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ABSTRACT 
The Traveling Salesman Problem (TSP) arises in many different contexts. In this thesis, 

we model and solve the Inspectorate division problem of the Ghana Education Service, 

Accra Metropolis as a Traveling Salesman Problem. The problem is formulated as a 

network of distances and the solution is presented based on dynamic programming to 

identify the maximum number of schools an officer can visit with minimum distance. 

Data on distances were obtained from the Inspectorate Division-GES, Accra. In 

comparison, the maximum number of schools the officers normally visited was three (3) 

on a route from past experience whiles our proposed method increased the number of 

schools to be visited at the same time and condition to five(5).  
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CHAPTER ONE  

1.0 INTRODUCTION 

Route management is very important to make sure the user arrive at his/her destination 

much faster. In the transportation industry, the route that will be generated should 

consider the cost and time constraint, which is dependently on the distance of the route.  

The Traveling Salesman Problem (TSP) being one of the most well-known optimization 

problems, has attracted the attention of many researchers over the last decade because of 

it‟s simple problem description but simultaneously its associated difficulty in obtaining 

an optimal solution efficiently. The traveling-salesman problem involves a salesman who 

must make a tour to a number of cities using the shortest path available. For each number 

of cities n, the number of paths, which must be explored is n!, causing this problem to 

grow exponentially rather than as a polynomial (Schmitt and Amini, 1998). 

The TSP is a classic model for various production and scheduling problems. Many 

production and scheduling problems ultimately can be reduced to the simple concept that 

there is a salesperson that must travel from city to city (visiting each city exactly once) 

and wishes to minimize the total distance travelled during his tour of all the n cities.  
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1.1 BACKGROUND OF THE STUDY 

The TSP is a problem whose solution has eluded many mathematicians for years. 

Currently there is no solution to the TSP that has satisfied mathematicians. The TSP was 

developed in the 1800‟s by Sir William Rowan Hamilton and Thomas Penyngton 

Kirkman, Irish and British mathematicians, respectively. Specifically, Hamilton was the 

creator of the Icosian Game in 1857. It was a pegboard with twenty holes that required 

each vertex to be visited only once, no edge to be visited more than once, and the ending 

point being the same as the starting point. This kind of path was eventually referred to as 

a Hamiltonian circuit. However, the general form of the TSP was first studied by Karl 

Menger in Vienna and Harvard in the late 1920‟s or early 1930‟s. 

TSPs were first studied in the 1930s by mathematician and economist Karl Menger in 

Vienna and Harvard. It was later investigated by Hassler Whitney and Merrill Flood at 

Princeton. The TSP is about finding a Hamiltonian path with minimum cost. It is 

common in areas such as logistics, transportation and semiconductor industries. For 

instance, finding an optimized scan chains route in integrated chips testing, parcels 

collection and sending in logistics companies, are some of the potential applications of 

TSP.  

The TSP is a classic model for various production and scheduling problems. Many 

production and scheduling problems ultimately can be reduced to the simple concept that 

there is a salesperson that must travel from city to city (visiting each city exactly once) 

and wishes to minimize the total distance travelled during his tour of all n cities.  
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The TSP deals with creating the ideal path that a salesman would take while travelling 

between cities. The solution to any given TSP would be the shortest way to visit a finite 

number of cities, visiting each city only once, and then returning to the starting point.  

The aim of the TSP is to find the cheapest path reaching all elements in a given set of 

cities (nodes) where the cost of travel between each pair of them is given, including the 

return to the starting point.  

The TSP has several applications even in its purest formulation, such as planning, 

logistics, and the manufacture of microchips. Direct application of the TSP is in the 

drilling problem of printed circuit boards (PCBs)(Grötschel et al., 1991). To connect a 

conductor on one layer with a conductor on another layer, or to position the pins of 

integrated circuits, holes have to be drilled through the board. The holes may be of 

different sizes. To drill two holes of different diameters consecutively, the head of the 

machine has to move to a tool box and change the drilling equipment. This is quite time 

consuming. Thus it is clear that one has to choose some diameter, drill all holes of the 

same diameter, change the drill, drill the holes of the next diameter, etc. Thus, this 

drilling problem can be viewed as a series of TSPs, one for each hole diameter, where the 

'cities' are the initial position and the set of all holes that can be drilled with one and the 

same drill. The 'distance' between two cities is given by the time it takes to move the 

drilling head from one position to the other. The aim is to minimize the travel time for the 

machine head. 

The problem of placing the vanes in the best possible way can be modeled as a TSP with 

a special objective function. Analysis of the structure of crystals (Bland and Shallcross, 

1989) is an important application of the TSP. Here an X-ray diffractometer is used to 
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obtain information about the structure of crystalline material. To this end a detector 

measures the intensity of X-ray reflections of the crystal from various positions. Whereas 

the measurement itself can be accomplished quite fast, there is a considerable overhead in 

positioning time since up to hundreds of thousands positions have to be realized for some 

experiments. In the two examples that we refer to, the positioning involves moving four 

motors. The time needed to move from one position to the other can be computed very 

accurately. The result of the experiment does not depend on the sequence in which the 

measurements at the various positions are taken. However, the total time needed for the 

experiment depends on the sequence. The problem consists of finding a sequence that 

minimizes the total positioning time. This leads to a traveling salesman problem.  

 

Lenstra and Rinnooy (1974) reported a special case of connecting components on a 

computer board. Modules are located on a computer board and a given subset of pins has 

to be connected. In contrast to the usual case where a Steiner tree connection is desired, 

here the requirement is that no more than two wires are attached to each pin. Hence we 

have the problem of finding a shortest Hamiltonian path with unspecified starting and 

terminating points. A similar situation occurs for the so-called test bus wiring. To test the 

manufactured board one has to realize a connection which enters the board at some 

specified point, runs through all the modules, and terminates at some specified point. For 

each module we also have a specified entering and leaving point for this test wiring. This 

problem also amounts to solving a Hamiltonian path problem with the difference that the 

distances are not symmetric and that starting and terminating point are specified. Several 

applications such as; The order-picking problem in warehouses (Ratliff and Rosenthal, 
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1983), Vehicle routine (Lenstra and Rinnooy, 1974), Mask plotting in Printed Circuit 

Board(PCB) production (Grötschel et al., 1991), Printing press scheduling problem 

Gorenstein (1970, and Carter and Ragsdale (2002), School bus routing problem(Angel et 

al., 1972), Crew scheduling problem(Svestka and Huckfeldt, 1973), Interview scheduling 

problem (Gilbert and Hofstra, 1992),Hot rolling scheduling problem(Tang et al., 2000). 

 

1.1.1 Definition 

Given a set of cities and the cost of travel (or distance) between each possible pairs, the 

TSP, is to find the best possible way of visiting all the cities and returning to the starting 

point that minimize the travel cost (or travel distance). 

 

1.1.2 Classification 

Broadly, the TSP is classified as symmetric travelling salesman problem (sTSP), a 

symmetric travelling salesman problem (aTSP), and multi travelling salesman problem 

(mTSP).  

sTSP: Let V= {v1 ,......,vn} be a set of cities, A={(r,s):r,s V} be the edge set, and 

        be a cost measure associated with edge (r,s) A. 

The sTSP is the problem of finding a minimal length closed tour that visits each city 

once. In this case cities vi V are given by their coordinates (xi, yi) and drs is the Euclidean 

distance between r and s then we have an Euclidean TSP. 

aTSP: If         for at least one (r,s) then the TSP becomes an aTSP. 

mTSP: The mTSP is defined as: In a given set of nodes, let there be m salesmen located 

at a single depot node. The remaining nodes (cities) that are to be visited are intermediate 
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nodes. Then, the mTSP consists of finding tours for all m salesmen, who all start and end 

at the depot, such that each intermediate node is visited exactly once and the total cost of 

visiting all nodes is minimized. The cost metric can be defined in terms of distance, time, 

etc. Possible variations of the problem are as follows: Single verses multiple depots: In 

the single depot, all salesmen finish their tours at a single point while in multiple depots 

the salesmen can either return to their initial depot or can return to any depot keeping the 

initial number of salesmen at each depot remains the same after the travel. Number of 

salesmen: The number of salesman in the problem can be fixed or a bounded variable. 

Cost: When the number of salesmen is not fixed, then each salesman usually has an 

associated fixed cost incurring whenever this salesman is used. In this case, the 

minimizing the requirements of salesman also becomes an objective. Timeframe: Here, 

some nodes need to be visited in a particular time periods that are called time windows 

which is an extension of the mTSP, and referred as multiple traveling salesman problem 

with specified timeframe (mTSPTW). The application of mTSPTW can be very well seen 

in the aircraft scheduling problems. Other constraints: Constraints can be on the number 

of nodes each salesman can visit, maximum or minimum distance a salesman travels or 

any other constraints. The mTSP is generally treated as a relaxed vehicle routing 

problems (VRP) where there is no restrictions on capacity. Hence, the formulations and 

solution methods for the VRP are also equally valid and true for the mTSP if a large 

capacity is assigned to the salesmen (or vehicles). However, when there is a single 

salesman, then the mTSP reduces to the TSP (Bektas, 2006). 
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1.2 PROBLEM STATEMENT 

The TSP can easily be stated as follows: A salesman wants to visit n distinct cities and 

then returns home. He wants to determine the sequence of the travel so that the overall 

traveling distance is minimized while visiting each city not more than once. Although the 

TSP is conceptually simple, it is difficult to obtain an optimal solution. In an n-city 

situation, any permutation of n cities yields a possible solution. As a consequence, n! 

possible tours must be evaluated in the search space. Different formulations are put 

forward for TSP and its variants. 

 

1.3 OBJECTIVE OF THE STUDY 

The main objective of this study is to use TSP model and solve the Inspectorate division 

problem of the Ghana Education Service, Accra Metropolis as a Travelling Salesman 

problem. 

 

1.4 METHODOLOGY 

We shall propose the Dynamic Programming Approach in solving our problem. First, the 

algorithm will be presented. A real life computational study shall be performed and our 

data for the study will be captured using Euclidean distance formula between all pairs of 

destinations (Inspection centres), from the Inspectorate Division. 
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1.5 JUSTIFICATION  

The traveling salesman problems are widely used in modeling most of the real-life 

industrial applications, and very interesting, from the perspective of computer science 

because of the time complexities in some of the well-known algorithms used in solving 

the problems. These have made the studies of traveling salesman problems and their 

algorithms an important area of research in the contribution to academic knowledge and 

the benefit of the economy as a whole, hence the reason for solving the traveling 

salesman problem. 

