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Abstract
The adoption of Artemisinin based combination therapies (ACT) constitutes a basic strategy

for malaria control in sub-Saharan Africa. Moreover, since cases of ACT resistance have

been reported in South-East Asia, the need to understand P. falciparum resistance mecha-

nism to ACT has become a global research goal. The selective pressure of ACT and the

possibility that some specific Pfcrt and Pfmdr1 alleles are associated with treatment failures

was assessed in a clinical trial comparing ASAQ to AL in Nanoro. Dried blood spots col-

lected on Day 0 and on the day of recurrent parasitaemia during the 28-day follow-up were

analyzed using the restriction fragments length polymorphism (PCR-RFLP) method to

detect single nucleotide polymorphisms (SNPs) in Pfcrt (codon76) and Pfmdr1 (codons 86,

184, 1034, 1042, and 1246) genes. Multivariate analysis of the relationship between the

presence of Pfcrt and Pfmdr1 alleles and treatment outcome was performed. AL and ASAQ

exerted opposite trends in selecting Pfcrt K76T and Pfmdr1-N86Y alleles, raising the poten-

tial beneficial effect of using diverse ACT at the same time as first line treatments to reduce

the selective pressure by each treatment regimen. No clear association between the pres-

ence of Pfcrt and Pfmdr1 alleles carried at baseline and treatment failure was observed.

Introduction
Plasmodium falciparum resistance to antimalarial drugs is the main challenge for malaria con-
trol in endemic countries. To overcome resistance to chloroquine (CQ), artemisinin-based
combination therapies (ACT) have been recommended by the World Health Organization
(WHO) for the treatment of uncomplicated malaria [1]. To date, ACT has been adopted in up
to 84 countries as first line treatment for uncomplicated malaria. In Burkina Faso, Artesunate-
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Amodiaquine (ASAQ) and Artemether–Lumefantrine (AL) are now the two first line malaria
regimens in replacement of CQ (when CQ resistance reached its critical level in the country)
[2] and a good efficacy and safety of these drugs is hitherto recorded [3, 4]. However recently,
parasite resistance to artemisinin has been reported in five South-East Asian countries: in Cam-
bodia, the Lao People’s Democratic Republic, Myanmar, Thailand and Viet Nam [5–7]. More-
over a decrease of ACT sensitivity has also been recorded in diverse studies including those
carried out in sub-Saharan Africa [8, 9]. Due to a lack of an alternative antimalarial medicine
with the same level of efficacy and tolerability as ACT at present, some effort should be
deployed to determine at an early stage tools that can be used to monitor the rise and spread of
artemisinin resistance in sub-Saharan Africa. For this reason, the need for a valid molecular
markers associated with P. falciparum resistance to ACT is a major concern since it could allow
for a more precise mapping and monitoring of the spread of resistance. The Kelch-13 marker
has been associated with artemisinin resistance in vivo and vitro although its assessment is
quite laborious for most of the sub-Saharan Africa countries [10]. Single nucleotide polymor-
phisms (SNPs) in P. falciparum CQ resistance transporter gene (Pfcrt) and P. falciparummulti-
drug resistance gene 1 (Pfmdr1) have been known to be associated with aminoquinoline
resistance [11]. We explored the possible involvement of those markers in P. falciparum treat-
ment failures to ACT [12, 13]. In addition, resistance could occur as a consequence of a selec-
tive pressure of an antimalarial regimen leading to a disappearance of sensitive strains and a
proliferation of resistant strains. Therefore the selective impact of ACT needs to be closely
monitored following their ongoing large scale deployment at community level. However since
their adoption in Burkina Faso, few data on the selective impact of ACT in the circulating para-
site population is available. It is in the light of all these aspects that this study was carried out
with the aim of assessing the selective impact of the treatment with ASAQ and AL for Pfcrt and
Pfmdr1 alleles and to correlate the presence of those alleles with in vivo treatment failures in
Nanoro, Burkina Faso.

Material and Methods

Study area
The study was carried out at two peripheral health facilities (Nanoro and Nazoanga) of the
Nanoro Health District (NHD) situated in the central part of Burkina Faso. Nanoro is located
in the Sudanese savannah zone with two distinct seasons: a rainy season occurring from June
/July to October/November followed by a long dry season from November to May. Malaria
transmission is highest in the rainy season with a peak located around October-November. P.
falciparum is the most prevalent species. Recent entomological data reported in the country
indicates that An. gambiae s.s. and An. arabiensis are the main vectors for malaria transmission
[14]. NHD encompasses an area of 1302 km2 with an approximate population of 158.127
inhabitants in 2014 [15]. Population is composed of three major ethnic groups: Mossi, Gour-
ounssi and Fulani and the majority of the population practice subsistence farming [16].

