%SET ZEROS IN THE NEXT NODE 

next_Node=zeros(1); 

%PICKS THE NEXT NODE 

Node=fcn_selectnodenotinparent(tempdist_not_inparent_index,arc_not_in_parent,pnidx);         

end             

arc_in_parent=[]; %for arc picking 

arc_not_in_parent=[]; 

end 

  

%this keeps the offspring 

offspring(counter,:)= route_track; 

  

%Function to calculate distance for offspring  

offspringtotalLenght=zeros(1,numofparent); 

[offspringtotalLenght,tcv]=fcn_minDistforOffspring(offspringtotalLenght,n,dmat,offspring,counter); 

%Finds index of offspring which are non zeros 

offspringLenghtindex=find(offspringtotalLenght~=0); 

offspringdistances = offspringtotalLenght(offspringLenghtindex); 

[min_offspringdistances,offindx1] = min(offspringdistances); 

dist_history_off_min(tcv) = min_offspringdistances; 

  

%this append the offsprings to the initial population 

tempcomindx=n+offspringLenghtindex; 

combinepop(tempcomindx,:)=offspring(offspringLenghtindex,:); 

%This appends the total length to the initial population 

totalLenght(tempcomindx)=offspringdistances; 

combinetotalLenght=totalLenght; 

if py==numofparent 



    [comvalue,comindx]=sort(combinetotalLenght);         

    fprintf('\nBest solution in population are: \n') 

    disp(offspring);    

    fprintf('fitnesss value are: \n') 

    disp(offspringdistances) 

    disp('Combine population are:') 

    disp(combinepop(comindx,:)); 

    disp('fitness value are:') 

    disp(comvalue') 

    pop=combinepop(comindx,:);  %for the next initial population 

end 

  

%THIS PART GENERATES THE subsequent ARCS FOR THE PARENTS 

px = px+2; 

py = py+2; 

end 

end 

  number_of_iteration = number_of_iteration + 1;  

   t = toc; 

end 

disp(t) 

end 

  

function [weigth]=fcn_CMArc_noparent(weigth) 

%Function for arc with max weight 

weight=1;    

end 

 

function [weight]=fcn_CMArc_oneparent(O) 

%Function for arc with max weight 

weight=1 + O/2; 

end 

 

function [weight]=fcn_CMArc_twoparent(O) 

%Function for arc with max weight 

weight=1 + 2*(O/2); 

end 



  

function [summaxweigth,weigth]=fcn_assume_max_arc(heu_info,summaxweigth) 

beta=2.0; theta=0.3; 

O=3;    %Omicron(O) parameter           

w_max= O +1;  

weigth =(w_max^theta * heu_info^beta); 

summaxweigth = summaxweigth + weigth; 

end 

  

function [summinweigth,minweigth] = fcn_assume_min_arc(heu_info,summinweigth) 

beta=2.0; theta=0.3; 

w_min= 1;  

summinweigth=0; 

minweigth =(w_min^theta * heu_info^beta); 

summinweigth= summinweigth + minweigth; 

end 

  

function [store_arcs1,store_arcs2]= fcn_looparc(counterarc,store_arcs1,store_arcs2,n,parents,px,py) 

%This is a function which returns arc generated 

for looparc=1:n 

if looparc~=n   

genarc1(looparc,:)=parents(px,[looparc counterarc]); 

genarc2(looparc,:)=parents(py,[looparc counterarc]); 

else 

genarc1(looparc,:)=parents(px,[n 1]); 

genarc2(looparc,:)=parents(py,[n 1]); 

end 

counterarc = counterarc + 1; 

store_arcs1 = [store_arcs1; genarc1(looparc,:)]; 

store_arcs2 = [store_arcs2; genarc2(looparc,:)];  

end 

end 

  

function 

[offspringtotalLenght,tcv]=fcn_minDistforOffspring(offspringtotalLenght,n,dmat,offspring,counter) 

%Function to calculate distance for all offspring generated 

for tcv=1:counter   



 temprantour = offspring(tcv,:); 

 temprandtot=0; 

 tincr=1; 

for tp=2:n 

temprcvalue = dmat(temprantour(tincr),temprantour(tp)); 

temprandtot = temprandtot + temprcvalue; 

tincr=tincr+1; 

end 

offspringtotalLenght(tcv)=temprandtot; 

end 

end 

  

function sumparent =fcn_sum_individual(sumparent,randtot) 

%This sums the parent 

sumparent = sumparent + randtot; 

end 

  

function   [Excount,totalLenght,fitness]= fcn_RWS(sumpselect,n,totalLenght)  