 

1.6 LIMITATIONS OF THE STUDY 

This study is limited to ten (10) selected schools in the Greater Accra Metropolis of 

Ghana.  The findings of this study could however be adapted to other schools in the 

region.  

 

1.7 ORGANIZATION OF THE STUDY 

In chapter one, we presented the background, problem statement and objective of the 

study. The justification, methodology and limitation of the study were also put forward. 

In chapter two, related work on the Traveling Salesman Problem will be discussed. 

Chapter three presents the dynamic programming approach proposed to solve our 

problem. 

Chapter four is devoted for the data collection and analysis of the study.  

Chapter five, which is the last chapter of the study, presents the conclusions and 

recommendations of the study. 
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CHAPTER TWO 

LITERATURE REVIEW 

The Inspectorate division of the Ghana Education Service, Accra Metropolis has its 

administrative organs consisting of a central office and seven sub-metropolitan offices 

and are headed by the Director of Education.  

Due to the large size of the Metropolis and the number of schools involved, it has not 

been easy to work with the stipulated number of officers. Apart from the seven sub-

metropolitan offices, there are thirty-three Circuits each being managed by Supervisors 

who promote effective supervision of schools in their respective circuits. 

The Inspectorate division has as part of its core responsibility to; 

 Supervise private and public schools 

 Ensure adherence to regulations and educational policies. 

 Provide all necessary logistics  

 

Applegate et al., (1994) solved TSP containing seven thousand, three hundred and ninety-

seven (7397) cities. Later in 1998, the authors solved the same problem using thirteen 

thousand, five hundred and nine (13,509) cities in the United States. In 2001, the authors 

found the optimal tour of fifteen thousand, one hundred and twelve (15,112) cities in 

Germany. Later in 2004, TSP of visiting all twenty-four thousand, nine hundred seventy-

eight (24,978) cities in Sweden was solved; a tour of length of approximately seventy-

two thousand, five hundred (72,500) kilometers was found and it was proven that no 

shorter tour exists. This is currently the largest solved TSP. 
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The Travelling Salesman Problem (TSP) is a typical example of a very hard 

combinatorial optimization problem. The problem is to find the shortest tour that passes 

through each vertex in a given graph exactly once. The TSP has received considerable 

attention over the last two decades and various approaches are proposed to solve the 

problem. As early as in 1954, optimal solution to travelling salesman problem with forty-

nine (49) number of cities has been obtained. In 1980‟s, Crowder and Padberg solved the 

problem with 318 cities using cutting-plane method.  

The Traveling Salesman problem (TSP) is one of the benchmark and old problems in 

Computer Science and Operations Research. It can be stated as: A network with „n‟ 

nodes (or cities), with 'node 1' as „headquarters‟ and a travel cost (or distance, or travel 

time etc.,) matrix C= (Cij) of order n associated with ordered node pairs (i, j) is given. In 

1991 Grötschel and Holland proposed a solution for large scale TSP. 

 

On the basis of the structure of the cost matrix, the TSPs are classified into two groups – 

symmetric and asymmetric. The TSP is symmetric if Cij = Cji, for all i, j and asymmetric 

otherwise. For an n-city asymmetric TSP, there are (n-1)! possible solutions, one or more 

of which gives the minimum cost. Applegate et al., (1998, 2001 and 2004) proposed 

solution for TSP using cuts that solved thirteen thousand, five hundred and nine (13509), 

fifteen thousand, one hundred and twelve (15112) and twenty-four thousand, nine 

hundred and seventy-eight (24978) cities respectively. The solutions worked well up to 

five thousand (5000) cities and can be used up to thirty-three thousand, eight hundred and 

ten (33,810) cities.  
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For an n-city symmetric TSP, there is (n-1)! / 2 possible solutions along with their reverse 

cyclic permutations having the same total cost. In either case, the number of solutions 

becomes extremely large for even moderately large n so that an exhaustive search is 

impracticable. There are mainly three reasons why TSP has attracted the attention of 

many researchers and remains an active research area. First, a large number of real-world 

problems can be modeled by TSP. Secondly, it was proved to be NP-Complete problem. 

Thirdly, NP-Complete problems are intractable in the sense that no one has found any 

really efficient way of solving them for large problem size. Also, NP-complete problems 

are known to be more or less equivalent to each other; if one knew how to solve one of 

them one could solve the lot. In the 1970‟s, Held and Karp used minimum spanning tree 

to solve the TSP with sixty-four (64) cities. 

Broadly, the TSP is classified as symmetric travelling salesman problem (sTSP), a 

symmetric travelling salesman problem (aTSP), and multi travelling salesman problem 

(mTSP). With sTSP: Let V = {v1 ,......,vn} be a set of cities, A = {(r,s) : r,s V} be the 

edge set, and drs= dsr be a cost measure associated with edge (r,s)  A . The sTSP is the 

problem of finding a minimal length closed tour that visits each city once. In this case, 

cities vi  V are given by their coordinates (xi, yi) and drs is the Euclidean distance 

between r and s resulting in Euclidean TSP. With aTSP: If drs ≠ dsr for at least one (r, s) 

then the TSP becomes an aTSP with mTSP: The mTSP is defined as: In a given set of 

nodes, there are m salesmen located at a single depot node. The remaining nodes (cities) 

that are to be visited are intermediate nodes. Then, the mTSP consists of finding tours for 

all m salesmen, who all start and end at the depot, such that each intermediate node is 

visited exactly once and the total cost of visiting all nodes is minimized. The cost metric 
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can be defined in terms of distance, time, etc. In 1971, Bellmore and Malone solved TSP 

using sub tour elimination. 

One example of the usefulness of the TSP is a direct application of the TSP in the drilling 

problem of printed circuit boards (PCBs) (Grötschel et al., 1991). To connect a conductor 

on one layer with a conductor on another layer, or to position the pins of integrated 

circuits, holes have to be drilled through the board. The holes may be of different sizes. 

To drill two holes of different diameters consecutively, the head of the machine has to 

move to a tool box and change the drilling equipment. This is quite time consuming. 

Thus, it is clear that one has to choose some diameter, drill all holes of the same diameter, 

change the drill, drill the holes of the next diameter, etc. Thus, this drilling problem can 

be viewed as a series of TSPs, one for each hole diameter, where the 'cities' are the initial 

position and the set of all holes that can be drilled with one and the same drill. The 

'distance' between two cities is given by the time it takes to move the drilling head from 

one position to the other. The aim is to minimize the travel time for the machine head. 

 

Travel Salesman Problem (TSP) has been applied to solve a number of real-life problems, 

including overhauling gas turbine engines (Plante et al., 1987), X-Ray crystallography 

(Bland and Shallcross, 1989; Dreissig and Uebach, 1990), Computer wiring (Lenstra and 

Rinnooy, 1974). The order-picking problem in warehouses (Ratliff and Rosenthal, 1983), 

and Mask plotting in Printed Circuit Board (PCB) production (Gottschalk et al., 1991). 

Thus, TSP has played an important role in supporting managerial decisions in the areas of 

printing press scheduling, school bus routing, crew scheduling, interview scheduling, hot 
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rolling scheduling, mission planning, and design of global navigation satellite system 

surveying networks. 

Order picking in conventional warehouse environments involves determining a sequence 

in which to visit unique locations where each part in the order is stored, and therefore can 

often be modeled as s TSP. With computer tracking of inventories, parts may now be 

stored in multiple locations, simplifying the replenishment of inventory and eliminating 

the need to reserve space for each item. In such an environment, order picking requires 

choosing a subset of the locations that store an item to collect the required quantity. Thus, 

both the assignment of inventory to an order and the associated sequence in which the 

selected locations are visited affect the cost of satisfying an order.  

Fagerholt and Christiansen (2000) studied a TSP with allocation, time window, and 

precedence constraints (TSP-ATWPC). The TSP-ATWPC occurs as a sub problem 

involving optimally sequencing a given set of port visits in a real bulk ship scheduling 

problem, which is a combined multi-ship pickup and delivery problem with time 

windows and multi-allocation problem. Each ship in the fleet is equipped with a flexible 

cargo hold that can be partitioned into several smaller holds in a given number of ways, 

thus allowing multiple products to be carried simultaneously by the same ship. The 

allocation constraints of the TSP-ATWPC ensure that the partition of the ship‟s flexible 

cargo hold and the allocation of cargoes to the smaller holds are feasible throughout the 

visiting sequence. 

Ruiz et al., (2004) proposed a two-stage exact approach for solving a real-life problem of 

the TSP. In the first stage, all the feasible routes are generated by means of an implicit 
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enumeration algorithm; thereafter, an integer programming model is designed to select in 

the second stage the optimum routes from the set of feasible routes. The integer model 

uses a number of 0-1 variables ranging from 2,000 to 15,000 and arrives at optimum 

solutions in an average time of sixty seconds (for instances up to 60 clients). The 

developed system was tested with a set of real instances and, in a worst-case scenario (up 

to 60 clients), the routes obtained ranged from a 7% to 12% reduction in the distance 

traveled and from a 9% to 11% reduction in operational costs. 

Analysis of the structure of crystals is an important application of the TSP. Here an X-ray 

diffractometer is used to obtain information about the structure of crystalline material. To 

this end, a detector measures the intensity of X-ray reflections of the crystal from various 

positions. Whereas the measurement itself can be accomplished quite fast, there is a 

considerable overhead in positioning time since up to hundreds of thousands positions 

have to be realized for some experiments. In the two examples referred to, the positioning 

involves moving four motors. The time needed to move from one position to the other 

can be computed very accurately. The result of the experiment does not depend on the 

sequence in which the measurements at the various positions are taken. However, the 

total time needed for the experiment depends on the sequence. Therefore, the problem 

consists of finding a sequence that minimizes the total positioning time. This led to a 

traveling salesman problem, studied by Bland and Shallcross (1989) and Dreissig and 

Uebach (1990). 