Source of samples and study design
Samples analyzed in this study have been collected from a pharmacovigilance study whose one
component aimed at assessing the effectiveness of ASAQ versus AL with a molecular analysis
of resistance markers nested to it. Details of the study methodology have been described else-
where (ClinicalTrials.gov Identifier: NCT01232530). Briefly, patients suffering of uncompli-
cated falciparum malaria were recruited and randomly assigned to receive either AL or ASAQ
and were followed up for 28 days with scheduled visits on day 3, 7, 14, 21, and 28. At each visit,
blood samples were collected for microscopic examination, haemoglobin measurement and
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spotted onto filter paper (Whatman 3MM, Maidstone, UK) for later PCR analyses. Details of
the effectiveness trial results have been reported elsewhere [17]. For the current analysis; all
dried blood spots from day 0 (before treatment) and at the day of recurrent parasitaemia
(recrudescence + new infection) during the follow-up were genotyped to detect SNPs in
Pfmdr1 and Pfcrt (codon76) genes.

DNA isolation
DNA isolation was performed at the molecular Biology laboratory of Centre Muraz located at
Bobo-Dioulasso, Burkina Faso. P. falciparum DNA was extracted from dried blood spots using
QIamp DNAminiKit (Qiagen, Germany) following the manufacturers procedures and 80μL of
DNA template was obtained. DNA was either used immediately for a polymerase chain reac-
tion (PCR) or stored at -20°C for later PCR analyses.

Distinction between recrudescence and new infection
Nested PCR approach was used to assess polymorphism in two polymorphic loci (merozoite
surface proteinsmsp1 andmsp2) in order to distinguish between recrudescence and new infec-
tions as previously described elsewhere [18]. Briefly, DNA fragments obtained from amplifica-
tion of baseline sample (day 0) and on the day of recurrent parasitaemia were compared
according to band size and number, considering the 3 families ofmsp1 (Mad20, RO33, K1) and
the 2 families ofmsp2 (3D7, FC27). Cases were categorized as recrudescence when there was at
least one common band between baseline sample and that of the day of parasite reappearance
for either the 2 markers (even if there were additional bands on day 0). However, when there
were no common bands between day 0 and the day of recurrent parasitaemia, patient was cate-
gorized as new infection. Cases were considered not to be clinical failures if their recurrent
parasitaemia was classified as new infection rather than recrudescent infection.

Detection of SNPs in Pfcrt and Pfmdr1 genes
Detection of SNPs in Pfcrt and Pfmdr1 genes was performed using nested PCR method fol-
lowed by a restriction fragment length polymorphism (RFLP) as described by Dorsey et al [19].
Briefly, an initial amplification of the outer region of each gene was followed by nested PCR
using specific primers. For Pfcrt the restriction enzyme Apo I was used for the digestion of PCR
products. For Pfmdr1 the following restriction enzymes were used: Afl III (NEB), Dra I (NEB),
Dde I (NEB), Ase I (NEB), and Eco R V (NEB) respectively for Pfmdr1-N86Y, Pfmdr1-Y184F,
Pfmdr1-S1034C, Pfmdr1- N1042D and, Pfmdr1-D1246Y. After digestion, DNA bands were
visualized in ethidium bromide-stained 2.5% agarose gels for 2 hours at 80 V. 3D7 were used as
wild type control for both Pfcrt (codon 76) and Pfmdr1 and the following mutant controls were
used: Dd2 (Pfmdr1-N86Y), 7G8 (Pfmdr1 Y184F/S1034C/N1042D/D1246Y, Pfcrt-K76T).

Statistical analysis
Clinical Data were double entered in an ACCESS database by two independent data clerks.
Molecular data were entered independently from treatment outcomes in an Excel database.
Statistical analysis was performed using STATA (IC), version 10.0 software. Pfcrt and Pfmdr1
genotype profile was determined by the presence or absence of wild/mutant alleles. Samples
carrying both wild and mutant Pfcrt or Pfmdr1 alleles and for which related frequencies could
not be determined were excluded from the analysis. Differences between groups were assessed
using the Chi-square test for proportions and a P-value of less than 0.05 was considered as
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statistically significant. A logistic regression was used to detect mutations that were predictive
of AL and ASAQ treatment failure.