%The roulette wheel selection function 

spselect=0; 

for sm=1:n 

fitness(sm)=totalLenght(sm)/sumpselect; 

%This calls a function sum individual 

spselect = fcn_sum_individual(spselect,fitness(sm)); 

end 

avgpselect=spselect/n; 

for cavg=1:n 

Excount(cavg)=fitness(cavg)/avgpselect; 

end 

end 

  

function [parents]=fcn_selectparent(zeroparent,parents,pop,numofparent) 

%This is a function which returns parents selected 

%Finds non zero index 

nonzeroparentindex=find(zeroparent~=0); 

lenparentindex=length(nonzeroparentindex); 

%This selects the number of parents  



for selectx=1:numofparent 

parents(selectx,:)= pop(selectx,:);    

end 

for selecty=1:numofparent 

fprintf('Parent %d:',selecty); 

disp(parents(selecty,:)) 

end 

end 

 

function [Node]=fcn_selectnodeinparent(tempdist_inparent_index,arc_in_parent,pidx) 

%function to select node in p parent 

if ~isempty(tempdist_inparent_index) 

next_Node =arc_in_parent(pidx,2); 

else 

next_Node =arc_in_parent(pidx); 

end  

Node= next_Node; 

end  

       

function Node=fcn_selectnodenotinparent(tempdist_not_inparent_index,arc_not_in_parent,pnidx) 

%function to select node not in p parent 

if ~isempty(tempdist_not_inparent_index) 

next_Node =arc_not_in_parent(pnidx,2); 

else 

next_Node =arc_not_in_parent(pnidx); 

end  

Node= next_Node; 

end 

  

function 

[arc_considered,arc_distance,arc_with_distance]=fcn_Generatearc(unvisitedNodes,route_track,iter,d

mat) 

%function to pick arc generated 

arc_considered=[];   

dist_arc_considered=[];             

for y=1:length(unvisitedNodes) 

   arc_considered =[arc_considered; route_track(iter) unvisitedNodes(y)]; 



if arc_considered ~=arc_considered, 

   arc_considered=[arc_considered]; 

end 

   dist_arc_considered=[dist_arc_considered;dmat(route_track(iter), unvisitedNodes(y))]; 

   arc_distance = dist_arc_considered; 

end 

[arc_min_dist,arcdist_index] = min(arc_distance); 

dist_history_arc(y) = arc_min_dist; 

arc_with_distance=[arc_considered, arc_distance]; 

end 

  

function   

[heu_info,tempdist_inparent,distance_of_arc_in_parent,arc_in_parent]=fcn_select_arcinfirstparent(ne

xt,arc_considered,arc_in_parent,arc_with_distance,arc_distance,tempdist_inparent,distance_of_arc_in

_parent) 

%function to select arc in first parent 

arc_in_parent =[arc_in_parent; arc_considered(next,:)];  

distance_of_arc_in_parent=[distance_of_arc_in_parent; arc_with_distance(next,:)]; 

tempdist_inparent = [tempdist_inparent; arc_distance(next,:)]; 

heu_info= (1 /arc_distance(next,:));  

end 

  

function  

[heu_info,tempdist_not_inparent,distance_of_arc_not_in_parent,arc_not_in_parent]=fcn_select_arcno

tinfirstparent(next,arc_considered,arc_not_in_parent,arc_with_distance,arc_distance,tempdist_not_in

parent,distance_of_arc_not_in_parent); 

%function to select arc not in first parent 

arc_not_in_parent =[arc_not_in_parent; arc_considered(next,:)]; 

distance_of_arc_not_in_parent=[distance_of_arc_not_in_parent; arc_with_distance(next,:)]; 

tempdist_not_inparent = [tempdist_not_inparent; arc_distance(next,:)]; 

heu_info= (1 /arc_distance(next,:)); 

end 

  

  



Appendix B 

Computational Results obtained from MatLab program 
ITERATION # = 1 
 
Initial Population 
------------------ 
 

Intpop1:[6  3  16 11   7  17  14   8   5  19  15   1   2   4  18  13   9  10  12],fitness=2607 

Intpop2:[13  3 15 16 11  14  19   9  10   2   6   18  12  8   7   17   4   5   1],fitness=2559 

Intpop3:[2  17  16  7  13   4  3   9   8  18  10   15  14  11  12  5   6   1  19],fitness=2537 

Intpop4:[11  12  3  17  15  5  13  1  19   6  10   2   7   4   16  14  8  18   9],fitness=2847 

Intpop5:[16  15  1  2  10  5  13  4  17   8  14   7   3   12  11  18  6   9   19],fitness=2848 