Lenstra and Rinnooy (1974) presented a special case of connecting components on a 

computer board. Modules are located on a computer board and a given subset of pins has 

to be connected. In contrast to the usual case where a Steiner tree connection is desired, 
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here the requirement is no more than two wires are attached to each pin. Hence there is 

the problem of finding a shortest Hamiltonian path with unspecified starting and 

terminating points. A similar situation occurs for the so-called test bus wiring. To test the 

manufactured board one has to realize a connection which enters the board at some 

specified point, runs through all the modules, and terminates at some specified point. For 

each module there is also a specified entering and leaving point for this test wiring. This 

problem also amounts to solving a Hamiltonian path problem with the difference that the 

distances are not symmetric and that starting and terminating point are specified. 

Ratliff and Rosenthall (1983) studied a problem of order-picking associated with material 

handling in a warehouse. Assume that at a warehouse an order arrives for a certain 

subsets of the items stored in the warehouse. Some vehicle has to collect all items of this 

order to ship them to the customer. The relation to the TSP is immediately seen. The 

storage locations of the items correspond to the nodes of the graph. The distance between 

two nodes is given by the time needed to move the vehicle from one location to the other. 

The problem of finding a shortest route for the vehicle with minimum pickup time can 

now be solved as a TSP.  

One of the major and primary applications of the multiple traveling salesperson problems 

arises in scheduling a printing press for a periodical with multi-editions. Here, there exist 

five pairs of cylinders between which the paper rolls and both sides of a page are printed 

simultaneously. There exist three kinds of forms, namely 4-, 6-, and 8-page forms, which 

are used to print the editions. The scheduling problem consists of deciding which form 

will be on which run and the length of each run. In the multiple salesperson problem 
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vocabulary, the plate change costs are the inter-city costs. Gorenstein (1970) and Carter 

and Ragsdale (2002) presented a real-life application of the above problem. 

 

Angel et al., (1972) investigated the problem of scheduling buses as a variation of the 

multiple traveling salesperson problems with some side constraints. The objective of the 

scheduling is to obtain a bus loading pattern such that the number of routes is minimized, 

the total distance travelled by all buses is kept at minimum, no bus is overloaded and the 

time required to traverse any route does not exceed a maximum allowed policy. 

Ryan et al., (1998) presented a model of the routing problems arising in the planning of 

unmanned aerial vehicle applications as a multiple traveling salesman problem, and 

proposed a tabu search approach for solving the problem. 

A very recent and an interesting application of the multiple traveling salesperson 

problems, presented by Saleh and Chelouah (2004) arise in the design of Global 

Navigation Satellite System (GNSS) surveying networks. A Global Navigation Satellite 

System (GNSS) is a space-based satellite system which provides coverage for all 

locations worldwide and is quite crucial in real-life applications such as early warning 

and management for disasters, environment and agriculture monitoring, etc. The goal of 

surveying is to determine the geographical positions of unknown points on and above the 

earth using satellite equipment. These points, on which receivers are placed, are co-

ordinated by a series of observation sessions. When there are multiple receivers or 

multiple working periods, the problem of finding the best order of sessions for the 

receivers can be formulated as a multiple traveling salesman problem. 
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Tobias and Osten (2007) introduced an optical method based on white light 

interferometer in order to solve the well-known NP–complete traveling salesman 

problem. According to the authors it was the first time that a method for the reduction 

of non–polynomial time to quadratic time has been proposed. The authors showed 

that this achievement is limited by the number of available photons for solving the 

problem. It was turned out that this number of photons is proportional to N
N
 for a 

traveling salesman problem with N cities and that for large numbers of cities the 

method in practice therefore is limited by the signal–to–noise ratio.  

Kaur and Murugapan (2008) presented a novel hybrid genetic algorithm for solving 

Traveling Salesman Problem (TSP) based on the Nearest Neighbour heuristics and pure 

Genetic Algorithm (GA). The hybrid genetic algorithm exponentially derives higher 

quality solutions in relatively shorter time for hard combinatorial real world optimization 

problems such as Traveling Salesman Problem (TSP) than the pure GA. The hybrid 

algorithm outperformed the NN algorithm and the pure Genetic Algorithm taken 

separately. The hybrid genetic algorithm is designed and experimented against the pure 

GA and the convergence rate improved by more than 200% and the tour distance 

improved by 17.4% for 90 cities. These results indicate that the hybrid approach is 

promising and it can be used for various other optimization problems.  

Traveling Salesman Problems with profits (TSPs with profits) are a generalization of the 

Traveling Salesman Problem, where it is not necessary to visit all vertices. A profit is 

associated with each vertex. The overall goal is the simultaneous optimization of the 
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collected profit and the travel costs. These two optimization criteria appear either in the 

objective function or as a constraint. 

 Dominique et al., (2003) studied a classification of TSPs with profits is proposed, and 

the existing literature is surveyed. Different classes of applications, modeling approaches, 

and exact or heuristic solution techniques are identified and compared. Conclusions 

emphasize the interest of this class of problems, with respect to applications as well as 

theoretical results.  

Cerny (1985) presented a Monte Carlo algorithm to find approximate solutions of the 

traveling salesman problem. The algorithm generates randomly the permutations of the 

stations of the traveling salesman trip, with probability depending on the length of the 

corresponding route. Reasoning by analogy with statistical thermodynamics, we use the 

probability given by the Boltzmann-Gibbs distribution. Surprisingly enough, using this 

simple algorithm, one can get very close to the optimal solution of the problem or even 

find the true optimum. The author demonstrates this on several examples. The author 

conjectures that the analogy with thermodynamics can offer a new insight into 

optimization problems and can suggest efficient algorithms for solving them. 

 

Viera et al., (2002) put forward an approach to the well-known traveling salesman 

problem (TSP) via competitive neural networks. The neural network model adopted in 

this work is the Kohonen network or self-organizing maps (SOM), which has important 

topological information about its neurons configuration. The author was concerned with 

the initialization aspects, parameters adaptation, and the complexity analysis of the 
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proposed algorithm. The modified SOM algorithm proposed by the author has shown 

better results when compared with others neural network based approaches to the TSP. 

The traveling salesman problem with precedence constraints (TSPPC) is one of the most 

difficult combinatorial optimization problems. Chiung (2002) presented an efficient 

genetic algorithm (GA) to solve the TSPPC is presented. The key concept of the 

proposed GA is a topological sort (TS), which is defined as an ordering of vertices in a 

directed graph. Also, a new crossover operation is developed for the proposed GA. The 

results of numerical experiments showed that the proposed GA produces an optimal 

solution and shows superior performance compared to the traditional algorithms.  

The classical traveling-salesman problem involves the establishment of a tour around a 

set of points in a plane such that each point is intersected only once and the circuit is of 

minimal total length. When the length of a salesman's tour cannot exceed a specified 

constant, the problem becomes that of finding the fewest number of salesmen such that 

every city is visited by a salesman and the length of each salesman's tour does not exceed 

a specified constant. This is the chromatic traveling-salesmen problem. An algorithm for 

this problem was presented by Milton et al., (2010) which was used to create periodic 

markets in parts of Sierra Leone. Fifteen rural areas were examined from Sierra Leone, 

and weekly market places were identified in each area. Salesmen were to be assigned to 

an area so that each market place was visited and each tour (or periodic ring) did not 

exceed forty hours. The chromatic traveling-salesmen algorithm was used to minimize 

the number of periodic rings needed for each area and provide the specific tour for each 

ring. 
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The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour 

in a symmetric circulant matrix. The computational complexity of this problem is not 

known – only upper and lower bounds have been determined. Ivan and Federico (2008) 

presented a characterization of the two-stripe case. Instances where the minimum cost of 

a tour is equal to either the upper or lower bound are recognized. A new construction 

providing a tour is proposed for the remaining instances, and this leads to a new upper 

bound that is closer than the previous one. 

The Traveling Salesman Problem is known to be a combinatorial optimization problem 

which belongs to NP-hard (a class of problems which does not allow polynomial time 

solution). Recently, various types of TSP are studied on the Web and the best solutions 

up to date are open to the public. The initial solution for a given TSP can be easily 

obtained by the well-known methods such as greedy, nearest neighbor, and saving 

method. 

Bernd and Peter (1996) presented an approach which incorporates problem specific 

knowledge into a genetic algorithm which is used to compute near-optimum solutions to 

traveling salesman problems (TSP). The approach is based on using a tour construction 

heuristic for generating the initial population, a tour improvement heuristic for finding 

local optimal in a given TSP search space, and new genetic operators for effectively 

searching the space of local optima in order to find the global optimum. The quality and 

efficiency of solutions obtained for a set of TSP instances containing between three 

hundred and eighteen (318) and fourteen thousand (1400) cities are presented.  



 29 

Gunter (1992) considered the special case of the Euclidean Traveling Salesman Problem 

where the given points lie on a small number (N) of parallel lines. Such problems arise 

for example in the fabrication of printed circuit boards, where the distance travelled by a 

laser which drills holes in certain places of the board should be minimized. By a dynamic 

programming algorithm, we can solve the N-line traveling salesman problem for n points 

in time n
N
, for fixed N, i. e., in polynomial time. This extends a result of Cutler (1980) for 

3 lines. The parallelity condition can be relaxed to point sets which lie on N "almost 

parallel" line segments. The author gave a characterization of the allowed segment 

configurations by a set of forbidden sub configurations.  

The Traveling Salesman Problem is a well-studied combinatorial optimization problem 

with a wide spectrum of applications and theoretical value. Hains (2010) designed a new 

recombination operator known as Generalized Partition Crossover (GPX) for the TSP. 

GPX is unique among other recombination operators for the TSP in that recombining two 

local optima produces new local optima with a high probability. Thus the operator can 

'tunnel' between local optima without the need for intermediary solutions. The operator is 

respectful, meaning that any edges common between the two parent solutions are present 

in the offspring, and transmits alleles, meaning that offspring are comprised only of edges 

found in the parent solutions. The author designed a hybrid genetic algorithm, which uses 

local search in addition to recombination and selection, specifically for GPX. The author 

showed that this algorithm outperforms Chained Lin-Kernighan, a state-of-the-art 

approximation algorithm for the TSP. The author next analyzed these algorithms to 

determine why the algorithms are not capable of consistently finding a globally optimal 

solution. The results revealed a search space structure which the author called 'funnels' 
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because they are analogous to the funnels found in continuous optimization. Funnels are 

clusters of tours in the search space that are separated from one another by a non-trivial 

distance. The author found that funnels can trap Chained Lin-Kernighan, preventing the 

search from finding an optimal solution. The data used indicated that, under certain 

conditions, GPX can tunnel between funnels, explaining the higher frequency of optimal 

solutions produced by the author‟s hybrid genetic algorithm using GPX. 