Ethical consideration
This was part of a larger study entitled ‘‘Pharmacovigilance for artemisinin-based combination
treatments in Africa (ClinicalTrials.gov Identifier: NCT01232530). A signed informed consent
was obtained from each participant before enrolment. The study was reviewed and approved
by the Institutional Ethics Committee of Muraz center, the National Ethics Committee of Bur-
kina Faso, and the Ethical Review Committee of the World Health Organization (WHO).

Results

Clinical and parasitological responses
The clinical and parasitological responses of both AL and ASAQ treatment have been reported
elsewhere [17]. Briefly, a total of 680 patients with uncomplicated malaria were randomized to
receive either ASAQ (n = 340) or AL (n = 340). PCR uncorrected parasitological failure rate of
52.2% and 43.0% were reported for AL and ASAQ treatment groups respectively. By 28 days
follow-up,msp1 and msp2 genotyping analysis showed that recrudescent infections concerned
121 patients (n = 74 in AL group and n = 52 in ASAQ group), 156 patients were infected by
new P. falciparum strains (n = 100 in AL group and n = 56 in ASAQ group).

Baseline Prevalence of Pfcrt and Pfmdr1 alleles by treatment group
Prior to treatment (Day 0), SNPs in Pfcrt-K76T and Pfmdr1 (N86Y, Y184F, S1034C, N1042D,
D1246Y) genes were systematically determined in all samples whose treatment outcomes were
available (n = 660), stratified by treatment group. Fig 1 shows the trial profile indicating the
number of isolates analyzed by treatment group and the number of successful PCR-RFLP ampli-
fication (Fig 1). At baseline, prevalence of Pfcrt-K76T mutation was almost similar in both AL
and ASAQ treatment group (21.80% versus 20.21% respectively). Prevalence of Pfmdr1-N86Y
mutation was also similar in the two treatment groups (8.31% for AL versus 8.25% for ASAQ).
Considering Pfmdr1-Y184F, its prevalence was higher in ASAQ group than in AL group but the
difference was not statistically significant (53.26% versus 49.82%). Extremely few cases of muta-
tion in Pfmdr1-D1246Y were found (n = 3). No sample showed mutation at Pfmdr1-S1034C
and Pfmdr1-N1042D loci in both AL and ASAQ treatment groups.

Impact of AL and ASAQ treatment in selecting Pfcrt and Pfmdr1 alleles
The selective impact of AL and ASAQ treatment for particular Pfcrt and Pfmdr1 alleles was
assessed by comparing on one side prevalence between baseline and in recrudescent infections
group and on the other side between baseline and in patient with newly acquired infections
within 28 days after treatment. Table 1 shows the prevalence of Pfcrt and Pfmdr1 alleles before
and after AL treatment.

The wild Pfcrt-K76 allele increased significantly after treatment with AL in both recrudes-
cence (p<0.00001) and new infection groups (p = 0.0487) while a decrease of the mutant Pfcrt
T76 allele was observed. There was an increase of the wild N86 allele after treatment with AL in
the two groups (recrudescence and new infection) but the difference was not statistically signifi-
cant. Table 2 shows the prevalence of Pfcrt and Pfmdr1 alleles before and after ASAQ treatment.

Unlike AL, the mutant Pfcrt 76T allele increased significantly after treatment with ASAQ in
both recrudescence (p = 0.0025) and new infection (p<0.00001) groups while a decrease of the
wild Pfcrt K76 was observed. After treatment with ASAQ there was also an increase of the mutant
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Fig 1. Trial profile. The figure shows the number of isolates analyzed at day 0 and on the Day of recurrent parasitaemia (recrudescence and new infections)
by treatment group (AL and ASAQ) and the number of successful PCR-RFLP amplification.

doi:10.1371/journal.pone.0151565.g001
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86Y and the difference was statistically significant in the new infection group (p = 0.0004). No evi-
dence of selection of Pfmdr1-Y184F alleles after treatment with ASAQ was observed.

Relationship between SNPs in Pfcrt and Pfmdr1 genes with treatment
outcomes
Multivariate analysis of the relationship between the presence of Pfcrt and Pfmdr1 alleles and
treatment outcome was performed. The effect of age on this association was evaluated after
stratification of the patients into two groups (<5 years and�5 years) regarding the significant
importance of this distinction in malaria epidemiology. Haemoglobin (Hb) level and parasite
density (PD) were also stratified into two groups (<Hb/PD median and�Hb/PD median).
Table 3 shows results of the multivariate analysis of the association between the presence of
Pfcrt and Pfmdr1 alleles and AL treatment failures.