Intpop6:[4   17  1  6  10  18 12  8   5  16   3   9   2  11   13  14  15  7   19],fitness=2775 

Intpop7:[9   5  13   7  1   19 15  14  17  6  3  10  16  11   2   12  18  8   4],fitness=2899 

Intpop8:[19  13  15  3  7  2  16  14  17   1  10  12  18  11   6   5   9   8   4],fitness=2966 

Intpop9:[18  13  8  14  19  11  5  7  10  12   4   3  17   9   6   1   15  2  16],fitness=2347 

Intpop10:[3  4  19   5  15  13  11  1  16   9  10  17   8  6  14   7   12  18  2],fitness=2526 

Intpop11:[6  15  12   4  5  3  7   8  14  18  19  11   2  10  13   9   17  1  16],fitness=2528 

Intpop12:[19  9  15  7   2  8  10  5  3   12  14  11  18   4   1   6   16  13 17],fitness=2304 

Intpop13:[16  13  8   7  1  4  14  9  10   2  11  19  12   3   5   6   18  15 17],fitness=2440 

Intpop14:[14  18  7  2  19  12  11  3  8   6   5   1   9  10  17  15   16  4  13],fitness=2977 

Intpop15:[15  5  3  14  12  1  18  7  17   6  2  13   9   4  16   8   11  10  19],fitness=2878 

Intpop16:[9  18 16  19  11  6  7  15  10  14   5  1   2  17  13   4   3   8   12],fitness=1905 

Intpop17:[15  2  16   6  17  18  13  12  8  1  10  7   5  11   4   3  14  19  9],fitness=2209 

Intpop18:[10  2  13  12  15  8  17  14  3  5  9  16  4   7   6   1   19  18  11],fitness=2607 

Intpop19:[19  1  16  18  15  3  9  7  4  12  5  11   14  13  10  2   6   8   17],fitness=2734 

 

Minimum Fitness value = 1905 
 
Maximum Fitness value = 2977 
 
Parents selected are: 
------------------------------------------------------ 
Parent 1: [6   3   16   11  7   17  14   8   5   19  15   1   2   4  8  13   9  10 12] 
 
Parent 2: [13  3   15   16  11  14  19   9   10   2  6   18  12   8  7  17   4  5   1] 
 
Parent 3: [2   17  16   7   13  4   3    9   8   18  10  15  14  11  12  5   6  1  19] 
 
Parent 4: [11  12  3    17  15  5   13   1   19   6  10   2   7   4  16  14  8  18  9] 
 
Parent 5: [16  15  1    2   10  5   13   4   17   8  14   7   3  12  11  18  6  9  19] 
 
Parent 6: [4   17  1    6   10  18  12   8   5   16   3   9   2  11  13  14  15  7 19] 
 
Parent 7: [9   5   13   7   1   19  15  14   17   6   3  10  16  11   2  12  18  8  4] 
 
Parent 8: [19  13  15   3   7   2   16  14   17   1  10  12  18  11   6   5   9  8  4] 
 
Parent 9: [18  13  8   14   19  11   5   7  10  12   4   3  17   9   6  1  15   2  16] 
 
Parent 10:[3   4   19   5   15  13  11   1  16   9  10  17   8   6  14  7  12  18   2] 

 
Best solutions are:  
-------------------- 
B1: [15  19  14   8  7   11  16   3   13  18  12   6   2   1   5   4  17   9  10],fitness=1978 
B2: [16  17   2  19  1   13   5  12   3   4    7   6  10  15  14   8   9  11  18],fitness=1889 
B3: [ 9   6   1   2  11  12  18  10   5   13  14   8  17   4  19   7  15  16   3],fitness=2488 
B4: [ 5  13  19   1  17  14  15   3   6   11   2  12  18   8   9   4   7  10  16],fitness=2604 
B5: [15   1  16  18  13   8  14  19   11  5    7  12   4   3   2  17   9   6  10],fitness=1967 



 
 
Combine population is: 

------------------------ 

Cpop1:[16  17   2  19   1  13  5   12   3   4  7   6  10  15  14   8   9  11  18],fitness=1889 

Cpop2:[9   18  16  19  11   6  7   15  10  14  5   1   2  17  13   4   3   8  12],fitness=1905 

Cpop3:[15   1  16  18  13   8  14  19  11   5  7   12  4   3   2  17   9   6  10],fitness=1967 

Cpop4:[15  19  14   8   7  11  16   3  13  18  12  6   2   1   5   4  17   9  10],fitness=1978 