Traveling salesman problem is a classical complete nondeterministic polynomial 

problem. It is significant to solve Multiple Traveling Salesman Problems (MTSP). 

Previous researches on multiple traveling salesman problems are mostly limited to the 

kind that employed total-path-shortest as the evaluating rule, but little notice is made on 

the kind that employed longest-path-shortest as the evaluating rule.  

Hai-Long et al., (2009) studied this problem and employed genetic algorithm to optimize 

it and decoding method with matrix was proposed. The method could solve symmetric 

and asymmetric MTSP. Symmetric and asymmetric multiple traveling salesman problems 

were simulated and different crossover operators were compared. 

 

Logistics Management sometimes involves pickup as well as delivery along the route. 

Courier service is a typical example. The imposition of precedence constraints among the 

places to be visited constitutes a variant of the classical Travelling Salesman Problem 

(TSP). This well-known NP-hard problem is often solved by heuristics. The Precedence-

Constrained TSP that incorporates Delivery and Pickup (PCTDP) is a much harder 

problem to solve. Ganesh and Narendran (2005) studied the PCTDP and presented a 

three-stage heuristic using clustering and shrink-wrap algorithms for finding an initial 
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path as well as genetic algorithms for the final search to obtain the best solution. The 

proposed heuristic is tested over a range of trial datasets and is found to give encouraging 

results. With its ability to provide solutions of good quality at low computing times, the 

proposed heuristic has ample scope for application as an automated scheduler when 

implemented at the site of a logistics-planning cell. 

 

Most researches in evolutionary computation focus on optimization of static and no-

change problems. Many real world optimization problems however are actually dynamic, 

and optimization methods capable of continuously adapting the solution to a changing 

environment are needed. Yan et al., (2004) presented an approach to solving dynamic 

TSP. A dynamic TSP is harder than a general TSP, which is a NP-hard problem, because 

the city number and the cost matrix of a dynamic TSP are time varying. The authors 

proposed an algorithm to solve the dynamic TSP problem, which is the hybrid of EN and 

Inver-Over algorithm. From the results of the experiment, the authors concluded their 

algorithm was effective  

 

Vardges (2009) proposed an LP relaxation for ATSP. The author introduced concepts of 

high-value and high-flow cycles in LP basic solutions and show that the existence of this 

kind of cycles would lead to constant-factor approximation algorithms for ATSP. The 

existence of high-flow cycles is motivated by computational results and theoretical 

observations.  
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The Multiple Traveling Salesmen Problem (MTSP) is an extension of the travelling 

salesman problem with many production and scheduling applications. The TSP has been 

well studied including methods of solving the problem with genetic algorithms. The 

MTSP has also been studied and solved with GAs in the form of the vehicle-scheduling 

problem. Carter (2003) presented a new modeling methodology for setting up the MTSP 

to be solved using a GA. The advantages of the new model are compared to existing 

models both mathematically and experimentally. The model is also used to model and 

solve a multi line production problem in a spreadsheet environment. The new model 

proves itself to be an effective method to model the MTSP for solving with GAs. The 

concept of the MTSP is then used to model and solve with a GA the use of one salesman 

make many tours to visit all the cities instead of using one continuous trip to visit all the 

cities. While this problem uses only one salesman, it can be modeled as a MTSP and has 

many applications for people who must visit many cities on a number of short trips. The 

method used effectively creates a schedule while considering all required constraints. 

 

The traveling salesperson problem (TSP) is a classic model for various production and 

scheduling problems. Many production and scheduling problems ultimately can be 

reduced to the simple concept that there is a salesperson that must travel from city to city 

(visiting each city exactly once) and wishes to minimize the total distance traveled during 

his tour of all n cities. Obtaining a solution to the problem of a salesperson visiting n 

cities while minimizing the total distance traveled is one of the most studied 

combinatorial optimization problems. While there are variations of the TSP, the 

Euclidean TSP is NP-hard. Schmitt and Amini(1998) and Falkenauer (1998) studied a 
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model with the interest in this particular type of problem being how common the problem 

is and how difficult the problem is to solve when n becomes sufficiently large.  

 

The traveling salesman problem (TSP) has been an early proving ground for many 

approaches to combinatorial optimization, including classical local optimization 

techniques as well as many of the more recent variants on local optimization, such as 

simulated annealing, tabu search, neural networks, and genetic algorithms. David and 

Lyle (1995) studied how these various approaches have been adapted to the TSP and 

evaluates their relative success in this perhaps a typical domain from both a theoretical 

and an experimental point of view. 

 

The traveling salesman problem with precedence constraints (TSPPC) is one of the most 

difficult combinatorial optimization problems. Chiung et al., (2000) presented an efficient 

Genetic Algorithm (GA) to solve the TSPPC. The key concept of the proposed GA is a 

topological sort (TS), which is defined as an ordering of vertices in a directed graph. 

Also, a new crossover operation is developed for the proposed GA. The results of 

numerical experiments show that the proposed GA produces an optimal solution and 

shows superior performance compared to the traditional algorithms. 

 

Many real-life industrial applications involve finding a Hamiltonian path with minimum 

cost. Some instances that belong to this category are transportation routing problem, scan 

chain optimization and drilling problem in integrated circuit testing and production. Li-

Pei et al., (2001) presented a Bee Colony Optimization (BCO) algorithm for Traveling 
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Salesman Problem (TSP). The BCO model is constructed algorithmically based on the 

collective intelligence shown in bee foraging behavior. The model is integrated with 2-

opt heuristic to further improve prior solutions generated by the BCO model. 

Experimental results comparing the proposed BCO model with existing approaches on a 

set of benchmark problems were also presented. 

 

Zakir (2010) presented a new crossover operator, Sequential Constructive crossover 

(SCX), for a genetic algorithm that generates high quality solutions to the traveling 

salesman Problem (TSP). The sequential constructive crossover operator constructs an 

offspring from a pair of parents using better edges on the basis of their values that may be 

present in the parents' structure maintaining the sequence of nodes in the parent 

chromosomes. The efficiency of the SCX is compared as against some existing crossover 

operators; namely, edge recombination crossover (ERX) and generalized N-point 

crossover (GNX) for some benchmark TSPLIB instances. Experimental results show that 

the new crossover operator is better than the ERX and GNX. 

 

The aim of the Travelling Salesman Problem (TSP) is to find the cheapest way of visiting 

all elements in a given set of cities (nodes) exactly once and returning to the starting 

point. In solutions presented in the literature costs of travel between nodes are based on 

Euclidean distances, the problem is symmetric and the costs are constant and crisp 

values. Practical application in road transportation and supply chains are often uncertain 

or fuzzy. The risk attitude depends on the features of the given operation. Foldesi et al., 

(2010) presented a model that handles the fuzzy, time dependent nature of the TSP and 
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also gives a solution for the asymmetric loss aversion by embedding the risk attitude into 

the fitness function of the eugenic bacterial memetic algorithm. Computational results are 

presented for different cases.  

The classical TSP is investigated along with a modified instance where some costs 

between the cities are described with fuzzy numbers. Two different techniques are 

proposed to evaluate the uncertainties in the fuzzy cost values. The time dependent 

version of the fuzzy TSP is also investigated and simulation experiences are presented.  

Iridia (1996) presented an artificial ant colony model capable of solving the traveling 

salesman problem (TSP). Ants of the artificial colony are able to generate successively 

shorter feasible tours by using information accumulated in the form of a pheromone trail 

deposited on the edges of the TSP graph. Computer simulations demonstrate that the 

artificial ant colony is capable of generating good solutions to both symmetric and 

asymmetric instances of the TSP. The method is an example, like simulated annealing, 

neural networks, and evolutionary computation, of the successful use of a natural 

metaphor to design an optimization algorithm. 

The traveling salesman problem and the quadratic assignment problem are the two of the 

most commonly studied optimization problems in Operations Research because of their 

wide applicability. Due to their NP -hard nature, the individual problems are already 

complex and difficult to solve. Ping and William (2005) studied a model which integrated 

the two hard problems together, that is called the integrated problem of which the 

complexity is absolutely much higher than that of the individual ones. Not only a 

complete mathematical model which integrates both the traveling salesman and the 
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quadratic assignment problems together is built, but also a genetic algorithm hybridized 

with several improved heuristics is developed to tackle the problem.  

 

The Traveling Salesman Problem (TSP) is one of the most intensively studied problems 

in computational mathematics. To solve this problem a number of algorithms have been 

developed using genetic algorithms. But these algorithms are not so suitable for solving 

large-scale TSP. Kalyan et al., (2010) proposed a new solution for TSP using hierarchical 

clustering and genetic algorithm. 

Time-constrained deliveries are one of the fastest growing segments of the delivery 

business, and yet there is surprisingly little literature that addresses time constraints in the 

context of stochastic customer presence. Ann and Barrett (2007) studied the probabilistic 

traveling salesman problem with deadlines (PTSPD). The PTSPD is an extension of the 

well-known Probabilistic Traveling Salesman Problem (PTSP) in which, in addition to 

stochastic presence, customers must also be visited before a known deadline. The authors 

presented two recourse models and a chance constrained model for the PTSPD. Special 

cases are discussed for each model, and computational experiments are used to illustrate 

under what conditions stochastic and deterministic models lead to different solutions.  

Kenneth and Ruth (2007) proposed a new multi-period variation of the M-traveling 

salesman problem is introduced. The problem arises in efficient scheduling of optimal 

interviews among tour brokers and vendors at conventions of the tourism and travel 

industry. In classical traveling salesman problem vocabulary, a salesman is a tour broker 

at the convention and a city is a vendor's booth. In this problem, more than one salesman 

may be required to visit a city, but at most one salesman per time period can visit each 
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city. The heuristic solution method presented is polynomial and is guaranteed to produce 

a non-conflicting set of salesmen's tours. The results of an implementation of the method 

for a recent convention are also reported. 