A significant association with AL treatment failure was found, with the presence on day 0 of
Pfmdr1-Y184 allele but not with others Pfmdr1and Pfcrt alleles.

Table 4 shows results of the multivariate analysis of the association between the presence of
Pfcrt and Pfmdr1 alleles and ASAQ treatment failures.

No association was observed between the presence of Pfcrt and Pfmdr1 alleles carried at base-
line and ASAQ treatment failure before and after adjustment according to multivariate analysis.

Discussion
The understanding of P. falciparum resistance mechanisms to ACT is now a major concern
since a decrease of their sensitivity and some cases of resistance have been reported in some
part of the world. In this study we report on the selective pressure of the two recommended
treatments for uncomplicated malaria in Burkina Faso and on the correlation between SNPs in
Pfcrt and Pfmdr1 genes and in vivo treatment failure.

We found a similar baseline prevalence of Pfcrt and Pfmdr1 alleles between the two treat-
ment groups. This similarity of baseline prevalence in the two arms may indicate that any sig-
nificant change of prevalence in post-treatment was drug dependent. Furthermore, except for

Table 1. Prevalence of Pfcrt and Pfmdr1 alleles before and after treatment with AL% (n/N).

Gene Genotype profile Pre-Treatment Recrudescence P-value New infection P-value

Pfcrt K76 78.20 (226/289) 93.33 (56/60) <0.00001 87.95 (73/83) 0.0487

76T 21.80 (63/289) 6.67 (4/60) 12.05 (10/83)

Pfmdr1 N86 91.69 (276/301) 95.65 (66/69) 0.2621 95.18 (79/83) 0.2868

86Y 8.31 (25/301) 4.35 (3/69) 4.82 (4/83)

Pfmdr1 Y184 50.18 (140/279) 55.74 (34/61) 0.4313 41.25 (33/80) 0.1588

184F 49.82 (139/279) 44.26 (27/61) 58.75 (47/80)

doi:10.1371/journal.pone.0151565.t001

Table 2. Prevalence of Pfcrt and Pfmdr1 alleles before and after treatment with ASAQ% (n/N).

Gene Genotype profile Pre-Treatment Recrudescence P-value New infection P-value

Pfcrt K76 79.79 (225/282) 57.89 (22/38) 0.0025 34.21 (13/38) <0.00001

76T 20.21 (57/282) 42.11 (16/38) 65.79 (25/38)

Pfmdr1 N86 91.75 (267/291) 89.36 (42/47) 0.5873 73.81 (31/42) 0.0004

86Y 8.25 (24/291) 10.64 (5/47) 26.19 (11/42)

Pfmdr1 Y184 46.74 (136/291) 39.13 (18/46) 0.3356 40.43 (19/47) 0.4205

184F 53.26 (155/291) 60.87(28/46) 59.57 (28/47)

doi:10.1371/journal.pone.0151565.t002
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mutation Pfmdr1-Y184F, a lower baseline prevalence of mutation in the two genes was found.
Indeed, Burkina Faso was a setting of high CQ resistance (with extremely high prevalence of
those mutations) [2] and this lowering of prevalence is attributable to the change of treatment
policy from CQ to ACT since 2005 [20]. The high prevalence of Pfmdr1-Y184F mutation in
the country was previously recorded [21].

Table 3. Multivariate analysis of the association between SNPs in Pfcrt and Pfmdr1 genes and AL treatment failure.

Crude OR 95%CI P-value Adjusted OR 95%CI P-value

Age group
< 5 years 1.43 0.74–2.73 0.277

� 5 years 1.00 - -

Haemoglobin level

<median = 9 g/dl 1.25 0.73–2.16 0.404

� median = 9 g/dl 1.00 - -

Parasite density
< G median = 30529 /μl 1.00 - -

� G median = 30529 /μl 1.16 0.68–1.98 0.566

Pfcrt K76T
Wild 1.70 0.78–3.69 0.176 1.15 0.47–2.81 0.751

Mutant 1.00 - - 1.00 - -

Pfmdr1 N86Y

Wild 1.00 - - 1.00 - -

Mutant 1.16 0.44–3.03 0.760 2.59 0.82–8.08 0.101

Pfmdr1-Y184F
Wild 1.00 - - 1.00 - -

Mutant 0.46 0.25–0.85 0.014 0.37 0.16–0.83 0.017

doi:10.1371/journal.pone.0151565.t003

Table 4. Multivariate analysis of the association between SNPs in Pfcrt and Pfmdr1 genes and ASAQ treatment failure.