Cpop5:[15   2  16   6  17  18  13  12   8   1  10  7   5  11   4   3  14  19   9],fitness=2209 

Cpop6:[19   9  15   7   2   8  10   5   3  12  14  11  18  4   1   6  16  13  17],fitness=2304 

Cpop7:[18  13   8  14  19  11   5   7  10  12   4  3   17  9   6   1  15   2  16],fitness=2347 

Cpop8:[16  13   8   7   1   4  14   9  10   2  11  19  12  3   5   6  18  15  17],fitness=2440 

Cpop9:[ 9   6   1   2  11  12  18  10   5  13  14   8  17  4  19   7  15  16   3],fitness=2488 

Cpop10:[ 3  4  19   5  15  13  11   1  16   9  10  17   8  6  14   7  12  18   2],fitness=2526 

Cpop11:[ 6  15  12   4   5   3   7   8  14  18  19  11   2 10  13   9  17  1  16],fitness=2528 

Cpop12:[ 2  17  16   7  13   4   3   9   8  18  10  15  14 11  12   5   6  1  19],fitness=2537 

Cpop13:[13   3  15  16  11  14  19   9  10   2   6  18  12  8   7  17   4  5   1],fitness=2559 

Cpop14:[5   13  19  1   17  14  15   3   6  11   2  12  18  8   9   4   7  10 16],fitness=2604 

Cpop15:[6    3  16  11   7  17  14   8   5  19  15   1   2  4  18  13   9  10 12],fitness=2607 

Cpop16:[10   2  13  12  15   8  17  14   3   5   9  16   4  7   6   1  19  18 11],fitness=2607 

Cpop17:[19   1  16  18  15   3   9   7   4  12   5  11  14  13  10  2   6  8  17],fitness=2734 

Cpop18:[ 4  17   1   6  10  18  12   8   5  16   3   9   2  11  13  14 15  7  19],fitness=2775 

Cpop19:[11  12   3  17  15   5  13   1  19   6  10   2   7   4  16  14  8  18  9],fitness=2847 

Cpop20:[16  15   1   2  10   5  13   4  17   8  14   7   3  12  11  18  6  9  19],fitness=2848 

Cpop21:[15   5   3  14  12   1  18   7  17   6   2  13   9   4  16   8 11  10 19],fitness=2878 

Cpop22:[ 9   5  13   7   1  19  15  14  17   6   3  10  16  11   2  12 18  8   4],fitness=2899 

Cpop23:[19  13  15   3   7   2  16  14  17   1  10  12  18  11   6   5  9  8   4],fitness=2966 

Cpop24:[14  18   7   2  19  12  11   3   8   6   5   1   9  10  17  15 16  4  13],fitness=2977 

         
         
ITERATION # = 2 
*************************** 
 
Population #1 , Fitness value is =1889 
 
Population #2 , Fitness value is =1905 
 
Population #3 , Fitness value is =1967 
 
Population #4 , Fitness value is =1978 
 
Population #5 , Fitness value is =2209 
 
Population #6 , Fitness value is =2304 
 
Population #7 , Fitness value is =2347 
 
Population #8 , Fitness value is =2440 
 
Population #9 , Fitness value is =2488 
 
Population #10 , Fitness value is =2526 
 
Population #11 , Fitness value is =2528 
 
Population #12 , Fitness value is =2537 
 
Population #13 , Fitness value is =2559 
 



Population #14 , Fitness value is =2604 
 
Population #15 , Fitness value is =2607 
 
Population #16 , Fitness value is =2607 
 
Population #17 , Fitness value is =2734 
 
Population #18 , Fitness value is =2775 
 
Population #19 , Fitness value is =2847 
 
Minimum Fitness value = 1889 
 
Maximum Fitness value = 2847 
 
 

 

 


	(i) Elitist ant system. The global best solution deposits pheromone, detailing the status of their work, on every iteration along with all the other ants.
	(ii)  Max-Min ant system (MMAS). Added Maximum and Minimum pheromone amounts [τmax,τmin] Only global best or iteration best tour deposited pheromone and all edges are initialized to τmax and reinitialized to τmax when nearing stagnation (Hoos and Stützle, '
	(iii) Rank-based ant system (ASrank).This system ranks all solutions according to their fitness. The amount of pheromone deposited is then weighted for each solution, such that the solutions with better fitness deposit more pheromone than the solutions wit'
	(iv) Continuous orthogonal ant colony (COAC). The pheromone deposit mechanism is to enable ants to search for solutions collaboratively and effectively by using an orthogonal design method, ants in the feasible domain can explore their chosen regions rapid'