Valentina et al., (2010) proposed an Equality Generalized Traveling Salesman Problem 

(EGTSP), which is a variant of the well-known traveling salesman problem. We are 

given an undirected graph G = (V, E), with set of vertices V and set of edges E, each with 

an associated cost. The set of vertices is partitioned into clusters. E-GTSP is to find an 

elementary cycle visiting exactly one vertex for each cluster and minimizing the sum of 

the costs of the traveled edges. The authors proposed a multi-start heuristic, which 

iteratively starts with a randomly chosen set of vertices and applies a decomposition 

approach combined with improvement procedures. The decomposition approach 

considers a first phase to determine the visiting order of the clusters and a second phase 

to find the corresponding minimum cost cycle. We show the effectiveness of the 

proposed approach on benchmark instances from the literature. On small instances, the 

heuristic always identifies the optimal solution rapidly and outperforms all known 

heuristics; on larger instances, the heuristic always improves, in comparable computing 

times, the best known solution values obtained by the genetic algorithm. 

June and Sethian (2006) put forward a problem in which given a domain, a cost function 

which depends on position at each point in the domain, and a subset of points (“cities”) in 

the domain. The goal is to determine the cheapest closed path that visits each city in the 

domain once. This can be thought of as a version of the traveling salesman problem, in 

which an underlying known metric determines the cost of moving through each point of 
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the domain, but in which the actual shortest path between cities is unknown at the outset. 

The authors proposed algorithms for both a heuristic and an optimal solution to this 

problem. The complexity of the heuristic algorithm is at worst case M·N log N, where M 

is the number of cities, and N the size of the computational mesh used to approximate the 

solutions to the shortest paths problems. The average runtime of the heuristic algorithm is 

linear in the number of cities and O (N log N) in the size N of the mesh.  

Many companies have travelling salesmen that market and sell their products. This 

results in much travelling by car due to the daily customer visits. This causes costs for the 

company, in form of travel expenses compensation, and environmental effects, in form of 

carbon dioxide pollution. As many companies are certified according to environmental 

management systems, such as ISO 14001, the environmental work becomes more and 

more important as the environmental consciousness increases every day for companies, 

authorities and public. Torstensson (2008) presented a model which computes reasonable 

limits on the mileage of the salesmen; these limits are based on specific conditions for 

each salesman‟s district. The objective is to implement a heuristic algorithm that 

optimizes the customer tours for an arbitrary chosen month, which will represent a 

“standard” month. The output of the algorithm, the computed distances, will constitute a 

mileage limit for the salesman. The algorithm consists of a constructive heuristic that 

builds an initial solution, which is modified if infeasible. This solution is then improved 

by a local search algorithm preceding a genetic algorithm, which task is to improve the 

tours separately. This method for computing mileage limits for travelling salesmen 

generates good solutions in form of realistic tours. The mileage limits could be improved 
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if the input data were more accurate and adjusted to each district, but the suggested 

method does what it is supposed to do. 

Davoian and Gorlatch (2005) presented a new modification of the Genetic Algorithm 

(GA) for solving the classical Traveling Salesman Problem (TSP), with the objective of 

achieving its efficient implementation on multiprocessor machines. The authors described 

the new features of our GA as compared to existing algorithms, and developed a new 

parallelization scheme, applicable to arbitrary GAs. In addition to parallel processes and 

iterative data exchanges between the involved populations, our parallel implementation 

also contains a generation of new possible solutions (strangers), which eliminates typical 

drawbacks of GA and extends the search area. The proposed algorithm allows 

accelerating the solution process and generates solutions of better quality as compared 

with previously developed GA versions.  

Marco and Luca (1997) presented an artificial ant colony capable of solving the traveling 

salesman problem (TSP). Ants of the artificial colony are able to generate successively 

shorter feasible tours by using information accumulated in the form of a pheromone trail 

deposited on the edges of the TSP graph. Computer simulations demonstrate that the 

artificial ant colony is capable of generating good solutions to both symmetric and 

asymmetric instances of the TSP. The method is an example, like simulated annealing, 

neural networks, and evolutionary computation, of the successful use of a natural 

metaphor to design an optimization algorithm.  

An analogy with the way ant colonies function has suggested the definition of a new 

computational paradigm, which we call Ant System. Marco et al., (1996) proposed it as a 
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viable new approach to stochastic combinatorial optimization. The main characteristics of 

this model are positive feedback, distributed computation, and the use of a constructive 

greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, 

distributed computation avoids premature convergence, and the greedy heuristic helps 

find acceptable solutions in the early stages of the search process. The authors applied the 

proposed methodology to the classical Traveling Salesman Problem (TSP), and report 

simulation results. The authors also discussed parameter selection and the early setups of 

the model, and compare it with tabu search and simulated annealing using TSP. To 

demonstrate the robustness of the approach, the authors showed how the Ant System 

(AS) can be applied to other optimization problems like the asymmetric traveling 

salesman. 

Durbin and Willshaw (1987) studied the ant colony system (ACS), a distributed 

algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of 

cooperating agents called ants cooperate to find good solutions to TSP‟s. Ants cooperate 

using an indirect form of communication mediated by a pheromone they deposit on the 

edges of the TSP graph while building solutions. The authors studied the ACS by running 

experiments to understand its operation. The results showed that the ACS outperforms 

other nature-inspired algorithms such as simulated annealing and evolutionary 

computation, and we conclude comparing ACS-3-opt, a version of the ACS augmented 

with a local search procedure, to some of the best performing algorithms for symmetric 

and asymmetric TSP‟s.  
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Kenneth and Ruth (1992) presented a new multi period variation of the M-traveling 

salesman problem. The problem arises in efficient scheduling of optimal interviews 

among tour brokers and vendors at conventions of the tourism and travel industry. In 

classical traveling salesman problem vocabulary, a salesman is a tour broker at the 

convention and a city is a vendor's booth. In this problem, more than one salesman may 

be required to visit a city, but at most one salesman per time period can visit each city. 

The heuristic solution method presented is polynomial and is guaranteed to produce a non 

conflicting set of salesmen's tours. The results of an implementation of the method for a 

recent convention are also reported. 

June and Sethian (2006) considered a problem in which given a domain, a cost function 

which depends on position at each point in the domain, and a subset of points (“cities”) in 

the domain, the goal is to determine the cheapest closed path that visits each city in the 

domain once. This can be thought of as a version of the traveling salesman problem, in 

which an underlying known metric determines the cost of moving through each point of 

the domain, but in which the actual shortest path between cities is unknown at the outset. 
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CHAPTER THREE 

METHODOLOGY 

3.0  INTRODUCTION 

In this chapter, we shall put forward the research methodology of the studies. 

3.1 VARIOUS FORMULATIONS OF TRAVELING SALESMAN PROBLEM 

        

The TSP is the most well known combinatorial optimization problem. The TSP can be 

easily stated as follows. A salesman wants to visit n distinct cities and then returns home. 

He wants to determine the sequence of the travel so that the overall traveling distance is 

minimized while visiting each city not more than once. Although the TSP is conceptually 

simple, it is difficult to obtain an optimal solution. In an n-city situation, any permutation 

of n cities yields a possible solution. As a consequence, n! possible tours must be 

evaluated in the search space.  

By introducing variables xij to represent the tour of the salesman travels from city i to city 

j, one of the common integer programming formulations for the TSP can be written as: 

         Minimize z =        
    

                                     j   i 

 

  Subject to  

 

       
   = 1      j = 1, 2, …,m; ij.  

 

       
   = 1   i = 1, 2, …,m; ij.  

  ui–uj+ mxij m – 1  i, j = 2, 3, …, m; i¹ j.  

  All xij= 0 or 1, All ui 0 and is a set of integers  

The distance between city i and city j is denoted as dij. The objective function Z is simply 

to minimize the total distance travelled in a tour.  
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The first constraint set ensures that the salesman arrives once at each city. The second 

constraint set ensures that the salesman leaves each city once. The third constraint set is 

to avoid the presence of sub-tour. Generally, the TSP formulated is known as the 

Euclidean TSP, in which the distance matrix d is expected to be symmetric, that is dij= dji 

for all i, j, and to satisfy the triangle inequality, that is dik dij+ djk for all distinct i, j, k.  

Mathematical formulations of TSP and mTSP 

The TSP can be defined on a complete undirected graph G= (V,E) if it is symmetric or on 

a directed graph G= (V,A) if it is asymmetric. The set V ={1, . . . , n} is the vertex set, 

E={(i,j):i,j V,i<j} is an edge set and A= {(i,j):i,j V,i≠j} is an arc set. A cost matrix C= 

(cij) is defined on E or on A. The cost matrix satisfies the triangle inequality whenever 

cij≤cik+ckj, for all i, j, k. In particular, this is the case of planar problems for which the 

vertices are points Pi= (Xi, Yi) in the plane, and  

cij=                     is the Euclidean distance. The triangle inequality is also 

satisfied if cij is the length of a shortest path from i to j on G. 

 

Integer programming formulation of sTSP 

Many TSP formulations are available in literature. Recent surveys by (Orman and 

Williams, 2006; O¨ncan et al., 2009) can be referred to for detailed analysis. Among 

these, the (Dantzig et al., 1954) formulation is one of the most cited mathematical 

formulation for TSP. Incidentally, an early description of Concorde, which is recognized 

as the most performing exact algorithm currently available, was published under the title 

„Implementing the Dantzig–Fulkerson–Johnson algorithm for large traveling salesman 

problems‟ (Applegate et al., 2003). This formulation associates a binary variable xij with 
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each edge (i, j), equal to 1 if and only if the edge appears in the optimal tour. The 

formulation of TSP is as follows. 

                         Minimize           

                          Subject to 

                                  +         = 2   (k   V) 

                                     |S| - 1         (S   V, 3   |S|   | n- 3 

                         xij= 0 or 1                     (i, j)   E 

In this formulation, the constraints are referred to as degree constraints, sub tour 

elimination constraints and integrality constraints, respectively. In the presence of the 

first constraint, the second constraints are algebraically equivalent to the connectivity 

constraints 

                   2        (S  V, 3  |S|   | n- 3) 

 

Integer programming formulation of aTSP 

The (Dantzig et al., 1954) formulation extends easily to the asymmetric case. Here xij is a 

binary variable, associated with arc (i,j) and equal to 1 if and only if the arc appears in the 

optimal tour. The formulation is as follows. 