Crude OR 95%CI P-value Adjusted OR 95%CI P-value

Age group

< 5 years 2.25 0.97–5.24 0.058

� 5 years 1.00 - -

Haemoglobin level
<median = 9 g/dl 1.00 - - -

� median = 9g/dl 0.46 0.25–0.86 0.016

Parasite density

< median = 30762 /μl 1.00 - - -

� median = 30762 /μl 1.46 0.78–2.73 0.225

Pfcrt K76T
Wild 1.00 - - 1.00 - -

Mutant 1.20 0.55–2.61 0.633 1.68 0.67–4.21 0.263

Pfmdr1 N86Y

Wild 1.00 - - 1.00 - -

Mutant 0.86 0.24–3.02 0.815 0.78 0.20–3.01 0.729

Pfmdr1-Y184F
Wild 1.00 - - 1.00 - -

Mutant 0.95 0.49–1.84 0.901 0.96 0.43–2.14 0.932

doi:10.1371/journal.pone.0151565.t004
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Our findings show positive selection of the Wild Pfcrt-K76 and Pfmdr1-N86 alleles after
treatment with AL which corroborates previous reports in several settings [22–25]. Interest-
ingly, this does not affect the efficacy of this treatment regimen because the selecting strains
were not associated with treatment failure. However, in a recent study carried out by Venkate-
san et al Pfmdr1-N86 allele was identified as an independent risk factor for recrudescence in
patient treated with AL meaning that this selective pressure needs to be closely monitored [26].

We also found a positive selection of the mutant Pfcrt-76T and Pfmdr1-86Y alleles after
treatment with ASAQ. We postulate that this positive selection of mutant type by ASAQ is due
to the presence of AQ (structurally similar to CQ) as partner drug in this combination [27, 28].
In this regard, though the selected alleles were not associated with treatment failure in the pres-
ent study, ASAQ efficacy could be affected in the future (when the selected resistant strains will
be predominant in the area) by decreasing sensitivity to AQ in an area of high CQ resistance
(few years before) such as Burkina Faso. This means that in such context, AL might be more
appropriate in setting of high CQ resistance (with high prevalence of mutant allele) than
ASAQ.

The observations stated above show obviously that AL and ASAQ exerted opposite trend in
term of selecting parasite strains. In Burkina Faso, the two drugs have been adopted at the
same time as first line treatments of uncomplicated malaria. Thus, these findings raise the ben-
eficial effect of using this strategy in term of avoiding the selection of resistant circulating P. fal-
ciparum strains by one treatment regimen.

Our findings suggest also no association between the presence of Pfcrt and Pfmdr1 alleles
carried at baseline and ASAQ treatment failure, consistent with a previous report [26]. The
Pfmdr1-Y184 allele appeared to be associated with AL treatment failure. However, this muta-
tion was not under significant selection pressure after AL treatment. Moreover, previous work
has described an association of the Y184F mutation with decreasing sensitivity to lumefantrine
[29]. Therefore, the observation might be simply a chance finding. The relationship between
the carriage of Pfcrt and Pfmdr1 alleles and AL and ASAQ treatment outcome would have been
easier to assess if drug intake was supervised in the effectiveness study. This was mentioned as
a limit of our study in the previous report [17]. Furthermore, the use of two markers (msp1 and
msp2) instead of three [msp1,msp2, and glurp (glutamate rich protein)] to distinguish between
recrudescence and new infections constitutes another limit of this study and could partially
explain why no significant difference was observed between the two groups (recrudescence and
new infections). In this study the prevalence of mutation in Pfmdr1-D1246Y was extremely
low and it was difficult to correlate the presence of this mutation and treatment outcomes. No
samples carried mutation in Pfmdr1-S1034C and Pfmdr1-N1042D as reported by several stud-
ies throughout Africa [21, 30].

Conclusion
AL and ASAQ exerted opposite trends in selecting Pfcrt K76T and Pfmdr1-N86Y alleles, raising
the potential beneficial effect of using diverse ACT at the same time as first line treatments to
reduce the selecting pressure by each treatment regimen. No association between the presence
of Pfcrt and Pfmdr1 alleles carried at baseline and ASAQ treatment failure was observed.

Supporting Information
S1 Fig. Trial profile showing the number of samples analysed at day 0 and among recrudes-
cence and new infections by treatment arm.
(XLSX)
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