                                Minimize           

                                Subject to 

                                    
 
    = 1            (i   V, i   j) 

                                   
 
    = 1            (j   V, j   i)  

                                          |S| - 1      (S  V, 2  |S|   | n- 2)  

                               xij= 0 or 1                     (i, j)   A 
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Integer programming formulations of mTSP 

Different types of integer programming formulations are proposed for the mTSP. Before 

presenting them, some technical definitions are as follows. The mTSP is defined on a 

graph G= (V, A), where V is the set of n nodes (vertices) and A is the set of arcs 

(edges).Let C= (cij) be a cost (distance) matrix associated with A. The matrix C is said to 

be symmetric when cij=cji, (i, j) A and asymmetric otherwise. If cij+cjk≥cik, i, j,k V, C is 

said to satisfy the triangle inequality. Various integer programming formulations for them 

TSP have been proposed earlier in the literature, among which there exist assignment 

based formulations, a tree-based formulation and a three-index flow-based formulation. 

Assignment based formulations are presented below. For tree based formulation and 

three-index based formulations refer (Christofides et al., 1981). 

 

Assignment-based integer programming formulations 

The mTSP is usually formulated using an assignment based double-index integer linear 

programming formulation. A general scheme of the assignment-based directed integer 

linear programming formulation of the mTSP can be given as follows: 

                        Minimize     
 
   

 
       

                        Subject to 

                            
 
    = m 

                            
 
     = m  

                           
 
     = 1        j = 2, . . ., n   

                          
 
     = 1        i = 2, . . ., n    

                      xij =  
                                 
                                                   

  , xij {0, 1},  (i, j)  A 
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In this chapter of the study, we shall provide an explanation of the dynamic programming 

algorithm which we proposed to solve our problem, but prior to this, since TSP problems 

are Network related problem, a brief introduction of Graph theory as well as Euclidean 

distance formula which we shall use to capture the distances between all pairs of cities 

are introduced.  

 

3.2 GRAPH THEORY. 

DEFINITION: A graph is an ordered pair G = (V, E) consisting of a finite set and a 

subset E of elements of the form(x, y) where x and y are in V. The set V are called the 

vertices of the graph and the set E are called the edges 

DEFINITION: A graph G is said to be a bipartite (or bicoloured) graph if the vertices 

can be partitioned into two mutually disjoint sets X and Y so that there is no edge of the 

form (x, x′) with x and x′ in X or of the form (y, y′)with y and y′ in Y. A bipartite graph 

will be denoted by G = ({X, Y}, E). 

NOTATION: The cardinality of a set X will be denoted by |X|. 

Bipartite graphs G = ({X, Y}, E) are represented by matrices. The X vertices are for 

example used for row indices and the Y vertices are used as column indices. Generally, 

the existence of an edge (x, y) is indicated by a 1 in the x, y cell of the |X| × |Y| matrix; no 

edge is indicated by 0. For the assignment problem, we are representing an edge by 0and 

no edge by a nonzero number. 

DEFINITION: A matching for a bipartite graph G = ({X, Y}, E) is a subset M of E such 

that no two elements of M have a common vertex. 
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DEFINITION: If G = ({X, Y}, E) is a bipartite graph, set  

ρ (G) = max {|M| | M is a matching of G}.  

A matching M such that |M| = ρ (G) will be called a maximal matching. 

DEFINITION: A set of vertices V′ is said to be a cover of a set of edges E′ if every edge 

in E′ is incident on one or more of the vertices of V′. A set of vertices S will be called a 

cover of the bipartite graph G = ({X, Y}, E) if every edge of G is incident on one or more 

of the vertices of S. 

DEFINITION: If G = ({X, Y}, E) is a bipartite graph, set 

c (G) = min {|S| | S is a cover of G}. 

A cover S such that |S| = c (G) will be called a minimal cover of G. 

THEOREM: If G = ({X, Y}, E) is a bipartite graph, then ρ (G) ≤ c (G). 

PROOF: Let S be a cover with |S| = c (G). Let M be a matching. Then each e in M has at 

least one of its vertices in S. If |M| > S, then by the pigeonhole principle, two edges e1 

and e2 meet the same vertex v in S. This contradicts the definition of a matching. So we 

have that |M| ≤ |S| = c (G). 

 

3.3 Optimizing Problems 

The efficient way of solving numerous programming problems implies their optimal 

breaking down into sub-problems. In this chapter we are dealing with such optimizing 

problems where the following conditions are true: 

 There is a target function which has to be optimized. 
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 The optimizing of the target function implies to break down the problem into sub-

problems. 

 This involves a sequence of decisions. 

 Concerning the division into sub-problems, with each decision (cut) the problem 

is reduced to one (I. type optimizing problems) similar, but smaller size sub-

problem, or breaks into two or more (II. type optimizing problems) similar, but 

smaller size sub-problems. 

 The target function is defined on the set of the problem's sub-problems. 

 The principle of optimality is valid for the problem, according to which the 

optimal solution of the problem can be built from the optimal solutions of its sub-

problems (the optimal value of the target function referring to the problem can be 

determined from the optimal values referring to the sub-problems). 

 Out of the different possibilities of breaking down the problem, we consider 

optimal that one (or that sequence of decisions) which - in accordance with the 

basic principle of optimality - involves the optimal construction of the solution of 

the problem. 

 We call a sub-problem trivial when the value of the target function referring to it 

is given by the input data of the problem in a trivial way. 

Such an optimizing problem is solved efficiently with the so called dynamic 

programming technique. In this study we are going to introduce a special graph, which 

we have called d-graph (from division-graph),in order to provide a special tool for such 

an optimum problem's analysis which breaks down into two or more sub problems by 

every decision. 
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3.4. D-GRAPHS 

Definition: We call the connected weighted digraph Gd(V, E, C) a d-graph if the 

following conditions are fulfilled: 

(1) V = Vp   Vd and E = Ep   Ed 

(2) Vp - the set of the p type nodes of the graph (p-nodes). 

Vp= {p1, p2, . . .,pnr-p}, nr-p is number of p-nodes. 

(3) Exactly one element of the set Vp is a source node (f). 

(4) We assign the set of p type sink nodes of Gd with S (Gd) (nr-s marks the number of 

sink nodes). 

(5) Vd - the set of the graph's d type nodes (d-nodes); nr- d is number of d-nodes. 

(6) All the neighbours of the d-nodes are p type and inversely, all the neighbours of the p-

nodes are of d type. Each d-node has exactly one in-neighbour of p type, which we call p-

father. The out-neighbours of the p-nodes are called d-sons. Each d-node has at least one 

p type out-neighbour and we are going to refer to these as p-sons. 

(7) The d-nodes are identified with two indexes: For example the notation dik refers to the 

d-son identified as the k
th 

d-sons of the p-node pi. 

(8) Ep - the set of p type arcs of the graph (p-arcs). 

Ep= {(pi, dik) / pi  Vp;, dik  Vd}. 

(9) Ed - the set of d type arcs of the graph (d-arcs). 

Ed= {(dik, pj) / dik Vd, pj  Vp; i < j}. We should notice that the p- type descendent of any 

p-node has bigger indexes. So in case of any d-graph the source is the 1 node. 

(10) The C: Ep  R function associates a cost to every p-arc. We consider the d-arcs of 

zero cost. 
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Theorem: Every d-graph is a cyclic. 

Proof. Let's assume that an oriented cycle exists in one of the d-graphs. According to the 

sixth item of the definition the p and d type nodes alternate on the cycle. Should the cycle 

consist of one p-node and one d-node, then the p-node is the p-father and also the p-son 

of node d in the same time. But this contradicts the ninth item of the definition according 

to which the p-sons of a d-node have always bigger indexes than its p-father. In case 

there are at least two nodes of both types, then let's consider pi and pj two consecutive p-

nodes of the cycle. As pi is the ancestor and in the same time the descendent of pj- also 

according to the ninth item of the definition - i should be smaller and also bigger than j, 

which is obviously impossible. So every d-graph is acyclic. 

Conclusion: The p-nodes of any d-graph can be arranged in topological order. 

The following picture presents such a d-graph where each d-node has exactly two p-sons. 

Definition: We call the d-graph gd(v, e, c) the d-sub graph of the d-graph Gd(V, E, C),if 

 vp  Vp, vd  Vd, ep  Ep, ed  Ed and S(gd)   S(Gd) 

 c:ep R and c(x) = C(x) for any x   ep 

 The set of the d, respectively p type sons of any p, respectively d type node of     

gd are similar in the gd and Gd d-graphs.  

It results from the above definition that every p-node of a d-graph unequivocally 

identifies the d-sub graph for which the respective node is its source. 

Definition: We call d-tree the d-graph where every p-node (except the sinks) has exactly 

one son. The source of a d-tree is called d-root and its sinks are called d-leaves. The set of 

leaves of the Td d-tree are marked with L (Td). 
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Definition: We call the d-tree td (vt, et, c) the d-subtree of the d-tree Td(V t, Et, C) 

if 

 vtp  V tp, vtd  V td, etp  Etp, etd  Etd and L(td)   L(Td) 

 c:etp  R and c(x) = C(x) for any x   etp 

 the set of p-sons of any d-node of td corresponds in the td and Td d-trees. 

Definition We call a d-tree Td(V t, Et,  c) the d-sub tree of the d-graph Gd(V, E, C) 

if 

 V tp  Vp,  V td  Vd, Etp  Ep, Etd  Ed and L(Td)   S(Gd) 

 c:Etp R and c(x) = C(x) for any x   Etp 

 the set of p-sons of any d-node of Td corresponds in the d-tree Td and the d-graph 

Gd. 

If the root of Td corresponds to the source of Gd, then we can speak about a spanning      

d-subtree. 

Definition: By the costs of a d-tree we mean the total costs of its p-arcs. 

Definition: We call the spanning d-subtree of a d-graph with the lowest costs minimal 

cost spanning d-subtree. 

Definition (the basic principle of optimality): We say that a d-graph has an optimal 

structure if every d-subtree of its optimal (having minimal costs) spanning 

d-subtree is itself an optimal spanning d-subtree of the d-subgraph determined by its root. 

3.5 Optimal Structure d-graphs 

Let Gd(V, E, C) be a d-graph. In the followings we are going to define a function C of    

p-arc-costs where every d-graph will be of optimal structure. Before doing that we are 

defining the node-weighing functions wp and wd. We mark the set of d-sons of the p-node 

pi with d-son set (pi) and the set of p-sons of the d-node dik with p-son set (dik). 
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The weight-function wp: 

 wp: Vp  R 

   For every pi, i= 1 : : : nrp p-node corresponds wp(pi) = optimum {wd(dik)}, if pi S(Gd) 

        dik d-son set(pi) 

wp(pi) = hr, if pi is the r
th 

sink of the d-graph 

      where {h1, h2, ...,hnr-s}  R is an input set which characterizes the Gd d-graph 

The wp weight of every p-node (except the sinks) is equal to the wd weight of its "optimal 

d-son". 

The weight function wd: 

wd:Vd  R 

For every dik d-node corresponds wd(dik) =  ({wp(pj)/ pj  p-son set (dik)}) 

The function ' describes mathematically how the wd weight of a d-node can be calculated 

from the wp weights of its p-sons. The function  also characterizes the Gd d-graph 

After having introduced the above weight functions, we define the cost function 

C
*
in the following way: 

C
*
:Ep  R, C

*
((pi, dik)) = |wp(pi) - wd(dik)| 

Theorem: Every d-graph Gd(V, E, C
*
) has optimal structure. 

Proof. As we have chosen the weight of the optimal d-sons as the weight of the p-nodes, 

every p-node is adjacent to at least one zero cost p-arc. It derives from this that the 

minimal cost spanning d-subtree and its every d-subtree will have zero costs. As C
*
, by 

its definition, assigns positive costs to the p-arcs, it is natural that every d-subtree of the 

minimal cost spanning d-subtree will be a minimal cost spanning d-subtree of the           

d-subgraph which has a corresponding source of its root. 
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3.6 Determination of the optimal spanning d-subtree with the implementation of the 

basic principle of optimality 

Let Gd (V, E, C
*
) be an optimal structure d-graph. According to the basic principle of 

optimality, the optimal spanning d-subtree of any gd d-subgraph of Gd can be determined 

from the optimal spanning d-subtrees of the son-d-subgraphs of gd. Consequently we are 

going to determine the optimal spanning d-subtrees belonging to the nodes pi Vp (i = 1, 

..., nr-p) in a reversed topological order. This order can be ensured if at the depth-

traversing, we deal with the certain nodes at the moment we are leaving them. 

We use the arrays WP[1 : : : nr-p] and WD[1 : : : nr-d] in order to store the weights of the 

p, respectively d type nodes of the d-graph Gd. At the beginning we fill up the elements 

of array WP corresponding to the sinks with their hi (i = 1 : : : nr-s) weights, the other 

elements with the value NIL. For the storage of the optimal spanning d-subtree we take 

array ODS[1 : : : nr p],which stores the optimal d-sons of the p-nodes. We initialize this 

array with the value NIL. The initialization procedure, depending on the nature of the 

optimum to be calculated, gives a suitable starting value to the array-element WP [pi] 

received as a parameter. The function is better analysed  whether the first parameter is 

better than the second one, according to the nature of the optimum. 

           optimal division(pi) 

           initialization (WP[pi]) 

           for all dik  d-son set (pi) do 

           for all pj  p-son set (dik) do 

           ifWP[pj] = NIL then optimal division(pj) 

       endif 



 54 

       endfor 

           WD[dik] =  ({WP[pj]/ pj  p-son set (dik)}) 

            if is better(WD[dik], WP[pi]) then 

           WP[pi] = WD[dik] 

           ODS[pi] = dik 

         endif 

          endfor 

          end optimal division 

Of course we call the optimal division procedure for the source node, presuming that it is 

not a sink in the same time. The OSD values of the sinks remain NIL. The following 

recursive procedure, based on the ODS array prints the p-arcs of the optimal spanning d-

subtree in a pre-order order. 

         optimal tree (pi) 

         write (pi, ODS[pi]) 

          for all pj  p-son set (ODS[pi]) do 

          ifODS[pj]   NIL then optimal tree (pj) 

        endif 

        endfor 

        end optimal tree 

 

3.7. d-graphs 

A d-graph can be associated to any optimizing problem described in the introduction. 
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 The p-nodes represent the different sub-problems given by the breaking down of 

the problem. The source represents the original problem, the sinks the trivial ones. 

 The numbering of the p-nodes and the a cyclicity given by this go hand in hand 

with the fact that, in the course of the breaking down, we reduce the problem to 

simpler and simpler sub-problems. 

 A p-node will have as many d-sons as the number of possibilities in which the 

sub-problem represented by it can be broken down to its sub-problems, by the 

respective decision. These decision possibilities are represented by the p-arcs. 

 The d-nodes represent the way the respective sub-problem breaks down into its 

sub-problems with the choices given by the different decisions. 

 A d-node will have as many p-sons, as the number of sub-problems resulted after 

the disintegration - with the occasion of the decision represented by it - of the sub-

problem described by its p-father. This breaking down into sub-problems is 

described by the d-arcs. 

 If different sequences of decisions taken at the breaking down of a problem lead 

to the same sub-problem, then the respective p-node will have identical p-

descendents on different descent branches. 

 The d-subgraphs of a d-graph express the way in which the sub-problems 

represented by its sources can be broken down onto further, smaller sub-

problems. 

 A certain subtree of a d-graph describes one of the breaking downs onto sub-

problems of the sub-problem represented by its root. The spanning sub-trees of a 
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d-graph represent the possibilities of breaking down the original problem onto its 

sub-problems. 

 ²The optimal structure of the d-graphs expresses the fact that the optimal solution 

of the problem is built from the optimal solutions of the sub-problems. In other 

words, the corresponding sub-sequences of the optimal sequence of the decisions 

are also optimal. 

 The optimal spanning d-subtree represents the optimal breaking down of the 

problem into sub-problems (its every p-arc represents one of the decisions of the 

optimal sequence of decisions.). 

 The wp function is nothing else but the returning of the target function to be 

optimized to the Gd d-graph. 

 h1, h2..., hnr-s real values are the optimal values referring to the trivial sub-

problems of the target function, represented by the sinks. 

 The nature of the optimum function is directly given by the target function of the 

problem and is often one of the minimum or maximum functions. 

 The function  is determined by the structure of the problem, the general rule 

according to which the solution of a sub-problem is built from the solutions of its 

sub-problems. 

Hereby, an optimizing problem can be regarded as the determination of the weight of the 

source of a d-graph (the optimal value of the target function concerning the original 

problem) and of its optimal spanning d-subtree (optimal sequence of decisions, 

respectively optimal breaking down into sub-problems).We call the procedure optimal 

division, which implements the basic principle of optimality, dynamic programming.  
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3.8 DYNAMIC PROGRAMMING 

Dynamic programming is an optimization approach that transforms a complex problem 

into a sequence of simpler problems; its essential characteristic is the multistage nature of 

the optimization procedure. More so than other optimization techniques, dynamic 

programming provides a general framework for analyzing many problem types. Within 

this framework a variety of optimization techniques can be employed to solve particular 

aspects of a more general formulation. Usually creativity is required before we can 

recognize that a particular problem can be cast effectively as a dynamic program; and 

often subtle insights are necessary to restructure the formulation so that it can be solved 

effectively. 

 

3.8.1 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS 

One way to recognize a situation that can be formulated as a dynamic programming 

problem is to notice it‟s basic features. 

These basic features that characterize dynamic programming problems are presented and 

discussed below: 

i. The problem can be divided into stages, with a policy decision required at each stage.   

Dynamic programming problems require making a sequence of interrelated decisions, 

where each decision corresponds to one stage of the problem. 

ii. Each stage has a number of states associated with the beginning of that stage. 

In general, the states are the various possible conditions in which the system might be at 

that stage of the problem. The number of states may be either finite or infinite. 
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iii. The effect of the policy decision at each stage is to transform the current state to a 

state associated with the beginning of the next stage (possibly according to a probability 

distribution). 

This procedure suggests that dynamic programming problems can be interpreted in terms 

of the networks. Each node would correspond to a state. The network would consist of 

columns of nodes, with each column corresponding to a stage, so that the flow from a 

node can go only to a node in the next column to the right. The links from a node to 

nodes in the next column correspond to the possible policy decisions on which state to go 

to next. The value assigned to each link usually can be interpreted as the immediate 

contribution to the objective function from making that policy decision. In most cases, 

the objective corresponds to finding either the shortest or the longest path through the 

network. 

iv. The solution procedure is designed to find an optimal policy for the overall problem, 

i.e., a prescription of the optimal policy decision at each stage for each of the possible 

states. 

 For any problem, dynamic programming provides this kind of policy prescription of 

what to do under every possible circumstance (which is why the actual decision made 

upon reaching a particular state at a given stage is referred to as a policy decision). 

Providing this additional information beyond simply specifying an optimal solution 

(optimal sequence of decisions) can be helpful in a variety of ways, including sensitivity 

analysis. 

v. Given the current state, an optimal policy for the remaining stages is independent of 

the policy decisions adopted in previous stages. Therefore, the optimal immediate 
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decision depends on only the current state and not on how you got there. This is the 

principle of optimality for dynamic programming. 

For dynamic programming problems in general, knowledge of the current state of the 

system conveys all the information about its previous behavior necessary for determining 

the optimal policy henceforth. Any problem lacking this property cannot be formulated as 

a dynamic programming problem. 

vi. The solution procedure begins by finding the optimal policy for the last stage. 

The optimal policy for the last stage prescribes the optimal policy decision for each of the 

possible states at that stage. The solution of this one-stage problem is usually trivial, as it 

was for the stagecoach problem. 

vii. A recursive relationship that identifies the optimal policy for stage n, given the 

optimal policy for stage (n+ 1), is available. 

Therefore, finding the optimal policy decision when you start in state s at stage n requires 

finding the minimizing value of xn. 

This property is emphasized in the next (and final) characteristic of dynamic 

programming. 

viii. When we use this recursive relationship, the solution procedure starts at the end and 

moves backward stage by stage - each time finding the optimal policy for that stage - 

until it finds the optimal policy starting at the initial stage. This optimal policy 

immediately yields an optimal solution for the entire problem. 

 

 

 

 



 60 

3.8.2 The Algorithm 

• Identify the decision variables and specify objective function to be optimized under 

certain limitations, if any. 

• Decompose or divide the given problem into a number of smaller sub-problems or 

stages. Identify the state variables at each stage and write down the transformation 

function as a function of the state variable and decision variables at the next stage. 

• Write down the general recursive relationship for computing the optimal policy. Decide 

whether forward or backward method is to follow to solve the problem. 

• Construct appropriate stage to show the required values of the return function at each 

stage. 

• Determine the overall optimal policy or decisions and its value at each stage. There may 

be more than one such optimal policy. 

 
The basic features, which characterize the dynamic programming problem, are as 

follows: 

(i) Problem can be sub-divided into stages with a policy decision required at each stage. 

A stage is a device to sequence the decisions. That is, it decomposes a problem into sub-

problems such that an optimal solution to the problem can be obtained from the optimal 

solution to the sub-problem. 

(ii) Every stage consists of a number of states associated with it. The states are the 

different possible conditions in which the system may find itself at that stage of the 

problem. 

(iii) Decision at each stage converts the current stage into state associated with the next 

stage. 
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(iv) The state of the system at a stage is described by a set of variables, called state 

variables. 

(v) When the current state is known, an optimal policy for the remaining stages is 

independent of the policy of the previous ones. 

(vi) To identify the optimum policy for each state of the system, a recursive equation is 

formulated with „n‟ stages remaining, given the optimal policy for each stage with (n – 1) 

stages left. 

(vii) Using recursive equation approach each time the solution procedure moves 

backward, stage by stage for obtaining the optimum policy of each stage for that 

particular stage, still it attains the optimum policy beginning at the initial stage. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 

In this chapter, we shall consider a computational study of the Travelling Salesman 

Problem (TSP). Emphasis will be placed on TSP, which was worked out as a network 

problem. Data from the Inspectorate Division-GES, Accra shall be examined. 

4.1 Data Collection and Analysis 

The Inspectorate Division of the Ghana Education Service (GES), Accra usually sends 

inspection officers to inspect the overall academic work of various schools in the region 

to ensure that teachers and circuit supervisors perform their tasks as desired. 

An officer moves from the first school, Kinbu Sec/ Technical School and is expected to 

visit as many schools as possible on each route within each journey in a day.  

 

Table 4.1 shows the distance matrix table, taken from Transport Department of GES-

Accra, showing the various links of connecting selected schools assigned to an officer to 

inspect in kilometers (km). 
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Table 4.1 Distance matrix table connecting schools in km 

 

 1 2 3 4 5 6 7 8 9 10 

1   16 10 32             

2 16       12           

3 10       15 24         

4 32           22       

5   12 15     28   21     

6     24   28   40 24 56   

7       22   40   111 76   

8         21 24 111   127 42 

9           56 76 127   97 

10               42 97   

 

The infinity symbol signifies no direct link between the two schools. 
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Table 4.2 shows the names of the schools assigned to an officer. 

1 Kinbu Sec/ Technical School 

2 Accra Academy Senior High School 

3 Labone Senior High School 

4 Tema Senior High School 

5 Odorgonno Senior High School 

6 West Africa Senior High School 

7 Prampram Senior High School 

8 Amasaman Senior High/Technical School 

9 Ada Senior High School 

10 Ghanata Senior High School 

 

The problem at hand is to find the minimum distance that an officer could cover and visit 

a maximum number of schools in a day. 

Modeling the above problem as a Network problem, we obtain Figure 4.1, which shows 

the route map of the various ways of reaching the schools, with each node representing a 

school. The numbers on the lines indicate the distances in kilometres (km).  
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Figure 4.1: Route map of the various ways of reaching the schools  

 

 

By applying dynamic programming, the problem may be considered as 4-stage problem. 

This is shown in Figure 4.2. 

 

 

                         Stage 1           Stage 2                       Stage 3                 Stage 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.2: Route maps of the various ways of reaching the schools in Stages 
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Let xi be the state variable in the i
th

 stage, and di(xi) be the distance covered in the i
th

 

stage. Our model then becomes; 

d(i) = min {       
 
      } 

In the first stage, i = 1, and the officer moves from school 1(node number 1) and can 

reach schools 2, 3, and 4 directly.  

We shall therefore have d(1)= min {       
 
   }. 

Considering the distances: 1 to 2, which is 16 km, 1 to 3, which is 10 km, and 1 to 4, 

which is 32 km. Since this is a minimization problem and the goal of an officer is to visit 

more number of schools and travel less distance, we can show the routes, which give the 

minimum distance in bolded line and the rest of the lines we can neglect or we can show 

in normal lines. In this problem, lines 1 – 3 will be in bolded line and the rest in normal 

line as shown in Figure 4.3.  

d(1) = min {16, 10, 32}, which is 10 km. The distance covered up to that stage is written 

just above the node.  

 

 

 

 

 

 

 

 

Figure 4.3: Distance of reaching the various schools   
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In the second stage, i = 2 and the inspection officer can reach school 6 directly from 

schools 2 and 3, school 6 directly from schools 2 and 4 and school 7 from 4. 

We have d(2)= min {       
 
   }. 

Considering the distance from school 2 to 5, we have 16 + 12 = 28, 

Similarly, from school 3 to 5 is 10 + 15 = 25 km. 

The distance from school 3 to 6 = 10 + 24 = 34 km. 

The distance from school 4 to 7 = 32 + 22 = 54 km. 

The distance from school 5 to 6 is 25 + 28 = 53 km. 

The distance from school 6 to 7 is 34 + 40 = 74 km. 

d(2) = min{28, 25, 34, 54, 53, 74}. 

The minimum distance is 25 km. Hence, the inspection officer will travel from school 1 

to 3 and from school 3 to 5 covering 25 Km on the route 1-3-5. 

 

We then move on to the next stage, which is stage 3, with i = 3.  

We have d(3)= min {       
 
   }. 

In the third stage, the inspection officer may be at school 5 or at school 6 or at school 7. 

From there, the officer can directly go to school 8 or school 9. 

Working out the minimum distance from school 5, 6 and 7 to 8 and 9, we have: 

The distance from school 5 to 8 = 25 + 21 = 46 km. 

The distance from school 6 to 8 = 34 + 24 = 58 km. 

The distance from school 7 to 8 = 54 + 111 = 165 km. 

The distance from school 6 to 9 = 34 + 56 = 90 km. 

The distance from school 7 to 9 = 54 + 76 = 130 km. 
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The distance from school 8 to 9 = 46 + 127 = 173 km. 

d(3) = min {46, 58, 165, 90, 130, 173}. 

The minimum of all these is 46 km. Hence, the inspection officer can go from school 5 to 

8 at the distance of 46 km only on the routes 1-3-5-8. 

 

Next, we consider our final stage which is stage 4, thus i = 4. 

Thus, we have d(4)= min {       
 
   }. 

In the 4
th

 stage the inspection officer can reach school 10 from schools 8 or 9. Calculating 

the minimum distances from schools 8 and 9 to school 10 we have:  

The distance from school 8 to 10 =46 + 42 = 88 km. 

The distance from school 9 to 10 = 90 + 97 = 187 km. 

d(4) = min {88, 187}. 

The minimum of these is 88 km. This is shown in Figure 4.4 with bold lines and the 

distances written on top of the nodes. 
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Figure 4.4: Distance of reaching schools   

 

Hence the minimum distance from school 1 to 10 on the path is 88 km, and the routes are 

1 – 3 – 5 – 8 – 10.  

This implies that the inspection officer can use any of the above routes and visit as many 

as five schools on the route. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

The Traveling Salesman Problem is a traditional problem that has to do with making the 

most efficient use of resources while at the same time spending the least amount of 

energy in that utilization. The designation for this type of problem hails back to the days 

of the travelling salesman, who often wished to arrange travel distances in a manner that 

allowed for visiting the most towns without having to double back and cross into any 

given town more than once.  

In a wider sense, the travelling salesman problem is considered to be a classic example of 

what is known as a tour problem. Essentially, any type of tour problem involves making a 

series of stops along a designated route and making a return journey without ever making 

a second visit to any previous stop. Generally, a tour problem is present when there is 

concern on making the most of available resources such as time and mode of travel to 

accomplish the most in results. Finding a solution to a tour problem is sometimes referred 

to as discovering the least-cost path, implying that the strategic planning of the route will 

ensure maximum benefit with minimum expenditure incurred.  

The concept of the travelling salesman problem can be translated into a number of 

different disciplines. For example, the idea of combinatorial optimization has a direct 

relationship to the travelling salesman model. As a form of optimization that is useful in 

both mathematical and computer science disciplines, combinatorial optimization seeks to 
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team relevant factors and apply them in a manner that will yield the best results with 

repeated usage.  

In a similar manner, discrete optimization attempts to accomplish the same goal, although 

the term is sometimes employed to refer to tasks or operations that occur on a one-time 

basis rather than recurring. Discrete optimization also is helpful in computer science and 

mathematical disciplines. In addition, discrete optimization has a direct relationship to 

computational complexity theory and is understood to be of use in the development of 

artificial intelligence.  

While the imagery associated with a travelling salesman problem may seem an 

oversimplification of these types of detailed options for optimization, the idea behind the 

imagery helps to explain a basic fundamental to any type of optimization that strives for 

efficiency. The travelling salesman problem that is solved will yield huge benefits in the 

way of maximum return for minimum investment of resources.  

 

TSP is a very attractive problem for the research community because it arises as a natural 

sub-problem in many applications concerning the everyday life. Indeed, each application, 

in which an optimal ordering of a number of items has to be chosen in a way that the total 

cost of a solution is determined by adding up the costs arising from two successively 

items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as 

an abstract research with no real importance. 

 

 

http://www.wisegeek.com/what-is-a-theory.htm
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5.1 CONCLUSIONS 

This thesis seeks to model a real-life problem of Inspectorate Division of Ghana 

Education Service (GES), Accra as a network problem and apply dynamic programming 

approach in solving the problem. It was observed that the route that gave minimum 

achievable inspection plan was: 

1 – 3 – 5 – 8 – 10 at the minimum distance of 88 km, by visiting as many as five schools 

on the route.  

 

It is important to state that, past records from the Inspectorate Division show that there is 

no set down procedure for determining which routes to be used by inspection officers. 

The routes are chosen using guess work and by the discretion of the driver who is sending 

the officer. The maximum number of schools they normally visit were three on a route 

from past experience. 

 

5.2 RECOMMENDATIONS 

The use of mathematical models has proved to be efficient in the computation of 

optimum results and gives a systematic and transparent solution as compared with an 

arbitrary method. Operation has become one of the key competitive advantages with 

optimization-based approaches being expected to play an important role. Using 

optimization-based approaches to model industrial problem gives a better result. 

Management will benefit from the proposed approach for officers who would be assigned 

to inspect various schools in order to visit more school on a route at a minimized 

distance. We therefore recommend that our TSP model should be adopted by the 

Inspectorate Division of Ghana Education Service (GES), Accra for its routine inspection 

planning.  
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